net/ena: add extra Rx checksum related xstats
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22
23 #define DRV_MODULE_VER_MAJOR    2
24 #define DRV_MODULE_VER_MINOR    5
25 #define DRV_MODULE_VER_SUBMINOR 0
26
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28
29 #define GET_L4_HDR_LEN(mbuf)                                    \
30         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
31                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32
33 #define ETH_GSTRING_LEN 32
34
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36
37 #define ENA_MIN_RING_DESC       128
38
39 #define ENA_PTYPE_HAS_HASH      (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40
41 struct ena_stats {
42         char name[ETH_GSTRING_LEN];
43         int stat_offset;
44 };
45
46 #define ENA_STAT_ENTRY(stat, stat_type) { \
47         .name = #stat, \
48         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
49 }
50
51 #define ENA_STAT_RX_ENTRY(stat) \
52         ENA_STAT_ENTRY(stat, rx)
53
54 #define ENA_STAT_TX_ENTRY(stat) \
55         ENA_STAT_ENTRY(stat, tx)
56
57 #define ENA_STAT_ENI_ENTRY(stat) \
58         ENA_STAT_ENTRY(stat, eni)
59
60 #define ENA_STAT_GLOBAL_ENTRY(stat) \
61         ENA_STAT_ENTRY(stat, dev)
62
63 /* Device arguments */
64 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
65
66 /*
67  * Each rte_memzone should have unique name.
68  * To satisfy it, count number of allocation and add it to name.
69  */
70 rte_atomic64_t ena_alloc_cnt;
71
72 static const struct ena_stats ena_stats_global_strings[] = {
73         ENA_STAT_GLOBAL_ENTRY(wd_expired),
74         ENA_STAT_GLOBAL_ENTRY(dev_start),
75         ENA_STAT_GLOBAL_ENTRY(dev_stop),
76         ENA_STAT_GLOBAL_ENTRY(tx_drops),
77 };
78
79 static const struct ena_stats ena_stats_eni_strings[] = {
80         ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
81         ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
82         ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
83         ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
84         ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
85 };
86
87 static const struct ena_stats ena_stats_tx_strings[] = {
88         ENA_STAT_TX_ENTRY(cnt),
89         ENA_STAT_TX_ENTRY(bytes),
90         ENA_STAT_TX_ENTRY(prepare_ctx_err),
91         ENA_STAT_TX_ENTRY(tx_poll),
92         ENA_STAT_TX_ENTRY(doorbells),
93         ENA_STAT_TX_ENTRY(bad_req_id),
94         ENA_STAT_TX_ENTRY(available_desc),
95         ENA_STAT_TX_ENTRY(missed_tx),
96 };
97
98 static const struct ena_stats ena_stats_rx_strings[] = {
99         ENA_STAT_RX_ENTRY(cnt),
100         ENA_STAT_RX_ENTRY(bytes),
101         ENA_STAT_RX_ENTRY(refill_partial),
102         ENA_STAT_RX_ENTRY(l3_csum_bad),
103         ENA_STAT_RX_ENTRY(l4_csum_bad),
104         ENA_STAT_RX_ENTRY(l4_csum_good),
105         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
106         ENA_STAT_RX_ENTRY(bad_desc_num),
107         ENA_STAT_RX_ENTRY(bad_req_id),
108 };
109
110 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
111 #define ENA_STATS_ARRAY_ENI     ARRAY_SIZE(ena_stats_eni_strings)
112 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
113 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
114
115 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
116                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
117                         RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
118                         RTE_ETH_TX_OFFLOAD_TCP_TSO)
119 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
120                        RTE_MBUF_F_TX_IP_CKSUM |\
121                        RTE_MBUF_F_TX_TCP_SEG)
122
123 /** Vendor ID used by Amazon devices */
124 #define PCI_VENDOR_ID_AMAZON 0x1D0F
125 /** Amazon devices */
126 #define PCI_DEVICE_ID_ENA_VF            0xEC20
127 #define PCI_DEVICE_ID_ENA_VF_RSERV0     0xEC21
128
129 #define ENA_TX_OFFLOAD_MASK     (RTE_MBUF_F_TX_L4_MASK |         \
130         RTE_MBUF_F_TX_IPV6 |            \
131         RTE_MBUF_F_TX_IPV4 |            \
132         RTE_MBUF_F_TX_IP_CKSUM |        \
133         RTE_MBUF_F_TX_TCP_SEG)
134
135 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
136         (RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
137
138 /** HW specific offloads capabilities. */
139 /* IPv4 checksum offload. */
140 #define ENA_L3_IPV4_CSUM                0x0001
141 /* TCP/UDP checksum offload for IPv4 packets. */
142 #define ENA_L4_IPV4_CSUM                0x0002
143 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
144 #define ENA_L4_IPV4_CSUM_PARTIAL        0x0004
145 /* TCP/UDP checksum offload for IPv6 packets. */
146 #define ENA_L4_IPV6_CSUM                0x0008
147 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
148 #define ENA_L4_IPV6_CSUM_PARTIAL        0x0010
149 /* TSO support for IPv4 packets. */
150 #define ENA_IPV4_TSO                    0x0020
151
152 /* Device supports setting RSS hash. */
153 #define ENA_RX_RSS_HASH                 0x0040
154
155 static const struct rte_pci_id pci_id_ena_map[] = {
156         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
157         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
158         { .device_id = 0 },
159 };
160
161 static struct ena_aenq_handlers aenq_handlers;
162
163 static int ena_device_init(struct ena_com_dev *ena_dev,
164                            struct rte_pci_device *pdev,
165                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
166                            bool *wd_state);
167 static int ena_dev_configure(struct rte_eth_dev *dev);
168 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
169         struct ena_tx_buffer *tx_info,
170         struct rte_mbuf *mbuf,
171         void **push_header,
172         uint16_t *header_len);
173 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
174 static void ena_tx_cleanup(struct ena_ring *tx_ring);
175 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
176                                   uint16_t nb_pkts);
177 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
178                 uint16_t nb_pkts);
179 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
180                               uint16_t nb_desc, unsigned int socket_id,
181                               const struct rte_eth_txconf *tx_conf);
182 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
183                               uint16_t nb_desc, unsigned int socket_id,
184                               const struct rte_eth_rxconf *rx_conf,
185                               struct rte_mempool *mp);
186 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
187 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
188                                     struct ena_com_rx_buf_info *ena_bufs,
189                                     uint32_t descs,
190                                     uint16_t *next_to_clean,
191                                     uint8_t offset);
192 static uint16_t eth_ena_recv_pkts(void *rx_queue,
193                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
194 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
195                                   struct rte_mbuf *mbuf, uint16_t id);
196 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
197 static void ena_init_rings(struct ena_adapter *adapter,
198                            bool disable_meta_caching);
199 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
200 static int ena_start(struct rte_eth_dev *dev);
201 static int ena_stop(struct rte_eth_dev *dev);
202 static int ena_close(struct rte_eth_dev *dev);
203 static int ena_dev_reset(struct rte_eth_dev *dev);
204 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
205 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
206 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
207 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
208 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
209 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
210 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
211 static int ena_link_update(struct rte_eth_dev *dev,
212                            int wait_to_complete);
213 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
214 static void ena_queue_stop(struct ena_ring *ring);
215 static void ena_queue_stop_all(struct rte_eth_dev *dev,
216                               enum ena_ring_type ring_type);
217 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
218 static int ena_queue_start_all(struct rte_eth_dev *dev,
219                                enum ena_ring_type ring_type);
220 static void ena_stats_restart(struct rte_eth_dev *dev);
221 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
222 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
223 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
224 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
225 static int ena_infos_get(struct rte_eth_dev *dev,
226                          struct rte_eth_dev_info *dev_info);
227 static void ena_interrupt_handler_rte(void *cb_arg);
228 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
229 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
230 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
231 static int ena_xstats_get_names(struct rte_eth_dev *dev,
232                                 struct rte_eth_xstat_name *xstats_names,
233                                 unsigned int n);
234 static int ena_xstats_get(struct rte_eth_dev *dev,
235                           struct rte_eth_xstat *stats,
236                           unsigned int n);
237 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
238                                 const uint64_t *ids,
239                                 uint64_t *values,
240                                 unsigned int n);
241 static int ena_process_bool_devarg(const char *key,
242                                    const char *value,
243                                    void *opaque);
244 static int ena_parse_devargs(struct ena_adapter *adapter,
245                              struct rte_devargs *devargs);
246 static int ena_copy_eni_stats(struct ena_adapter *adapter);
247 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
248 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
249                                     uint16_t queue_id);
250 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
251                                      uint16_t queue_id);
252
253 static const struct eth_dev_ops ena_dev_ops = {
254         .dev_configure        = ena_dev_configure,
255         .dev_infos_get        = ena_infos_get,
256         .rx_queue_setup       = ena_rx_queue_setup,
257         .tx_queue_setup       = ena_tx_queue_setup,
258         .dev_start            = ena_start,
259         .dev_stop             = ena_stop,
260         .link_update          = ena_link_update,
261         .stats_get            = ena_stats_get,
262         .xstats_get_names     = ena_xstats_get_names,
263         .xstats_get           = ena_xstats_get,
264         .xstats_get_by_id     = ena_xstats_get_by_id,
265         .mtu_set              = ena_mtu_set,
266         .rx_queue_release     = ena_rx_queue_release,
267         .tx_queue_release     = ena_tx_queue_release,
268         .dev_close            = ena_close,
269         .dev_reset            = ena_dev_reset,
270         .reta_update          = ena_rss_reta_update,
271         .reta_query           = ena_rss_reta_query,
272         .rx_queue_intr_enable = ena_rx_queue_intr_enable,
273         .rx_queue_intr_disable = ena_rx_queue_intr_disable,
274         .rss_hash_update      = ena_rss_hash_update,
275         .rss_hash_conf_get    = ena_rss_hash_conf_get,
276 };
277
278 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
279                                        struct rte_mbuf *mbuf,
280                                        struct ena_com_rx_ctx *ena_rx_ctx,
281                                        bool fill_hash)
282 {
283         struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
284         uint64_t ol_flags = 0;
285         uint32_t packet_type = 0;
286
287         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
288                 packet_type |= RTE_PTYPE_L4_TCP;
289         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
290                 packet_type |= RTE_PTYPE_L4_UDP;
291
292         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
293                 packet_type |= RTE_PTYPE_L3_IPV4;
294                 if (unlikely(ena_rx_ctx->l3_csum_err)) {
295                         ++rx_stats->l3_csum_bad;
296                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
297                 } else {
298                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
299                 }
300         } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
301                 packet_type |= RTE_PTYPE_L3_IPV6;
302         }
303
304         if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
305                 ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
306         } else {
307                 if (unlikely(ena_rx_ctx->l4_csum_err)) {
308                         ++rx_stats->l4_csum_bad;
309                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
310                 } else {
311                         ++rx_stats->l4_csum_good;
312                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
313                 }
314         }
315
316         if (fill_hash &&
317             likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
318                 ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
319                 mbuf->hash.rss = ena_rx_ctx->hash;
320         }
321
322         mbuf->ol_flags = ol_flags;
323         mbuf->packet_type = packet_type;
324 }
325
326 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
327                                        struct ena_com_tx_ctx *ena_tx_ctx,
328                                        uint64_t queue_offloads,
329                                        bool disable_meta_caching)
330 {
331         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
332
333         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
334             (queue_offloads & QUEUE_OFFLOADS)) {
335                 /* check if TSO is required */
336                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
337                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
338                         ena_tx_ctx->tso_enable = true;
339
340                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
341                 }
342
343                 /* check if L3 checksum is needed */
344                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
345                     (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
346                         ena_tx_ctx->l3_csum_enable = true;
347
348                 if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
349                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
350                 } else {
351                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
352
353                         /* set don't fragment (DF) flag */
354                         if (mbuf->packet_type &
355                                 (RTE_PTYPE_L4_NONFRAG
356                                  | RTE_PTYPE_INNER_L4_NONFRAG))
357                                 ena_tx_ctx->df = true;
358                 }
359
360                 /* check if L4 checksum is needed */
361                 if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
362                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
363                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
364                         ena_tx_ctx->l4_csum_enable = true;
365                 } else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
366                                 RTE_MBUF_F_TX_UDP_CKSUM) &&
367                                 (queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
