ixgbe: fix release queue mbufs
[dpdk.git] / drivers / net / fm10k / fm10k_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <rte_ethdev.h>
35 #include <rte_malloc.h>
36 #include <rte_memzone.h>
37 #include <rte_string_fns.h>
38 #include <rte_dev.h>
39 #include <rte_spinlock.h>
40
41 #include "fm10k.h"
42 #include "base/fm10k_api.h"
43
44 /* Default delay to acquire mailbox lock */
45 #define FM10K_MBXLOCK_DELAY_US 20
46 #define UINT64_LOWER_32BITS_MASK 0x00000000ffffffffULL
47
48 /* Max try times to acquire switch status */
49 #define MAX_QUERY_SWITCH_STATE_TIMES 10
50 /* Wait interval to get switch status */
51 #define WAIT_SWITCH_MSG_US    100000
52 /* Number of chars per uint32 type */
53 #define CHARS_PER_UINT32 (sizeof(uint32_t))
54 #define BIT_MASK_PER_UINT32 ((1 << CHARS_PER_UINT32) - 1)
55
56 static void fm10k_close_mbx_service(struct fm10k_hw *hw);
57 static void fm10k_dev_promiscuous_enable(struct rte_eth_dev *dev);
58 static void fm10k_dev_promiscuous_disable(struct rte_eth_dev *dev);
59 static void fm10k_dev_allmulticast_enable(struct rte_eth_dev *dev);
60 static void fm10k_dev_allmulticast_disable(struct rte_eth_dev *dev);
61 static inline int fm10k_glort_valid(struct fm10k_hw *hw);
62 static int
63 fm10k_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on);
64 static void
65 fm10k_MAC_filter_set(struct rte_eth_dev *dev, const u8 *mac, bool add);
66 static void
67 fm10k_MACVLAN_remove_all(struct rte_eth_dev *dev);
68 static void fm10k_tx_queue_release(void *queue);
69 static void fm10k_rx_queue_release(void *queue);
70
71 static void
72 fm10k_mbx_initlock(struct fm10k_hw *hw)
73 {
74         rte_spinlock_init(FM10K_DEV_PRIVATE_TO_MBXLOCK(hw->back));
75 }
76
77 static void
78 fm10k_mbx_lock(struct fm10k_hw *hw)
79 {
80         while (!rte_spinlock_trylock(FM10K_DEV_PRIVATE_TO_MBXLOCK(hw->back)))
81                 rte_delay_us(FM10K_MBXLOCK_DELAY_US);
82 }
83
84 static void
85 fm10k_mbx_unlock(struct fm10k_hw *hw)
86 {
87         rte_spinlock_unlock(FM10K_DEV_PRIVATE_TO_MBXLOCK(hw->back));
88 }
89
90 /*
91  * reset queue to initial state, allocate software buffers used when starting
92  * device.
93  * return 0 on success
94  * return -ENOMEM if buffers cannot be allocated
95  * return -EINVAL if buffers do not satisfy alignment condition
96  */
97 static inline int
98 rx_queue_reset(struct fm10k_rx_queue *q)
99 {
100         uint64_t dma_addr;
101         int i, diag;
102         PMD_INIT_FUNC_TRACE();
103
104         diag = rte_mempool_get_bulk(q->mp, (void **)q->sw_ring, q->nb_desc);
105         if (diag != 0)
106                 return -ENOMEM;
107
108         for (i = 0; i < q->nb_desc; ++i) {
109                 fm10k_pktmbuf_reset(q->sw_ring[i], q->port_id);
110                 if (!fm10k_addr_alignment_valid(q->sw_ring[i])) {
111                         rte_mempool_put_bulk(q->mp, (void **)q->sw_ring,
112                                                 q->nb_desc);
113                         return -EINVAL;
114                 }
115                 dma_addr = MBUF_DMA_ADDR_DEFAULT(q->sw_ring[i]);
116                 q->hw_ring[i].q.pkt_addr = dma_addr;
117                 q->hw_ring[i].q.hdr_addr = dma_addr;
118         }
119
120         q->next_dd = 0;
121         q->next_alloc = 0;
122         q->next_trigger = q->alloc_thresh - 1;
123         FM10K_PCI_REG_WRITE(q->tail_ptr, q->nb_desc - 1);
124         return 0;
125 }
126
127 /*
128  * clean queue, descriptor rings, free software buffers used when stopping
129  * device.
