remove unnecessary null checks
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22
23 #define DRV_MODULE_VER_MAJOR    2
24 #define DRV_MODULE_VER_MINOR    5
25 #define DRV_MODULE_VER_SUBMINOR 0
26
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28
29 #define GET_L4_HDR_LEN(mbuf)                                    \
30         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
31                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32
33 #define ETH_GSTRING_LEN 32
34
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36
37 #define ENA_MIN_RING_DESC       128
38
39 #define ENA_PTYPE_HAS_HASH      (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40
41 enum ethtool_stringset {
42         ETH_SS_TEST             = 0,
43         ETH_SS_STATS,
44 };
45
46 struct ena_stats {
47         char name[ETH_GSTRING_LEN];
48         int stat_offset;
49 };
50
51 #define ENA_STAT_ENTRY(stat, stat_type) { \
52         .name = #stat, \
53         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
54 }
55
56 #define ENA_STAT_RX_ENTRY(stat) \
57         ENA_STAT_ENTRY(stat, rx)
58
59 #define ENA_STAT_TX_ENTRY(stat) \
60         ENA_STAT_ENTRY(stat, tx)
61
62 #define ENA_STAT_ENI_ENTRY(stat) \
63         ENA_STAT_ENTRY(stat, eni)
64
65 #define ENA_STAT_GLOBAL_ENTRY(stat) \
66         ENA_STAT_ENTRY(stat, dev)
67
68 /* Device arguments */
69 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
70
71 /*
72  * Each rte_memzone should have unique name.
73  * To satisfy it, count number of allocation and add it to name.
74  */
75 rte_atomic64_t ena_alloc_cnt;
76
77 static const struct ena_stats ena_stats_global_strings[] = {
78         ENA_STAT_GLOBAL_ENTRY(wd_expired),
79         ENA_STAT_GLOBAL_ENTRY(dev_start),
80         ENA_STAT_GLOBAL_ENTRY(dev_stop),
81         ENA_STAT_GLOBAL_ENTRY(tx_drops),
82 };
83
84 static const struct ena_stats ena_stats_eni_strings[] = {
85         ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
86         ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
87         ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
88         ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
89         ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
90 };
91
92 static const struct ena_stats ena_stats_tx_strings[] = {
93         ENA_STAT_TX_ENTRY(cnt),
94         ENA_STAT_TX_ENTRY(bytes),
95         ENA_STAT_TX_ENTRY(prepare_ctx_err),
96         ENA_STAT_TX_ENTRY(linearize),
97         ENA_STAT_TX_ENTRY(linearize_failed),
98         ENA_STAT_TX_ENTRY(tx_poll),
99         ENA_STAT_TX_ENTRY(doorbells),
100         ENA_STAT_TX_ENTRY(bad_req_id),
101         ENA_STAT_TX_ENTRY(available_desc),
102         ENA_STAT_TX_ENTRY(missed_tx),
103 };
104
105 static const struct ena_stats ena_stats_rx_strings[] = {
106         ENA_STAT_RX_ENTRY(cnt),
107         ENA_STAT_RX_ENTRY(bytes),
108         ENA_STAT_RX_ENTRY(refill_partial),
109         ENA_STAT_RX_ENTRY(bad_csum),
110         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
111         ENA_STAT_RX_ENTRY(bad_desc_num),
112         ENA_STAT_RX_ENTRY(bad_req_id),
113 };
114
115 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
116 #define ENA_STATS_ARRAY_ENI     ARRAY_SIZE(ena_stats_eni_strings)
117 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
118 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
119
120 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
121                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
122                         RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
123                         RTE_ETH_TX_OFFLOAD_TCP_TSO)
124 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
125                        RTE_MBUF_F_TX_IP_CKSUM |\
126                        RTE_MBUF_F_TX_TCP_SEG)
127
128 /** Vendor ID used by Amazon devices */
129 #define PCI_VENDOR_ID_AMAZON 0x1D0F
130 /** Amazon devices */
131 #define PCI_DEVICE_ID_ENA_VF            0xEC20
132 #define PCI_DEVICE_ID_ENA_VF_RSERV0     0xEC21
133
134 #define ENA_TX_OFFLOAD_MASK     (RTE_MBUF_F_TX_L4_MASK |         \
135         RTE_MBUF_F_TX_IPV6 |            \
136         RTE_MBUF_F_TX_IPV4 |            \
137         RTE_MBUF_F_TX_IP_CKSUM |        \
138         RTE_MBUF_F_TX_TCP_SEG)
139
140 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
141         (RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
142
143 /** HW specific offloads capabilities. */
144 /* IPv4 checksum offload. */
145 #define ENA_L3_IPV4_CSUM                0x0001
146 /* TCP/UDP checksum offload for IPv4 packets. */
147 #define ENA_L4_IPV4_CSUM                0x0002
148 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
149 #define ENA_L4_IPV4_CSUM_PARTIAL        0x0004
150 /* TCP/UDP checksum offload for IPv6 packets. */
151 #define ENA_L4_IPV6_CSUM                0x0008
152 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
153 #define ENA_L4_IPV6_CSUM_PARTIAL        0x0010
154 /* TSO support for IPv4 packets. */
155 #define ENA_IPV4_TSO                    0x0020
156
157 /* Device supports setting RSS hash. */
158 #define ENA_RX_RSS_HASH                 0x0040
159
160 static const struct rte_pci_id pci_id_ena_map[] = {
161         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
162         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
163         { .device_id = 0 },
164 };
165
166 static struct ena_aenq_handlers aenq_handlers;
167
168 static int ena_device_init(struct ena_com_dev *ena_dev,
169                            struct rte_pci_device *pdev,
170                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
171                            bool *wd_state);
172 static int ena_dev_configure(struct rte_eth_dev *dev);
173 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
174         struct ena_tx_buffer *tx_info,
175         struct rte_mbuf *mbuf,
176         void **push_header,
177         uint16_t *header_len);
178 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
179 static void ena_tx_cleanup(struct ena_ring *tx_ring);
180 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
181                                   uint16_t nb_pkts);
182 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
183                 uint16_t nb_pkts);
184 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
185                               uint16_t nb_desc, unsigned int socket_id,
186                               const struct rte_eth_txconf *tx_conf);
187 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
188                               uint16_t nb_desc, unsigned int socket_id,
189                               const struct rte_eth_rxconf *rx_conf,
190                               struct rte_mempool *mp);
191 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
192 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
193                                     struct ena_com_rx_buf_info *ena_bufs,
194                                     uint32_t descs,
195                                     uint16_t *next_to_clean,
196                                     uint8_t offset);
197 static uint16_t eth_ena_recv_pkts(void *rx_queue,
198                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
199 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
200                                   struct rte_mbuf *mbuf, uint16_t id);
201 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
202 static void ena_init_rings(struct ena_adapter *adapter,
203                            bool disable_meta_caching);
204 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
205 static int ena_start(struct rte_eth_dev *dev);
206 static int ena_stop(struct rte_eth_dev *dev);
207 static int ena_close(struct rte_eth_dev *dev);
208 static int ena_dev_reset(struct rte_eth_dev *dev);
209 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
210 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
211 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
212 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
213 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
214 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
215 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
216 static int ena_link_update(struct rte_eth_dev *dev,
217                            int wait_to_complete);
218 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
219 static void ena_queue_stop(struct ena_ring *ring);
220 static void ena_queue_stop_all(struct rte_eth_dev *dev,
221                               enum ena_ring_type ring_type);
222 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
223 static int ena_queue_start_all(struct rte_eth_dev *dev,
224                                enum ena_ring_type ring_type);
225 static void ena_stats_restart(struct rte_eth_dev *dev);
226 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
227 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
228 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
229 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
230 static int ena_infos_get(struct rte_eth_dev *dev,
231                          struct rte_eth_dev_info *dev_info);
232 static void ena_interrupt_handler_rte(void *cb_arg);
233 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
234 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
235 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
236 static int ena_xstats_get_names(struct rte_eth_dev *dev,
237                                 struct rte_eth_xstat_name *xstats_names,
238                                 unsigned int n);
239 static int ena_xstats_get(struct rte_eth_dev *dev,
240                           struct rte_eth_xstat *stats,
241                           unsigned int n);
242 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
243                                 const uint64_t *ids,
244                                 uint64_t *values,
245                                 unsigned int n);
246 static int ena_process_bool_devarg(const char *key,
247                                    const char *value,
248                                    void *opaque);
249 static int ena_parse_devargs(struct ena_adapter *adapter,
250                              struct rte_devargs *devargs);
251 static int ena_copy_eni_stats(struct ena_adapter *adapter);
252 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
253 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
254                                     uint16_t queue_id);
255 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
256                                      uint16_t queue_id);
257
258 static const struct eth_dev_ops ena_dev_ops = {
259         .dev_configure        = ena_dev_configure,
260         .dev_infos_get        = ena_infos_get,
261         .rx_queue_setup       = ena_rx_queue_setup,
262         .tx_queue_setup       = ena_tx_queue_setup,
263         .dev_start            = ena_start,
264         .dev_stop             = ena_stop,
265         .link_update          = ena_link_update,
266         .stats_get            = ena_stats_get,
267         .xstats_get_names     = ena_xstats_get_names,
268         .xstats_get           = ena_xstats_get,
269         .xstats_get_by_id     = ena_xstats_get_by_id,
270         .mtu_set              = ena_mtu_set,
271         .rx_queue_release     = ena_rx_queue_release,
272         .tx_queue_release     = ena_tx_queue_release,
273         .dev_close            = ena_close,
274         .dev_reset            = ena_dev_reset,
275         .reta_update          = ena_rss_reta_update,
276         .reta_query           = ena_rss_reta_query,
277         .rx_queue_intr_enable = ena_rx_queue_intr_enable,
278         .rx_queue_intr_disable = ena_rx_queue_intr_disable,
279         .rss_hash_update      = ena_rss_hash_update,
280         .rss_hash_conf_get    = ena_rss_hash_conf_get,
281 };
282
283 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
284                                        struct ena_com_rx_ctx *ena_rx_ctx,
285                                        bool fill_hash)
286 {
287         uint64_t ol_flags = 0;
288         uint32_t packet_type = 0;
289
290         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
291                 packet_type |= RTE_PTYPE_L4_TCP;
292         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
293                 packet_type |= RTE_PTYPE_L4_UDP;
294
295         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
296                 packet_type |= RTE_PTYPE_L3_IPV4;
297                 if (unlikely(ena_rx_ctx->l3_csum_err))
298                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
299                 else
300                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
301         } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
302                 packet_type |= RTE_PTYPE_L3_IPV6;
303         }
304
305         if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag)
306                 ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
307         else
308                 if (unlikely(ena_rx_ctx->l4_csum_err))
309                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
310                 else
311                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
312
313         if (fill_hash &&
314             likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
315                 ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
316                 mbuf->hash.rss = ena_rx_ctx->hash;
317         }
318
319         mbuf->ol_flags = ol_flags;
320         mbuf->packet_type = packet_type;
321 }
322
323 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
324                                        struct ena_com_tx_ctx *ena_tx_ctx,
325                                        uint64_t queue_offloads,
326                                        bool disable_meta_caching)
327 {
328         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
329
330         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
331             (queue_offloads & QUEUE_OFFLOADS)) {
332                 /* check if TSO is required */
333                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
334                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
335                         ena_tx_ctx->tso_enable = true;
336
337                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
338                 }
339
340                 /* check if L3 checksum is needed */
341                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
342                     (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
343                         ena_tx_ctx->l3_csum_enable = true;
344
345                 if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
346                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
347                 } else {
348                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
349
350                         /* set don't fragment (DF) flag */
351                         if (mbuf->packet_type &
352                                 (RTE_PTYPE_L4_NONFRAG
353                                  | RTE_PTYPE_INNER_L4_NONFRAG))
354                                 ena_tx_ctx->df = true;
355                 }
356
357                 /* check if L4 checksum is needed */
358                 if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
359                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
360                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
361                         ena_tx_ctx->l4_csum_enable = true;
362                 } else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
363                                 RTE_MBUF_F_TX_UDP_CKSUM) &&
364                                 (queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
365                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
366                         ena_tx_ctx->l4_csum_enable = true;
367                 } else {