368                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
369                         ena_tx_ctx->l4_csum_enable = true;
370                 } else {
371                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
372                         ena_tx_ctx->l4_csum_enable = false;
373                 }
374
375                 ena_meta->mss = mbuf->tso_segsz;
376                 ena_meta->l3_hdr_len = mbuf->l3_len;
377                 ena_meta->l3_hdr_offset = mbuf->l2_len;
378
379                 ena_tx_ctx->meta_valid = true;
380         } else if (disable_meta_caching) {
381                 memset(ena_meta, 0, sizeof(*ena_meta));
382                 ena_tx_ctx->meta_valid = true;
383         } else {
384                 ena_tx_ctx->meta_valid = false;
385         }
386 }
387
388 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
389 {
390         struct ena_tx_buffer *tx_info = NULL;
391
392         if (likely(req_id < tx_ring->ring_size)) {
393                 tx_info = &tx_ring->tx_buffer_info[req_id];
394                 if (likely(tx_info->mbuf))
395                         return 0;
396         }
397
398         if (tx_info)
399                 PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
400         else
401                 PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
402
403         /* Trigger device reset */
404         ++tx_ring->tx_stats.bad_req_id;
405         tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
406         tx_ring->adapter->trigger_reset = true;
407         return -EFAULT;
408 }
409
410 static void ena_config_host_info(struct ena_com_dev *ena_dev)
411 {
412         struct ena_admin_host_info *host_info;
413         int rc;
414
415         /* Allocate only the host info */
416         rc = ena_com_allocate_host_info(ena_dev);
417         if (rc) {
418                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
419                 return;
420         }
421
422         host_info = ena_dev->host_attr.host_info;
423
424         host_info->os_type = ENA_ADMIN_OS_DPDK;
425         host_info->kernel_ver = RTE_VERSION;
426         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
427                 sizeof(host_info->kernel_ver_str));
428         host_info->os_dist = RTE_VERSION;
429         strlcpy((char *)host_info->os_dist_str, rte_version(),
430                 sizeof(host_info->os_dist_str));
431         host_info->driver_version =
432                 (DRV_MODULE_VER_MAJOR) |
433                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
434                 (DRV_MODULE_VER_SUBMINOR <<
435                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
436         host_info->num_cpus = rte_lcore_count();
437
438         host_info->driver_supported_features =
439                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
440                 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
441
442         rc = ena_com_set_host_attributes(ena_dev);
443         if (rc) {
444                 if (rc == -ENA_COM_UNSUPPORTED)
445                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
446                 else
447                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
448
449                 goto err;
450         }
451
452         return;
453
454 err:
455         ena_com_delete_host_info(ena_dev);
456 }
457
458 /* This function calculates the number of xstats based on the current config */
459 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
460 {
461         return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
462                 (data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
463                 (data->nb_rx_queues * ENA_STATS_ARRAY_RX);
464 }
465
466 static void ena_config_debug_area(struct ena_adapter *adapter)
467 {
468         u32 debug_area_size;
469         int rc, ss_count;
470
471         ss_count = ena_xstats_calc_num(adapter->edev_data);
472
473         /* allocate 32 bytes for each string and 64bit for the value */
474         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
475
476         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
477         if (rc) {
478                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
479                 return;
480         }
481
482         rc = ena_com_set_host_attributes(&adapter->ena_dev);
483         if (rc) {
484                 if (rc == -ENA_COM_UNSUPPORTED)
485                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
486                 else
487                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
488
489                 goto err;
490         }
491
492         return;
493 err:
494         ena_com_delete_debug_area(&adapter->ena_dev);
495 }
496
497 static int ena_close(struct rte_eth_dev *dev)
498 {
499         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
500         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
501         struct ena_adapter *adapter = dev->data->dev_private;
502         int ret = 0;
503
504         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
505                 return 0;
506
507         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
508                 ret = ena_stop(dev);
509         adapter->state = ENA_ADAPTER_STATE_CLOSED;
510
511         ena_rx_queue_release_all(dev);
512         ena_tx_queue_release_all(dev);
513
514         rte_free(adapter->drv_stats);
515         adapter->drv_stats = NULL;
516
517         rte_intr_disable(intr_handle);
518         rte_intr_callback_unregister(intr_handle,
519                                      ena_interrupt_handler_rte,
520                                      dev);
521
522         /*
523          * MAC is not allocated dynamically. Setting NULL should prevent from
524          * release of the resource in the rte_eth_dev_release_port().
525          */
526         dev->data->mac_addrs = NULL;
527
528         return ret;
529 }
530
531 static int
532 ena_dev_reset(struct rte_eth_dev *dev)
533 {
534         int rc = 0;
535
536         /* Cannot release memory in secondary process */
537         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
538                 PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
539                 return -EPERM;
540         }
541
542         ena_destroy_device(dev);
543         rc = eth_ena_dev_init(dev);
544         if (rc)
545                 PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
546
547         return rc;
548 }
549
550 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
551 {
552         int nb_queues = dev->data->nb_rx_queues;
553         int i;
554
555         for (i = 0; i < nb_queues; i++)
556                 ena_rx_queue_release(dev, i);
557 }
558
559 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
560 {
561         int nb_queues = dev->data->nb_tx_queues;
562         int i;
563
564         for (i = 0; i < nb_queues; i++)
565                 ena_tx_queue_release(dev, i);
566 }
567
568 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
569 {
570         struct ena_ring *ring = dev->data->rx_queues[qid];
571
572         /* Free ring resources */
573         rte_free(ring->rx_buffer_info);
574         ring->rx_buffer_info = NULL;
575
576         rte_free(ring->rx_refill_buffer);
577         ring->rx_refill_buffer = NULL;
578
579         rte_free(ring->empty_rx_reqs);
580         ring->empty_rx_reqs = NULL;
581
582         ring->configured = 0;
583
584         PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
585                 ring->port_id, ring->id);
586 }
587
588 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
589 {
590         struct ena_ring *ring = dev->data->tx_queues[qid];
591
592         /* Free ring resources */
593         rte_free(ring->push_buf_intermediate_buf);
594
595         rte_free(ring->tx_buffer_info);
596
597         rte_free(ring->empty_tx_reqs);
598
599         ring->empty_tx_reqs = NULL;
600         ring->tx_buffer_info = NULL;
601         ring->push_buf_intermediate_buf = NULL;
602
603         ring->configured = 0;
604
605         PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
606                 ring->port_id, ring->id);
607 }
608
609 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
610 {
611         unsigned int i;
612
613         for (i = 0; i < ring->ring_size; ++i) {
614                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
615                 if (rx_info->mbuf) {
616                         rte_mbuf_raw_free(rx_info->mbuf);
617                         rx_info->mbuf = NULL;
618                 }
619         }
620 }
621
622 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
623 {
624         unsigned int i;
625
626         for (i = 0; i < ring->ring_size; ++i) {
627                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
628
629                 if (tx_buf->mbuf) {
630                         rte_pktmbuf_free(tx_buf->mbuf);
631                         tx_buf->mbuf = NULL;
632                 }
633         }
634 }
635
636 static int ena_link_update(struct rte_eth_dev *dev,
637                            __rte_unused int wait_to_complete)
638 {
639         struct rte_eth_link *link = &dev->data->dev_link;
640         struct ena_adapter *adapter = dev->data->dev_private;
641
642         link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
643         link->link_speed = RTE_ETH_SPEED_NUM_NONE;
644         link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
645
646         return 0;
647 }
648
649 static int ena_queue_start_all(struct rte_eth_dev *dev,
650                                enum ena_ring_type ring_type)
651 {
652         struct ena_adapter *adapter = dev->data->dev_private;
653         struct ena_ring *queues = NULL;
654         int nb_queues;
655         int i = 0;
656         int rc = 0;
657
658         if (ring_type == ENA_RING_TYPE_RX) {
659                 queues = adapter->rx_ring;
660                 nb_queues = dev->data->nb_rx_queues;
661         } else {
662                 queues = adapter->tx_ring;
663                 nb_queues = dev->data->nb_tx_queues;
664         }
665         for (i = 0; i < nb_queues; i++) {
666                 if (queues[i].configured) {
667                         if (ring_type == ENA_RING_TYPE_RX) {
668                                 ena_assert_msg(
669                                         dev->data->rx_queues[i] == &queues[i],
670                                         "Inconsistent state of Rx queues\n");
671                         } else {
672                                 ena_assert_msg(
673                                         dev->data->tx_queues[i] == &queues[i],
674                                         "Inconsistent state of Tx queues\n");
675                         }
676
677                         rc = ena_queue_start(dev, &queues[i]);
678
679                         if (rc) {
680                                 PMD_INIT_LOG(ERR,
681                                         "Failed to start queue[%d] of type(%d)\n",
682                                         i, ring_type);
683                                 goto err;
684                         }
685                 }
686         }
687
688         return 0;
689
690 err:
691         while (i--)
692                 if (queues[i].configured)
693                         ena_queue_stop(&queues[i]);
694
695         return rc;
696 }
697
698 static int ena_check_valid_conf(struct ena_adapter *adapter)
699 {
700         uint32_t mtu = adapter->edev_data->mtu;
701
702         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
703                 PMD_INIT_LOG(ERR,
704                         "Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
705                         mtu, adapter->max_mtu, ENA_MIN_MTU);
706                 return ENA_COM_UNSUPPORTED;
707         }
708
709         return 0;
710 }
711
712 static int
713 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
714                        bool use_large_llq_hdr)
715 {
716         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
717         struct ena_com_dev *ena_dev = ctx->ena_dev;
718         uint32_t max_tx_queue_size;
719         uint32_t max_rx_queue_size;
720
721         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
722                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
723                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
724                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
725                         max_queue_ext->max_rx_sq_depth);
726                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
727
728                 if (ena_dev->tx_mem_queue_type ==
729                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
730                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
731                                 llq->max_llq_depth);
732                 } else {
733                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
734                                 max_queue_ext->max_tx_sq_depth);
735                 }
736
737                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
738                         max_queue_ext->max_per_packet_rx_descs);
739                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
740                         max_queue_ext->max_per_packet_tx_descs);
741         } else {
742                 struct ena_admin_queue_feature_desc *max_queues =
743                         &ctx->get_feat_ctx->max_queues;
744                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
745                         max_queues->max_sq_depth);
746                 max_tx_queue_size = max_queues->max_cq_depth;
747
748                 if (ena_dev->tx_mem_queue_type ==
749                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
750                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
751                                 llq->max_llq_depth);
752                 } else {
753                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
754                                 max_queues->max_sq_depth);
755                 }
756
757                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
758                         max_queues->max_packet_rx_descs);
759                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
760                         max_queues->max_packet_tx_descs);
761         }
762
763         /* Round down to the nearest power of 2 */
764         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
765         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
766
767         if (use_large_llq_hdr) {
768                 if ((llq->entry_size_ctrl_supported &
769                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
770                     (ena_dev->tx_mem_queue_type ==
771                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
772                         max_tx_queue_size /= 2;
773                         PMD_INIT_LOG(INFO,
774                                 "Forcing large headers and decreasing maximum Tx queue size to %d\n",
775                                 max_tx_queue_size);
776                 } else {
777                         PMD_INIT_LOG(ERR,
778                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
779                 }
780         }
781
782         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
783                 PMD_INIT_LOG(ERR, "Invalid queue size\n");
784                 return -EFAULT;
785         }
786
787         ctx->max_tx_queue_size = max_tx_queue_size;
788         ctx->max_rx_queue_size = max_rx_queue_size;
789
790         return 0;
791 }
792
793 static void ena_stats_restart(struct rte_eth_dev *dev)
794 {
795         struct ena_adapter *adapter = dev->data->dev_private;
796
797         rte_atomic64_init(&adapter->drv_stats->ierrors);
798         rte_atomic64_init(&adapter->drv_stats->oerrors);
799         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