130  */
131 static inline void
132 rx_queue_clean(struct fm10k_rx_queue *q)
133 {
134         union fm10k_rx_desc zero = {.q = {0, 0, 0, 0} };
135         uint32_t i;
136         PMD_INIT_FUNC_TRACE();
137
138         /* zero descriptor rings */
139         for (i = 0; i < q->nb_desc; ++i)
140                 q->hw_ring[i] = zero;
141
142         /* free software buffers */
143         for (i = 0; i < q->nb_desc; ++i) {
144                 if (q->sw_ring[i]) {
145                         rte_pktmbuf_free_seg(q->sw_ring[i]);
146                         q->sw_ring[i] = NULL;
147                 }
148         }
149 }
150
151 /*
152  * free all queue memory used when releasing the queue (i.e. configure)
153  */
154 static inline void
155 rx_queue_free(struct fm10k_rx_queue *q)
156 {
157         PMD_INIT_FUNC_TRACE();
158         if (q) {
159                 PMD_INIT_LOG(DEBUG, "Freeing rx queue %p", q);
160                 rx_queue_clean(q);
161                 if (q->sw_ring) {
162                         rte_free(q->sw_ring);
163                         q->sw_ring = NULL;
164                 }
165                 rte_free(q);
166                 q = NULL;
167         }
168 }
169
170 /*
171  * disable RX queue, wait unitl HW finished necessary flush operation
172  */
173 static inline int
174 rx_queue_disable(struct fm10k_hw *hw, uint16_t qnum)
175 {
176         uint32_t reg, i;
177
178         reg = FM10K_READ_REG(hw, FM10K_RXQCTL(qnum));
179         FM10K_WRITE_REG(hw, FM10K_RXQCTL(qnum),
180                         reg & ~FM10K_RXQCTL_ENABLE);
181
182         /* Wait 100us at most */
183         for (i = 0; i < FM10K_QUEUE_DISABLE_TIMEOUT; i++) {
184                 rte_delay_us(1);
185                 reg = FM10K_READ_REG(hw, FM10K_RXQCTL(i));
186                 if (!(reg & FM10K_RXQCTL_ENABLE))
187                         break;
188         }
189
190         if (i == FM10K_QUEUE_DISABLE_TIMEOUT)
191                 return -1;
192
193         return 0;
194 }
195
196 /*
197  * reset queue to initial state, allocate software buffers used when starting
198  * device
199  */
200 static inline void
201 tx_queue_reset(struct fm10k_tx_queue *q)
202 {
203         PMD_INIT_FUNC_TRACE();
204         q->last_free = 0;
205         q->next_free = 0;
206         q->nb_used = 0;
207         q->nb_free = q->nb_desc - 1;
208         fifo_reset(&q->rs_tracker, (q->nb_desc + 1) / q->rs_thresh);
209         FM10K_PCI_REG_WRITE(q->tail_ptr, 0);
210 }
211
212 /*
213  * clean queue, descriptor rings, free software buffers used when stopping
214  * device
215  */
216 static inline void
217 tx_queue_clean(struct fm10k_tx_queue *q)
218 {
219         struct fm10k_tx_desc zero = {0, 0, 0, 0, 0, 0};
220         uint32_t i;
221         PMD_INIT_FUNC_TRACE();
222
223         /* zero descriptor rings */
224         for (i = 0; i < q->nb_desc; ++i)
225                 q->hw_ring[i] = zero;
226
227         /* free software buffers */
228         for (i = 0; i < q->nb_desc; ++i) {
229                 if (q->sw_ring[i]) {
230                         rte_pktmbuf_free_seg(q->sw_ring[i]);
231                         q->sw_ring[i] = NULL;
232                 }
233         }
234 }
235
236 /*
237  * free all queue memory used when releasing the queue (i.e. configure)
238  */
239 static inline void
