net/ena: support Tx mbuf free on demand
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_errno.h>
8 #include <rte_version.h>
9 #include <rte_net.h>
10 #include <rte_kvargs.h>
11
12 #include "ena_ethdev.h"
13 #include "ena_logs.h"
14 #include "ena_platform.h"
15 #include "ena_com.h"
16 #include "ena_eth_com.h"
17
18 #include <ena_common_defs.h>
19 #include <ena_regs_defs.h>
20 #include <ena_admin_defs.h>
21 #include <ena_eth_io_defs.h>
22
23 #define DRV_MODULE_VER_MAJOR    2
24 #define DRV_MODULE_VER_MINOR    5
25 #define DRV_MODULE_VER_SUBMINOR 0
26
27 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
28
29 #define GET_L4_HDR_LEN(mbuf)                                    \
30         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
31                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
32
33 #define ETH_GSTRING_LEN 32
34
35 #define ARRAY_SIZE(x) RTE_DIM(x)
36
37 #define ENA_MIN_RING_DESC       128
38
39 #define ENA_PTYPE_HAS_HASH      (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
40
41 struct ena_stats {
42         char name[ETH_GSTRING_LEN];
43         int stat_offset;
44 };
45
46 #define ENA_STAT_ENTRY(stat, stat_type) { \
47         .name = #stat, \
48         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
49 }
50
51 #define ENA_STAT_RX_ENTRY(stat) \
52         ENA_STAT_ENTRY(stat, rx)
53
54 #define ENA_STAT_TX_ENTRY(stat) \
55         ENA_STAT_ENTRY(stat, tx)
56
57 #define ENA_STAT_ENI_ENTRY(stat) \
58         ENA_STAT_ENTRY(stat, eni)
59
60 #define ENA_STAT_GLOBAL_ENTRY(stat) \
61         ENA_STAT_ENTRY(stat, dev)
62
63 /* Device arguments */
64 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
65
66 /*
67  * Each rte_memzone should have unique name.
68  * To satisfy it, count number of allocation and add it to name.
69  */
70 rte_atomic64_t ena_alloc_cnt;
71
72 static const struct ena_stats ena_stats_global_strings[] = {
73         ENA_STAT_GLOBAL_ENTRY(wd_expired),
74         ENA_STAT_GLOBAL_ENTRY(dev_start),
75         ENA_STAT_GLOBAL_ENTRY(dev_stop),
76         ENA_STAT_GLOBAL_ENTRY(tx_drops),
77 };
78
79 static const struct ena_stats ena_stats_eni_strings[] = {
80         ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
81         ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
82         ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
83         ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
84         ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
85 };
86
87 static const struct ena_stats ena_stats_tx_strings[] = {
88         ENA_STAT_TX_ENTRY(cnt),
89         ENA_STAT_TX_ENTRY(bytes),
90         ENA_STAT_TX_ENTRY(prepare_ctx_err),
91         ENA_STAT_TX_ENTRY(tx_poll),
92         ENA_STAT_TX_ENTRY(doorbells),
93         ENA_STAT_TX_ENTRY(bad_req_id),
94         ENA_STAT_TX_ENTRY(available_desc),
95         ENA_STAT_TX_ENTRY(missed_tx),
96 };
97
98 static const struct ena_stats ena_stats_rx_strings[] = {
99         ENA_STAT_RX_ENTRY(cnt),
100         ENA_STAT_RX_ENTRY(bytes),
101         ENA_STAT_RX_ENTRY(refill_partial),
102         ENA_STAT_RX_ENTRY(l3_csum_bad),
103         ENA_STAT_RX_ENTRY(l4_csum_bad),
104         ENA_STAT_RX_ENTRY(l4_csum_good),
105         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
106         ENA_STAT_RX_ENTRY(bad_desc_num),
107         ENA_STAT_RX_ENTRY(bad_req_id),
108 };
109
110 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
111 #define ENA_STATS_ARRAY_ENI     ARRAY_SIZE(ena_stats_eni_strings)
112 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
113 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
114
115 #define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
116                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
117                         RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
118                         RTE_ETH_TX_OFFLOAD_TCP_TSO)
119 #define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
120                        RTE_MBUF_F_TX_IP_CKSUM |\
121                        RTE_MBUF_F_TX_TCP_SEG)
122
123 /** Vendor ID used by Amazon devices */
124 #define PCI_VENDOR_ID_AMAZON 0x1D0F
125 /** Amazon devices */
126 #define PCI_DEVICE_ID_ENA_VF            0xEC20
127 #define PCI_DEVICE_ID_ENA_VF_RSERV0     0xEC21
128
129 #define ENA_TX_OFFLOAD_MASK     (RTE_MBUF_F_TX_L4_MASK |         \
130         RTE_MBUF_F_TX_IPV6 |            \
131         RTE_MBUF_F_TX_IPV4 |            \
132         RTE_MBUF_F_TX_IP_CKSUM |        \
133         RTE_MBUF_F_TX_TCP_SEG)
134
135 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
136         (RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
137
138 /** HW specific offloads capabilities. */
139 /* IPv4 checksum offload. */
140 #define ENA_L3_IPV4_CSUM                0x0001
141 /* TCP/UDP checksum offload for IPv4 packets. */
142 #define ENA_L4_IPV4_CSUM                0x0002
143 /* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
144 #define ENA_L4_IPV4_CSUM_PARTIAL        0x0004
145 /* TCP/UDP checksum offload for IPv6 packets. */
146 #define ENA_L4_IPV6_CSUM                0x0008
147 /* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
148 #define ENA_L4_IPV6_CSUM_PARTIAL        0x0010
149 /* TSO support for IPv4 packets. */
150 #define ENA_IPV4_TSO                    0x0020
151
152 /* Device supports setting RSS hash. */
153 #define ENA_RX_RSS_HASH                 0x0040
154
155 static const struct rte_pci_id pci_id_ena_map[] = {
156         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
157         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
158         { .device_id = 0 },
159 };
160
161 static struct ena_aenq_handlers aenq_handlers;
162
163 static int ena_device_init(struct ena_adapter *adapter,
164                            struct rte_pci_device *pdev,
165                            struct ena_com_dev_get_features_ctx *get_feat_ctx);
166 static int ena_dev_configure(struct rte_eth_dev *dev);
167 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
168         struct ena_tx_buffer *tx_info,
169         struct rte_mbuf *mbuf,
170         void **push_header,
171         uint16_t *header_len);
172 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
173 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
174 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
175                                   uint16_t nb_pkts);
176 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
177                 uint16_t nb_pkts);
178 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
179                               uint16_t nb_desc, unsigned int socket_id,
180                               const struct rte_eth_txconf *tx_conf);
181 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
182                               uint16_t nb_desc, unsigned int socket_id,
183                               const struct rte_eth_rxconf *rx_conf,
184                               struct rte_mempool *mp);
185 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
186 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
187                                     struct ena_com_rx_buf_info *ena_bufs,
188                                     uint32_t descs,
189                                     uint16_t *next_to_clean,
190                                     uint8_t offset);
191 static uint16_t eth_ena_recv_pkts(void *rx_queue,
192                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
193 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
194                                   struct rte_mbuf *mbuf, uint16_t id);
195 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
196 static void ena_init_rings(struct ena_adapter *adapter,
197                            bool disable_meta_caching);
198 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
199 static int ena_start(struct rte_eth_dev *dev);
200 static int ena_stop(struct rte_eth_dev *dev);
201 static int ena_close(struct rte_eth_dev *dev);
202 static int ena_dev_reset(struct rte_eth_dev *dev);
203 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
204 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
205 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
206 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
207 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
208 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
209 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
210 static int ena_link_update(struct rte_eth_dev *dev,
211                            int wait_to_complete);
212 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
213 static void ena_queue_stop(struct ena_ring *ring);
214 static void ena_queue_stop_all(struct rte_eth_dev *dev,
215                               enum ena_ring_type ring_type);
216 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
217 static int ena_queue_start_all(struct rte_eth_dev *dev,
218                                enum ena_ring_type ring_type);
219 static void ena_stats_restart(struct rte_eth_dev *dev);
220 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
221 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
222 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
223 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
224 static int ena_infos_get(struct rte_eth_dev *dev,
225                          struct rte_eth_dev_info *dev_info);
226 static void ena_interrupt_handler_rte(void *cb_arg);
227 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
228 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
229 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
230 static int ena_xstats_get_names(struct rte_eth_dev *dev,
231                                 struct rte_eth_xstat_name *xstats_names,
232                                 unsigned int n);
233 static int ena_xstats_get(struct rte_eth_dev *dev,
234                           struct rte_eth_xstat *stats,
235                           unsigned int n);
236 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
237                                 const uint64_t *ids,
238                                 uint64_t *values,
239                                 unsigned int n);
240 static int ena_process_bool_devarg(const char *key,
241                                    const char *value,
242                                    void *opaque);
243 static int ena_parse_devargs(struct ena_adapter *adapter,
244                              struct rte_devargs *devargs);
245 static int ena_copy_eni_stats(struct ena_adapter *adapter,
246                               struct ena_stats_eni *stats);
247 static int ena_setup_rx_intr(struct rte_eth_dev *dev);
248 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
249                                     uint16_t queue_id);
250 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
251                                      uint16_t queue_id);
252 static int ena_configure_aenq(struct ena_adapter *adapter);
253 static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
254                                  const void *peer);
255
256 static const struct eth_dev_ops ena_dev_ops = {
257         .dev_configure        = ena_dev_configure,
258         .dev_infos_get        = ena_infos_get,
259         .rx_queue_setup       = ena_rx_queue_setup,
260         .tx_queue_setup       = ena_tx_queue_setup,
261         .dev_start            = ena_start,
262         .dev_stop             = ena_stop,
263         .link_update          = ena_link_update,
264         .stats_get            = ena_stats_get,
265         .xstats_get_names     = ena_xstats_get_names,
266         .xstats_get           = ena_xstats_get,
267         .xstats_get_by_id     = ena_xstats_get_by_id,
268         .mtu_set              = ena_mtu_set,
269         .rx_queue_release     = ena_rx_queue_release,
270         .tx_queue_release     = ena_tx_queue_release,
271         .dev_close            = ena_close,
272         .dev_reset            = ena_dev_reset,
273         .reta_update          = ena_rss_reta_update,
274         .reta_query           = ena_rss_reta_query,
275         .rx_queue_intr_enable = ena_rx_queue_intr_enable,
276         .rx_queue_intr_disable = ena_rx_queue_intr_disable,
277         .rss_hash_update      = ena_rss_hash_update,
278         .rss_hash_conf_get    = ena_rss_hash_conf_get,
279         .tx_done_cleanup      = ena_tx_cleanup,
280 };
281
282 /*********************************************************************
283  *  Multi-Process communication bits
284  *********************************************************************/
285 /* rte_mp IPC message name */
286 #define ENA_MP_NAME     "net_ena_mp"
287 /* Request timeout in seconds */
288 #define ENA_MP_REQ_TMO  5
289
290 /** Proxy request type */
291 enum ena_mp_req {
292         ENA_MP_DEV_STATS_GET,
293         ENA_MP_ENI_STATS_GET,
294         ENA_MP_MTU_SET,
295         ENA_MP_IND_TBL_GET,
296         ENA_MP_IND_TBL_SET
297 };
298
299 /** Proxy message body. Shared between requests and responses. */
300 struct ena_mp_body {
301         /* Message type */
302         enum ena_mp_req type;
303         int port_id;
304         /* Processing result. Set in replies. 0 if message succeeded, negative
305          * error code otherwise.
306          */
307         int result;
308         union {
309                 int mtu; /* For ENA_MP_MTU_SET */
310         } args;
311 };
312
313 /**
314  * Initialize IPC message.
315  *
316  * @param[out] msg
317  *   Pointer to the message to initialize.
318  * @param[in] type
319  *   Message type.
320  * @param[in] port_id
321  *   Port ID of target device.
322  *
323  */
324 static void
325 mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
326 {
327         struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
328
329         memset(msg, 0, sizeof(*msg));
330         strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
331         msg->len_param = sizeof(*body);
332         body->type = type;
333         body->port_id = port_id;
334 }
335
336 /*********************************************************************
337  *  Multi-Process communication PMD API
338  *********************************************************************/
339 /**
340  * Define proxy request descriptor
341  *
342  * Used to define all structures and functions required for proxying a given
343  * function to the primary process including the code to perform to prepare the
344  * request and process the response.
345  *
346  * @param[in] f
347  *   Name of the function to proxy
348  * @param[in] t
349  *   Message type to use
350  * @param[in] prep
351  *   Body of a function to prepare the request in form of a statement
352  *   expression. It is passed all the original function arguments along with two
353  *   extra ones:
354  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
355  *   - struct ena_mp_body *req - body of a request to prepare.
356  * @param[in] proc
357  *   Body of a function to process the response in form of a statement
358  *   expression. It is passed all the original function arguments along with two
359  *   extra ones:
360  *   - struct ena_adapter *adapter - PMD data of the device calling the proxy.
361  *   - struct ena_mp_body *rsp - body of a response to process.
362  * @param ...
363  *   Proxied function's arguments
364  *
365  * @note Inside prep and proc any parameters which aren't used should be marked
366  *       as such (with ENA_TOUCH or __rte_unused).
367  */
368 #define ENA_PROXY_DESC(f, t, prep, proc, ...)                   \
369         static const enum ena_mp_req mp_type_ ## f =  t;        \
370         static const char *mp_name_ ## f = #t;                  \
371         static void mp_prep_ ## f(struct ena_adapter *adapter,  \
372                                   struct ena_mp_body *req,      \
373                                   __VA_ARGS__)                  \
374         {                                                       \
375                 prep;                                           \
376         }                                                       \
377         static void mp_proc_ ## f(struct ena_adapter *adapter,  \
378                                   struct ena_mp_body *rsp,      \
379                                   __VA_ARGS__)                  \
380         {                                                       \
381                 proc;                                           \
382         }
383
384 /**
385  * Proxy wrapper for calling primary functions in a secondary process.
386  *
387  * Depending on whether called in primary or secondary process, calls the
388  * @p func directly or proxies the call to the primary process via rte_mp IPC.
389  * This macro requires a proxy request descriptor to be defined for @p func
390  * using ENA_PROXY_DESC() macro.
391  *
392  * @param[in/out] a
393  *   Device PMD data. Used for sending the message and sharing message results
394  *   between primary and secondary.
395  * @param[in] f
396  *   Function to proxy.
397  * @param ...
398  *   Arguments of @p func.
399  *
400  * @return
401  *   - 0: Processing succeeded and response handler was called.