800         adapter->drv_stats->rx_drops = 0;
801 }
802
803 static int ena_stats_get(struct rte_eth_dev *dev,
804                           struct rte_eth_stats *stats)
805 {
806         struct ena_admin_basic_stats ena_stats;
807         struct ena_adapter *adapter = dev->data->dev_private;
808         struct ena_com_dev *ena_dev = &adapter->ena_dev;
809         int rc;
810         int i;
811         int max_rings_stats;
812
813         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
814                 return -ENOTSUP;
815
816         memset(&ena_stats, 0, sizeof(ena_stats));
817
818         rte_spinlock_lock(&adapter->admin_lock);
819         rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
820         rte_spinlock_unlock(&adapter->admin_lock);
821         if (unlikely(rc)) {
822                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
823                 return rc;
824         }
825
826         /* Set of basic statistics from ENA */
827         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
828                                           ena_stats.rx_pkts_low);
829         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
830                                           ena_stats.tx_pkts_low);
831         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
832                                         ena_stats.rx_bytes_low);
833         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
834                                         ena_stats.tx_bytes_low);
835
836         /* Driver related stats */
837         stats->imissed = adapter->drv_stats->rx_drops;
838         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
839         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
840         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
841
842         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
843                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
844         for (i = 0; i < max_rings_stats; ++i) {
845                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
846
847                 stats->q_ibytes[i] = rx_stats->bytes;
848                 stats->q_ipackets[i] = rx_stats->cnt;
849                 stats->q_errors[i] = rx_stats->bad_desc_num +
850                         rx_stats->bad_req_id;
851         }
852
853         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
854                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
855         for (i = 0; i < max_rings_stats; ++i) {
856                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
857
858                 stats->q_obytes[i] = tx_stats->bytes;
859                 stats->q_opackets[i] = tx_stats->cnt;
860         }
861
862         return 0;
863 }
864
865 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
866 {
867         struct ena_adapter *adapter;
868         struct ena_com_dev *ena_dev;
869         int rc = 0;
870
871         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
872         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
873         adapter = dev->data->dev_private;
874
875         ena_dev = &adapter->ena_dev;
876         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
877
878         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
879                 PMD_DRV_LOG(ERR,
880                         "Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
881                         mtu, adapter->max_mtu, ENA_MIN_MTU);
882                 return -EINVAL;
883         }
884
885         rc = ena_com_set_dev_mtu(ena_dev, mtu);
886         if (rc)
887                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
888         else
889                 PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
890
891         return rc;
892 }
893
894 static int ena_start(struct rte_eth_dev *dev)
895 {
896         struct ena_adapter *adapter = dev->data->dev_private;
897         uint64_t ticks;
898         int rc = 0;
899
900         /* Cannot allocate memory in secondary process */
901         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
902                 PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
903                 return -EPERM;
904         }
905
906         rc = ena_check_valid_conf(adapter);
907         if (rc)
908                 return rc;
909
910         rc = ena_setup_rx_intr(dev);
911         if (rc)
912                 return rc;
913
914         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
915         if (rc)
916                 return rc;
917
918         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
919         if (rc)
920                 goto err_start_tx;
921
922         if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
923                 rc = ena_rss_configure(adapter);
924                 if (rc)
925                         goto err_rss_init;
926         }
927
928         ena_stats_restart(dev);
929
930         adapter->timestamp_wd = rte_get_timer_cycles();
931         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
932
933         ticks = rte_get_timer_hz();
934         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
935                         ena_timer_wd_callback, dev);
936
937         ++adapter->dev_stats.dev_start;
938         adapter->state = ENA_ADAPTER_STATE_RUNNING;
939
940         return 0;
941
942 err_rss_init:
943         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
944 err_start_tx:
945         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
946         return rc;
947 }
948
949 static int ena_stop(struct rte_eth_dev *dev)
950 {
951         struct ena_adapter *adapter = dev->data->dev_private;
952         struct ena_com_dev *ena_dev = &adapter->ena_dev;
953         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
954         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
955         int rc;
956
957         /* Cannot free memory in secondary process */
958         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
959                 PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
960                 return -EPERM;
961         }
962
963         rte_timer_stop_sync(&adapter->timer_wd);
964         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
965         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
966
967         if (adapter->trigger_reset) {
968                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
969                 if (rc)
970                         PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
971         }
972
973         rte_intr_disable(intr_handle);
974
975         rte_intr_efd_disable(intr_handle);
976
977         /* Cleanup vector list */
978         rte_intr_vec_list_free(intr_handle);
979
980         rte_intr_enable(intr_handle);
981
982         ++adapter->dev_stats.dev_stop;
983         adapter->state = ENA_ADAPTER_STATE_STOPPED;
984         dev->data->dev_started = 0;
985
986         return 0;
987 }
988
989 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
990 {
991         struct ena_adapter *adapter = ring->adapter;
992         struct ena_com_dev *ena_dev = &adapter->ena_dev;
993         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
994         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
995         struct ena_com_create_io_ctx ctx =
996                 /* policy set to _HOST just to satisfy icc compiler */
997                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
998                   0, 0, 0, 0, 0 };
999         uint16_t ena_qid;
1000         unsigned int i;
1001         int rc;
1002
1003         ctx.msix_vector = -1;
1004         if (ring->type == ENA_RING_TYPE_TX) {
1005                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1006                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1007                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1008                 for (i = 0; i < ring->ring_size; i++)
1009                         ring->empty_tx_reqs[i] = i;
1010         } else {
1011                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1012                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1013                 if (rte_intr_dp_is_en(intr_handle))
1014                         ctx.msix_vector =
1015                                 rte_intr_vec_list_index_get(intr_handle,
1016                                                                    ring->id);
1017
1018                 for (i = 0; i < ring->ring_size; i++)
1019                         ring->empty_rx_reqs[i] = i;
1020         }
1021         ctx.queue_size = ring->ring_size;
1022         ctx.qid = ena_qid;
1023         ctx.numa_node = ring->numa_socket_id;
1024
1025         rc = ena_com_create_io_queue(ena_dev, &ctx);
1026         if (rc) {
1027                 PMD_DRV_LOG(ERR,
1028                         "Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1029                         ring->id, ena_qid, rc);
1030                 return rc;
1031         }
1032
1033         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1034                                      &ring->ena_com_io_sq,
1035                                      &ring->ena_com_io_cq);
1036         if (rc) {
1037                 PMD_DRV_LOG(ERR,
1038                         "Failed to get IO queue[%d] handlers, rc: %d\n",
1039                         ring->id, rc);
1040                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1041                 return rc;
1042         }
1043
1044         if (ring->type == ENA_RING_TYPE_TX)
1045                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1046
1047         /* Start with Rx interrupts being masked. */
1048         if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1049                 ena_rx_queue_intr_disable(dev, ring->id);
1050
1051         return 0;
1052 }
1053
1054 static void ena_queue_stop(struct ena_ring *ring)
1055 {
1056         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1057
1058         if (ring->type == ENA_RING_TYPE_RX) {
1059                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1060                 ena_rx_queue_release_bufs(ring);
1061         } else {
1062                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1063                 ena_tx_queue_release_bufs(ring);
1064         }
1065 }
1066
1067 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1068                               enum ena_ring_type ring_type)
1069 {
1070         struct ena_adapter *adapter = dev->data->dev_private;
1071         struct ena_ring *queues = NULL;
1072         uint16_t nb_queues, i;
1073
1074         if (ring_type == ENA_RING_TYPE_RX) {
1075                 queues = adapter->rx_ring;
1076                 nb_queues = dev->data->nb_rx_queues;
1077         } else {
1078                 queues = adapter->tx_ring;
1079                 nb_queues = dev->data->nb_tx_queues;
1080         }
1081
1082         for (i = 0; i < nb_queues; ++i)
1083                 if (queues[i].configured)
1084                         ena_queue_stop(&queues[i]);
1085 }
1086
1087 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1088 {
1089         int rc, bufs_num;
1090
1091         ena_assert_msg(ring->configured == 1,
1092                        "Trying to start unconfigured queue\n");
1093
1094         rc = ena_create_io_queue(dev, ring);
1095         if (rc) {
1096                 PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1097                 return rc;
1098         }
1099
1100         ring->next_to_clean = 0;
1101         ring->next_to_use = 0;
1102
1103         if (ring->type == ENA_RING_TYPE_TX) {
1104                 ring->tx_stats.available_desc =
1105                         ena_com_free_q_entries(ring->ena_com_io_sq);
1106                 return 0;
1107         }
1108
1109         bufs_num = ring->ring_size - 1;
1110         rc = ena_populate_rx_queue(ring, bufs_num);
1111         if (rc != bufs_num) {
1112                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1113                                          ENA_IO_RXQ_IDX(ring->id));
1114                 PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1115                 return ENA_COM_FAULT;
1116         }
1117         /* Flush per-core RX buffers pools cache as they can be used on other
1118          * cores as well.
1119          */
1120         rte_mempool_cache_flush(NULL, ring->mb_pool);
1121
1122         return 0;
1123 }
1124
1125 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1126                               uint16_t queue_idx,
1127                               uint16_t nb_desc,
1128                               unsigned int socket_id,
1129                               const struct rte_eth_txconf *tx_conf)
1130 {
1131         struct ena_ring *txq = NULL;
1132         struct ena_adapter *adapter = dev->data->dev_private;
1133         unsigned int i;
1134         uint16_t dyn_thresh;
1135
1136         txq = &adapter->tx_ring[queue_idx];
1137
1138         if (txq->configured) {
1139                 PMD_DRV_LOG(CRIT,
1140                         "API violation. Queue[%d] is already configured\n",
1141                         queue_idx);
1142                 return ENA_COM_FAULT;
1143         }
1144
1145         if (!rte_is_power_of_2(nb_desc)) {
1146                 PMD_DRV_LOG(ERR,
1147                         "Unsupported size of Tx queue: %d is not a power of 2.\n",
1148                         nb_desc);
1149                 return -EINVAL;
1150         }
1151
1152         if (nb_desc > adapter->max_tx_ring_size) {
1153                 PMD_DRV_LOG(ERR,
1154                         "Unsupported size of Tx queue (max size: %d)\n",
1155                         adapter->max_tx_ring_size);
1156                 return -EINVAL;
1157         }
1158
1159         txq->port_id = dev->data->port_id;
1160         txq->next_to_clean = 0;
1161         txq->next_to_use = 0;
1162         txq->ring_size = nb_desc;
1163         txq->size_mask = nb_desc - 1;
1164         txq->numa_socket_id = socket_id;
1165         txq->pkts_without_db = false;
1166         txq->last_cleanup_ticks = 0;
1167
1168         txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1169                 sizeof(struct ena_tx_buffer) * txq->ring_size,
1170                 RTE_CACHE_LINE_SIZE,
1171                 socket_id);
1172         if (!txq->tx_buffer_info) {
1173                 PMD_DRV_LOG(ERR,
1174                         "Failed to allocate memory for Tx buffer info\n");
1175                 return -ENOMEM;
1176         }
1177
1178         txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1179                 sizeof(uint16_t) * txq->ring_size,
1180                 RTE_CACHE_LINE_SIZE,
1181                 socket_id);
1182         if (!txq->empty_tx_reqs) {
1183                 PMD_DRV_LOG(ERR,
1184                         "Failed to allocate memory for empty Tx requests\n");
1185                 rte_free(txq->tx_buffer_info);
1186                 return -ENOMEM;
1187         }
1188
1189         txq->push_buf_intermediate_buf =
1190                 rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1191                         txq->tx_max_header_size,
1192                         RTE_CACHE_LINE_SIZE,
1193                         socket_id);
1194         if (!txq->push_buf_intermediate_buf) {
1195                 PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1196                 rte_free(txq->tx_buffer_info);
1197                 rte_free(txq->empty_tx_reqs);
1198                 return -ENOMEM;
1199         }
1200
1201         for (i = 0; i < txq->ring_size; i++)
1202                 txq->empty_tx_reqs[i] = i;
1203
1204         txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1205
1206         /* Check if caller provided the Tx cleanup threshold value. */
1207         if (tx_conf->tx_free_thresh != 0) {
1208                 txq->tx_free_thresh = tx_conf->tx_free_thresh;
1209         } else {
1210                 dyn_thresh = txq->ring_size -