240 tx_queue_free(struct fm10k_tx_queue *q)
241 {
242         PMD_INIT_FUNC_TRACE();
243         if (q) {
244                 PMD_INIT_LOG(DEBUG, "Freeing tx queue %p", q);
245                 tx_queue_clean(q);
246                 if (q->rs_tracker.list) {
247                         rte_free(q->rs_tracker.list);
248                         q->rs_tracker.list = NULL;
249                 }
250                 if (q->sw_ring) {
251                         rte_free(q->sw_ring);
252                         q->sw_ring = NULL;
253                 }
254                 rte_free(q);
255                 q = NULL;
256         }
257 }
258
259 /*
260  * disable TX queue, wait unitl HW finished necessary flush operation
261  */
262 static inline int
263 tx_queue_disable(struct fm10k_hw *hw, uint16_t qnum)
264 {
265         uint32_t reg, i;
266
267         reg = FM10K_READ_REG(hw, FM10K_TXDCTL(qnum));
268         FM10K_WRITE_REG(hw, FM10K_TXDCTL(qnum),
269                         reg & ~FM10K_TXDCTL_ENABLE);
270
271         /* Wait 100us at most */
272         for (i = 0; i < FM10K_QUEUE_DISABLE_TIMEOUT; i++) {
273                 rte_delay_us(1);
274                 reg = FM10K_READ_REG(hw, FM10K_TXDCTL(i));
275                 if (!(reg & FM10K_TXDCTL_ENABLE))
276                         break;
277         }
278
279         if (i == FM10K_QUEUE_DISABLE_TIMEOUT)
280                 return -1;
281
282         return 0;
283 }
284
285 static int
286 fm10k_dev_configure(struct rte_eth_dev *dev)
287 {
288         PMD_INIT_FUNC_TRACE();
289
290         if (dev->data->dev_conf.rxmode.hw_strip_crc == 0)
291                 PMD_INIT_LOG(WARNING, "fm10k always strip CRC");
292
293         return 0;
294 }
295
296 static void
297 fm10k_dev_mq_rx_configure(struct rte_eth_dev *dev)
298 {
299         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
300         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
301         uint32_t mrqc, *key, i, reta, j;
302         uint64_t hf;
303
304 #define RSS_KEY_SIZE 40
305         static uint8_t rss_intel_key[RSS_KEY_SIZE] = {
306                 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
307                 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
308                 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
309                 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
310                 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
311         };
312
313         if (dev->data->nb_rx_queues == 1 ||
314             dev_conf->rxmode.mq_mode != ETH_MQ_RX_RSS ||
315             dev_conf->rx_adv_conf.rss_conf.rss_hf == 0)
316                 return;
317
318         /* random key is rss_intel_key (default) or user provided (rss_key) */
319         if (dev_conf->rx_adv_conf.rss_conf.rss_key == NULL)
320                 key = (uint32_t *)rss_intel_key;
321         else
322                 key = (uint32_t *)dev_conf->rx_adv_conf.rss_conf.rss_key;
323
324         /* Now fill our hash function seeds, 4 bytes at a time */
325         for (i = 0; i < RSS_KEY_SIZE / sizeof(*key); ++i)
326                 FM10K_WRITE_REG(hw, FM10K_RSSRK(0, i), key[i]);
327
328         /*
329          * Fill in redirection table
330          * The byte-swap is needed because NIC registers are in
331          * little-endian order.
