1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright 2008-2017 Cisco Systems, Inc. All rights reserved.
3 * Copyright 2007 Nuova Systems, Inc. All rights reserved.
7 #include <rte_ethdev_driver.h>
9 #include <rte_prefetch.h>
11 #include "enic_compat.h"
12 #include "rq_enet_desc.h"
14 #include <rte_ether.h>
18 #define RTE_PMD_USE_PREFETCH
20 #ifdef RTE_PMD_USE_PREFETCH
21 /*Prefetch a cache line into all cache levels. */
22 #define rte_enic_prefetch(p) rte_prefetch0(p)
24 #define rte_enic_prefetch(p) do {} while (0)
27 #ifdef RTE_PMD_PACKET_PREFETCH
28 #define rte_packet_prefetch(p) rte_prefetch1(p)
30 #define rte_packet_prefetch(p) do {} while (0)
33 static inline uint16_t
34 enic_cq_rx_desc_ciflags(struct cq_enet_rq_desc *crd)
36 return le16_to_cpu(crd->completed_index_flags) & ~CQ_DESC_COMP_NDX_MASK;
39 static inline uint16_t
40 enic_cq_rx_desc_bwflags(struct cq_enet_rq_desc *crd)
42 return le16_to_cpu(crd->bytes_written_flags) &
43 ~CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
47 enic_cq_rx_desc_packet_error(uint16_t bwflags)
49 return (bwflags & CQ_ENET_RQ_DESC_FLAGS_TRUNCATED) ==
50 CQ_ENET_RQ_DESC_FLAGS_TRUNCATED;
54 enic_cq_rx_desc_eop(uint16_t ciflags)
56 return (ciflags & CQ_ENET_RQ_DESC_FLAGS_EOP)
57 == CQ_ENET_RQ_DESC_FLAGS_EOP;
61 enic_cq_rx_desc_csum_not_calc(struct cq_enet_rq_desc *cqrd)
63 return (le16_to_cpu(cqrd->q_number_rss_type_flags) &
64 CQ_ENET_RQ_DESC_FLAGS_CSUM_NOT_CALC) ==
65 CQ_ENET_RQ_DESC_FLAGS_CSUM_NOT_CALC;
69 enic_cq_rx_desc_ipv4_csum_ok(struct cq_enet_rq_desc *cqrd)
71 return (cqrd->flags & CQ_ENET_RQ_DESC_FLAGS_IPV4_CSUM_OK) ==
72 CQ_ENET_RQ_DESC_FLAGS_IPV4_CSUM_OK;
76 enic_cq_rx_desc_tcp_udp_csum_ok(struct cq_enet_rq_desc *cqrd)
78 return (cqrd->flags & CQ_ENET_RQ_DESC_FLAGS_TCP_UDP_CSUM_OK) ==
79 CQ_ENET_RQ_DESC_FLAGS_TCP_UDP_CSUM_OK;
83 enic_cq_rx_desc_rss_type(struct cq_enet_rq_desc *cqrd)
85 return (uint8_t)((le16_to_cpu(cqrd->q_number_rss_type_flags) >>
86 CQ_DESC_Q_NUM_BITS) & CQ_ENET_RQ_DESC_RSS_TYPE_MASK);
89 static inline uint32_t
90 enic_cq_rx_desc_rss_hash(struct cq_enet_rq_desc *cqrd)
92 return le32_to_cpu(cqrd->rss_hash);
95 static inline uint16_t
96 enic_cq_rx_desc_vlan(struct cq_enet_rq_desc *cqrd)
98 return le16_to_cpu(cqrd->vlan);
101 static inline uint16_t
102 enic_cq_rx_desc_n_bytes(struct cq_desc *cqd)
104 struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
105 return le16_to_cpu(cqrd->bytes_written_flags) &
106 CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
110 static inline uint8_t
111 enic_cq_rx_check_err(struct cq_desc *cqd)
113 struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
116 bwflags = enic_cq_rx_desc_bwflags(cqrd);
117 if (unlikely(enic_cq_rx_desc_packet_error(bwflags)))
122 /* Lookup table to translate RX CQ flags to mbuf flags. */
123 static inline uint32_t
124 enic_cq_rx_flags_to_pkt_type(struct cq_desc *cqd, uint8_t tnl)
126 struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
127 uint8_t cqrd_flags = cqrd->flags;
129 * Odd-numbered entries are for tunnel packets. All packet type info
130 * applies to the inner packet, and there is no info on the outer
131 * packet. The outer flags in these entries exist only to avoid
132 * changing enic_cq_rx_to_pkt_flags(). They are cleared from mbuf
135 * Also, as there is no tunnel type info (VXLAN, NVGRE, or GENEVE), set
136 * RTE_PTYPE_TUNNEL_GRENAT..