368                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
369                         ena_tx_ctx->l4_csum_enable = false;
370                 }
371
372                 ena_meta->mss = mbuf->tso_segsz;
373                 ena_meta->l3_hdr_len = mbuf->l3_len;
374                 ena_meta->l3_hdr_offset = mbuf->l2_len;
375
376                 ena_tx_ctx->meta_valid = true;
377         } else if (disable_meta_caching) {
378                 memset(ena_meta, 0, sizeof(*ena_meta));
379                 ena_tx_ctx->meta_valid = true;
380         } else {
381                 ena_tx_ctx->meta_valid = false;
382         }
383 }
384
385 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
386 {
387         struct ena_tx_buffer *tx_info = NULL;
388
389         if (likely(req_id < tx_ring->ring_size)) {
390                 tx_info = &tx_ring->tx_buffer_info[req_id];
391                 if (likely(tx_info->mbuf))
392                         return 0;
393         }
394
395         if (tx_info)
396                 PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
397         else
398                 PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
399
400         /* Trigger device reset */
401         ++tx_ring->tx_stats.bad_req_id;
402         tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
403         tx_ring->adapter->trigger_reset = true;
404         return -EFAULT;
405 }
406
407 static void ena_config_host_info(struct ena_com_dev *ena_dev)
408 {
409         struct ena_admin_host_info *host_info;
410         int rc;
411
412         /* Allocate only the host info */
413         rc = ena_com_allocate_host_info(ena_dev);
414         if (rc) {
415                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
416                 return;
417         }
418
419         host_info = ena_dev->host_attr.host_info;
420
421         host_info->os_type = ENA_ADMIN_OS_DPDK;
422         host_info->kernel_ver = RTE_VERSION;
423         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
424                 sizeof(host_info->kernel_ver_str));
425         host_info->os_dist = RTE_VERSION;
426         strlcpy((char *)host_info->os_dist_str, rte_version(),
427                 sizeof(host_info->os_dist_str));
428         host_info->driver_version =
429                 (DRV_MODULE_VER_MAJOR) |
430                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
431                 (DRV_MODULE_VER_SUBMINOR <<
432                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
433         host_info->num_cpus = rte_lcore_count();
434
435         host_info->driver_supported_features =
436                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
437                 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
438
439         rc = ena_com_set_host_attributes(ena_dev);
440         if (rc) {
441                 if (rc == -ENA_COM_UNSUPPORTED)
442                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
443                 else
444                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
445
446                 goto err;
447         }
448
449         return;
450
451 err:
452         ena_com_delete_host_info(ena_dev);
453 }
454
455 /* This function calculates the number of xstats based on the current config */
456 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
457 {
458         return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
459                 (data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
460                 (data->nb_rx_queues * ENA_STATS_ARRAY_RX);
461 }
462
463 static void ena_config_debug_area(struct ena_adapter *adapter)
464 {
465         u32 debug_area_size;
466         int rc, ss_count;
467
468         ss_count = ena_xstats_calc_num(adapter->edev_data);
469
470         /* allocate 32 bytes for each string and 64bit for the value */
471         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
472
473         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
474         if (rc) {
475                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
476                 return;
477         }
478
479         rc = ena_com_set_host_attributes(&adapter->ena_dev);
480         if (rc) {
481                 if (rc == -ENA_COM_UNSUPPORTED)
482                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
483                 else
484                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
485
486                 goto err;
487         }
488
489         return;
490 err:
491         ena_com_delete_debug_area(&adapter->ena_dev);
492 }
493
494 static int ena_close(struct rte_eth_dev *dev)
495 {
496         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
497         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
498         struct ena_adapter *adapter = dev->data->dev_private;
499         int ret = 0;
500
501         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
502                 return 0;
503
504         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
505                 ret = ena_stop(dev);
506         adapter->state = ENA_ADAPTER_STATE_CLOSED;
507
508         ena_rx_queue_release_all(dev);
509         ena_tx_queue_release_all(dev);
510
511         rte_free(adapter->drv_stats);
512         adapter->drv_stats = NULL;
513
514         rte_intr_disable(intr_handle);
515         rte_intr_callback_unregister(intr_handle,
516                                      ena_interrupt_handler_rte,
517                                      dev);
518
519         /*
520          * MAC is not allocated dynamically. Setting NULL should prevent from
521          * release of the resource in the rte_eth_dev_release_port().
522          */
523         dev->data->mac_addrs = NULL;
524
525         return ret;
526 }
527
528 static int
529 ena_dev_reset(struct rte_eth_dev *dev)
530 {
531         int rc = 0;
532
533         /* Cannot release memory in secondary process */
534         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
535                 PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
536                 return -EPERM;
537         }
538
539         ena_destroy_device(dev);
540         rc = eth_ena_dev_init(dev);
541         if (rc)
542                 PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
543
544         return rc;
545 }
546
547 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
548 {
549         int nb_queues = dev->data->nb_rx_queues;
550         int i;
551
552         for (i = 0; i < nb_queues; i++)
553                 ena_rx_queue_release(dev, i);
554 }
555
556 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
557 {
558         int nb_queues = dev->data->nb_tx_queues;
559         int i;
560
561         for (i = 0; i < nb_queues; i++)
562                 ena_tx_queue_release(dev, i);
563 }
564
565 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
566 {
567         struct ena_ring *ring = dev->data->rx_queues[qid];
568
569         /* Free ring resources */
570         rte_free(ring->rx_buffer_info);
571         ring->rx_buffer_info = NULL;
572
573         rte_free(ring->rx_refill_buffer);
574         ring->rx_refill_buffer = NULL;
575
576         rte_free(ring->empty_rx_reqs);
577         ring->empty_rx_reqs = NULL;
578
579         ring->configured = 0;
580
581         PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
582                 ring->port_id, ring->id);
583 }
584
585 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
586 {
587         struct ena_ring *ring = dev->data->tx_queues[qid];
588
589         /* Free ring resources */
590         rte_free(ring->push_buf_intermediate_buf);
591
592         rte_free(ring->tx_buffer_info);
593
594         rte_free(ring->empty_tx_reqs);
595
596         ring->empty_tx_reqs = NULL;
597         ring->tx_buffer_info = NULL;
598         ring->push_buf_intermediate_buf = NULL;
599
600         ring->configured = 0;
601
602         PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
603                 ring->port_id, ring->id);
604 }
605
606 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
607 {
608         unsigned int i;
609
610         for (i = 0; i < ring->ring_size; ++i) {
611                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
612                 if (rx_info->mbuf) {
613                         rte_mbuf_raw_free(rx_info->mbuf);
614                         rx_info->mbuf = NULL;
615                 }
616         }
617 }
618
619 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
620 {
621         unsigned int i;
622
623         for (i = 0; i < ring->ring_size; ++i) {
624                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
625
626                 if (tx_buf->mbuf) {
627                         rte_pktmbuf_free(tx_buf->mbuf);
628                         tx_buf->mbuf = NULL;
629                 }
630         }
631 }
632
633 static int ena_link_update(struct rte_eth_dev *dev,
634                            __rte_unused int wait_to_complete)
635 {
636         struct rte_eth_link *link = &dev->data->dev_link;
637         struct ena_adapter *adapter = dev->data->dev_private;
638
639         link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
640         link->link_speed = RTE_ETH_SPEED_NUM_NONE;
641         link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
642
643         return 0;
644 }
645
646 static int ena_queue_start_all(struct rte_eth_dev *dev,
647                                enum ena_ring_type ring_type)
648 {
649         struct ena_adapter *adapter = dev->data->dev_private;
650         struct ena_ring *queues = NULL;
651         int nb_queues;
652         int i = 0;
653         int rc = 0;
654
655         if (ring_type == ENA_RING_TYPE_RX) {
656                 queues = adapter->rx_ring;
657                 nb_queues = dev->data->nb_rx_queues;
658         } else {
659                 queues = adapter->tx_ring;
660                 nb_queues = dev->data->nb_tx_queues;
661         }
662         for (i = 0; i < nb_queues; i++) {
663                 if (queues[i].configured) {
664                         if (ring_type == ENA_RING_TYPE_RX) {
665                                 ena_assert_msg(
666                                         dev->data->rx_queues[i] == &queues[i],
667                                         "Inconsistent state of Rx queues\n");
668                         } else {
669                                 ena_assert_msg(
670                                         dev->data->tx_queues[i] == &queues[i],
671                                         "Inconsistent state of Tx queues\n");
672                         }
673
674                         rc = ena_queue_start(dev, &queues[i]);
675
676                         if (rc) {
677                                 PMD_INIT_LOG(ERR,
678                                         "Failed to start queue[%d] of type(%d)\n",
679                                         i, ring_type);
680                                 goto err;
681                         }
682                 }
683         }
684
685         return 0;
686
687 err:
688         while (i--)
689                 if (queues[i].configured)
690                         ena_queue_stop(&queues[i]);
691
692         return rc;
693 }
694
695 static int ena_check_valid_conf(struct ena_adapter *adapter)
696 {
697         uint32_t mtu = adapter->edev_data->mtu;
698
699         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
700                 PMD_INIT_LOG(ERR,
701                         "Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
702                         mtu, adapter->max_mtu, ENA_MIN_MTU);
703                 return ENA_COM_UNSUPPORTED;
704         }
705
706         return 0;
707 }
708
709 static int
710 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
711                        bool use_large_llq_hdr)
712 {
713         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
714         struct ena_com_dev *ena_dev = ctx->ena_dev;
715         uint32_t max_tx_queue_size;
716         uint32_t max_rx_queue_size;
717
718         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
719                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
720                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
721                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
722                         max_queue_ext->max_rx_sq_depth);
723                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
724
725                 if (ena_dev->tx_mem_queue_type ==
726                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
727                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
728                                 llq->max_llq_depth);
729                 } else {
730                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
731                                 max_queue_ext->max_tx_sq_depth);
732                 }
733
734                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
735                         max_queue_ext->max_per_packet_rx_descs);
736                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
737                         max_queue_ext->max_per_packet_tx_descs);
738         } else {
739                 struct ena_admin_queue_feature_desc *max_queues =
740                         &ctx->get_feat_ctx->max_queues;
741                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
742                         max_queues->max_sq_depth);
743                 max_tx_queue_size = max_queues->max_cq_depth;
744
745                 if (ena_dev->tx_mem_queue_type ==
746                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
747                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
748                                 llq->max_llq_depth);
749                 } else {
750                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
751                                 max_queues->max_sq_depth);
752                 }
753
754                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
755                         max_queues->max_packet_rx_descs);
756                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
757                         max_queues->max_packet_tx_descs);
758         }
759
760         /* Round down to the nearest power of 2 */
761         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
762         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
763
764         if (use_large_llq_hdr) {
765                 if ((llq->entry_size_ctrl_supported &
766                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
767                     (ena_dev->tx_mem_queue_type ==
768                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
769                         max_tx_queue_size /= 2;
770                         PMD_INIT_LOG(INFO,
771                                 "Forcing large headers and decreasing maximum Tx queue size to %d\n",
772                                 max_tx_queue_size);
773                 } else {
774                         PMD_INIT_LOG(ERR,
775                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
776                 }
777         }
778
779         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
780                 PMD_INIT_LOG(ERR, "Invalid queue size\n");
781                 return -EFAULT;
782         }
783
784         ctx->max_tx_queue_size = max_tx_queue_size;
785         ctx->max_rx_queue_size = max_rx_queue_size;
786
787         return 0;
788 }
789
790 static void ena_stats_restart(struct rte_eth_dev *dev)
791 {
792         struct ena_adapter *adapter = dev->data->dev_private;
793
794         rte_atomic64_init(&adapter->drv_stats->ierrors);
795         rte_atomic64_init(&adapter->drv_stats->oerrors);
796         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
797         adapter->drv_stats->rx_drops = 0;
798 }
799
800 static int ena_stats_get(struct rte_eth_dev *dev,