332          */
333         reta = 0;
334         for (i = 0, j = 0; i < FM10K_MAX_RSS_INDICES; i++, j++) {
335                 if (j == dev->data->nb_rx_queues)
336                         j = 0;
337                 reta = (reta << CHAR_BIT) | j;
338                 if ((i & 3) == 3)
339                         FM10K_WRITE_REG(hw, FM10K_RETA(0, i >> 2),
340                                         rte_bswap32(reta));
341         }
342
343         /*
344          * Generate RSS hash based on packet types, TCP/UDP
345          * port numbers and/or IPv4/v6 src and dst addresses
346          */
347         hf = dev_conf->rx_adv_conf.rss_conf.rss_hf;
348         mrqc = 0;
349         mrqc |= (hf & ETH_RSS_IPV4)              ? FM10K_MRQC_IPV4     : 0;
350         mrqc |= (hf & ETH_RSS_IPV6)              ? FM10K_MRQC_IPV6     : 0;
351         mrqc |= (hf & ETH_RSS_IPV6_EX)           ? FM10K_MRQC_IPV6     : 0;
352         mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_TCP)  ? FM10K_MRQC_TCP_IPV4 : 0;
353         mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_TCP)  ? FM10K_MRQC_TCP_IPV6 : 0;
354         mrqc |= (hf & ETH_RSS_IPV6_TCP_EX)       ? FM10K_MRQC_TCP_IPV6 : 0;
355         mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_UDP)  ? FM10K_MRQC_UDP_IPV4 : 0;
356         mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_UDP)  ? FM10K_MRQC_UDP_IPV6 : 0;
357         mrqc |= (hf & ETH_RSS_IPV6_UDP_EX)       ? FM10K_MRQC_UDP_IPV6 : 0;
358
359         if (mrqc == 0) {
360                 PMD_INIT_LOG(ERR, "Specified RSS mode 0x%"PRIx64"is not"
361                         "supported", hf);
362                 return;
363         }
364
365         FM10K_WRITE_REG(hw, FM10K_MRQC(0), mrqc);
366 }
367
368 static int
369 fm10k_dev_tx_init(struct rte_eth_dev *dev)
370 {
371         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
372         int i, ret;
373         struct fm10k_tx_queue *txq;
374         uint64_t base_addr;
375         uint32_t size;
376
377         /* Disable TXINT to avoid possible interrupt */
378         for (i = 0; i < hw->mac.max_queues; i++)
379                 FM10K_WRITE_REG(hw, FM10K_TXINT(i),
380                                 3 << FM10K_TXINT_TIMER_SHIFT);
381
382         /* Setup TX queue */
383         for (i = 0; i < dev->data->nb_tx_queues; ++i) {
384                 txq = dev->data->tx_queues[i];
385                 base_addr = txq->hw_ring_phys_addr;
386                 size = txq->nb_desc * sizeof(struct fm10k_tx_desc);
387
388                 /* disable queue to avoid issues while updating state */
389                 ret = tx_queue_disable(hw, i);
390                 if (ret) {
391                         PMD_INIT_LOG(ERR, "failed to disable queue %d", i);
392                         return -1;
393                 }
394
395                 /* set location and size for descriptor ring */
396                 FM10K_WRITE_REG(hw, FM10K_TDBAL(i),
397                                 base_addr & UINT64_LOWER_32BITS_MASK);
398                 FM10K_WRITE_REG(hw, FM10K_TDBAH(i),
399                                 base_addr >> (CHAR_BIT * sizeof(uint32_t)));
400                 FM10K_WRITE_REG(hw, FM10K_TDLEN(i), size);
401         }
402         return 0;
403 }
404
405 static int
406 fm10k_dev_rx_init(struct rte_eth_dev *dev)
407 {
408         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
409         int i, ret;
410         struct fm10k_rx_queue *rxq;
411         uint64_t base_addr;
412         uint32_t size;
413         uint32_t rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
414         uint16_t buf_size;
415
416         /* Disable RXINT to avoid possible interrupt */
417         for (i = 0; i < hw->mac.max_queues; i++)
418                 FM10K_WRITE_REG(hw, FM10K_RXINT(i),
419                                 3 << FM10K_RXINT_TIMER_SHIFT);
420
421         /* Setup RX queues */
422         for (i = 0; i < dev->data->nb_rx_queues; ++i) {
423                 rxq = dev->data->rx_queues[i];
424                 base_addr = rxq->hw_ring_phys_addr;
425                 size = rxq->nb_desc * sizeof(union fm10k_rx_desc);