138 static const uint32_t cq_type_table[128] __rte_cache_aligned = {
139 [0x00] = RTE_PTYPE_UNKNOWN,
140 [0x01] = RTE_PTYPE_UNKNOWN |
141 RTE_PTYPE_TUNNEL_GRENAT |
142 RTE_PTYPE_INNER_L2_ETHER,
143 [0x20] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG,
144 [0x21] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG |
145 RTE_PTYPE_TUNNEL_GRENAT |
146 RTE_PTYPE_INNER_L2_ETHER |
147 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
148 RTE_PTYPE_INNER_L4_NONFRAG,
149 [0x22] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP,
150 [0x23] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
151 RTE_PTYPE_TUNNEL_GRENAT |
152 RTE_PTYPE_INNER_L2_ETHER |
153 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
154 RTE_PTYPE_INNER_L4_UDP,
155 [0x24] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP,
156 [0x25] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP |
157 RTE_PTYPE_TUNNEL_GRENAT |
158 RTE_PTYPE_INNER_L2_ETHER |
159 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
160 RTE_PTYPE_INNER_L4_TCP,
161 [0x60] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG,
162 [0x61] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG |
163 RTE_PTYPE_TUNNEL_GRENAT |
164 RTE_PTYPE_INNER_L2_ETHER |
165 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
166 RTE_PTYPE_INNER_L4_FRAG,
167 [0x62] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG,
168 [0x63] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG |
169 RTE_PTYPE_TUNNEL_GRENAT |
170 RTE_PTYPE_INNER_L2_ETHER |
171 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
172 RTE_PTYPE_INNER_L4_FRAG,
173 [0x64] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG,
174 [0x65] = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG |
175 RTE_PTYPE_TUNNEL_GRENAT |
176 RTE_PTYPE_INNER_L2_ETHER |
177 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
178 RTE_PTYPE_INNER_L4_FRAG,
179 [0x10] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG,
180 [0x11] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_NONFRAG |
181 RTE_PTYPE_TUNNEL_GRENAT |
182 RTE_PTYPE_INNER_L2_ETHER |
183 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
184 RTE_PTYPE_INNER_L4_NONFRAG,
185 [0x12] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP,
186 [0x13] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
187 RTE_PTYPE_TUNNEL_GRENAT |
188 RTE_PTYPE_INNER_L2_ETHER |
189 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
190 RTE_PTYPE_INNER_L4_UDP,
191 [0x14] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP,
192 [0x15] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP |
193 RTE_PTYPE_TUNNEL_GRENAT |
194 RTE_PTYPE_INNER_L2_ETHER |
195 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
196 RTE_PTYPE_INNER_L4_TCP,
197 [0x50] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG,
198 [0x51] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG |
199 RTE_PTYPE_TUNNEL_GRENAT |
200 RTE_PTYPE_INNER_L2_ETHER |
