1 /*******************************************************************************
3 Copyright (c) 2013 - 2015, Intel Corporation
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
32 ***************************************************************************/
38 * fm10k_reset_hw_pf - PF hardware reset
39 * @hw: pointer to hardware structure
41 * This function should return the hardware to a state similar to the
42 * one it is in after being powered on.
44 STATIC s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
50 DEBUGFUNC("fm10k_reset_hw_pf");
52 /* Disable interrupts */
53 FM10K_WRITE_REG(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
55 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
56 FM10K_WRITE_REG(hw, FM10K_ITR2(0), 0);
57 FM10K_WRITE_REG(hw, FM10K_INT_CTRL, 0);
59 /* We assume here Tx and Rx queue 0 are owned by the PF */
61 /* Shut off VF access to their queues forcing them to queue 0 */
62 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
63 FM10K_WRITE_REG(hw, FM10K_TQMAP(i), 0);
64 FM10K_WRITE_REG(hw, FM10K_RQMAP(i), 0);
67 /* shut down all rings */
68 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
72 /* Verify that DMA is no longer active */
73 reg = FM10K_READ_REG(hw, FM10K_DMA_CTRL);
74 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
75 return FM10K_ERR_DMA_PENDING;
77 /* verify the switch is ready for reset */
78 reg = FM10K_READ_REG(hw, FM10K_DMA_CTRL2);
79 if (!(reg & FM10K_DMA_CTRL2_SWITCH_READY))
82 /* Inititate data path reset */
83 reg |= FM10K_DMA_CTRL_DATAPATH_RESET;
84 FM10K_WRITE_REG(hw, FM10K_DMA_CTRL, reg);
86 /* Flush write and allow 100us for reset to complete */
87 FM10K_WRITE_FLUSH(hw);
88 usec_delay(FM10K_RESET_TIMEOUT);
90 /* Verify we made it out of reset */
91 reg = FM10K_READ_REG(hw, FM10K_IP);
92 if (!(reg & FM10K_IP_NOTINRESET))
93 err = FM10K_ERR_RESET_FAILED;
100 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
101 * @hw: pointer to hardware structure
103 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
105 STATIC bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
107 u16 sriov_ctrl = FM10K_READ_PCI_WORD(hw, FM10K_PCIE_SRIOV_CTRL);
109 DEBUGFUNC("fm10k_is_ari_hierarchy_pf");
111 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
115 * fm10k_init_hw_pf - PF hardware initialization
116 * @hw: pointer to hardware structure
119 STATIC s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
121 u32 dma_ctrl, txqctl;
124 DEBUGFUNC("fm10k_init_hw_pf");
126 /* Establish default VSI as valid */
127 FM10K_WRITE_REG(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
128 FM10K_WRITE_REG(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
129 FM10K_DGLORTMAP_ANY);
131 /* Invalidate all other GLORT entries */
132 for (i = 1; i < FM10K_DGLORT_COUNT; i++)
133 FM10K_WRITE_REG(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
135 /* reset ITR2(0) to point to itself */
136 FM10K_WRITE_REG(hw, FM10K_ITR2(0), 0);
138 /* reset VF ITR2(0) to point to 0 avoid PF registers */
139 FM10K_WRITE_REG(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
141 /* loop through all PF ITR2 registers pointing them to the previous */
142 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
143 FM10K_WRITE_REG(hw, FM10K_ITR2(i), i - 1);
145 /* Enable interrupt moderator if not already enabled */
146 FM10K_WRITE_REG(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
148 /* compute the default txqctl configuration */
149 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
150 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
152 for (i = 0; i < FM10K_MAX_QUEUES; i++) {
153 /* configure rings for 256 Queue / 32 Descriptor cache mode */
154 FM10K_WRITE_REG(hw, FM10K_TQDLOC(i),
155 (i * FM10K_TQDLOC_BASE_32_DESC) |
156 FM10K_TQDLOC_SIZE_32_DESC);
157 FM10K_WRITE_REG(hw, FM10K_TXQCTL(i), txqctl);
159 /* configure rings to provide TPH processing hints */
160 FM10K_WRITE_REG(hw, FM10K_TPH_TXCTRL(i),
161 FM10K_TPH_TXCTRL_DESC_TPHEN |
162 FM10K_TPH_TXCTRL_DESC_RROEN |
163 FM10K_TPH_TXCTRL_DESC_WROEN |
164 FM10K_TPH_TXCTRL_DATA_RROEN);
165 FM10K_WRITE_REG(hw, FM10K_TPH_RXCTRL(i),
166 FM10K_TPH_RXCTRL_DESC_TPHEN |
167 FM10K_TPH_RXCTRL_DESC_RROEN |
168 FM10K_TPH_RXCTRL_DATA_WROEN |
169 FM10K_TPH_RXCTRL_HDR_WROEN);
172 /* set max hold interval to align with 1.024 usec in all modes and
175 switch (hw->bus.speed) {
176 case fm10k_bus_speed_2500:
177 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
178 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
180 case fm10k_bus_speed_5000:
181 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
182 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
184 case fm10k_bus_speed_8000:
185 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
186 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
190 /* just in case, assume Gen3 ITR scale */
191 hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
195 /* Configure TSO flags */
196 FM10K_WRITE_REG(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
197 FM10K_WRITE_REG(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
200 * Set Rx Descriptor size to 32
201 * Set Minimum MSS to 64
202 * Set Maximum number of Rx queues to 256 / 32 Descriptor
204 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
205 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
206 FM10K_DMA_CTRL_32_DESC;
208 FM10K_WRITE_REG(hw, FM10K_DMA_CTRL, dma_ctrl);
210 /* record maximum queue count, we limit ourselves to 128 */
211 hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
213 /* We support either 64 VFs or 7 VFs depending on if we have ARI */
214 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
216 return FM10K_SUCCESS;
219 #ifndef NO_IS_SLOT_APPROPRIATE_CHECK
221 * fm10k_is_slot_appropriate_pf - Indicate appropriate slot for this SKU
222 * @hw: pointer to hardware structure
224 * Looks at the PCIe bus info to confirm whether or not this slot can support
225 * the necessary bandwidth for this device.
227 STATIC bool fm10k_is_slot_appropriate_pf(struct fm10k_hw *hw)
229 DEBUGFUNC("fm10k_is_slot_appropriate_pf");
231 return (hw->bus.speed == hw->bus_caps.speed) &&
232 (hw->bus.width == hw->bus_caps.width);
237 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
238 * @hw: pointer to hardware structure
239 * @vid: VLAN ID to add to table
240 * @vsi: Index indicating VF ID or PF ID in table
241 * @set: Indicates if this is a set or clear operation
243 * This function adds or removes the corresponding VLAN ID from the VLAN
244 * filter table for the corresponding function. In addition to the
245 * standard set/clear that supports one bit a multi-bit write is
246 * supported to set 64 bits at a time.
248 STATIC s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
250 u32 vlan_table, reg, mask, bit, len;
252 /* verify the VSI index is valid */
253 if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
254 return FM10K_ERR_PARAM;
256 /* VLAN multi-bit write:
257 * The multi-bit write has several parts to it.
259 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
260 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
261 * | RSVD0 | Length |C|RSVD0| VLAN ID |
262 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
264 * VLAN ID: Vlan Starting value
265 * RSVD0: Reserved section, must be 0
266 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
267 * Length: Number of times to repeat the bit being set
270 vid = (vid << 17) >> 17;
272 /* verify the reserved 0 fields are 0 */
273 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
274 return FM10K_ERR_PARAM;
276 /* Loop through the table updating all required VLANs */
277 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
278 len < FM10K_VLAN_TABLE_VID_MAX;
279 len -= 32 - bit, reg++, bit = 0) {
280 /* record the initial state of the register */
281 vlan_table = FM10K_READ_REG(hw, reg);
283 /* truncate mask if we are at the start or end of the run */
284 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
286 /* make necessary modifications to the register */
287 mask &= set ? ~vlan_table : vlan_table;
289 FM10K_WRITE_REG(hw, reg, vlan_table ^ mask);
292 return FM10K_SUCCESS;
296 * fm10k_read_mac_addr_pf - Read device MAC address
297 * @hw: pointer to the HW structure
299 * Reads the device MAC address from the SM_AREA and stores the value.