426
427                 /* disable queue to avoid issues while updating state */
428                 ret = rx_queue_disable(hw, i);
429                 if (ret) {
430                         PMD_INIT_LOG(ERR, "failed to disable queue %d", i);
431                         return -1;
432                 }
433
434                 /* Setup the Base and Length of the Rx Descriptor Ring */
435                 FM10K_WRITE_REG(hw, FM10K_RDBAL(i),
436                                 base_addr & UINT64_LOWER_32BITS_MASK);
437                 FM10K_WRITE_REG(hw, FM10K_RDBAH(i),
438                                 base_addr >> (CHAR_BIT * sizeof(uint32_t)));
439                 FM10K_WRITE_REG(hw, FM10K_RDLEN(i), size);
440
441                 /* Configure the Rx buffer size for one buff without split */
442                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
443                         RTE_PKTMBUF_HEADROOM);
444                 /* As RX buffer is aligned to 512B within mbuf, some bytes are
445                  * reserved for this purpose, and the worst case could be 511B.
446                  * But SRR reg assumes all buffers have the same size. In order
447                  * to fill the gap, we'll have to consider the worst case and
448                  * assume 512B is reserved. If we don't do so, it's possible
449                  * for HW to overwrite data to next mbuf.
450                  */
451                 buf_size -= FM10K_RX_DATABUF_ALIGN;
452
453                 FM10K_WRITE_REG(hw, FM10K_SRRCTL(i),
454                                 buf_size >> FM10K_SRRCTL_BSIZEPKT_SHIFT);
455
456                 /* It adds dual VLAN length for supporting dual VLAN */
457                 if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
458                                 2 * FM10K_VLAN_TAG_SIZE) > buf_size ||
459                         dev->data->dev_conf.rxmode.enable_scatter) {
460                         uint32_t reg;
461                         dev->data->scattered_rx = 1;
462                         dev->rx_pkt_burst = fm10k_recv_scattered_pkts;
463                         reg = FM10K_READ_REG(hw, FM10K_SRRCTL(i));
464                         reg |= FM10K_SRRCTL_BUFFER_CHAINING_EN;
465                         FM10K_WRITE_REG(hw, FM10K_SRRCTL(i), reg);
466                 }
467
468                 /* Enable drop on empty, it's RO for VF */
469                 if (hw->mac.type == fm10k_mac_pf && rxq->drop_en)
470                         rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
471
472                 FM10K_WRITE_REG(hw, FM10K_RXDCTL(i), rxdctl);
473                 FM10K_WRITE_FLUSH(hw);
474         }
475
476         /* Configure RSS if applicable */
477         fm10k_dev_mq_rx_configure(dev);
478         return 0;
479 }
480
481 static int
482 fm10k_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
483 {
484         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
485         int err = -1;
486         uint32_t reg;
487         struct fm10k_rx_queue *rxq;
488
489         PMD_INIT_FUNC_TRACE();
490
491         if (rx_queue_id < dev->data->nb_rx_queues) {
492                 rxq = dev->data->rx_queues[rx_queue_id];
493                 err = rx_queue_reset(rxq);
494                 if (err == -ENOMEM) {
495                         PMD_INIT_LOG(ERR, "Failed to alloc memory : %d", err);
496                         return err;
497                 } else if (err == -EINVAL) {
498                         PMD_INIT_LOG(ERR, "Invalid buffer address alignment :"
499                                 " %d", err);
500                         return err;
501                 }
502
503                 /* Setup the HW Rx Head and Tail Descriptor Pointers
504                  * Note: this must be done AFTER the queue is enabled on real
505                  * hardware, but BEFORE the queue is enabled when using the
506                  * emulation platform. Do it in both places for now and remove
507                  * this comment and the following two register writes when the
508                  * emulation platform is no longer being used.
