net/ena: fix reset reason being overwritten
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22
23 #define DRV_MODULE_VER_MAJOR    2
24 #define DRV_MODULE_VER_MINOR    5
25 #define DRV_MODULE_VER_SUBMINOR 0
26
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28
29 #define GET_L4_HDR_LEN(mbuf)                                    \
30         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
31                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32
33 #define ETH_GSTRING_LEN 32
34
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36
37 #define ENA_MIN_RING_DESC       128
38
39 #define ENA_PTYPE_HAS_HASH      (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40
41 struct ena_stats {
42         char name[ETH_GSTRING_LEN];
43         int stat_offset;
44 };
45
46 #define ENA_STAT_ENTRY(stat, stat_type) { \
47         .name = #stat, \
48         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
49 }
50
51 #define ENA_STAT_RX_ENTRY(stat) \
52         ENA_STAT_ENTRY(stat, rx)
53
54 #define ENA_STAT_TX_ENTRY(stat) \
55         ENA_STAT_ENTRY(stat, tx)
56
57 #define ENA_STAT_ENI_ENTRY(stat) \
58         ENA_STAT_ENTRY(stat, eni)
59
60 #define ENA_STAT_GLOBAL_ENTRY(stat) \
61         ENA_STAT_ENTRY(stat, dev)
62
63 /* Device arguments */
64 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
65
66 /*
67  * Each rte_memzone should have unique name.
68  * To satisfy it, count number of allocation and add it to name.
69  */
70 rte_atomic64_t ena_alloc_cnt;
71
72 static const struct ena_stats ena_stats_global_strings[] = {
73         ENA_STAT_GLOBAL_ENTRY(wd_expired),
74         ENA_STAT_GLOBAL_ENTRY(dev_start),
75         ENA_STAT_GLOBAL_ENTRY(dev_stop),
76         ENA_STAT_GLOBAL_ENTRY(tx_drops),
77 };
78
79 static const struct ena_stats ena_stats_eni_strings[] = {
80         ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
81         ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
82         ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
83         ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
84         ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
85 };
86
87 static const struct ena_stats ena_stats_tx_strings[] = {
88         ENA_STAT_TX_ENTRY(cnt),
89         ENA_STAT_TX_ENTRY(bytes),
90         ENA_STAT_TX_ENTRY(prepare_ctx_err),
91         ENA_STAT_TX_ENTRY(tx_poll),
92         ENA_STAT_TX_ENTRY(doorbells),
93         ENA_STAT_TX_ENTRY(bad_req_id),
94         ENA_STAT_TX_ENTRY(available_desc),
95         ENA_STAT_TX_ENTRY(missed_tx),
96 };
97
98 static const struct ena_stats ena_stats_rx_strings[] = {
99         ENA_STAT_RX_ENTRY(cnt),
100         ENA_STAT_RX_ENTRY(bytes),
101         ENA_STAT_RX_ENTRY(refill_partial),
102         ENA_STAT_RX_ENTRY(l3_csum_bad),
103         ENA_STAT_RX_ENTRY(l4_csum_bad),
104         ENA_STAT_RX_ENTRY(l4_csum_good),
105         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
106         ENA_STAT_RX_ENTRY(bad_desc_num),
107         ENA_STAT_RX_ENTRY(bad_req_id),
108 };
109
110 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
111 #define ENA_STATS_ARRAY_ENI     ARRAY_SIZE(ena_stats_eni_strings)
112 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
113 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
114
115 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
116                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
117                         RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
118                         RTE_ETH_TX_OFFLOAD_TCP_TSO)
119 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
120                        RTE_MBUF_F_TX_IP_CKSUM |\
121                        RTE_MBUF_F_TX_TCP_SEG)
122
123 /** Vendor ID used by Amazon devices */
124 #define PCI_VENDOR_ID_AMAZON 0x1D0F
125 /** Amazon devices */
126 #define PCI_DEVICE_ID_ENA_VF            0xEC20
127 #define PCI_DEVICE_ID_ENA_VF_RSERV0     0xEC21
128
129 #define ENA_TX_OFFLOAD_MASK     (RTE_MBUF_F_TX_L4_MASK |         \
130         RTE_MBUF_F_TX_IPV6 |            \
131         RTE_MBUF_F_TX_IPV4 |            \
132         RTE_MBUF_F_TX_IP_CKSUM |        \
133         RTE_MBUF_F_TX_TCP_SEG)
134
135 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
136         (RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
137
138 /** HW specific offloads capabilities. */
139 /* IPv4 checksum offload. */
140 #define ENA_L3_IPV4_CSUM                0x0001
141 /* TCP/UDP checksum offload for IPv4 packets. */
142 #define ENA_L4_IPV4_CSUM                0x0002
143 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
144 #define ENA_L4_IPV4_CSUM_PARTIAL        0x0004
145 /* TCP/UDP checksum offload for IPv6 packets. */
146 #define ENA_L4_IPV6_CSUM                0x0008
147 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
148 #define ENA_L4_IPV6_CSUM_PARTIAL        0x0010
149 /* TSO support for IPv4 packets. */
150 #define ENA_IPV4_TSO                    0x0020
151
152 /* Device supports setting RSS hash. */
153 #define ENA_RX_RSS_HASH                 0x0040
154
155 static const struct rte_pci_id pci_id_ena_map[] = {
156         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
157         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
158         { .device_id = 0 },
159 };
160
161 static struct ena_aenq_handlers aenq_handlers;
162
163 static int ena_device_init(struct ena_adapter *adapter,
164                            struct rte_pci_device *pdev,
165                            struct ena_com_dev_get_features_ctx *get_feat_ctx);
166 static int ena_dev_configure(struct rte_eth_dev *dev);
167 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
168         struct ena_tx_buffer *tx_info,
169         struct rte_mbuf *mbuf,
170         void **push_header,
171         uint16_t *header_len);
172 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
173 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
174 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
175                                   uint16_t nb_pkts);
176 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
177                 uint16_t nb_pkts);
178 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
179                               uint16_t nb_desc, unsigned int socket_id,
180                               const struct rte_eth_txconf *tx_conf);
181 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
182                               uint16_t nb_desc, unsigned int socket_id,
183                               const struct rte_eth_rxconf *rx_conf,
184                               struct rte_mempool *mp);
185 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
186 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
187                                     struct ena_com_rx_buf_info *ena_bufs,
188                                     uint32_t descs,
189                                     uint16_t *next_to_clean,
190                                     uint8_t offset);
191 static uint16_t eth_ena_recv_pkts(void *rx_queue,
192                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
193 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
194                                   struct rte_mbuf *mbuf, uint16_t id);
195 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
196 static void ena_init_rings(struct ena_adapter *adapter,
197                            bool disable_meta_caching);
198 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
199 static int ena_start(struct rte_eth_dev *dev);
200 static int ena_stop(struct rte_eth_dev *dev);
201 static int ena_close(struct rte_eth_dev *dev);
202 static int ena_dev_reset(struct rte_eth_dev *dev);
203 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
204 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
205 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
206 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
207 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
208 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
209 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
210 static int ena_link_update(struct rte_eth_dev *dev,
211                            int wait_to_complete);
212 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
213 static void ena_queue_stop(struct ena_ring *ring);
214 static void ena_queue_stop_all(struct rte_eth_dev *dev,
215                               enum ena_ring_type ring_type);
216 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
217 static int ena_queue_start_all(struct rte_eth_dev *dev,
218                                enum ena_ring_type ring_type);
219 static void ena_stats_restart(struct rte_eth_dev *dev);
220 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
221 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
222 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
223 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
224 static int ena_infos_get(struct rte_eth_dev *dev,
225                          struct rte_eth_dev_info *dev_info);
226 static void ena_interrupt_handler_rte(void *cb_arg);
227 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
228 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
229 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
230 static int ena_xstats_get_names(struct rte_eth_dev *dev,
231                                 struct rte_eth_xstat_name *xstats_names,
232                                 unsigned int n);
233 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
234                                       const uint64_t *ids,
235                                       struct rte_eth_xstat_name *xstats_names,
236                                       unsigned int size);
237 static int ena_xstats_get(struct rte_eth_dev *dev,
238                           struct rte_eth_xstat *stats,
239                           unsigned int n);
240 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
241                                 const uint64_t *ids,
242                                 uint64_t *values,
243                                 unsigned int n);
244 static int ena_process_bool_devarg(const char *key,
245                                    const char *value,
246                                    void *opaque);
247 static int ena_parse_devargs(struct ena_adapter *adapter,
248                              struct rte_devargs *devargs);
249 static int ena_copy_eni_stats(struct ena_adapter *adapter,
250                               struct ena_stats_eni *stats);
251 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
252 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
253                                     uint16_t queue_id);
254 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
255                                      uint16_t queue_id);
256 static int ena_configure_aenq(struct ena_adapter *adapter);
257 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
258                                  const void *peer);
259
260 static const struct eth_dev_ops ena_dev_ops = {
261         .dev_configure          = ena_dev_configure,
262         .dev_infos_get          = ena_infos_get,
263         .rx_queue_setup         = ena_rx_queue_setup,
264         .tx_queue_setup         = ena_tx_queue_setup,
265         .dev_start              = ena_start,
266         .dev_stop               = ena_stop,
267         .link_update            = ena_link_update,
268         .stats_get              = ena_stats_get,
269         .xstats_get_names       = ena_xstats_get_names,
270         .xstats_get_names_by_id = ena_xstats_get_names_by_id,
271         .xstats_get             = ena_xstats_get,
272         .xstats_get_by_id       = ena_xstats_get_by_id,
273         .mtu_set                = ena_mtu_set,
274         .rx_queue_release       = ena_rx_queue_release,
275         .tx_queue_release       = ena_tx_queue_release,
276         .dev_close              = ena_close,
277         .dev_reset              = ena_dev_reset,
278         .reta_update            = ena_rss_reta_update,
279         .reta_query             = ena_rss_reta_query,
280         .rx_queue_intr_enable   = ena_rx_queue_intr_enable,
281         .rx_queue_intr_disable  = ena_rx_queue_intr_disable,
282         .rss_hash_update        = ena_rss_hash_update,
283         .rss_hash_conf_get      = ena_rss_hash_conf_get,
284         .tx_done_cleanup        = ena_tx_cleanup,
285 };
286
287 /*********************************************************************
288  *  Multi-Process communication bits
289  *********************************************************************/
290 /* rte_mp IPC message name */
291 #define ENA_MP_NAME     "net_ena_mp"
292 /* Request timeout in seconds */
293 #define ENA_MP_REQ_TMO  5
294
295 /** Proxy request type */
296 enum ena_mp_req {
297         ENA_MP_DEV_STATS_GET,
298         ENA_MP_ENI_STATS_GET,
299         ENA_MP_MTU_SET,
300         ENA_MP_IND_TBL_GET,
301         ENA_MP_IND_TBL_SET
302 };
303
304 /** Proxy message body. Shared between requests and responses. */
305 struct ena_mp_body {
306         /* Message type */
307         enum ena_mp_req type;
308         int port_id;
309         /* Processing result. Set in replies. 0 if message succeeded, negative
310          * error code otherwise.
311          */
312         int result;
313         union {
314                 int mtu; /* For ENA_MP_MTU_SET */
315         } args;
316 };
317
318 /**
319  * Initialize IPC message.
320  *
321  * @param[out] msg
322  *   Pointer to the message to initialize.
323  * @param[in] type
324  *   Message type.
325  * @param[in] port_id
326  *   Port ID of target device.
327  *
328  */
329 static void
330 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
331 {
332         struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
333
334         memset(msg, 0, sizeof(*msg));
335         strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
336         msg->len_param = sizeof(*body);
337         body->type = type;
338         body->port_id = port_id;
339 }
340
341 /*********************************************************************
342  *  Multi-Process communication PMD API
343  *********************************************************************/
344 /**
345  * Define proxy request descriptor
346  *
347  * Used to define all structures and functions required for proxying a given
348  * function to the primary process including the code to perform to prepare the
349  * request and process the response.
350  *
351  * @param[in] f
352  *   Name of the function to proxy
353  * @param[in] t
354  *   Message type to use
355  * @param[in] prep
356  *   Body of a function to prepare the request in form of a statement
357  *   expression. It is passed all the original function arguments along with two
358  *   extra ones:
359  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
360  *   - struct ena_mp_body *req - body of a request to prepare.
361  * @param[in] proc
362  *   Body of a function to process the response in form of a statement
363  *   expression. It is passed all the original function arguments along with two
364  *   extra ones:
365  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
366  *   - struct ena_mp_body *rsp - body of a response to process.
367  * @param ...
368  *   Proxied function's arguments
369  *
370  * @note Inside prep and proc any parameters which aren't used should be marked
371  *       as such (with ENA_TOUCH or __rte_unused).
372  */
373 #define ENA_PROXY_DESC(f, t, prep, proc, ...)                   \
374         static const enum ena_mp_req mp_type_ ## f =  t;        \
375         static const char *mp_name_ ## f = #t;                  \
376         static void mp_prep_ ## f(struct ena_adapter *adapter,  \
377                                   struct ena_mp_body *req,      \
378                                   __VA_ARGS__)                  \
379         {                                                       \
380                 prep;                                           \
381         }                                                       \
382         static void mp_proc_ ## f(struct ena_adapter *adapter,  \
383                                   struct ena_mp_body *rsp,      \
384                                   __VA_ARGS__)                  \
385         {                                                       \
386                 proc;                                           \
387         }
388
389 /**
390  * Proxy wrapper for calling primary functions in a secondary process.
391  *
392  * Depending on whether called in primary or secondary process, calls the
393  * @p func directly or proxies the call to the primary process via rte_mp IPC.
394  * This macro requires a proxy request descriptor to be defined for @p func
395  * using ENA_PROXY_DESC() macro.
396  *
397  * @param[in/out] a
398  *   Device PMD data. Used for sending the message and sharing message results
399  *   between primary and secondary.
400  * @param[in] f
401  *   Function to proxy.
402  * @param ...
403  *   Arguments of @p func.
404  *
405  * @return
406  *   - 0: Processing succeeded and response handler was called.
407  *   - -EPERM: IPC is unavailable on this platform. This means only primary
408  *             process may call the proxied function.
409  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
410  *             error code.
411  *   - Negative error code from the proxied function.
412  *
413  * @note This mechanism is geared towards control-path tasks. Avoid calling it
414  *       in fast-path unless unbound delays are allowed. This is due to the IPC
415  *       mechanism itself (socket based).
416  * @note Due to IPC parameter size limitations the proxy logic shares call
417  *       results through the struct ena_adapter shared memory. This makes the
418  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
419  *       calls to the same proxied function under the same lock.