402  *   - -EPERM: IPC is unavailable on this platform. This means only primary
403  *             process may call the proxied function.
404  *   - -EIO:   IPC returned error on request send. Inspect rte_errno detailed
405  *             error code.
406  *   - Negative error code from the proxied function.
407  *
408  * @note This mechanism is geared towards control-path tasks. Avoid calling it
409  *       in fast-path unless unbound delays are allowed. This is due to the IPC
410  *       mechanism itself (socket based).
411  * @note Due to IPC parameter size limitations the proxy logic shares call
412  *       results through the struct ena_adapter shared memory. This makes the
413  *       proxy mechanism strictly single-threaded. Therefore be sure to make all
414  *       calls to the same proxied function under the same lock.
415  */
416 #define ENA_PROXY(a, f, ...)                                            \
417 ({                                                                      \
418         struct ena_adapter *_a = (a);                                   \
419         struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO };              \
420         struct ena_mp_body *req, *rsp;                                  \
421         struct rte_mp_reply mp_rep;                                     \
422         struct rte_mp_msg mp_req;                                       \
423         int ret;                                                        \
424                                                                         \
425         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {               \
426                 ret = f(__VA_ARGS__);                                   \
427         } else {                                                        \
428                 /* Prepare and send request */                          \
429                 req = (struct ena_mp_body *)&mp_req.param;              \
430                 mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
431                 mp_prep_ ## f(_a, req, ## __VA_ARGS__);                 \
432                                                                         \
433                 ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts);       \
434                 if (likely(!ret)) {                                     \
435                         RTE_ASSERT(mp_rep.nb_received == 1);            \
436                         rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
437                         ret = rsp->result;                              \
438                         if (ret == 0) {                                 \
439                                 mp_proc_##f(_a, rsp, ## __VA_ARGS__);   \
440                         } else {                                        \
441                                 PMD_DRV_LOG(ERR,                        \
442                                             "%s returned error: %d\n",  \
443                                             mp_name_ ## f, rsp->result);\
444                         }                                               \
445                         free(mp_rep.msgs);                              \
446                 } else if (rte_errno == ENOTSUP) {                      \
447                         PMD_DRV_LOG(ERR,                                \
448                                     "No IPC, can't proxy to primary\n");\
449                         ret = -rte_errno;                               \
450                 } else {                                                \
451                         PMD_DRV_LOG(ERR, "Request %s failed: %s\n",     \
452                                     mp_name_ ## f,                      \
453                                     rte_strerror(rte_errno));           \
454                         ret = -EIO;                                     \
455                 }                                                       \
456         }                                                               \
457         ret;                                                            \
458 })
459
460 /*********************************************************************
461  *  Multi-Process communication request descriptors
462  *********************************************************************/
463
464 ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
465 ({
466         ENA_TOUCH(adapter);
467         ENA_TOUCH(req);
468         ENA_TOUCH(ena_dev);
469         ENA_TOUCH(stats);
470 }),
471 ({
472         ENA_TOUCH(rsp);
473         ENA_TOUCH(ena_dev);
474         if (stats != &adapter->basic_stats)
475                 rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
476 }),
477         struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
478
479 ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
480 ({
481         ENA_TOUCH(adapter);
482         ENA_TOUCH(req);
483         ENA_TOUCH(ena_dev);
484         ENA_TOUCH(stats);
485 }),
486 ({
487         ENA_TOUCH(rsp);
488         ENA_TOUCH(ena_dev);
489         if (stats != (struct ena_admin_eni_stats *)&adapter->eni_stats)
490                 rte_memcpy(stats, &adapter->eni_stats, sizeof(*stats));
491 }),
492         struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
493
494 ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
495 ({
496         ENA_TOUCH(adapter);
497         ENA_TOUCH(ena_dev);
498         req->args.mtu = mtu;
499 }),
500 ({
501         ENA_TOUCH(adapter);
502         ENA_TOUCH(rsp);
503         ENA_TOUCH(ena_dev);
504         ENA_TOUCH(mtu);
505 }),
506         struct ena_com_dev *ena_dev, int mtu);
507
508 ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
509 ({
510         ENA_TOUCH(adapter);
511         ENA_TOUCH(req);
512         ENA_TOUCH(ena_dev);
513 }),
514 ({
515         ENA_TOUCH(adapter);
516         ENA_TOUCH(rsp);
517         ENA_TOUCH(ena_dev);
518 }),
519         struct ena_com_dev *ena_dev);
520
521 ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
522 ({
523         ENA_TOUCH(adapter);
524         ENA_TOUCH(req);
525         ENA_TOUCH(ena_dev);
526         ENA_TOUCH(ind_tbl);
527 }),
528 ({
529         ENA_TOUCH(rsp);
530         ENA_TOUCH(ena_dev);
531         if (ind_tbl != adapter->indirect_table)
532                 rte_memcpy(ind_tbl, adapter->indirect_table,
533                            sizeof(adapter->indirect_table));
534 }),
535         struct ena_com_dev *ena_dev, u32 *ind_tbl);
536
537 static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
538                                        struct rte_mbuf *mbuf,
539                                        struct ena_com_rx_ctx *ena_rx_ctx,
540                                        bool fill_hash)
541 {
542         struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
543         uint64_t ol_flags = 0;
544         uint32_t packet_type = 0;
545
546         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
547                 packet_type |= RTE_PTYPE_L4_TCP;
548         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
549                 packet_type |= RTE_PTYPE_L4_UDP;
550
551         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
552                 packet_type |= RTE_PTYPE_L3_IPV4;
553                 if (unlikely(ena_rx_ctx->l3_csum_err)) {
554                         ++rx_stats->l3_csum_bad;
555                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
556                 } else {
557                         ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
558                 }
559         } else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
560                 packet_type |= RTE_PTYPE_L3_IPV6;
561         }
562
563         if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
564                 ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
565         } else {
566                 if (unlikely(ena_rx_ctx->l4_csum_err)) {
567                         ++rx_stats->l4_csum_bad;
568                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
569                 } else {
570                         ++rx_stats->l4_csum_good;
571                         ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
572                 }
573         }
574
575         if (fill_hash &&
576             likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
577                 ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
578                 mbuf->hash.rss = ena_rx_ctx->hash;
579         }
580
581         mbuf->ol_flags = ol_flags;
582         mbuf->packet_type = packet_type;
583 }
584
585 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
586                                        struct ena_com_tx_ctx *ena_tx_ctx,
587                                        uint64_t queue_offloads,
588                                        bool disable_meta_caching)
589 {
590         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
591
592         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
593             (queue_offloads & QUEUE_OFFLOADS)) {
594                 /* check if TSO is required */
595                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
596                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
597                         ena_tx_ctx->tso_enable = true;
598
599                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
600                 }
601
602                 /* check if L3 checksum is needed */
603                 if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
604                     (queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
605                         ena_tx_ctx->l3_csum_enable = true;
606
607                 if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
608                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
609                 } else {
610                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
611
612                         /* set don't fragment (DF) flag */
613                         if (mbuf->packet_type &
614                                 (RTE_PTYPE_L4_NONFRAG
615                                  | RTE_PTYPE_INNER_L4_NONFRAG))
616                                 ena_tx_ctx->df = true;
617                 }
618
619                 /* check if L4 checksum is needed */
620                 if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
621                     (queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
622                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
623                         ena_tx_ctx->l4_csum_enable = true;
624                 } else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
625                                 RTE_MBUF_F_TX_UDP_CKSUM) &&
626                                 (queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
627                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
628                         ena_tx_ctx->l4_csum_enable = true;
629                 } else {
630                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
631                         ena_tx_ctx->l4_csum_enable = false;
632                 }
633
634                 ena_meta->mss = mbuf->tso_segsz;
635                 ena_meta->l3_hdr_len = mbuf->l3_len;
636                 ena_meta->l3_hdr_offset = mbuf->l2_len;
637
638                 ena_tx_ctx->meta_valid = true;
639         } else if (disable_meta_caching) {
640                 memset(ena_meta, 0, sizeof(*ena_meta));
641                 ena_tx_ctx->meta_valid = true;
642         } else {
643                 ena_tx_ctx->meta_valid = false;
644         }
645 }
646
647 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
648 {
649         struct ena_tx_buffer *tx_info = NULL;
650
651         if (likely(req_id < tx_ring->ring_size)) {
652                 tx_info = &tx_ring->tx_buffer_info[req_id];
653                 if (likely(tx_info->mbuf))
654                         return 0;
655         }
656
657         if (tx_info)
658                 PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf\n");
659         else
660                 PMD_TX_LOG(ERR, "Invalid req_id: %hu\n", req_id);
661
662         /* Trigger device reset */
663         ++tx_ring->tx_stats.bad_req_id;
664         tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
665         tx_ring->adapter->trigger_reset = true;
666         return -EFAULT;
667 }
668
669 static void ena_config_host_info(struct ena_com_dev *ena_dev)
670 {
671         struct ena_admin_host_info *host_info;
672         int rc;
673
674         /* Allocate only the host info */
675         rc = ena_com_allocate_host_info(ena_dev);
676         if (rc) {
677                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
678                 return;
679         }
680
681         host_info = ena_dev->host_attr.host_info;
682
683         host_info->os_type = ENA_ADMIN_OS_DPDK;
684         host_info->kernel_ver = RTE_VERSION;
685         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
686                 sizeof(host_info->kernel_ver_str));
687         host_info->os_dist = RTE_VERSION;
688         strlcpy((char *)host_info->os_dist_str, rte_version(),
689                 sizeof(host_info->os_dist_str));
690         host_info->driver_version =
691                 (DRV_MODULE_VER_MAJOR) |
692                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
693                 (DRV_MODULE_VER_SUBMINOR <<
694                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
695         host_info->num_cpus = rte_lcore_count();
696
697         host_info->driver_supported_features =
698                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
699                 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
700
701         rc = ena_com_set_host_attributes(ena_dev);
702         if (rc) {
703                 if (rc == -ENA_COM_UNSUPPORTED)
704                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
705                 else
706                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
707
708                 goto err;
709         }
710
711         return;
712
713 err:
714         ena_com_delete_host_info(ena_dev);
715 }
716
717 /* This function calculates the number of xstats based on the current config */
718 static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
719 {
720         return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
721                 (data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
722                 (data->nb_rx_queues * ENA_STATS_ARRAY_RX);
723 }
724
725 static void ena_config_debug_area(struct ena_adapter *adapter)
726 {
727         u32 debug_area_size;
728         int rc, ss_count;
729
730         ss_count = ena_xstats_calc_num(adapter->edev_data);
731
732         /* allocate 32 bytes for each string and 64bit for the value */
733         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
734
735         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
736         if (rc) {
737                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
738                 return;
739         }
740
741         rc = ena_com_set_host_attributes(&adapter->ena_dev);
742         if (rc) {
743                 if (rc == -ENA_COM_UNSUPPORTED)
744                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
745                 else
746                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
747
748                 goto err;
749         }
750
751         return;
752 err:
753         ena_com_delete_debug_area(&adapter->ena_dev);
754 }
755
756 static int ena_close(struct rte_eth_dev *dev)
757 {
758         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
759         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
760         struct ena_adapter *adapter = dev->data->dev_private;
761         int ret = 0;
762
763         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
764                 return 0;
765
766         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
767                 ret = ena_stop(dev);
768         adapter->state = ENA_ADAPTER_STATE_CLOSED;
769
770         ena_rx_queue_release_all(dev);
771         ena_tx_queue_release_all(dev);
772
773         rte_free(adapter->drv_stats);
774         adapter->drv_stats = NULL;
775
776         rte_intr_disable(intr_handle);
777         rte_intr_callback_unregister(intr_handle,
778                                      ena_interrupt_handler_rte,
779                                      dev);
780
781         /*
782          * MAC is not allocated dynamically. Setting NULL should prevent from
783          * release of the resource in the rte_eth_dev_release_port().