201 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
202 RTE_PTYPE_INNER_L4_FRAG,
203 [0x52] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG,
204 [0x53] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG |
205 RTE_PTYPE_TUNNEL_GRENAT |
206 RTE_PTYPE_INNER_L2_ETHER |
207 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
208 RTE_PTYPE_INNER_L4_FRAG,
209 [0x54] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG,
210 [0x55] = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_FRAG |
211 RTE_PTYPE_TUNNEL_GRENAT |
212 RTE_PTYPE_INNER_L2_ETHER |
213 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
214 RTE_PTYPE_INNER_L4_FRAG,
215 /* All others reserved */
217 cqrd_flags &= CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT
218 | CQ_ENET_RQ_DESC_FLAGS_IPV4 | CQ_ENET_RQ_DESC_FLAGS_IPV6
219 | CQ_ENET_RQ_DESC_FLAGS_TCP | CQ_ENET_RQ_DESC_FLAGS_UDP;
220 return cq_type_table[cqrd_flags + tnl];
224 enic_cq_rx_to_pkt_flags(struct cq_desc *cqd, struct rte_mbuf *mbuf)
226 struct cq_enet_rq_desc *cqrd = (struct cq_enet_rq_desc *)cqd;
227 uint16_t bwflags, pkt_flags = 0, vlan_tci;
228 bwflags = enic_cq_rx_desc_bwflags(cqrd);
229 vlan_tci = enic_cq_rx_desc_vlan(cqrd);
231 /* VLAN STRIPPED flag. The L2 packet type updated here also */
232 if (bwflags & CQ_ENET_RQ_DESC_FLAGS_VLAN_STRIPPED) {
233 pkt_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
234 mbuf->packet_type |= RTE_PTYPE_L2_ETHER;
237 mbuf->packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
239 mbuf->packet_type |= RTE_PTYPE_L2_ETHER;
241 mbuf->vlan_tci = vlan_tci;
243 if ((cqd->type_color & CQ_DESC_TYPE_MASK) == CQ_DESC_TYPE_CLASSIFIER) {
244 struct cq_enet_rq_clsf_desc *clsf_cqd;
246 clsf_cqd = (struct cq_enet_rq_clsf_desc *)cqd;
247 filter_id = clsf_cqd->filter_id;
249 pkt_flags |= PKT_RX_FDIR;
250 if (filter_id != ENIC_MAGIC_FILTER_ID) {
251 mbuf->hash.fdir.hi = clsf_cqd->filter_id;
252 pkt_flags |= PKT_RX_FDIR_ID;
255 } else if (enic_cq_rx_desc_rss_type(cqrd)) {
257 pkt_flags |= PKT_RX_RSS_HASH;
258 mbuf->hash.rss = enic_cq_rx_desc_rss_hash(cqrd);
262 if (mbuf->packet_type & (RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L3_IPV6)) {
263 if (!enic_cq_rx_desc_csum_not_calc(cqrd)) {
265 l4_flags = mbuf->packet_type & RTE_PTYPE_L4_MASK;
268 * When overlay offload is enabled, the NIC may
269 * set ipv4_csum_ok=1 if the inner packet is IPv6..
270 * So, explicitly check for IPv4 before checking
273 if (mbuf->packet_type & RTE_PTYPE_L3_IPV4) {
274 if (enic_cq_rx_desc_ipv4_csum_ok(cqrd))
275 pkt_flags |= PKT_RX_IP_CKSUM_GOOD;
277 pkt_flags |= PKT_RX_IP_CKSUM_BAD;
280 if (l4_flags == RTE_PTYPE_L4_UDP ||
281 l4_flags == RTE_PTYPE_L4_TCP) {
282 if (enic_cq_rx_desc_tcp_udp_csum_ok(cqrd))
283 pkt_flags |= PKT_RX_L4_CKSUM_GOOD;
285 pkt_flags |= PKT_RX_L4_CKSUM_BAD;
290 mbuf->ol_flags = pkt_flags;
293 /* dummy receive function to replace actual function in
294 * order to do safe reconfiguration operations.