420  */
421 #define ENA_PROXY(a, f, ...)                                            \
422 ({                                                                      \
423         struct ena_adapter *_a = (a);                                   \
424         struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };              \
425         struct ena_mp_body *req, *rsp;                                  \
426         struct rte_mp_reply mp_rep;                                     \
427         struct rte_mp_msg mp_req;                                       \
428         int ret;                                                        \
429                                                                         \
430         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {               \
431                 ret = f(__VA_ARGS__);                                   \
432         } else {                                                        \
433                 /* Prepare and send request */                          \
434                 req = (struct ena_mp_body *)&mp_req.param;              \
435                 mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
436                 mp_prep_ ## f(_a, req, ## __VA_ARGS__);                 \
437                                                                         \
438                 ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);       \
439                 if (likely(!ret)) {                                     \
440                         RTE_ASSERT(mp_rep.nb_received == 1);            \
441                         rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
442                         ret = rsp->result;                              \
443                         if (ret == 0) {                                 \
444                                 mp_proc_##f(_a, rsp, ## __VA_ARGS__);   \
445                         } else {                                        \
446                                 PMD_DRV_LOG(ERR,                        \
447                                             "%s returned error: %d\n",  \
448                                             mp_name_ ## f, rsp->result);\
449                         }                                               \
450                         free(mp_rep.msgs);                              \
451                 } else if (rte_errno == ENOTSUP) {                      \
452                         PMD_DRV_LOG(ERR,                                \
453                                     "No IPC, can't proxy to primary\n");\
454                         ret = -rte_errno;                               \
455                 } else {                                                \
456                         PMD_DRV_LOG(ERR, "Request %s failed: %s\n",     \
457                                     mp_name_ ## f,                      \
458                                     rte_strerror(rte_errno));           \
459                         ret = -EIO;                                     \
460                 }                                                       \
461         }                                                               \
462         ret;                                                            \
463 })
464
465 /*********************************************************************
466  *  Multi-Process communication request descriptors
467  *********************************************************************/
468
469 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
470 ({
471         ENA_TOUCH(adapter);
472         ENA_TOUCH(req);
473         ENA_TOUCH(ena_dev);
474         ENA_TOUCH(stats);
475 }),
476 ({
477         ENA_TOUCH(rsp);
478         ENA_TOUCH(ena_dev);
479         if (stats != &adapter->basic_stats)
480                 rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
481 }),
482         struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
483
484 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
485 ({
486         ENA_TOUCH(adapter);
487         ENA_TOUCH(req);
488         ENA_TOUCH(ena_dev);
489         ENA_TOUCH(stats);
490 }),
491 ({
492         ENA_TOUCH(rsp);
493         ENA_TOUCH(ena_dev);
494         if (stats != (struct ena_admin_eni_stats *)&adapter->eni_stats)
495                 rte_memcpy(stats, &adapter->eni_stats, sizeof(*stats));
496 }),
497         struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
498
499 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
500 ({
501         ENA_TOUCH(adapter);
502         ENA_TOUCH(ena_dev);
503         req->args.mtu = mtu;
504 }),
505 ({
506         ENA_TOUCH(adapter);
507         ENA_TOUCH(rsp);
508         ENA_TOUCH(ena_dev);
509         ENA_TOUCH(mtu);
510 }),
511         struct ena_com_dev *ena_dev, int mtu);
512
513 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
514 ({
515         ENA_TOUCH(adapter);
516         ENA_TOUCH(req);
517         ENA_TOUCH(ena_dev);
518 }),
519 ({
520         ENA_TOUCH(adapter);
521         ENA_TOUCH(rsp);
522         ENA_TOUCH(ena_dev);
523 }),
524         struct ena_com_dev *ena_dev);
525
526 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
527 ({
528         ENA_TOUCH(adapter);
529         ENA_TOUCH(req);
530         ENA_TOUCH(ena_dev);
531         ENA_TOUCH(ind_tbl);
532 }),
533 ({
534         ENA_TOUCH(rsp);
535         ENA_TOUCH(ena_dev);
536         if (ind_tbl != adapter->indirect_table)
537                 rte_memcpy(ind_tbl, adapter->indirect_table,
538                            sizeof(adapter->indirect_table));
539 }),
540         struct ena_com_dev *ena_dev, u32 *ind_tbl);
541
542 static inline void ena_trigger_reset(struct ena_adapter *adapter,
543                                      enum ena_regs_reset_reason_types reason)
544 {
545         if (likely(!adapter->trigger_reset)) {
546                 adapter->reset_reason = reason;
547                 adapter->trigger_reset = true;
548         }
549 }
550
551 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
552                                        struct rte_mbuf *mbuf,
553                                        struct ena_com_rx_ctx *ena_rx_ctx,
554                                        bool fill_hash)
555 {
556         struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
557         uint64_t ol_flags = 0;
558         uint32_t packet_type = 0;
559
560         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
561                 packet_type |= RTE_PTYPE_L4_TCP;
562         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
563                 packet_type |= RTE_PTYPE_L4_UDP;
564
565         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
566                 packet_type |= RTE_PTYPE_L3_IPV4;
567                 if (unlikely(ena_rx_ctx->l3_csum_err)) {
568                         ++rx_stats->l3_csum_bad;
569                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
570                 } else {
571                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
572                 }
573         } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
574                 packet_type |= RTE_PTYPE_L3_IPV6;
575         }
576
577         if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
578                 ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
579         } else {
580                 if (unlikely(ena_rx_ctx->l4_csum_err)) {
581                         ++rx_stats->l4_csum_bad;
582                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
583                 } else {
584                         ++rx_stats->l4_csum_good;
585                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
586                 }
587         }
588
589         if (fill_hash &&
590             likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
591                 ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
592                 mbuf->hash.rss = ena_rx_ctx->hash;
593         }
594
595         mbuf->ol_flags = ol_flags;
596         mbuf->packet_type = packet_type;
597 }
598
599 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
600                                        struct ena_com_tx_ctx *ena_tx_ctx,
601                                        uint64_t queue_offloads,
602                                        bool disable_meta_caching)
603 {
604         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
605
606         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
607             (queue_offloads & QUEUE_OFFLOADS)) {
608                 /* check if TSO is required */
609                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
610                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
611                         ena_tx_ctx->tso_enable = true;
612
613                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
614                 }
615
616                 /* check if L3 checksum is needed */
617                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
618                     (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
619                         ena_tx_ctx->l3_csum_enable = true;
620
621                 if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
622                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
623                 } else {
624                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
625
626                         /* set don't fragment (DF) flag */
627                         if (mbuf->packet_type &
628                                 (RTE_PTYPE_L4_NONFRAG
629                                  | RTE_PTYPE_INNER_L4_NONFRAG))
630                                 ena_tx_ctx->df = true;
631                 }
632
633                 /* check if L4 checksum is needed */
634                 if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
635                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
636                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
637                         ena_tx_ctx->l4_csum_enable = true;
638                 } else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
639                                 RTE_MBUF_F_TX_UDP_CKSUM) &&
640                                 (queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
641                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
642                         ena_tx_ctx->l4_csum_enable = true;
643                 } else {
644                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
645                         ena_tx_ctx->l4_csum_enable = false;
646                 }
647
648                 ena_meta->mss = mbuf->tso_segsz;
649                 ena_meta->l3_hdr_len = mbuf->l3_len;
650                 ena_meta->l3_hdr_offset = mbuf->l2_len;
651
652                 ena_tx_ctx->meta_valid = true;
653         } else if (disable_meta_caching) {
654                 memset(ena_meta, 0, sizeof(*ena_meta));
655                 ena_tx_ctx->meta_valid = true;
656         } else {
657                 ena_tx_ctx->meta_valid = false;
658         }
659 }
660
661 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
662 {
663         struct ena_tx_buffer *tx_info = NULL;
664
665         if (likely(req_id < tx_ring->ring_size)) {
666                 tx_info = &tx_ring->tx_buffer_info[req_id];
667                 if (likely(tx_info->mbuf))
668                         return 0;
669         }
670
671         if (tx_info)
672                 PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
673         else
674                 PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
675
676         /* Trigger device reset */
677         ++tx_ring->tx_stats.bad_req_id;
678         ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
679         return -EFAULT;
680 }
681
682 static void ena_config_host_info(struct ena_com_dev *ena_dev)
683 {
684         struct ena_admin_host_info *host_info;
685         int rc;
686
687         /* Allocate only the host info */
688         rc = ena_com_allocate_host_info(ena_dev);
689         if (rc) {
690                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
691                 return;
692         }
693
694         host_info = ena_dev->host_attr.host_info;
695
696         host_info->os_type = ENA_ADMIN_OS_DPDK;
697         host_info->kernel_ver = RTE_VERSION;
698         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
699                 sizeof(host_info->kernel_ver_str));
700         host_info->os_dist = RTE_VERSION;
701         strlcpy((char *)host_info->os_dist_str, rte_version(),
702                 sizeof(host_info->os_dist_str));
703         host_info->driver_version =
704                 (DRV_MODULE_VER_MAJOR) |
705                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
706                 (DRV_MODULE_VER_SUBMINOR <<
707                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
708         host_info->num_cpus = rte_lcore_count();
709
710         host_info->driver_supported_features =
711                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
712                 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
713
714         rc = ena_com_set_host_attributes(ena_dev);
715         if (rc) {
716                 if (rc == -ENA_COM_UNSUPPORTED)
717                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
718                 else
719                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
720
721                 goto err;
722         }
723
724         return;
725
726 err:
727         ena_com_delete_host_info(ena_dev);
728 }
729
730 /* This function calculates the number of xstats based on the current config */
731 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
732 {
733         return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
734                 (data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
735                 (data->nb_rx_queues * ENA_STATS_ARRAY_RX);
736 }
737
738 static void ena_config_debug_area(struct ena_adapter *adapter)
739 {
740         u32 debug_area_size;
741         int rc, ss_count;
742
743         ss_count = ena_xstats_calc_num(adapter->edev_data);
744
745         /* allocate 32 bytes for each string and 64bit for the value */
746         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
747
748         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
749         if (rc) {
750                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
751                 return;
752         }
753
754         rc = ena_com_set_host_attributes(&adapter->ena_dev);
755         if (rc) {
756                 if (rc == -ENA_COM_UNSUPPORTED)
757                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
758                 else
759                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
760
761                 goto err;
762         }
763
764         return;
765 err:
766         ena_com_delete_debug_area(&adapter->ena_dev);
767 }
768
769 static int ena_close(struct rte_eth_dev *dev)
770 {
771         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
772         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
773         struct ena_adapter *adapter = dev->data->dev_private;
774         int ret = 0;
775
776         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
777                 return 0;
778
779         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
780                 ret = ena_stop(dev);
781         adapter->state = ENA_ADAPTER_STATE_CLOSED;
782
783         ena_rx_queue_release_all(dev);
784         ena_tx_queue_release_all(dev);
785
786         rte_free(adapter->drv_stats);
787         adapter->drv_stats = NULL;
788
789         rte_intr_disable(intr_handle);
790         rte_intr_callback_unregister(intr_handle,
791                                      ena_interrupt_handler_rte,
792                                      dev);
793
794         /*
795          * MAC is not allocated dynamically. Setting NULL should prevent from
796          * release of the resource in the rte_eth_dev_release_port().
