net/bnxt: fail init when mbuf allocation fails
[dpdk.git] / drivers / net / enic / enic_rxtx_vec_avx2.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2008-2018 Cisco Systems, Inc.  All rights reserved.
3  * Copyright 2007 Nuova Systems, Inc.  All rights reserved.
4  */
5
6 #include <rte_mbuf.h>
7 #include <ethdev_driver.h>
8 #include <rte_vect.h>
9
10 #include "enic_compat.h"
11 #include "rq_enet_desc.h"
12 #include "enic.h"
13 #include "enic_rxtx_common.h"
14
15 #include <x86intrin.h>
16
17 static struct rte_mbuf *
18 rx_one(struct cq_enet_rq_desc *cqd, struct rte_mbuf *mb, struct enic *enic)
19 {
20         bool tnl;
21
22         *(uint64_t *)&mb->rearm_data = enic->mbuf_initializer;
23         mb->data_len = cqd->bytes_written_flags &
24                 CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
25         mb->pkt_len = mb->data_len;
26         tnl = enic->overlay_offload && (cqd->completed_index_flags &
27                                         CQ_ENET_RQ_DESC_FLAGS_FCOE) != 0;
28         mb->packet_type =
29                 enic_cq_rx_flags_to_pkt_type((struct cq_desc *)cqd, tnl);
30         enic_cq_rx_to_pkt_flags((struct cq_desc *)cqd, mb);
31         /* Wipe the outer types set by enic_cq_rx_flags_to_pkt_type() */
32         if (tnl) {
33                 mb->packet_type &= ~(RTE_PTYPE_L3_MASK |
34                                      RTE_PTYPE_L4_MASK);
35         }
36         return mb;
37 }
38
39 static uint16_t
40 enic_noscatter_vec_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
41                              uint16_t nb_pkts)
42 {
43         struct rte_mbuf **rx, **rxmb;
44         uint16_t cq_idx, nb_rx, max_rx;
45         struct cq_enet_rq_desc *cqd;
46         struct rq_enet_desc *rqd;
47         struct vnic_cq *cq;
48         struct vnic_rq *rq;
49         struct enic *enic;
50         uint8_t color;
51
52         rq = rx_queue;
53         enic = vnic_dev_priv(rq->vdev);
54         cq = &enic->cq[enic_cq_rq(enic, rq->index)];
55         cq_idx = cq->to_clean;
56
57         /*
58          * Fill up the reserve of free mbufs. Below, we restock the receive
59          * ring with these mbufs to avoid allocation failures.
60          */
61         if (rq->num_free_mbufs == 0) {
62                 if (rte_mempool_get_bulk(rq->mp, (void **)rq->free_mbufs,
63                                          ENIC_RX_BURST_MAX))
64                         return 0;
65                 rq->num_free_mbufs = ENIC_RX_BURST_MAX;
66         }
67         /* Receive until the end of the ring, at most. */
68         max_rx = RTE_MIN(nb_pkts, rq->num_free_mbufs);
69         max_rx = RTE_MIN(max_rx, cq->ring.desc_count - cq_idx);
70
71         rxmb = rq->mbuf_ring + cq_idx;
72         color = cq->last_color;
73         cqd = (struct cq_enet_rq_desc *)(cq->ring.descs) + cq_idx;
74         rx = rx_pkts;
75         if (max_rx == 0 ||
76             (cqd->type_color & CQ_DESC_COLOR_MASK_NOSHIFT) == color)
77                 return 0;
78
79         /* Step 1: Process one packet to do aligned 256-bit load below */
80         if (cq_idx & 0x1) {
81                 if (unlikely(cqd->bytes_written_flags &
82                              CQ_ENET_RQ_DESC_FLAGS_TRUNCATED)) {
83                         rte_pktmbuf_free(*rxmb++);
84                         rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
85                 } else {
86                         *rx++ = rx_one(cqd, *rxmb++, enic);
87                 }
88                 cqd++;
89                 max_rx--;
90         }
91
92         const __m256i mask =
93                 _mm256_set_epi8(/* Second descriptor */
94                         0xff, /* type_color */
95                         (CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT |
96                          CQ_ENET_RQ_DESC_FLAGS_IPV4 |
97                          CQ_ENET_RQ_DESC_FLAGS_IPV6 |
98                          CQ_ENET_RQ_DESC_FLAGS_TCP |
99                          CQ_ENET_RQ_DESC_FLAGS_UDP), /* flags */
100                         0, 0, /* checksum_fcoe */
101                         0xff, 0xff, /* vlan */
102                         0x3f, 0xff, /* bytes_written_flags */
103                         0xff, 0xff, 0xff, 0xff, /* rss_hash */
104                         0xff, 0xff, /* q_number_rss_type_flags */
105                         0, 0, /* completed_index_flags */
106                         /* First descriptor */
107                         0xff, /* type_color */
108                         (CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT |
109                          CQ_ENET_RQ_DESC_FLAGS_IPV4 |
110                          CQ_ENET_RQ_DESC_FLAGS_IPV6 |
111                          CQ_ENET_RQ_DESC_FLAGS_TCP |
112                          CQ_ENET_RQ_DESC_FLAGS_UDP), /* flags */
113                         0, 0, /* checksum_fcoe */
114                         0xff, 0xff, /* vlan */
115                         0x3f, 0xff, /* bytes_written_flags */
116                         0xff, 0xff, 0xff, 0xff, /* rss_hash */