1211                         txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1212                 txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1213                         txq->ring_size - ENA_REFILL_THRESH_PACKET);
1214         }
1215
1216         txq->missing_tx_completion_threshold =
1217                 RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1218
1219         /* Store pointer to this queue in upper layer */
1220         txq->configured = 1;
1221         dev->data->tx_queues[queue_idx] = txq;
1222
1223         return 0;
1224 }
1225
1226 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1227                               uint16_t queue_idx,
1228                               uint16_t nb_desc,
1229                               unsigned int socket_id,
1230                               const struct rte_eth_rxconf *rx_conf,
1231                               struct rte_mempool *mp)
1232 {
1233         struct ena_adapter *adapter = dev->data->dev_private;
1234         struct ena_ring *rxq = NULL;
1235         size_t buffer_size;
1236         int i;
1237         uint16_t dyn_thresh;
1238
1239         rxq = &adapter->rx_ring[queue_idx];
1240         if (rxq->configured) {
1241                 PMD_DRV_LOG(CRIT,
1242                         "API violation. Queue[%d] is already configured\n",
1243                         queue_idx);
1244                 return ENA_COM_FAULT;
1245         }
1246
1247         if (!rte_is_power_of_2(nb_desc)) {
1248                 PMD_DRV_LOG(ERR,
1249                         "Unsupported size of Rx queue: %d is not a power of 2.\n",
1250                         nb_desc);
1251                 return -EINVAL;
1252         }
1253
1254         if (nb_desc > adapter->max_rx_ring_size) {
1255                 PMD_DRV_LOG(ERR,
1256                         "Unsupported size of Rx queue (max size: %d)\n",
1257                         adapter->max_rx_ring_size);
1258                 return -EINVAL;
1259         }
1260
1261         /* ENA isn't supporting buffers smaller than 1400 bytes */
1262         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1263         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1264                 PMD_DRV_LOG(ERR,
1265                         "Unsupported size of Rx buffer: %zu (min size: %d)\n",
1266                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1267                 return -EINVAL;
1268         }
1269
1270         rxq->port_id = dev->data->port_id;
1271         rxq->next_to_clean = 0;
1272         rxq->next_to_use = 0;
1273         rxq->ring_size = nb_desc;
1274         rxq->size_mask = nb_desc - 1;
1275         rxq->numa_socket_id = socket_id;
1276         rxq->mb_pool = mp;
1277
1278         rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1279                 sizeof(struct ena_rx_buffer) * nb_desc,
1280                 RTE_CACHE_LINE_SIZE,
1281                 socket_id);
1282         if (!rxq->rx_buffer_info) {
1283                 PMD_DRV_LOG(ERR,
1284                         "Failed to allocate memory for Rx buffer info\n");
1285                 return -ENOMEM;
1286         }
1287
1288         rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1289                 sizeof(struct rte_mbuf *) * nb_desc,
1290                 RTE_CACHE_LINE_SIZE,
1291                 socket_id);
1292         if (!rxq->rx_refill_buffer) {
1293                 PMD_DRV_LOG(ERR,
1294                         "Failed to allocate memory for Rx refill buffer\n");
1295                 rte_free(rxq->rx_buffer_info);
1296                 rxq->rx_buffer_info = NULL;
1297                 return -ENOMEM;
1298         }
1299
1300         rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1301                 sizeof(uint16_t) * nb_desc,
1302                 RTE_CACHE_LINE_SIZE,
1303                 socket_id);
1304         if (!rxq->empty_rx_reqs) {
1305                 PMD_DRV_LOG(ERR,
1306                         "Failed to allocate memory for empty Rx requests\n");
1307                 rte_free(rxq->rx_buffer_info);
1308                 rxq->rx_buffer_info = NULL;
1309                 rte_free(rxq->rx_refill_buffer);
1310                 rxq->rx_refill_buffer = NULL;
1311                 return -ENOMEM;
1312         }
1313
1314         for (i = 0; i < nb_desc; i++)
1315                 rxq->empty_rx_reqs[i] = i;
1316
1317         rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1318
1319         if (rx_conf->rx_free_thresh != 0) {
1320                 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1321         } else {
1322                 dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1323                 rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1324                         (uint16_t)(ENA_REFILL_THRESH_PACKET));
1325         }
1326
1327         /* Store pointer to this queue in upper layer */
1328         rxq->configured = 1;
1329         dev->data->rx_queues[queue_idx] = rxq;
1330
1331         return 0;
1332 }
1333
1334 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1335                                   struct rte_mbuf *mbuf, uint16_t id)
1336 {
1337         struct ena_com_buf ebuf;
1338         int rc;
1339
1340         /* prepare physical address for DMA transaction */
1341         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1342         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1343
1344         /* pass resource to device */
1345         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1346         if (unlikely(rc != 0))
1347                 PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1348
1349         return rc;
1350 }
1351
1352 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1353 {
1354         unsigned int i;
1355         int rc;
1356         uint16_t next_to_use = rxq->next_to_use;
1357         uint16_t req_id;
1358 #ifdef RTE_ETHDEV_DEBUG_RX
1359         uint16_t in_use;
1360 #endif
1361         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1362
1363         if (unlikely(!count))
1364                 return 0;
1365
1366 #ifdef RTE_ETHDEV_DEBUG_RX
1367         in_use = rxq->ring_size - 1 -
1368                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1369         if (unlikely((in_use + count) >= rxq->ring_size))
1370                 PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1371 #endif
1372
1373         /* get resources for incoming packets */
1374         rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1375         if (unlikely(rc < 0)) {
1376                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1377                 ++rxq->rx_stats.mbuf_alloc_fail;
1378                 PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1379                 return 0;
1380         }
1381
1382         for (i = 0; i < count; i++) {
1383                 struct rte_mbuf *mbuf = mbufs[i];
1384                 struct ena_rx_buffer *rx_info;
1385
1386                 if (likely((i + 4) < count))
1387                         rte_prefetch0(mbufs[i + 4]);
1388
1389                 req_id = rxq->empty_rx_reqs[next_to_use];
1390                 rx_info = &rxq->rx_buffer_info[req_id];
1391
1392                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1393                 if (unlikely(rc != 0))
1394                         break;
1395
1396                 rx_info->mbuf = mbuf;
1397                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1398         }
1399
1400         if (unlikely(i < count)) {
1401                 PMD_RX_LOG(WARNING,
1402                         "Refilled Rx queue[%d] with only %d/%d buffers\n",
1403                         rxq->id, i, count);
1404                 rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1405                 ++rxq->rx_stats.refill_partial;
1406         }
1407
1408         /* When we submitted free resources to device... */
1409         if (likely(i > 0)) {
1410                 /* ...let HW know that it can fill buffers with data. */
1411                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1412
1413                 rxq->next_to_use = next_to_use;
1414         }
1415
1416         return i;
1417 }
1418
1419 static int ena_device_init(struct ena_com_dev *ena_dev,
1420                            struct rte_pci_device *pdev,
1421                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
1422                            bool *wd_state)
1423 {
1424         uint32_t aenq_groups;
1425         int rc;
1426         bool readless_supported;
1427
1428         /* Initialize mmio registers */
1429         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1430         if (rc) {
1431                 PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1432                 return rc;
1433         }
1434
1435         /* The PCIe configuration space revision id indicate if mmio reg
1436          * read is disabled.
1437          */
1438         readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1439         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1440
1441         /* reset device */
1442         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1443         if (rc) {
1444                 PMD_DRV_LOG(ERR, "Cannot reset device\n");
1445                 goto err_mmio_read_less;
1446         }
1447
1448         /* check FW version */
1449         rc = ena_com_validate_version(ena_dev);
1450         if (rc) {
1451                 PMD_DRV_LOG(ERR, "Device version is too low\n");
1452                 goto err_mmio_read_less;
1453         }
1454
1455         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1456
1457         /* ENA device administration layer init */
1458         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1459         if (rc) {
1460                 PMD_DRV_LOG(ERR,
1461                         "Cannot initialize ENA admin queue\n");
1462                 goto err_mmio_read_less;
1463         }
1464
1465         /* To enable the msix interrupts the driver needs to know the number
1466          * of queues. So the driver uses polling mode to retrieve this
1467          * information.
1468          */
1469         ena_com_set_admin_polling_mode(ena_dev, true);
1470
1471         ena_config_host_info(ena_dev);
1472
1473         /* Get Device Attributes and features */
1474         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1475         if (rc) {
1476                 PMD_DRV_LOG(ERR,
1477                         "Cannot get attribute for ENA device, rc: %d\n", rc);
1478                 goto err_admin_init;
1479         }
1480
1481         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1482                       BIT(ENA_ADMIN_NOTIFICATION) |
1483                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1484                       BIT(ENA_ADMIN_FATAL_ERROR) |
1485                       BIT(ENA_ADMIN_WARNING);
1486
1487         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1488         rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1489         if (rc) {
1490                 PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc: %d\n", rc);
1491                 goto err_admin_init;
1492         }
1493
1494         *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1495
1496         return 0;
1497
1498 err_admin_init:
1499         ena_com_admin_destroy(ena_dev);
1500
1501 err_mmio_read_less:
1502         ena_com_mmio_reg_read_request_destroy(ena_dev);
1503
1504         return rc;
1505 }
1506
1507 static void ena_interrupt_handler_rte(void *cb_arg)
1508 {
1509         struct rte_eth_dev *dev = cb_arg;
1510         struct ena_adapter *adapter = dev->data->dev_private;
1511         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1512
1513         ena_com_admin_q_comp_intr_handler(ena_dev);
1514         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1515                 ena_com_aenq_intr_handler(ena_dev, dev);
1516 }
1517
1518 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1519 {
1520         if (!adapter->wd_state)
1521                 return;
1522
1523         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1524                 return;
1525
1526         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1527             adapter->keep_alive_timeout)) {
1528                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1529                 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1530                 adapter->trigger_reset = true;
1531                 ++adapter->dev_stats.wd_expired;
1532         }
1533 }
1534
1535 /* Check if admin queue is enabled */
1536 static void check_for_admin_com_state(struct ena_adapter *adapter)
1537 {
1538         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1539                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1540                 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1541                 adapter->trigger_reset = true;
1542         }
1543 }
1544
1545 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1546                                             struct ena_ring *tx_ring)
1547 {
1548         struct ena_tx_buffer *tx_buf;
1549         uint64_t timestamp;
1550         uint64_t completion_delay;
1551         uint32_t missed_tx = 0;
1552         unsigned int i;
1553         int rc = 0;
1554
1555         for (i = 0; i < tx_ring->ring_size; ++i) {
1556                 tx_buf = &tx_ring->tx_buffer_info[i];
1557                 timestamp = tx_buf->timestamp;
1558
1559                 if (timestamp == 0)
1560                         continue;
1561
1562                 completion_delay = rte_get_timer_cycles() - timestamp;
1563                 if (completion_delay > adapter->missing_tx_completion_to) {
1564                         if (unlikely(!tx_buf->print_once)) {
1565                                 PMD_TX_LOG(WARNING,
1566                                         "Found a Tx that wasn't completed on time, qid %d, index %d. "
1567                                         "Missing Tx outstanding for %" PRIu64 " msecs.\n",
1568                                         tx_ring->id, i, completion_delay /
1569                                         rte_get_timer_hz() * 1000);
1570                                 tx_buf->print_once = true;
1571                         }
1572                         ++missed_tx;
1573                 }
1574         }
1575
1576         if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1577                 PMD_DRV_LOG(ERR,
1578                         "The number of lost Tx completions is above the threshold (%d > %d). "
1579                         "Trigger the device reset.\n",
1580                         missed_tx,
1581                         tx_ring->missing_tx_completion_threshold);
1582                 adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1583                 adapter->trigger_reset = true;
1584                 rc = -EIO;
1585         }
1586
1587         tx_ring->tx_stats.missed_tx += missed_tx;
1588
1589         return rc;
1590 }
1591
1592 static void check_for_tx_completions(struct ena_adapter *adapter)
1593 {
1594         struct ena_ring *tx_ring;
1595         uint64_t tx_cleanup_delay;
1596         size_t qid;
1597         int budget;
1598         uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1599
1600         if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1601                 return;
1602
1603         nb_tx_queues = adapter->edev_data->nb_tx_queues;
1604         budget = adapter->missing_tx_completion_budget;
1605
1606         qid = adapter->last_tx_comp_qid;
1607         while (budget-- > 0) {
1608                 tx_ring = &adapter->tx_ring[qid];
1609
1610                 /* Tx cleanup is called only by the burst function and can be
1611                  * called dynamically by the application. Also cleanup is
1612                  * limited by the threshold. To avoid false detection of the
1613                  * missing HW Tx completion, get the delay since last cleanup
1614                  * function was called.