297 enic_dummy_recv_pkts(__rte_unused void *rx_queue,
298 __rte_unused struct rte_mbuf **rx_pkts,
299 __rte_unused uint16_t nb_pkts)
305 enic_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
308 struct vnic_rq *sop_rq = rx_queue;
309 struct vnic_rq *data_rq;
311 struct enic *enic = vnic_dev_priv(sop_rq->vdev);
315 struct rte_mbuf *nmb, *rxmb;
318 volatile struct cq_desc *cqd_ptr;
322 struct rte_mbuf *first_seg = sop_rq->pkt_first_seg;
323 struct rte_mbuf *last_seg = sop_rq->pkt_last_seg;
325 cq = &enic->cq[enic_cq_rq(enic, sop_rq->index)];
326 cq_idx = cq->to_clean; /* index of cqd, rqd, mbuf_table */
327 cqd_ptr = (struct cq_desc *)(cq->ring.descs) + cq_idx;
329 data_rq = &enic->rq[sop_rq->data_queue_idx];
331 while (nb_rx < nb_pkts) {
332 volatile struct rq_enet_desc *rqd_ptr;
334 uint8_t packet_error;
337 /* Check for pkts available */
338 color = (cqd_ptr->type_color >> CQ_DESC_COLOR_SHIFT)
339 & CQ_DESC_COLOR_MASK;
340 if (color == cq->last_color)
343 /* Get the cq descriptor and extract rq info from it */
345 rq_num = cqd.q_number & CQ_DESC_Q_NUM_MASK;
346 rq_idx = cqd.completed_index & CQ_DESC_COMP_NDX_MASK;
348 rq = &enic->rq[rq_num];
349 rqd_ptr = ((struct rq_enet_desc *)rq->ring.descs) + rq_idx;
351 /* allocate a new mbuf */
352 nmb = rte_mbuf_raw_alloc(rq->mp);
354 rte_atomic64_inc(&enic->soft_stats.rx_nombuf);
358 /* A packet error means descriptor and data are untrusted */
359 packet_error = enic_cq_rx_check_err(&cqd);
361 /* Get the mbuf to return and replace with one just allocated */
362 rxmb = rq->mbuf_ring[rq_idx];
363 rq->mbuf_ring[rq_idx] = nmb;
365 /* Increment cqd, rqd, mbuf_table index */
367 if (unlikely(cq_idx == cq->ring.desc_count)) {
369 cq->last_color = cq->last_color ? 0 : 1;
372 /* Prefetch next mbuf & desc while processing current one */
373 cqd_ptr = (struct cq_desc *)(cq->ring.descs) + cq_idx;
374 rte_enic_prefetch(cqd_ptr);
376 ciflags = enic_cq_rx_desc_ciflags(
377 (struct cq_enet_rq_desc *)&cqd);
379 /* Push descriptor for newly allocated mbuf */
380 nmb->data_off = RTE_PKTMBUF_HEADROOM;
382 * Only the address needs to be refilled. length_type of the
383 * descriptor it set during initialization
384 * (enic_alloc_rx_queue_mbufs) and does not change.
386 rqd_ptr->address = rte_cpu_to_le_64(nmb->buf_iova +
387 RTE_PKTMBUF_HEADROOM);
389 /* Fill in the rest of the mbuf */
390 seg_length = enic_cq_rx_desc_n_bytes(&cqd);
394 first_seg->pkt_len = seg_length;
396 first_seg->pkt_len = (uint16_t)(first_seg->pkt_len
398 first_seg->nb_segs++;
399 last_seg->next = rxmb;
402 rxmb->port = enic->port_id;
403 rxmb->data_len = seg_length;
407 if (!(enic_cq_rx_desc_eop(ciflags))) {
413 * When overlay offload is enabled, CQ.fcoe indicates the
414 * packet is tunnelled.