117                         0xff, 0xff, /* q_number_rss_type_flags */
118                         0, 0 /* completed_index_flags */
119                         );
120         const __m256i shuffle_mask =
121                 _mm256_set_epi8(/* Second descriptor */
122                         7, 6, 5, 4,             /* rss = rss_hash */
123                         11, 10,                 /* vlan_tci = vlan */
124                         9, 8,                   /* data_len = bytes_written */
125                         0x80, 0x80, 9, 8,       /* pkt_len = bytes_written */
126                         0x80, 0x80, 0x80, 0x80, /* packet_type = 0 */
127                         /* First descriptor */
128                         7, 6, 5, 4,             /* rss = rss_hash */
129                         11, 10,                 /* vlan_tci = vlan */
130                         9, 8,                   /* data_len = bytes_written */
131                         0x80, 0x80, 9, 8,       /* pkt_len = bytes_written */
132                         0x80, 0x80, 0x80, 0x80  /* packet_type = 0 */
133                         );
134         /* Used to collect 8 flags from 8 desc into one register */
135         const __m256i flags_shuffle_mask =
136                 _mm256_set_epi8(/* Second descriptor */
137                         1, 3, 9, 14,
138                         1, 3, 9, 14,
139                         1, 3, 9, 14,
140                         1, 3, 9, 14,
141                         /* First descriptor */
142                         1, 3, 9, 14,
143                         1, 3, 9, 14,
144                         1, 3, 9, 14,
145                         /*
146                          * Byte 3: upper byte of completed_index_flags
147                          *         bit 5 = fcoe (tunnel)
148                          * Byte 2: upper byte of q_number_rss_type_flags
149                          *         bits 2,3,4,5 = rss type
150                          *         bit 6 = csum_not_calc
151                          * Byte 1: upper byte of bytes_written_flags
152                          *         bit 6 = truncated
153                          *         bit 7 = vlan stripped
154                          * Byte 0: flags
155                          */
156                         1, 3, 9, 14
157                         );
158         /* Used to collect 8 VLAN IDs from 8 desc into one register */
159         const __m256i vlan_shuffle_mask =
160                 _mm256_set_epi8(/* Second descriptor */
161                         0x80, 0x80, 11, 10,
162                         0x80, 0x80, 11, 10,
163                         0x80, 0x80, 11, 10,
164                         0x80, 0x80, 11, 10,
165                         /* First descriptor */
166                         0x80, 0x80, 11, 10,
167                         0x80, 0x80, 11, 10,
168                         0x80, 0x80, 11, 10,
169                         0x80, 0x80, 11, 10);
170         /* RTE_MBUF_F_RX_RSS_HASH is 1<<1 so fits in 8-bit integer */
171         const __m256i rss_shuffle =
172                 _mm256_set_epi8(/* second 128 bits */
173                         RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
174                         RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
175                         RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
176                         RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
177                         RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
178                         0, /* rss_types = 0 */
179                         /* first 128 bits */
180                         RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
181                         RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
182                         RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
183                         RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
184                         RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH,
185                         0 /* rss_types = 0 */);
186         /*
187          * VLAN offload flags.
188          * shuffle index:
189          * vlan_stripped => bit 0
190          * vlan_id == 0  => bit 1
191          */
192         const __m256i vlan_shuffle =
193                 _mm256_set_epi32(0, 0, 0, 0,
194                         RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0,
195                         RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, RTE_MBUF_F_RX_VLAN);
196         /* Use the same shuffle index as vlan_shuffle */
197         const __m256i vlan_ptype_shuffle =
198                 _mm256_set_epi32(0, 0, 0, 0,
199                                  RTE_PTYPE_L2_ETHER,
200                                  RTE_PTYPE_L2_ETHER,
201                                  RTE_PTYPE_L2_ETHER,
202                                  RTE_PTYPE_L2_ETHER_VLAN);
203         /*
204          * CKSUM flags. Shift right so they fit int 8-bit integers.