1615                  */
1616                 tx_cleanup_delay = rte_get_timer_cycles() -
1617                         tx_ring->last_cleanup_ticks;
1618                 if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1619                         check_for_tx_completion_in_queue(adapter, tx_ring);
1620                 qid = (qid + 1) % nb_tx_queues;
1621         }
1622
1623         adapter->last_tx_comp_qid = qid;
1624 }
1625
1626 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1627                                   void *arg)
1628 {
1629         struct rte_eth_dev *dev = arg;
1630         struct ena_adapter *adapter = dev->data->dev_private;
1631
1632         check_for_missing_keep_alive(adapter);
1633         check_for_admin_com_state(adapter);
1634         check_for_tx_completions(adapter);
1635
1636         if (unlikely(adapter->trigger_reset)) {
1637                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1638                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1639                         NULL);
1640         }
1641 }
1642
1643 static inline void
1644 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1645                                struct ena_admin_feature_llq_desc *llq,
1646                                bool use_large_llq_hdr)
1647 {
1648         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1649         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1650         llq_config->llq_num_decs_before_header =
1651                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1652
1653         if (use_large_llq_hdr &&
1654             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1655                 llq_config->llq_ring_entry_size =
1656                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1657                 llq_config->llq_ring_entry_size_value = 256;
1658         } else {
1659                 llq_config->llq_ring_entry_size =
1660                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1661                 llq_config->llq_ring_entry_size_value = 128;
1662         }
1663 }
1664
1665 static int
1666 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1667                                 struct ena_com_dev *ena_dev,
1668                                 struct ena_admin_feature_llq_desc *llq,
1669                                 struct ena_llq_configurations *llq_default_configurations)
1670 {
1671         int rc;
1672         u32 llq_feature_mask;
1673
1674         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1675         if (!(ena_dev->supported_features & llq_feature_mask)) {
1676                 PMD_DRV_LOG(INFO,
1677                         "LLQ is not supported. Fallback to host mode policy.\n");
1678                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1679                 return 0;
1680         }
1681
1682         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1683         if (unlikely(rc)) {
1684                 PMD_INIT_LOG(WARNING,
1685                         "Failed to config dev mode. Fallback to host mode policy.\n");
1686                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1687                 return 0;
1688         }
1689
1690         /* Nothing to config, exit */
1691         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1692                 return 0;
1693
1694         if (!adapter->dev_mem_base) {
1695                 PMD_DRV_LOG(ERR,
1696                         "Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1697                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1698                 return 0;
1699         }
1700
1701         ena_dev->mem_bar = adapter->dev_mem_base;
1702
1703         return 0;
1704 }
1705
1706 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1707         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1708 {
1709         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1710
1711         /* Regular queues capabilities */
1712         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1713                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1714                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1715                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1716                                     max_queue_ext->max_rx_cq_num);
1717                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1718                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1719         } else {
1720                 struct ena_admin_queue_feature_desc *max_queues =
1721                         &get_feat_ctx->max_queues;
1722                 io_tx_sq_num = max_queues->max_sq_num;
1723                 io_tx_cq_num = max_queues->max_cq_num;
1724                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1725         }
1726
1727         /* In case of LLQ use the llq number in the get feature cmd */
1728         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1729                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1730
1731         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1732         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1733         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1734
1735         if (unlikely(max_num_io_queues == 0)) {
1736                 PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1737                 return -EFAULT;
1738         }
1739
1740         return max_num_io_queues;
1741 }
1742
1743 static void
1744 ena_set_offloads(struct ena_offloads *offloads,
1745                  struct ena_admin_feature_offload_desc *offload_desc)
1746 {
1747         if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
1748                 offloads->tx_offloads |= ENA_IPV4_TSO;
1749
1750         /* Tx IPv4 checksum offloads */
1751         if (offload_desc->tx &
1752             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
1753                 offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
1754         if (offload_desc->tx &
1755             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
1756                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
1757         if (offload_desc->tx &
1758             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
1759                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
1760
1761         /* Tx IPv6 checksum offloads */
1762         if (offload_desc->tx &
1763             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
1764                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
1765         if (offload_desc->tx &
1766              ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
1767                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
1768
1769         /* Rx IPv4 checksum offloads */
1770         if (offload_desc->rx_supported &
1771             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
1772                 offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
1773         if (offload_desc->rx_supported &
1774             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
1775                 offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
1776
1777         /* Rx IPv6 checksum offloads */
1778         if (offload_desc->rx_supported &
1779             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
1780                 offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
1781
1782         if (offload_desc->rx_supported &
1783             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
1784                 offloads->rx_offloads |= ENA_RX_RSS_HASH;
1785 }
1786
1787 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1788 {
1789         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1790         struct rte_pci_device *pci_dev;
1791         struct rte_intr_handle *intr_handle;
1792         struct ena_adapter *adapter = eth_dev->data->dev_private;
1793         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1794         struct ena_com_dev_get_features_ctx get_feat_ctx;
1795         struct ena_llq_configurations llq_config;
1796         const char *queue_type_str;
1797         uint32_t max_num_io_queues;
1798         int rc;
1799         static int adapters_found;
1800         bool disable_meta_caching;
1801         bool wd_state = false;
1802
1803         eth_dev->dev_ops = &ena_dev_ops;
1804         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1805         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1806         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1807
1808         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1809                 return 0;
1810
1811         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1812
1813         memset(adapter, 0, sizeof(struct ena_adapter));
1814         ena_dev = &adapter->ena_dev;
1815
1816         adapter->edev_data = eth_dev->data;
1817
1818         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1819
1820         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
1821                      pci_dev->addr.domain,
1822                      pci_dev->addr.bus,
1823                      pci_dev->addr.devid,
1824                      pci_dev->addr.function);
1825
1826         intr_handle = pci_dev->intr_handle;
1827
1828         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1829         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1830
1831         if (!adapter->regs) {
1832                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
1833                              ENA_REGS_BAR);
1834                 return -ENXIO;
1835         }
1836
1837         ena_dev->reg_bar = adapter->regs;
1838         /* This is a dummy pointer for ena_com functions. */
1839         ena_dev->dmadev = adapter;
1840
1841         adapter->id_number = adapters_found;
1842
1843         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1844                  adapter->id_number);
1845
1846         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1847         if (rc != 0) {
1848                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1849                 goto err;
1850         }
1851
1852         /* device specific initialization routine */
1853         rc = ena_device_init(ena_dev, pci_dev, &get_feat_ctx, &wd_state);
1854         if (rc) {
1855                 PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
1856                 goto err;
1857         }
1858         adapter->wd_state = wd_state;
1859
1860         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1861                 adapter->use_large_llq_hdr);
1862         rc = ena_set_queues_placement_policy(adapter, ena_dev,
1863                                              &get_feat_ctx.llq, &llq_config);
1864         if (unlikely(rc)) {
1865                 PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
1866                 return rc;
1867         }
1868
1869         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1870                 queue_type_str = "Regular";
1871         else
1872                 queue_type_str = "Low latency";
1873         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1874
1875         calc_queue_ctx.ena_dev = ena_dev;
1876         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1877
1878         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1879         rc = ena_calc_io_queue_size(&calc_queue_ctx,
1880                 adapter->use_large_llq_hdr);
1881         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1882                 rc = -EFAULT;
1883                 goto err_device_destroy;
1884         }
1885
1886         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1887         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1888         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1889         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1890         adapter->max_num_io_queues = max_num_io_queues;
1891
1892         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1893                 disable_meta_caching =
1894                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1895                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
1896         } else {
1897                 disable_meta_caching = false;
1898         }
1899
1900         /* prepare ring structures */
1901         ena_init_rings(adapter, disable_meta_caching);
1902
1903         ena_config_debug_area(adapter);
1904
1905         /* Set max MTU for this device */
1906         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1907
1908         ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
1909
1910         /* Copy MAC address and point DPDK to it */
1911         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1912         rte_ether_addr_copy((struct rte_ether_addr *)
1913                         get_feat_ctx.dev_attr.mac_addr,
1914                         (struct rte_ether_addr *)adapter->mac_addr);
1915
1916         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
1917         if (unlikely(rc != 0)) {
1918                 PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
1919                 goto err_delete_debug_area;
1920         }
1921
1922         adapter->drv_stats = rte_zmalloc("adapter stats",
1923                                          sizeof(*adapter->drv_stats),
1924                                          RTE_CACHE_LINE_SIZE);
1925         if (!adapter->drv_stats) {
1926                 PMD_DRV_LOG(ERR,
1927                         "Failed to allocate memory for adapter statistics\n");
1928                 rc = -ENOMEM;
1929                 goto err_rss_destroy;
1930         }
1931
1932         rte_spinlock_init(&adapter->admin_lock);
1933
1934         rte_intr_callback_register(intr_handle,
1935                                    ena_interrupt_handler_rte,
1936                                    eth_dev);
1937         rte_intr_enable(intr_handle);
1938         ena_com_set_admin_polling_mode(ena_dev, false);
1939         ena_com_admin_aenq_enable(ena_dev);
1940
1941         if (adapters_found == 0)
1942                 rte_timer_subsystem_init();
1943         rte_timer_init(&adapter->timer_wd);
1944
1945         adapters_found++;
1946         adapter->state = ENA_ADAPTER_STATE_INIT;
1947
1948         return 0;
1949
1950 err_rss_destroy:
1951         ena_com_rss_destroy(ena_dev);
1952 err_delete_debug_area:
1953         ena_com_delete_debug_area(ena_dev);
1954
1955 err_device_destroy:
1956         ena_com_delete_host_info(ena_dev);
1957         ena_com_admin_destroy(ena_dev);
1958
1959 err:
1960         return rc;
1961 }
1962
1963 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1964 {
1965         struct ena_adapter *adapter = eth_dev->data->dev_private;
1966         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1967
1968         if (adapter->state == ENA_ADAPTER_STATE_FREE)
1969                 return;
1970
1971         ena_com_set_admin_running_state(ena_dev, false);
1972
1973         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1974                 ena_close(eth_dev);
1975
1976         ena_com_rss_destroy(ena_dev);
1977
1978         ena_com_delete_debug_area(ena_dev);
1979         ena_com_delete_host_info(ena_dev);
1980
1981         ena_com_abort_admin_commands(ena_dev);
1982         ena_com_wait_for_abort_completion(ena_dev);
1983         ena_com_admin_destroy(ena_dev);
1984         ena_com_mmio_reg_read_request_destroy(ena_dev);
1985
1986         adapter->state = ENA_ADAPTER_STATE_FREE;
1987 }
1988
1989 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1990 {
1991         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1992                 return 0;
1993
1994         ena_destroy_device(eth_dev);
1995
1996         return 0;
1997 }
1998
1999 static int ena_dev_configure(struct rte_eth_dev *dev)
2000 {
2001         struct ena_adapter *adapter = dev->data->dev_private;
2002
2003         adapter->state = ENA_ADAPTER_STATE_CONFIG;
2004
2005         if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2006                 dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2007         dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2008
2009         /* Scattered Rx cannot be turned off in the HW, so this capability must
2010          * be forced.
2011          */
2012         dev->data->scattered_rx = 1;
2013
2014         adapter->last_tx_comp_qid = 0;
2015
2016         adapter->missing_tx_completion_budget =
2017                 RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2018
2019         adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2020         /* To avoid detection of the spurious Tx completion timeout due to
2021          * application not calling the Tx cleanup function, set timeout for the
2022          * Tx queue which should be half of the missing completion timeout for a
2023          * safety. If there will be a lot of missing Tx completions in the
2024          * queue, they will be detected sooner or later.