301 STATIC s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
303 u8 perm_addr[ETH_ALEN];
306 DEBUGFUNC("fm10k_read_mac_addr_pf");
308 serial_num = FM10K_READ_REG(hw, FM10K_SM_AREA(1));
310 /* last byte should be all 1's */
311 if ((~serial_num) << 24)
312 return FM10K_ERR_INVALID_MAC_ADDR;
314 perm_addr[0] = (u8)(serial_num >> 24);
315 perm_addr[1] = (u8)(serial_num >> 16);
316 perm_addr[2] = (u8)(serial_num >> 8);
318 serial_num = FM10K_READ_REG(hw, FM10K_SM_AREA(0));
320 /* first byte should be all 1's */
321 if ((~serial_num) >> 24)
322 return FM10K_ERR_INVALID_MAC_ADDR;
324 perm_addr[3] = (u8)(serial_num >> 16);
325 perm_addr[4] = (u8)(serial_num >> 8);
326 perm_addr[5] = (u8)(serial_num);
328 memcpy(hw->mac.perm_addr, perm_addr, ETH_ALEN);
329 memcpy(hw->mac.addr, perm_addr, ETH_ALEN);
331 return FM10K_SUCCESS;
335 * fm10k_glort_valid_pf - Validate that the provided glort is valid
336 * @hw: pointer to the HW structure
337 * @glort: base glort to be validated
339 * This function will return an error if the provided glort is invalid
341 bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
343 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
345 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
349 * fm10k_update_xc_addr_pf - Update device addresses
350 * @hw: pointer to the HW structure
351 * @glort: base resource tag for this request
352 * @mac: MAC address to add/remove from table
353 * @vid: VLAN ID to add/remove from table
354 * @add: Indicates if this is an add or remove operation
355 * @flags: flags field to indicate add and secure
357 * This function generates a message to the Switch API requesting
358 * that the given logical port add/remove the given L2 MAC/VLAN address.
360 STATIC s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
361 const u8 *mac, u16 vid, bool add, u8 flags)
363 struct fm10k_mbx_info *mbx = &hw->mbx;
364 struct fm10k_mac_update mac_update;
367 DEBUGFUNC("fm10k_update_xc_addr_pf");
369 /* clear set bit from VLAN ID */
370 vid &= ~FM10K_VLAN_CLEAR;
372 /* if glort or VLAN are not valid return error */
373 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
374 return FM10K_ERR_PARAM;
377 mac_update.mac_lower = FM10K_CPU_TO_LE32(((u32)mac[2] << 24) |
378 ((u32)mac[3] << 16) |
381 mac_update.mac_upper = FM10K_CPU_TO_LE16(((u16)mac[0] << 8) |
383 mac_update.vlan = FM10K_CPU_TO_LE16(vid);
384 mac_update.glort = FM10K_CPU_TO_LE16(glort);
385 mac_update.action = add ? 0 : 1;
386 mac_update.flags = flags;
388 /* populate mac_update fields */
389 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
390 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
391 &mac_update, sizeof(mac_update));
393 /* load onto outgoing mailbox */
394 return mbx->ops.enqueue_tx(hw, mbx, msg);
398 * fm10k_update_uc_addr_pf - Update device unicast addresses
399 * @hw: pointer to the HW structure
400 * @glort: base resource tag for this request
401 * @mac: MAC address to add/remove from table
402 * @vid: VLAN ID to add/remove from table
403 * @add: Indicates if this is an add or remove operation
404 * @flags: flags field to indicate add and secure
406 * This function is used to add or remove unicast addresses for
409 STATIC s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
410 const u8 *mac, u16 vid, bool add, u8 flags)
412 DEBUGFUNC("fm10k_update_uc_addr_pf");
414 /* verify MAC address is valid */
415 if (!FM10K_IS_VALID_ETHER_ADDR(mac))
416 return FM10K_ERR_PARAM;
418 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
422 * fm10k_update_mc_addr_pf - Update device multicast addresses
423 * @hw: pointer to the HW structure
424 * @glort: base resource tag for this request
425 * @mac: MAC address to add/remove from table
426 * @vid: VLAN ID to add/remove from table
427 * @add: Indicates if this is an add or remove operation
429 * This function is used to add or remove multicast MAC addresses for
432 STATIC s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
433 const u8 *mac, u16 vid, bool add)
435 DEBUGFUNC("fm10k_update_mc_addr_pf");
437 /* verify multicast address is valid */
438 if (!FM10K_IS_MULTICAST_ETHER_ADDR(mac))
439 return FM10K_ERR_PARAM;
441 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
445 * fm10k_update_xcast_mode_pf - Request update of multicast mode
446 * @hw: pointer to hardware structure
447 * @glort: base resource tag for this request
448 * @mode: integer value indicating mode being requested
450 * This function will attempt to request a higher mode for the port
451 * so that it can enable either multicast, multicast promiscuous, or
452 * promiscuous mode of operation.
454 STATIC s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
456 struct fm10k_mbx_info *mbx = &hw->mbx;
457 u32 msg[3], xcast_mode;
459 DEBUGFUNC("fm10k_update_xcast_mode_pf");
461 if (mode > FM10K_XCAST_MODE_NONE)
462 return FM10K_ERR_PARAM;
464 /* if glort is not valid return error */
465 if (!fm10k_glort_valid_pf(hw, glort))
466 return FM10K_ERR_PARAM;
468 /* write xcast mode as a single u32 value,
469 * lower 16 bits: glort
470 * upper 16 bits: mode
472 xcast_mode = ((u32)mode << 16) | glort;
474 /* generate message requesting to change xcast mode */
475 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
476 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
478 /* load onto outgoing mailbox */
479 return mbx->ops.enqueue_tx(hw, mbx, msg);
483 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list
484 * @hw: pointer to hardware structure
486 * This function walks through the MSI-X vector table to determine the
487 * number of active interrupts and based on that information updates the
488 * interrupt moderator linked list.
490 STATIC void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
494 /* Disable interrupt moderator */
495 FM10K_WRITE_REG(hw, FM10K_INT_CTRL, 0);
497 /* loop through PF from last to first looking enabled vectors */
498 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
499 if (!FM10K_READ_REG(hw, FM10K_MSIX_VECTOR_MASK(i)))
503 /* always reset VFITR2[0] to point to last enabled PF vector */
504 FM10K_WRITE_REG(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
506 /* reset ITR2[0] to point to last enabled PF vector */
507 if (!hw->iov.num_vfs)
508 FM10K_WRITE_REG(hw, FM10K_ITR2(0), i);
510 /* Enable interrupt moderator */
511 FM10K_WRITE_REG(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
515 * fm10k_update_lport_state_pf - Notify the switch of a change in port state
516 * @hw: pointer to the HW structure
517 * @glort: base resource tag for this request
518 * @count: number of logical ports being updated
519 * @enable: boolean value indicating enable or disable
521 * This function is used to add/remove a logical port from the switch.
523 STATIC s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
524 u16 count, bool enable)
526 struct fm10k_mbx_info *mbx = &hw->mbx;
527 u32 msg[3], lport_msg;
529 DEBUGFUNC("fm10k_lport_state_pf");
531 /* do nothing if we are being asked to create or destroy 0 ports */
533 return FM10K_SUCCESS;
535 /* if glort is not valid return error */
536 if (!fm10k_glort_valid_pf(hw, glort))
537 return FM10K_ERR_PARAM;
539 /* construct the lport message from the 2 pieces of data we have */
540 lport_msg = ((u32)count << 16) | glort;
542 /* generate lport create/delete message */
543 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
544 FM10K_PF_MSG_ID_LPORT_DELETE);
545 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
547 /* load onto outgoing mailbox */
548 return mbx->ops.enqueue_tx(hw, mbx, msg);
552 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
553 * @hw: pointer to hardware structure
554 * @dglort: pointer to dglort configuration structure
556 * Reads the configuration structure contained in dglort_cfg and uses
557 * that information to then populate a DGLORTMAP/DEC entry and the queues
558 * to which it has been assigned.