784          */
785         dev->data->mac_addrs = NULL;
786
787         return ret;
788 }
789
790 static int
791 ena_dev_reset(struct rte_eth_dev *dev)
792 {
793         int rc = 0;
794
795         /* Cannot release memory in secondary process */
796         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
797                 PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
798                 return -EPERM;
799         }
800
801         ena_destroy_device(dev);
802         rc = eth_ena_dev_init(dev);
803         if (rc)
804                 PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
805
806         return rc;
807 }
808
809 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
810 {
811         int nb_queues = dev->data->nb_rx_queues;
812         int i;
813
814         for (i = 0; i < nb_queues; i++)
815                 ena_rx_queue_release(dev, i);
816 }
817
818 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
819 {
820         int nb_queues = dev->data->nb_tx_queues;
821         int i;
822
823         for (i = 0; i < nb_queues; i++)
824                 ena_tx_queue_release(dev, i);
825 }
826
827 static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
828 {
829         struct ena_ring *ring = dev->data->rx_queues[qid];
830
831         /* Free ring resources */
832         rte_free(ring->rx_buffer_info);
833         ring->rx_buffer_info = NULL;
834
835         rte_free(ring->rx_refill_buffer);
836         ring->rx_refill_buffer = NULL;
837
838         rte_free(ring->empty_rx_reqs);
839         ring->empty_rx_reqs = NULL;
840
841         ring->configured = 0;
842
843         PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
844                 ring->port_id, ring->id);
845 }
846
847 static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
848 {
849         struct ena_ring *ring = dev->data->tx_queues[qid];
850
851         /* Free ring resources */
852         rte_free(ring->push_buf_intermediate_buf);
853
854         rte_free(ring->tx_buffer_info);
855
856         rte_free(ring->empty_tx_reqs);
857
858         ring->empty_tx_reqs = NULL;
859         ring->tx_buffer_info = NULL;
860         ring->push_buf_intermediate_buf = NULL;
861
862         ring->configured = 0;
863
864         PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
865                 ring->port_id, ring->id);
866 }
867
868 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
869 {
870         unsigned int i;
871
872         for (i = 0; i < ring->ring_size; ++i) {
873                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
874                 if (rx_info->mbuf) {
875                         rte_mbuf_raw_free(rx_info->mbuf);
876                         rx_info->mbuf = NULL;
877                 }
878         }
879 }
880
881 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
882 {
883         unsigned int i;
884
885         for (i = 0; i < ring->ring_size; ++i) {
886                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
887
888                 if (tx_buf->mbuf) {
889                         rte_pktmbuf_free(tx_buf->mbuf);
890                         tx_buf->mbuf = NULL;
891                 }
892         }
893 }
894
895 static int ena_link_update(struct rte_eth_dev *dev,
896                            __rte_unused int wait_to_complete)
897 {
898         struct rte_eth_link *link = &dev->data->dev_link;
899         struct ena_adapter *adapter = dev->data->dev_private;
900
901         link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
902         link->link_speed = RTE_ETH_SPEED_NUM_NONE;
903         link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
904
905         return 0;
906 }
907
908 static int ena_queue_start_all(struct rte_eth_dev *dev,
909                                enum ena_ring_type ring_type)
910 {
911         struct ena_adapter *adapter = dev->data->dev_private;
912         struct ena_ring *queues = NULL;
913         int nb_queues;
914         int i = 0;
915         int rc = 0;
916
917         if (ring_type == ENA_RING_TYPE_RX) {
918                 queues = adapter->rx_ring;
919                 nb_queues = dev->data->nb_rx_queues;
920         } else {
921                 queues = adapter->tx_ring;
922                 nb_queues = dev->data->nb_tx_queues;
923         }
924         for (i = 0; i < nb_queues; i++) {
925                 if (queues[i].configured) {
926                         if (ring_type == ENA_RING_TYPE_RX) {
927                                 ena_assert_msg(
928                                         dev->data->rx_queues[i] == &queues[i],
929                                         "Inconsistent state of Rx queues\n");
930                         } else {
931                                 ena_assert_msg(
932                                         dev->data->tx_queues[i] == &queues[i],
933                                         "Inconsistent state of Tx queues\n");
934                         }
935
936                         rc = ena_queue_start(dev, &queues[i]);
937
938                         if (rc) {
939                                 PMD_INIT_LOG(ERR,
940                                         "Failed to start queue[%d] of type(%d)\n",
941                                         i, ring_type);
942                                 goto err;
943                         }
944                 }
945         }
946
947         return 0;
948
949 err:
950         while (i--)
951                 if (queues[i].configured)
952                         ena_queue_stop(&queues[i]);
953
954         return rc;
955 }
956
957 static int ena_check_valid_conf(struct ena_adapter *adapter)
958 {
959         uint32_t mtu = adapter->edev_data->mtu;
960
961         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
962                 PMD_INIT_LOG(ERR,
963                         "Unsupported MTU of %d. Max MTU: %d, min MTU: %d\n",
964                         mtu, adapter->max_mtu, ENA_MIN_MTU);
965                 return ENA_COM_UNSUPPORTED;
966         }
967
968         return 0;
969 }
970
971 static int
972 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
973                        bool use_large_llq_hdr)
974 {
975         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
976         struct ena_com_dev *ena_dev = ctx->ena_dev;
977         uint32_t max_tx_queue_size;
978         uint32_t max_rx_queue_size;
979
980         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
981                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
982                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
983                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
984                         max_queue_ext->max_rx_sq_depth);
985                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
986
987                 if (ena_dev->tx_mem_queue_type ==
988                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
989                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
990                                 llq->max_llq_depth);
991                 } else {
992                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
993                                 max_queue_ext->max_tx_sq_depth);
994                 }
995
996                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
997                         max_queue_ext->max_per_packet_rx_descs);
998                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
999                         max_queue_ext->max_per_packet_tx_descs);
1000         } else {
1001                 struct ena_admin_queue_feature_desc *max_queues =
1002                         &ctx->get_feat_ctx->max_queues;
1003                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
1004                         max_queues->max_sq_depth);
1005                 max_tx_queue_size = max_queues->max_cq_depth;
1006
1007                 if (ena_dev->tx_mem_queue_type ==
1008                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1009                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1010                                 llq->max_llq_depth);
1011                 } else {
1012                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
1013                                 max_queues->max_sq_depth);
1014                 }
1015
1016                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1017                         max_queues->max_packet_rx_descs);
1018                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
1019                         max_queues->max_packet_tx_descs);
1020         }
1021
1022         /* Round down to the nearest power of 2 */
1023         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
1024         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
1025
1026         if (use_large_llq_hdr) {
1027                 if ((llq->entry_size_ctrl_supported &
1028                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
1029                     (ena_dev->tx_mem_queue_type ==
1030                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
1031                         max_tx_queue_size /= 2;
1032                         PMD_INIT_LOG(INFO,
1033                                 "Forcing large headers and decreasing maximum Tx queue size to %d\n",
1034                                 max_tx_queue_size);
1035                 } else {
1036                         PMD_INIT_LOG(ERR,
1037                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
1038                 }
1039         }
1040
1041         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
1042                 PMD_INIT_LOG(ERR, "Invalid queue size\n");
1043                 return -EFAULT;
1044         }
1045
1046         ctx->max_tx_queue_size = max_tx_queue_size;
1047         ctx->max_rx_queue_size = max_rx_queue_size;
1048
1049         return 0;
1050 }
1051
1052 static void ena_stats_restart(struct rte_eth_dev *dev)
1053 {
1054         struct ena_adapter *adapter = dev->data->dev_private;
1055
1056         rte_atomic64_init(&adapter->drv_stats->ierrors);
1057         rte_atomic64_init(&adapter->drv_stats->oerrors);
1058         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
1059         adapter->drv_stats->rx_drops = 0;
1060 }
1061
1062 static int ena_stats_get(struct rte_eth_dev *dev,
1063                           struct rte_eth_stats *stats)
1064 {
1065         struct ena_admin_basic_stats ena_stats;
1066         struct ena_adapter *adapter = dev->data->dev_private;
1067         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1068         int rc;
1069         int i;
1070         int max_rings_stats;
1071
1072         memset(&ena_stats, 0, sizeof(ena_stats));
1073
1074         rte_spinlock_lock(&adapter->admin_lock);
1075         rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
1076                        &ena_stats);
1077         rte_spinlock_unlock(&adapter->admin_lock);
1078         if (unlikely(rc)) {
1079                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
1080                 return rc;
1081         }
1082
1083         /* Set of basic statistics from ENA */
1084         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
1085                                           ena_stats.rx_pkts_low);
1086         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
1087                                           ena_stats.tx_pkts_low);
1088         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
1089                                         ena_stats.rx_bytes_low);
1090         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
1091                                         ena_stats.tx_bytes_low);
1092
1093         /* Driver related stats */
1094         stats->imissed = adapter->drv_stats->rx_drops;
1095         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
1096         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
1097         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
1098
1099         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
1100                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
1101         for (i = 0; i < max_rings_stats; ++i) {
1102                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
1103
1104                 stats->q_ibytes[i] = rx_stats->bytes;
1105                 stats->q_ipackets[i] = rx_stats->cnt;
1106                 stats->q_errors[i] = rx_stats->bad_desc_num +
1107                         rx_stats->bad_req_id;
1108         }
1109
1110         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
1111                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
1112         for (i = 0; i < max_rings_stats; ++i) {
1113                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
1114
1115                 stats->q_obytes[i] = tx_stats->bytes;
1116                 stats->q_opackets[i] = tx_stats->cnt;
1117         }
1118
1119         return 0;
1120 }
1121
1122 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1123 {
1124         struct ena_adapter *adapter;
1125         struct ena_com_dev *ena_dev;
1126         int rc = 0;
1127
1128         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1129         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1130         adapter = dev->data->dev_private;
1131
1132         ena_dev = &adapter->ena_dev;
1133         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1134
1135         if (mtu > adapter->max_mtu || mtu < ENA_MIN_MTU) {
1136                 PMD_DRV_LOG(ERR,
1137                         "Invalid MTU setting. New MTU: %d, max MTU: %d, min MTU: %d\n",
1138                         mtu, adapter->max_mtu, ENA_MIN_MTU);
1139                 return -EINVAL;
1140         }
1141
1142         rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
1143         if (rc)
1144                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1145         else
1146                 PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
1147
1148         return rc;
1149 }
1150
1151 static int ena_start(struct rte_eth_dev *dev)
1152 {
1153         struct ena_adapter *adapter = dev->data->dev_private;
1154         uint64_t ticks;
1155         int rc = 0;
1156
1157         /* Cannot allocate memory in secondary process */
1158         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1159                 PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
1160                 return -EPERM;
1161         }
1162
1163         rc = ena_check_valid_conf(adapter);
1164         if (rc)
1165                 return rc;
1166
1167         rc = ena_setup_rx_intr(dev);
1168         if (rc)
1169                 return rc;
1170
1171         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1172         if (rc)
1173                 return rc;
1174
1175         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1176         if (rc)
1177                 goto err_start_tx;
1178
1179         if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
1180                 rc = ena_rss_configure(adapter);
1181                 if (rc)
1182                         goto err_rss_init;
1183         }
1184
1185         ena_stats_restart(dev);
1186
1187         adapter->timestamp_wd = rte_get_timer_cycles();
1188         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1189
1190         ticks = rte_get_timer_hz();
1191         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1192                         ena_timer_wd_callback, dev);
1193
1194         ++adapter->dev_stats.dev_start;
1195         adapter->state = ENA_ADAPTER_STATE_RUNNING;
1196
1197         return 0;
1198
1199 err_rss_init:
1200         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1201 err_start_tx:
1202         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1203         return rc;
1204 }
1205
1206 static int ena_stop(struct rte_eth_dev *dev)
1207 {
1208         struct ena_adapter *adapter = dev->data->dev_private;
1209         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1210         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1211         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1212         int rc;
1213
1214         /* Cannot free memory in secondary process */
1215         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1216                 PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
1217                 return -EPERM;
1218         }
1219
1220         rte_timer_stop_sync(&adapter->timer_wd);
1221         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1222         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1223
1224         if (adapter->trigger_reset) {
1225                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1226                 if (rc)
1227                         PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
1228         }
1229
1230         rte_intr_disable(intr_handle);
1231
1232         rte_intr_efd_disable(intr_handle);
1233
1234         /* Cleanup vector list */
1235         rte_intr_vec_list_free(intr_handle);
1236
1237         rte_intr_enable(intr_handle);
1238
1239         ++adapter->dev_stats.dev_stop;
1240         adapter->state = ENA_ADAPTER_STATE_STOPPED;
1241         dev->data->dev_started = 0;
1242
1243         return 0;
1244 }
1245
1246 static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
1247 {
1248         struct ena_adapter *adapter = ring->adapter;
1249         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1250         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1251         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
1252         struct ena_com_create_io_ctx ctx =
1253                 /* policy set to _HOST just to satisfy icc compiler */
1254                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
1255                   0, 0, 0, 0, 0 };
1256         uint16_t ena_qid;
1257         unsigned int i;
1258         int rc;
1259
1260         ctx.msix_vector = -1;
1261         if (ring->type == ENA_RING_TYPE_TX) {
1262                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1263                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1264                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1265                 for (i = 0; i < ring->ring_size; i++)
1266                         ring->empty_tx_reqs[i] = i;
1267         } else {
1268                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1269                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1270                 if (rte_intr_dp_is_en(intr_handle))
1271                         ctx.msix_vector =
1272                                 rte_intr_vec_list_index_get(intr_handle,
1273                                                                    ring->id);
1274
1275                 for (i = 0; i < ring->ring_size; i++)
1276                         ring->empty_rx_reqs[i] = i;
1277         }
1278         ctx.queue_size = ring->ring_size;
1279         ctx.qid = ena_qid;
1280         ctx.numa_node = ring->numa_socket_id;
1281
1282         rc = ena_com_create_io_queue(ena_dev, &ctx);
1283         if (rc) {
1284                 PMD_DRV_LOG(ERR,
1285                         "Failed to create IO queue[%d] (qid:%d), rc: %d\n",
1286                         ring->id, ena_qid, rc);
1287                 return rc;
1288         }
1289
1290         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1291                                      &ring->ena_com_io_sq,
1292                                      &ring->ena_com_io_cq);
1293         if (rc) {
1294                 PMD_DRV_LOG(ERR,
1295                         "Failed to get IO queue[%d] handlers, rc: %d\n",
1296                         ring->id, rc);
1297                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1298                 return rc;
1299         }
1300
1301         if (ring->type == ENA_RING_TYPE_TX)
1302                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1303
1304         /* Start with Rx interrupts being masked. */
1305         if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
1306                 ena_rx_queue_intr_disable(dev, ring->id);
1307
1308         return 0;
1309 }
1310
1311 static void ena_queue_stop(struct ena_ring *ring)
1312 {
1313         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1314
1315         if (ring->type == ENA_RING_TYPE_RX) {
1316                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1317                 ena_rx_queue_release_bufs(ring);
1318         } else {
1319                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1320                 ena_tx_queue_release_bufs(ring);
1321         }
1322 }
1323
1324 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1325                               enum ena_ring_type ring_type)
1326 {
1327         struct ena_adapter *adapter = dev->data->dev_private;
1328         struct ena_ring *queues = NULL;
1329         uint16_t nb_queues, i;
1330
1331         if (ring_type == ENA_RING_TYPE_RX) {
1332                 queues = adapter->rx_ring;
1333                 nb_queues = dev->data->nb_rx_queues;
1334         } else {
1335                 queues = adapter->tx_ring;
1336                 nb_queues = dev->data->nb_tx_queues;
1337         }
1338
1339         for (i = 0; i < nb_queues; ++i)
1340                 if (queues[i].configured)
1341                         ena_queue_stop(&queues[i]);
1342 }
1343
1344 static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
1345 {
1346         int rc, bufs_num;
1347
1348         ena_assert_msg(ring->configured == 1,
1349                        "Trying to start unconfigured queue\n");
1350
1351         rc = ena_create_io_queue(dev, ring);
1352         if (rc) {
1353                 PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
1354                 return rc;
1355         }
1356
1357         ring->next_to_clean = 0;
1358         ring->next_to_use = 0;
1359
1360         if (ring->type == ENA_RING_TYPE_TX) {
1361                 ring->tx_stats.available_desc =
1362                         ena_com_free_q_entries(ring->ena_com_io_sq);
1363                 return 0;
1364         }
1365
1366         bufs_num = ring->ring_size - 1;
1367         rc = ena_populate_rx_queue(ring, bufs_num);
1368         if (rc != bufs_num) {
1369                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1370                                          ENA_IO_RXQ_IDX(ring->id));
1371                 PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
1372                 return ENA_COM_FAULT;
1373         }
1374         /* Flush per-core RX buffers pools cache as they can be used on other
1375          * cores as well.