509                  */
510                 FM10K_WRITE_REG(hw, FM10K_RDH(rx_queue_id), 0);
511                 FM10K_WRITE_REG(hw, FM10K_RDT(rx_queue_id), rxq->nb_desc - 1);
512
513                 /* Set PF ownership flag for PF devices */
514                 reg = FM10K_READ_REG(hw, FM10K_RXQCTL(rx_queue_id));
515                 if (hw->mac.type == fm10k_mac_pf)
516                         reg |= FM10K_RXQCTL_PF;
517                 reg |= FM10K_RXQCTL_ENABLE;
518                 /* enable RX queue */
519                 FM10K_WRITE_REG(hw, FM10K_RXQCTL(rx_queue_id), reg);
520                 FM10K_WRITE_FLUSH(hw);
521
522                 /* Setup the HW Rx Head and Tail Descriptor Pointers
523                  * Note: this must be done AFTER the queue is enabled
524                  */
525                 FM10K_WRITE_REG(hw, FM10K_RDH(rx_queue_id), 0);
526                 FM10K_WRITE_REG(hw, FM10K_RDT(rx_queue_id), rxq->nb_desc - 1);
527         }
528
529         return err;
530 }
531
532 static int
533 fm10k_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
534 {
535         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
536
537         PMD_INIT_FUNC_TRACE();
538
539         if (rx_queue_id < dev->data->nb_rx_queues) {
540                 /* Disable RX queue */
541                 rx_queue_disable(hw, rx_queue_id);
542
543                 /* Free mbuf and clean HW ring */
544                 rx_queue_clean(dev->data->rx_queues[rx_queue_id]);
545         }
546
547         return 0;
548 }
549
550 static int
551 fm10k_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
552 {
553         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
554         /** @todo - this should be defined in the shared code */
555 #define FM10K_TXDCTL_WRITE_BACK_MIN_DELAY       0x00010000
556         uint32_t txdctl = FM10K_TXDCTL_WRITE_BACK_MIN_DELAY;
557         int err = 0;
558
559         PMD_INIT_FUNC_TRACE();
560
561         if (tx_queue_id < dev->data->nb_tx_queues) {
562                 tx_queue_reset(dev->data->tx_queues[tx_queue_id]);
563
564                 /* reset head and tail pointers */
565                 FM10K_WRITE_REG(hw, FM10K_TDH(tx_queue_id), 0);
566                 FM10K_WRITE_REG(hw, FM10K_TDT(tx_queue_id), 0);
567
568                 /* enable TX queue */
569                 FM10K_WRITE_REG(hw, FM10K_TXDCTL(tx_queue_id),
570                                         FM10K_TXDCTL_ENABLE | txdctl);
571                 FM10K_WRITE_FLUSH(hw);
572         } else
573                 err = -1;
574
575         return err;
576 }
577
578 static int
579 fm10k_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
580 {
581         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
582
583         PMD_INIT_FUNC_TRACE();
584
585         if (tx_queue_id < dev->data->nb_tx_queues) {
586                 tx_queue_disable(hw, tx_queue_id);
587                 tx_queue_clean(dev->data->tx_queues[tx_queue_id]);
588         }
589
590         return 0;
591 }
592
593 static inline int fm10k_glort_valid(struct fm10k_hw *hw)
594 {
595         return ((hw->mac.dglort_map & FM10K_DGLORTMAP_NONE)
596                 != FM10K_DGLORTMAP_NONE);
597 }
598
599 static void
600 fm10k_dev_promiscuous_enable(struct rte_eth_dev *dev)
601 {
602         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
603         int status;
604
605         PMD_INIT_FUNC_TRACE();
606
607         /* Return if it didn't acquire valid glort range */
608         if (!fm10k_glort_valid(hw))
609                 return;
610