560 STATIC s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
561 struct fm10k_dglort_cfg *dglort)
563 u16 glort, queue_count, vsi_count, pc_count;
564 u16 vsi, queue, pc, q_idx;
565 u32 txqctl, dglortdec, dglortmap;
567 /* verify the dglort pointer */
569 return FM10K_ERR_PARAM;
571 /* verify the dglort values */
572 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
573 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
574 (dglort->queue_l > 8) || (dglort->queue_b >= 256))
575 return FM10K_ERR_PARAM;
577 /* determine count of VSIs and queues */
578 queue_count = BIT(dglort->rss_l + dglort->pc_l);
579 vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
580 glort = dglort->glort;
581 q_idx = dglort->queue_b;
583 /* configure SGLORT for queues */
584 for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
585 for (queue = 0; queue < queue_count; queue++, q_idx++) {
586 if (q_idx >= FM10K_MAX_QUEUES)
589 FM10K_WRITE_REG(hw, FM10K_TX_SGLORT(q_idx), glort);
590 FM10K_WRITE_REG(hw, FM10K_RX_SGLORT(q_idx), glort);
594 /* determine count of PCs and queues */
595 queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
596 pc_count = BIT(dglort->pc_l);
598 /* configure PC for Tx queues */
599 for (pc = 0; pc < pc_count; pc++) {
600 q_idx = pc + dglort->queue_b;
601 for (queue = 0; queue < queue_count; queue++) {
602 if (q_idx >= FM10K_MAX_QUEUES)
605 txqctl = FM10K_READ_REG(hw, FM10K_TXQCTL(q_idx));
606 txqctl &= ~FM10K_TXQCTL_PC_MASK;
607 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
608 FM10K_WRITE_REG(hw, FM10K_TXQCTL(q_idx), txqctl);
614 /* configure DGLORTDEC */
615 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
616 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
617 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
618 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
619 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
620 ((u32)(dglort->queue_l));
621 if (dglort->inner_rss)
622 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE;
624 /* configure DGLORTMAP */
625 dglortmap = (dglort->idx == fm10k_dglort_default) ?
626 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
627 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
628 dglortmap |= dglort->glort;
630 /* write values to hardware */
631 FM10K_WRITE_REG(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
632 FM10K_WRITE_REG(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
634 return FM10K_SUCCESS;
637 u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
639 u16 num_pools = hw->iov.num_pools;
641 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
642 8 : FM10K_MAX_QUEUES_POOL;
645 u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
647 u16 num_vfs = hw->iov.num_vfs;
648 u16 vf_q_idx = FM10K_MAX_QUEUES;
650 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
655 STATIC u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
657 u16 num_pools = hw->iov.num_pools;
659 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
660 FM10K_MAX_VECTORS_POOL;
663 STATIC u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
665 u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
667 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
673 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
674 * @hw: pointer to the HW structure
675 * @num_vfs: number of VFs to be allocated
676 * @num_pools: number of virtualization pools to be allocated
678 * Allocates queues and traffic classes to virtualization entities to prepare
679 * the PF for SR-IOV and VMDq
681 STATIC s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
684 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
685 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
688 /* hardware only supports up to 64 pools */
690 return FM10K_ERR_PARAM;
692 /* the number of VFs cannot exceed the number of pools */
693 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
694 return FM10K_ERR_PARAM;
696 /* record number of virtualization entities */
697 hw->iov.num_vfs = num_vfs;
698 hw->iov.num_pools = num_pools;
700 /* determine qmap offsets and counts */
701 qmap_stride = (num_vfs > 8) ? 32 : 256;
702 qpp = fm10k_queues_per_pool(hw);
703 vpp = fm10k_vectors_per_pool(hw);
705 /* calculate starting index for queues */
706 vf_q_idx = fm10k_vf_queue_index(hw, 0);
709 /* establish TCs with -1 credits and no quanta to prevent transmit */
710 for (i = 0; i < num_vfs; i++) {
711 FM10K_WRITE_REG(hw, FM10K_TC_MAXCREDIT(i), 0);
712 FM10K_WRITE_REG(hw, FM10K_TC_RATE(i), 0);
713 FM10K_WRITE_REG(hw, FM10K_TC_CREDIT(i),
714 FM10K_TC_CREDIT_CREDIT_MASK);
717 /* zero out all mbmem registers */
718 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
719 FM10K_WRITE_REG(hw, FM10K_MBMEM(i), 0);
721 /* clear event notification of VF FLR */
722 FM10K_WRITE_REG(hw, FM10K_PFVFLREC(0), ~0);
723 FM10K_WRITE_REG(hw, FM10K_PFVFLREC(1), ~0);
725 /* loop through unallocated rings assigning them back to PF */
726 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
727 FM10K_WRITE_REG(hw, FM10K_TXDCTL(i), 0);
728 FM10K_WRITE_REG(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
729 FM10K_TXQCTL_UNLIMITED_BW | vid);
730 FM10K_WRITE_REG(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
733 /* PF should have already updated VFITR2[0] */
735 /* update all ITR registers to flow to VFITR2[0] */
736 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
737 if (!(i & (vpp - 1)))
738 FM10K_WRITE_REG(hw, FM10K_ITR2(i), i - vpp);
740 FM10K_WRITE_REG(hw, FM10K_ITR2(i), i - 1);
743 /* update PF ITR2[0] to reference the last vector */
744 FM10K_WRITE_REG(hw, FM10K_ITR2(0),
745 fm10k_vf_vector_index(hw, num_vfs - 1));
747 /* loop through rings populating rings and TCs */
748 for (i = 0; i < num_vfs; i++) {
749 /* record index for VF queue 0 for use in end of loop */
750 vf_q_idx0 = vf_q_idx;
752 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
753 /* assign VF and locked TC to queues */
754 FM10K_WRITE_REG(hw, FM10K_TXDCTL(vf_q_idx), 0);
755 FM10K_WRITE_REG(hw, FM10K_TXQCTL(vf_q_idx),
756 (i << FM10K_TXQCTL_TC_SHIFT) | i |
757 FM10K_TXQCTL_VF | vid);
758 FM10K_WRITE_REG(hw, FM10K_RXDCTL(vf_q_idx),
759 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
760 FM10K_RXDCTL_DROP_ON_EMPTY);
761 FM10K_WRITE_REG(hw, FM10K_RXQCTL(vf_q_idx),
763 (i << FM10K_RXQCTL_VF_SHIFT));
765 /* map queue pair to VF */
766 FM10K_WRITE_REG(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
767 FM10K_WRITE_REG(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
770 /* repeat the first ring for all of the remaining VF rings */
771 for (; j < qmap_stride; j++, qmap_idx++) {
772 FM10K_WRITE_REG(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
773 FM10K_WRITE_REG(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
777 /* loop through remaining indexes assigning all to queue 0 */
778 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
779 FM10K_WRITE_REG(hw, FM10K_TQMAP(qmap_idx), 0);
780 FM10K_WRITE_REG(hw, FM10K_RQMAP(qmap_idx), 0);
784 return FM10K_SUCCESS;
788 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF
789 * @hw: pointer to the HW structure
790 * @vf_idx: index of VF receiving GLORT
791 * @rate: Rate indicated in Mb/s
793 * Configured the TC for a given VF to allow only up to a given number
794 * of Mb/s of outgoing Tx throughput.