416 tnl = enic->overlay_offload &&
417 (ciflags & CQ_ENET_RQ_DESC_FLAGS_FCOE) != 0;
418 /* cq rx flags are only valid if eop bit is set */
419 first_seg->packet_type =
420 enic_cq_rx_flags_to_pkt_type(&cqd, tnl);
421 enic_cq_rx_to_pkt_flags(&cqd, first_seg);
422 /* Wipe the outer types set by enic_cq_rx_flags_to_pkt_type() */
424 first_seg->packet_type &= ~(RTE_PTYPE_L3_MASK |
427 if (unlikely(packet_error)) {
428 rte_pktmbuf_free(first_seg);
429 rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
434 /* prefetch mbuf data for caller */
435 rte_packet_prefetch(RTE_PTR_ADD(first_seg->buf_addr,
436 RTE_PKTMBUF_HEADROOM));
438 /* store the mbuf address into the next entry of the array */
439 rx_pkts[nb_rx++] = first_seg;
442 sop_rq->pkt_first_seg = first_seg;
443 sop_rq->pkt_last_seg = last_seg;
445 cq->to_clean = cq_idx;
447 if ((sop_rq->rx_nb_hold + data_rq->rx_nb_hold) >
448 sop_rq->rx_free_thresh) {
449 if (data_rq->in_use) {
450 data_rq->posted_index =
451 enic_ring_add(data_rq->ring.desc_count,
452 data_rq->posted_index,
453 data_rq->rx_nb_hold);
454 data_rq->rx_nb_hold = 0;
456 sop_rq->posted_index = enic_ring_add(sop_rq->ring.desc_count,
457 sop_rq->posted_index,
459 sop_rq->rx_nb_hold = 0;
463 iowrite32_relaxed(data_rq->posted_index,
464 &data_rq->ctrl->posted_index);
465 rte_compiler_barrier();
466 iowrite32_relaxed(sop_rq->posted_index,
467 &sop_rq->ctrl->posted_index);
474 static inline void enic_free_wq_bufs(struct vnic_wq *wq, u16 completed_index)
476 struct rte_mbuf *buf;
477 struct rte_mbuf *m, *free[ENIC_MAX_WQ_DESCS];
478 unsigned int nb_to_free, nb_free = 0, i;
479 struct rte_mempool *pool;
480 unsigned int tail_idx;
481 unsigned int desc_count = wq->ring.desc_count;
483 nb_to_free = enic_ring_sub(desc_count, wq->tail_idx, completed_index)
485 tail_idx = wq->tail_idx;
486 pool = wq->bufs[tail_idx]->pool;
487 for (i = 0; i < nb_to_free; i++) {
488 buf = wq->bufs[tail_idx];
489 m = rte_pktmbuf_prefree_seg(buf);
490 if (unlikely(m == NULL)) {
491 tail_idx = enic_ring_incr(desc_count, tail_idx);
495 if (likely(m->pool == pool)) {
496 RTE_ASSERT(nb_free < ENIC_MAX_WQ_DESCS);
499 rte_mempool_put_bulk(pool, (void *)free, nb_free);
504 tail_idx = enic_ring_incr(desc_count, tail_idx);
508 rte_mempool_put_bulk(pool, (void **)free, nb_free);
510 wq->tail_idx = tail_idx;
511 wq->ring.desc_avail += nb_to_free;
514 unsigned int enic_cleanup_wq(__rte_unused struct enic *enic, struct vnic_wq *wq)
518 completed_index = *((uint32_t *)wq->cqmsg_rz->addr) & 0xffff;
520 if (wq->last_completed_index != completed_index) {
521 enic_free_wq_bufs(wq, completed_index);
522 wq->last_completed_index = completed_index;
527 uint16_t enic_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
530 struct vnic_wq *wq = (struct vnic_wq *)tx_queue;
536 for (i = 0; i != nb_pkts; i++) {
538 ol_flags = m->ol_flags;
539 if (ol_flags & wq->tx_offload_notsup_mask) {
543 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
544 ret = rte_validate_tx_offload(m);
550 ret = rte_net_intel_cksum_prepare(m);
560 uint16_t enic_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