801                           struct rte_eth_stats *stats)
802 {
803         struct ena_admin_basic_stats ena_stats;
804         struct ena_adapter *adapter = dev->data->dev_private;
805         struct ena_com_dev *ena_dev = &adapter->ena_dev;
806         int rc;
807         int i;
808         int max_rings_stats;
809
810         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
811                 return -ENOTSUP;
812
813         memset(&ena_stats, 0, sizeof(ena_stats));
814
815         rte_spinlock_lock(&adapter->admin_lock);
816         rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
817         rte_spinlock_unlock(&adapter->admin_lock);
818         if (unlikely(rc)) {
819                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
820                 return rc;
821         }
822
823         /* Set of basic statistics from ENA */
824         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
825                                           ena_stats.rx_pkts_low);
826         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
827                                           ena_stats.tx_pkts_low);
828         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
829                                         ena_stats.rx_bytes_low);
830         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
831                                         ena_stats.tx_bytes_low);
832
833         /* Driver related stats */
834         stats->imissed = adapter->drv_stats->rx_drops;
835         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
836         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
837         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
838
839         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
840                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
841         for (i = 0; i < max_rings_stats; ++i) {
842                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
843
844                 stats->q_ibytes[i] = rx_stats->bytes;
845                 stats->q_ipackets[i] = rx_stats->cnt;
846                 stats->q_errors[i] = rx_stats->bad_desc_num +
847                         rx_stats->bad_req_id;
848         }
849
850         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
851                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
852         for (i = 0; i < max_rings_stats; ++i) {
853                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
854
855                 stats->q_obytes[i] = tx_stats->bytes;
856                 stats->q_opackets[i] = tx_stats->cnt;
857         }
858
859         return 0;
860 }
861
862 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
863 {
864         struct ena_adapter *adapter;
865         struct ena_com_dev *ena_dev;
866         int rc = 0;
867
868         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
869         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
870         adapter = dev->data->dev_private;
871
872         ena_dev = &adapter->ena_dev;
873         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
874
875         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
876                 PMD_DRV_LOG(ERR,
877                         "Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
878                         mtu, adapter->max_mtu, ENA_MIN_MTU);
879                 return -EINVAL;
880         }
881
882         rc = ena_com_set_dev_mtu(ena_dev, mtu);
883         if (rc)
884                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
885         else
886                 PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
887
888         return rc;
889 }
890
891 static int ena_start(struct rte_eth_dev *dev)
892 {
893         struct ena_adapter *adapter = dev->data->dev_private;
894         uint64_t ticks;
895         int rc = 0;
896
897         /* Cannot allocate memory in secondary process */
898         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
899                 PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
900                 return -EPERM;
901         }
902
903         rc = ena_check_valid_conf(adapter);
904         if (rc)
905                 return rc;
906
907         rc = ena_setup_rx_intr(dev);
908         if (rc)
909                 return rc;
910
911         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
912         if (rc)
913                 return rc;
914
915         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
916         if (rc)
917                 goto err_start_tx;
918
919         if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
920                 rc = ena_rss_configure(adapter);
921                 if (rc)
922                         goto err_rss_init;
923         }
924
925         ena_stats_restart(dev);
926
927         adapter->timestamp_wd = rte_get_timer_cycles();
928         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
929
930         ticks = rte_get_timer_hz();
931         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
932                         ena_timer_wd_callback, dev);
933
934         ++adapter->dev_stats.dev_start;
935         adapter->state = ENA_ADAPTER_STATE_RUNNING;
936
937         return 0;
938
939 err_rss_init:
940         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
941 err_start_tx:
942         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
943         return rc;
944 }
945
946 static int ena_stop(struct rte_eth_dev *dev)
947 {
948         struct ena_adapter *adapter = dev->data->dev_private;
949         struct ena_com_dev *ena_dev = &adapter->ena_dev;
950         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
951         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
952         int rc;
953
954         /* Cannot free memory in secondary process */
955         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
956                 PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
957                 return -EPERM;
958         }
959
960         rte_timer_stop_sync(&adapter->timer_wd);
961         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
962         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
963
964         if (adapter->trigger_reset) {
965                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
966                 if (rc)
967                         PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
968         }
969
970         rte_intr_disable(intr_handle);
971
972         rte_intr_efd_disable(intr_handle);
973
974         /* Cleanup vector list */
975         rte_intr_vec_list_free(intr_handle);
976
977         rte_intr_enable(intr_handle);
978
979         ++adapter->dev_stats.dev_stop;
980         adapter->state = ENA_ADAPTER_STATE_STOPPED;
981         dev->data->dev_started = 0;
982
983         return 0;
984 }
985
986 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
987 {
988         struct ena_adapter *adapter = ring->adapter;
989         struct ena_com_dev *ena_dev = &adapter->ena_dev;
990         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
991         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
992         struct ena_com_create_io_ctx ctx =
993                 /* policy set to _HOST just to satisfy icc compiler */
994                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
995                   0, 0, 0, 0, 0 };
996         uint16_t ena_qid;
997         unsigned int i;
998         int rc;
999
1000         ctx.msix_vector = -1;
1001         if (ring->type == ENA_RING_TYPE_TX) {
1002                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1003                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1004                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1005                 for (i = 0; i < ring->ring_size; i++)
1006                         ring->empty_tx_reqs[i] = i;
1007         } else {
1008                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1009                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1010                 if (rte_intr_dp_is_en(intr_handle))
1011                         ctx.msix_vector =
1012                                 rte_intr_vec_list_index_get(intr_handle,
1013                                                                    ring->id);
1014
1015                 for (i = 0; i < ring->ring_size; i++)
1016                         ring->empty_rx_reqs[i] = i;
1017         }
1018         ctx.queue_size = ring->ring_size;
1019         ctx.qid = ena_qid;
1020         ctx.numa_node = ring->numa_socket_id;
1021
1022         rc = ena_com_create_io_queue(ena_dev, &ctx);
1023         if (rc) {
1024                 PMD_DRV_LOG(ERR,
1025                         "Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1026                         ring->id, ena_qid, rc);
1027                 return rc;
1028         }
1029
1030         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1031                                      &ring->ena_com_io_sq,
1032                                      &ring->ena_com_io_cq);
1033         if (rc) {
1034                 PMD_DRV_LOG(ERR,
1035                         "Failed to get IO queue[%d] handlers, rc: %d\n",
1036                         ring->id, rc);
1037                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1038                 return rc;
1039         }
1040
1041         if (ring->type == ENA_RING_TYPE_TX)
1042                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1043
1044         /* Start with Rx interrupts being masked. */
1045         if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1046                 ena_rx_queue_intr_disable(dev, ring->id);
1047
1048         return 0;
1049 }
1050
1051 static void ena_queue_stop(struct ena_ring *ring)
1052 {
1053         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1054
1055         if (ring->type == ENA_RING_TYPE_RX) {
1056                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1057                 ena_rx_queue_release_bufs(ring);
1058         } else {
1059                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1060                 ena_tx_queue_release_bufs(ring);
1061         }
1062 }
1063
1064 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1065                               enum ena_ring_type ring_type)
1066 {
1067         struct ena_adapter *adapter = dev->data->dev_private;
1068         struct ena_ring *queues = NULL;
1069         uint16_t nb_queues, i;
1070
1071         if (ring_type == ENA_RING_TYPE_RX) {
1072                 queues = adapter->rx_ring;
1073                 nb_queues = dev->data->nb_rx_queues;
1074         } else {
1075                 queues = adapter->tx_ring;
1076                 nb_queues = dev->data->nb_tx_queues;
1077         }
1078
1079         for (i = 0; i < nb_queues; ++i)
1080                 if (queues[i].configured)
1081                         ena_queue_stop(&queues[i]);
1082 }
1083
1084 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1085 {
1086         int rc, bufs_num;
1087
1088         ena_assert_msg(ring->configured == 1,
1089                        "Trying to start unconfigured queue\n");
1090
1091         rc = ena_create_io_queue(dev, ring);
1092         if (rc) {
1093                 PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1094                 return rc;
1095         }
1096
1097         ring->next_to_clean = 0;
1098         ring->next_to_use = 0;
1099
1100         if (ring->type == ENA_RING_TYPE_TX) {
1101                 ring->tx_stats.available_desc =
1102                         ena_com_free_q_entries(ring->ena_com_io_sq);
1103                 return 0;
1104         }
1105
1106         bufs_num = ring->ring_size - 1;
1107         rc = ena_populate_rx_queue(ring, bufs_num);
1108         if (rc != bufs_num) {
1109                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1110                                          ENA_IO_RXQ_IDX(ring->id));
1111                 PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1112                 return ENA_COM_FAULT;
1113         }
1114         /* Flush per-core RX buffers pools cache as they can be used on other
1115          * cores as well.
1116          */
1117         rte_mempool_cache_flush(NULL, ring->mb_pool);
1118
1119         return 0;
1120 }
1121
1122 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1123                               uint16_t queue_idx,
1124                               uint16_t nb_desc,
1125                               unsigned int socket_id,
1126                               const struct rte_eth_txconf *tx_conf)
1127 {
1128         struct ena_ring *txq = NULL;
1129         struct ena_adapter *adapter = dev->data->dev_private;
1130         unsigned int i;
1131         uint16_t dyn_thresh;
1132
1133         txq = &adapter->tx_ring[queue_idx];
1134
1135         if (txq->configured) {
1136                 PMD_DRV_LOG(CRIT,
1137                         "API violation. Queue[%d] is already configured\n",
1138                         queue_idx);
1139                 return ENA_COM_FAULT;
1140         }
1141
1142         if (!rte_is_power_of_2(nb_desc)) {
1143                 PMD_DRV_LOG(ERR,
1144                         "Unsupported size of Tx queue: %d is not a power of 2.\n",
1145                         nb_desc);
1146                 return -EINVAL;
1147         }
1148
1149         if (nb_desc > adapter->max_tx_ring_size) {
1150                 PMD_DRV_LOG(ERR,
1151                         "Unsupported size of Tx queue (max size: %d)\n",
1152                         adapter->max_tx_ring_size);
1153                 return -EINVAL;
1154         }
1155
1156         txq->port_id = dev->data->port_id;
1157         txq->next_to_clean = 0;
1158         txq->next_to_use = 0;
1159         txq->ring_size = nb_desc;
1160         txq->size_mask = nb_desc - 1;
1161         txq->numa_socket_id = socket_id;
1162         txq->pkts_without_db = false;
1163         txq->last_cleanup_ticks = 0;
1164
1165         txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1166                 sizeof(struct ena_tx_buffer) * txq->ring_size,
1167                 RTE_CACHE_LINE_SIZE,
1168                 socket_id);
1169         if (!txq->tx_buffer_info) {
1170                 PMD_DRV_LOG(ERR,
1171                         "Failed to allocate memory for Tx buffer info\n");
1172                 return -ENOMEM;
1173         }
1174
1175         txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1176                 sizeof(uint16_t) * txq->ring_size,
1177                 RTE_CACHE_LINE_SIZE,
1178                 socket_id);
1179         if (!txq->empty_tx_reqs) {
1180                 PMD_DRV_LOG(ERR,
1181                         "Failed to allocate memory for empty Tx requests\n");
1182                 rte_free(txq->tx_buffer_info);
1183                 return -ENOMEM;
1184         }
1185
1186         txq->push_buf_intermediate_buf =
1187                 rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1188                         txq->tx_max_header_size,
1189                         RTE_CACHE_LINE_SIZE,
1190                         socket_id);
1191         if (!txq->push_buf_intermediate_buf) {
1192                 PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1193                 rte_free(txq->tx_buffer_info);
1194                 rte_free(txq->empty_tx_reqs);
1195                 return -ENOMEM;
1196         }
1197
1198         for (i = 0; i < txq->ring_size; i++)
1199                 txq->empty_tx_reqs[i] = i;
1200
1201         txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1202
1203         /* Check if caller provided the Tx cleanup threshold value. */
1204         if (tx_conf->tx_free_thresh != 0) {
1205                 txq->tx_free_thresh = tx_conf->tx_free_thresh;
1206         } else {
1207                 dyn_thresh = txq->ring_size -