796 STATIC s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
798 /* configure defaults */
799 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
800 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
802 /* verify vf is in range */
803 if (vf_idx >= hw->iov.num_vfs)
804 return FM10K_ERR_PARAM;
806 /* set interval to align with 4.096 usec in all modes */
807 switch (hw->bus.speed) {
808 case fm10k_bus_speed_2500:
809 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
811 case fm10k_bus_speed_5000:
812 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
819 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
820 return FM10K_ERR_PARAM;
822 /* The quanta is measured in Bytes per 4.096 or 8.192 usec
823 * The rate is provided in Mbits per second
824 * To tralslate from rate to quanta we need to multiply the
825 * rate by 8.192 usec and divide by 8 bits/byte. To avoid
826 * dealing with floating point we can round the values up
827 * to the nearest whole number ratio which gives us 128 / 125.
829 tc_rate = (rate * 128) / 125;
831 /* try to keep the rate limiting accurate by increasing
832 * the number of credits and interval for rates less than 4Gb/s
840 /* update rate limiter with new values */
841 FM10K_WRITE_REG(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
842 FM10K_WRITE_REG(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
843 FM10K_WRITE_REG(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
845 return FM10K_SUCCESS;
849 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
850 * @hw: pointer to the HW structure
851 * @vf_idx: index of VF receiving GLORT
853 * Update the interrupt moderator linked list to include any MSI-X
854 * interrupts which the VF has enabled in the MSI-X vector table.
856 STATIC s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
858 u16 vf_v_idx, vf_v_limit, i;
860 /* verify vf is in range */
861 if (vf_idx >= hw->iov.num_vfs)
862 return FM10K_ERR_PARAM;
864 /* determine vector offset and count */
865 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
866 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
868 /* search for first vector that is not masked */
869 for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
870 if (!FM10K_READ_REG(hw, FM10K_MSIX_VECTOR_MASK(i)))
874 /* reset linked list so it now includes our active vectors */
875 if (vf_idx == (hw->iov.num_vfs - 1))
876 FM10K_WRITE_REG(hw, FM10K_ITR2(0), i);
878 FM10K_WRITE_REG(hw, FM10K_ITR2(vf_v_limit), i);
880 return FM10K_SUCCESS;
884 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
885 * @hw: pointer to the HW structure
886 * @vf_info: pointer to VF information structure
888 * Assign a MAC address and default VLAN to a VF and notify it of the update
890 STATIC s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
891 struct fm10k_vf_info *vf_info)
893 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
894 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
895 s32 err = FM10K_SUCCESS;
898 /* verify vf is in range */
899 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
900 return FM10K_ERR_PARAM;
902 /* determine qmap offsets and counts */
903 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
904 queues_per_pool = fm10k_queues_per_pool(hw);
906 /* calculate starting index for queues */
907 vf_idx = vf_info->vf_idx;
908 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
909 qmap_idx = qmap_stride * vf_idx;
911 /* MAP Tx queue back to 0 temporarily, and disable it */
912 FM10K_WRITE_REG(hw, FM10K_TQMAP(qmap_idx), 0);
913 FM10K_WRITE_REG(hw, FM10K_TXDCTL(vf_q_idx), 0);
915 /* determine correct default VLAN ID */
917 vf_vid = vf_info->pf_vid | FM10K_VLAN_CLEAR;
919 vf_vid = vf_info->sw_vid;
921 /* generate MAC_ADDR request */
922 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
923 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
924 vf_info->mac, vf_vid);
926 /* load onto outgoing mailbox, ignore any errors on enqueue */
927 if (vf_info->mbx.ops.enqueue_tx)
928 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
930 /* verify ring has disabled before modifying base address registers */
931 txdctl = FM10K_READ_REG(hw, FM10K_TXDCTL(vf_q_idx));
932 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
933 /* limit ourselves to a 1ms timeout */
935 err = FM10K_ERR_DMA_PENDING;
940 txdctl = FM10K_READ_REG(hw, FM10K_TXDCTL(vf_q_idx));
943 /* Update base address registers to contain MAC address */
944 if (FM10K_IS_VALID_ETHER_ADDR(vf_info->mac)) {
945 tdbal = (((u32)vf_info->mac[3]) << 24) |
946 (((u32)vf_info->mac[4]) << 16) |
947 (((u32)vf_info->mac[5]) << 8);
949 tdbah = (((u32)0xFF) << 24) |
950 (((u32)vf_info->mac[0]) << 16) |
951 (((u32)vf_info->mac[1]) << 8) |
952 ((u32)vf_info->mac[2]);
955 /* Record the base address into queue 0 */
956 FM10K_WRITE_REG(hw, FM10K_TDBAL(vf_q_idx), tdbal);
957 FM10K_WRITE_REG(hw, FM10K_TDBAH(vf_q_idx), tdbah);
959 /* Provide the VF the ITR scale, using software-defined fields in TDLEN
960 * to pass the information during VF initialization. See definition of
961 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
963 FM10K_WRITE_REG(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
964 FM10K_TDLEN_ITR_SCALE_SHIFT);
967 /* configure Queue control register */
968 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
969 FM10K_TXQCTL_VID_MASK;
970 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
971 FM10K_TXQCTL_VF | vf_idx;
974 for (i = 0; i < queues_per_pool; i++)
975 FM10K_WRITE_REG(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
977 /* restore the queue back to VF ownership */
978 FM10K_WRITE_REG(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
983 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
984 * @hw: pointer to the HW structure
985 * @vf_info: pointer to VF information structure
987 * Reassign the interrupts and queues to a VF following an FLR
989 STATIC s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
990 struct fm10k_vf_info *vf_info)
992 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
993 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
994 u16 vf_v_idx, vf_v_limit, vf_vid;
995 u8 vf_idx = vf_info->vf_idx;
998 /* verify vf is in range */
999 if (vf_idx >= hw->iov.num_vfs)
1000 return FM10K_ERR_PARAM;
1002 /* clear event notification of VF FLR */
1003 FM10K_WRITE_REG(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
1005 /* force timeout and then disconnect the mailbox */
1006 vf_info->mbx.timeout = 0;
1007 if (vf_info->mbx.ops.disconnect)
1008 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
1010 /* determine vector offset and count */
1011 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
1012 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
1014 /* determine qmap offsets and counts */
1015 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
1016 queues_per_pool = fm10k_queues_per_pool(hw);
1017 qmap_idx = qmap_stride * vf_idx;
1019 /* make all the queues inaccessible to the VF */
1020 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
1021 FM10K_WRITE_REG(hw, FM10K_TQMAP(i), 0);
1022 FM10K_WRITE_REG(hw, FM10K_RQMAP(i), 0);
1025 /* calculate starting index for queues */
1026 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
1028 /* determine correct default VLAN ID */
1029 if (vf_info->pf_vid)
1030 vf_vid = vf_info->pf_vid;
1032 vf_vid = vf_info->sw_vid;
1034 /* configure Queue control register */
1035 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
1036 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
1037 FM10K_TXQCTL_VF | vf_idx;
1038 rxqctl = FM10K_RXQCTL_VF | (vf_idx << FM10K_RXQCTL_VF_SHIFT);
1040 /* stop further DMA and reset queue ownership back to VF */
1041 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
1042 FM10K_WRITE_REG(hw, FM10K_TXDCTL(i), 0);
1043 FM10K_WRITE_REG(hw, FM10K_TXQCTL(i), txqctl);
1044 FM10K_WRITE_REG(hw, FM10K_RXDCTL(i),
1045 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
1046 FM10K_RXDCTL_DROP_ON_EMPTY);
1047 FM10K_WRITE_REG(hw, FM10K_RXQCTL(i), rxqctl);
1050 /* reset TC with -1 credits and no quanta to prevent transmit */
1051 FM10K_WRITE_REG(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
1052 FM10K_WRITE_REG(hw, FM10K_TC_RATE(vf_idx), 0);
1053 FM10K_WRITE_REG(hw, FM10K_TC_CREDIT(vf_idx),
1054 FM10K_TC_CREDIT_CREDIT_MASK);
1056 /* update our first entry in the table based on previous VF */
1058 hw->mac.ops.update_int_moderator(hw);
1060 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1062 /* reset linked list so it now includes our active vectors */
1063 if (vf_idx == (hw->iov.num_vfs - 1))
1064 FM10K_WRITE_REG(hw, FM10K_ITR2(0), vf_v_idx);
1066 FM10K_WRITE_REG(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1068 /* link remaining vectors so that next points to previous */
1069 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1070 FM10K_WRITE_REG(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1072 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1073 for (i = FM10K_VFMBMEM_LEN; i--;)
1074 FM10K_WRITE_REG(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1075 for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1076 FM10K_WRITE_REG(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1077 for (i = FM10K_RETA_SIZE; i--;)
1078 FM10K_WRITE_REG(hw, FM10K_RETA(vf_info->vsi, i), 0);
1079 for (i = FM10K_RSSRK_SIZE; i--;)
1080 FM10K_WRITE_REG(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1081 FM10K_WRITE_REG(hw, FM10K_MRQC(vf_info->vsi), 0);
1083 /* Update base address registers to contain MAC address */
1084 if (FM10K_IS_VALID_ETHER_ADDR(vf_info->mac)) {
1085 tdbal = (((u32)vf_info->mac[3]) << 24) |
1086 (((u32)vf_info->mac[4]) << 16) |
1087 (((u32)vf_info->mac[5]) << 8);
1088 tdbah = (((u32)0xFF) << 24) |
1089 (((u32)vf_info->mac[0]) << 16) |
1090 (((u32)vf_info->mac[1]) << 8) |
1091 ((u32)vf_info->mac[2]);
1094 /* map queue pairs back to VF from last to first */
1095 for (i = queues_per_pool; i--;) {
1096 FM10K_WRITE_REG(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1097 FM10K_WRITE_REG(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1098 /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
1099 * explanation of how TDLEN is used.