797          */
798         dev->data->mac_addrs = NULL;
799
800         return ret;
801 }
802
803 static int
804 ena_dev_reset(struct rte_eth_dev *dev)
805 {
806         int rc = 0;
807
808         /* Cannot release memory in secondary process */
809         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
810                 PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
811                 return -EPERM;
812         }
813
814         ena_destroy_device(dev);
815         rc = eth_ena_dev_init(dev);
816         if (rc)
817                 PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
818
819         return rc;
820 }
821
822 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
823 {
824         int nb_queues = dev->data->nb_rx_queues;
825         int i;
826
827         for (i = 0; i < nb_queues; i++)
828                 ena_rx_queue_release(dev, i);
829 }
830
831 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
832 {
833         int nb_queues = dev->data->nb_tx_queues;
834         int i;
835
836         for (i = 0; i < nb_queues; i++)
837                 ena_tx_queue_release(dev, i);
838 }
839
840 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
841 {
842         struct ena_ring *ring = dev->data->rx_queues[qid];
843
844         /* Free ring resources */
845         rte_free(ring->rx_buffer_info);
846         ring->rx_buffer_info = NULL;
847
848         rte_free(ring->rx_refill_buffer);
849         ring->rx_refill_buffer = NULL;
850
851         rte_free(ring->empty_rx_reqs);
852         ring->empty_rx_reqs = NULL;
853
854         ring->configured = 0;
855
856         PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
857                 ring->port_id, ring->id);
858 }
859
860 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
861 {
862         struct ena_ring *ring = dev->data->tx_queues[qid];
863
864         /* Free ring resources */
865         rte_free(ring->push_buf_intermediate_buf);
866
867         rte_free(ring->tx_buffer_info);
868
869         rte_free(ring->empty_tx_reqs);
870
871         ring->empty_tx_reqs = NULL;
872         ring->tx_buffer_info = NULL;
873         ring->push_buf_intermediate_buf = NULL;
874
875         ring->configured = 0;
876
877         PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
878                 ring->port_id, ring->id);
879 }
880
881 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
882 {
883         unsigned int i;
884
885         for (i = 0; i < ring->ring_size; ++i) {
886                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
887                 if (rx_info->mbuf) {
888                         rte_mbuf_raw_free(rx_info->mbuf);
889                         rx_info->mbuf = NULL;
890                 }
891         }
892 }
893
894 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
895 {
896         unsigned int i;
897
898         for (i = 0; i < ring->ring_size; ++i) {
899                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
900
901                 if (tx_buf->mbuf) {
902                         rte_pktmbuf_free(tx_buf->mbuf);
903                         tx_buf->mbuf = NULL;
904                 }
905         }
906 }
907
908 static int ena_link_update(struct rte_eth_dev *dev,
909                            __rte_unused int wait_to_complete)
910 {
911         struct rte_eth_link *link = &dev->data->dev_link;
912         struct ena_adapter *adapter = dev->data->dev_private;
913
914         link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
915         link->link_speed = RTE_ETH_SPEED_NUM_NONE;
916         link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
917
918         return 0;
919 }
920
921 static int ena_queue_start_all(struct rte_eth_dev *dev,
922                                enum ena_ring_type ring_type)
923 {
924         struct ena_adapter *adapter = dev->data->dev_private;
925         struct ena_ring *queues = NULL;
926         int nb_queues;
927         int i = 0;
928         int rc = 0;
929
930         if (ring_type == ENA_RING_TYPE_RX) {
931                 queues = adapter->rx_ring;
932                 nb_queues = dev->data->nb_rx_queues;
933         } else {
934                 queues = adapter->tx_ring;
935                 nb_queues = dev->data->nb_tx_queues;
936         }
937         for (i = 0; i < nb_queues; i++) {
938                 if (queues[i].configured) {
939                         if (ring_type == ENA_RING_TYPE_RX) {
940                                 ena_assert_msg(
941                                         dev->data->rx_queues[i] == &queues[i],
942                                         "Inconsistent state of Rx queues\n");
943                         } else {
944                                 ena_assert_msg(
945                                         dev->data->tx_queues[i] == &queues[i],
946                                         "Inconsistent state of Tx queues\n");
947                         }
948
949                         rc = ena_queue_start(dev, &queues[i]);
950
951                         if (rc) {
952                                 PMD_INIT_LOG(ERR,
953                                         "Failed to start queue[%d] of type(%d)\n",
954                                         i, ring_type);
955                                 goto err;
956                         }
957                 }
958         }
959
960         return 0;
961
962 err:
963         while (i--)
964                 if (queues[i].configured)
965                         ena_queue_stop(&queues[i]);
966
967         return rc;
968 }
969
970 static int ena_check_valid_conf(struct ena_adapter *adapter)
971 {
972         uint32_t mtu = adapter->edev_data->mtu;
973
974         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
975                 PMD_INIT_LOG(ERR,
976                         "Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
977                         mtu, adapter->max_mtu, ENA_MIN_MTU);
978                 return ENA_COM_UNSUPPORTED;
979         }
980
981         return 0;
982 }
983
984 static int
985 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
986                        bool use_large_llq_hdr)
987 {
988         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
989         struct ena_com_dev *ena_dev = ctx->ena_dev;
990         uint32_t max_tx_queue_size;
991         uint32_t max_rx_queue_size;
992
993         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
994                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
995                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
996                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
997                         max_queue_ext->max_rx_sq_depth);
998                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
999
1000                 if (ena_dev->tx_mem_queue_type ==
1001                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1002                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1003                                 llq->max_llq_depth);
1004                 } else {
1005                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1006                                 max_queue_ext->max_tx_sq_depth);
1007                 }
1008
1009                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1010                         max_queue_ext->max_per_packet_rx_descs);
1011                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1012                         max_queue_ext->max_per_packet_tx_descs);
1013         } else {
1014                 struct ena_admin_queue_feature_desc *max_queues =
1015                         &ctx->get_feat_ctx->max_queues;
1016                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1017                         max_queues->max_sq_depth);
1018                 max_tx_queue_size = max_queues->max_cq_depth;
1019
1020                 if (ena_dev->tx_mem_queue_type ==
1021                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1022                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1023                                 llq->max_llq_depth);
1024                 } else {
1025                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1026                                 max_queues->max_sq_depth);
1027                 }
1028
1029                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1030                         max_queues->max_packet_rx_descs);
1031                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1032                         max_queues->max_packet_tx_descs);
1033         }
1034
1035         /* Round down to the nearest power of 2 */
1036         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1037         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1038
1039         if (use_large_llq_hdr) {
1040                 if ((llq->entry_size_ctrl_supported &
1041                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
1042                     (ena_dev->tx_mem_queue_type ==
1043                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
1044                         max_tx_queue_size /= 2;
1045                         PMD_INIT_LOG(INFO,
1046                                 "Forcing large headers and decreasing maximum Tx queue size to %d\n",
1047                                 max_tx_queue_size);
1048                 } else {
1049                         PMD_INIT_LOG(ERR,
1050                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
1051                 }
1052         }
1053
1054         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1055                 PMD_INIT_LOG(ERR, "Invalid queue size\n");
1056                 return -EFAULT;
1057         }
1058
1059         ctx->max_tx_queue_size = max_tx_queue_size;
1060         ctx->max_rx_queue_size = max_rx_queue_size;
1061
1062         return 0;
1063 }
1064
1065 static void ena_stats_restart(struct rte_eth_dev *dev)
1066 {
1067         struct ena_adapter *adapter = dev->data->dev_private;
1068
1069         rte_atomic64_init(&adapter->drv_stats->ierrors);
1070         rte_atomic64_init(&adapter->drv_stats->oerrors);
1071         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1072         adapter->drv_stats->rx_drops = 0;
1073 }
1074
1075 static int ena_stats_get(struct rte_eth_dev *dev,
1076                           struct rte_eth_stats *stats)
1077 {
1078         struct ena_admin_basic_stats ena_stats;
1079         struct ena_adapter *adapter = dev->data->dev_private;
1080         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1081         int rc;
1082         int i;
1083         int max_rings_stats;
1084
1085         memset(&ena_stats, 0, sizeof(ena_stats));
1086
1087         rte_spinlock_lock(&adapter->admin_lock);
1088         rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1089                        &ena_stats);
1090         rte_spinlock_unlock(&adapter->admin_lock);
1091         if (unlikely(rc)) {
1092                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1093                 return rc;
1094         }
1095
1096         /* Set of basic statistics from ENA */
1097         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1098                                           ena_stats.rx_pkts_low);
1099         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1100                                           ena_stats.tx_pkts_low);
1101         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1102                                         ena_stats.rx_bytes_low);
1103         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1104                                         ena_stats.tx_bytes_low);
1105
1106         /* Driver related stats */
1107         stats->imissed = adapter->drv_stats->rx_drops;
1108         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1109         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1110         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1111
1112         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1113                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
1114         for (i = 0; i < max_rings_stats; ++i) {
1115                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1116
1117                 stats->q_ibytes[i] = rx_stats->bytes;
1118                 stats->q_ipackets[i] = rx_stats->cnt;
1119                 stats->q_errors[i] = rx_stats->bad_desc_num +
1120                         rx_stats->bad_req_id;
1121         }
1122
1123         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1124                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
1125         for (i = 0; i < max_rings_stats; ++i) {
1126                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1127
1128                 stats->q_obytes[i] = tx_stats->bytes;
1129                 stats->q_opackets[i] = tx_stats->cnt;
1130         }
1131
1132         return 0;
1133 }
1134
1135 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1136 {
1137         struct ena_adapter *adapter;
1138         struct ena_com_dev *ena_dev;
1139         int rc = 0;
1140
1141         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1142         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1143         adapter = dev->data->dev_private;
1144
1145         ena_dev = &adapter->ena_dev;
1146         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1147
1148         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
1149                 PMD_DRV_LOG(ERR,
1150                         "Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
1151                         mtu, adapter->max_mtu, ENA_MIN_MTU);
1152                 return -EINVAL;
1153         }
1154
1155         rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1156         if (rc)
1157                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1158         else
1159                 PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1160
1161         return rc;
1162 }
1163
1164 static int ena_start(struct rte_eth_dev *dev)
1165 {
1166         struct ena_adapter *adapter = dev->data->dev_private;
1167         uint64_t ticks;
1168         int rc = 0;
1169
1170         /* Cannot allocate memory in secondary process */
1171         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1172                 PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1173                 return -EPERM;
1174         }
1175
1176         rc = ena_check_valid_conf(adapter);
1177         if (rc)
1178                 return rc;
1179
1180         rc = ena_setup_rx_intr(dev);
1181         if (rc)
1182                 return rc;
1183
1184         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1185         if (rc)
1186                 return rc;
1187
1188         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1189         if (rc)
1190                 goto err_start_tx;
1191
1192         if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1193                 rc = ena_rss_configure(adapter);
1194                 if (rc)
1195                         goto err_rss_init;
1196         }
1197
1198         ena_stats_restart(dev);
1199
1200         adapter->timestamp_wd = rte_get_timer_cycles();
1201         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1202
1203         ticks = rte_get_timer_hz();
1204         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1205                         ena_timer_wd_callback, dev);
1206
1207         ++adapter->dev_stats.dev_start;
1208         adapter->state = ENA_ADAPTER_STATE_RUNNING;
1209
1210         return 0;
1211
1212 err_rss_init:
1213         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1214 err_start_tx:
1215         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1216         return rc;
1217 }
1218
1219 static int ena_stop(struct rte_eth_dev *dev)
1220 {
1221         struct ena_adapter *adapter = dev->data->dev_private;
1222         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1223         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1224         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1225         int rc;
1226
1227         /* Cannot free memory in secondary process */
1228         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1229                 PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1230                 return -EPERM;
1231         }
1232
1233         rte_timer_stop_sync(&adapter->timer_wd);
1234         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1235         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1236
1237         if (adapter->trigger_reset) {
1238                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1239                 if (rc)
1240                         PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1241         }
1242
1243         rte_intr_disable(intr_handle);
1244
1245         rte_intr_efd_disable(intr_handle);
1246
1247         /* Cleanup vector list */
1248         rte_intr_vec_list_free(intr_handle);
1249
1250         rte_intr_enable(intr_handle);
1251
1252         ++adapter->dev_stats.dev_stop;
1253         adapter->state = ENA_ADAPTER_STATE_STOPPED;
1254         dev->data->dev_started = 0;
1255
1256         return 0;
1257 }
1258
1259 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1260 {
1261         struct ena_adapter *adapter = ring->adapter;
1262         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1263         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1264         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1265         struct ena_com_create_io_ctx ctx =
1266                 /* policy set to _HOST just to satisfy icc compiler */
1267                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
1268                   0, 0, 0, 0, 0 };
1269         uint16_t ena_qid;
1270         unsigned int i;
1271         int rc;
1272
1273         ctx.msix_vector = -1;
1274         if (ring->type == ENA_RING_TYPE_TX) {
1275                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1276                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1277                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1278                 for (i = 0; i < ring->ring_size; i++)
1279                         ring->empty_tx_reqs[i] = i;
1280         } else {
1281                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1282                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1283                 if (rte_intr_dp_is_en(intr_handle))
1284                         ctx.msix_vector =
1285                                 rte_intr_vec_list_index_get(intr_handle,
1286                                                                    ring->id);
1287
1288                 for (i = 0; i < ring->ring_size; i++)
1289                         ring->empty_rx_reqs[i] = i;
1290         }
1291         ctx.queue_size = ring->ring_size;
1292         ctx.qid = ena_qid;
1293         ctx.numa_node = ring->numa_socket_id;
1294
1295         rc = ena_com_create_io_queue(ena_dev, &ctx);
1296         if (rc) {
1297                 PMD_DRV_LOG(ERR,
1298                         "Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1299                         ring->id, ena_qid, rc);
1300                 return rc;
1301         }
1302
1303         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1304                                      &ring->ena_com_io_sq,
1305                                      &ring->ena_com_io_cq);
1306         if (rc) {
1307                 PMD_DRV_LOG(ERR,
1308                         "Failed to get IO queue[%d] handlers, rc: %d\n",
1309                         ring->id, rc);
1310                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1311                 return rc;
1312         }
1313
1314         if (ring->type == ENA_RING_TYPE_TX)
1315                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1316
1317         /* Start with Rx interrupts being masked. */
1318         if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1319                 ena_rx_queue_intr_disable(dev, ring->id);
1320
1321         return 0;
1322 }
1323
1324 static void ena_queue_stop(struct ena_ring *ring)
1325 {
1326         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1327
1328         if (ring->type == ENA_RING_TYPE_RX) {
1329                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1330                 ena_rx_queue_release_bufs(ring);
1331         } else {
1332                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1333                 ena_tx_queue_release_bufs(ring);
1334         }
1335 }
1336
1337 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1338                               enum ena_ring_type ring_type)
1339 {
1340         struct ena_adapter *adapter = dev->data->dev_private;
1341         struct ena_ring *queues = NULL;
1342         uint16_t nb_queues, i;
1343
1344         if (ring_type == ENA_RING_TYPE_RX) {
1345                 queues = adapter->rx_ring;
1346                 nb_queues = dev->data->nb_rx_queues;
1347         } else {
1348                 queues = adapter->tx_ring;
1349                 nb_queues = dev->data->nb_tx_queues;
1350         }
1351
1352         for (i = 0; i < nb_queues; ++i)
1353                 if (queues[i].configured)
1354                         ena_queue_stop(&queues[i]);
1355 }
1356
1357 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1358 {
1359         int rc, bufs_num;
1360
1361         ena_assert_msg(ring->configured == 1,
1362                        "Trying to start unconfigured queue\n");
1363
1364         rc = ena_create_io_queue(dev, ring);
1365         if (rc) {
1366                 PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1367                 return rc;
1368         }
1369
1370         ring->next_to_clean = 0;
1371         ring->next_to_use = 0;
1372
1373         if (ring->type == ENA_RING_TYPE_TX) {
1374                 ring->tx_stats.available_desc =
1375                         ena_com_free_q_entries(ring->ena_com_io_sq);
1376                 return 0;
1377         }
1378
1379         bufs_num = ring->ring_size - 1;
1380         rc = ena_populate_rx_queue(ring, bufs_num);
1381         if (rc != bufs_num) {
1382                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1383                                          ENA_IO_RXQ_IDX(ring->id));
1384                 PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1385                 return ENA_COM_FAULT;
1386         }
1387         /* Flush per-core RX buffers pools cache as they can be used on other
1388          * cores as well.