1208                         txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1209                 txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1210                         txq->ring_size - ENA_REFILL_THRESH_PACKET);
1211         }
1212
1213         txq->missing_tx_completion_threshold =
1214                 RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1215
1216         /* Store pointer to this queue in upper layer */
1217         txq->configured = 1;
1218         dev->data->tx_queues[queue_idx] = txq;
1219
1220         return 0;
1221 }
1222
1223 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1224                               uint16_t queue_idx,
1225                               uint16_t nb_desc,
1226                               unsigned int socket_id,
1227                               const struct rte_eth_rxconf *rx_conf,
1228                               struct rte_mempool *mp)
1229 {
1230         struct ena_adapter *adapter = dev->data->dev_private;
1231         struct ena_ring *rxq = NULL;
1232         size_t buffer_size;
1233         int i;
1234         uint16_t dyn_thresh;
1235
1236         rxq = &adapter->rx_ring[queue_idx];
1237         if (rxq->configured) {
1238                 PMD_DRV_LOG(CRIT,
1239                         "API violation. Queue[%d] is already configured\n",
1240                         queue_idx);
1241                 return ENA_COM_FAULT;
1242         }
1243
1244         if (!rte_is_power_of_2(nb_desc)) {
1245                 PMD_DRV_LOG(ERR,
1246                         "Unsupported size of Rx queue: %d is not a power of 2.\n",
1247                         nb_desc);
1248                 return -EINVAL;
1249         }
1250
1251         if (nb_desc > adapter->max_rx_ring_size) {
1252                 PMD_DRV_LOG(ERR,
1253                         "Unsupported size of Rx queue (max size: %d)\n",
1254                         adapter->max_rx_ring_size);
1255                 return -EINVAL;
1256         }
1257
1258         /* ENA isn't supporting buffers smaller than 1400 bytes */
1259         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1260         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1261                 PMD_DRV_LOG(ERR,
1262                         "Unsupported size of Rx buffer: %zu (min size: %d)\n",
1263                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1264                 return -EINVAL;
1265         }
1266
1267         rxq->port_id = dev->data->port_id;
1268         rxq->next_to_clean = 0;
1269         rxq->next_to_use = 0;
1270         rxq->ring_size = nb_desc;
1271         rxq->size_mask = nb_desc - 1;
1272         rxq->numa_socket_id = socket_id;
1273         rxq->mb_pool = mp;
1274
1275         rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1276                 sizeof(struct ena_rx_buffer) * nb_desc,
1277                 RTE_CACHE_LINE_SIZE,
1278                 socket_id);
1279         if (!rxq->rx_buffer_info) {
1280                 PMD_DRV_LOG(ERR,
1281                         "Failed to allocate memory for Rx buffer info\n");
1282                 return -ENOMEM;
1283         }
1284
1285         rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1286                 sizeof(struct rte_mbuf *) * nb_desc,
1287                 RTE_CACHE_LINE_SIZE,
1288                 socket_id);
1289         if (!rxq->rx_refill_buffer) {
1290                 PMD_DRV_LOG(ERR,
1291                         "Failed to allocate memory for Rx refill buffer\n");
1292                 rte_free(rxq->rx_buffer_info);
1293                 rxq->rx_buffer_info = NULL;
1294                 return -ENOMEM;
1295         }
1296
1297         rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1298                 sizeof(uint16_t) * nb_desc,
1299                 RTE_CACHE_LINE_SIZE,
1300                 socket_id);
1301         if (!rxq->empty_rx_reqs) {
1302                 PMD_DRV_LOG(ERR,
1303                         "Failed to allocate memory for empty Rx requests\n");
1304                 rte_free(rxq->rx_buffer_info);
1305                 rxq->rx_buffer_info = NULL;
1306                 rte_free(rxq->rx_refill_buffer);
1307                 rxq->rx_refill_buffer = NULL;
1308                 return -ENOMEM;
1309         }
1310
1311         for (i = 0; i < nb_desc; i++)
1312                 rxq->empty_rx_reqs[i] = i;
1313
1314         rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1315
1316         if (rx_conf->rx_free_thresh != 0) {
1317                 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1318         } else {
1319                 dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1320                 rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1321                         (uint16_t)(ENA_REFILL_THRESH_PACKET));
1322         }
1323
1324         /* Store pointer to this queue in upper layer */
1325         rxq->configured = 1;
1326         dev->data->rx_queues[queue_idx] = rxq;
1327
1328         return 0;
1329 }
1330
1331 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1332                                   struct rte_mbuf *mbuf, uint16_t id)
1333 {
1334         struct ena_com_buf ebuf;
1335         int rc;
1336
1337         /* prepare physical address for DMA transaction */
1338         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1339         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1340
1341         /* pass resource to device */
1342         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1343         if (unlikely(rc != 0))
1344                 PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1345
1346         return rc;
1347 }
1348
1349 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1350 {
1351         unsigned int i;
1352         int rc;
1353         uint16_t next_to_use = rxq->next_to_use;
1354         uint16_t req_id;
1355 #ifdef RTE_ETHDEV_DEBUG_RX
1356         uint16_t in_use;
1357 #endif
1358         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1359
1360         if (unlikely(!count))
1361                 return 0;
1362
1363 #ifdef RTE_ETHDEV_DEBUG_RX
1364         in_use = rxq->ring_size - 1 -
1365                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1366         if (unlikely((in_use + count) >= rxq->ring_size))
1367                 PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1368 #endif
1369
1370         /* get resources for incoming packets */
1371         rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1372         if (unlikely(rc < 0)) {
1373                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1374                 ++rxq->rx_stats.mbuf_alloc_fail;
1375                 PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1376                 return 0;
1377         }
1378
1379         for (i = 0; i < count; i++) {
1380                 struct rte_mbuf *mbuf = mbufs[i];
1381                 struct ena_rx_buffer *rx_info;
1382
1383                 if (likely((i + 4) < count))
1384                         rte_prefetch0(mbufs[i + 4]);
1385
1386                 req_id = rxq->empty_rx_reqs[next_to_use];
1387                 rx_info = &rxq->rx_buffer_info[req_id];
1388
1389                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1390                 if (unlikely(rc != 0))
1391                         break;
1392
1393                 rx_info->mbuf = mbuf;
1394                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1395         }
1396
1397         if (unlikely(i < count)) {
1398                 PMD_RX_LOG(WARNING,
1399                         "Refilled Rx queue[%d] with only %d/%d buffers\n",
1400                         rxq->id, i, count);
1401                 rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1402                 ++rxq->rx_stats.refill_partial;
1403         }
1404
1405         /* When we submitted free resources to device... */
1406         if (likely(i > 0)) {
1407                 /* ...let HW know that it can fill buffers with data. */
1408                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1409
1410                 rxq->next_to_use = next_to_use;
1411         }
1412
1413         return i;
1414 }
1415
1416 static int ena_device_init(struct ena_com_dev *ena_dev,
1417                            struct rte_pci_device *pdev,
1418                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
1419                            bool *wd_state)
1420 {
1421         uint32_t aenq_groups;
1422         int rc;
1423         bool readless_supported;
1424
1425         /* Initialize mmio registers */
1426         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1427         if (rc) {
1428                 PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1429                 return rc;
1430         }
1431
1432         /* The PCIe configuration space revision id indicate if mmio reg
1433          * read is disabled.
1434          */
1435         readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1436         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1437
1438         /* reset device */
1439         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1440         if (rc) {
1441                 PMD_DRV_LOG(ERR, "Cannot reset device\n");
1442                 goto err_mmio_read_less;
1443         }
1444
1445         /* check FW version */
1446         rc = ena_com_validate_version(ena_dev);
1447         if (rc) {
1448                 PMD_DRV_LOG(ERR, "Device version is too low\n");
1449                 goto err_mmio_read_less;
1450         }
1451
1452         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1453
1454         /* ENA device administration layer init */
1455         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1456         if (rc) {
1457                 PMD_DRV_LOG(ERR,
1458                         "Cannot initialize ENA admin queue\n");
1459                 goto err_mmio_read_less;
1460         }
1461
1462         /* To enable the msix interrupts the driver needs to know the number
1463          * of queues. So the driver uses polling mode to retrieve this
1464          * information.
1465          */
1466         ena_com_set_admin_polling_mode(ena_dev, true);
1467
1468         ena_config_host_info(ena_dev);
1469
1470         /* Get Device Attributes and features */
1471         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1472         if (rc) {
1473                 PMD_DRV_LOG(ERR,
1474                         "Cannot get attribute for ENA device, rc: %d\n", rc);
1475                 goto err_admin_init;
1476         }
1477
1478         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1479                       BIT(ENA_ADMIN_NOTIFICATION) |
1480                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1481                       BIT(ENA_ADMIN_FATAL_ERROR) |
1482                       BIT(ENA_ADMIN_WARNING);
1483
1484         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1485         rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1486         if (rc) {
1487                 PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1488                 goto err_admin_init;
1489         }
1490
1491         *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1492
1493         return 0;
1494
1495 err_admin_init:
1496         ena_com_admin_destroy(ena_dev);
1497
1498 err_mmio_read_less:
1499         ena_com_mmio_reg_read_request_destroy(ena_dev);
1500
1501         return rc;
1502 }
1503
1504 static void ena_interrupt_handler_rte(void *cb_arg)
1505 {
1506         struct rte_eth_dev *dev = cb_arg;
1507         struct ena_adapter *adapter = dev->data->dev_private;
1508         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1509
1510         ena_com_admin_q_comp_intr_handler(ena_dev);
1511         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1512                 ena_com_aenq_intr_handler(ena_dev, dev);
1513 }
1514
1515 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1516 {
1517         if (!adapter->wd_state)
1518                 return;
1519
1520         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1521                 return;
1522
1523         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1524             adapter->keep_alive_timeout)) {
1525                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1526                 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1527                 adapter->trigger_reset = true;
1528                 ++adapter->dev_stats.wd_expired;
1529         }
1530 }
1531
1532 /* Check if admin queue is enabled */
1533 static void check_for_admin_com_state(struct ena_adapter *adapter)
1534 {
1535         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1536                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1537                 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1538                 adapter->trigger_reset = true;
1539         }
1540 }
1541
1542 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1543                                             struct ena_ring *tx_ring)
1544 {
1545         struct ena_tx_buffer *tx_buf;
1546         uint64_t timestamp;
1547         uint64_t completion_delay;
1548         uint32_t missed_tx = 0;
1549         unsigned int i;
1550         int rc = 0;
1551
1552         for (i = 0; i < tx_ring->ring_size; ++i) {
1553                 tx_buf = &tx_ring->tx_buffer_info[i];
1554                 timestamp = tx_buf->timestamp;
1555
1556                 if (timestamp == 0)
1557                         continue;
1558
1559                 completion_delay = rte_get_timer_cycles() - timestamp;
1560                 if (completion_delay > adapter->missing_tx_completion_to) {
1561                         if (unlikely(!tx_buf->print_once)) {
1562                                 PMD_TX_LOG(WARNING,
1563                                         "Found a Tx that wasn't completed on time, qid %d, index %d. "
1564                                         "Missing Tx outstanding for %" PRIu64 " msecs.\n",
1565                                         tx_ring->id, i, completion_delay /
1566                                         rte_get_timer_hz() * 1000);
1567                                 tx_buf->print_once = true;
1568                         }
1569                         ++missed_tx;
1570                 }
1571         }
1572
1573         if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1574                 PMD_DRV_LOG(ERR,
1575                         "The number of lost Tx completions is above the threshold (%d > %d). "
1576                         "Trigger the device reset.\n",
1577                         missed_tx,
1578                         tx_ring->missing_tx_completion_threshold);
1579                 adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1580                 adapter->trigger_reset = true;
1581                 rc = -EIO;
1582         }
1583
1584         tx_ring->tx_stats.missed_tx += missed_tx;
1585
1586         return rc;
1587 }
1588
1589 static void check_for_tx_completions(struct ena_adapter *adapter)
1590 {
1591         struct ena_ring *tx_ring;
1592         uint64_t tx_cleanup_delay;
1593         size_t qid;
1594         int budget;
1595         uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1596
1597         if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1598                 return;
1599
1600         nb_tx_queues = adapter->edev_data->nb_tx_queues;
1601         budget = adapter->missing_tx_completion_budget;
1602
1603         qid = adapter->last_tx_comp_qid;
1604         while (budget-- > 0) {
1605                 tx_ring = &adapter->tx_ring[qid];
1606
1607                 /* Tx cleanup is called only by the burst function and can be
1608                  * called dynamically by the application. Also cleanup is
1609                  * limited by the threshold. To avoid false detection of the
1610                  * missing HW Tx completion, get the delay since last cleanup
1611                  * function was called.