1101 FM10K_WRITE_REG(hw, FM10K_TDLEN(vf_q_idx + i),
1102 hw->mac.itr_scale <<
1103 FM10K_TDLEN_ITR_SCALE_SHIFT);
1104 FM10K_WRITE_REG(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1105 FM10K_WRITE_REG(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1108 /* repeat the first ring for all the remaining VF rings */
1109 for (i = queues_per_pool; i < qmap_stride; i++) {
1110 FM10K_WRITE_REG(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1111 FM10K_WRITE_REG(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1114 return FM10K_SUCCESS;
1118 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1119 * @hw: pointer to hardware structure
1120 * @vf_info: pointer to VF information structure
1121 * @lport_idx: Logical port offset from the hardware glort
1122 * @flags: Set of capability flags to extend port beyond basic functionality
1124 * This function allows enabling a VF port by assigning it a GLORT and
1125 * setting the flags so that it can enable an Rx mode.
1127 STATIC s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1128 struct fm10k_vf_info *vf_info,
1129 u16 lport_idx, u8 flags)
1131 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1133 DEBUGFUNC("fm10k_iov_set_lport_state_pf");
1135 /* if glort is not valid return error */
1136 if (!fm10k_glort_valid_pf(hw, glort))
1137 return FM10K_ERR_PARAM;
1139 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1140 vf_info->glort = glort;
1142 return FM10K_SUCCESS;
1146 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1147 * @hw: pointer to hardware structure
1148 * @vf_info: pointer to VF information structure
1150 * This function disables a VF port by stripping it of a GLORT and
1151 * setting the flags so that it cannot enable any Rx mode.
1153 STATIC void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1154 struct fm10k_vf_info *vf_info)
1158 DEBUGFUNC("fm10k_iov_reset_lport_state_pf");
1160 /* need to disable the port if it is already enabled */
1161 if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1162 /* notify switch that this port has been disabled */
1163 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1165 /* generate port state response to notify VF it is not ready */
1166 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1167 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1170 /* clear flags and glort if it exists */
1171 vf_info->vf_flags = 0;
1176 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1177 * @hw: pointer to hardware structure
1178 * @q: stats for all queues of a VF
1179 * @vf_idx: index of VF
1181 * This function collects queue stats for VFs.
1183 STATIC void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1184 struct fm10k_hw_stats_q *q,
1189 /* get stats for all of the queues */
1190 qpp = fm10k_queues_per_pool(hw);
1191 idx = fm10k_vf_queue_index(hw, vf_idx);
1192 fm10k_update_hw_stats_q(hw, q, idx, qpp);
1196 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1197 * @hw: Pointer to hardware structure
1198 * @results: Pointer array to message, results[0] is pointer to message
1199 * @mbx: Pointer to mailbox information structure
1201 * This function is a default handler for MSI-X requests from the VF. The
1202 * assumption is that in this case it is acceptable to just directly
1203 * hand off the message from the VF to the underlying shared code.
1205 s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1206 struct fm10k_mbx_info *mbx)
1208 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1209 u8 vf_idx = vf_info->vf_idx;
1211 UNREFERENCED_1PARAMETER(results);
1212 DEBUGFUNC("fm10k_iov_msg_msix_pf");
1214 return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1218 * fm10k_iov_select_vid - Select correct default VLAN ID
1219 * @hw: Pointer to hardware structure
1220 * @vid: VLAN ID to correct
1222 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
1223 * return either the pf_vid or sw_vid depending on which one is set.
1225 STATIC s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
1228 return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
1229 else if (vf_info->pf_vid && vid != vf_info->pf_vid)
1230 return FM10K_ERR_PARAM;
1236 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1237 * @hw: Pointer to hardware structure
1238 * @results: Pointer array to message, results[0] is pointer to message
1239 * @mbx: Pointer to mailbox information structure
1241 * This function is a default handler for MAC/VLAN requests from the VF.
1242 * The assumption is that in this case it is acceptable to just directly
1243 * hand off the message from the VF to the underlying shared code.