1389          */
1390         rte_mempool_cache_flush(NULL, ring->mb_pool);
1391
1392         return 0;
1393 }
1394
1395 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1396                               uint16_t queue_idx,
1397                               uint16_t nb_desc,
1398                               unsigned int socket_id,
1399                               const struct rte_eth_txconf *tx_conf)
1400 {
1401         struct ena_ring *txq = NULL;
1402         struct ena_adapter *adapter = dev->data->dev_private;
1403         unsigned int i;
1404         uint16_t dyn_thresh;
1405
1406         txq = &adapter->tx_ring[queue_idx];
1407
1408         if (txq->configured) {
1409                 PMD_DRV_LOG(CRIT,
1410                         "API violation. Queue[%d] is already configured\n",
1411                         queue_idx);
1412                 return ENA_COM_FAULT;
1413         }
1414
1415         if (!rte_is_power_of_2(nb_desc)) {
1416                 PMD_DRV_LOG(ERR,
1417                         "Unsupported size of Tx queue: %d is not a power of 2.\n",
1418                         nb_desc);
1419                 return -EINVAL;
1420         }
1421
1422         if (nb_desc > adapter->max_tx_ring_size) {
1423                 PMD_DRV_LOG(ERR,
1424                         "Unsupported size of Tx queue (max size: %d)\n",
1425                         adapter->max_tx_ring_size);
1426                 return -EINVAL;
1427         }
1428
1429         txq->port_id = dev->data->port_id;
1430         txq->next_to_clean = 0;
1431         txq->next_to_use = 0;
1432         txq->ring_size = nb_desc;
1433         txq->size_mask = nb_desc - 1;
1434         txq->numa_socket_id = socket_id;
1435         txq->pkts_without_db = false;
1436         txq->last_cleanup_ticks = 0;
1437
1438         txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1439                 sizeof(struct ena_tx_buffer) * txq->ring_size,
1440                 RTE_CACHE_LINE_SIZE,
1441                 socket_id);
1442         if (!txq->tx_buffer_info) {
1443                 PMD_DRV_LOG(ERR,
1444                         "Failed to allocate memory for Tx buffer info\n");
1445                 return -ENOMEM;
1446         }
1447
1448         txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1449                 sizeof(uint16_t) * txq->ring_size,
1450                 RTE_CACHE_LINE_SIZE,
1451                 socket_id);
1452         if (!txq->empty_tx_reqs) {
1453                 PMD_DRV_LOG(ERR,
1454                         "Failed to allocate memory for empty Tx requests\n");
1455                 rte_free(txq->tx_buffer_info);
1456                 return -ENOMEM;
1457         }
1458
1459         txq->push_buf_intermediate_buf =
1460                 rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1461                         txq->tx_max_header_size,
1462                         RTE_CACHE_LINE_SIZE,
1463                         socket_id);
1464         if (!txq->push_buf_intermediate_buf) {
1465                 PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1466                 rte_free(txq->tx_buffer_info);
1467                 rte_free(txq->empty_tx_reqs);
1468                 return -ENOMEM;
1469         }
1470
1471         for (i = 0; i < txq->ring_size; i++)
1472                 txq->empty_tx_reqs[i] = i;
1473
1474         txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1475
1476         /* Check if caller provided the Tx cleanup threshold value. */
1477         if (tx_conf->tx_free_thresh != 0) {
1478                 txq->tx_free_thresh = tx_conf->tx_free_thresh;
1479         } else {
1480                 dyn_thresh = txq->ring_size -
1481                         txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1482                 txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1483                         txq->ring_size - ENA_REFILL_THRESH_PACKET);
1484         }
1485
1486         txq->missing_tx_completion_threshold =
1487                 RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1488
1489         /* Store pointer to this queue in upper layer */
1490         txq->configured = 1;
1491         dev->data->tx_queues[queue_idx] = txq;
1492
1493         return 0;
1494 }
1495
1496 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1497                               uint16_t queue_idx,
1498                               uint16_t nb_desc,
1499                               unsigned int socket_id,
1500                               const struct rte_eth_rxconf *rx_conf,
1501                               struct rte_mempool *mp)
1502 {
1503         struct ena_adapter *adapter = dev->data->dev_private;
1504         struct ena_ring *rxq = NULL;
1505         size_t buffer_size;
1506         int i;
1507         uint16_t dyn_thresh;
1508
1509         rxq = &adapter->rx_ring[queue_idx];
1510         if (rxq->configured) {
1511                 PMD_DRV_LOG(CRIT,
1512                         "API violation. Queue[%d] is already configured\n",
1513                         queue_idx);
1514                 return ENA_COM_FAULT;
1515         }
1516
1517         if (!rte_is_power_of_2(nb_desc)) {
1518                 PMD_DRV_LOG(ERR,
1519                         "Unsupported size of Rx queue: %d is not a power of 2.\n",
1520                         nb_desc);
1521                 return -EINVAL;
1522         }
1523
1524         if (nb_desc > adapter->max_rx_ring_size) {
1525                 PMD_DRV_LOG(ERR,
1526                         "Unsupported size of Rx queue (max size: %d)\n",
1527                         adapter->max_rx_ring_size);
1528                 return -EINVAL;
1529         }
1530
1531         /* ENA isn't supporting buffers smaller than 1400 bytes */
1532         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1533         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1534                 PMD_DRV_LOG(ERR,
1535                         "Unsupported size of Rx buffer: %zu (min size: %d)\n",
1536                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1537                 return -EINVAL;
1538         }
1539
1540         rxq->port_id = dev->data->port_id;
1541         rxq->next_to_clean = 0;
1542         rxq->next_to_use = 0;
1543         rxq->ring_size = nb_desc;
1544         rxq->size_mask = nb_desc - 1;
1545         rxq->numa_socket_id = socket_id;
1546         rxq->mb_pool = mp;
1547
1548         rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1549                 sizeof(struct ena_rx_buffer) * nb_desc,
1550                 RTE_CACHE_LINE_SIZE,
1551                 socket_id);
1552         if (!rxq->rx_buffer_info) {
1553                 PMD_DRV_LOG(ERR,
1554                         "Failed to allocate memory for Rx buffer info\n");
1555                 return -ENOMEM;
1556         }
1557
1558         rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1559                 sizeof(struct rte_mbuf *) * nb_desc,
1560                 RTE_CACHE_LINE_SIZE,
1561                 socket_id);
1562         if (!rxq->rx_refill_buffer) {
1563                 PMD_DRV_LOG(ERR,
1564                         "Failed to allocate memory for Rx refill buffer\n");
1565                 rte_free(rxq->rx_buffer_info);
1566                 rxq->rx_buffer_info = NULL;
1567                 return -ENOMEM;
1568         }
1569
1570         rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1571                 sizeof(uint16_t) * nb_desc,
1572                 RTE_CACHE_LINE_SIZE,
1573                 socket_id);
1574         if (!rxq->empty_rx_reqs) {
1575                 PMD_DRV_LOG(ERR,
1576                         "Failed to allocate memory for empty Rx requests\n");
1577                 rte_free(rxq->rx_buffer_info);
1578                 rxq->rx_buffer_info = NULL;
1579                 rte_free(rxq->rx_refill_buffer);
1580                 rxq->rx_refill_buffer = NULL;
1581                 return -ENOMEM;
1582         }
1583
1584         for (i = 0; i < nb_desc; i++)
1585                 rxq->empty_rx_reqs[i] = i;
1586
1587         rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1588
1589         if (rx_conf->rx_free_thresh != 0) {
1590                 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1591         } else {
1592                 dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1593                 rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1594                         (uint16_t)(ENA_REFILL_THRESH_PACKET));
1595         }
1596
1597         /* Store pointer to this queue in upper layer */
1598         rxq->configured = 1;
1599         dev->data->rx_queues[queue_idx] = rxq;
1600
1601         return 0;
1602 }
1603
1604 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1605                                   struct rte_mbuf *mbuf, uint16_t id)
1606 {
1607         struct ena_com_buf ebuf;
1608         int rc;
1609
1610         /* prepare physical address for DMA transaction */
1611         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1612         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1613
1614         /* pass resource to device */
1615         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1616         if (unlikely(rc != 0))
1617                 PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1618
1619         return rc;
1620 }
1621
1622 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1623 {
1624         unsigned int i;
1625         int rc;
1626         uint16_t next_to_use = rxq->next_to_use;
1627         uint16_t req_id;
1628 #ifdef RTE_ETHDEV_DEBUG_RX
1629         uint16_t in_use;
1630 #endif
1631         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1632
1633         if (unlikely(!count))
1634                 return 0;
1635
1636 #ifdef RTE_ETHDEV_DEBUG_RX
1637         in_use = rxq->ring_size - 1 -
1638                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1639         if (unlikely((in_use + count) >= rxq->ring_size))
1640                 PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1641 #endif
1642
1643         /* get resources for incoming packets */
1644         rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1645         if (unlikely(rc < 0)) {
1646                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1647                 ++rxq->rx_stats.mbuf_alloc_fail;
1648                 PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1649                 return 0;
1650         }
1651
1652         for (i = 0; i < count; i++) {
1653                 struct rte_mbuf *mbuf = mbufs[i];
1654                 struct ena_rx_buffer *rx_info;
1655
1656                 if (likely((i + 4) < count))
1657                         rte_prefetch0(mbufs[i + 4]);
1658
1659                 req_id = rxq->empty_rx_reqs[next_to_use];
1660                 rx_info = &rxq->rx_buffer_info[req_id];
1661
1662                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1663                 if (unlikely(rc != 0))
1664                         break;
1665
1666                 rx_info->mbuf = mbuf;
1667                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1668         }
1669
1670         if (unlikely(i < count)) {
1671                 PMD_RX_LOG(WARNING,
1672                         "Refilled Rx queue[%d] with only %d/%d buffers\n",
1673                         rxq->id, i, count);
1674                 rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1675                 ++rxq->rx_stats.refill_partial;
1676         }
1677
1678         /* When we submitted free resources to device... */
1679         if (likely(i > 0)) {
1680                 /* ...let HW know that it can fill buffers with data. */
1681                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1682
1683                 rxq->next_to_use = next_to_use;
1684         }
1685
1686         return i;
1687 }
1688
1689 static int ena_device_init(struct ena_adapter *adapter,
1690                            struct rte_pci_device *pdev,
1691                            struct ena_com_dev_get_features_ctx *get_feat_ctx)
1692 {
1693         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1694         uint32_t aenq_groups;
1695         int rc;
1696         bool readless_supported;
1697
1698         /* Initialize mmio registers */
1699         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1700         if (rc) {
1701                 PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1702                 return rc;
1703         }
1704
1705         /* The PCIe configuration space revision id indicate if mmio reg
1706          * read is disabled.
1707          */
1708         readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1709         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1710
1711         /* reset device */
1712         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1713         if (rc) {
1714                 PMD_DRV_LOG(ERR, "Cannot reset device\n");
1715                 goto err_mmio_read_less;
1716         }
1717
1718         /* check FW version */
1719         rc = ena_com_validate_version(ena_dev);
1720         if (rc) {
1721                 PMD_DRV_LOG(ERR, "Device version is too low\n");
1722                 goto err_mmio_read_less;
1723         }
1724
1725         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1726
1727         /* ENA device administration layer init */
1728         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1729         if (rc) {
1730                 PMD_DRV_LOG(ERR,
1731                         "Cannot initialize ENA admin queue\n");
1732                 goto err_mmio_read_less;
1733         }
1734
1735         /* To enable the msix interrupts the driver needs to know the number
1736          * of queues. So the driver uses polling mode to retrieve this
1737          * information.
1738          */
1739         ena_com_set_admin_polling_mode(ena_dev, true);
1740
1741         ena_config_host_info(ena_dev);
1742
1743         /* Get Device Attributes and features */
1744         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1745         if (rc) {
1746                 PMD_DRV_LOG(ERR,
1747                         "Cannot get attribute for ENA device, rc: %d\n", rc);
1748                 goto err_admin_init;
1749         }
1750
1751         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1752                       BIT(ENA_ADMIN_NOTIFICATION) |
1753                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1754                       BIT(ENA_ADMIN_FATAL_ERROR) |
1755                       BIT(ENA_ADMIN_WARNING);
1756
1757         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1758
1759         adapter->all_aenq_groups = aenq_groups;
1760
1761         return 0;
1762
1763 err_admin_init:
1764         ena_com_admin_destroy(ena_dev);
1765
1766 err_mmio_read_less:
1767         ena_com_mmio_reg_read_request_destroy(ena_dev);
1768
1769         return rc;
1770 }
1771
1772 static void ena_interrupt_handler_rte(void *cb_arg)
1773 {
1774         struct rte_eth_dev *dev = cb_arg;
1775         struct ena_adapter *adapter = dev->data->dev_private;
1776         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1777
1778         ena_com_admin_q_comp_intr_handler(ena_dev);
1779         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1780                 ena_com_aenq_intr_handler(ena_dev, dev);
1781 }
1782
1783 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1784 {
1785         if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1786                 return;
1787
1788         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1789                 return;
1790
1791         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1792             adapter->keep_alive_timeout)) {
1793                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1794                 ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
1795                 ++adapter->dev_stats.wd_expired;
1796         }
1797 }
1798
1799 /* Check if admin queue is enabled */
1800 static void check_for_admin_com_state(struct ena_adapter *adapter)
1801 {
1802         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1803                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1804                 ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
1805         }
1806 }
1807
1808 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1809                                             struct ena_ring *tx_ring)
1810 {
1811         struct ena_tx_buffer *tx_buf;
1812         uint64_t timestamp;
1813         uint64_t completion_delay;
1814         uint32_t missed_tx = 0;
1815         unsigned int i;
1816         int rc = 0;
1817
1818         for (i = 0; i < tx_ring->ring_size; ++i) {
1819                 tx_buf = &tx_ring->tx_buffer_info[i];
1820                 timestamp = tx_buf->timestamp;
1821
1822                 if (timestamp == 0)
1823                         continue;
1824
1825                 completion_delay = rte_get_timer_cycles() - timestamp;
1826                 if (completion_delay > adapter->missing_tx_completion_to) {
1827                         if (unlikely(!tx_buf->print_once)) {
1828                                 PMD_TX_LOG(WARNING,
1829                                         "Found a Tx that wasn't completed on time, qid %d, index %d. "
1830                                         "Missing Tx outstanding for %" PRIu64 " msecs.\n",
1831                                         tx_ring->id, i, completion_delay /
1832                                         rte_get_timer_hz() * 1000);
1833                                 tx_buf->print_once = true;
1834                         }
1835                         ++missed_tx;
1836                 }
1837         }
1838
1839         if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1840                 PMD_DRV_LOG(ERR,
1841                         "The number of lost Tx completions is above the threshold (%d > %d). "
1842                         "Trigger the device reset.\n",
1843                         missed_tx,
1844                         tx_ring->missing_tx_completion_threshold);
1845                 adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1846                 adapter->trigger_reset = true;
1847                 rc = -EIO;
1848         }
1849
1850         tx_ring->tx_stats.missed_tx += missed_tx;
1851
1852         return rc;
1853 }
1854
1855 static void check_for_tx_completions(struct ena_adapter *adapter)
1856 {
1857         struct ena_ring *tx_ring;
1858         uint64_t tx_cleanup_delay;
1859         size_t qid;
1860         int budget;
1861         uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1862
1863         if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1864                 return;
1865
1866         nb_tx_queues = adapter->edev_data->nb_tx_queues;
1867         budget = adapter->missing_tx_completion_budget;
1868
1869         qid = adapter->last_tx_comp_qid;
1870         while (budget-- > 0) {
1871                 tx_ring = &adapter->tx_ring[qid];
1872
1873                 /* Tx cleanup is called only by the burst function and can be
1874                  * called dynamically by the application. Also cleanup is
1875                  * limited by the threshold. To avoid false detection of the
1876                  * missing HW Tx completion, get the delay since last cleanup
1877                  * function was called.