2025          */
2026         adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2027
2028         return 0;
2029 }
2030
2031 static void ena_init_rings(struct ena_adapter *adapter,
2032                            bool disable_meta_caching)
2033 {
2034         size_t i;
2035
2036         for (i = 0; i < adapter->max_num_io_queues; i++) {
2037                 struct ena_ring *ring = &adapter->tx_ring[i];
2038
2039                 ring->configured = 0;
2040                 ring->type = ENA_RING_TYPE_TX;
2041                 ring->adapter = adapter;
2042                 ring->id = i;
2043                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2044                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2045                 ring->sgl_size = adapter->max_tx_sgl_size;
2046                 ring->disable_meta_caching = disable_meta_caching;
2047         }
2048
2049         for (i = 0; i < adapter->max_num_io_queues; i++) {
2050                 struct ena_ring *ring = &adapter->rx_ring[i];
2051
2052                 ring->configured = 0;
2053                 ring->type = ENA_RING_TYPE_RX;
2054                 ring->adapter = adapter;
2055                 ring->id = i;
2056                 ring->sgl_size = adapter->max_rx_sgl_size;
2057         }
2058 }
2059
2060 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2061 {
2062         uint64_t port_offloads = 0;
2063
2064         if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2065                 port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2066
2067         if (adapter->offloads.rx_offloads &
2068             (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2069                 port_offloads |=
2070                         RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2071
2072         if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2073                 port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2074
2075         port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2076
2077         return port_offloads;
2078 }
2079
2080 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2081 {
2082         uint64_t port_offloads = 0;
2083
2084         if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2085                 port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2086
2087         if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2088                 port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2089         if (adapter->offloads.tx_offloads &
2090             (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2091              ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2092                 port_offloads |=
2093                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2094
2095         port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2096
2097         return port_offloads;
2098 }
2099
2100 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2101 {
2102         RTE_SET_USED(adapter);
2103
2104         return 0;
2105 }
2106
2107 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2108 {
2109         RTE_SET_USED(adapter);
2110
2111         return 0;
2112 }
2113
2114 static int ena_infos_get(struct rte_eth_dev *dev,
2115                           struct rte_eth_dev_info *dev_info)
2116 {
2117         struct ena_adapter *adapter;
2118         struct ena_com_dev *ena_dev;
2119
2120         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2121         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2122         adapter = dev->data->dev_private;
2123
2124         ena_dev = &adapter->ena_dev;
2125         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2126
2127         dev_info->speed_capa =
2128                         RTE_ETH_LINK_SPEED_1G   |
2129                         RTE_ETH_LINK_SPEED_2_5G |
2130                         RTE_ETH_LINK_SPEED_5G   |
2131                         RTE_ETH_LINK_SPEED_10G  |
2132                         RTE_ETH_LINK_SPEED_25G  |
2133                         RTE_ETH_LINK_SPEED_40G  |
2134                         RTE_ETH_LINK_SPEED_50G  |
2135                         RTE_ETH_LINK_SPEED_100G;
2136
2137         /* Inform framework about available features */
2138         dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2139         dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2140         dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2141         dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2142
2143         dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2144         dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2145
2146         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2147         dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2148                 RTE_ETHER_CRC_LEN;
2149         dev_info->min_mtu = ENA_MIN_MTU;
2150         dev_info->max_mtu = adapter->max_mtu;
2151         dev_info->max_mac_addrs = 1;
2152
2153         dev_info->max_rx_queues = adapter->max_num_io_queues;
2154         dev_info->max_tx_queues = adapter->max_num_io_queues;
2155         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2156
2157         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2158         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2159         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2160                                         adapter->max_rx_sgl_size);
2161         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2162                                         adapter->max_rx_sgl_size);
2163
2164         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2165         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2166         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2167                                         adapter->max_tx_sgl_size);
2168         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2169                                         adapter->max_tx_sgl_size);
2170
2171         dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2172         dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2173
2174         return 0;
2175 }
2176
2177 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2178 {
2179         mbuf->data_len = len;
2180         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2181         mbuf->refcnt = 1;
2182         mbuf->next = NULL;
2183 }
2184
2185 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2186                                     struct ena_com_rx_buf_info *ena_bufs,
2187                                     uint32_t descs,
2188                                     uint16_t *next_to_clean,
2189                                     uint8_t offset)
2190 {
2191         struct rte_mbuf *mbuf;
2192         struct rte_mbuf *mbuf_head;
2193         struct ena_rx_buffer *rx_info;
2194         int rc;
2195         uint16_t ntc, len, req_id, buf = 0;
2196
2197         if (unlikely(descs == 0))
2198                 return NULL;
2199
2200         ntc = *next_to_clean;
2201
2202         len = ena_bufs[buf].len;
2203         req_id = ena_bufs[buf].req_id;
2204
2205         rx_info = &rx_ring->rx_buffer_info[req_id];
2206
2207         mbuf = rx_info->mbuf;
2208         RTE_ASSERT(mbuf != NULL);
2209
2210         ena_init_rx_mbuf(mbuf, len);
2211
2212         /* Fill the mbuf head with the data specific for 1st segment. */
2213         mbuf_head = mbuf;
2214         mbuf_head->nb_segs = descs;
2215         mbuf_head->port = rx_ring->port_id;
2216         mbuf_head->pkt_len = len;
2217         mbuf_head->data_off += offset;
2218
2219         rx_info->mbuf = NULL;
2220         rx_ring->empty_rx_reqs[ntc] = req_id;
2221         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2222
2223         while (--descs) {
2224                 ++buf;
2225                 len = ena_bufs[buf].len;
2226                 req_id = ena_bufs[buf].req_id;
2227
2228                 rx_info = &rx_ring->rx_buffer_info[req_id];
2229                 RTE_ASSERT(rx_info->mbuf != NULL);
2230
2231                 if (unlikely(len == 0)) {
2232                         /*
2233                          * Some devices can pass descriptor with the length 0.
2234                          * To avoid confusion, the PMD is simply putting the
2235                          * descriptor back, as it was never used. We'll avoid
2236                          * mbuf allocation that way.
2237                          */
2238                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2239                                 rx_info->mbuf, req_id);
2240                         if (unlikely(rc != 0)) {
2241                                 /* Free the mbuf in case of an error. */
2242                                 rte_mbuf_raw_free(rx_info->mbuf);
2243                         } else {
2244                                 /*
2245                                  * If there was no error, just exit the loop as
2246                                  * 0 length descriptor is always the last one.
2247                                  */
2248                                 break;
2249                         }
2250                 } else {
2251                         /* Create an mbuf chain. */
2252                         mbuf->next = rx_info->mbuf;
2253                         mbuf = mbuf->next;
2254
2255                         ena_init_rx_mbuf(mbuf, len);
2256                         mbuf_head->pkt_len += len;
2257                 }
2258
2259                 /*
2260                  * Mark the descriptor as depleted and perform necessary
2261                  * cleanup.
2262                  * This code will execute in two cases:
2263                  *  1. Descriptor len was greater than 0 - normal situation.
2264                  *  2. Descriptor len was 0 and we failed to add the descriptor
2265                  *     to the device. In that situation, we should try to add
2266                  *     the mbuf again in the populate routine and mark the
2267                  *     descriptor as used up by the device.
2268                  */
2269                 rx_info->mbuf = NULL;
2270                 rx_ring->empty_rx_reqs[ntc] = req_id;
2271                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2272         }
2273
2274         *next_to_clean = ntc;
2275
2276         return mbuf_head;
2277 }
2278
2279 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2280                                   uint16_t nb_pkts)
2281 {
2282         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2283         unsigned int free_queue_entries;
2284         uint16_t next_to_clean = rx_ring->next_to_clean;
2285         uint16_t descs_in_use;
2286         struct rte_mbuf *mbuf;
2287         uint16_t completed;
2288         struct ena_com_rx_ctx ena_rx_ctx;
2289         int i, rc = 0;
2290         bool fill_hash;
2291
2292 #ifdef RTE_ETHDEV_DEBUG_RX
2293         /* Check adapter state */
2294         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2295                 PMD_RX_LOG(ALERT,
2296                         "Trying to receive pkts while device is NOT running\n");
2297                 return 0;
2298         }
2299 #endif
2300
2301         fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2302
2303         descs_in_use = rx_ring->ring_size -
2304                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2305         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2306
2307         for (completed = 0; completed < nb_pkts; completed++) {
2308                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2309                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2310                 ena_rx_ctx.descs = 0;
2311                 ena_rx_ctx.pkt_offset = 0;
2312                 /* receive packet context */
2313                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2314                                     rx_ring->ena_com_io_sq,
2315                                     &ena_rx_ctx);
2316                 if (unlikely(rc)) {
2317                         PMD_RX_LOG(ERR,
2318                                 "Failed to get the packet from the device, rc: %d\n",
2319                                 rc);
2320                         if (rc == ENA_COM_NO_SPACE) {
2321                                 ++rx_ring->rx_stats.bad_desc_num;
2322                                 rx_ring->adapter->reset_reason =
2323                                         ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2324                         } else {
2325                                 ++rx_ring->rx_stats.bad_req_id;
2326                                 rx_ring->adapter->reset_reason =
2327                                         ENA_REGS_RESET_INV_RX_REQ_ID;
2328                         }
2329                         rx_ring->adapter->trigger_reset = true;
2330                         return 0;
2331                 }
2332
2333                 mbuf = ena_rx_mbuf(rx_ring,
2334                         ena_rx_ctx.ena_bufs,
2335                         ena_rx_ctx.descs,
2336                         &next_to_clean,
2337                         ena_rx_ctx.pkt_offset);
2338                 if (unlikely(mbuf == NULL)) {
2339                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2340                                 rx_ring->empty_rx_reqs[next_to_clean] =
2341                                         rx_ring->ena_bufs[i].req_id;
2342                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2343                                         next_to_clean, rx_ring->size_mask);
2344                         }
2345                         break;
2346                 }
2347
2348                 /* fill mbuf attributes if any */
2349                 ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2350
2351                 if (unlikely(mbuf->ol_flags &
2352                                 (RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2353                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2354
2355                 rx_pkts[completed] = mbuf;
2356                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2357         }
2358
2359         rx_ring->rx_stats.cnt += completed;
2360         rx_ring->next_to_clean = next_to_clean;
2361
2362         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2363
2364         /* Burst refill to save doorbells, memory barriers, const interval */
2365         if (free_queue_entries >= rx_ring->rx_free_thresh) {
2366                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2367                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2368         }
2369
2370         return completed;
2371 }
2372
2373 static uint16_t
2374 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2375                 uint16_t nb_pkts)
2376 {
2377         int32_t ret;
2378         uint32_t i;
2379         struct rte_mbuf *m;
2380         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2381         struct ena_adapter *adapter = tx_ring->adapter;
2382         struct rte_ipv4_hdr *ip_hdr;
2383         uint64_t ol_flags;
2384         uint64_t l4_csum_flag;
2385         uint64_t dev_offload_capa;
2386         uint16_t frag_field;
2387         bool need_pseudo_csum;
2388
2389         dev_offload_capa = adapter->offloads.tx_offloads;
2390         for (i = 0; i != nb_pkts; i++) {
2391                 m = tx_pkts[i];
2392                 ol_flags = m->ol_flags;
2393
2394                 /* Check if any offload flag was set */
2395                 if (ol_flags == 0)
2396                         continue;
2397
2398                 l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2399                 /* SCTP checksum offload is not supported by the ENA. */
2400                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2401                     l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2402                         PMD_TX_LOG(DEBUG,
2403                                 "mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2404                                 i, ol_flags);
2405                         rte_errno = ENOTSUP;
2406                         return i;
2407                 }
2408
2409                 if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2410                     !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2411                       m->nb_segs == tx_ring->sgl_size &&
2412                       m->data_len < tx_ring->tx_max_header_size))) {
2413                         PMD_TX_LOG(DEBUG,
2414                                 "mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2415                                 i, m->nb_segs);
2416                         rte_errno = EINVAL;
2417                         return i;
2418                 }
2419
2420 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2421                 /* Check if requested offload is also enabled for the queue */
2422                 if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2423                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2424                     (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2425                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2426                     (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2427                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2428                         PMD_TX_LOG(DEBUG,
2429                                 "mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2430                                 i, m->nb_segs, tx_ring->id);
2431                         rte_errno = EINVAL;
2432                         return i;
2433                 }
2434
2435                 /* The caller is obligated to set l2 and l3 len if any cksum
2436                  * offload is enabled.
2437                  */
2438                 if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2439                     (m->l2_len == 0 || m->l3_len == 0))) {
2440                         PMD_TX_LOG(DEBUG,
2441                                 "mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2442                                 i);
2443                         rte_errno = EINVAL;
2444                         return i;
2445                 }
2446                 ret = rte_validate_tx_offload(m);
2447                 if (ret != 0) {
2448                         rte_errno = -ret;
2449                         return i;
2450                 }
2451 #endif
2452
2453                 /* Verify HW support for requested offloads and determine if
2454                  * pseudo header checksum is needed.
2455                  */
2456                 need_pseudo_csum = false;
2457                 if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2458                         if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2459                             !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2460                                 rte_errno = ENOTSUP;
2461                                 return i;
2462                         }
2463
2464                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2465                             !(dev_offload_capa & ENA_IPV4_TSO)) {
2466                                 rte_errno = ENOTSUP;
2467                                 return i;
2468                         }
2469
2470                         /* Check HW capabilities and if pseudo csum is needed
2471                          * for L4 offloads.
2472                          */
2473                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2474                             !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2475                                 if (dev_offload_capa &
2476                                     ENA_L4_IPV4_CSUM_PARTIAL) {
2477                                         need_pseudo_csum = true;
2478                                 } else {
2479                                         rte_errno = ENOTSUP;
2480                                         return i;
2481                                 }
2482                         }
2483
2484                         /* Parse the DF flag */
2485                         ip_hdr = rte_pktmbuf_mtod_offset(m,
2486                                 struct rte_ipv4_hdr *, m->l2_len);
2487                         frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2488                         if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2489                                 m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2490                         } else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2491                                 /* In case we are supposed to TSO and have DF
2492                                  * not set (DF=0) hardware must be provided with
2493                                  * partial checksum.