564 unsigned int pkt_len, data_len;
565 unsigned int nb_segs;
566 struct rte_mbuf *tx_pkt;
567 struct vnic_wq *wq = (struct vnic_wq *)tx_queue;
568 struct enic *enic = vnic_dev_priv(wq->vdev);
569 unsigned short vlan_id;
571 uint64_t ol_flags_mask;
572 unsigned int wq_desc_avail;
574 unsigned int desc_count;
575 struct wq_enet_desc *descs, *desc_p, desc_tmp;
577 uint8_t vlan_tag_insert;
580 uint8_t offload_mode;
583 rte_atomic64_t *tx_oversized;
585 enic_cleanup_wq(enic, wq);
586 wq_desc_avail = vnic_wq_desc_avail(wq);
587 head_idx = wq->head_idx;
588 desc_count = wq->ring.desc_count;
589 ol_flags_mask = PKT_TX_VLAN_PKT | PKT_TX_IP_CKSUM | PKT_TX_L4_MASK;
590 tx_oversized = &enic->soft_stats.tx_oversized;
592 nb_pkts = RTE_MIN(nb_pkts, ENIC_TX_XMIT_MAX);
594 for (index = 0; index < nb_pkts; index++) {
596 pkt_len = tx_pkt->pkt_len;
597 data_len = tx_pkt->data_len;
598 ol_flags = tx_pkt->ol_flags;
599 nb_segs = tx_pkt->nb_segs;
600 tso = ol_flags & PKT_TX_TCP_SEG;
602 /* drop packet if it's too big to send */
603 if (unlikely(!tso && pkt_len > ENIC_TX_MAX_PKT_SIZE)) {
604 rte_pktmbuf_free(tx_pkt);
605 rte_atomic64_inc(tx_oversized);
609 if (nb_segs > wq_desc_avail) {
616 vlan_id = tx_pkt->vlan_tci;
617 vlan_tag_insert = !!(ol_flags & PKT_TX_VLAN_PKT);
618 bus_addr = (dma_addr_t)
619 (tx_pkt->buf_iova + tx_pkt->data_off);
621 descs = (struct wq_enet_desc *)wq->ring.descs;
622 desc_p = descs + head_idx;
624 eop = (data_len == pkt_len);
625 offload_mode = WQ_ENET_OFFLOAD_MODE_CSUM;
629 header_len = tx_pkt->l2_len + tx_pkt->l3_len +
632 /* Drop if non-TCP packet or TSO seg size is too big */
633 if (unlikely(header_len == 0 || ((tx_pkt->tso_segsz +
634 header_len) > ENIC_TX_MAX_PKT_SIZE))) {
635 rte_pktmbuf_free(tx_pkt);
636 rte_atomic64_inc(tx_oversized);
640 offload_mode = WQ_ENET_OFFLOAD_MODE_TSO;
641 mss = tx_pkt->tso_segsz;
642 /* For tunnel, need the size of outer+inner headers */
643 if (ol_flags & PKT_TX_TUNNEL_MASK) {
644 header_len += tx_pkt->outer_l2_len +
645 tx_pkt->outer_l3_len;
649 if ((ol_flags & ol_flags_mask) && (header_len == 0)) {
650 if (ol_flags & PKT_TX_IP_CKSUM)
651 mss |= ENIC_CALC_IP_CKSUM;
653 /* Nic uses just 1 bit for UDP and TCP */
654 switch (ol_flags & PKT_TX_L4_MASK) {
655 case PKT_TX_TCP_CKSUM:
656 case PKT_TX_UDP_CKSUM:
657 mss |= ENIC_CALC_TCP_UDP_CKSUM;
663 wq_enet_desc_enc(&desc_tmp, bus_addr, data_len, mss, header_len,
664 offload_mode, eop, eop, 0, vlan_tag_insert,
668 wq->bufs[head_idx] = tx_pkt;
669 head_idx = enic_ring_incr(desc_count, head_idx);
673 for (tx_pkt = tx_pkt->next; tx_pkt; tx_pkt =
675 data_len = tx_pkt->data_len;
677 if (tx_pkt->next == NULL)
679 desc_p = descs + head_idx;
680 bus_addr = (dma_addr_t)(tx_pkt->buf_iova
682 wq_enet_desc_enc((struct wq_enet_desc *)
683 &desc_tmp, bus_addr, data_len,
684 mss, 0, offload_mode, eop, eop,
685 0, vlan_tag_insert, vlan_id,
689 wq->bufs[head_idx] = tx_pkt;
690 head_idx = enic_ring_incr(desc_count, head_idx);
697 iowrite32_relaxed(head_idx, &wq->ctrl->posted_index);
699 wq->ring.desc_avail = wq_desc_avail;
700 wq->head_idx = head_idx;