1376          */
1377         rte_mempool_cache_flush(NULL, ring->mb_pool);
1378
1379         return 0;
1380 }
1381
1382 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1383                               uint16_t queue_idx,
1384                               uint16_t nb_desc,
1385                               unsigned int socket_id,
1386                               const struct rte_eth_txconf *tx_conf)
1387 {
1388         struct ena_ring *txq = NULL;
1389         struct ena_adapter *adapter = dev->data->dev_private;
1390         unsigned int i;
1391         uint16_t dyn_thresh;
1392
1393         txq = &adapter->tx_ring[queue_idx];
1394
1395         if (txq->configured) {
1396                 PMD_DRV_LOG(CRIT,
1397                         "API violation. Queue[%d] is already configured\n",
1398                         queue_idx);
1399                 return ENA_COM_FAULT;
1400         }
1401
1402         if (!rte_is_power_of_2(nb_desc)) {
1403                 PMD_DRV_LOG(ERR,
1404                         "Unsupported size of Tx queue: %d is not a power of 2.\n",
1405                         nb_desc);
1406                 return -EINVAL;
1407         }
1408
1409         if (nb_desc > adapter->max_tx_ring_size) {
1410                 PMD_DRV_LOG(ERR,
1411                         "Unsupported size of Tx queue (max size: %d)\n",
1412                         adapter->max_tx_ring_size);
1413                 return -EINVAL;
1414         }
1415
1416         txq->port_id = dev->data->port_id;
1417         txq->next_to_clean = 0;
1418         txq->next_to_use = 0;
1419         txq->ring_size = nb_desc;
1420         txq->size_mask = nb_desc - 1;
1421         txq->numa_socket_id = socket_id;
1422         txq->pkts_without_db = false;
1423         txq->last_cleanup_ticks = 0;
1424
1425         txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
1426                 sizeof(struct ena_tx_buffer) * txq->ring_size,
1427                 RTE_CACHE_LINE_SIZE,
1428                 socket_id);
1429         if (!txq->tx_buffer_info) {
1430                 PMD_DRV_LOG(ERR,
1431                         "Failed to allocate memory for Tx buffer info\n");
1432                 return -ENOMEM;
1433         }
1434
1435         txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
1436                 sizeof(uint16_t) * txq->ring_size,
1437                 RTE_CACHE_LINE_SIZE,
1438                 socket_id);
1439         if (!txq->empty_tx_reqs) {
1440                 PMD_DRV_LOG(ERR,
1441                         "Failed to allocate memory for empty Tx requests\n");
1442                 rte_free(txq->tx_buffer_info);
1443                 return -ENOMEM;
1444         }
1445
1446         txq->push_buf_intermediate_buf =
1447                 rte_zmalloc_socket("txq->push_buf_intermediate_buf",
1448                         txq->tx_max_header_size,
1449                         RTE_CACHE_LINE_SIZE,
1450                         socket_id);
1451         if (!txq->push_buf_intermediate_buf) {
1452                 PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
1453                 rte_free(txq->tx_buffer_info);
1454                 rte_free(txq->empty_tx_reqs);
1455                 return -ENOMEM;
1456         }
1457
1458         for (i = 0; i < txq->ring_size; i++)
1459                 txq->empty_tx_reqs[i] = i;
1460
1461         txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1462
1463         /* Check if caller provided the Tx cleanup threshold value. */
1464         if (tx_conf->tx_free_thresh != 0) {
1465                 txq->tx_free_thresh = tx_conf->tx_free_thresh;
1466         } else {
1467                 dyn_thresh = txq->ring_size -
1468                         txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1469                 txq->tx_free_thresh = RTE_MAX(dyn_thresh,
1470                         txq->ring_size - ENA_REFILL_THRESH_PACKET);
1471         }
1472
1473         txq->missing_tx_completion_threshold =
1474                 RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
1475
1476         /* Store pointer to this queue in upper layer */
1477         txq->configured = 1;
1478         dev->data->tx_queues[queue_idx] = txq;
1479
1480         return 0;
1481 }
1482
1483 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1484                               uint16_t queue_idx,
1485                               uint16_t nb_desc,
1486                               unsigned int socket_id,
1487                               const struct rte_eth_rxconf *rx_conf,
1488                               struct rte_mempool *mp)
1489 {
1490         struct ena_adapter *adapter = dev->data->dev_private;
1491         struct ena_ring *rxq = NULL;
1492         size_t buffer_size;
1493         int i;
1494         uint16_t dyn_thresh;
1495
1496         rxq = &adapter->rx_ring[queue_idx];
1497         if (rxq->configured) {
1498                 PMD_DRV_LOG(CRIT,
1499                         "API violation. Queue[%d] is already configured\n",
1500                         queue_idx);
1501                 return ENA_COM_FAULT;
1502         }
1503
1504         if (!rte_is_power_of_2(nb_desc)) {
1505                 PMD_DRV_LOG(ERR,
1506                         "Unsupported size of Rx queue: %d is not a power of 2.\n",
1507                         nb_desc);
1508                 return -EINVAL;
1509         }
1510
1511         if (nb_desc > adapter->max_rx_ring_size) {
1512                 PMD_DRV_LOG(ERR,
1513                         "Unsupported size of Rx queue (max size: %d)\n",
1514                         adapter->max_rx_ring_size);
1515                 return -EINVAL;
1516         }
1517
1518         /* ENA isn't supporting buffers smaller than 1400 bytes */
1519         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1520         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1521                 PMD_DRV_LOG(ERR,
1522                         "Unsupported size of Rx buffer: %zu (min size: %d)\n",
1523                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1524                 return -EINVAL;
1525         }
1526
1527         rxq->port_id = dev->data->port_id;
1528         rxq->next_to_clean = 0;
1529         rxq->next_to_use = 0;
1530         rxq->ring_size = nb_desc;
1531         rxq->size_mask = nb_desc - 1;
1532         rxq->numa_socket_id = socket_id;
1533         rxq->mb_pool = mp;
1534
1535         rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
1536                 sizeof(struct ena_rx_buffer) * nb_desc,
1537                 RTE_CACHE_LINE_SIZE,
1538                 socket_id);
1539         if (!rxq->rx_buffer_info) {
1540                 PMD_DRV_LOG(ERR,
1541                         "Failed to allocate memory for Rx buffer info\n");
1542                 return -ENOMEM;
1543         }
1544
1545         rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
1546                 sizeof(struct rte_mbuf *) * nb_desc,
1547                 RTE_CACHE_LINE_SIZE,
1548                 socket_id);
1549         if (!rxq->rx_refill_buffer) {
1550                 PMD_DRV_LOG(ERR,
1551                         "Failed to allocate memory for Rx refill buffer\n");
1552                 rte_free(rxq->rx_buffer_info);
1553                 rxq->rx_buffer_info = NULL;
1554                 return -ENOMEM;
1555         }
1556
1557         rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
1558                 sizeof(uint16_t) * nb_desc,
1559                 RTE_CACHE_LINE_SIZE,
1560                 socket_id);
1561         if (!rxq->empty_rx_reqs) {
1562                 PMD_DRV_LOG(ERR,
1563                         "Failed to allocate memory for empty Rx requests\n");
1564                 rte_free(rxq->rx_buffer_info);
1565                 rxq->rx_buffer_info = NULL;
1566                 rte_free(rxq->rx_refill_buffer);
1567                 rxq->rx_refill_buffer = NULL;
1568                 return -ENOMEM;
1569         }
1570
1571         for (i = 0; i < nb_desc; i++)
1572                 rxq->empty_rx_reqs[i] = i;
1573
1574         rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1575
1576         if (rx_conf->rx_free_thresh != 0) {
1577                 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1578         } else {
1579                 dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
1580                 rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
1581                         (uint16_t)(ENA_REFILL_THRESH_PACKET));
1582         }
1583
1584         /* Store pointer to this queue in upper layer */
1585         rxq->configured = 1;
1586         dev->data->rx_queues[queue_idx] = rxq;
1587
1588         return 0;
1589 }
1590
1591 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1592                                   struct rte_mbuf *mbuf, uint16_t id)
1593 {
1594         struct ena_com_buf ebuf;
1595         int rc;
1596
1597         /* prepare physical address for DMA transaction */
1598         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1599         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1600
1601         /* pass resource to device */
1602         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1603         if (unlikely(rc != 0))
1604                 PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
1605
1606         return rc;
1607 }
1608
1609 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1610 {
1611         unsigned int i;
1612         int rc;
1613         uint16_t next_to_use = rxq->next_to_use;
1614         uint16_t req_id;
1615 #ifdef RTE_ETHDEV_DEBUG_RX
1616         uint16_t in_use;
1617 #endif
1618         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1619
1620         if (unlikely(!count))
1621                 return 0;
1622
1623 #ifdef RTE_ETHDEV_DEBUG_RX
1624         in_use = rxq->ring_size - 1 -
1625                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1626         if (unlikely((in_use + count) >= rxq->ring_size))
1627                 PMD_RX_LOG(ERR, "Bad Rx ring state\n");
1628 #endif
1629
1630         /* get resources for incoming packets */
1631         rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
1632         if (unlikely(rc < 0)) {
1633                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1634                 ++rxq->rx_stats.mbuf_alloc_fail;
1635                 PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
1636                 return 0;
1637         }
1638
1639         for (i = 0; i < count; i++) {
1640                 struct rte_mbuf *mbuf = mbufs[i];
1641                 struct ena_rx_buffer *rx_info;
1642
1643                 if (likely((i + 4) < count))
1644                         rte_prefetch0(mbufs[i + 4]);
1645
1646                 req_id = rxq->empty_rx_reqs[next_to_use];
1647                 rx_info = &rxq->rx_buffer_info[req_id];
1648
1649                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1650                 if (unlikely(rc != 0))
1651                         break;
1652
1653                 rx_info->mbuf = mbuf;
1654                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1655         }
1656
1657         if (unlikely(i < count)) {
1658                 PMD_RX_LOG(WARNING,
1659                         "Refilled Rx queue[%d] with only %d/%d buffers\n",
1660                         rxq->id, i, count);
1661                 rte_pktmbuf_free_bulk(&mbufs[i], count - i);
1662                 ++rxq->rx_stats.refill_partial;
1663         }
1664
1665         /* When we submitted free resources to device... */
1666         if (likely(i > 0)) {
1667                 /* ...let HW know that it can fill buffers with data. */
1668                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1669
1670                 rxq->next_to_use = next_to_use;
1671         }
1672
1673         return i;
1674 }
1675
1676 static int ena_device_init(struct ena_adapter *adapter,
1677                            struct rte_pci_device *pdev,
1678                            struct ena_com_dev_get_features_ctx *get_feat_ctx)
1679 {
1680         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1681         uint32_t aenq_groups;
1682         int rc;
1683         bool readless_supported;
1684
1685         /* Initialize mmio registers */
1686         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1687         if (rc) {
1688                 PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
1689                 return rc;
1690         }
1691
1692         /* The PCIe configuration space revision id indicate if mmio reg
1693          * read is disabled.
1694          */
1695         readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
1696         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1697
1698         /* reset device */
1699         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1700         if (rc) {
1701                 PMD_DRV_LOG(ERR, "Cannot reset device\n");
1702                 goto err_mmio_read_less;
1703         }
1704
1705         /* check FW version */
1706         rc = ena_com_validate_version(ena_dev);
1707         if (rc) {
1708                 PMD_DRV_LOG(ERR, "Device version is too low\n");
1709                 goto err_mmio_read_less;
1710         }
1711
1712         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1713
1714         /* ENA device administration layer init */
1715         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1716         if (rc) {
1717                 PMD_DRV_LOG(ERR,
1718                         "Cannot initialize ENA admin queue\n");
1719                 goto err_mmio_read_less;
1720         }
1721
1722         /* To enable the msix interrupts the driver needs to know the number
1723          * of queues. So the driver uses polling mode to retrieve this
1724          * information.
1725          */
1726         ena_com_set_admin_polling_mode(ena_dev, true);
1727
1728         ena_config_host_info(ena_dev);
1729
1730         /* Get Device Attributes and features */
1731         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1732         if (rc) {
1733                 PMD_DRV_LOG(ERR,
1734                         "Cannot get attribute for ENA device, rc: %d\n", rc);
1735                 goto err_admin_init;
1736         }
1737
1738         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1739                       BIT(ENA_ADMIN_NOTIFICATION) |
1740                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1741                       BIT(ENA_ADMIN_FATAL_ERROR) |
1742                       BIT(ENA_ADMIN_WARNING);
1743
1744         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1745
1746         adapter->all_aenq_groups = aenq_groups;
1747
1748         return 0;
1749
1750 err_admin_init:
1751         ena_com_admin_destroy(ena_dev);
1752
1753 err_mmio_read_less:
1754         ena_com_mmio_reg_read_request_destroy(ena_dev);
1755
1756         return rc;
1757 }
1758
1759 static void ena_interrupt_handler_rte(void *cb_arg)
1760 {
1761         struct rte_eth_dev *dev = cb_arg;
1762         struct ena_adapter *adapter = dev->data->dev_private;
1763         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1764
1765         ena_com_admin_q_comp_intr_handler(ena_dev);
1766         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1767                 ena_com_aenq_intr_handler(ena_dev, dev);
1768 }
1769
1770 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1771 {
1772         if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
1773                 return;
1774
1775         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1776                 return;
1777
1778         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1779             adapter->keep_alive_timeout)) {
1780                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1781                 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1782                 adapter->trigger_reset = true;
1783                 ++adapter->dev_stats.wd_expired;
1784         }
1785 }
1786
1787 /* Check if admin queue is enabled */
1788 static void check_for_admin_com_state(struct ena_adapter *adapter)
1789 {
1790         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1791                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
1792                 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1793                 adapter->trigger_reset = true;
1794         }
1795 }
1796
1797 static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
1798                                             struct ena_ring *tx_ring)
1799 {
1800         struct ena_tx_buffer *tx_buf;
1801         uint64_t timestamp;
1802         uint64_t completion_delay;
1803         uint32_t missed_tx = 0;
1804         unsigned int i;
1805         int rc = 0;
1806
1807         for (i = 0; i < tx_ring->ring_size; ++i) {
1808                 tx_buf = &tx_ring->tx_buffer_info[i];
1809                 timestamp = tx_buf->timestamp;
1810
1811                 if (timestamp == 0)
1812                         continue;
1813
1814                 completion_delay = rte_get_timer_cycles() - timestamp;
1815                 if (completion_delay > adapter->missing_tx_completion_to) {
1816                         if (unlikely(!tx_buf->print_once)) {
1817                                 PMD_TX_LOG(WARNING,
1818                                         "Found a Tx that wasn't completed on time, qid %d, index %d. "
1819                                         "Missing Tx outstanding for %" PRIu64 " msecs.\n",
1820                                         tx_ring->id, i, completion_delay /
1821                                         rte_get_timer_hz() * 1000);
1822                                 tx_buf->print_once = true;
1823                         }
1824                         ++missed_tx;
1825                 }
1826         }
1827
1828         if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
1829                 PMD_DRV_LOG(ERR,
1830                         "The number of lost Tx completions is above the threshold (%d > %d). "
1831                         "Trigger the device reset.\n",
1832                         missed_tx,
1833                         tx_ring->missing_tx_completion_threshold);
1834                 adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
1835                 adapter->trigger_reset = true;
1836                 rc = -EIO;
1837         }
1838
1839         tx_ring->tx_stats.missed_tx += missed_tx;
1840
1841         return rc;
1842 }
1843
1844 static void check_for_tx_completions(struct ena_adapter *adapter)
1845 {
1846         struct ena_ring *tx_ring;
1847         uint64_t tx_cleanup_delay;
1848         size_t qid;
1849         int budget;
1850         uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
1851
1852         if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
1853                 return;
1854
1855         nb_tx_queues = adapter->edev_data->nb_tx_queues;
1856         budget = adapter->missing_tx_completion_budget;
1857
1858         qid = adapter->last_tx_comp_qid;
1859         while (budget-- > 0) {
1860                 tx_ring = &adapter->tx_ring[qid];
1861
1862                 /* Tx cleanup is called only by the burst function and can be
1863                  * called dynamically by the application. Also cleanup is
1864                  * limited by the threshold. To avoid false detection of the
1865                  * missing HW Tx completion, get the delay since last cleanup
1866                  * function was called.