1245 s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1246 struct fm10k_mbx_info *mbx)
1248 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1251 int err = FM10K_SUCCESS;
1256 DEBUGFUNC("fm10k_iov_msg_mac_vlan_pf");
1258 /* we shouldn't be updating rules on a disabled interface */
1259 if (!FM10K_VF_FLAG_ENABLED(vf_info))
1260 err = FM10K_ERR_PARAM;
1262 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1263 result = results[FM10K_MAC_VLAN_MSG_VLAN];
1265 /* record VLAN id requested */
1266 err = fm10k_tlv_attr_get_u32(result, &vid);
1270 /* verify upper 16 bits are zero */
1272 return FM10K_ERR_PARAM;
1274 set = !(vid & FM10K_VLAN_CLEAR);
1275 vid &= ~FM10K_VLAN_CLEAR;
1277 err = fm10k_iov_select_vid(vf_info, (u16)vid);
1283 /* update VSI info for VF in regards to VLAN table */
1284 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
1287 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1288 result = results[FM10K_MAC_VLAN_MSG_MAC];
1290 /* record unicast MAC address requested */
1291 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1295 /* block attempts to set MAC for a locked device */
1296 if (FM10K_IS_VALID_ETHER_ADDR(vf_info->mac) &&
1297 memcmp(mac, vf_info->mac, ETH_ALEN))
1298 return FM10K_ERR_PARAM;
1300 set = !(vlan & FM10K_VLAN_CLEAR);
1301 vlan &= ~FM10K_VLAN_CLEAR;
1303 err = fm10k_iov_select_vid(vf_info, vlan);
1309 /* notify switch of request for new unicast address */
1310 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
1314 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1315 result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1317 /* record multicast MAC address requested */
1318 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1322 /* verify that the VF is allowed to request multicast */
1323 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1324 return FM10K_ERR_PARAM;
1326 set = !(vlan & FM10K_VLAN_CLEAR);
1327 vlan &= ~FM10K_VLAN_CLEAR;
1329 err = fm10k_iov_select_vid(vf_info, vlan);
1335 /* notify switch of request for new multicast address */
1336 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
1344 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1345 * @vf_info: VF info structure containing capability flags
1346 * @mode: Requested xcast mode
1348 * This function outputs the mode that most closely matches the requested
1349 * mode. If not modes match it will request we disable the port
1351 STATIC u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1354 u8 vf_flags = vf_info->vf_flags;
1356 /* match up mode to capabilities as best as possible */
1358 case FM10K_XCAST_MODE_PROMISC:
1359 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1360 return FM10K_XCAST_MODE_PROMISC;
1362 case FM10K_XCAST_MODE_ALLMULTI:
1363 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1364 return FM10K_XCAST_MODE_ALLMULTI;
1366 case FM10K_XCAST_MODE_MULTI:
1367 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1368 return FM10K_XCAST_MODE_MULTI;
1370 case FM10K_XCAST_MODE_NONE:
1371 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1372 return FM10K_XCAST_MODE_NONE;
1378 /* disable interface as it should not be able to request any */
1379 return FM10K_XCAST_MODE_DISABLE;
1383 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1384 * @hw: Pointer to hardware structure
1385 * @results: Pointer array to message, results[0] is pointer to message
1386 * @mbx: Pointer to mailbox information structure
1388 * This function is a default handler for port state requests. The port
1389 * state requests for now are basic and consist of enabling or disabling
1392 s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1393 struct fm10k_mbx_info *mbx)
1395 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1397 s32 err = FM10K_SUCCESS;
1401 DEBUGFUNC("fm10k_iov_msg_lport_state_pf");
1403 /* verify VF is allowed to enable even minimal mode */
1404 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1405 return FM10K_ERR_PARAM;
1407 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1408 result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1410 /* XCAST mode update requested */
1411 err = fm10k_tlv_attr_get_u8(result, &mode);
1413 return FM10K_ERR_PARAM;
1415 /* prep for possible demotion depending on capabilities */
1416 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1418 /* if mode is not currently enabled, enable it */
1419 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
1420 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1422 /* swap mode back to a bit flag */
1423 mode = FM10K_VF_FLAG_SET_MODE(mode);
1424 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1425 /* need to disable the port if it is already enabled */
1426 if (FM10K_VF_FLAG_ENABLED(vf_info))
1427 err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1430 /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1431 * that we actually re-enable the LPORT state below. Note that
1432 * this has no impact if the VF is already disabled, as the
1433 * flags are already cleared.
1436 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1438 /* when enabling the port we should reset the rate limiters */
1439 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1441 /* set mode for minimal functionality */
1442 mode = FM10K_VF_FLAG_SET_MODE_NONE;
1444 /* generate port state response to notify VF it is ready */
1445 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1446 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1447 mbx->ops.enqueue_tx(hw, mbx, msg);
1450 /* if enable state toggled note the update */
1451 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1452 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1455 /* if state change succeeded, then update our stored state */
1456 mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1458 vf_info->vf_flags = mode;
1463 #ifndef NO_DEFAULT_SRIOV_MSG_HANDLERS
1464 const struct fm10k_msg_data fm10k_iov_msg_data_pf[] = {
1465 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1466 FM10K_VF_MSG_MSIX_HANDLER(fm10k_iov_msg_msix_pf),
1467 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_iov_msg_mac_vlan_pf),
1468 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_iov_msg_lport_state_pf),
1469 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1474 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1475 * @hw: pointer to hardware structure
1476 * @stats: pointer to the stats structure to update
1478 * This function collects and aggregates global and per queue hardware
1481 STATIC void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1482 struct fm10k_hw_stats *stats)
1484 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1487 DEBUGFUNC("fm10k_update_hw_stats_pf");
1489 /* Use Tx queue 0 as a canary to detect a reset */
1490 id = FM10K_READ_REG(hw, FM10K_TXQCTL(0));
1492 /* Read Global Statistics */
1494 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1496 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1497 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1498 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1499 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1500 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1503 fm10k_read_hw_stats_32b(hw,
1504 FM10K_STATS_LOOPBACK_DROP,
1505 &stats->loopback_drop);
1506 nodesc_drop = fm10k_read_hw_stats_32b(hw,
1507 FM10K_STATS_NODESC_DROP,
1508 &stats->nodesc_drop);
1510 /* if value has not changed then we have consistent data */
1512 id = FM10K_READ_REG(hw, FM10K_TXQCTL(0));
1513 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1515 /* drop non-ID bits and set VALID ID bit */
1516 id &= FM10K_TXQCTL_ID_MASK;
1517 id |= FM10K_STAT_VALID;
1519 /* Update Global Statistics */
1520 if (stats->stats_idx == id) {
1521 stats->timeout.count += timeout;
1522 stats->ur.count += ur;
1523 stats->ca.count += ca;
1524 stats->um.count += um;
1525 stats->xec.count += xec;
1526 stats->vlan_drop.count += vlan_drop;
1527 stats->loopback_drop.count += loopback_drop;
1528 stats->nodesc_drop.count += nodesc_drop;
1531 /* Update bases and record current PF id */
1532 fm10k_update_hw_base_32b(&stats->timeout, timeout);
1533 fm10k_update_hw_base_32b(&stats->ur, ur);
1534 fm10k_update_hw_base_32b(&stats->ca, ca);
1535 fm10k_update_hw_base_32b(&stats->um, um);
1536 fm10k_update_hw_base_32b(&stats->xec, xec);
1537 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1538 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1539 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1540 stats->stats_idx = id;
1542 /* Update Queue Statistics */
1543 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1547 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1548 * @hw: pointer to hardware structure
1549 * @stats: pointer to the stats structure to update
1551 * This function resets the base for global and per queue hardware
1554 STATIC void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1555 struct fm10k_hw_stats *stats)
1557 DEBUGFUNC("fm10k_rebind_hw_stats_pf");
1559 /* Unbind Global Statistics */
1560 fm10k_unbind_hw_stats_32b(&stats->timeout);
1561 fm10k_unbind_hw_stats_32b(&stats->ur);
1562 fm10k_unbind_hw_stats_32b(&stats->ca);
1563 fm10k_unbind_hw_stats_32b(&stats->um);
1564 fm10k_unbind_hw_stats_32b(&stats->xec);
1565 fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1566 fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1567 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1569 /* Unbind Queue Statistics */
1570 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1572 /* Reinitialize bases for all stats */
1573 fm10k_update_hw_stats_pf(hw, stats);
1577 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1578 * @hw: pointer to hardware structure
1579 * @dma_mask: 64 bit DMA mask required for platform
1581 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1582 * to limit the access to memory beyond what is physically in the system.
1584 STATIC void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1586 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1587 u32 phyaddr = (u32)(dma_mask >> 32);
1589 DEBUGFUNC("fm10k_set_dma_mask_pf");
1591 FM10K_WRITE_REG(hw, FM10K_PHYADDR, phyaddr);
1595 * fm10k_get_fault_pf - Record a fault in one of the interface units
1596 * @hw: pointer to hardware structure
1597 * @type: pointer to fault type register offset
1598 * @fault: pointer to memory location to record the fault
1600 * Record the fault register contents to the fault data structure and
1601 * clear the entry from the register.
1603 * Returns ERR_PARAM if invalid register is specified or no error is present.