205          * shuffle index:
206          * ipv4_csum_ok    => bit 3
207          * ip4             => bit 2
208          * tcp_or_udp      => bit 1
209          * tcp_udp_csum_ok => bit 0
210          */
211         const __m256i csum_shuffle =
212                 _mm256_set_epi8(/* second 128 bits */
213                         /* 1111 ip4+ip4_ok+l4+l4_ok */
214                         ((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
215                         /* 1110 ip4_ok+ip4+l4+!l4_ok */
216                         ((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1),
217                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1), /* 1101 ip4+ip4_ok */
218                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1), /* 1100 ip4_ok+ip4 */
219                         (RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1), /* 1011 l4+l4_ok */
220                         (RTE_MBUF_F_RX_L4_CKSUM_BAD >> 1),  /* 1010 l4+!l4_ok */
221                         0, /* 1001 */
222                         0, /* 1000 */
223                         /* 0111 !ip4_ok+ip4+l4+l4_ok */
224                         ((RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
225                         /* 0110 !ip4_ok+ip4+l4+!l4_ok */
226                         ((RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1),
227                         (RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1),  /* 0101 !ip4_ok+ip4 */
228                         (RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1),  /* 0100 !ip4_ok+ip4 */
229                         (RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1), /* 0011 l4+l4_ok */
230                         (RTE_MBUF_F_RX_L4_CKSUM_BAD >> 1),  /* 0010 l4+!l4_ok */
231                         0, /* 0001 */
232                         0, /* 0000 */
233                         /* first 128 bits */
234                         ((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
235                         ((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1),
236                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1),
237                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1),
238                         (RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1),
239                         (RTE_MBUF_F_RX_L4_CKSUM_BAD >> 1),
240                         0, 0,
241                         ((RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1),
242                         ((RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1),
243                         (RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1),
244                         (RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1),
245                         (RTE_MBUF_F_RX_L4_CKSUM_GOOD >> 1),
246                         (RTE_MBUF_F_RX_L4_CKSUM_BAD >> 1),
247                         0, 0);
248         /*
249          * Non-fragment PTYPEs.
250          * Shuffle 4-bit index:
251          * ip6 => bit 0
252          * ip4 => bit 1
253          * udp => bit 2
254          * tcp => bit 3
255          *   bit
256          * 3 2 1 0
257          * -------
258          * 0 0 0 0 unknown
259          * 0 0 0 1 ip6 | nonfrag
260          * 0 0 1 0 ip4 | nonfrag
261          * 0 0 1 1 unknown
262          * 0 1 0 0 unknown
263          * 0 1 0 1 ip6 | udp
264          * 0 1 1 0 ip4 | udp
265          * 0 1 1 1 unknown
266          * 1 0 0 0 unknown
267          * 1 0 0 1 ip6 | tcp
268          * 1 0 1 0 ip4 | tcp
269          * 1 0 1 1 unknown
270          * 1 1 0 0 unknown
271          * 1 1 0 1 unknown
272          * 1 1 1 0 unknown
273          * 1 1 1 1 unknown
274          *
275          * PTYPEs do not fit in 8 bits, so shift right 4..
276          */
277         const __m256i nonfrag_ptype_shuffle =
278                 _mm256_set_epi8(/* second 128 bits */
279                         RTE_PTYPE_UNKNOWN,
280                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
281                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
282                         (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
283                         (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
284                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
285                         (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
286                         (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
287                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
288                         (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
289                          RTE_PTYPE_L4_NONFRAG) >> 4,
290                         (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
291                          RTE_PTYPE_L4_NONFRAG) >> 4,
292                         RTE_PTYPE_UNKNOWN,
293                         /* first 128 bits */
294                         RTE_PTYPE_UNKNOWN,
295                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
296                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
297                         (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
298                         (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
299                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
300                         (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
301                         (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
302                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
303                         (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
304                          RTE_PTYPE_L4_NONFRAG) >> 4,
305                         (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
306                          RTE_PTYPE_L4_NONFRAG) >> 4,
307                         RTE_PTYPE_UNKNOWN);
308         /* Fragment PTYPEs. Use the same shuffle index as above. */
309         const __m256i frag_ptype_shuffle =
310                 _mm256_set_epi8(/* second 128 bits */
311                         RTE_PTYPE_UNKNOWN,
312                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
313                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
314                         (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
315                          RTE_PTYPE_L4_FRAG) >> 4,
316                         (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
317                          RTE_PTYPE_L4_FRAG) >> 4,
318                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
319                         (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
320                          RTE_PTYPE_L4_FRAG) >> 4,
321                         (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
322                          RTE_PTYPE_L4_FRAG) >> 4,
323                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
324                         (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
325                          RTE_PTYPE_L4_FRAG) >> 4,
326                         (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
327                          RTE_PTYPE_L4_FRAG) >> 4,
328                         RTE_PTYPE_UNKNOWN,
329                         /* first 128 bits */
330                         RTE_PTYPE_UNKNOWN,
331                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
332                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
333                         (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
334                          RTE_PTYPE_L4_FRAG) >> 4,
335                         (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
336                          RTE_PTYPE_L4_FRAG) >> 4,
337                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
338                         (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
339                          RTE_PTYPE_L4_FRAG) >> 4,
340                         (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
341                          RTE_PTYPE_L4_FRAG) >> 4,
342                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
343                         (RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
344                          RTE_PTYPE_L4_FRAG) >> 4,
345                         (RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
346                          RTE_PTYPE_L4_FRAG) >> 4,
347                         RTE_PTYPE_UNKNOWN);
348         /*
349          * Tunnel PTYPEs. Use the same shuffle index as above.
350          * L4 types are not part of this table. They come from non-tunnel
351          * types above.