1867                  */
1868                 tx_cleanup_delay = rte_get_timer_cycles() -
1869                         tx_ring->last_cleanup_ticks;
1870                 if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
1871                         check_for_tx_completion_in_queue(adapter, tx_ring);
1872                 qid = (qid + 1) % nb_tx_queues;
1873         }
1874
1875         adapter->last_tx_comp_qid = qid;
1876 }
1877
1878 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1879                                   void *arg)
1880 {
1881         struct rte_eth_dev *dev = arg;
1882         struct ena_adapter *adapter = dev->data->dev_private;
1883
1884         if (unlikely(adapter->trigger_reset))
1885                 return;
1886
1887         check_for_missing_keep_alive(adapter);
1888         check_for_admin_com_state(adapter);
1889         check_for_tx_completions(adapter);
1890
1891         if (unlikely(adapter->trigger_reset)) {
1892                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1893                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1894                         NULL);
1895         }
1896 }
1897
1898 static inline void
1899 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1900                                struct ena_admin_feature_llq_desc *llq,
1901                                bool use_large_llq_hdr)
1902 {
1903         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1904         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1905         llq_config->llq_num_decs_before_header =
1906                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1907
1908         if (use_large_llq_hdr &&
1909             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1910                 llq_config->llq_ring_entry_size =
1911                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1912                 llq_config->llq_ring_entry_size_value = 256;
1913         } else {
1914                 llq_config->llq_ring_entry_size =
1915                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1916                 llq_config->llq_ring_entry_size_value = 128;
1917         }
1918 }
1919
1920 static int
1921 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1922                                 struct ena_com_dev *ena_dev,
1923                                 struct ena_admin_feature_llq_desc *llq,
1924                                 struct ena_llq_configurations *llq_default_configurations)
1925 {
1926         int rc;
1927         u32 llq_feature_mask;
1928
1929         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1930         if (!(ena_dev->supported_features & llq_feature_mask)) {
1931                 PMD_DRV_LOG(INFO,
1932                         "LLQ is not supported. Fallback to host mode policy.\n");
1933                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1934                 return 0;
1935         }
1936
1937         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1938         if (unlikely(rc)) {
1939                 PMD_INIT_LOG(WARNING,
1940                         "Failed to config dev mode. Fallback to host mode policy.\n");
1941                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1942                 return 0;
1943         }
1944
1945         /* Nothing to config, exit */
1946         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1947                 return 0;
1948
1949         if (!adapter->dev_mem_base) {
1950                 PMD_DRV_LOG(ERR,
1951                         "Unable to access LLQ BAR resource. Fallback to host mode policy.\n");
1952                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1953                 return 0;
1954         }
1955
1956         ena_dev->mem_bar = adapter->dev_mem_base;
1957
1958         return 0;
1959 }
1960
1961 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1962         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1963 {
1964         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1965
1966         /* Regular queues capabilities */
1967         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1968                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1969                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1970                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1971                                     max_queue_ext->max_rx_cq_num);
1972                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1973                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1974         } else {
1975                 struct ena_admin_queue_feature_desc *max_queues =
1976                         &get_feat_ctx->max_queues;
1977                 io_tx_sq_num = max_queues->max_sq_num;
1978                 io_tx_cq_num = max_queues->max_cq_num;
1979                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1980         }
1981
1982         /* In case of LLQ use the llq number in the get feature cmd */
1983         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1984                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1985
1986         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1987         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1988         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1989
1990         if (unlikely(max_num_io_queues == 0)) {
1991                 PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
1992                 return -EFAULT;
1993         }
1994
1995         return max_num_io_queues;
1996 }
1997
1998 static void
1999 ena_set_offloads(struct ena_offloads *offloads,
2000                  struct ena_admin_feature_offload_desc *offload_desc)
2001 {
2002         if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
2003                 offloads->tx_offloads |= ENA_IPV4_TSO;
2004
2005         /* Tx IPv4 checksum offloads */
2006         if (offload_desc->tx &
2007             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
2008                 offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
2009         if (offload_desc->tx &
2010             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
2011                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
2012         if (offload_desc->tx &
2013             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
2014                 offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
2015
2016         /* Tx IPv6 checksum offloads */
2017         if (offload_desc->tx &
2018             ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
2019                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
2020         if (offload_desc->tx &
2021              ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
2022                 offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
2023
2024         /* Rx IPv4 checksum offloads */
2025         if (offload_desc->rx_supported &
2026             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
2027                 offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
2028         if (offload_desc->rx_supported &
2029             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
2030                 offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
2031
2032         /* Rx IPv6 checksum offloads */
2033         if (offload_desc->rx_supported &
2034             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
2035                 offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
2036
2037         if (offload_desc->rx_supported &
2038             ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
2039                 offloads->rx_offloads |= ENA_RX_RSS_HASH;
2040 }
2041
2042 static int ena_init_once(void)
2043 {
2044         static bool init_done;
2045
2046         if (init_done)
2047                 return 0;
2048
2049         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2050                 /* Init timer subsystem for the ENA timer service. */
2051                 rte_timer_subsystem_init();
2052                 /* Register handler for requests from secondary processes. */
2053                 rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
2054         }
2055
2056         init_done = true;
2057         return 0;
2058 }
2059
2060 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
2061 {
2062         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
2063         struct rte_pci_device *pci_dev;
2064         struct rte_intr_handle *intr_handle;
2065         struct ena_adapter *adapter = eth_dev->data->dev_private;
2066         struct ena_com_dev *ena_dev = &adapter->ena_dev;
2067         struct ena_com_dev_get_features_ctx get_feat_ctx;
2068         struct ena_llq_configurations llq_config;
2069         const char *queue_type_str;
2070         uint32_t max_num_io_queues;
2071         int rc;
2072         static int adapters_found;
2073         bool disable_meta_caching;
2074
2075         eth_dev->dev_ops = &ena_dev_ops;
2076         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
2077         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
2078         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
2079
2080         rc = ena_init_once();
2081         if (rc != 0)
2082                 return rc;
2083
2084         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2085                 return 0;
2086
2087         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2088
2089         memset(adapter, 0, sizeof(struct ena_adapter));
2090         ena_dev = &adapter->ena_dev;
2091
2092         adapter->edev_data = eth_dev->data;
2093
2094         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2095
2096         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
2097                      pci_dev->addr.domain,
2098                      pci_dev->addr.bus,
2099                      pci_dev->addr.devid,
2100                      pci_dev->addr.function);
2101
2102         intr_handle = pci_dev->intr_handle;
2103
2104         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
2105         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
2106
2107         if (!adapter->regs) {
2108                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
2109                              ENA_REGS_BAR);
2110                 return -ENXIO;
2111         }
2112
2113         ena_dev->reg_bar = adapter->regs;
2114         /* Pass device data as a pointer which can be passed to the IO functions
2115          * by the ena_com (for example - the memory allocation).
2116          */
2117         ena_dev->dmadev = eth_dev->data;
2118
2119         adapter->id_number = adapters_found;
2120
2121         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
2122                  adapter->id_number);
2123
2124         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
2125         if (rc != 0) {
2126                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
2127                 goto err;
2128         }
2129
2130         /* device specific initialization routine */
2131         rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
2132         if (rc) {
2133                 PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
2134                 goto err;
2135         }
2136
2137         /* Check if device supports LSC */
2138         if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
2139                 adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
2140
2141         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
2142                 adapter->use_large_llq_hdr);
2143         rc = ena_set_queues_placement_policy(adapter, ena_dev,
2144                                              &get_feat_ctx.llq, &llq_config);
2145         if (unlikely(rc)) {
2146                 PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
2147                 return rc;
2148         }
2149
2150         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
2151                 queue_type_str = "Regular";
2152         else
2153                 queue_type_str = "Low latency";
2154         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
2155
2156         calc_queue_ctx.ena_dev = ena_dev;
2157         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
2158
2159         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
2160         rc = ena_calc_io_queue_size(&calc_queue_ctx,
2161                 adapter->use_large_llq_hdr);
2162         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
2163                 rc = -EFAULT;
2164                 goto err_device_destroy;
2165         }
2166
2167         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
2168         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
2169         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
2170         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
2171         adapter->max_num_io_queues = max_num_io_queues;
2172
2173         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2174                 disable_meta_caching =
2175                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
2176                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
2177         } else {
2178                 disable_meta_caching = false;
2179         }
2180
2181         /* prepare ring structures */
2182         ena_init_rings(adapter, disable_meta_caching);
2183
2184         ena_config_debug_area(adapter);
2185
2186         /* Set max MTU for this device */
2187         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
2188
2189         ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
2190
2191         /* Copy MAC address and point DPDK to it */
2192         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
2193         rte_ether_addr_copy((struct rte_ether_addr *)
2194                         get_feat_ctx.dev_attr.mac_addr,
2195                         (struct rte_ether_addr *)adapter->mac_addr);
2196
2197         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
2198         if (unlikely(rc != 0)) {
2199                 PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
2200                 goto err_delete_debug_area;
2201         }
2202
2203         adapter->drv_stats = rte_zmalloc("adapter stats",
2204                                          sizeof(*adapter->drv_stats),
2205                                          RTE_CACHE_LINE_SIZE);
2206         if (!adapter->drv_stats) {
2207                 PMD_DRV_LOG(ERR,
2208                         "Failed to allocate memory for adapter statistics\n");
2209                 rc = -ENOMEM;
2210                 goto err_rss_destroy;
2211         }
2212
2213         rte_spinlock_init(&adapter->admin_lock);
2214
2215         rte_intr_callback_register(intr_handle,
2216                                    ena_interrupt_handler_rte,
2217                                    eth_dev);
2218         rte_intr_enable(intr_handle);
2219         ena_com_set_admin_polling_mode(ena_dev, false);
2220         ena_com_admin_aenq_enable(ena_dev);
2221
2222         rte_timer_init(&adapter->timer_wd);
2223
2224         adapters_found++;
2225         adapter->state = ENA_ADAPTER_STATE_INIT;
2226
2227         return 0;
2228
2229 err_rss_destroy:
2230         ena_com_rss_destroy(ena_dev);
2231 err_delete_debug_area:
2232         ena_com_delete_debug_area(ena_dev);
2233
2234 err_device_destroy:
2235         ena_com_delete_host_info(ena_dev);
2236         ena_com_admin_destroy(ena_dev);
2237
2238 err:
2239         return rc;
2240 }
2241
2242 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
2243 {
2244         struct ena_adapter *adapter = eth_dev->data->dev_private;
2245         struct ena_com_dev *ena_dev = &adapter->ena_dev;
2246
2247         if (adapter->state == ENA_ADAPTER_STATE_FREE)
2248                 return;
2249
2250         ena_com_set_admin_running_state(ena_dev, false);
2251
2252         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
2253                 ena_close(eth_dev);
2254
2255         ena_com_rss_destroy(ena_dev);
2256
2257         ena_com_delete_debug_area(ena_dev);
2258         ena_com_delete_host_info(ena_dev);
2259
2260         ena_com_abort_admin_commands(ena_dev);
2261         ena_com_wait_for_abort_completion(ena_dev);
2262         ena_com_admin_destroy(ena_dev);
2263         ena_com_mmio_reg_read_request_destroy(ena_dev);
2264
2265         adapter->state = ENA_ADAPTER_STATE_FREE;
2266 }
2267
2268 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
2269 {
2270         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2271                 return 0;
2272
2273         ena_destroy_device(eth_dev);
2274
2275         return 0;
2276 }
2277
2278 static int ena_dev_configure(struct rte_eth_dev *dev)
2279 {
2280         struct ena_adapter *adapter = dev->data->dev_private;
2281         int rc;
2282
2283         adapter->state = ENA_ADAPTER_STATE_CONFIG;
2284
2285         if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
2286                 dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2287         dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2288
2289         /* Scattered Rx cannot be turned off in the HW, so this capability must
2290          * be forced.
2291          */
2292         dev->data->scattered_rx = 1;
2293
2294         adapter->last_tx_comp_qid = 0;
2295
2296         adapter->missing_tx_completion_budget =
2297                 RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
2298
2299         adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
2300         /* To avoid detection of the spurious Tx completion timeout due to
2301          * application not calling the Tx cleanup function, set timeout for the
2302          * Tx queue which should be half of the missing completion timeout for a
2303          * safety. If there will be a lot of missing Tx completions in the
2304          * queue, they will be detected sooner or later.