1612                  */
1613                 tx_cleanup_delay = rte_get_timer_cycles() -
1614                         tx_ring->last_cleanup_ticks;
1615                 if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1616                         check_for_tx_completion_in_queue(adapter, tx_ring);
1617                 qid = (qid + 1) % nb_tx_queues;
1618         }
1619
1620         adapter->last_tx_comp_qid = qid;
1621 }
1622
1623 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1624                                   void *arg)
1625 {
1626         struct rte_eth_dev *dev = arg;
1627         struct ena_adapter *adapter = dev->data->dev_private;
1628
1629         check_for_missing_keep_alive(adapter);
1630         check_for_admin_com_state(adapter);
1631         check_for_tx_completions(adapter);
1632
1633         if (unlikely(adapter->trigger_reset)) {
1634                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1635                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1636                         NULL);
1637         }
1638 }
1639
1640 static inline void
1641 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1642                                struct ena_admin_feature_llq_desc *llq,
1643                                bool use_large_llq_hdr)
1644 {
1645         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1646         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1647         llq_config->llq_num_decs_before_header =
1648                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1649
1650         if (use_large_llq_hdr &&
1651             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1652                 llq_config->llq_ring_entry_size =
1653                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1654                 llq_config->llq_ring_entry_size_value = 256;
1655         } else {
1656                 llq_config->llq_ring_entry_size =
1657                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1658                 llq_config->llq_ring_entry_size_value = 128;
1659         }
1660 }
1661
1662 static int
1663 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1664                                 struct ena_com_dev *ena_dev,
1665                                 struct ena_admin_feature_llq_desc *llq,
1666                                 struct ena_llq_configurations *llq_default_configurations)
1667 {
1668         int rc;
1669         u32 llq_feature_mask;
1670
1671         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1672         if (!(ena_dev->supported_features & llq_feature_mask)) {
1673                 PMD_DRV_LOG(INFO,
1674                         "LLQ is not supported. Fallback to host mode policy.\n");
1675                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1676                 return 0;
1677         }
1678
1679         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1680         if (unlikely(rc)) {
1681                 PMD_INIT_LOG(WARNING,
1682                         "Failed to config dev mode. Fallback to host mode policy.\n");
1683                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1684                 return 0;
1685         }
1686
1687         /* Nothing to config, exit */
1688         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1689                 return 0;
1690
1691         if (!adapter->dev_mem_base) {
1692                 PMD_DRV_LOG(ERR,
1693                         "Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1694                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1695                 return 0;
1696         }
1697
1698         ena_dev->mem_bar = adapter->dev_mem_base;
1699
1700         return 0;
1701 }
1702
1703 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1704         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1705 {
1706         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1707
1708         /* Regular queues capabilities */
1709         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1710                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1711                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1712                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1713                                     max_queue_ext->max_rx_cq_num);
1714                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1715                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1716         } else {
1717                 struct ena_admin_queue_feature_desc *max_queues =
1718                         &get_feat_ctx->max_queues;
1719                 io_tx_sq_num = max_queues->max_sq_num;
1720                 io_tx_cq_num = max_queues->max_cq_num;
1721                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1722         }
1723
1724         /* In case of LLQ use the llq number in the get feature cmd */
1725         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1726                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1727
1728         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1729         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1730         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1731
1732         if (unlikely(max_num_io_queues == 0)) {
1733                 PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1734                 return -EFAULT;
1735         }
1736
1737         return max_num_io_queues;
1738 }
1739
1740 static void
1741 ena_set_offloads(struct ena_offloads *offloads,
1742                  struct ena_admin_feature_offload_desc *offload_desc)
1743 {
1744         if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
1745                 offloads->tx_offloads |= ENA_IPV4_TSO;
1746
1747         /* Tx IPv4 checksum offloads */
1748         if (offload_desc->tx &
1749             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
1750                 offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
1751         if (offload_desc->tx &
1752             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
1753                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
1754         if (offload_desc->tx &
1755             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
1756                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
1757
1758         /* Tx IPv6 checksum offloads */
1759         if (offload_desc->tx &
1760             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
1761                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
1762         if (offload_desc->tx &
1763              ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
1764                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
1765
1766         /* Rx IPv4 checksum offloads */
1767         if (offload_desc->rx_supported &
1768             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
1769                 offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
1770         if (offload_desc->rx_supported &
1771             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
1772                 offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
1773
1774         /* Rx IPv6 checksum offloads */
1775         if (offload_desc->rx_supported &
1776             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
1777                 offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
1778
1779         if (offload_desc->rx_supported &
1780             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
1781                 offloads->rx_offloads |= ENA_RX_RSS_HASH;
1782 }
1783
1784 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1785 {
1786         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1787         struct rte_pci_device *pci_dev;
1788         struct rte_intr_handle *intr_handle;
1789         struct ena_adapter *adapter = eth_dev->data->dev_private;
1790         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1791         struct ena_com_dev_get_features_ctx get_feat_ctx;
1792         struct ena_llq_configurations llq_config;
1793         const char *queue_type_str;
1794         uint32_t max_num_io_queues;
1795         int rc;
1796         static int adapters_found;
1797         bool disable_meta_caching;
1798         bool wd_state = false;
1799
1800         eth_dev->dev_ops = &ena_dev_ops;
1801         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1802         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1803         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1804
1805         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1806                 return 0;
1807
1808         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1809
1810         memset(adapter, 0, sizeof(struct ena_adapter));
1811         ena_dev = &adapter->ena_dev;
1812
1813         adapter->edev_data = eth_dev->data;
1814
1815         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1816
1817         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1818                      pci_dev->addr.domain,
1819                      pci_dev->addr.bus,
1820                      pci_dev->addr.devid,
1821                      pci_dev->addr.function);
1822
1823         intr_handle = pci_dev->intr_handle;
1824
1825         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1826         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1827
1828         if (!adapter->regs) {
1829                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1830                              ENA_REGS_BAR);
1831                 return -ENXIO;
1832         }
1833
1834         ena_dev->reg_bar = adapter->regs;
1835         /* This is a dummy pointer for ena_com functions. */
1836         ena_dev->dmadev = adapter;
1837
1838         adapter->id_number = adapters_found;
1839
1840         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1841                  adapter->id_number);
1842
1843         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1844         if (rc != 0) {
1845                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1846                 goto err;
1847         }
1848
1849         /* device specific initialization routine */
1850         rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1851         if (rc) {
1852                 PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1853                 goto err;
1854         }
1855         adapter->wd_state = wd_state;
1856
1857         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1858                 adapter->use_large_llq_hdr);
1859         rc = ena_set_queues_placement_policy(adapter, ena_dev,
1860                                              &get_feat_ctx.llq, &llq_config);
1861         if (unlikely(rc)) {
1862                 PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1863                 return rc;
1864         }
1865
1866         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1867                 queue_type_str = "Regular";
1868         else
1869                 queue_type_str = "Low latency";
1870         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1871
1872         calc_queue_ctx.ena_dev = ena_dev;
1873         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1874
1875         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1876         rc = ena_calc_io_queue_size(&calc_queue_ctx,
1877                 adapter->use_large_llq_hdr);
1878         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1879                 rc = -EFAULT;
1880                 goto err_device_destroy;
1881         }
1882
1883         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1884         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1885         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1886         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1887         adapter->max_num_io_queues = max_num_io_queues;
1888
1889         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1890                 disable_meta_caching =
1891                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1892                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
1893         } else {
1894                 disable_meta_caching = false;
1895         }
1896
1897         /* prepare ring structures */
1898         ena_init_rings(adapter, disable_meta_caching);
1899
1900         ena_config_debug_area(adapter);
1901
1902         /* Set max MTU for this device */
1903         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1904
1905         ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
1906
1907         /* Copy MAC address and point DPDK to it */
1908         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1909         rte_ether_addr_copy((struct rte_ether_addr *)
1910                         get_feat_ctx.dev_attr.mac_addr,
1911                         (struct rte_ether_addr *)adapter->mac_addr);
1912
1913         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
1914         if (unlikely(rc != 0)) {
1915                 PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
1916                 goto err_delete_debug_area;
1917         }
1918
1919         adapter->drv_stats = rte_zmalloc("adapter stats",
1920                                          sizeof(*adapter->drv_stats),
1921                                          RTE_CACHE_LINE_SIZE);
1922         if (!adapter->drv_stats) {
1923                 PMD_DRV_LOG(ERR,
1924                         "Failed to allocate memory for adapter statistics\n");
1925                 rc = -ENOMEM;
1926                 goto err_rss_destroy;
1927         }
1928
1929         rte_spinlock_init(&adapter->admin_lock);
1930
1931         rte_intr_callback_register(intr_handle,
1932                                    ena_interrupt_handler_rte,
1933                                    eth_dev);
1934         rte_intr_enable(intr_handle);
1935         ena_com_set_admin_polling_mode(ena_dev, false);
1936         ena_com_admin_aenq_enable(ena_dev);
1937
1938         if (adapters_found == 0)
1939                 rte_timer_subsystem_init();
1940         rte_timer_init(&adapter->timer_wd);
1941
1942         adapters_found++;
1943         adapter->state = ENA_ADAPTER_STATE_INIT;
1944
1945         return 0;
1946
1947 err_rss_destroy:
1948         ena_com_rss_destroy(ena_dev);
1949 err_delete_debug_area:
1950         ena_com_delete_debug_area(ena_dev);
1951
1952 err_device_destroy:
1953         ena_com_delete_host_info(ena_dev);
1954         ena_com_admin_destroy(ena_dev);
1955
1956 err:
1957         return rc;
1958 }
1959
1960 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1961 {
1962         struct ena_adapter *adapter = eth_dev->data->dev_private;
1963         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1964
1965         if (adapter->state == ENA_ADAPTER_STATE_FREE)
1966                 return;
1967
1968         ena_com_set_admin_running_state(ena_dev, false);
1969
1970         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1971                 ena_close(eth_dev);
1972
1973         ena_com_rss_destroy(ena_dev);
1974
1975         ena_com_delete_debug_area(ena_dev);
1976         ena_com_delete_host_info(ena_dev);
1977
1978         ena_com_abort_admin_commands(ena_dev);
1979         ena_com_wait_for_abort_completion(ena_dev);
1980         ena_com_admin_destroy(ena_dev);
1981         ena_com_mmio_reg_read_request_destroy(ena_dev);
1982
1983         adapter->state = ENA_ADAPTER_STATE_FREE;
1984 }
1985
1986 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1987 {
1988         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1989                 return 0;
1990
1991         ena_destroy_device(eth_dev);
1992
1993         return 0;
1994 }
1995
1996 static int ena_dev_configure(struct rte_eth_dev *dev)
1997 {
1998         struct ena_adapter *adapter = dev->data->dev_private;
1999
2000         adapter->state = ENA_ADAPTER_STATE_CONFIG;
2001
2002         if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2003                 dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2004         dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2005
2006         /* Scattered Rx cannot be turned off in the HW, so this capability must
2007          * be forced.
2008          */
2009         dev->data->scattered_rx = 1;
2010
2011         adapter->last_tx_comp_qid = 0;
2012
2013         adapter->missing_tx_completion_budget =
2014                 RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2015
2016         adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2017         /* To avoid detection of the spurious Tx completion timeout due to
2018          * application not calling the Tx cleanup function, set timeout for the
2019          * Tx queue which should be half of the missing completion timeout for a
2020          * safety. If there will be a lot of missing Tx completions in the
2021          * queue, they will be detected sooner or later.