2494                                  */
2495                                 need_pseudo_csum = true;
2496                         }
2497                 } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2498                         /* There is no support for IPv6 TSO as for now. */
2499                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2500                                 rte_errno = ENOTSUP;
2501                                 return i;
2502                         }
2503
2504                         /* Check HW capabilities and if pseudo csum is needed */
2505                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2506                             !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2507                                 if (dev_offload_capa &
2508                                     ENA_L4_IPV6_CSUM_PARTIAL) {
2509                                         need_pseudo_csum = true;
2510                                 } else {
2511                                         rte_errno = ENOTSUP;
2512                                         return i;
2513                                 }
2514                         }
2515                 }
2516
2517                 if (need_pseudo_csum) {
2518                         ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2519                         if (ret != 0) {
2520                                 rte_errno = -ret;
2521                                 return i;
2522                         }
2523                 }
2524         }
2525
2526         return i;
2527 }
2528
2529 static void ena_update_hints(struct ena_adapter *adapter,
2530                              struct ena_admin_ena_hw_hints *hints)
2531 {
2532         if (hints->admin_completion_tx_timeout)
2533                 adapter->ena_dev.admin_queue.completion_timeout =
2534                         hints->admin_completion_tx_timeout * 1000;
2535
2536         if (hints->mmio_read_timeout)
2537                 /* convert to usec */
2538                 adapter->ena_dev.mmio_read.reg_read_to =
2539                         hints->mmio_read_timeout * 1000;
2540
2541         if (hints->missing_tx_completion_timeout) {
2542                 if (hints->missing_tx_completion_timeout ==
2543                     ENA_HW_HINTS_NO_TIMEOUT) {
2544                         adapter->missing_tx_completion_to =
2545                                 ENA_HW_HINTS_NO_TIMEOUT;
2546                 } else {
2547                         /* Convert from msecs to ticks */
2548                         adapter->missing_tx_completion_to = rte_get_timer_hz() *
2549                                 hints->missing_tx_completion_timeout / 1000;
2550                         adapter->tx_cleanup_stall_delay =
2551                                 adapter->missing_tx_completion_to / 2;
2552                 }
2553         }
2554
2555         if (hints->driver_watchdog_timeout) {
2556                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2557                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2558                 else
2559                         // Convert msecs to ticks
2560                         adapter->keep_alive_timeout =
2561                                 (hints->driver_watchdog_timeout *
2562                                 rte_get_timer_hz()) / 1000;
2563         }
2564 }
2565
2566 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2567         struct ena_tx_buffer *tx_info,
2568         struct rte_mbuf *mbuf,
2569         void **push_header,
2570         uint16_t *header_len)
2571 {
2572         struct ena_com_buf *ena_buf;
2573         uint16_t delta, seg_len, push_len;
2574
2575         delta = 0;
2576         seg_len = mbuf->data_len;
2577
2578         tx_info->mbuf = mbuf;
2579         ena_buf = tx_info->bufs;
2580
2581         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2582                 /*
2583                  * Tx header might be (and will be in most cases) smaller than
2584                  * tx_max_header_size. But it's not an issue to send more data
2585                  * to the device, than actually needed if the mbuf size is
2586                  * greater than tx_max_header_size.
2587                  */
2588                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2589                 *header_len = push_len;
2590
2591                 if (likely(push_len <= seg_len)) {
2592                         /* If the push header is in the single segment, then
2593                          * just point it to the 1st mbuf data.
2594                          */
2595                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2596                 } else {
2597                         /* If the push header lays in the several segments, copy
2598                          * it to the intermediate buffer.
2599                          */
2600                         rte_pktmbuf_read(mbuf, 0, push_len,
2601                                 tx_ring->push_buf_intermediate_buf);
2602                         *push_header = tx_ring->push_buf_intermediate_buf;
2603                         delta = push_len - seg_len;
2604                 }
2605         } else {
2606                 *push_header = NULL;
2607                 *header_len = 0;
2608                 push_len = 0;
2609         }
2610
2611         /* Process first segment taking into consideration pushed header */
2612         if (seg_len > push_len) {
2613                 ena_buf->paddr = mbuf->buf_iova +
2614                                 mbuf->data_off +
2615                                 push_len;
2616                 ena_buf->len = seg_len - push_len;
2617                 ena_buf++;
2618                 tx_info->num_of_bufs++;
2619         }
2620
2621         while ((mbuf = mbuf->next) != NULL) {
2622                 seg_len = mbuf->data_len;
2623
2624                 /* Skip mbufs if whole data is pushed as a header */
2625                 if (unlikely(delta > seg_len)) {
2626                         delta -= seg_len;
2627                         continue;
2628                 }
2629
2630                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2631                 ena_buf->len = seg_len - delta;
2632                 ena_buf++;
2633                 tx_info->num_of_bufs++;
2634
2635                 delta = 0;
2636         }
2637 }
2638
2639 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2640 {
2641         struct ena_tx_buffer *tx_info;
2642         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2643         uint16_t next_to_use;
2644         uint16_t header_len;
2645         uint16_t req_id;
2646         void *push_header;
2647         int nb_hw_desc;
2648         int rc;
2649
2650         /* Checking for space for 2 additional metadata descriptors due to
2651          * possible header split and metadata descriptor
2652          */
2653         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2654                                           mbuf->nb_segs + 2)) {
2655                 PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2656                 return ENA_COM_NO_MEM;
2657         }
2658
2659         next_to_use = tx_ring->next_to_use;
2660
2661         req_id = tx_ring->empty_tx_reqs[next_to_use];
2662         tx_info = &tx_ring->tx_buffer_info[req_id];
2663         tx_info->num_of_bufs = 0;
2664         RTE_ASSERT(tx_info->mbuf == NULL);
2665
2666         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2667
2668         ena_tx_ctx.ena_bufs = tx_info->bufs;
2669         ena_tx_ctx.push_header = push_header;
2670         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2671         ena_tx_ctx.req_id = req_id;
2672         ena_tx_ctx.header_len = header_len;
2673
2674         /* Set Tx offloads flags, if applicable */
2675         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2676                 tx_ring->disable_meta_caching);
2677
2678         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2679                         &ena_tx_ctx))) {
2680                 PMD_TX_LOG(DEBUG,
2681                         "LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2682                         tx_ring->id);
2683                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2684                 tx_ring->tx_stats.doorbells++;
2685                 tx_ring->pkts_without_db = false;
2686         }
2687
2688         /* prepare the packet's descriptors to dma engine */
2689         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2690                 &nb_hw_desc);
2691         if (unlikely(rc)) {
2692                 PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2693                 ++tx_ring->tx_stats.prepare_ctx_err;
2694                 tx_ring->adapter->reset_reason =
2695                     ENA_REGS_RESET_DRIVER_INVALID_STATE;
2696                 tx_ring->adapter->trigger_reset = true;
2697                 return rc;
2698         }
2699
2700         tx_info->tx_descs = nb_hw_desc;
2701         tx_info->timestamp = rte_get_timer_cycles();
2702
2703         tx_ring->tx_stats.cnt++;
2704         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2705
2706         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2707                 tx_ring->size_mask);
2708
2709         return 0;
2710 }
2711
2712 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2713 {
2714         unsigned int total_tx_descs = 0;
2715         uint16_t cleanup_budget;
2716         uint16_t next_to_clean = tx_ring->next_to_clean;
2717
2718         /* Attempt to release all Tx descriptors (ring_size - 1 -> size_mask) */
2719         cleanup_budget = tx_ring->size_mask;
2720
2721         while (likely(total_tx_descs < cleanup_budget)) {
2722                 struct rte_mbuf *mbuf;
2723                 struct ena_tx_buffer *tx_info;
2724                 uint16_t req_id;
2725
2726                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2727                         break;
2728
2729                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2730                         break;
2731
2732                 /* Get Tx info & store how many descs were processed  */
2733                 tx_info = &tx_ring->tx_buffer_info[req_id];
2734                 tx_info->timestamp = 0;
2735
2736                 mbuf = tx_info->mbuf;
2737                 rte_pktmbuf_free(mbuf);
2738
2739                 tx_info->mbuf = NULL;
2740                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2741
2742                 total_tx_descs += tx_info->tx_descs;
2743
2744                 /* Put back descriptor to the ring for reuse */
2745                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2746                         tx_ring->size_mask);
2747         }
2748
2749         if (likely(total_tx_descs > 0)) {
2750                 /* acknowledge completion of sent packets */
2751                 tx_ring->next_to_clean = next_to_clean;
2752                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2753                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2754         }
2755
2756         /* Notify completion handler that the cleanup was just called */
2757         tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
2758 }
2759
2760 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2761                                   uint16_t nb_pkts)
2762 {
2763         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2764         int available_desc;
2765         uint16_t sent_idx = 0;
2766
2767 #ifdef RTE_ETHDEV_DEBUG_TX
2768         /* Check adapter state */
2769         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2770                 PMD_TX_LOG(ALERT,
2771                         "Trying to xmit pkts while device is NOT running\n");
2772                 return 0;
2773         }
2774 #endif
2775
2776         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2777                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2778                         break;
2779                 tx_ring->pkts_without_db = true;
2780                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2781                         tx_ring->size_mask)]);
2782         }
2783
2784         available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2785         tx_ring->tx_stats.available_desc = available_desc;
2786
2787         /* If there are ready packets to be xmitted... */
2788         if (likely(tx_ring->pkts_without_db)) {
2789                 /* ...let HW do its best :-) */
2790                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2791                 tx_ring->tx_stats.doorbells++;
2792                 tx_ring->pkts_without_db = false;
2793         }
2794
2795         if (available_desc < tx_ring->tx_free_thresh)
2796                 ena_tx_cleanup(tx_ring);
2797
2798         tx_ring->tx_stats.available_desc =
2799                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2800         tx_ring->tx_stats.tx_poll++;
2801
2802         return sent_idx;
2803 }
2804
2805 int ena_copy_eni_stats(struct ena_adapter *adapter)
2806 {
2807         struct ena_admin_eni_stats admin_eni_stats;
2808         int rc;
2809
2810         rte_spinlock_lock(&adapter->admin_lock);
2811         rc = ena_com_get_eni_stats(&adapter->ena_dev, &admin_eni_stats);
2812         rte_spinlock_unlock(&adapter->admin_lock);
2813         if (rc != 0) {
2814                 if (rc == ENA_COM_UNSUPPORTED) {
2815                         PMD_DRV_LOG(DEBUG,
2816                                 "Retrieving ENI metrics is not supported\n");
2817                 } else {
2818                         PMD_DRV_LOG(WARNING,
2819                                 "Failed to get ENI metrics, rc: %d\n", rc);
2820                 }
2821                 return rc;
2822         }
2823
2824         rte_memcpy(&adapter->eni_stats, &admin_eni_stats,
2825                 sizeof(struct ena_stats_eni));
2826
2827         return 0;
2828 }
2829
2830 /**
2831  * DPDK callback to retrieve names of extended device statistics
2832  *
2833  * @param dev
2834  *   Pointer to Ethernet device structure.
2835  * @param[out] xstats_names
2836  *   Buffer to insert names into.
2837  * @param n
2838  *   Number of names.
2839  *
2840  * @return
2841  *   Number of xstats names.
2842  */
2843 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2844                                 struct rte_eth_xstat_name *xstats_names,
2845                                 unsigned int n)
2846 {
2847         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2848         unsigned int stat, i, count = 0;
2849
2850         if (n < xstats_count || !xstats_names)
2851                 return xstats_count;
2852
2853         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2854                 strcpy(xstats_names[count].name,
2855                         ena_stats_global_strings[stat].name);
2856
2857         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
2858                 strcpy(xstats_names[count].name,
2859                         ena_stats_eni_strings[stat].name);
2860
2861         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2862                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2863                         snprintf(xstats_names[count].name,
2864                                 sizeof(xstats_names[count].name),
2865                                 "rx_q%d_%s", i,
2866                                 ena_stats_rx_strings[stat].name);
2867
2868         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2869                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2870                         snprintf(xstats_names[count].name,
2871                                 sizeof(xstats_names[count].name),
2872                                 "tx_q%d_%s", i,
2873                                 ena_stats_tx_strings[stat].name);
2874
2875         return xstats_count;
2876 }
2877
2878 /**
2879  * DPDK callback to get extended device statistics.