2305          */
2306         adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
2307
2308         rc = ena_configure_aenq(adapter);
2309
2310         return rc;
2311 }
2312
2313 static void ena_init_rings(struct ena_adapter *adapter,
2314                            bool disable_meta_caching)
2315 {
2316         size_t i;
2317
2318         for (i = 0; i < adapter->max_num_io_queues; i++) {
2319                 struct ena_ring *ring = &adapter->tx_ring[i];
2320
2321                 ring->configured = 0;
2322                 ring->type = ENA_RING_TYPE_TX;
2323                 ring->adapter = adapter;
2324                 ring->id = i;
2325                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
2326                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
2327                 ring->sgl_size = adapter->max_tx_sgl_size;
2328                 ring->disable_meta_caching = disable_meta_caching;
2329         }
2330
2331         for (i = 0; i < adapter->max_num_io_queues; i++) {
2332                 struct ena_ring *ring = &adapter->rx_ring[i];
2333
2334                 ring->configured = 0;
2335                 ring->type = ENA_RING_TYPE_RX;
2336                 ring->adapter = adapter;
2337                 ring->id = i;
2338                 ring->sgl_size = adapter->max_rx_sgl_size;
2339         }
2340 }
2341
2342 static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
2343 {
2344         uint64_t port_offloads = 0;
2345
2346         if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
2347                 port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
2348
2349         if (adapter->offloads.rx_offloads &
2350             (ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
2351                 port_offloads |=
2352                         RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
2353
2354         if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
2355                 port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
2356
2357         port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
2358
2359         return port_offloads;
2360 }
2361
2362 static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
2363 {
2364         uint64_t port_offloads = 0;
2365
2366         if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
2367                 port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
2368
2369         if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
2370                 port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
2371         if (adapter->offloads.tx_offloads &
2372             (ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
2373              ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
2374                 port_offloads |=
2375                         RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
2376
2377         port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
2378
2379         return port_offloads;
2380 }
2381
2382 static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
2383 {
2384         RTE_SET_USED(adapter);
2385
2386         return 0;
2387 }
2388
2389 static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
2390 {
2391         RTE_SET_USED(adapter);
2392
2393         return 0;
2394 }
2395
2396 static int ena_infos_get(struct rte_eth_dev *dev,
2397                           struct rte_eth_dev_info *dev_info)
2398 {
2399         struct ena_adapter *adapter;
2400         struct ena_com_dev *ena_dev;
2401
2402         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
2403         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
2404         adapter = dev->data->dev_private;
2405
2406         ena_dev = &adapter->ena_dev;
2407         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
2408
2409         dev_info->speed_capa =
2410                         RTE_ETH_LINK_SPEED_1G   |
2411                         RTE_ETH_LINK_SPEED_2_5G |
2412                         RTE_ETH_LINK_SPEED_5G   |
2413                         RTE_ETH_LINK_SPEED_10G  |
2414                         RTE_ETH_LINK_SPEED_25G  |
2415                         RTE_ETH_LINK_SPEED_40G  |
2416                         RTE_ETH_LINK_SPEED_50G  |
2417                         RTE_ETH_LINK_SPEED_100G;
2418
2419         /* Inform framework about available features */
2420         dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
2421         dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
2422         dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
2423         dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
2424
2425         dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
2426         dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
2427
2428         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2429         dev_info->max_rx_pktlen  = adapter->max_mtu + RTE_ETHER_HDR_LEN +
2430                 RTE_ETHER_CRC_LEN;
2431         dev_info->min_mtu = ENA_MIN_MTU;
2432         dev_info->max_mtu = adapter->max_mtu;
2433         dev_info->max_mac_addrs = 1;
2434
2435         dev_info->max_rx_queues = adapter->max_num_io_queues;
2436         dev_info->max_tx_queues = adapter->max_num_io_queues;
2437         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2438
2439         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2440         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2441         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2442                                         adapter->max_rx_sgl_size);
2443         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2444                                         adapter->max_rx_sgl_size);
2445
2446         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2447         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2448         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2449                                         adapter->max_tx_sgl_size);
2450         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2451                                         adapter->max_tx_sgl_size);
2452
2453         dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2454         dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
2455
2456         return 0;
2457 }
2458
2459 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2460 {
2461         mbuf->data_len = len;
2462         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2463         mbuf->refcnt = 1;
2464         mbuf->next = NULL;
2465 }
2466
2467 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2468                                     struct ena_com_rx_buf_info *ena_bufs,
2469                                     uint32_t descs,
2470                                     uint16_t *next_to_clean,
2471                                     uint8_t offset)
2472 {
2473         struct rte_mbuf *mbuf;
2474         struct rte_mbuf *mbuf_head;
2475         struct ena_rx_buffer *rx_info;
2476         int rc;
2477         uint16_t ntc, len, req_id, buf = 0;
2478
2479         if (unlikely(descs == 0))
2480                 return NULL;
2481
2482         ntc = *next_to_clean;
2483
2484         len = ena_bufs[buf].len;
2485         req_id = ena_bufs[buf].req_id;
2486
2487         rx_info = &rx_ring->rx_buffer_info[req_id];
2488
2489         mbuf = rx_info->mbuf;
2490         RTE_ASSERT(mbuf != NULL);
2491
2492         ena_init_rx_mbuf(mbuf, len);
2493
2494         /* Fill the mbuf head with the data specific for 1st segment. */
2495         mbuf_head = mbuf;
2496         mbuf_head->nb_segs = descs;
2497         mbuf_head->port = rx_ring->port_id;
2498         mbuf_head->pkt_len = len;
2499         mbuf_head->data_off += offset;
2500
2501         rx_info->mbuf = NULL;
2502         rx_ring->empty_rx_reqs[ntc] = req_id;
2503         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2504
2505         while (--descs) {
2506                 ++buf;
2507                 len = ena_bufs[buf].len;
2508                 req_id = ena_bufs[buf].req_id;
2509
2510                 rx_info = &rx_ring->rx_buffer_info[req_id];
2511                 RTE_ASSERT(rx_info->mbuf != NULL);
2512
2513                 if (unlikely(len == 0)) {
2514                         /*
2515                          * Some devices can pass descriptor with the length 0.
2516                          * To avoid confusion, the PMD is simply putting the
2517                          * descriptor back, as it was never used. We'll avoid
2518                          * mbuf allocation that way.
2519                          */
2520                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2521                                 rx_info->mbuf, req_id);
2522                         if (unlikely(rc != 0)) {
2523                                 /* Free the mbuf in case of an error. */
2524                                 rte_mbuf_raw_free(rx_info->mbuf);
2525                         } else {
2526                                 /*
2527                                  * If there was no error, just exit the loop as
2528                                  * 0 length descriptor is always the last one.
2529                                  */
2530                                 break;
2531                         }
2532                 } else {
2533                         /* Create an mbuf chain. */
2534                         mbuf->next = rx_info->mbuf;
2535                         mbuf = mbuf->next;
2536
2537                         ena_init_rx_mbuf(mbuf, len);
2538                         mbuf_head->pkt_len += len;
2539                 }
2540
2541                 /*
2542                  * Mark the descriptor as depleted and perform necessary
2543                  * cleanup.
2544                  * This code will execute in two cases:
2545                  *  1. Descriptor len was greater than 0 - normal situation.
2546                  *  2. Descriptor len was 0 and we failed to add the descriptor
2547                  *     to the device. In that situation, we should try to add
2548                  *     the mbuf again in the populate routine and mark the
2549                  *     descriptor as used up by the device.
2550                  */
2551                 rx_info->mbuf = NULL;
2552                 rx_ring->empty_rx_reqs[ntc] = req_id;
2553                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2554         }
2555
2556         *next_to_clean = ntc;
2557
2558         return mbuf_head;
2559 }
2560
2561 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2562                                   uint16_t nb_pkts)
2563 {
2564         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2565         unsigned int free_queue_entries;
2566         uint16_t next_to_clean = rx_ring->next_to_clean;
2567         uint16_t descs_in_use;
2568         struct rte_mbuf *mbuf;
2569         uint16_t completed;
2570         struct ena_com_rx_ctx ena_rx_ctx;
2571         int i, rc = 0;
2572         bool fill_hash;
2573
2574 #ifdef RTE_ETHDEV_DEBUG_RX
2575         /* Check adapter state */
2576         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2577                 PMD_RX_LOG(ALERT,
2578                         "Trying to receive pkts while device is NOT running\n");
2579                 return 0;
2580         }
2581 #endif
2582
2583         fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
2584
2585         descs_in_use = rx_ring->ring_size -
2586                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2587         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2588
2589         for (completed = 0; completed < nb_pkts; completed++) {
2590                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2591                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2592                 ena_rx_ctx.descs = 0;
2593                 ena_rx_ctx.pkt_offset = 0;
2594                 /* receive packet context */
2595                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2596                                     rx_ring->ena_com_io_sq,
2597                                     &ena_rx_ctx);
2598                 if (unlikely(rc)) {
2599                         PMD_RX_LOG(ERR,
2600                                 "Failed to get the packet from the device, rc: %d\n",
2601                                 rc);
2602                         if (rc == ENA_COM_NO_SPACE) {
2603                                 ++rx_ring->rx_stats.bad_desc_num;
2604                                 rx_ring->adapter->reset_reason =
2605                                         ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2606                         } else {
2607                                 ++rx_ring->rx_stats.bad_req_id;
2608                                 rx_ring->adapter->reset_reason =
2609                                         ENA_REGS_RESET_INV_RX_REQ_ID;
2610                         }
2611                         rx_ring->adapter->trigger_reset = true;
2612                         return 0;
2613                 }
2614
2615                 mbuf = ena_rx_mbuf(rx_ring,
2616                         ena_rx_ctx.ena_bufs,
2617                         ena_rx_ctx.descs,
2618                         &next_to_clean,
2619                         ena_rx_ctx.pkt_offset);
2620                 if (unlikely(mbuf == NULL)) {
2621                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2622                                 rx_ring->empty_rx_reqs[next_to_clean] =
2623                                         rx_ring->ena_bufs[i].req_id;
2624                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2625                                         next_to_clean, rx_ring->size_mask);
2626                         }
2627                         break;
2628                 }
2629
2630                 /* fill mbuf attributes if any */
2631                 ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
2632
2633                 if (unlikely(mbuf->ol_flags &
2634                                 (RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
2635                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2636
2637                 rx_pkts[completed] = mbuf;
2638                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2639         }
2640
2641         rx_ring->rx_stats.cnt += completed;
2642         rx_ring->next_to_clean = next_to_clean;
2643
2644         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2645
2646         /* Burst refill to save doorbells, memory barriers, const interval */
2647         if (free_queue_entries >= rx_ring->rx_free_thresh) {
2648                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2649                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2650         }
2651
2652         return completed;
2653 }
2654
2655 static uint16_t
2656 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2657                 uint16_t nb_pkts)
2658 {
2659         int32_t ret;
2660         uint32_t i;
2661         struct rte_mbuf *m;
2662         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2663         struct ena_adapter *adapter = tx_ring->adapter;
2664         struct rte_ipv4_hdr *ip_hdr;
2665         uint64_t ol_flags;
2666         uint64_t l4_csum_flag;
2667         uint64_t dev_offload_capa;
2668         uint16_t frag_field;
2669         bool need_pseudo_csum;
2670
2671         dev_offload_capa = adapter->offloads.tx_offloads;
2672         for (i = 0; i != nb_pkts; i++) {
2673                 m = tx_pkts[i];
2674                 ol_flags = m->ol_flags;
2675
2676                 /* Check if any offload flag was set */
2677                 if (ol_flags == 0)
2678                         continue;
2679
2680                 l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
2681                 /* SCTP checksum offload is not supported by the ENA. */
2682                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
2683                     l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
2684                         PMD_TX_LOG(DEBUG,
2685                                 "mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
2686                                 i, ol_flags);
2687                         rte_errno = ENOTSUP;
2688                         return i;
2689                 }
2690
2691                 if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
2692                     !(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2693                       m->nb_segs == tx_ring->sgl_size &&
2694                       m->data_len < tx_ring->tx_max_header_size))) {
2695                         PMD_TX_LOG(DEBUG,
2696                                 "mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
2697                                 i, m->nb_segs);
2698                         rte_errno = EINVAL;
2699                         return i;
2700                 }
2701
2702 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2703                 /* Check if requested offload is also enabled for the queue */
2704                 if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2705                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
2706                     (l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
2707                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
2708                     (l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
2709                      !(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
2710                         PMD_TX_LOG(DEBUG,
2711                                 "mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
2712                                 i, m->nb_segs, tx_ring->id);
2713                         rte_errno = EINVAL;
2714                         return i;
2715                 }
2716
2717                 /* The caller is obligated to set l2 and l3 len if any cksum
2718                  * offload is enabled.
2719                  */
2720                 if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
2721                     (m->l2_len == 0 || m->l3_len == 0))) {
2722                         PMD_TX_LOG(DEBUG,
2723                                 "mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
2724                                 i);
2725                         rte_errno = EINVAL;
2726                         return i;
2727                 }
2728                 ret = rte_validate_tx_offload(m);
2729                 if (ret != 0) {
2730                         rte_errno = -ret;
2731                         return i;
2732                 }
2733 #endif
2734
2735                 /* Verify HW support for requested offloads and determine if
2736                  * pseudo header checksum is needed.
2737                  */
2738                 need_pseudo_csum = false;
2739                 if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2740                         if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
2741                             !(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
2742                                 rte_errno = ENOTSUP;
2743                                 return i;
2744                         }
2745
2746                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
2747                             !(dev_offload_capa & ENA_IPV4_TSO)) {
2748                                 rte_errno = ENOTSUP;
2749                                 return i;
2750                         }
2751
2752                         /* Check HW capabilities and if pseudo csum is needed
2753                          * for L4 offloads.
2754                          */
2755                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2756                             !(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
2757                                 if (dev_offload_capa &
2758                                     ENA_L4_IPV4_CSUM_PARTIAL) {
2759                                         need_pseudo_csum = true;
2760                                 } else {
2761                                         rte_errno = ENOTSUP;
2762                                         return i;
2763                                 }
2764                         }
2765
2766                         /* Parse the DF flag */
2767                         ip_hdr = rte_pktmbuf_mtod_offset(m,
2768                                 struct rte_ipv4_hdr *, m->l2_len);
2769                         frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2770                         if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
2771                                 m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2772                         } else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2773                                 /* In case we are supposed to TSO and have DF
2774                                  * not set (DF=0) hardware must be provided with
2775                                  * partial checksum.