2022          */
2023         adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2024
2025         adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
2026         adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
2027
2028         return 0;
2029 }
2030
2031 static void ena_init_rings(struct ena_adapter *adapter,
2032                            bool disable_meta_caching)
2033 {
2034         size_t i;
2035
2036         for (i = 0; i < adapter->max_num_io_queues; i++) {
2037                 struct ena_ring *ring = &adapter->tx_ring[i];
2038
2039                 ring->configured = 0;
2040                 ring->type = ENA_RING_TYPE_TX;
2041                 ring->adapter = adapter;
2042                 ring->id = i;
2043                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2044                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2045                 ring->sgl_size = adapter->max_tx_sgl_size;
2046                 ring->disable_meta_caching = disable_meta_caching;
2047         }
2048
2049         for (i = 0; i < adapter->max_num_io_queues; i++) {
2050                 struct ena_ring *ring = &adapter->rx_ring[i];
2051
2052                 ring->configured = 0;
2053                 ring->type = ENA_RING_TYPE_RX;
2054                 ring->adapter = adapter;
2055                 ring->id = i;
2056                 ring->sgl_size = adapter->max_rx_sgl_size;
2057         }
2058 }
2059
2060 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2061 {
2062         uint64_t port_offloads = 0;
2063
2064         if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2065                 port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2066
2067         if (adapter->offloads.rx_offloads &
2068             (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2069                 port_offloads |=
2070                         RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2071
2072         if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2073                 port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2074
2075         port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2076
2077         return port_offloads;
2078 }
2079
2080 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2081 {
2082         uint64_t port_offloads = 0;
2083
2084         if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2085                 port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2086
2087         if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2088                 port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2089         if (adapter->offloads.tx_offloads &
2090             (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2091              ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2092                 port_offloads |=
2093                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2094
2095         port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2096
2097         return port_offloads;
2098 }
2099
2100 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2101 {
2102         RTE_SET_USED(adapter);
2103
2104         return 0;
2105 }
2106
2107 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2108 {
2109         RTE_SET_USED(adapter);
2110
2111         return 0;
2112 }
2113
2114 static int ena_infos_get(struct rte_eth_dev *dev,
2115                           struct rte_eth_dev_info *dev_info)
2116 {
2117         struct ena_adapter *adapter;
2118         struct ena_com_dev *ena_dev;
2119
2120         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2121         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2122         adapter = dev->data->dev_private;
2123
2124         ena_dev = &adapter->ena_dev;
2125         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2126
2127         dev_info->speed_capa =
2128                         RTE_ETH_LINK_SPEED_1G   |
2129                         RTE_ETH_LINK_SPEED_2_5G |
2130                         RTE_ETH_LINK_SPEED_5G   |
2131                         RTE_ETH_LINK_SPEED_10G  |
2132                         RTE_ETH_LINK_SPEED_25G  |
2133                         RTE_ETH_LINK_SPEED_40G  |
2134                         RTE_ETH_LINK_SPEED_50G  |
2135                         RTE_ETH_LINK_SPEED_100G;
2136
2137         /* Inform framework about available features */
2138         dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2139         dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2140         dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2141         dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2142
2143         dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2144         dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2145
2146         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2147         dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2148                 RTE_ETHER_CRC_LEN;
2149         dev_info->min_mtu = ENA_MIN_MTU;
2150         dev_info->max_mtu = adapter->max_mtu;
2151         dev_info->max_mac_addrs = 1;
2152
2153         dev_info->max_rx_queues = adapter->max_num_io_queues;
2154         dev_info->max_tx_queues = adapter->max_num_io_queues;
2155         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2156
2157         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2158         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2159         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2160                                         adapter->max_rx_sgl_size);
2161         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2162                                         adapter->max_rx_sgl_size);
2163
2164         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2165         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2166         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2167                                         adapter->max_tx_sgl_size);
2168         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2169                                         adapter->max_tx_sgl_size);
2170
2171         dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2172         dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2173
2174         return 0;
2175 }
2176
2177 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2178 {
2179         mbuf->data_len = len;
2180         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2181         mbuf->refcnt = 1;
2182         mbuf->next = NULL;
2183 }
2184
2185 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2186                                     struct ena_com_rx_buf_info *ena_bufs,
2187                                     uint32_t descs,
2188                                     uint16_t *next_to_clean,
2189                                     uint8_t offset)
2190 {
2191         struct rte_mbuf *mbuf;
2192         struct rte_mbuf *mbuf_head;
2193         struct ena_rx_buffer *rx_info;
2194         int rc;
2195         uint16_t ntc, len, req_id, buf = 0;
2196
2197         if (unlikely(descs == 0))
2198                 return NULL;
2199
2200         ntc = *next_to_clean;
2201
2202         len = ena_bufs[buf].len;
2203         req_id = ena_bufs[buf].req_id;
2204
2205         rx_info = &rx_ring->rx_buffer_info[req_id];
2206
2207         mbuf = rx_info->mbuf;
2208         RTE_ASSERT(mbuf != NULL);
2209
2210         ena_init_rx_mbuf(mbuf, len);
2211
2212         /* Fill the mbuf head with the data specific for 1st segment. */
2213         mbuf_head = mbuf;
2214         mbuf_head->nb_segs = descs;
2215         mbuf_head->port = rx_ring->port_id;
2216         mbuf_head->pkt_len = len;
2217         mbuf_head->data_off += offset;
2218
2219         rx_info->mbuf = NULL;
2220         rx_ring->empty_rx_reqs[ntc] = req_id;
2221         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2222
2223         while (--descs) {
2224                 ++buf;
2225                 len = ena_bufs[buf].len;
2226                 req_id = ena_bufs[buf].req_id;
2227
2228                 rx_info = &rx_ring->rx_buffer_info[req_id];
2229                 RTE_ASSERT(rx_info->mbuf != NULL);
2230
2231                 if (unlikely(len == 0)) {
2232                         /*
2233                          * Some devices can pass descriptor with the length 0.
2234                          * To avoid confusion, the PMD is simply putting the
2235                          * descriptor back, as it was never used. We'll avoid
2236                          * mbuf allocation that way.
2237                          */
2238                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2239                                 rx_info->mbuf, req_id);
2240                         if (unlikely(rc != 0)) {
2241                                 /* Free the mbuf in case of an error. */
2242                                 rte_mbuf_raw_free(rx_info->mbuf);
2243                         } else {
2244                                 /*
2245                                  * If there was no error, just exit the loop as
2246                                  * 0 length descriptor is always the last one.
2247                                  */
2248                                 break;
2249                         }
2250                 } else {
2251                         /* Create an mbuf chain. */
2252                         mbuf->next = rx_info->mbuf;
2253                         mbuf = mbuf->next;
2254
2255                         ena_init_rx_mbuf(mbuf, len);
2256                         mbuf_head->pkt_len += len;
2257                 }
2258
2259                 /*
2260                  * Mark the descriptor as depleted and perform necessary
2261                  * cleanup.
2262                  * This code will execute in two cases:
2263                  *  1. Descriptor len was greater than 0 - normal situation.
2264                  *  2. Descriptor len was 0 and we failed to add the descriptor
2265                  *     to the device. In that situation, we should try to add
2266                  *     the mbuf again in the populate routine and mark the
2267                  *     descriptor as used up by the device.
2268                  */
2269                 rx_info->mbuf = NULL;
2270                 rx_ring->empty_rx_reqs[ntc] = req_id;
2271                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2272         }
2273
2274         *next_to_clean = ntc;
2275
2276         return mbuf_head;
2277 }
2278
2279 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2280                                   uint16_t nb_pkts)
2281 {
2282         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2283         unsigned int free_queue_entries;
2284         uint16_t next_to_clean = rx_ring->next_to_clean;
2285         uint16_t descs_in_use;
2286         struct rte_mbuf *mbuf;
2287         uint16_t completed;
2288         struct ena_com_rx_ctx ena_rx_ctx;
2289         int i, rc = 0;
2290         bool fill_hash;
2291
2292 #ifdef RTE_ETHDEV_DEBUG_RX
2293         /* Check adapter state */
2294         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2295                 PMD_RX_LOG(ALERT,
2296                         "Trying to receive pkts while device is NOT running\n");
2297                 return 0;
2298         }
2299 #endif
2300
2301         fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2302
2303         descs_in_use = rx_ring->ring_size -
2304                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2305         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2306
2307         for (completed = 0; completed < nb_pkts; completed++) {
2308                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2309                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2310                 ena_rx_ctx.descs = 0;
2311                 ena_rx_ctx.pkt_offset = 0;
2312                 /* receive packet context */
2313                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2314                                     rx_ring->ena_com_io_sq,
2315                                     &ena_rx_ctx);
2316                 if (unlikely(rc)) {
2317                         PMD_RX_LOG(ERR,
2318                                 "Failed to get the packet from the device, rc: %d\n",
2319                                 rc);
2320                         if (rc == ENA_COM_NO_SPACE) {
2321                                 ++rx_ring->rx_stats.bad_desc_num;
2322                                 rx_ring->adapter->reset_reason =
2323                                         ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2324                         } else {
2325                                 ++rx_ring->rx_stats.bad_req_id;
2326                                 rx_ring->adapter->reset_reason =
2327                                         ENA_REGS_RESET_INV_RX_REQ_ID;
2328                         }
2329                         rx_ring->adapter->trigger_reset = true;
2330                         return 0;
2331                 }
2332
2333                 mbuf = ena_rx_mbuf(rx_ring,
2334                         ena_rx_ctx.ena_bufs,
2335                         ena_rx_ctx.descs,
2336                         &next_to_clean,
2337                         ena_rx_ctx.pkt_offset);
2338                 if (unlikely(mbuf == NULL)) {
2339                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2340                                 rx_ring->empty_rx_reqs[next_to_clean] =
2341                                         rx_ring->ena_bufs[i].req_id;
2342                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2343                                         next_to_clean, rx_ring->size_mask);
2344                         }
2345                         break;
2346                 }
2347
2348                 /* fill mbuf attributes if any */
2349                 ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx, fill_hash);
2350
2351                 if (unlikely(mbuf->ol_flags &
2352                                 (RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD))) {
2353                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2354                         ++rx_ring->rx_stats.bad_csum;
2355                 }
2356
2357                 rx_pkts[completed] = mbuf;
2358                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2359         }
2360
2361         rx_ring->rx_stats.cnt += completed;
2362         rx_ring->next_to_clean = next_to_clean;
2363
2364         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2365
2366         /* Burst refill to save doorbells, memory barriers, const interval */
2367         if (free_queue_entries >= rx_ring->rx_free_thresh) {
2368                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2369                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2370         }
2371
2372         return completed;
2373 }
2374
2375 static uint16_t
2376 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2377                 uint16_t nb_pkts)
2378 {
2379         int32_t ret;
2380         uint32_t i;
2381         struct rte_mbuf *m;
2382         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2383         struct ena_adapter *adapter = tx_ring->adapter;
2384         struct rte_ipv4_hdr *ip_hdr;
2385         uint64_t ol_flags;
2386         uint64_t l4_csum_flag;
2387         uint64_t dev_offload_capa;
2388         uint16_t frag_field;
2389         bool need_pseudo_csum;
2390
2391         dev_offload_capa = adapter->offloads.tx_offloads;
2392         for (i = 0; i != nb_pkts; i++) {
2393                 m = tx_pkts[i];
2394                 ol_flags = m->ol_flags;
2395
2396                 /* Check if any offload flag was set */
2397                 if (ol_flags == 0)
2398                         continue;
2399
2400                 l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2401                 /* SCTP checksum offload is not supported by the ENA. */
2402                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2403                     l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2404                         PMD_TX_LOG(DEBUG,
2405                                 "mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2406                                 i, ol_flags);
2407                         rte_errno = ENOTSUP;
2408                         return i;
2409                 }
2410
2411 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2412                 /* Check if requested offload is also enabled for the queue */
2413                 if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2414                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2415                     (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2416                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2417                     (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2418                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2419                         PMD_TX_LOG(DEBUG,
2420                                 "mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2421                                 i, m->nb_segs, tx_ring->id);
2422                         rte_errno = EINVAL;
2423                         return i;
2424                 }
2425
2426                 /* The caller is obligated to set l2 and l3 len if any cksum
2427                  * offload is enabled.
2428                  */
2429                 if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2430                     (m->l2_len == 0 || m->l3_len == 0))) {
2431                         PMD_TX_LOG(DEBUG,
2432                                 "mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2433                                 i);
2434                         rte_errno = EINVAL;
2435                         return i;
2436                 }
2437                 ret = rte_validate_tx_offload(m);
2438                 if (ret != 0) {
2439                         rte_errno = -ret;
2440                         return i;
2441                 }
2442 #endif
2443
2444                 /* Verify HW support for requested offloads and determine if
2445                  * pseudo header checksum is needed.
2446                  */
2447                 need_pseudo_csum = false;
2448                 if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2449                         if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2450                             !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2451                                 rte_errno = ENOTSUP;
2452                                 return i;
2453                         }
2454
2455                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2456                             !(dev_offload_capa & ENA_IPV4_TSO)) {
2457                                 rte_errno = ENOTSUP;
2458                                 return i;
2459                         }
2460
2461                         /* Check HW capabilities and if pseudo csum is needed
2462                          * for L4 offloads.
2463                          */
2464                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2465                             !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2466                                 if (dev_offload_capa &
2467                                     ENA_L4_IPV4_CSUM_PARTIAL) {
2468                                         need_pseudo_csum = true;
2469                                 } else {
2470                                         rte_errno = ENOTSUP;
2471                                         return i;
2472                                 }
2473                         }
2474
2475                         /* Parse the DF flag */
2476                         ip_hdr = rte_pktmbuf_mtod_offset(m,
2477                                 struct rte_ipv4_hdr *, m->l2_len);
2478                         frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2479                         if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2480                                 m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2481                         } else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2482                                 /* In case we are supposed to TSO and have DF
2483                                  * not set (DF=0) hardware must be provided with
2484                                  * partial checksum.