1605 STATIC s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1606 struct fm10k_fault *fault)
1610 DEBUGFUNC("fm10k_get_fault_pf");
1612 /* verify the fault register is in range and is aligned */
1614 case FM10K_PCA_FAULT:
1615 case FM10K_THI_FAULT:
1616 case FM10K_FUM_FAULT:
1619 return FM10K_ERR_PARAM;
1622 /* only service faults that are valid */
1623 func = FM10K_READ_REG(hw, type + FM10K_FAULT_FUNC);
1624 if (!(func & FM10K_FAULT_FUNC_VALID))
1625 return FM10K_ERR_PARAM;
1627 /* read remaining fields */
1628 fault->address = FM10K_READ_REG(hw, type + FM10K_FAULT_ADDR_HI);
1629 fault->address <<= 32;
1630 fault->address = FM10K_READ_REG(hw, type + FM10K_FAULT_ADDR_LO);
1631 fault->specinfo = FM10K_READ_REG(hw, type + FM10K_FAULT_SPECINFO);
1633 /* clear valid bit to allow for next error */
1634 FM10K_WRITE_REG(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1636 /* Record which function triggered the error */
1637 if (func & FM10K_FAULT_FUNC_PF)
1640 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1641 FM10K_FAULT_FUNC_VF_SHIFT);
1643 /* record fault type */
1644 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1646 return FM10K_SUCCESS;
1650 * fm10k_request_lport_map_pf - Request LPORT map from the switch API
1651 * @hw: pointer to hardware structure
1654 STATIC s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1656 struct fm10k_mbx_info *mbx = &hw->mbx;
1659 DEBUGFUNC("fm10k_request_lport_pf");
1661 /* issue request asking for LPORT map */
1662 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1664 /* load onto outgoing mailbox */
1665 return mbx->ops.enqueue_tx(hw, mbx, msg);
1669 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1670 * @hw: pointer to hardware structure
1671 * @switch_ready: pointer to boolean value that will record switch state
1673 * This funciton will check the DMA_CTRL2 register and mailbox in order
1674 * to determine if the switch is ready for the PF to begin requesting
1675 * addresses and mapping traffic to the local interface.
1677 STATIC s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1679 s32 ret_val = FM10K_SUCCESS;
1682 DEBUGFUNC("fm10k_get_host_state_pf");
1684 /* verify the switch is ready for interaction */
1685 dma_ctrl2 = FM10K_READ_REG(hw, FM10K_DMA_CTRL2);
1686 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1689 /* retrieve generic host state info */
1690 ret_val = fm10k_get_host_state_generic(hw, switch_ready);
1694 /* interface cannot receive traffic without logical ports */
1695 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
1696 ret_val = fm10k_request_lport_map_pf(hw);
1702 /* This structure defines the attibutes to be parsed below */
1703 const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1704 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1709 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1710 * @hw: Pointer to hardware structure
1711 * @results: pointer array containing parsed data
1712 * @mbx: Pointer to mailbox information structure
1714 * This handler configures the lport mapping based on the reply from the
1717 s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1718 struct fm10k_mbx_info *mbx)
1724 UNREFERENCED_1PARAMETER(mbx);
1725 DEBUGFUNC("fm10k_msg_lport_map_pf");
1727 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1732 /* extract values out of the header */
1733 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1734 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1736 /* verify mask is set and none of the masked bits in glort are set */
1737 if (!mask || (glort & ~mask))
1738 return FM10K_ERR_PARAM;
1740 /* verify the mask is contiguous, and that it is 1's followed by 0's */
1741 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1742 return FM10K_ERR_PARAM;
1744 /* record the glort, mask, and port count */
1745 hw->mac.dglort_map = dglort_map;
1747 return FM10K_SUCCESS;
1750 const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1751 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1756 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1757 * @hw: Pointer to hardware structure
1758 * @results: pointer array containing parsed data
1759 * @mbx: Pointer to mailbox information structure
1761 * This handler configures the default VLAN for the PF
1763 static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1764 struct fm10k_mbx_info *mbx)
1770 UNREFERENCED_1PARAMETER(mbx);
1771 DEBUGFUNC("fm10k_msg_update_pvid_pf");
1773 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1778 /* extract values from the pvid update */
1779 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1780 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1782 /* if glort is not valid return error */
1783 if (!fm10k_glort_valid_pf(hw, glort))
1784 return FM10K_ERR_PARAM;
1786 /* verify VLAN ID is valid */
1787 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1788 return FM10K_ERR_PARAM;
1790 /* record the port VLAN ID value */
1791 hw->mac.default_vid = pvid;
1793 return FM10K_SUCCESS;
1797 * fm10k_record_global_table_data - Move global table data to swapi table info
1798 * @from: pointer to source table data structure
1799 * @to: pointer to destination table info structure
1801 * This function is will copy table_data to the table_info contained in
1804 static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1805 struct fm10k_swapi_table_info *to)
1807 /* convert from le32 struct to CPU byte ordered values */
1808 to->used = FM10K_LE32_TO_CPU(from->used);
1809 to->avail = FM10K_LE32_TO_CPU(from->avail);
1812 const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1813 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1814 sizeof(struct fm10k_swapi_error)),
1819 * fm10k_msg_err_pf - Message handler for error reply
1820 * @hw: Pointer to hardware structure
1821 * @results: pointer array containing parsed data
1822 * @mbx: Pointer to mailbox information structure
1824 * This handler will capture the data for any error replies to previous
1825 * messages that the PF has sent.
1827 s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1828 struct fm10k_mbx_info *mbx)
1830 struct fm10k_swapi_error err_msg;
1833 UNREFERENCED_1PARAMETER(mbx);
1834 DEBUGFUNC("fm10k_msg_err_pf");
1836 /* extract structure from message */
1837 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1838 &err_msg, sizeof(err_msg));
1842 /* record table status */
1843 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1844 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1845 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1847 /* record SW API status value */
1848 hw->swapi.status = FM10K_LE32_TO_CPU(err_msg.status);
1850 return FM10K_SUCCESS;
1853 /* currently there is no shared 1588 timestamp handler */
1855 const struct fm10k_tlv_attr fm10k_1588_timestamp_msg_attr[] = {
1856 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_1588_TIMESTAMP,
1857 sizeof(struct fm10k_swapi_1588_timestamp)),
1861 const struct fm10k_tlv_attr fm10k_1588_clock_owner_attr[] = {
1862 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_1588_CLOCK_OWNER,
1863 sizeof(struct fm10k_swapi_1588_clock_owner)),
1867 const struct fm10k_tlv_attr fm10k_master_clk_offset_attr[] = {
1868 FM10K_TLV_ATTR_U64(FM10K_PF_ATTR_ID_MASTER_CLK_OFFSET),
1873 * fm10k_iov_notify_offset_pf - Notify VF of change in PTP offset
1874 * @hw: pointer to hardware structure
1875 * @vf_info: pointer to the vf info structure
1876 * @offset: 64bit unsigned offset from hardware SYSTIME
1878 * This function sends a message to a given VF to notify it of PTP offset
1881 STATIC void fm10k_iov_notify_offset_pf(struct fm10k_hw *hw,
1882 struct fm10k_vf_info *vf_info,
1887 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_1588);
1888 fm10k_tlv_attr_put_u64(msg, FM10K_1588_MSG_CLK_OFFSET, offset);
1890 if (vf_info->mbx.ops.enqueue_tx)
1891 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1895 * fm10k_msg_1588_clock_owner_pf - Message handler for clock ownership from SM
1896 * @hw: pointer to hardware structure
1897 * @results: pointer to array containing parsed data,
1898 * @mbx: Pointer to mailbox information structure
1900 * This handler configures the FM10K_HW_FLAG_CLOCK_OWNER field for the PF
1902 s32 fm10k_msg_1588_clock_owner_pf(struct fm10k_hw *hw, u32 **results,
1903 struct fm10k_mbx_info *mbx)
1905 struct fm10k_swapi_1588_clock_owner msg;
1909 UNREFERENCED_1PARAMETER(mbx);
1910 DEBUGFUNC("fm10k_msg_1588_clock_owner");
1912 err = fm10k_tlv_attr_get_le_struct(
1913 results[FM10K_PF_ATTR_ID_1588_CLOCK_OWNER],
1918 /* We own the clock iff the glort matches us and the enabled field is
1919 * true. Otherwise, the clock must belong to some other port.