2776                                  */
2777                                 need_pseudo_csum = true;
2778                         }
2779                 } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2780                         /* There is no support for IPv6 TSO as for now. */
2781                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2782                                 rte_errno = ENOTSUP;
2783                                 return i;
2784                         }
2785
2786                         /* Check HW capabilities and if pseudo csum is needed */
2787                         if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
2788                             !(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
2789                                 if (dev_offload_capa &
2790                                     ENA_L4_IPV6_CSUM_PARTIAL) {
2791                                         need_pseudo_csum = true;
2792                                 } else {
2793                                         rte_errno = ENOTSUP;
2794                                         return i;
2795                                 }
2796                         }
2797                 }
2798
2799                 if (need_pseudo_csum) {
2800                         ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
2801                         if (ret != 0) {
2802                                 rte_errno = -ret;
2803                                 return i;
2804                         }
2805                 }
2806         }
2807
2808         return i;
2809 }
2810
2811 static void ena_update_hints(struct ena_adapter *adapter,
2812                              struct ena_admin_ena_hw_hints *hints)
2813 {
2814         if (hints->admin_completion_tx_timeout)
2815                 adapter->ena_dev.admin_queue.completion_timeout =
2816                         hints->admin_completion_tx_timeout * 1000;
2817
2818         if (hints->mmio_read_timeout)
2819                 /* convert to usec */
2820                 adapter->ena_dev.mmio_read.reg_read_to =
2821                         hints->mmio_read_timeout * 1000;
2822
2823         if (hints->missing_tx_completion_timeout) {
2824                 if (hints->missing_tx_completion_timeout ==
2825                     ENA_HW_HINTS_NO_TIMEOUT) {
2826                         adapter->missing_tx_completion_to =
2827                                 ENA_HW_HINTS_NO_TIMEOUT;
2828                 } else {
2829                         /* Convert from msecs to ticks */
2830                         adapter->missing_tx_completion_to = rte_get_timer_hz() *
2831                                 hints->missing_tx_completion_timeout / 1000;
2832                         adapter->tx_cleanup_stall_delay =
2833                                 adapter->missing_tx_completion_to / 2;
2834                 }
2835         }
2836
2837         if (hints->driver_watchdog_timeout) {
2838                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2839                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2840                 else
2841                         // Convert msecs to ticks
2842                         adapter->keep_alive_timeout =
2843                                 (hints->driver_watchdog_timeout *
2844                                 rte_get_timer_hz()) / 1000;
2845         }
2846 }
2847
2848 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2849         struct ena_tx_buffer *tx_info,
2850         struct rte_mbuf *mbuf,
2851         void **push_header,
2852         uint16_t *header_len)
2853 {
2854         struct ena_com_buf *ena_buf;
2855         uint16_t delta, seg_len, push_len;
2856
2857         delta = 0;
2858         seg_len = mbuf->data_len;
2859
2860         tx_info->mbuf = mbuf;
2861         ena_buf = tx_info->bufs;
2862
2863         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2864                 /*
2865                  * Tx header might be (and will be in most cases) smaller than
2866                  * tx_max_header_size. But it's not an issue to send more data
2867                  * to the device, than actually needed if the mbuf size is
2868                  * greater than tx_max_header_size.
2869                  */
2870                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2871                 *header_len = push_len;
2872
2873                 if (likely(push_len <= seg_len)) {
2874                         /* If the push header is in the single segment, then
2875                          * just point it to the 1st mbuf data.
2876                          */
2877                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2878                 } else {
2879                         /* If the push header lays in the several segments, copy
2880                          * it to the intermediate buffer.
2881                          */
2882                         rte_pktmbuf_read(mbuf, 0, push_len,
2883                                 tx_ring->push_buf_intermediate_buf);
2884                         *push_header = tx_ring->push_buf_intermediate_buf;
2885                         delta = push_len - seg_len;
2886                 }
2887         } else {
2888                 *push_header = NULL;
2889                 *header_len = 0;
2890                 push_len = 0;
2891         }
2892
2893         /* Process first segment taking into consideration pushed header */
2894         if (seg_len > push_len) {
2895                 ena_buf->paddr = mbuf->buf_iova +
2896                                 mbuf->data_off +
2897                                 push_len;
2898                 ena_buf->len = seg_len - push_len;
2899                 ena_buf++;
2900                 tx_info->num_of_bufs++;
2901         }
2902
2903         while ((mbuf = mbuf->next) != NULL) {
2904                 seg_len = mbuf->data_len;
2905
2906                 /* Skip mbufs if whole data is pushed as a header */
2907                 if (unlikely(delta > seg_len)) {
2908                         delta -= seg_len;
2909                         continue;
2910                 }
2911
2912                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2913                 ena_buf->len = seg_len - delta;
2914                 ena_buf++;
2915                 tx_info->num_of_bufs++;
2916
2917                 delta = 0;
2918         }
2919 }
2920
2921 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2922 {
2923         struct ena_tx_buffer *tx_info;
2924         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2925         uint16_t next_to_use;
2926         uint16_t header_len;
2927         uint16_t req_id;
2928         void *push_header;
2929         int nb_hw_desc;
2930         int rc;
2931
2932         /* Checking for space for 2 additional metadata descriptors due to
2933          * possible header split and metadata descriptor
2934          */
2935         if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
2936                                           mbuf->nb_segs + 2)) {
2937                 PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
2938                 return ENA_COM_NO_MEM;
2939         }
2940
2941         next_to_use = tx_ring->next_to_use;
2942
2943         req_id = tx_ring->empty_tx_reqs[next_to_use];
2944         tx_info = &tx_ring->tx_buffer_info[req_id];
2945         tx_info->num_of_bufs = 0;
2946         RTE_ASSERT(tx_info->mbuf == NULL);
2947
2948         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2949
2950         ena_tx_ctx.ena_bufs = tx_info->bufs;
2951         ena_tx_ctx.push_header = push_header;
2952         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2953         ena_tx_ctx.req_id = req_id;
2954         ena_tx_ctx.header_len = header_len;
2955
2956         /* Set Tx offloads flags, if applicable */
2957         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2958                 tx_ring->disable_meta_caching);
2959
2960         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2961                         &ena_tx_ctx))) {
2962                 PMD_TX_LOG(DEBUG,
2963                         "LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2964                         tx_ring->id);
2965                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2966                 tx_ring->tx_stats.doorbells++;
2967                 tx_ring->pkts_without_db = false;
2968         }
2969
2970         /* prepare the packet's descriptors to dma engine */
2971         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2972                 &nb_hw_desc);
2973         if (unlikely(rc)) {
2974                 PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
2975                 ++tx_ring->tx_stats.prepare_ctx_err;
2976                 tx_ring->adapter->reset_reason =
2977                     ENA_REGS_RESET_DRIVER_INVALID_STATE;
2978                 tx_ring->adapter->trigger_reset = true;
2979                 return rc;
2980         }
2981
2982         tx_info->tx_descs = nb_hw_desc;
2983         tx_info->timestamp = rte_get_timer_cycles();
2984
2985         tx_ring->tx_stats.cnt++;
2986         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2987
2988         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2989                 tx_ring->size_mask);
2990
2991         return 0;
2992 }
2993
2994 static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
2995 {
2996         struct ena_ring *tx_ring = (struct ena_ring *)txp;
2997         unsigned int total_tx_descs = 0;
2998         unsigned int total_tx_pkts = 0;
2999         uint16_t cleanup_budget;
3000         uint16_t next_to_clean = tx_ring->next_to_clean;
3001
3002         /*
3003          * If free_pkt_cnt is equal to 0, it means that the user requested
3004          * full cleanup, so attempt to release all Tx descriptors
3005          * (ring_size - 1 -> size_mask)
3006          */
3007         cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
3008
3009         while (likely(total_tx_pkts < cleanup_budget)) {
3010                 struct rte_mbuf *mbuf;
3011                 struct ena_tx_buffer *tx_info;
3012                 uint16_t req_id;
3013
3014                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
3015                         break;
3016
3017                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
3018                         break;
3019
3020                 /* Get Tx info & store how many descs were processed  */
3021                 tx_info = &tx_ring->tx_buffer_info[req_id];
3022                 tx_info->timestamp = 0;
3023
3024                 mbuf = tx_info->mbuf;
3025                 rte_pktmbuf_free(mbuf);
3026
3027                 tx_info->mbuf = NULL;
3028                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
3029
3030                 total_tx_descs += tx_info->tx_descs;
3031                 total_tx_pkts++;
3032
3033                 /* Put back descriptor to the ring for reuse */
3034                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
3035                         tx_ring->size_mask);
3036         }
3037
3038         if (likely(total_tx_descs > 0)) {
3039                 /* acknowledge completion of sent packets */
3040                 tx_ring->next_to_clean = next_to_clean;
3041                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
3042                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
3043         }
3044
3045         /* Notify completion handler that full cleanup was performed */
3046         if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
3047                 tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
3048
3049         return total_tx_pkts;
3050 }
3051
3052 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
3053                                   uint16_t nb_pkts)
3054 {
3055         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
3056         int available_desc;
3057         uint16_t sent_idx = 0;
3058
3059 #ifdef RTE_ETHDEV_DEBUG_TX
3060         /* Check adapter state */
3061         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
3062                 PMD_TX_LOG(ALERT,
3063                         "Trying to xmit pkts while device is NOT running\n");
3064                 return 0;
3065         }
3066 #endif
3067
3068         available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3069         if (available_desc < tx_ring->tx_free_thresh)
3070                 ena_tx_cleanup((void *)tx_ring, 0);
3071
3072         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
3073                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
3074                         break;
3075                 tx_ring->pkts_without_db = true;
3076                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
3077                         tx_ring->size_mask)]);
3078         }
3079
3080         /* If there are ready packets to be xmitted... */
3081         if (likely(tx_ring->pkts_without_db)) {
3082                 /* ...let HW do its best :-) */
3083                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3084                 tx_ring->tx_stats.doorbells++;
3085                 tx_ring->pkts_without_db = false;
3086         }
3087
3088         tx_ring->tx_stats.available_desc =
3089                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
3090         tx_ring->tx_stats.tx_poll++;
3091
3092         return sent_idx;
3093 }
3094
3095 int ena_copy_eni_stats(struct ena_adapter *adapter, struct ena_stats_eni *stats)
3096 {
3097         int rc;
3098
3099         rte_spinlock_lock(&adapter->admin_lock);
3100         /* Retrieve and store the latest statistics from the AQ. This ensures
3101          * that previous value is returned in case of a com error.
3102          */
3103         rc = ENA_PROXY(adapter, ena_com_get_eni_stats, &adapter->ena_dev,
3104                 (struct ena_admin_eni_stats *)stats);
3105         rte_spinlock_unlock(&adapter->admin_lock);
3106         if (rc != 0) {
3107                 if (rc == ENA_COM_UNSUPPORTED) {
3108                         PMD_DRV_LOG(DEBUG,
3109                                 "Retrieving ENI metrics is not supported\n");
3110                 } else {
3111                         PMD_DRV_LOG(WARNING,
3112                                 "Failed to get ENI metrics, rc: %d\n", rc);
3113                 }
3114                 return rc;
3115         }
3116
3117         return 0;
3118 }
3119
3120 /**
3121  * DPDK callback to retrieve names of extended device statistics
3122  *
3123  * @param dev
3124  *   Pointer to Ethernet device structure.
3125  * @param[out] xstats_names
3126  *   Buffer to insert names into.
3127  * @param n
3128  *   Number of names.
3129  *
3130  * @return
3131  *   Number of xstats names.
3132  */
3133 static int ena_xstats_get_names(struct rte_eth_dev *dev,
3134                                 struct rte_eth_xstat_name *xstats_names,
3135                                 unsigned int n)
3136 {
3137         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3138         unsigned int stat, i, count = 0;
3139
3140         if (n < xstats_count || !xstats_names)
3141                 return xstats_count;
3142
3143         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
3144                 strcpy(xstats_names[count].name,
3145                         ena_stats_global_strings[stat].name);
3146
3147         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
3148                 strcpy(xstats_names[count].name,
3149                         ena_stats_eni_strings[stat].name);
3150
3151         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
3152                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
3153                         snprintf(xstats_names[count].name,
3154                                 sizeof(xstats_names[count].name),
3155                                 "rx_q%d_%s", i,
3156                                 ena_stats_rx_strings[stat].name);
3157
3158         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
3159                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
3160                         snprintf(xstats_names[count].name,
3161                                 sizeof(xstats_names[count].name),
3162                                 "tx_q%d_%s", i,
3163                                 ena_stats_tx_strings[stat].name);
3164
3165         return xstats_count;
3166 }
3167
3168 /**
3169  * DPDK callback to get extended device statistics.
3170  *
3171  * @param dev
3172  *   Pointer to Ethernet device structure.
3173  * @param[out] stats
3174  *   Stats table output buffer.
3175  * @param n
3176  *   The size of the stats table.
3177  *
3178  * @return
3179  *   Number of xstats on success, negative on failure.
3180  */
3181 static int ena_xstats_get(struct rte_eth_dev *dev,
3182                           struct rte_eth_xstat *xstats,
3183                           unsigned int n)
3184 {
3185         struct ena_adapter *adapter = dev->data->dev_private;
3186         unsigned int xstats_count = ena_xstats_calc_num(dev->data);
3187         struct ena_stats_eni eni_stats;
3188         unsigned int stat, i, count = 0;
3189         int stat_offset;
3190         void *stats_begin;
3191
3192         if (n < xstats_count)
3193                 return xstats_count;
3194
3195         if (!xstats)
3196                 return 0;
3197
3198         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
3199                 stat_offset = ena_stats_global_strings[stat].stat_offset;
3200                 stats_begin = &adapter->dev_stats;
3201
3202                 xstats[count].id = count;
3203                 xstats[count].value = *((uint64_t *)
3204                         ((char *)stats_begin + stat_offset));
3205         }
3206
3207         /* Even if the function below fails, we should copy previous (or initial
3208          * values) to keep structure of rte_eth_xstat consistent.
3209          */
3210         ena_copy_eni_stats(adapter, &eni_stats);
3211         for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
3212                 stat_offset = ena_stats_eni_strings[stat].stat_offset;
3213                 stats_begin = &eni_stats;
3214
3215                 xstats[count].id = count;
3216                 xstats[count].value = *((uint64_t *)
3217                     ((char *)stats_begin + stat_offset));
3218         }
3219
3220         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
3221                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
3222                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
3223                         stats_begin = &adapter->rx_ring[i].rx_stats;
3224
3225                         xstats[count].id = count;
3226                         xstats[count].value = *((uint64_t *)
3227                                 ((char *)stats_begin + stat_offset));
3228                 }
3229         }
3230
3231         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
3232                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
3233                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
3234                         stats_begin = &adapter->tx_ring[i].rx_stats;
3235
3236                         xstats[count].id = count;
3237                         xstats[count].value = *((uint64_t *)
3238                                 ((char *)stats_begin + stat_offset));
3239                 }
3240         }
3241
3242         return count;
3243 }
3244
3245 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
3246                                 const uint64_t *ids,
3247                                 uint64_t *values,
3248                                 unsigned int n)
3249 {
3250         struct ena_adapter *adapter = dev->data->dev_private;
3251         struct ena_stats_eni eni_stats;
3252         uint64_t id;
3253         uint64_t rx_entries, tx_entries;
3254         unsigned int i;
3255         int qid;
3256         int valid = 0;
3257         bool was_eni_copied = false;
3258
3259         for (i = 0; i < n; ++i) {
3260                 id = ids[i];
3261                 /* Check if id belongs to global statistics */
3262                 if (id < ENA_STATS_ARRAY_GLOBAL) {
3263                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
3264                         ++valid;
3265                         continue;
3266                 }
3267
3268                 /* Check if id belongs to ENI statistics */
3269                 id -= ENA_STATS_ARRAY_GLOBAL;
3270                 if (id < ENA_STATS_ARRAY_ENI) {
3271                         /* Avoid reading ENI stats multiple times in a single
3272                          * function call, as it requires communication with the
3273                          * admin queue.