2485                                  */
2486                                 need_pseudo_csum = true;
2487                         }
2488                 } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2489                         /* There is no support for IPv6 TSO as for now. */
2490                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2491                                 rte_errno = ENOTSUP;
2492                                 return i;
2493                         }
2494
2495                         /* Check HW capabilities and if pseudo csum is needed */
2496                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2497                             !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2498                                 if (dev_offload_capa &
2499                                     ENA_L4_IPV6_CSUM_PARTIAL) {
2500                                         need_pseudo_csum = true;
2501                                 } else {
2502                                         rte_errno = ENOTSUP;
2503                                         return i;
2504                                 }
2505                         }
2506                 }
2507
2508                 if (need_pseudo_csum) {
2509                         ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2510                         if (ret != 0) {
2511                                 rte_errno = -ret;
2512                                 return i;
2513                         }
2514                 }
2515         }
2516
2517         return i;
2518 }
2519
2520 static void ena_update_hints(struct ena_adapter *adapter,
2521                              struct ena_admin_ena_hw_hints *hints)
2522 {
2523         if (hints->admin_completion_tx_timeout)
2524                 adapter->ena_dev.admin_queue.completion_timeout =
2525                         hints->admin_completion_tx_timeout * 1000;
2526
2527         if (hints->mmio_read_timeout)
2528                 /* convert to usec */
2529                 adapter->ena_dev.mmio_read.reg_read_to =
2530                         hints->mmio_read_timeout * 1000;
2531
2532         if (hints->missing_tx_completion_timeout) {
2533                 if (hints->missing_tx_completion_timeout ==
2534                     ENA_HW_HINTS_NO_TIMEOUT) {
2535                         adapter->missing_tx_completion_to =
2536                                 ENA_HW_HINTS_NO_TIMEOUT;
2537                 } else {
2538                         /* Convert from msecs to ticks */
2539                         adapter->missing_tx_completion_to = rte_get_timer_hz() *
2540                                 hints->missing_tx_completion_timeout / 1000;
2541                         adapter->tx_cleanup_stall_delay =
2542                                 adapter->missing_tx_completion_to / 2;
2543                 }
2544         }
2545
2546         if (hints->driver_watchdog_timeout) {
2547                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2548                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2549                 else
2550                         // Convert msecs to ticks
2551                         adapter->keep_alive_timeout =
2552                                 (hints->driver_watchdog_timeout *
2553                                 rte_get_timer_hz()) / 1000;
2554         }
2555 }
2556
2557 static int ena_check_space_and_linearize_mbuf(struct ena_ring *tx_ring,
2558                                               struct rte_mbuf *mbuf)
2559 {
2560         struct ena_com_dev *ena_dev;
2561         int num_segments, header_len, rc;
2562
2563         ena_dev = &tx_ring->adapter->ena_dev;
2564         num_segments = mbuf->nb_segs;
2565         header_len = mbuf->data_len;
2566
2567         if (likely(num_segments < tx_ring->sgl_size))
2568                 goto checkspace;
2569
2570         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2571             (num_segments == tx_ring->sgl_size) &&
2572             (header_len < tx_ring->tx_max_header_size))
2573                 goto checkspace;
2574
2575         /* Checking for space for 2 additional metadata descriptors due to
2576          * possible header split and metadata descriptor. Linearization will
2577          * be needed so we reduce the segments number from num_segments to 1
2578          */
2579         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3)) {
2580                 PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2581                 return ENA_COM_NO_MEM;
2582         }
2583         ++tx_ring->tx_stats.linearize;
2584         rc = rte_pktmbuf_linearize(mbuf);
2585         if (unlikely(rc)) {
2586                 PMD_TX_LOG(WARNING, "Mbuf linearize failed\n");
2587                 rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2588                 ++tx_ring->tx_stats.linearize_failed;
2589                 return rc;
2590         }
2591
2592         return 0;
2593
2594 checkspace:
2595         /* Checking for space for 2 additional metadata descriptors due to
2596          * possible header split and metadata descriptor
2597          */
2598         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2599                                           num_segments + 2)) {
2600                 PMD_TX_LOG(DEBUG, "Not enough space in the Tx queue\n");
2601                 return ENA_COM_NO_MEM;
2602         }
2603
2604         return 0;
2605 }
2606
2607 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2608         struct ena_tx_buffer *tx_info,
2609         struct rte_mbuf *mbuf,
2610         void **push_header,
2611         uint16_t *header_len)
2612 {
2613         struct ena_com_buf *ena_buf;
2614         uint16_t delta, seg_len, push_len;
2615
2616         delta = 0;
2617         seg_len = mbuf->data_len;
2618
2619         tx_info->mbuf = mbuf;
2620         ena_buf = tx_info->bufs;
2621
2622         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2623                 /*
2624                  * Tx header might be (and will be in most cases) smaller than
2625                  * tx_max_header_size. But it's not an issue to send more data
2626                  * to the device, than actually needed if the mbuf size is
2627                  * greater than tx_max_header_size.
2628                  */
2629                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2630                 *header_len = push_len;
2631
2632                 if (likely(push_len <= seg_len)) {
2633                         /* If the push header is in the single segment, then
2634                          * just point it to the 1st mbuf data.
2635                          */
2636                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2637                 } else {
2638                         /* If the push header lays in the several segments, copy
2639                          * it to the intermediate buffer.
2640                          */
2641                         rte_pktmbuf_read(mbuf, 0, push_len,
2642                                 tx_ring->push_buf_intermediate_buf);
2643                         *push_header = tx_ring->push_buf_intermediate_buf;
2644                         delta = push_len - seg_len;
2645                 }
2646         } else {
2647                 *push_header = NULL;
2648                 *header_len = 0;
2649                 push_len = 0;
2650         }
2651
2652         /* Process first segment taking into consideration pushed header */
2653         if (seg_len > push_len) {
2654                 ena_buf->paddr = mbuf->buf_iova +
2655                                 mbuf->data_off +
2656                                 push_len;
2657                 ena_buf->len = seg_len - push_len;
2658                 ena_buf++;
2659                 tx_info->num_of_bufs++;
2660         }
2661
2662         while ((mbuf = mbuf->next) != NULL) {
2663                 seg_len = mbuf->data_len;
2664
2665                 /* Skip mbufs if whole data is pushed as a header */
2666                 if (unlikely(delta > seg_len)) {
2667                         delta -= seg_len;
2668                         continue;
2669                 }
2670
2671                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2672                 ena_buf->len = seg_len - delta;
2673                 ena_buf++;
2674                 tx_info->num_of_bufs++;
2675
2676                 delta = 0;
2677         }
2678 }
2679
2680 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2681 {
2682         struct ena_tx_buffer *tx_info;
2683         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2684         uint16_t next_to_use;
2685         uint16_t header_len;
2686         uint16_t req_id;
2687         void *push_header;
2688         int nb_hw_desc;
2689         int rc;
2690
2691         rc = ena_check_space_and_linearize_mbuf(tx_ring, mbuf);
2692         if (unlikely(rc))
2693                 return rc;
2694
2695         next_to_use = tx_ring->next_to_use;
2696
2697         req_id = tx_ring->empty_tx_reqs[next_to_use];
2698         tx_info = &tx_ring->tx_buffer_info[req_id];
2699         tx_info->num_of_bufs = 0;
2700
2701         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2702
2703         ena_tx_ctx.ena_bufs = tx_info->bufs;
2704         ena_tx_ctx.push_header = push_header;
2705         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2706         ena_tx_ctx.req_id = req_id;
2707         ena_tx_ctx.header_len = header_len;
2708
2709         /* Set Tx offloads flags, if applicable */
2710         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2711                 tx_ring->disable_meta_caching);
2712
2713         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2714                         &ena_tx_ctx))) {
2715                 PMD_TX_LOG(DEBUG,
2716                         "LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2717                         tx_ring->id);
2718                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2719                 tx_ring->tx_stats.doorbells++;
2720                 tx_ring->pkts_without_db = false;
2721         }
2722
2723         /* prepare the packet's descriptors to dma engine */
2724         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2725                 &nb_hw_desc);
2726         if (unlikely(rc)) {
2727                 PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2728                 ++tx_ring->tx_stats.prepare_ctx_err;
2729                 tx_ring->adapter->reset_reason =
2730                     ENA_REGS_RESET_DRIVER_INVALID_STATE;
2731                 tx_ring->adapter->trigger_reset = true;
2732                 return rc;
2733         }
2734
2735         tx_info->tx_descs = nb_hw_desc;
2736         tx_info->timestamp = rte_get_timer_cycles();
2737
2738         tx_ring->tx_stats.cnt++;
2739         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2740
2741         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2742                 tx_ring->size_mask);
2743
2744         return 0;
2745 }
2746
2747 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2748 {
2749         unsigned int total_tx_descs = 0;
2750         uint16_t cleanup_budget;
2751         uint16_t next_to_clean = tx_ring->next_to_clean;
2752
2753         /* Attempt to release all Tx descriptors (ring_size - 1 -> size_mask) */
2754         cleanup_budget = tx_ring->size_mask;
2755
2756         while (likely(total_tx_descs < cleanup_budget)) {
2757                 struct rte_mbuf *mbuf;
2758                 struct ena_tx_buffer *tx_info;
2759                 uint16_t req_id;
2760
2761                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2762                         break;
2763
2764                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2765                         break;
2766
2767                 /* Get Tx info & store how many descs were processed  */
2768                 tx_info = &tx_ring->tx_buffer_info[req_id];
2769                 tx_info->timestamp = 0;
2770
2771                 mbuf = tx_info->mbuf;
2772                 rte_pktmbuf_free(mbuf);
2773
2774                 tx_info->mbuf = NULL;
2775                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2776
2777                 total_tx_descs += tx_info->tx_descs;
2778
2779                 /* Put back descriptor to the ring for reuse */
2780                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2781                         tx_ring->size_mask);
2782         }
2783
2784         if (likely(total_tx_descs > 0)) {
2785                 /* acknowledge completion of sent packets */
2786                 tx_ring->next_to_clean = next_to_clean;
2787                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2788                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2789         }
2790
2791         /* Notify completion handler that the cleanup was just called */
2792         tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
2793 }
2794
2795 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2796                                   uint16_t nb_pkts)
2797 {
2798         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2799         int available_desc;
2800         uint16_t sent_idx = 0;
2801
2802 #ifdef RTE_ETHDEV_DEBUG_TX
2803         /* Check adapter state */
2804         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2805                 PMD_TX_LOG(ALERT,
2806                         "Trying to xmit pkts while device is NOT running\n");
2807                 return 0;
2808         }
2809 #endif
2810
2811         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2812                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2813                         break;
2814                 tx_ring->pkts_without_db = true;
2815                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2816                         tx_ring->size_mask)]);
2817         }
2818
2819         available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2820         tx_ring->tx_stats.available_desc = available_desc;
2821
2822         /* If there are ready packets to be xmitted... */
2823         if (likely(tx_ring->pkts_without_db)) {
2824                 /* ...let HW do its best :-) */
2825                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2826                 tx_ring->tx_stats.doorbells++;
2827                 tx_ring->pkts_without_db = false;
2828         }
2829
2830         if (available_desc < tx_ring->tx_free_thresh)
2831                 ena_tx_cleanup(tx_ring);
2832
2833         tx_ring->tx_stats.available_desc =
2834                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2835         tx_ring->tx_stats.tx_poll++;
2836
2837         return sent_idx;
2838 }
2839
2840 int ena_copy_eni_stats(struct ena_adapter *adapter)
2841 {
2842         struct ena_admin_eni_stats admin_eni_stats;
2843         int rc;
2844
2845         rte_spinlock_lock(&adapter->admin_lock);
2846         rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2847         rte_spinlock_unlock(&adapter->admin_lock);
2848         if (rc != 0) {
2849                 if (rc == ENA_COM_UNSUPPORTED) {
2850                         PMD_DRV_LOG(DEBUG,
2851                                 "Retrieving ENI metrics is not supported\n");
2852                 } else {
2853                         PMD_DRV_LOG(WARNING,
2854                                 "Failed to get ENI metrics, rc: %d\n", rc);
2855                 }
2856                 return rc;
2857         }
2858
2859         rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2860                 sizeof(struct ena_stats_eni));
2861
2862         return 0;
2863 }
2864
2865 /**
2866  * DPDK callback to retrieve names of extended device statistics
2867  *
2868  * @param dev
2869  *   Pointer to Ethernet device structure.
2870  * @param[out] xstats_names
2871  *   Buffer to insert names into.
2872  * @param n
2873  *   Number of names.
2874  *
2875  * @return
2876  *   Number of xstats names.
2877  */
2878 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2879                                 struct rte_eth_xstat_name *xstats_names,
2880                                 unsigned int n)
2881 {
2882         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2883         unsigned int stat, i, count = 0;
2884
2885         if (n < xstats_count || !xstats_names)
2886                 return xstats_count;
2887
2888         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2889                 strcpy(xstats_names[count].name,
2890                         ena_stats_global_strings[stat].name);
2891
2892         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2893                 strcpy(xstats_names[count].name,
2894                         ena_stats_eni_strings[stat].name);
2895
2896         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2897                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2898                         snprintf(xstats_names[count].name,
2899                                 sizeof(xstats_names[count].name),
2900                                 "rx_q%d_%s", i,
2901                                 ena_stats_rx_strings[stat].name);
2902
2903         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2904                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2905                         snprintf(xstats_names[count].name,
2906                                 sizeof(xstats_names[count].name),
2907                                 "tx_q%d_%s", i,
2908                                 ena_stats_tx_strings[stat].name);
2909
2910         return xstats_count;
2911 }
2912
2913 /**
2914  * DPDK callback to get extended device statistics.