1878                  */
1879                 tx_cleanup_delay = rte_get_timer_cycles() -
1880                         tx_ring->last_cleanup_ticks;
1881                 if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1882                         check_for_tx_completion_in_queue(adapter, tx_ring);
1883                 qid = (qid + 1) % nb_tx_queues;
1884         }
1885
1886         adapter->last_tx_comp_qid = qid;
1887 }
1888
1889 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1890                                   void *arg)
1891 {
1892         struct rte_eth_dev *dev = arg;
1893         struct ena_adapter *adapter = dev->data->dev_private;
1894
1895         if (unlikely(adapter->trigger_reset))
1896                 return;
1897
1898         check_for_missing_keep_alive(adapter);
1899         check_for_admin_com_state(adapter);
1900         check_for_tx_completions(adapter);
1901
1902         if (unlikely(adapter->trigger_reset)) {
1903                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1904                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1905                         NULL);
1906         }
1907 }
1908
1909 static inline void
1910 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1911                                struct ena_admin_feature_llq_desc *llq,
1912                                bool use_large_llq_hdr)
1913 {
1914         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1915         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1916         llq_config->llq_num_decs_before_header =
1917                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1918
1919         if (use_large_llq_hdr &&
1920             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1921                 llq_config->llq_ring_entry_size =
1922                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1923                 llq_config->llq_ring_entry_size_value = 256;
1924         } else {
1925                 llq_config->llq_ring_entry_size =
1926                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1927                 llq_config->llq_ring_entry_size_value = 128;
1928         }
1929 }
1930
1931 static int
1932 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1933                                 struct ena_com_dev *ena_dev,
1934                                 struct ena_admin_feature_llq_desc *llq,
1935                                 struct ena_llq_configurations *llq_default_configurations)
1936 {
1937         int rc;
1938         u32 llq_feature_mask;
1939
1940         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1941         if (!(ena_dev->supported_features & llq_feature_mask)) {
1942                 PMD_DRV_LOG(INFO,
1943                         "LLQ is not supported. Fallback to host mode policy.\n");
1944                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1945                 return 0;
1946         }
1947
1948         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1949         if (unlikely(rc)) {
1950                 PMD_INIT_LOG(WARNING,
1951                         "Failed to config dev mode. Fallback to host mode policy.\n");
1952                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1953                 return 0;
1954         }
1955
1956         /* Nothing to config, exit */
1957         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1958                 return 0;
1959
1960         if (!adapter->dev_mem_base) {
1961                 PMD_DRV_LOG(ERR,
1962                         "Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1963                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1964                 return 0;
1965         }
1966
1967         ena_dev->mem_bar = adapter->dev_mem_base;
1968
1969         return 0;
1970 }
1971
1972 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1973         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1974 {
1975         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1976
1977         /* Regular queues capabilities */
1978         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1979                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1980                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1981                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1982                                     max_queue_ext->max_rx_cq_num);
1983                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1984                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1985         } else {
1986                 struct ena_admin_queue_feature_desc *max_queues =
1987                         &get_feat_ctx->max_queues;
1988                 io_tx_sq_num = max_queues->max_sq_num;
1989                 io_tx_cq_num = max_queues->max_cq_num;
1990                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1991         }
1992
1993         /* In case of LLQ use the llq number in the get feature cmd */
1994         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1995                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1996
1997         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1998         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1999         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
2000
2001         if (unlikely(max_num_io_queues == 0)) {
2002                 PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
2003                 return -EFAULT;
2004         }
2005
2006         return max_num_io_queues;
2007 }
2008
2009 static void
2010 ena_set_offloads(struct ena_offloads *offloads,
2011                  struct ena_admin_feature_offload_desc *offload_desc)
2012 {
2013         if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2014                 offloads->tx_offloads |= ENA_IPV4_TSO;
2015
2016         /* Tx IPv4 checksum offloads */
2017         if (offload_desc->tx &
2018             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2019                 offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2020         if (offload_desc->tx &
2021             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2022                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2023         if (offload_desc->tx &
2024             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2025                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2026
2027         /* Tx IPv6 checksum offloads */
2028         if (offload_desc->tx &
2029             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2030                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2031         if (offload_desc->tx &
2032              ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2033                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2034
2035         /* Rx IPv4 checksum offloads */
2036         if (offload_desc->rx_supported &
2037             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2038                 offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2039         if (offload_desc->rx_supported &
2040             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2041                 offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2042
2043         /* Rx IPv6 checksum offloads */
2044         if (offload_desc->rx_supported &
2045             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2046                 offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2047
2048         if (offload_desc->rx_supported &
2049             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2050                 offloads->rx_offloads |= ENA_RX_RSS_HASH;
2051 }
2052
2053 static int ena_init_once(void)
2054 {
2055         static bool init_done;
2056
2057         if (init_done)
2058                 return 0;
2059
2060         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2061                 /* Init timer subsystem for the ENA timer service. */
2062                 rte_timer_subsystem_init();
2063                 /* Register handler for requests from secondary processes. */
2064                 rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2065         }
2066
2067         init_done = true;
2068         return 0;
2069 }
2070
2071 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2072 {
2073         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2074         struct rte_pci_device *pci_dev;
2075         struct rte_intr_handle *intr_handle;
2076         struct ena_adapter *adapter = eth_dev->data->dev_private;
2077         struct ena_com_dev *ena_dev = &adapter->ena_dev;
2078         struct ena_com_dev_get_features_ctx get_feat_ctx;
2079         struct ena_llq_configurations llq_config;
2080         const char *queue_type_str;
2081         uint32_t max_num_io_queues;
2082         int rc;
2083         static int adapters_found;
2084         bool disable_meta_caching;
2085
2086         eth_dev->dev_ops = &ena_dev_ops;
2087         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2088         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2089         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2090
2091         rc = ena_init_once();
2092         if (rc != 0)
2093                 return rc;
2094
2095         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2096                 return 0;
2097
2098         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2099
2100         memset(adapter, 0, sizeof(struct ena_adapter));
2101         ena_dev = &adapter->ena_dev;
2102
2103         adapter->edev_data = eth_dev->data;
2104
2105         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2106
2107         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
2108                      pci_dev->addr.domain,
2109                      pci_dev->addr.bus,
2110                      pci_dev->addr.devid,
2111                      pci_dev->addr.function);
2112
2113         intr_handle = pci_dev->intr_handle;
2114
2115         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2116         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2117
2118         if (!adapter->regs) {
2119                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2120                              ENA_REGS_BAR);
2121                 return -ENXIO;
2122         }
2123
2124         ena_dev->reg_bar = adapter->regs;
2125         /* Pass device data as a pointer which can be passed to the IO functions
2126          * by the ena_com (for example - the memory allocation).
2127          */
2128         ena_dev->dmadev = eth_dev->data;
2129
2130         adapter->id_number = adapters_found;
2131
2132         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2133                  adapter->id_number);
2134
2135         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2136         if (rc != 0) {
2137                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2138                 goto err;
2139         }
2140
2141         /* device specific initialization routine */
2142         rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2143         if (rc) {
2144                 PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2145                 goto err;
2146         }
2147
2148         /* Check if device supports LSC */
2149         if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2150                 adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2151
2152         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
2153                 adapter->use_large_llq_hdr);
2154         rc = ena_set_queues_placement_policy(adapter, ena_dev,
2155                                              &get_feat_ctx.llq, &llq_config);
2156         if (unlikely(rc)) {
2157                 PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2158                 return rc;
2159         }
2160
2161         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2162                 queue_type_str = "Regular";
2163         else
2164                 queue_type_str = "Low latency";
2165         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2166
2167         calc_queue_ctx.ena_dev = ena_dev;
2168         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2169
2170         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2171         rc = ena_calc_io_queue_size(&calc_queue_ctx,
2172                 adapter->use_large_llq_hdr);
2173         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2174                 rc = -EFAULT;
2175                 goto err_device_destroy;
2176         }
2177
2178         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2179         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2180         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2181         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2182         adapter->max_num_io_queues = max_num_io_queues;
2183
2184         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2185                 disable_meta_caching =
2186                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2187                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
2188         } else {
2189                 disable_meta_caching = false;
2190         }
2191
2192         /* prepare ring structures */
2193         ena_init_rings(adapter, disable_meta_caching);
2194
2195         ena_config_debug_area(adapter);
2196
2197         /* Set max MTU for this device */
2198         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2199
2200         ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2201
2202         /* Copy MAC address and point DPDK to it */
2203         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2204         rte_ether_addr_copy((struct rte_ether_addr *)
2205                         get_feat_ctx.dev_attr.mac_addr,
2206                         (struct rte_ether_addr *)adapter->mac_addr);
2207
2208         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2209         if (unlikely(rc != 0)) {
2210                 PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2211                 goto err_delete_debug_area;
2212         }
2213
2214         adapter->drv_stats = rte_zmalloc("adapter stats",
2215                                          sizeof(*adapter->drv_stats),
2216                                          RTE_CACHE_LINE_SIZE);
2217         if (!adapter->drv_stats) {
2218                 PMD_DRV_LOG(ERR,
2219                         "Failed to allocate memory for adapter statistics\n");
2220                 rc = -ENOMEM;
2221                 goto err_rss_destroy;
2222         }
2223
2224         rte_spinlock_init(&adapter->admin_lock);
2225
2226         rte_intr_callback_register(intr_handle,
2227                                    ena_interrupt_handler_rte,
2228                                    eth_dev);
2229         rte_intr_enable(intr_handle);
2230         ena_com_set_admin_polling_mode(ena_dev, false);
2231         ena_com_admin_aenq_enable(ena_dev);
2232
2233         rte_timer_init(&adapter->timer_wd);
2234
2235         adapters_found++;
2236         adapter->state = ENA_ADAPTER_STATE_INIT;
2237
2238         return 0;
2239
2240 err_rss_destroy:
2241         ena_com_rss_destroy(ena_dev);
2242 err_delete_debug_area:
2243         ena_com_delete_debug_area(ena_dev);
2244
2245 err_device_destroy:
2246         ena_com_delete_host_info(ena_dev);
2247         ena_com_admin_destroy(ena_dev);
2248
2249 err:
2250         return rc;
2251 }
2252
2253 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2254 {
2255         struct ena_adapter *adapter = eth_dev->data->dev_private;
2256         struct ena_com_dev *ena_dev = &adapter->ena_dev;
2257
2258         if (adapter->state == ENA_ADAPTER_STATE_FREE)
2259                 return;
2260
2261         ena_com_set_admin_running_state(ena_dev, false);
2262
2263         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2264                 ena_close(eth_dev);
2265
2266         ena_com_rss_destroy(ena_dev);
2267
2268         ena_com_delete_debug_area(ena_dev);
2269         ena_com_delete_host_info(ena_dev);
2270
2271         ena_com_abort_admin_commands(ena_dev);
2272         ena_com_wait_for_abort_completion(ena_dev);
2273         ena_com_admin_destroy(ena_dev);
2274         ena_com_mmio_reg_read_request_destroy(ena_dev);
2275
2276         adapter->state = ENA_ADAPTER_STATE_FREE;
2277 }
2278
2279 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2280 {
2281         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2282                 return 0;
2283
2284         ena_destroy_device(eth_dev);
2285
2286         return 0;
2287 }
2288
2289 static int ena_dev_configure(struct rte_eth_dev *dev)
2290 {
2291         struct ena_adapter *adapter = dev->data->dev_private;
2292         int rc;
2293
2294         adapter->state = ENA_ADAPTER_STATE_CONFIG;
2295
2296         if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2297                 dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2298         dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2299
2300         /* Scattered Rx cannot be turned off in the HW, so this capability must
2301          * be forced.
2302          */
2303         dev->data->scattered_rx = 1;
2304
2305         adapter->last_tx_comp_qid = 0;
2306
2307         adapter->missing_tx_completion_budget =
2308                 RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2309
2310         adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2311         /* To avoid detection of the spurious Tx completion timeout due to
2312          * application not calling the Tx cleanup function, set timeout for the
2313          * Tx queue which should be half of the missing completion timeout for a
2314          * safety. If there will be a lot of missing Tx completions in the
2315          * queue, they will be detected sooner or later.