352          */
353         const __m256i tnl_l3_ptype_shuffle =
354                 _mm256_set_epi8(/* second 128 bits */
355                         RTE_PTYPE_UNKNOWN,
356                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
357                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
358                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
359                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
360                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
361                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
362                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
363                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
364                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
365                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
366                         RTE_PTYPE_UNKNOWN,
367                         /* first 128 bits */
368                         RTE_PTYPE_UNKNOWN,
369                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
370                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
371                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
372                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
373                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
374                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
375                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
376                         RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
377                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
378                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
379                         RTE_PTYPE_UNKNOWN);
380
381         const __m256i mbuf_init = _mm256_set_epi64x(0, enic->mbuf_initializer,
382                                                     0, enic->mbuf_initializer);
383
384         /*
385          * --- cq desc fields ---    offset
386          * completed_index_flags    - 0   use: fcoe
387          * q_number_rss_type_flags  - 2   use: rss types, csum_not_calc
388          * rss_hash                 - 4   ==> mbuf.hash.rss
389          * bytes_written_flags      - 8   ==> mbuf.pkt_len,data_len
390          *                                use: truncated, vlan_stripped
391          * vlan                     - 10  ==> mbuf.vlan_tci
392          * checksum_fcoe            - 12  (unused)
393          * flags                    - 14  use: all bits
394          * type_color               - 15  (unused)
395          *
396          * --- mbuf fields ---       offset
397          * rearm_data              ---- 16
398          * data_off    - 0      (mbuf_init) -+
399          * refcnt      - 2      (mbuf_init)  |
400          * nb_segs     - 4      (mbuf_init)  | 16B 128b
401          * port        - 6      (mbuf_init)  |
402          * ol_flag     - 8      (from cqd)  -+
403          * rx_descriptor_fields1   ---- 32
404          * packet_type - 0      (from cqd)  -+
405          * pkt_len     - 4      (from cqd)   |
406          * data_len    - 8      (from cqd)   | 16B 128b
407          * vlan_tci    - 10     (from cqd)   |
408          * rss         - 12     (from cqd)  -+
409          */
410
411         __m256i overlay_enabled =
412                 _mm256_set1_epi32((uint32_t)enic->overlay_offload);
413
414         /* Step 2: Process 8 packets per loop using SIMD */
415         while (max_rx > 7 && (((cqd + 7)->type_color &
416                                CQ_DESC_COLOR_MASK_NOSHIFT) != color)) {
417                 /* Load 8 16B CQ descriptors */
418                 __m256i cqd01 = _mm256_load_si256((void *)cqd);
419                 __m256i cqd23 = _mm256_load_si256((void *)(cqd + 2));
420                 __m256i cqd45 = _mm256_load_si256((void *)(cqd + 4));
421                 __m256i cqd67 = _mm256_load_si256((void *)(cqd + 6));
422                 /* Copy 8 mbuf pointers to rx_pkts */
423                 _mm256_storeu_si256((void *)rx,
424                                     _mm256_loadu_si256((void *)rxmb));
425                 _mm256_storeu_si256((void *)(rx + 4),
426                                     _mm256_loadu_si256((void *)(rxmb + 4)));
427
428                 /*
429                  * Collect 8 flags (each 32 bits) into one register.
430                  * 4 shuffles, 3 blends, 1 permute for 8 desc: 1 inst/desc
431                  */
432                 __m256i flags01 =
433                         _mm256_shuffle_epi8(cqd01, flags_shuffle_mask);
434                 /*
435                  * Shuffle above produces 8 x 32-bit flags for 8 descriptors
436                  * in this order: 0, 0, 0, 0, 1, 1, 1, 1
437                  * The duplicates in each 128-bit lane simplifies blending
438                  * below.
439                  */
440                 __m256i flags23 =
441                         _mm256_shuffle_epi8(cqd23, flags_shuffle_mask);
442                 __m256i flags45 =
443                         _mm256_shuffle_epi8(cqd45, flags_shuffle_mask);
444                 __m256i flags67 =
445                         _mm256_shuffle_epi8(cqd67, flags_shuffle_mask);
446                 /* 1st blend produces flags for desc: 0, 2, 0, 0, 1, 3, 1, 1 */
447                 __m256i flags0_3 = _mm256_blend_epi32(flags01, flags23, 0x22);
448                 /* 2nd blend produces flags for desc: 4, 4, 4, 6, 5, 5, 5, 7 */
449                 __m256i flags4_7 = _mm256_blend_epi32(flags45, flags67, 0x88);
450                 /* 3rd blend produces flags for desc: 0, 2, 4, 6, 1, 3, 5, 7 */
451                 __m256i flags0_7 = _mm256_blend_epi32(flags0_3, flags4_7, 0xcc);
452                 /*
453                  * Swap to reorder flags in this order: 1, 3, 5, 7, 0, 2, 4, 6
454                  * This order simplifies blend operations way below that
455                  * produce 'rearm' data for each mbuf.
456                  */
457                 flags0_7 = _mm256_permute4x64_epi64(flags0_7,
458                         (1 << 6) + (0 << 4) + (3 << 2) + 2);
459
460                 /*
461                  * Check truncated bits and bail out early on.