2915  *
2916  * @param dev
2917  *   Pointer to Ethernet device structure.
2918  * @param[out] stats
2919  *   Stats table output buffer.
2920  * @param n
2921  *   The size of the stats table.
2922  *
2923  * @return
2924  *   Number of xstats on success, negative on failure.
2925  */
2926 static int ena_xstats_get(struct rte_eth_dev *dev,
2927                           struct rte_eth_xstat *xstats,
2928                           unsigned int n)
2929 {
2930         struct ena_adapter *adapter = dev->data->dev_private;
2931         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2932         unsigned int stat, i, count = 0;
2933         int stat_offset;
2934         void *stats_begin;
2935
2936         if (n < xstats_count)
2937                 return xstats_count;
2938
2939         if (!xstats)
2940                 return 0;
2941
2942         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2943                 stat_offset = ena_stats_global_strings[stat].stat_offset;
2944                 stats_begin = &adapter->dev_stats;
2945
2946                 xstats[count].id = count;
2947                 xstats[count].value = *((uint64_t *)
2948                         ((char *)stats_begin + stat_offset));
2949         }
2950
2951         /* Even if the function below fails, we should copy previous (or initial
2952          * values) to keep structure of rte_eth_xstat consistent.
2953          */
2954         ena_copy_eni_stats(adapter);
2955         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2956                 stat_offset = ena_stats_eni_strings[stat].stat_offset;
2957                 stats_begin = &adapter->eni_stats;
2958
2959                 xstats[count].id = count;
2960                 xstats[count].value = *((uint64_t *)
2961                     ((char *)stats_begin + stat_offset));
2962         }
2963
2964         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2965                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2966                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
2967                         stats_begin = &adapter->rx_ring[i].rx_stats;
2968
2969                         xstats[count].id = count;
2970                         xstats[count].value = *((uint64_t *)
2971                                 ((char *)stats_begin + stat_offset));
2972                 }
2973         }
2974
2975         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2976                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2977                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
2978                         stats_begin = &adapter->tx_ring[i].rx_stats;
2979
2980                         xstats[count].id = count;
2981                         xstats[count].value = *((uint64_t *)
2982                                 ((char *)stats_begin + stat_offset));
2983                 }
2984         }
2985
2986         return count;
2987 }
2988
2989 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2990                                 const uint64_t *ids,
2991                                 uint64_t *values,
2992                                 unsigned int n)
2993 {
2994         struct ena_adapter *adapter = dev->data->dev_private;
2995         uint64_t id;
2996         uint64_t rx_entries, tx_entries;
2997         unsigned int i;
2998         int qid;
2999         int valid = 0;
3000         bool was_eni_copied = false;
3001
3002         for (i = 0; i < n; ++i) {
3003                 id = ids[i];
3004                 /* Check if id belongs to global statistics */
3005                 if (id < ENA_STATS_ARRAY_GLOBAL) {
3006                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
3007                         ++valid;
3008                         continue;
3009                 }
3010
3011                 /* Check if id belongs to ENI statistics */
3012                 id -= ENA_STATS_ARRAY_GLOBAL;
3013                 if (id < ENA_STATS_ARRAY_ENI) {
3014                         /* Avoid reading ENI stats multiple times in a single
3015                          * function call, as it requires communication with the
3016                          * admin queue.
3017                          */
3018                         if (!was_eni_copied) {
3019                                 was_eni_copied = true;
3020                                 ena_copy_eni_stats(adapter);
3021                         }
3022                         values[i] = *((uint64_t *)&adapter->eni_stats + id);
3023                         ++valid;
3024                         continue;
3025                 }
3026
3027                 /* Check if id belongs to rx queue statistics */
3028                 id -= ENA_STATS_ARRAY_ENI;
3029                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3030                 if (id < rx_entries) {
3031                         qid = id % dev->data->nb_rx_queues;
3032                         id /= dev->data->nb_rx_queues;
3033                         values[i] = *((uint64_t *)
3034                                 &adapter->rx_ring[qid].rx_stats + id);
3035                         ++valid;
3036                         continue;
3037                 }
3038                                 /* Check if id belongs to rx queue statistics */
3039                 id -= rx_entries;
3040                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3041                 if (id < tx_entries) {
3042                         qid = id % dev->data->nb_tx_queues;
3043                         id /= dev->data->nb_tx_queues;
3044                         values[i] = *((uint64_t *)
3045                                 &adapter->tx_ring[qid].tx_stats + id);
3046                         ++valid;
3047                         continue;
3048                 }
3049         }
3050
3051         return valid;
3052 }
3053
3054 static int ena_process_bool_devarg(const char *key,
3055                                    const char *value,
3056                                    void *opaque)
3057 {
3058         struct ena_adapter *adapter = opaque;
3059         bool bool_value;
3060
3061         /* Parse the value. */
3062         if (strcmp(value, "1") == 0) {
3063                 bool_value = true;
3064         } else if (strcmp(value, "0") == 0) {
3065                 bool_value = false;
3066         } else {
3067                 PMD_INIT_LOG(ERR,
3068                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3069                         value, key);
3070                 return -EINVAL;
3071         }
3072
3073         /* Now, assign it to the proper adapter field. */
3074         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3075                 adapter->use_large_llq_hdr = bool_value;
3076
3077         return 0;
3078 }
3079
3080 static int ena_parse_devargs(struct ena_adapter *adapter,
3081                              struct rte_devargs *devargs)
3082 {
3083         static const char * const allowed_args[] = {
3084                 ENA_DEVARG_LARGE_LLQ_HDR,
3085                 NULL,
3086         };
3087         struct rte_kvargs *kvlist;
3088         int rc;
3089
3090         if (devargs == NULL)
3091                 return 0;
3092
3093         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3094         if (kvlist == NULL) {
3095                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3096                         devargs->args);
3097                 return -EINVAL;
3098         }
3099
3100         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3101                 ena_process_bool_devarg, adapter);
3102
3103         rte_kvargs_free(kvlist);
3104
3105         return rc;
3106 }
3107
3108 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3109 {
3110         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3111         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3112         int rc;
3113         uint16_t vectors_nb, i;
3114         bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3115
3116         if (!rx_intr_requested)
3117                 return 0;
3118
3119         if (!rte_intr_cap_multiple(intr_handle)) {
3120                 PMD_DRV_LOG(ERR,
3121                         "Rx interrupt requested, but it isn't supported by the PCI driver\n");
3122                 return -ENOTSUP;
3123         }
3124
3125         /* Disable interrupt mapping before the configuration starts. */
3126         rte_intr_disable(intr_handle);
3127
3128         /* Verify if there are enough vectors available. */
3129         vectors_nb = dev->data->nb_rx_queues;
3130         if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3131                 PMD_DRV_LOG(ERR,
3132                         "Too many Rx interrupts requested, maximum number: %d\n",
3133                         RTE_MAX_RXTX_INTR_VEC_ID);
3134                 rc = -ENOTSUP;
3135                 goto enable_intr;
3136         }
3137
3138         /* Allocate the vector list */
3139         if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3140                                            dev->data->nb_rx_queues)) {
3141                 PMD_DRV_LOG(ERR,
3142                         "Failed to allocate interrupt vector for %d queues\n",
3143                         dev->data->nb_rx_queues);
3144                 rc = -ENOMEM;
3145                 goto enable_intr;
3146         }
3147
3148         rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3149         if (rc != 0)
3150                 goto free_intr_vec;
3151
3152         if (!rte_intr_allow_others(intr_handle)) {
3153                 PMD_DRV_LOG(ERR,
3154                         "Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3155                 goto disable_intr_efd;
3156         }
3157
3158         for (i = 0; i < vectors_nb; ++i)
3159                 if (rte_intr_vec_list_index_set(intr_handle, i,
3160                                            RTE_INTR_VEC_RXTX_OFFSET + i))
3161                         goto disable_intr_efd;
3162
3163         rte_intr_enable(intr_handle);
3164         return 0;
3165
3166 disable_intr_efd:
3167         rte_intr_efd_disable(intr_handle);
3168 free_intr_vec:
3169         rte_intr_vec_list_free(intr_handle);
3170 enable_intr:
3171         rte_intr_enable(intr_handle);
3172         return rc;
3173 }
3174
3175 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3176                                  uint16_t queue_id,
3177                                  bool unmask)
3178 {
3179         struct ena_adapter *adapter = dev->data->dev_private;
3180         struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3181         struct ena_eth_io_intr_reg intr_reg;
3182
3183         ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3184         ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3185 }
3186
3187 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3188                                     uint16_t queue_id)
3189 {
3190         ena_rx_queue_intr_set(dev, queue_id, true);
3191
3192         return 0;
3193 }
3194
3195 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3196                                      uint16_t queue_id)
3197 {
3198         ena_rx_queue_intr_set(dev, queue_id, false);
3199
3200         return 0;
3201 }
3202
3203 /*********************************************************************
3204  *  PMD configuration
3205  *********************************************************************/
3206 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3207         struct rte_pci_device *pci_dev)
3208 {
3209         return rte_eth_dev_pci_generic_probe(pci_dev,
3210                 sizeof(struct ena_adapter), eth_ena_dev_init);
3211 }
3212
3213 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3214 {
3215         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3216 }
3217
3218 static struct rte_pci_driver rte_ena_pmd = {
3219         .id_table = pci_id_ena_map,
3220         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3221                      RTE_PCI_DRV_WC_ACTIVATE,
3222         .probe = eth_ena_pci_probe,
3223         .remove = eth_ena_pci_remove,
3224 };
3225
3226 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3227 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3228 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3229 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3230 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3231 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3232 #ifdef RTE_ETHDEV_DEBUG_RX
3233 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3234 #endif
3235 #ifdef RTE_ETHDEV_DEBUG_TX
3236 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3237 #endif
3238 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3239
3240 /******************************************************************************
3241  ******************************** AENQ Handlers *******************************
3242  *****************************************************************************/
3243 static void ena_update_on_link_change(void *adapter_data,
3244                                       struct ena_admin_aenq_entry *aenq_e)
3245 {
3246         struct rte_eth_dev *eth_dev = adapter_data;
3247         struct ena_adapter *adapter = eth_dev->data->dev_private;
3248         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3249         uint32_t status;
3250
3251         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3252
3253         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3254         adapter->link_status = status;
3255
3256         ena_link_update(eth_dev, 0);
3257         rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3258 }
3259
3260 static void ena_notification(void *adapter_data,
3261                              struct ena_admin_aenq_entry *aenq_e)
3262 {
3263         struct rte_eth_dev *eth_dev = adapter_data;
3264         struct ena_adapter *adapter = eth_dev->data->dev_private;
3265         struct ena_admin_ena_hw_hints *hints;
3266
3267         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3268                 PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3269                         aenq_e->aenq_common_desc.group,
3270                         ENA_ADMIN_NOTIFICATION);
3271
3272         switch (aenq_e->aenq_common_desc.syndrome) {
3273         case ENA_ADMIN_UPDATE_HINTS:
3274                 hints = (struct ena_admin_ena_hw_hints *)
3275                         (&aenq_e->inline_data_w4);
3276                 ena_update_hints(adapter, hints);
3277                 break;
3278         default:
3279                 PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3280                         aenq_e->aenq_common_desc.syndrome);
3281         }
3282 }
3283
3284 static void ena_keep_alive(void *adapter_data,
3285                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
3286 {
3287         struct rte_eth_dev *eth_dev = adapter_data;
3288         struct ena_adapter *adapter = eth_dev->data->dev_private;
3289         struct ena_admin_aenq_keep_alive_desc *desc;
3290         uint64_t rx_drops;
3291         uint64_t tx_drops;
3292
3293         adapter->timestamp_wd = rte_get_timer_cycles();
3294
3295         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3296         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3297         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3298
3299         adapter->drv_stats->rx_drops = rx_drops;
3300         adapter->dev_stats.tx_drops = tx_drops;
3301 }
3302
3303 /**
3304  * This handler will called for unknown event group or unimplemented handlers
3305  **/
3306 static void unimplemented_aenq_handler(__rte_unused void *data,
3307                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
3308 {
3309         PMD_DRV_LOG(ERR,
3310                 "Unknown event was received or event with unimplemented handler\n");
3311 }
3312
3313 static struct ena_aenq_handlers aenq_handlers = {
3314         .handlers = {
3315                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3316                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3317                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3318         },
3319         .unimplemented_handler = unimplemented_aenq_handler
3320 };