2316          */
2317         adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2318
2319         rc = ena_configure_aenq(adapter);
2320
2321         return rc;
2322 }
2323
2324 static void ena_init_rings(struct ena_adapter *adapter,
2325                            bool disable_meta_caching)
2326 {
2327         size_t i;
2328
2329         for (i = 0; i < adapter->max_num_io_queues; i++) {
2330                 struct ena_ring *ring = &adapter->tx_ring[i];
2331
2332                 ring->configured = 0;
2333                 ring->type = ENA_RING_TYPE_TX;
2334                 ring->adapter = adapter;
2335                 ring->id = i;
2336                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2337                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2338                 ring->sgl_size = adapter->max_tx_sgl_size;
2339                 ring->disable_meta_caching = disable_meta_caching;
2340         }
2341
2342         for (i = 0; i < adapter->max_num_io_queues; i++) {
2343                 struct ena_ring *ring = &adapter->rx_ring[i];
2344
2345                 ring->configured = 0;
2346                 ring->type = ENA_RING_TYPE_RX;
2347                 ring->adapter = adapter;
2348                 ring->id = i;
2349                 ring->sgl_size = adapter->max_rx_sgl_size;
2350         }
2351 }
2352
2353 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2354 {
2355         uint64_t port_offloads = 0;
2356
2357         if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2358                 port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2359
2360         if (adapter->offloads.rx_offloads &
2361             (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2362                 port_offloads |=
2363                         RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2364
2365         if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2366                 port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2367
2368         port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2369
2370         return port_offloads;
2371 }
2372
2373 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2374 {
2375         uint64_t port_offloads = 0;
2376
2377         if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2378                 port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2379
2380         if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2381                 port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2382         if (adapter->offloads.tx_offloads &
2383             (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2384              ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2385                 port_offloads |=
2386                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2387
2388         port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2389
2390         return port_offloads;
2391 }
2392
2393 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2394 {
2395         RTE_SET_USED(adapter);
2396
2397         return 0;
2398 }
2399
2400 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2401 {
2402         RTE_SET_USED(adapter);
2403
2404         return 0;
2405 }
2406
2407 static int ena_infos_get(struct rte_eth_dev *dev,
2408                           struct rte_eth_dev_info *dev_info)
2409 {
2410         struct ena_adapter *adapter;
2411         struct ena_com_dev *ena_dev;
2412
2413         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2414         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2415         adapter = dev->data->dev_private;
2416
2417         ena_dev = &adapter->ena_dev;
2418         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2419
2420         dev_info->speed_capa =
2421                         RTE_ETH_LINK_SPEED_1G   |
2422                         RTE_ETH_LINK_SPEED_2_5G |
2423                         RTE_ETH_LINK_SPEED_5G   |
2424                         RTE_ETH_LINK_SPEED_10G  |
2425                         RTE_ETH_LINK_SPEED_25G  |
2426                         RTE_ETH_LINK_SPEED_40G  |
2427                         RTE_ETH_LINK_SPEED_50G  |
2428                         RTE_ETH_LINK_SPEED_100G;
2429
2430         /* Inform framework about available features */
2431         dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2432         dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2433         dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2434         dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2435
2436         dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2437         dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2438
2439         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2440         dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2441                 RTE_ETHER_CRC_LEN;
2442         dev_info->min_mtu = ENA_MIN_MTU;
2443         dev_info->max_mtu = adapter->max_mtu;
2444         dev_info->max_mac_addrs = 1;
2445
2446         dev_info->max_rx_queues = adapter->max_num_io_queues;
2447         dev_info->max_tx_queues = adapter->max_num_io_queues;
2448         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2449
2450         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2451         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2452         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2453                                         adapter->max_rx_sgl_size);
2454         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2455                                         adapter->max_rx_sgl_size);
2456
2457         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2458         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2459         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2460                                         adapter->max_tx_sgl_size);
2461         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2462                                         adapter->max_tx_sgl_size);
2463
2464         dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2465         dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2466
2467         return 0;
2468 }
2469
2470 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2471 {
2472         mbuf->data_len = len;
2473         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2474         mbuf->refcnt = 1;
2475         mbuf->next = NULL;
2476 }
2477
2478 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2479                                     struct ena_com_rx_buf_info *ena_bufs,
2480                                     uint32_t descs,
2481                                     uint16_t *next_to_clean,
2482                                     uint8_t offset)
2483 {
2484         struct rte_mbuf *mbuf;
2485         struct rte_mbuf *mbuf_head;
2486         struct ena_rx_buffer *rx_info;
2487         int rc;
2488         uint16_t ntc, len, req_id, buf = 0;
2489
2490         if (unlikely(descs == 0))
2491                 return NULL;
2492
2493         ntc = *next_to_clean;
2494
2495         len = ena_bufs[buf].len;
2496         req_id = ena_bufs[buf].req_id;
2497
2498         rx_info = &rx_ring->rx_buffer_info[req_id];
2499
2500         mbuf = rx_info->mbuf;
2501         RTE_ASSERT(mbuf != NULL);
2502
2503         ena_init_rx_mbuf(mbuf, len);
2504
2505         /* Fill the mbuf head with the data specific for 1st segment. */
2506         mbuf_head = mbuf;
2507         mbuf_head->nb_segs = descs;
2508         mbuf_head->port = rx_ring->port_id;
2509         mbuf_head->pkt_len = len;
2510         mbuf_head->data_off += offset;
2511
2512         rx_info->mbuf = NULL;
2513         rx_ring->empty_rx_reqs[ntc] = req_id;
2514         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2515
2516         while (--descs) {
2517                 ++buf;
2518                 len = ena_bufs[buf].len;
2519                 req_id = ena_bufs[buf].req_id;
2520
2521                 rx_info = &rx_ring->rx_buffer_info[req_id];
2522                 RTE_ASSERT(rx_info->mbuf != NULL);
2523
2524                 if (unlikely(len == 0)) {
2525                         /*
2526                          * Some devices can pass descriptor with the length 0.
2527                          * To avoid confusion, the PMD is simply putting the
2528                          * descriptor back, as it was never used. We'll avoid
2529                          * mbuf allocation that way.
2530                          */
2531                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2532                                 rx_info->mbuf, req_id);
2533                         if (unlikely(rc != 0)) {
2534                                 /* Free the mbuf in case of an error. */
2535                                 rte_mbuf_raw_free(rx_info->mbuf);
2536                         } else {
2537                                 /*
2538                                  * If there was no error, just exit the loop as
2539                                  * 0 length descriptor is always the last one.
2540                                  */
2541                                 break;
2542                         }
2543                 } else {
2544                         /* Create an mbuf chain. */
2545                         mbuf->next = rx_info->mbuf;
2546                         mbuf = mbuf->next;
2547
2548                         ena_init_rx_mbuf(mbuf, len);
2549                         mbuf_head->pkt_len += len;
2550                 }
2551
2552                 /*
2553                  * Mark the descriptor as depleted and perform necessary
2554                  * cleanup.
2555                  * This code will execute in two cases:
2556                  *  1. Descriptor len was greater than 0 - normal situation.
2557                  *  2. Descriptor len was 0 and we failed to add the descriptor
2558                  *     to the device. In that situation, we should try to add
2559                  *     the mbuf again in the populate routine and mark the
2560                  *     descriptor as used up by the device.
2561                  */
2562                 rx_info->mbuf = NULL;
2563                 rx_ring->empty_rx_reqs[ntc] = req_id;
2564                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2565         }
2566
2567         *next_to_clean = ntc;
2568
2569         return mbuf_head;
2570 }
2571
2572 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2573                                   uint16_t nb_pkts)
2574 {
2575         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2576         unsigned int free_queue_entries;
2577         uint16_t next_to_clean = rx_ring->next_to_clean;
2578         uint16_t descs_in_use;
2579         struct rte_mbuf *mbuf;
2580         uint16_t completed;
2581         struct ena_com_rx_ctx ena_rx_ctx;
2582         int i, rc = 0;
2583         bool fill_hash;
2584
2585 #ifdef RTE_ETHDEV_DEBUG_RX
2586         /* Check adapter state */
2587         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2588                 PMD_RX_LOG(ALERT,
2589                         "Trying to receive pkts while device is NOT running\n");
2590                 return 0;
2591         }
2592 #endif
2593
2594         fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2595
2596         descs_in_use = rx_ring->ring_size -
2597                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2598         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2599
2600         for (completed = 0; completed < nb_pkts; completed++) {
2601                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2602                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2603                 ena_rx_ctx.descs = 0;
2604                 ena_rx_ctx.pkt_offset = 0;
2605                 /* receive packet context */
2606                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2607                                     rx_ring->ena_com_io_sq,
2608                                     &ena_rx_ctx);
2609                 if (unlikely(rc)) {
2610                         PMD_RX_LOG(ERR,
2611                                 "Failed to get the packet from the device, rc: %d\n",
2612                                 rc);
2613                         if (rc == ENA_COM_NO_SPACE) {
2614                                 ++rx_ring->rx_stats.bad_desc_num;
2615                                 ena_trigger_reset(rx_ring->adapter,
2616                                         ENA_REGS_RESET_TOO_MANY_RX_DESCS);
2617                         } else {
2618                                 ++rx_ring->rx_stats.bad_req_id;
2619                                 ena_trigger_reset(rx_ring->adapter,
2620                                         ENA_REGS_RESET_INV_RX_REQ_ID);
2621                         }
2622                         return 0;
2623                 }
2624
2625                 mbuf = ena_rx_mbuf(rx_ring,
2626                         ena_rx_ctx.ena_bufs,
2627                         ena_rx_ctx.descs,
2628                         &next_to_clean,
2629                         ena_rx_ctx.pkt_offset);
2630                 if (unlikely(mbuf == NULL)) {
2631                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2632                                 rx_ring->empty_rx_reqs[next_to_clean] =
2633                                         rx_ring->ena_bufs[i].req_id;
2634                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2635                                         next_to_clean, rx_ring->size_mask);
2636                         }
2637                         break;
2638                 }
2639
2640                 /* fill mbuf attributes if any */
2641                 ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2642
2643                 if (unlikely(mbuf->ol_flags &
2644                                 (RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2645                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2646
2647                 rx_pkts[completed] = mbuf;
2648                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2649         }
2650
2651         rx_ring->rx_stats.cnt += completed;
2652         rx_ring->next_to_clean = next_to_clean;
2653
2654         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2655
2656         /* Burst refill to save doorbells, memory barriers, const interval */
2657         if (free_queue_entries >= rx_ring->rx_free_thresh) {
2658                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2659                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2660         }
2661
2662         return completed;
2663 }
2664
2665 static uint16_t
2666 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2667                 uint16_t nb_pkts)
2668 {
2669         int32_t ret;
2670         uint32_t i;
2671         struct rte_mbuf *m;
2672         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2673         struct ena_adapter *adapter = tx_ring->adapter;
2674         struct rte_ipv4_hdr *ip_hdr;
2675         uint64_t ol_flags;
2676         uint64_t l4_csum_flag;
2677         uint64_t dev_offload_capa;
2678         uint16_t frag_field;
2679         bool need_pseudo_csum;
2680
2681         dev_offload_capa = adapter->offloads.tx_offloads;
2682         for (i = 0; i != nb_pkts; i++) {
2683                 m = tx_pkts[i];
2684                 ol_flags = m->ol_flags;
2685
2686                 /* Check if any offload flag was set */
2687                 if (ol_flags == 0)
2688                         continue;
2689
2690                 l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2691                 /* SCTP checksum offload is not supported by the ENA. */
2692                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2693                     l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2694                         PMD_TX_LOG(DEBUG,
2695                                 "mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2696                                 i, ol_flags);
2697                         rte_errno = ENOTSUP;
2698                         return i;
2699                 }
2700
2701                 if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2702                     !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2703                       m->nb_segs == tx_ring->sgl_size &&
2704                       m->data_len < tx_ring->tx_max_header_size))) {
2705                         PMD_TX_LOG(DEBUG,
2706                                 "mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2707                                 i, m->nb_segs);
2708                         rte_errno = EINVAL;
2709                         return i;
2710                 }
2711
2712 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2713                 /* Check if requested offload is also enabled for the queue */
2714                 if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2715                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2716                     (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2717                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2718                     (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2719                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2720                         PMD_TX_LOG(DEBUG,
2721                                 "mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2722                                 i, m->nb_segs, tx_ring->id);
2723                         rte_errno = EINVAL;
2724                         return i;
2725                 }
2726
2727                 /* The caller is obligated to set l2 and l3 len if any cksum
2728                  * offload is enabled.
2729                  */
2730                 if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2731                     (m->l2_len == 0 || m->l3_len == 0))) {
2732                         PMD_TX_LOG(DEBUG,
2733                                 "mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2734                                 i);
2735                         rte_errno = EINVAL;
2736                         return i;
2737                 }
2738                 ret = rte_validate_tx_offload(m);
2739                 if (ret != 0) {
2740                         rte_errno = -ret;
2741                         return i;
2742                 }
2743 #endif
2744
2745                 /* Verify HW support for requested offloads and determine if
2746                  * pseudo header checksum is needed.
2747                  */
2748                 need_pseudo_csum = false;
2749                 if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2750                         if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2751                             !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2752                                 rte_errno = ENOTSUP;
2753                                 return i;
2754                         }
2755
2756                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2757                             !(dev_offload_capa & ENA_IPV4_TSO)) {
2758                                 rte_errno = ENOTSUP;
2759                                 return i;
2760                         }
2761
2762                         /* Check HW capabilities and if pseudo csum is needed
2763                          * for L4 offloads.
2764                          */
2765                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2766                             !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2767                                 if (dev_offload_capa &
2768                                     ENA_L4_IPV4_CSUM_PARTIAL) {
2769                                         need_pseudo_csum = true;
2770                                 } else {
2771                                         rte_errno = ENOTSUP;
2772                                         return i;
2773                                 }
2774                         }
2775
2776                         /* Parse the DF flag */
2777                         ip_hdr = rte_pktmbuf_mtod_offset(m,
2778                                 struct rte_ipv4_hdr *, m->l2_len);
2779                         frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2780                         if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2781                                 m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2782                         } else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2783                                 /* In case we are supposed to TSO and have DF
2784                                  * not set (DF=0) hardware must be provided with
2785                                  * partial checksum.
2786                                  */
2787                                 need_pseudo_csum = true;
2788                         }
2789                 } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2790                         /* There is no support for IPv6 TSO as for now. */
2791                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2792                                 rte_errno = ENOTSUP;
2793                                 return i;
2794                         }
2795
2796                         /* Check HW capabilities and if pseudo csum is needed */
2797                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2798                             !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2799                                 if (dev_offload_capa &
2800                                     ENA_L4_IPV6_CSUM_PARTIAL) {
2801                                         need_pseudo_csum = true;
2802                                 } else {
2803                                         rte_errno = ENOTSUP;
2804                                         return i;
2805                                 }
2806                         }
2807                 }
2808
2809                 if (need_pseudo_csum) {
2810                         ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2811                         if (ret != 0) {
2812                                 rte_errno = -ret;
2813                                 return i;
2814                         }
2815                 }
2816         }
2817
2818         return i;
2819 }
2820
2821 static void ena_update_hints(struct ena_adapter *adapter,
2822                              struct ena_admin_ena_hw_hints *hints)
2823 {
2824         if (hints->admin_completion_tx_timeout)
2825                 adapter->ena_dev.admin_queue.completion_timeout =
2826                         hints->admin_completion_tx_timeout * 1000;
2827
2828         if (hints->mmio_read_timeout)
2829                 /* convert to usec */
2830                 adapter->ena_dev.mmio_read.reg_read_to =
2831                         hints->mmio_read_timeout * 1000;
2832
2833         if (hints->missing_tx_completion_timeout) {
2834                 if (hints->missing_tx_completion_timeout ==
2835                     ENA_HW_HINTS_NO_TIMEOUT) {
2836                         adapter->missing_tx_completion_to =
2837                                 ENA_HW_HINTS_NO_TIMEOUT;
2838                 } else {
2839                         /* Convert from msecs to ticks */
2840                         adapter->missing_tx_completion_to = rte_get_timer_hz() *
2841                                 hints->missing_tx_completion_timeout / 1000;
2842                         adapter->tx_cleanup_stall_delay =
2843                                 adapter->missing_tx_completion_to / 2;
2844                 }
2845         }
2846
2847         if (hints->driver_watchdog_timeout) {
2848                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2849                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2850                 else
2851                         // Convert msecs to ticks
2852                         adapter->keep_alive_timeout =
2853                                 (hints->driver_watchdog_timeout *
2854                                 rte_get_timer_hz()) / 1000;
2855         }
2856 }
2857
2858 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2859         struct ena_tx_buffer *tx_info,
2860         struct rte_mbuf *mbuf,
2861         void **push_header,
2862         uint16_t *header_len)
2863 {
2864         struct ena_com_buf *ena_buf;
2865         uint16_t delta, seg_len, push_len;
2866
2867         delta = 0;
2868         seg_len = mbuf->data_len;
2869
2870         tx_info->mbuf = mbuf;
2871         ena_buf = tx_info->bufs;
2872
2873         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2874                 /*
2875                  * Tx header might be (and will be in most cases) smaller than
2876                  * tx_max_header_size. But it's not an issue to send more data
2877                  * to the device, than actually needed if the mbuf size is
2878                  * greater than tx_max_header_size.