2880  *
2881  * @param dev
2882  *   Pointer to Ethernet device structure.
2883  * @param[out] stats
2884  *   Stats table output buffer.
2885  * @param n
2886  *   The size of the stats table.
2887  *
2888  * @return
2889  *   Number of xstats on success, negative on failure.
2890  */
2891 static int ena_xstats_get(struct rte_eth_dev *dev,
2892                           struct rte_eth_xstat *xstats,
2893                           unsigned int n)
2894 {
2895         struct ena_adapter *adapter = dev->data->dev_private;
2896         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
2897         unsigned int stat, i, count = 0;
2898         int stat_offset;
2899         void *stats_begin;
2900
2901         if (n < xstats_count)
2902                 return xstats_count;
2903
2904         if (!xstats)
2905                 return 0;
2906
2907         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2908                 stat_offset = ena_stats_global_strings[stat].stat_offset;
2909                 stats_begin = &adapter->dev_stats;
2910
2911                 xstats[count].id = count;
2912                 xstats[count].value = *((uint64_t *)
2913                         ((char *)stats_begin + stat_offset));
2914         }
2915
2916         /* Even if the function below fails, we should copy previous (or initial
2917          * values) to keep structure of rte_eth_xstat consistent.
2918          */
2919         ena_copy_eni_stats(adapter);
2920         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
2921                 stat_offset = ena_stats_eni_strings[stat].stat_offset;
2922                 stats_begin = &adapter->eni_stats;
2923
2924                 xstats[count].id = count;
2925                 xstats[count].value = *((uint64_t *)
2926                     ((char *)stats_begin + stat_offset));
2927         }
2928
2929         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2930                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2931                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
2932                         stats_begin = &adapter->rx_ring[i].rx_stats;
2933
2934                         xstats[count].id = count;
2935                         xstats[count].value = *((uint64_t *)
2936                                 ((char *)stats_begin + stat_offset));
2937                 }
2938         }
2939
2940         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2941                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2942                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
2943                         stats_begin = &adapter->tx_ring[i].rx_stats;
2944
2945                         xstats[count].id = count;
2946                         xstats[count].value = *((uint64_t *)
2947                                 ((char *)stats_begin + stat_offset));
2948                 }
2949         }
2950
2951         return count;
2952 }
2953
2954 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2955                                 const uint64_t *ids,
2956                                 uint64_t *values,
2957                                 unsigned int n)
2958 {
2959         struct ena_adapter *adapter = dev->data->dev_private;
2960         uint64_t id;
2961         uint64_t rx_entries, tx_entries;
2962         unsigned int i;
2963         int qid;
2964         int valid = 0;
2965         bool was_eni_copied = false;
2966
2967         for (i = 0; i < n; ++i) {
2968                 id = ids[i];
2969                 /* Check if id belongs to global statistics */
2970                 if (id < ENA_STATS_ARRAY_GLOBAL) {
2971                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
2972                         ++valid;
2973                         continue;
2974                 }
2975
2976                 /* Check if id belongs to ENI statistics */
2977                 id -= ENA_STATS_ARRAY_GLOBAL;
2978                 if (id < ENA_STATS_ARRAY_ENI) {
2979                         /* Avoid reading ENI stats multiple times in a single
2980                          * function call, as it requires communication with the
2981                          * admin queue.
2982                          */
2983                         if (!was_eni_copied) {
2984                                 was_eni_copied = true;
2985                                 ena_copy_eni_stats(adapter);
2986                         }
2987                         values[i] = *((uint64_t *)&adapter->eni_stats + id);
2988                         ++valid;
2989                         continue;
2990                 }
2991
2992                 /* Check if id belongs to rx queue statistics */
2993                 id -= ENA_STATS_ARRAY_ENI;
2994                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2995                 if (id < rx_entries) {
2996                         qid = id % dev->data->nb_rx_queues;
2997                         id /= dev->data->nb_rx_queues;
2998                         values[i] = *((uint64_t *)
2999                                 &adapter->rx_ring[qid].rx_stats + id);
3000                         ++valid;
3001                         continue;
3002                 }
3003                                 /* Check if id belongs to rx queue statistics */
3004                 id -= rx_entries;
3005                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3006                 if (id < tx_entries) {
3007                         qid = id % dev->data->nb_tx_queues;
3008                         id /= dev->data->nb_tx_queues;
3009                         values[i] = *((uint64_t *)
3010                                 &adapter->tx_ring[qid].tx_stats + id);
3011                         ++valid;
3012                         continue;
3013                 }
3014         }
3015
3016         return valid;
3017 }
3018
3019 static int ena_process_bool_devarg(const char *key,
3020                                    const char *value,
3021                                    void *opaque)
3022 {
3023         struct ena_adapter *adapter = opaque;
3024         bool bool_value;
3025
3026         /* Parse the value. */
3027         if (strcmp(value, "1") == 0) {
3028                 bool_value = true;
3029         } else if (strcmp(value, "0") == 0) {
3030                 bool_value = false;
3031         } else {
3032                 PMD_INIT_LOG(ERR,
3033                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3034                         value, key);
3035                 return -EINVAL;
3036         }
3037
3038         /* Now, assign it to the proper adapter field. */
3039         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3040                 adapter->use_large_llq_hdr = bool_value;
3041
3042         return 0;
3043 }
3044
3045 static int ena_parse_devargs(struct ena_adapter *adapter,
3046                              struct rte_devargs *devargs)
3047 {
3048         static const char * const allowed_args[] = {
3049                 ENA_DEVARG_LARGE_LLQ_HDR,
3050                 NULL,
3051         };
3052         struct rte_kvargs *kvlist;
3053         int rc;
3054
3055         if (devargs == NULL)
3056                 return 0;
3057
3058         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3059         if (kvlist == NULL) {
3060                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3061                         devargs->args);
3062                 return -EINVAL;
3063         }
3064
3065         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3066                 ena_process_bool_devarg, adapter);
3067
3068         rte_kvargs_free(kvlist);
3069
3070         return rc;
3071 }
3072
3073 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3074 {
3075         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3076         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3077         int rc;
3078         uint16_t vectors_nb, i;
3079         bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3080
3081         if (!rx_intr_requested)
3082                 return 0;
3083
3084         if (!rte_intr_cap_multiple(intr_handle)) {
3085                 PMD_DRV_LOG(ERR,
3086                         "Rx interrupt requested, but it isn't supported by the PCI driver\n");
3087                 return -ENOTSUP;
3088         }
3089
3090         /* Disable interrupt mapping before the configuration starts. */
3091         rte_intr_disable(intr_handle);
3092
3093         /* Verify if there are enough vectors available. */
3094         vectors_nb = dev->data->nb_rx_queues;
3095         if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3096                 PMD_DRV_LOG(ERR,
3097                         "Too many Rx interrupts requested, maximum number: %d\n",
3098                         RTE_MAX_RXTX_INTR_VEC_ID);
3099                 rc = -ENOTSUP;
3100                 goto enable_intr;
3101         }
3102
3103         /* Allocate the vector list */
3104         if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3105                                            dev->data->nb_rx_queues)) {
3106                 PMD_DRV_LOG(ERR,
3107                         "Failed to allocate interrupt vector for %d queues\n",
3108                         dev->data->nb_rx_queues);
3109                 rc = -ENOMEM;
3110                 goto enable_intr;
3111         }
3112
3113         rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3114         if (rc != 0)
3115                 goto free_intr_vec;
3116
3117         if (!rte_intr_allow_others(intr_handle)) {
3118                 PMD_DRV_LOG(ERR,
3119                         "Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3120                 goto disable_intr_efd;
3121         }
3122
3123         for (i = 0; i < vectors_nb; ++i)
3124                 if (rte_intr_vec_list_index_set(intr_handle, i,
3125                                            RTE_INTR_VEC_RXTX_OFFSET + i))
3126                         goto disable_intr_efd;
3127
3128         rte_intr_enable(intr_handle);
3129         return 0;
3130
3131 disable_intr_efd:
3132         rte_intr_efd_disable(intr_handle);
3133 free_intr_vec:
3134         rte_intr_vec_list_free(intr_handle);
3135 enable_intr:
3136         rte_intr_enable(intr_handle);
3137         return rc;
3138 }
3139
3140 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3141                                  uint16_t queue_id,
3142                                  bool unmask)
3143 {
3144         struct ena_adapter *adapter = dev->data->dev_private;
3145         struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3146         struct ena_eth_io_intr_reg intr_reg;
3147
3148         ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3149         ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3150 }
3151
3152 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3153                                     uint16_t queue_id)
3154 {
3155         ena_rx_queue_intr_set(dev, queue_id, true);
3156
3157         return 0;
3158 }
3159
3160 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3161                                      uint16_t queue_id)
3162 {
3163         ena_rx_queue_intr_set(dev, queue_id, false);
3164
3165         return 0;
3166 }
3167
3168 /*********************************************************************
3169  *  PMD configuration
3170  *********************************************************************/
3171 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3172         struct rte_pci_device *pci_dev)
3173 {
3174         return rte_eth_dev_pci_generic_probe(pci_dev,
3175                 sizeof(struct ena_adapter), eth_ena_dev_init);
3176 }
3177
3178 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3179 {
3180         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3181 }
3182
3183 static struct rte_pci_driver rte_ena_pmd = {
3184         .id_table = pci_id_ena_map,
3185         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3186                      RTE_PCI_DRV_WC_ACTIVATE,
3187         .probe = eth_ena_pci_probe,
3188         .remove = eth_ena_pci_remove,
3189 };
3190
3191 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3192 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3193 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3194 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3195 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3196 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3197 #ifdef RTE_ETHDEV_DEBUG_RX
3198 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3199 #endif
3200 #ifdef RTE_ETHDEV_DEBUG_TX
3201 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3202 #endif
3203 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3204
3205 /******************************************************************************
3206  ******************************** AENQ Handlers *******************************
3207  *****************************************************************************/
3208 static void ena_update_on_link_change(void *adapter_data,
3209                                       struct ena_admin_aenq_entry *aenq_e)
3210 {
3211         struct rte_eth_dev *eth_dev = adapter_data;
3212         struct ena_adapter *adapter = eth_dev->data->dev_private;
3213         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3214         uint32_t status;
3215
3216         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3217
3218         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3219         adapter->link_status = status;
3220
3221         ena_link_update(eth_dev, 0);
3222         rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3223 }
3224
3225 static void ena_notification(void *adapter_data,
3226                              struct ena_admin_aenq_entry *aenq_e)
3227 {
3228         struct rte_eth_dev *eth_dev = adapter_data;
3229         struct ena_adapter *adapter = eth_dev->data->dev_private;
3230         struct ena_admin_ena_hw_hints *hints;
3231
3232         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3233                 PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3234                         aenq_e->aenq_common_desc.group,
3235                         ENA_ADMIN_NOTIFICATION);
3236
3237         switch (aenq_e->aenq_common_desc.syndrome) {
3238         case ENA_ADMIN_UPDATE_HINTS:
3239                 hints = (struct ena_admin_ena_hw_hints *)
3240                         (&aenq_e->inline_data_w4);
3241                 ena_update_hints(adapter, hints);
3242                 break;
3243         default:
3244                 PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3245                         aenq_e->aenq_common_desc.syndrome);
3246         }
3247 }
3248
3249 static void ena_keep_alive(void *adapter_data,
3250                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
3251 {
3252         struct rte_eth_dev *eth_dev = adapter_data;
3253         struct ena_adapter *adapter = eth_dev->data->dev_private;
3254         struct ena_admin_aenq_keep_alive_desc *desc;
3255         uint64_t rx_drops;
3256         uint64_t tx_drops;
3257
3258         adapter->timestamp_wd = rte_get_timer_cycles();
3259
3260         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3261         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3262         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3263
3264         adapter->drv_stats->rx_drops = rx_drops;
3265         adapter->dev_stats.tx_drops = tx_drops;
3266 }
3267
3268 /**
3269  * This handler will called for unknown event group or unimplemented handlers
3270  **/
3271 static void unimplemented_aenq_handler(__rte_unused void *data,
3272                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
3273 {
3274         PMD_DRV_LOG(ERR,
3275                 "Unknown event was received or event with unimplemented handler\n");
3276 }
3277
3278 static struct ena_aenq_handlers aenq_handlers = {
3279         .handlers = {
3280                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3281                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3282                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3283         },
3284         .unimplemented_handler = unimplemented_aenq_handler
3285 };