1921 glort = le16_to_cpu(msg.glort);
1922 if (fm10k_glort_valid_pf(hw, glort) && msg.enabled)
1923 hw->flags |= FM10K_HW_FLAG_CLOCK_OWNER;
1925 hw->flags &= ~FM10K_HW_FLAG_CLOCK_OWNER;
1927 return FM10K_SUCCESS;
1931 * fm10k_adjust_systime_pf - Adjust systime frequency
1932 * @hw: pointer to hardware structure
1933 * @ppb: adjustment rate in parts per billion
1935 * This function will adjust the SYSTIME_CFG register contained in BAR 4
1936 * if this function is supported for BAR 4 access. The adjustment amount
1937 * is based on the parts per billion value provided and adjusted to a
1938 * value based on parts per 2^48 clock cycles.
1940 * If adjustment is not supported or the requested value is too large
1941 * we will return an error.
1943 STATIC s32 fm10k_adjust_systime_pf(struct fm10k_hw *hw, s32 ppb)
1947 DEBUGFUNC("fm10k_adjust_systime_pf");
1949 /* ensure that we control the clock */
1950 if (!(hw->flags & FM10K_HW_FLAG_CLOCK_OWNER))
1951 return FM10K_ERR_DEVICE_NOT_SUPPORTED;
1953 /* if sw_addr is not set we don't have switch register access */
1955 return ppb ? FM10K_ERR_PARAM : FM10K_SUCCESS;
1957 /* we must convert the value from parts per billion to parts per
1958 * 2^48 cycles. In addition I have opted to only use the 30 most
1959 * significant bits of the adjustment value as the 8 least
1960 * significant bits are located in another register and represent
1961 * a value significantly less than a part per billion, the result
1962 * of dropping the 8 least significant bits is that the adjustment
1963 * value is effectively multiplied by 2^8 when we write it.
1965 * As a result of all this the math for this breaks down as follows:
1966 * ppb / 10^9 == adjust * 2^8 / 2^48
1967 * If we solve this for adjust, and simplify it comes out as:
1968 * ppb * 2^31 / 5^9 == adjust
1970 systime_adjust = (ppb < 0) ? -ppb : ppb;
1971 systime_adjust <<= 31;
1972 do_div(systime_adjust, 1953125);
1974 /* verify the requested adjustment value is in range */
1975 if (systime_adjust > FM10K_SW_SYSTIME_ADJUST_MASK)
1976 return FM10K_ERR_PARAM;
1979 systime_adjust |= FM10K_SW_SYSTIME_ADJUST_DIR_POSITIVE;
1981 FM10K_WRITE_SW_REG(hw, FM10K_SW_SYSTIME_ADJUST, (u32)systime_adjust);
1983 return FM10K_SUCCESS;
1987 * fm10k_notify_offset_pf - Notify switch of change in PTP offset
1988 * @hw: pointer to hardware structure
1989 * @offset: 64bit unsigned offset of SYSTIME
1991 * This function sends a message to the switch to indicate a change in the
1992 * offset of the hardware SYSTIME registers. The switch manager is
1993 * responsible for transmitting this message to other hosts.
1995 STATIC s32 fm10k_notify_offset_pf(struct fm10k_hw *hw, u64 offset)
1997 struct fm10k_mbx_info *mbx = &hw->mbx;
2000 DEBUGFUNC("fm10k_notify_offset_pf");
2002 /* ensure that we control the clock */
2003 if (!(hw->flags & FM10K_HW_FLAG_CLOCK_OWNER))
2004 return FM10K_ERR_DEVICE_NOT_SUPPORTED;
2006 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_MASTER_CLK_OFFSET);
2007 fm10k_tlv_attr_put_u64(msg, FM10K_PF_ATTR_ID_MASTER_CLK_OFFSET, offset);
2009 /* load onto outgoing mailbox */
2010 return mbx->ops.enqueue_tx(hw, mbx, msg);
2014 * fm10k_read_systime_pf - Reads value of systime registers
2015 * @hw: pointer to the hardware structure
2017 * Function reads the content of 2 registers, combined to represent a 64 bit
2018 * value measured in nanosecods. In order to guarantee the value is accurate
2019 * we check the 32 most significant bits both before and after reading the
2020 * 32 least significant bits to verify they didn't change as we were reading
2023 static u64 fm10k_read_systime_pf(struct fm10k_hw *hw)
2025 u32 systime_l, systime_h, systime_tmp;
2027 systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
2030 systime_tmp = systime_h;
2031 systime_l = fm10k_read_reg(hw, FM10K_SYSTIME);
2032 systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
2033 } while (systime_tmp != systime_h);
2035 return ((u64)systime_h << 32) | systime_l;
2038 static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
2039 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
2040 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
2041 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
2042 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
2043 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
2044 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
2045 FM10K_PF_MSG_1588_CLOCK_OWNER_HANDLER(fm10k_msg_1588_clock_owner_pf),
2046 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
2050 * fm10k_init_ops_pf - Inits func ptrs and MAC type
2051 * @hw: pointer to hardware structure
2053 * Initialize the function pointers and assign the MAC type for PF.
2054 * Does not touch the hardware.
2056 s32 fm10k_init_ops_pf(struct fm10k_hw *hw)
2058 struct fm10k_mac_info *mac = &hw->mac;
2059 struct fm10k_iov_info *iov = &hw->iov;
2061 DEBUGFUNC("fm10k_init_ops_pf");
2063 fm10k_init_ops_generic(hw);
2065 mac->ops.reset_hw = &fm10k_reset_hw_pf;
2066 mac->ops.init_hw = &fm10k_init_hw_pf;
2067 mac->ops.start_hw = &fm10k_start_hw_generic;
2068 mac->ops.stop_hw = &fm10k_stop_hw_generic;
2069 #ifndef NO_IS_SLOT_APPROPRIATE_CHECK
2070 mac->ops.is_slot_appropriate = &fm10k_is_slot_appropriate_pf;
2072 mac->ops.update_vlan = &fm10k_update_vlan_pf;
2073 mac->ops.read_mac_addr = &fm10k_read_mac_addr_pf;
2074 mac->ops.update_uc_addr = &fm10k_update_uc_addr_pf;
2075 mac->ops.update_mc_addr = &fm10k_update_mc_addr_pf;
2076 mac->ops.update_xcast_mode = &fm10k_update_xcast_mode_pf;
2077 mac->ops.update_int_moderator = &fm10k_update_int_moderator_pf;
2078 mac->ops.update_lport_state = &fm10k_update_lport_state_pf;
2079 mac->ops.update_hw_stats = &fm10k_update_hw_stats_pf;
2080 mac->ops.rebind_hw_stats = &fm10k_rebind_hw_stats_pf;
2081 mac->ops.configure_dglort_map = &fm10k_configure_dglort_map_pf;
2082 mac->ops.set_dma_mask = &fm10k_set_dma_mask_pf;
2083 mac->ops.get_fault = &fm10k_get_fault_pf;
2084 mac->ops.get_host_state = &fm10k_get_host_state_pf;
2085 mac->ops.adjust_systime = &fm10k_adjust_systime_pf;
2086 mac->ops.notify_offset = &fm10k_notify_offset_pf;
2087 mac->ops.read_systime = &fm10k_read_systime_pf;
2089 mac->max_msix_vectors = fm10k_get_pcie_msix_count_generic(hw);
2091 iov->ops.assign_resources = &fm10k_iov_assign_resources_pf;
2092 iov->ops.configure_tc = &fm10k_iov_configure_tc_pf;
2093 iov->ops.assign_int_moderator = &fm10k_iov_assign_int_moderator_pf;
2094 iov->ops.assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf;
2095 iov->ops.reset_resources = &fm10k_iov_reset_resources_pf;
2096 iov->ops.set_lport = &fm10k_iov_set_lport_pf;
2097 iov->ops.reset_lport = &fm10k_iov_reset_lport_pf;
2098 iov->ops.update_stats = &fm10k_iov_update_stats_pf;
2099 iov->ops.notify_offset = &fm10k_iov_notify_offset_pf;
2101 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);