2879                  */
2880                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2881                 *header_len = push_len;
2882
2883                 if (likely(push_len <= seg_len)) {
2884                         /* If the push header is in the single segment, then
2885                          * just point it to the 1st mbuf data.
2886                          */
2887                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2888                 } else {
2889                         /* If the push header lays in the several segments, copy
2890                          * it to the intermediate buffer.
2891                          */
2892                         rte_pktmbuf_read(mbuf, 0, push_len,
2893                                 tx_ring->push_buf_intermediate_buf);
2894                         *push_header = tx_ring->push_buf_intermediate_buf;
2895                         delta = push_len - seg_len;
2896                 }
2897         } else {
2898                 *push_header = NULL;
2899                 *header_len = 0;
2900                 push_len = 0;
2901         }
2902
2903         /* Process first segment taking into consideration pushed header */
2904         if (seg_len > push_len) {
2905                 ena_buf->paddr = mbuf->buf_iova +
2906                                 mbuf->data_off +
2907                                 push_len;
2908                 ena_buf->len = seg_len - push_len;
2909                 ena_buf++;
2910                 tx_info->num_of_bufs++;
2911         }
2912
2913         while ((mbuf = mbuf->next) != NULL) {
2914                 seg_len = mbuf->data_len;
2915
2916                 /* Skip mbufs if whole data is pushed as a header */
2917                 if (unlikely(delta > seg_len)) {
2918                         delta -= seg_len;
2919                         continue;
2920                 }
2921
2922                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2923                 ena_buf->len = seg_len - delta;
2924                 ena_buf++;
2925                 tx_info->num_of_bufs++;
2926
2927                 delta = 0;
2928         }
2929 }
2930
2931 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2932 {
2933         struct ena_tx_buffer *tx_info;
2934         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2935         uint16_t next_to_use;
2936         uint16_t header_len;
2937         uint16_t req_id;
2938         void *push_header;
2939         int nb_hw_desc;
2940         int rc;
2941
2942         /* Checking for space for 2 additional metadata descriptors due to
2943          * possible header split and metadata descriptor
2944          */
2945         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2946                                           mbuf->nb_segs + 2)) {
2947                 PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2948                 return ENA_COM_NO_MEM;
2949         }
2950
2951         next_to_use = tx_ring->next_to_use;
2952
2953         req_id = tx_ring->empty_tx_reqs[next_to_use];
2954         tx_info = &tx_ring->tx_buffer_info[req_id];
2955         tx_info->num_of_bufs = 0;
2956         RTE_ASSERT(tx_info->mbuf == NULL);
2957
2958         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2959
2960         ena_tx_ctx.ena_bufs = tx_info->bufs;
2961         ena_tx_ctx.push_header = push_header;
2962         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2963         ena_tx_ctx.req_id = req_id;
2964         ena_tx_ctx.header_len = header_len;
2965
2966         /* Set Tx offloads flags, if applicable */
2967         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2968                 tx_ring->disable_meta_caching);
2969
2970         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2971                         &ena_tx_ctx))) {
2972                 PMD_TX_LOG(DEBUG,
2973                         "LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2974                         tx_ring->id);
2975                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2976                 tx_ring->tx_stats.doorbells++;
2977                 tx_ring->pkts_without_db = false;
2978         }
2979
2980         /* prepare the packet's descriptors to dma engine */
2981         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2982                 &nb_hw_desc);
2983         if (unlikely(rc)) {
2984                 PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2985                 ++tx_ring->tx_stats.prepare_ctx_err;
2986                 ena_trigger_reset(tx_ring->adapter,
2987                         ENA_REGS_RESET_DRIVER_INVALID_STATE);
2988                 return rc;
2989         }
2990
2991         tx_info->tx_descs = nb_hw_desc;
2992         tx_info->timestamp = rte_get_timer_cycles();
2993
2994         tx_ring->tx_stats.cnt++;
2995         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2996
2997         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2998                 tx_ring->size_mask);
2999
3000         return 0;
3001 }
3002
3003 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
3004 {
3005         struct ena_ring *tx_ring = (struct ena_ring *)txp;
3006         unsigned int total_tx_descs = 0;
3007         unsigned int total_tx_pkts = 0;
3008         uint16_t cleanup_budget;
3009         uint16_t next_to_clean = tx_ring->next_to_clean;
3010
3011         /*
3012          * If free_pkt_cnt is equal to 0, it means that the user requested
3013          * full cleanup, so attempt to release all Tx descriptors
3014          * (ring_size - 1 -> size_mask)
3015          */
3016         cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3017
3018         while (likely(total_tx_pkts < cleanup_budget)) {
3019                 struct rte_mbuf *mbuf;
3020                 struct ena_tx_buffer *tx_info;
3021                 uint16_t req_id;
3022
3023                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3024                         break;
3025
3026                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3027                         break;
3028
3029                 /* Get Tx info & store how many descs were processed  */
3030                 tx_info = &tx_ring->tx_buffer_info[req_id];
3031                 tx_info->timestamp = 0;
3032
3033                 mbuf = tx_info->mbuf;
3034                 rte_pktmbuf_free(mbuf);
3035
3036                 tx_info->mbuf = NULL;
3037                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3038
3039                 total_tx_descs += tx_info->tx_descs;
3040                 total_tx_pkts++;
3041
3042                 /* Put back descriptor to the ring for reuse */
3043                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3044                         tx_ring->size_mask);
3045         }
3046
3047         if (likely(total_tx_descs > 0)) {
3048                 /* acknowledge completion of sent packets */
3049                 tx_ring->next_to_clean = next_to_clean;
3050                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3051                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
3052         }
3053
3054         /* Notify completion handler that full cleanup was performed */
3055         if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3056                 tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3057
3058         return total_tx_pkts;
3059 }
3060
3061 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3062                                   uint16_t nb_pkts)
3063 {
3064         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3065         int available_desc;
3066         uint16_t sent_idx = 0;
3067
3068 #ifdef RTE_ETHDEV_DEBUG_TX
3069         /* Check adapter state */
3070         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3071                 PMD_TX_LOG(ALERT,
3072                         "Trying to xmit pkts while device is NOT running\n");
3073                 return 0;
3074         }
3075 #endif
3076
3077         available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3078         if (available_desc < tx_ring->tx_free_thresh)
3079                 ena_tx_cleanup((void *)tx_ring, 0);
3080
3081         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3082                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3083                         break;
3084                 tx_ring->pkts_without_db = true;
3085                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3086                         tx_ring->size_mask)]);
3087         }
3088
3089         /* If there are ready packets to be xmitted... */
3090         if (likely(tx_ring->pkts_without_db)) {
3091                 /* ...let HW do its best :-) */
3092                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3093                 tx_ring->tx_stats.doorbells++;
3094                 tx_ring->pkts_without_db = false;
3095         }
3096
3097         tx_ring->tx_stats.available_desc =
3098                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3099         tx_ring->tx_stats.tx_poll++;
3100
3101         return sent_idx;
3102 }
3103
3104 int ena_copy_eni_stats(struct ena_adapter *adapter, struct ena_stats_eni *stats)
3105 {
3106         int rc;
3107
3108         rte_spinlock_lock(&adapter->admin_lock);
3109         /* Retrieve and store the latest statistics from the AQ. This ensures
3110          * that previous value is returned in case of a com error.
3111          */
3112         rc = ENA_PROXY(adapter, ena_com_get_eni_stats, &adapter->ena_dev,
3113                 (struct ena_admin_eni_stats *)stats);
3114         rte_spinlock_unlock(&adapter->admin_lock);
3115         if (rc != 0) {
3116                 if (rc == ENA_COM_UNSUPPORTED) {
3117                         PMD_DRV_LOG(DEBUG,
3118                                 "Retrieving ENI metrics is not supported\n");
3119                 } else {
3120                         PMD_DRV_LOG(WARNING,
3121                                 "Failed to get ENI metrics, rc: %d\n", rc);
3122                 }
3123                 return rc;
3124         }
3125
3126         return 0;
3127 }
3128
3129 /**
3130  * DPDK callback to retrieve names of extended device statistics
3131  *
3132  * @param dev
3133  *   Pointer to Ethernet device structure.
3134  * @param[out] xstats_names
3135  *   Buffer to insert names into.
3136  * @param n
3137  *   Number of names.
3138  *
3139  * @return
3140  *   Number of xstats names.
3141  */
3142 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3143                                 struct rte_eth_xstat_name *xstats_names,
3144                                 unsigned int n)
3145 {
3146         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3147         unsigned int stat, i, count = 0;
3148
3149         if (n < xstats_count || !xstats_names)
3150                 return xstats_count;
3151
3152         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3153                 strcpy(xstats_names[count].name,
3154                         ena_stats_global_strings[stat].name);
3155
3156         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
3157                 strcpy(xstats_names[count].name,
3158                         ena_stats_eni_strings[stat].name);
3159
3160         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3161                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3162                         snprintf(xstats_names[count].name,
3163                                 sizeof(xstats_names[count].name),
3164                                 "rx_q%d_%s", i,
3165                                 ena_stats_rx_strings[stat].name);
3166
3167         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3168                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3169                         snprintf(xstats_names[count].name,
3170                                 sizeof(xstats_names[count].name),
3171                                 "tx_q%d_%s", i,
3172                                 ena_stats_tx_strings[stat].name);
3173
3174         return xstats_count;
3175 }
3176
3177 /**
3178  * DPDK callback to retrieve names of extended device statistics for the given
3179  * ids.
3180  *
3181  * @param dev
3182  *   Pointer to Ethernet device structure.
3183  * @param[out] xstats_names
3184  *   Buffer to insert names into.
3185  * @param ids
3186  *   IDs array for which the names should be retrieved.
3187  * @param size
3188  *   Number of ids.
3189  *
3190  * @return
3191  *   Positive value: number of xstats names. Negative value: error code.
3192  */
3193 static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
3194                                       const uint64_t *ids,
3195                                       struct rte_eth_xstat_name *xstats_names,
3196                                       unsigned int size)
3197 {
3198         uint64_t xstats_count = ena_xstats_calc_num(dev->data);
3199         uint64_t id, qid;
3200         unsigned int i;
3201
3202         if (xstats_names == NULL)
3203                 return xstats_count;
3204
3205         for (i = 0; i < size; ++i) {
3206                 id = ids[i];
3207                 if (id > xstats_count) {
3208                         PMD_DRV_LOG(ERR,
3209                                 "ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
3210                                  id, xstats_count);
3211                         return -EINVAL;
3212                 }
3213
3214                 if (id < ENA_STATS_ARRAY_GLOBAL) {
3215                         strcpy(xstats_names[i].name,
3216                                ena_stats_global_strings[id].name);
3217                         continue;
3218                 }
3219
3220                 id -= ENA_STATS_ARRAY_GLOBAL;
3221                 if (id < ENA_STATS_ARRAY_ENI) {
3222                         strcpy(xstats_names[i].name,
3223                                ena_stats_eni_strings[id].name);
3224                         continue;
3225                 }
3226
3227                 id -= ENA_STATS_ARRAY_ENI;
3228                 if (id < ENA_STATS_ARRAY_RX) {
3229                         qid = id / dev->data->nb_rx_queues;
3230                         id %= dev->data->nb_rx_queues;
3231                         snprintf(xstats_names[i].name,
3232                                  sizeof(xstats_names[i].name),
3233                                  "rx_q%" PRIu64 "d_%s",
3234                                  qid, ena_stats_rx_strings[id].name);
3235                         continue;
3236                 }
3237
3238                 id -= ENA_STATS_ARRAY_RX;
3239                 /* Although this condition is not needed, it was added for
3240                  * compatibility if new xstat structure would be ever added.
3241                  */
3242                 if (id < ENA_STATS_ARRAY_TX) {
3243                         qid = id / dev->data->nb_tx_queues;
3244                         id %= dev->data->nb_tx_queues;
3245                         snprintf(xstats_names[i].name,
3246                                  sizeof(xstats_names[i].name),
3247                                  "tx_q%" PRIu64 "_%s",
3248                                  qid, ena_stats_tx_strings[id].name);
3249                         continue;
3250                 }
3251         }
3252
3253         return i;
3254 }
3255
3256 /**
3257  * DPDK callback to get extended device statistics.
3258  *
3259  * @param dev
3260  *   Pointer to Ethernet device structure.
3261  * @param[out] stats
3262  *   Stats table output buffer.
3263  * @param n
3264  *   The size of the stats table.
3265  *
3266  * @return
3267  *   Number of xstats on success, negative on failure.
3268  */
3269 static int ena_xstats_get(struct rte_eth_dev *dev,
3270                           struct rte_eth_xstat *xstats,
3271                           unsigned int n)
3272 {
3273         struct ena_adapter *adapter = dev->data->dev_private;
3274         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3275         struct ena_stats_eni eni_stats;
3276         unsigned int stat, i, count = 0;
3277         int stat_offset;
3278         void *stats_begin;
3279
3280         if (n < xstats_count)
3281                 return xstats_count;
3282
3283         if (!xstats)
3284                 return 0;
3285
3286         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3287                 stat_offset = ena_stats_global_strings[stat].stat_offset;
3288                 stats_begin = &adapter->dev_stats;
3289
3290                 xstats[count].id = count;
3291                 xstats[count].value = *((uint64_t *)
3292                         ((char *)stats_begin + stat_offset));
3293         }
3294
3295         /* Even if the function below fails, we should copy previous (or initial
3296          * values) to keep structure of rte_eth_xstat consistent.
3297          */
3298         ena_copy_eni_stats(adapter, &eni_stats);
3299         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
3300                 stat_offset = ena_stats_eni_strings[stat].stat_offset;
3301                 stats_begin = &eni_stats;
3302
3303                 xstats[count].id = count;
3304                 xstats[count].value = *((uint64_t *)
3305                     ((char *)stats_begin + stat_offset));
3306         }
3307
3308         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3309                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3310                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
3311                         stats_begin = &adapter->rx_ring[i].rx_stats;
3312
3313                         xstats[count].id = count;
3314                         xstats[count].value = *((uint64_t *)
3315                                 ((char *)stats_begin + stat_offset));
3316                 }
3317         }
3318
3319         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3320                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3321                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
3322                         stats_begin = &adapter->tx_ring[i].rx_stats;
3323
3324                         xstats[count].id = count;
3325                         xstats[count].value = *((uint64_t *)
3326                                 ((char *)stats_begin + stat_offset));
3327                 }
3328         }
3329
3330         return count;
3331 }
3332
3333 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3334                                 const uint64_t *ids,
3335                                 uint64_t *values,
3336                                 unsigned int n)
3337 {
3338         struct ena_adapter *adapter = dev->data->dev_private;
3339         struct ena_stats_eni eni_stats;
3340         uint64_t id;
3341         uint64_t rx_entries, tx_entries;
3342         unsigned int i;
3343         int qid;
3344         int valid = 0;
3345         bool was_eni_copied = false;
3346
3347         for (i = 0; i < n; ++i) {
3348                 id = ids[i];
3349                 /* Check if id belongs to global statistics */
3350                 if (id < ENA_STATS_ARRAY_GLOBAL) {
3351                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
3352                         ++valid;
3353                         continue;
3354                 }
3355
3356                 /* Check if id belongs to ENI statistics */
3357                 id -= ENA_STATS_ARRAY_GLOBAL;
3358                 if (id < ENA_STATS_ARRAY_ENI) {
3359                         /* Avoid reading ENI stats multiple times in a single
3360                          * function call, as it requires communication with the
3361                          * admin queue.