3274                          */
3275                         if (!was_eni_copied) {
3276                                 was_eni_copied = true;
3277                                 ena_copy_eni_stats(adapter, &eni_stats);
3278                         }
3279                         values[i] = *((uint64_t *)&eni_stats + id);
3280                         ++valid;
3281                         continue;
3282                 }
3283
3284                 /* Check if id belongs to rx queue statistics */
3285                 id -= ENA_STATS_ARRAY_ENI;
3286                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
3287                 if (id < rx_entries) {
3288                         qid = id % dev->data->nb_rx_queues;
3289                         id /= dev->data->nb_rx_queues;
3290                         values[i] = *((uint64_t *)
3291                                 &adapter->rx_ring[qid].rx_stats + id);
3292                         ++valid;
3293                         continue;
3294                 }
3295                                 /* Check if id belongs to rx queue statistics */
3296                 id -= rx_entries;
3297                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
3298                 if (id < tx_entries) {
3299                         qid = id % dev->data->nb_tx_queues;
3300                         id /= dev->data->nb_tx_queues;
3301                         values[i] = *((uint64_t *)
3302                                 &adapter->tx_ring[qid].tx_stats + id);
3303                         ++valid;
3304                         continue;
3305                 }
3306         }
3307
3308         return valid;
3309 }
3310
3311 static int ena_process_bool_devarg(const char *key,
3312                                    const char *value,
3313                                    void *opaque)
3314 {
3315         struct ena_adapter *adapter = opaque;
3316         bool bool_value;
3317
3318         /* Parse the value. */
3319         if (strcmp(value, "1") == 0) {
3320                 bool_value = true;
3321         } else if (strcmp(value, "0") == 0) {
3322                 bool_value = false;
3323         } else {
3324                 PMD_INIT_LOG(ERR,
3325                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
3326                         value, key);
3327                 return -EINVAL;
3328         }
3329
3330         /* Now, assign it to the proper adapter field. */
3331         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
3332                 adapter->use_large_llq_hdr = bool_value;
3333
3334         return 0;
3335 }
3336
3337 static int ena_parse_devargs(struct ena_adapter *adapter,
3338                              struct rte_devargs *devargs)
3339 {
3340         static const char * const allowed_args[] = {
3341                 ENA_DEVARG_LARGE_LLQ_HDR,
3342                 NULL,
3343         };
3344         struct rte_kvargs *kvlist;
3345         int rc;
3346
3347         if (devargs == NULL)
3348                 return 0;
3349
3350         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
3351         if (kvlist == NULL) {
3352                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
3353                         devargs->args);
3354                 return -EINVAL;
3355         }
3356
3357         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
3358                 ena_process_bool_devarg, adapter);
3359
3360         rte_kvargs_free(kvlist);
3361
3362         return rc;
3363 }
3364
3365 static int ena_setup_rx_intr(struct rte_eth_dev *dev)
3366 {
3367         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3368         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3369         int rc;
3370         uint16_t vectors_nb, i;
3371         bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
3372
3373         if (!rx_intr_requested)
3374                 return 0;
3375
3376         if (!rte_intr_cap_multiple(intr_handle)) {
3377                 PMD_DRV_LOG(ERR,
3378                         "Rx interrupt requested, but it isn't supported by the PCI driver\n");
3379                 return -ENOTSUP;
3380         }
3381
3382         /* Disable interrupt mapping before the configuration starts. */
3383         rte_intr_disable(intr_handle);
3384
3385         /* Verify if there are enough vectors available. */
3386         vectors_nb = dev->data->nb_rx_queues;
3387         if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
3388                 PMD_DRV_LOG(ERR,
3389                         "Too many Rx interrupts requested, maximum number: %d\n",
3390                         RTE_MAX_RXTX_INTR_VEC_ID);
3391                 rc = -ENOTSUP;
3392                 goto enable_intr;
3393         }
3394
3395         /* Allocate the vector list */
3396         if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
3397                                            dev->data->nb_rx_queues)) {
3398                 PMD_DRV_LOG(ERR,
3399                         "Failed to allocate interrupt vector for %d queues\n",
3400                         dev->data->nb_rx_queues);
3401                 rc = -ENOMEM;
3402                 goto enable_intr;
3403         }
3404
3405         rc = rte_intr_efd_enable(intr_handle, vectors_nb);
3406         if (rc != 0)
3407                 goto free_intr_vec;
3408
3409         if (!rte_intr_allow_others(intr_handle)) {
3410                 PMD_DRV_LOG(ERR,
3411                         "Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
3412                 goto disable_intr_efd;
3413         }
3414
3415         for (i = 0; i < vectors_nb; ++i)
3416                 if (rte_intr_vec_list_index_set(intr_handle, i,
3417                                            RTE_INTR_VEC_RXTX_OFFSET + i))
3418                         goto disable_intr_efd;
3419
3420         rte_intr_enable(intr_handle);
3421         return 0;
3422
3423 disable_intr_efd:
3424         rte_intr_efd_disable(intr_handle);
3425 free_intr_vec:
3426         rte_intr_vec_list_free(intr_handle);
3427 enable_intr:
3428         rte_intr_enable(intr_handle);
3429         return rc;
3430 }
3431
3432 static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
3433                                  uint16_t queue_id,
3434                                  bool unmask)
3435 {
3436         struct ena_adapter *adapter = dev->data->dev_private;
3437         struct ena_ring *rxq = &adapter->rx_ring[queue_id];
3438         struct ena_eth_io_intr_reg intr_reg;
3439
3440         ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
3441         ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
3442 }
3443
3444 static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
3445                                     uint16_t queue_id)
3446 {
3447         ena_rx_queue_intr_set(dev, queue_id, true);
3448
3449         return 0;
3450 }
3451
3452 static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
3453                                      uint16_t queue_id)
3454 {
3455         ena_rx_queue_intr_set(dev, queue_id, false);
3456
3457         return 0;
3458 }
3459
3460 static int ena_configure_aenq(struct ena_adapter *adapter)
3461 {
3462         uint32_t aenq_groups = adapter->all_aenq_groups;
3463         int rc;
3464
3465         /* All_aenq_groups holds all AENQ functions supported by the device and
3466          * the HW, so at first we need to be sure the LSC request is valid.
3467          */
3468         if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
3469                 if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
3470                         PMD_DRV_LOG(ERR,
3471                                 "LSC requested, but it's not supported by the AENQ\n");
3472                         return -EINVAL;
3473                 }
3474         } else {
3475                 /* If LSC wasn't enabled by the app, let's enable all supported
3476                  * AENQ procedures except the LSC.
3477                  */
3478                 aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
3479         }
3480
3481         rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
3482         if (rc != 0) {
3483                 PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
3484                 return rc;
3485         }
3486
3487         adapter->active_aenq_groups = aenq_groups;
3488
3489         return 0;
3490 }
3491
3492 int ena_mp_indirect_table_set(struct ena_adapter *adapter)
3493 {
3494         return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
3495 }
3496
3497 int ena_mp_indirect_table_get(struct ena_adapter *adapter,
3498                               uint32_t *indirect_table)
3499 {
3500         return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
3501                 indirect_table);
3502 }
3503
3504 /*********************************************************************
3505  *  ena_plat_dpdk.h functions implementations
3506  *********************************************************************/
3507
3508 const struct rte_memzone *
3509 ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
3510                        int socket_id, unsigned int alignment, void **virt_addr,
3511                        dma_addr_t *phys_addr)
3512 {
3513         char z_name[RTE_MEMZONE_NAMESIZE];
3514         struct ena_adapter *adapter = data->dev_private;
3515         const struct rte_memzone *memzone;
3516         int rc;
3517
3518         rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
3519                 data->port_id, adapter->memzone_cnt);
3520         if (rc >= RTE_MEMZONE_NAMESIZE) {
3521                 PMD_DRV_LOG(ERR,
3522                         "Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
3523                         data->port_id, adapter->memzone_cnt);
3524                 goto error;
3525         }
3526         adapter->memzone_cnt++;
3527
3528         memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
3529                 RTE_MEMZONE_IOVA_CONTIG, alignment);
3530         if (memzone == NULL) {
3531                 PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
3532                         z_name);
3533                 goto error;
3534         }
3535
3536         memset(memzone->addr, 0, size);
3537         *virt_addr = memzone->addr;
3538         *phys_addr = memzone->iova;
3539
3540         return memzone;
3541
3542 error:
3543         *virt_addr = NULL;
3544         *phys_addr = 0;
3545
3546         return NULL;
3547 }
3548
3549
3550 /*********************************************************************
3551  *  PMD configuration
3552  *********************************************************************/
3553 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3554         struct rte_pci_device *pci_dev)
3555 {
3556         return rte_eth_dev_pci_generic_probe(pci_dev,
3557                 sizeof(struct ena_adapter), eth_ena_dev_init);
3558 }
3559
3560 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
3561 {
3562         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
3563 }
3564
3565 static struct rte_pci_driver rte_ena_pmd = {
3566         .id_table = pci_id_ena_map,
3567         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
3568                      RTE_PCI_DRV_WC_ACTIVATE,
3569         .probe = eth_ena_pci_probe,
3570         .remove = eth_ena_pci_remove,
3571 };
3572
3573 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
3574 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
3575 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
3576 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
3577 RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
3578 RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
3579 #ifdef RTE_ETHDEV_DEBUG_RX
3580 RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
3581 #endif
3582 #ifdef RTE_ETHDEV_DEBUG_TX
3583 RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
3584 #endif
3585 RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
3586
3587 /******************************************************************************
3588  ******************************** AENQ Handlers *******************************
3589  *****************************************************************************/
3590 static void ena_update_on_link_change(void *adapter_data,
3591                                       struct ena_admin_aenq_entry *aenq_e)
3592 {
3593         struct rte_eth_dev *eth_dev = adapter_data;
3594         struct ena_adapter *adapter = eth_dev->data->dev_private;
3595         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
3596         uint32_t status;
3597
3598         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
3599
3600         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
3601         adapter->link_status = status;
3602
3603         ena_link_update(eth_dev, 0);
3604         rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
3605 }
3606
3607 static void ena_notification(void *adapter_data,
3608                              struct ena_admin_aenq_entry *aenq_e)
3609 {
3610         struct rte_eth_dev *eth_dev = adapter_data;
3611         struct ena_adapter *adapter = eth_dev->data->dev_private;
3612         struct ena_admin_ena_hw_hints *hints;
3613
3614         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
3615                 PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
3616                         aenq_e->aenq_common_desc.group,
3617                         ENA_ADMIN_NOTIFICATION);
3618
3619         switch (aenq_e->aenq_common_desc.syndrome) {
3620         case ENA_ADMIN_UPDATE_HINTS:
3621                 hints = (struct ena_admin_ena_hw_hints *)
3622                         (&aenq_e->inline_data_w4);
3623                 ena_update_hints(adapter, hints);
3624                 break;
3625         default:
3626                 PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
3627                         aenq_e->aenq_common_desc.syndrome);
3628         }
3629 }
3630
3631 static void ena_keep_alive(void *adapter_data,
3632                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
3633 {
3634         struct rte_eth_dev *eth_dev = adapter_data;
3635         struct ena_adapter *adapter = eth_dev->data->dev_private;
3636         struct ena_admin_aenq_keep_alive_desc *desc;
3637         uint64_t rx_drops;
3638         uint64_t tx_drops;
3639
3640         adapter->timestamp_wd = rte_get_timer_cycles();
3641
3642         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
3643         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
3644         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
3645
3646         adapter->drv_stats->rx_drops = rx_drops;
3647         adapter->dev_stats.tx_drops = tx_drops;
3648 }
3649
3650 /**
3651  * This handler will called for unknown event group or unimplemented handlers
3652  **/
3653 static void unimplemented_aenq_handler(__rte_unused void *data,
3654                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
3655 {
3656         PMD_DRV_LOG(ERR,
3657                 "Unknown event was received or event with unimplemented handler\n");
3658 }
3659
3660 static struct ena_aenq_handlers aenq_handlers = {
3661         .handlers = {
3662                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
3663                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
3664                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
3665         },
3666         .unimplemented_handler = unimplemented_aenq_handler
3667 };
3668
3669 /*********************************************************************
3670  *  Multi-Process communication request handling (in primary)
3671  *********************************************************************/
3672 static int
3673 ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
3674 {
3675         const struct ena_mp_body *req =
3676                 (const struct ena_mp_body *)mp_msg->param;
3677         struct ena_adapter *adapter;
3678         struct ena_com_dev *ena_dev;
3679         struct ena_mp_body *rsp;
3680         struct rte_mp_msg mp_rsp;
3681         struct rte_eth_dev *dev;
3682         int res = 0;
3683
3684         rsp = (struct ena_mp_body *)&mp_rsp.param;
3685         mp_msg_init(&mp_rsp, req->type, req->port_id);
3686
3687         if (!rte_eth_dev_is_valid_port(req->port_id)) {
3688                 rte_errno = ENODEV;
3689                 res = -rte_errno;
3690                 PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
3691                             req->port_id, req->type);
3692                 goto end;
3693         }
3694         dev = &rte_eth_devices[req->port_id];
3695         adapter = dev->data->dev_private;
3696         ena_dev = &adapter->ena_dev;
3697
3698         switch (req->type) {
3699         case ENA_MP_DEV_STATS_GET:
3700                 res = ena_com_get_dev_basic_stats(ena_dev,
3701                                                   &adapter->basic_stats);
3702                 break;
3703         case ENA_MP_ENI_STATS_GET:
3704                 res = ena_com_get_eni_stats(ena_dev,
3705                         (struct ena_admin_eni_stats *)&adapter->eni_stats);
3706                 break;
3707         case ENA_MP_MTU_SET:
3708                 res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
3709                 break;
3710         case ENA_MP_IND_TBL_GET:
3711                 res = ena_com_indirect_table_get(ena_dev,
3712                                                  adapter->indirect_table);
3713                 break;
3714         case ENA_MP_IND_TBL_SET:
3715                 res = ena_com_indirect_table_set(ena_dev);
3716                 break;
3717         default:
3718                 PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
3719                 res = -EINVAL;
3720                 break;
3721         }
3722
3723 end:
3724         /* Save processing result in the reply */
3725         rsp->result = res;
3726         /* Return just IPC processing status */
3727         return rte_mp_reply(&mp_rsp, peer);
3728 }