462                  * 6 avx inst, 1 or, 1 if-then-else for 8 desc: 1 inst/desc
463                  */
464                 __m256i trunc =
465                         _mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 17), 31);
466                 trunc = _mm256_add_epi64(trunc, _mm256_permute4x64_epi64(trunc,
467                         (1 << 6) + (0 << 4) + (3 << 2) + 2));
468                 /* 0:63 contains 1+3+0+2 and 64:127 contains 5+7+4+6 */
469                 if (_mm256_extract_epi64(trunc, 0) ||
470                     _mm256_extract_epi64(trunc, 1))
471                         break;
472
473                 /*
474                  * Compute RTE_MBUF_F_RX_RSS_HASH.
475                  * Use 2 shifts and 1 shuffle for 8 desc: 0.375 inst/desc
476                  * RSS types in byte 0, 4, 8, 12, 16, 20, 24, 28
477                  * Everything else is zero.
478                  */
479                 __m256i rss_types =
480                         _mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 10), 28);
481                 /*
482                  * RSS flags (RTE_MBUF_F_RX_RSS_HASH) are in
483                  * byte 0, 4, 8, 12, 16, 20, 24, 28
484                  * Everything else is zero.
485                  */
486                 __m256i rss_flags = _mm256_shuffle_epi8(rss_shuffle, rss_types);
487
488                 /*
489                  * Compute CKSUM flags. First build the index and then
490                  * use it to shuffle csum_shuffle.
491                  * 20 instructions including const loads: 2.5 inst/desc
492                  */
493                 /*
494                  * csum_not_calc (bit 22)
495                  * csum_not_calc (0) => 0xffffffff
496                  * csum_not_calc (1) => 0x0
497                  */
498                 const __m256i zero4 = _mm256_setzero_si256();
499                 const __m256i mask22 = _mm256_set1_epi32(0x400000);
500                 __m256i csum_not_calc = _mm256_cmpeq_epi32(zero4,
501                         _mm256_and_si256(flags0_7, mask22));
502                 /*
503                  * (tcp|udp) && !fragment => bit 1
504                  * tcp = bit 2, udp = bit 1, frag = bit 6
505                  */
506                 const __m256i mask1 = _mm256_set1_epi32(0x2);
507                 __m256i tcp_udp =
508                         _mm256_andnot_si256(_mm256_srli_epi32(flags0_7, 5),
509                                 _mm256_or_si256(flags0_7,
510                                         _mm256_srli_epi32(flags0_7, 1)));
511                 tcp_udp = _mm256_and_si256(tcp_udp, mask1);
512                 /* ipv4 (bit 5) => bit 2 */
513                 const __m256i mask2 = _mm256_set1_epi32(0x4);
514                 __m256i ipv4 = _mm256_and_si256(mask2,
515                         _mm256_srli_epi32(flags0_7, 3));
516                 /*
517                  * ipv4_csum_ok (bit 3) => bit 3
518                  * tcp_udp_csum_ok (bit 0) => bit 0
519                  * 0x9
520                  */
521                 const __m256i mask0_3 = _mm256_set1_epi32(0x9);
522                 __m256i csum_idx = _mm256_and_si256(flags0_7, mask0_3);
523                 csum_idx = _mm256_and_si256(csum_not_calc,
524                         _mm256_or_si256(_mm256_or_si256(csum_idx, ipv4),
525                                 tcp_udp));
526                 __m256i csum_flags =
527                         _mm256_shuffle_epi8(csum_shuffle, csum_idx);
528                 /* Shift left to restore CKSUM flags. See csum_shuffle. */
529                 csum_flags = _mm256_slli_epi32(csum_flags, 1);
530                 /* Combine csum flags and offload flags: 0.125 inst/desc */
531                 rss_flags = _mm256_or_si256(rss_flags, csum_flags);
532
533                 /*
534                  * Collect 8 VLAN IDs and compute vlan_id != 0 on each.
535                  * 4 shuffles, 3 blends, 1 permute, 1 cmp, 1 sub for 8 desc:
536                  * 1.25 inst/desc
537                  */
538                 __m256i vlan01 = _mm256_shuffle_epi8(cqd01, vlan_shuffle_mask);
539                 __m256i vlan23 = _mm256_shuffle_epi8(cqd23, vlan_shuffle_mask);
540                 __m256i vlan45 = _mm256_shuffle_epi8(cqd45, vlan_shuffle_mask);
541                 __m256i vlan67 = _mm256_shuffle_epi8(cqd67, vlan_shuffle_mask);
542                 __m256i vlan0_3 = _mm256_blend_epi32(vlan01, vlan23, 0x22);
543                 __m256i vlan4_7 = _mm256_blend_epi32(vlan45, vlan67, 0x88);
544                 /* desc: 0, 2, 4, 6, 1, 3, 5, 7 */
545                 __m256i vlan0_7 = _mm256_blend_epi32(vlan0_3, vlan4_7, 0xcc);
546                 /* desc: 1, 3, 5, 7, 0, 2, 4, 6 */
547                 vlan0_7 = _mm256_permute4x64_epi64(vlan0_7,
548                         (1 << 6) + (0 << 4) + (3 << 2) + 2);
549                 /*
550                  * Compare 0 == vlan_id produces 0xffffffff (-1) if
551                  * vlan 0 and 0 if vlan non-0. Then subtracting the
552                  * result from 0 produces 0 - (-1) = 1 for vlan 0, and
553                  * 0 - 0 = 0 for vlan non-0.