3362                          */
3363                         if (!was_eni_copied) {
3364                                 was_eni_copied = true;
3365                                 ena_copy_eni_stats(adapter, &eni_stats);
3366                         }
3367                         values[i] = *((uint64_t *)&eni_stats + id);
3368                         ++valid;
3369                         continue;
3370                 }
3371
3372                 /* Check if id belongs to rx queue statistics */
3373                 id -= ENA_STATS_ARRAY_ENI;
3374                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3375                 if (id < rx_entries) {
3376                         qid = id % dev->data->nb_rx_queues;
3377                         id /= dev->data->nb_rx_queues;
3378                         values[i] = *((uint64_t *)
3379                                 &adapter->rx_ring[qid].rx_stats + id);
3380                         ++valid;
3381                         continue;
3382                 }
3383                                 /* Check if id belongs to rx queue statistics */
3384                 id -= rx_entries;
3385                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3386                 if (id < tx_entries) {
3387                         qid = id % dev->data->nb_tx_queues;
3388                         id /= dev->data->nb_tx_queues;
3389                         values[i] = *((uint64_t *)
3390                                 &adapter->tx_ring[qid].tx_stats + id);
3391                         ++valid;
3392                         continue;
3393                 }
3394         }
3395
3396         return valid;
3397 }
3398
3399 static int ena_process_bool_devarg(const char *key,
3400                                    const char *value,
3401                                    void *opaque)
3402 {
3403         struct ena_adapter *adapter = opaque;
3404         bool bool_value;
3405
3406         /* Parse the value. */
3407         if (strcmp(value, "1") == 0) {
3408                 bool_value = true;
3409         } else if (strcmp(value, "0") == 0) {
3410                 bool_value = false;
3411         } else {
3412                 PMD_INIT_LOG(ERR,
3413                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3414                         value, key);
3415                 return -EINVAL;
3416         }
3417
3418         /* Now, assign it to the proper adapter field. */
3419         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3420                 adapter->use_large_llq_hdr = bool_value;
3421
3422         return 0;
3423 }
3424
3425 static int ena_parse_devargs(struct ena_adapter *adapter,
3426                              struct rte_devargs *devargs)
3427 {
3428         static const char * const allowed_args[] = {
3429                 ENA_DEVARG_LARGE_LLQ_HDR,
3430                 NULL,
3431         };
3432         struct rte_kvargs *kvlist;
3433         int rc;
3434
3435         if (devargs == NULL)
3436                 return 0;
3437
3438         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3439         if (kvlist == NULL) {
3440                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3441                         devargs->args);
3442                 return -EINVAL;
3443         }
3444
3445         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3446                 ena_process_bool_devarg, adapter);
3447
3448         rte_kvargs_free(kvlist);
3449
3450         return rc;
3451 }
3452
3453 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3454 {
3455         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3456         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3457         int rc;
3458         uint16_t vectors_nb, i;
3459         bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3460
3461         if (!rx_intr_requested)
3462                 return 0;
3463
3464         if (!rte_intr_cap_multiple(intr_handle)) {
3465                 PMD_DRV_LOG(ERR,
3466                         "Rx interrupt requested, but it isn't supported by the PCI driver\n");
3467                 return -ENOTSUP;
3468         }
3469
3470         /* Disable interrupt mapping before the configuration starts. */
3471         rte_intr_disable(intr_handle);
3472
3473         /* Verify if there are enough vectors available. */
3474         vectors_nb = dev->data->nb_rx_queues;
3475         if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3476                 PMD_DRV_LOG(ERR,
3477                         "Too many Rx interrupts requested, maximum number: %d\n",
3478                         RTE_MAX_RXTX_INTR_VEC_ID);
3479                 rc = -ENOTSUP;
3480                 goto enable_intr;
3481         }
3482
3483         /* Allocate the vector list */
3484         if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3485                                            dev->data->nb_rx_queues)) {
3486                 PMD_DRV_LOG(ERR,
3487                         "Failed to allocate interrupt vector for %d queues\n",
3488                         dev->data->nb_rx_queues);
3489                 rc = -ENOMEM;
3490                 goto enable_intr;
3491         }
3492
3493         rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3494         if (rc != 0)
3495                 goto free_intr_vec;
3496
3497         if (!rte_intr_allow_others(intr_handle)) {
3498                 PMD_DRV_LOG(ERR,
3499                         "Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3500                 goto disable_intr_efd;
3501         }
3502
3503         for (i = 0; i < vectors_nb; ++i)
3504                 if (rte_intr_vec_list_index_set(intr_handle, i,
3505                                            RTE_INTR_VEC_RXTX_OFFSET + i))
3506                         goto disable_intr_efd;
3507
3508         rte_intr_enable(intr_handle);
3509         return 0;
3510
3511 disable_intr_efd:
3512         rte_intr_efd_disable(intr_handle);
3513 free_intr_vec:
3514         rte_intr_vec_list_free(intr_handle);
3515 enable_intr:
3516         rte_intr_enable(intr_handle);
3517         return rc;
3518 }
3519
3520 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3521                                  uint16_t queue_id,
3522                                  bool unmask)
3523 {
3524         struct ena_adapter *adapter = dev->data->dev_private;
3525         struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3526         struct ena_eth_io_intr_reg intr_reg;
3527
3528         ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3529         ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3530 }
3531
3532 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3533                                     uint16_t queue_id)
3534 {
3535         ena_rx_queue_intr_set(dev, queue_id, true);
3536
3537         return 0;
3538 }
3539
3540 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3541                                      uint16_t queue_id)
3542 {
3543         ena_rx_queue_intr_set(dev, queue_id, false);
3544
3545         return 0;
3546 }
3547
3548 static int ena_configure_aenq(struct ena_adapter *adapter)
3549 {
3550         uint32_t aenq_groups = adapter->all_aenq_groups;
3551         int rc;
3552
3553         /* All_aenq_groups holds all AENQ functions supported by the device and
3554          * the HW, so at first we need to be sure the LSC request is valid.
3555          */
3556         if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3557                 if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3558                         PMD_DRV_LOG(ERR,
3559                                 "LSC requested, but it's not supported by the AENQ\n");
3560                         return -EINVAL;
3561                 }
3562         } else {
3563                 /* If LSC wasn't enabled by the app, let's enable all supported
3564                  * AENQ procedures except the LSC.
3565                  */
3566                 aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3567         }
3568
3569         rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3570         if (rc != 0) {
3571                 PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3572                 return rc;
3573         }
3574
3575         adapter->active_aenq_groups = aenq_groups;
3576
3577         return 0;
3578 }
3579
3580 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3581 {
3582         return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3583 }
3584
3585 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3586                               uint32_t *indirect_table)
3587 {
3588         return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3589                 indirect_table);
3590 }
3591
3592 /*********************************************************************
3593  *  ena_plat_dpdk.h functions implementations
3594  *********************************************************************/
3595
3596 const struct rte_memzone *
3597 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3598                        int socket_id, unsigned int alignment, void **virt_addr,
3599                        dma_addr_t *phys_addr)
3600 {
3601         char z_name[RTE_MEMZONE_NAMESIZE];
3602         struct ena_adapter *adapter = data->dev_private;
3603         const struct rte_memzone *memzone;
3604         int rc;
3605
3606         rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3607                 data->port_id, adapter->memzone_cnt);
3608         if (rc >= RTE_MEMZONE_NAMESIZE) {
3609                 PMD_DRV_LOG(ERR,
3610                         "Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3611                         data->port_id, adapter->memzone_cnt);
3612                 goto error;
3613         }
3614         adapter->memzone_cnt++;
3615
3616         memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3617                 RTE_MEMZONE_IOVA_CONTIG, alignment);
3618         if (memzone == NULL) {
3619                 PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3620                         z_name);
3621                 goto error;
3622         }
3623
3624         memset(memzone->addr, 0, size);
3625         *virt_addr = memzone->addr;
3626         *phys_addr = memzone->iova;
3627
3628         return memzone;
3629
3630 error:
3631         *virt_addr = NULL;
3632         *phys_addr = 0;
3633
3634         return NULL;
3635 }
3636
3637
3638 /*********************************************************************
3639  *  PMD configuration
3640  *********************************************************************/
3641 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3642         struct rte_pci_device *pci_dev)
3643 {
3644         return rte_eth_dev_pci_generic_probe(pci_dev,
3645                 sizeof(struct ena_adapter), eth_ena_dev_init);
3646 }
3647
3648 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3649 {
3650         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3651 }
3652
3653 static struct rte_pci_driver rte_ena_pmd = {
3654         .id_table = pci_id_ena_map,
3655         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3656                      RTE_PCI_DRV_WC_ACTIVATE,
3657         .probe = eth_ena_pci_probe,
3658         .remove = eth_ena_pci_remove,
3659 };
3660
3661 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3662 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3663 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3664 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3665 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3666 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3667 #ifdef RTE_ETHDEV_DEBUG_RX
3668 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3669 #endif
3670 #ifdef RTE_ETHDEV_DEBUG_TX
3671 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3672 #endif
3673 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3674
3675 /******************************************************************************
3676  ******************************** AENQ Handlers *******************************
3677  *****************************************************************************/
3678 static void ena_update_on_link_change(void *adapter_data,
3679                                       struct ena_admin_aenq_entry *aenq_e)
3680 {
3681         struct rte_eth_dev *eth_dev = adapter_data;
3682         struct ena_adapter *adapter = eth_dev->data->dev_private;
3683         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3684         uint32_t status;
3685
3686         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3687
3688         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3689         adapter->link_status = status;
3690
3691         ena_link_update(eth_dev, 0);
3692         rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3693 }
3694
3695 static void ena_notification(void *adapter_data,
3696                              struct ena_admin_aenq_entry *aenq_e)
3697 {
3698         struct rte_eth_dev *eth_dev = adapter_data;
3699         struct ena_adapter *adapter = eth_dev->data->dev_private;
3700         struct ena_admin_ena_hw_hints *hints;
3701
3702         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3703                 PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3704                         aenq_e->aenq_common_desc.group,
3705                         ENA_ADMIN_NOTIFICATION);
3706
3707         switch (aenq_e->aenq_common_desc.syndrome) {
3708         case ENA_ADMIN_UPDATE_HINTS:
3709                 hints = (struct ena_admin_ena_hw_hints *)
3710                         (&aenq_e->inline_data_w4);
3711                 ena_update_hints(adapter, hints);
3712                 break;
3713         default:
3714                 PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3715                         aenq_e->aenq_common_desc.syndrome);
3716         }
3717 }
3718
3719 static void ena_keep_alive(void *adapter_data,
3720                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
3721 {
3722         struct rte_eth_dev *eth_dev = adapter_data;
3723         struct ena_adapter *adapter = eth_dev->data->dev_private;
3724         struct ena_admin_aenq_keep_alive_desc *desc;
3725         uint64_t rx_drops;
3726         uint64_t tx_drops;
3727
3728         adapter->timestamp_wd = rte_get_timer_cycles();
3729
3730         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3731         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3732         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3733
3734         adapter->drv_stats->rx_drops = rx_drops;
3735         adapter->dev_stats.tx_drops = tx_drops;
3736 }
3737
3738 /**
3739  * This handler will called for unknown event group or unimplemented handlers
3740  **/
3741 static void unimplemented_aenq_handler(__rte_unused void *data,
3742                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
3743 {
3744         PMD_DRV_LOG(ERR,
3745                 "Unknown event was received or event with unimplemented handler\n");
3746 }
3747
3748 static struct ena_aenq_handlers aenq_handlers = {
3749         .handlers = {
3750                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3751                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3752                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3753         },
3754         .unimplemented_handler = unimplemented_aenq_handler
3755 };
3756
3757 /*********************************************************************
3758  *  Multi-Process communication request handling (in primary)
3759  *********************************************************************/
3760 static int
3761 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
3762 {
3763         const struct ena_mp_body *req =
3764                 (const struct ena_mp_body *)mp_msg->param;
3765         struct ena_adapter *adapter;
3766         struct ena_com_dev *ena_dev;
3767         struct ena_mp_body *rsp;
3768         struct rte_mp_msg mp_rsp;
3769         struct rte_eth_dev *dev;
3770         int res = 0;
3771
3772         rsp = (struct ena_mp_body *)&mp_rsp.param;
3773         mp_msg_init(&mp_rsp, req->type, req->port_id);
3774
3775         if (!rte_eth_dev_is_valid_port(req->port_id)) {
3776                 rte_errno = ENODEV;
3777                 res = -rte_errno;
3778                 PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
3779                             req->port_id, req->type);
3780                 goto end;
3781         }
3782         dev = &rte_eth_devices[req->port_id];
3783         adapter = dev->data->dev_private;
3784         ena_dev = &adapter->ena_dev;
3785
3786         switch (req->type) {
3787         case ENA_MP_DEV_STATS_GET:
3788                 res = ena_com_get_dev_basic_stats(ena_dev,
3789                                                   &adapter->basic_stats);
3790                 break;
3791         case ENA_MP_ENI_STATS_GET:
3792                 res = ena_com_get_eni_stats(ena_dev,
3793                         (struct ena_admin_eni_stats *)&adapter->eni_stats);
3794                 break;
3795         case ENA_MP_MTU_SET:
3796                 res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
3797                 break;
3798         case ENA_MP_IND_TBL_GET:
3799                 res = ena_com_indirect_table_get(ena_dev,
3800                                                  adapter->indirect_table);
3801                 break;
3802         case ENA_MP_IND_TBL_SET:
3803                 res = ena_com_indirect_table_set(ena_dev);
3804                 break;
3805         default:
3806                 PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
3807                 res = -EINVAL;
3808                 break;
3809         }
3810
3811 end:
3812         /* Save processing result in the reply */
3813         rsp->result = res;
3814         /* Return just IPC processing status */
3815         return rte_mp_reply(&mp_rsp, peer);
3816 }