554                  */
555                 vlan0_7 = _mm256_cmpeq_epi32(zero4, vlan0_7);
556                 /* vlan_id != 0 => 0, vlan_id == 0 => 1 */
557                 vlan0_7 = _mm256_sub_epi32(zero4, vlan0_7);
558
559                 /*
560                  * Compute RTE_MBUF_F_RX_VLAN and RTE_MBUF_F_RX_VLAN_STRIPPED.
561                  * Use 3 shifts, 1 or,  1 shuffle for 8 desc: 0.625 inst/desc
562                  * VLAN offload flags in byte 0, 4, 8, 12, 16, 20, 24, 28
563                  * Everything else is zero.
564                  */
565                 __m256i vlan_idx =
566                         _mm256_or_si256(/* vlan_stripped => bit 0 */
567                                 _mm256_srli_epi32(_mm256_slli_epi32(flags0_7,
568                                         16), 31),
569                                 /* (vlan_id == 0) => bit 1 */
570                                 _mm256_slli_epi32(vlan0_7, 1));
571                 /*
572                  * The index captures 4 cases.
573                  * stripped, id = 0   ==> 11b = 3
574                  * stripped, id != 0  ==> 01b = 1
575                  * not strip, id == 0 ==> 10b = 2
576                  * not strip, id != 0 ==> 00b = 0
577                  */
578                 __m256i vlan_flags = _mm256_permutevar8x32_epi32(vlan_shuffle,
579                         vlan_idx);
580                 /* Combine vlan and offload flags: 0.125 inst/desc */
581                 rss_flags = _mm256_or_si256(rss_flags, vlan_flags);
582
583                 /*
584                  * Compute non-tunnel PTYPEs.
585                  * 17 inst / 8 desc = 2.125 inst/desc
586                  */
587                 /* ETHER and ETHER_VLAN */
588                 __m256i vlan_ptype =
589                         _mm256_permutevar8x32_epi32(vlan_ptype_shuffle,
590                                 vlan_idx);
591                 /* Build the ptype index from flags */
592                 tcp_udp = _mm256_slli_epi32(flags0_7, 29);
593                 tcp_udp = _mm256_slli_epi32(_mm256_srli_epi32(tcp_udp, 30), 2);
594                 __m256i ip4_ip6 =
595                         _mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 26), 30);
596                 __m256i ptype_idx = _mm256_or_si256(tcp_udp, ip4_ip6);
597                 __m256i frag_bit =
598                         _mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 25), 31);
599                 __m256i nonfrag_ptype =
600                         _mm256_shuffle_epi8(nonfrag_ptype_shuffle, ptype_idx);
601                 __m256i frag_ptype =
602                         _mm256_shuffle_epi8(frag_ptype_shuffle, ptype_idx);
603                 /*
604                  * Zero out the unwanted types and combine the remaining bits.
605                  * The effect is same as selecting non-frag or frag types
606                  * depending on the frag bit.
607                  */
608                 nonfrag_ptype = _mm256_and_si256(nonfrag_ptype,
609                         _mm256_cmpeq_epi32(zero4, frag_bit));
610                 frag_ptype = _mm256_and_si256(frag_ptype,
611                         _mm256_cmpgt_epi32(frag_bit, zero4));
612                 __m256i ptype = _mm256_or_si256(nonfrag_ptype, frag_ptype);
613                 ptype = _mm256_slli_epi32(ptype, 4);
614                 /*
615                  * Compute tunnel PTYPEs.
616                  * 15 inst / 8 desc = 1.875 inst/desc
617                  */
618                 __m256i tnl_l3_ptype =
619                         _mm256_shuffle_epi8(tnl_l3_ptype_shuffle, ptype_idx);
620                 tnl_l3_ptype = _mm256_slli_epi32(tnl_l3_ptype, 16);
621                 /*
622                  * Shift non-tunnel L4 types to make them tunnel types.
623                  * RTE_PTYPE_L4_TCP << 16 == RTE_PTYPE_INNER_L4_TCP
624                  */
625                 __m256i tnl_l4_ptype =
626                         _mm256_slli_epi32(_mm256_and_si256(ptype,
627                                 _mm256_set1_epi32(RTE_PTYPE_L4_MASK)), 16);
628                 __m256i tnl_ptype =
629                         _mm256_or_si256(tnl_l3_ptype, tnl_l4_ptype);
630                 tnl_ptype = _mm256_or_si256(tnl_ptype,
631                         _mm256_set1_epi32(RTE_PTYPE_TUNNEL_GRENAT |
632                                 RTE_PTYPE_INNER_L2_ETHER));
633                 /*
634                  * Select non-tunnel or tunnel types by zeroing out the
635                  * unwanted ones.
636                  */
637                 __m256i tnl_flags = _mm256_and_si256(overlay_enabled,
638                         _mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 2), 31));
639                 tnl_ptype = _mm256_and_si256(tnl_ptype,
640                         _mm256_sub_epi32(zero4, tnl_flags));
641                 ptype = _mm256_and_si256(ptype,
642                         _mm256_cmpeq_epi32(zero4, tnl_flags));
643                 /*
644                  * Combine types and swap to have ptypes in the same order
645                  * as desc.
646                  * desc: 0 2 4 6 1 3 5 7
647                  * 3 inst / 8 desc = 0.375 inst/desc
648                  */
649                 ptype = _mm256_or_si256(ptype, tnl_ptype);
650                 ptype = _mm256_or_si256(ptype, vlan_ptype);
651                 ptype = _mm256_permute4x64_epi64(ptype,
652                         (1 << 6) + (0 << 4) + (3 << 2) + 2);
653
654                 /*
655                  * Mask packet length.
656                  * Use 4 ands: 0.5 instructions/desc
657                  */
658                 cqd01 = _mm256_and_si256(cqd01, mask);
659                 cqd23 = _mm256_and_si256(cqd23, mask);
660                 cqd45 = _mm256_and_si256(cqd45, mask);
661                 cqd67 = _mm256_and_si256(cqd67, mask);
662                 /*
663                  * Shuffle. Two 16B sets of the mbuf fields.
664                  * packet_type, pkt_len, data_len, vlan_tci, rss
665                  */
666                 __m256i rearm01 = _mm256_shuffle_epi8(cqd01, shuffle_mask);
667                 __m256i rearm23 = _mm256_shuffle_epi8(cqd23, shuffle_mask);
668                 __m256i rearm45 = _mm256_shuffle_epi8(cqd45, shuffle_mask);
669                 __m256i rearm67 = _mm256_shuffle_epi8(cqd67, shuffle_mask);
670
671                 /*
672                  * Blend in ptypes
673                  * 4 blends and 3 shuffles for 8 desc: 0.875 inst/desc
674                  */
675                 rearm01 = _mm256_blend_epi32(rearm01, ptype, 0x11);
676                 rearm23 = _mm256_blend_epi32(rearm23,
677                         _mm256_shuffle_epi32(ptype, 1), 0x11);
678                 rearm45 = _mm256_blend_epi32(rearm45,
679                         _mm256_shuffle_epi32(ptype, 2), 0x11);
680                 rearm67 = _mm256_blend_epi32(rearm67,
681                         _mm256_shuffle_epi32(ptype, 3), 0x11);
682
683                 /*
684                  * Move rss_flags into ol_flags in mbuf_init.
685                  * Use 1 shift and 1 blend for each desc: 2 inst/desc
686                  */
687                 __m256i mbuf_init4_5 = _mm256_blend_epi32(mbuf_init,
688                         rss_flags, 0x44);
689                 __m256i mbuf_init2_3 = _mm256_blend_epi32(mbuf_init,
690                         _mm256_slli_si256(rss_flags, 4), 0x44);
691                 __m256i mbuf_init0_1 = _mm256_blend_epi32(mbuf_init,
692                         _mm256_slli_si256(rss_flags, 8), 0x44);
693                 __m256i mbuf_init6_7 = _mm256_blend_epi32(mbuf_init,
694                         _mm256_srli_si256(rss_flags, 4), 0x44);
695
696                 /*
697                  * Build rearm, one per desc.
698                  * 8 blends and 4 permutes: 1.5 inst/desc
699                  */
700                 __m256i rearm0 = _mm256_blend_epi32(rearm01,
701                         mbuf_init0_1, 0xf0);
702                 __m256i rearm1 = _mm256_blend_epi32(mbuf_init0_1,
703                         rearm01, 0xf0);
704                 __m256i rearm2 = _mm256_blend_epi32(rearm23,
705                         mbuf_init2_3, 0xf0);
706                 __m256i rearm3 = _mm256_blend_epi32(mbuf_init2_3,
707                         rearm23, 0xf0);
708                 /* Swap upper and lower 64 bits */
709                 rearm0 = _mm256_permute4x64_epi64(rearm0,
710                         (1 << 6) + (0 << 4) + (3 << 2) + 2);
711                 rearm2 = _mm256_permute4x64_epi64(rearm2,
712                         (1 << 6) + (0 << 4) + (3 << 2) + 2);
713                 /* Second set of 4 descriptors */
714                 __m256i rearm4 = _mm256_blend_epi32(rearm45,
715                         mbuf_init4_5, 0xf0);
716                 __m256i rearm5 = _mm256_blend_epi32(mbuf_init4_5,
717                         rearm45, 0xf0);
718                 __m256i rearm6 = _mm256_blend_epi32(rearm67,
719                         mbuf_init6_7, 0xf0);
720                 __m256i rearm7 = _mm256_blend_epi32(mbuf_init6_7,
721                         rearm67, 0xf0);
722                 rearm4 = _mm256_permute4x64_epi64(rearm4,
723                         (1 << 6) + (0 << 4) + (3 << 2) + 2);
724                 rearm6 = _mm256_permute4x64_epi64(rearm6,
725                         (1 << 6) + (0 << 4) + (3 << 2) + 2);
726
727                 /*
728                  * Write out 32B of mbuf fields.
729                  * data_off    - off 0  (mbuf_init)
730                  * refcnt      - 2      (mbuf_init)
731                  * nb_segs     - 4      (mbuf_init)
732                  * port        - 6      (mbuf_init)
733                  * ol_flag     - 8      (from cqd)
734                  * packet_type - 16     (from cqd)
735                  * pkt_len     - 20     (from cqd)
736                  * data_len    - 24     (from cqd)
737                  * vlan_tci    - 26     (from cqd)
738                  * rss         - 28     (from cqd)
739                  */
740                 _mm256_storeu_si256((__m256i *)&rxmb[0]->rearm_data, rearm0);
741                 _mm256_storeu_si256((__m256i *)&rxmb[1]->rearm_data, rearm1);
742                 _mm256_storeu_si256((__m256i *)&rxmb[2]->rearm_data, rearm2);
743                 _mm256_storeu_si256((__m256i *)&rxmb[3]->rearm_data, rearm3);
744                 _mm256_storeu_si256((__m256i *)&rxmb[4]->rearm_data, rearm4);
745                 _mm256_storeu_si256((__m256i *)&rxmb[5]->rearm_data, rearm5);
746                 _mm256_storeu_si256((__m256i *)&rxmb[6]->rearm_data, rearm6);
747                 _mm256_storeu_si256((__m256i *)&rxmb[7]->rearm_data, rearm7);
748
749                 max_rx -= 8;
750                 cqd += 8;
751                 rx += 8;
752                 rxmb += 8;
753         }
754
755         /*
756          * Step 3: Slow path to handle a small (<8) number of packets and
757          * occasional truncated packets.
758          */
759         while (max_rx && ((cqd->type_color &
760                            CQ_DESC_COLOR_MASK_NOSHIFT) != color)) {
761                 if (unlikely(cqd->bytes_written_flags &
762                              CQ_ENET_RQ_DESC_FLAGS_TRUNCATED)) {
763                         rte_pktmbuf_free(*rxmb++);
764                         rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
765                 } else {
766                         *rx++ = rx_one(cqd, *rxmb++, enic);
767                 }
768                 cqd++;
769                 max_rx--;
770         }
771
772         /* Number of descriptors visited */
773         nb_rx = cqd - (struct cq_enet_rq_desc *)(cq->ring.descs) - cq_idx;
774         if (nb_rx == 0)
775                 return 0;
776         rqd = ((struct rq_enet_desc *)rq->ring.descs) + cq_idx;
777         rxmb = rq->mbuf_ring + cq_idx;
778         cq_idx += nb_rx;
779         rq->rx_nb_hold += nb_rx;
780         if (unlikely(cq_idx == cq->ring.desc_count)) {
781                 cq_idx = 0;
782                 cq->last_color ^= CQ_DESC_COLOR_MASK_NOSHIFT;
783         }
784         cq->to_clean = cq_idx;
785
786         /* Step 4: Restock RQ with new mbufs */
787         memcpy(rxmb, rq->free_mbufs + ENIC_RX_BURST_MAX - rq->num_free_mbufs,
788                sizeof(struct rte_mbuf *) * nb_rx);
789         rq->num_free_mbufs -= nb_rx;
790         while (nb_rx) {
791                 rqd->address = (*rxmb)->buf_iova + RTE_PKTMBUF_HEADROOM;
792                 nb_rx--;
793                 rqd++;
794                 rxmb++;
795         }
796         if (rq->rx_nb_hold > rq->rx_free_thresh) {
797                 rq->posted_index = enic_ring_add(rq->ring.desc_count,
798                                                  rq->posted_index,
799                                                  rq->rx_nb_hold);
800                 rq->rx_nb_hold = 0;
801                 rte_wmb();
802                 iowrite32_relaxed(rq->posted_index,
803                                   &rq->ctrl->posted_index);
804         }
805
806         return rx - rx_pkts;
807 }
808
809 bool
810 enic_use_vector_rx_handler(struct rte_eth_dev *eth_dev)
811 {
812         struct enic *enic = pmd_priv(eth_dev);
813
814         /* User needs to request for the avx2 handler */
815         if (!enic->enable_avx2_rx)
816                 return false;
817         /* Do not support scatter Rx */
818         if (!(enic->rq_count > 0 && enic->rq[0].data_queue_enable == 0))
819                 return false;
820         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) &&
821                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256) {
822                 ENICPMD_LOG(DEBUG, " use the non-scatter avx2 Rx handler");
823                 eth_dev->rx_pkt_burst = &enic_noscatter_vec_recv_pkts;
824                 enic->use_noscatter_vec_rx_handler = 1;
825                 return true;
826         }
827         return false;
828 }