611         fm10k_mbx_lock(hw);
612         status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
613                                 FM10K_XCAST_MODE_PROMISC);
614         fm10k_mbx_unlock(hw);
615
616         if (status != FM10K_SUCCESS)
617                 PMD_INIT_LOG(ERR, "Failed to enable promiscuous mode");
618 }
619
620 static void
621 fm10k_dev_promiscuous_disable(struct rte_eth_dev *dev)
622 {
623         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
624         uint8_t mode;
625         int status;
626
627         PMD_INIT_FUNC_TRACE();
628
629         /* Return if it didn't acquire valid glort range */
630         if (!fm10k_glort_valid(hw))
631                 return;
632
633         if (dev->data->all_multicast == 1)
634                 mode = FM10K_XCAST_MODE_ALLMULTI;
635         else
636                 mode = FM10K_XCAST_MODE_NONE;
637
638         fm10k_mbx_lock(hw);
639         status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
640                                 mode);
641         fm10k_mbx_unlock(hw);
642
643         if (status != FM10K_SUCCESS)
644                 PMD_INIT_LOG(ERR, "Failed to disable promiscuous mode");
645 }
646
647 static void
648 fm10k_dev_allmulticast_enable(struct rte_eth_dev *dev)
649 {
650         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
651         int status;
652
653         PMD_INIT_FUNC_TRACE();
654
655         /* Return if it didn't acquire valid glort range */
656         if (!fm10k_glort_valid(hw))
657                 return;
658
659         /* If promiscuous mode is enabled, it doesn't make sense to enable
660          * allmulticast and disable promiscuous since fm10k only can select
661          * one of the modes.
662          */
663         if (dev->data->promiscuous) {
664                 PMD_INIT_LOG(INFO, "Promiscuous mode is enabled, "\
665                         "needn't enable allmulticast");
666                 return;
667         }
668
669         fm10k_mbx_lock(hw);
670         status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
671                                 FM10K_XCAST_MODE_ALLMULTI);
672         fm10k_mbx_unlock(hw);
673
674         if (status != FM10K_SUCCESS)
675                 PMD_INIT_LOG(ERR, "Failed to enable allmulticast mode");
676 }
677
678 static void
679 fm10k_dev_allmulticast_disable(struct rte_eth_dev *dev)
680 {
681         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
682         int status;
683
684         PMD_INIT_FUNC_TRACE();
685
686         /* Return if it didn't acquire valid glort range */
687         if (!fm10k_glort_valid(hw))
688                 return;
689
690         if (dev->data->promiscuous) {
691                 PMD_INIT_LOG(ERR, "Failed to disable allmulticast mode "\
692                         "since promisc mode is enabled");
693                 return;
694         }
695
696         fm10k_mbx_lock(hw);
697         /* Change mode to unicast mode */
698         status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
699                                 FM10K_XCAST_MODE_NONE);
700         fm10k_mbx_unlock(hw);
701
702         if (status != FM10K_SUCCESS)
703                 PMD_INIT_LOG(ERR, "Failed to disable allmulticast mode");
704 }
705
706 /* fls = find last set bit = 32 minus the number of leading zeros */
707 #ifndef fls
708 #define fls(x) (((x) == 0) ? 0 : (32 - __builtin_clz((x))))
709 #endif
710 #define BSIZEPKT_ROUNDUP ((1 << FM10K_SRRCTL_BSIZEPKT_SHIFT) - 1)
711 static int
712 fm10k_dev_start(struct rte_eth_dev *dev)
713 {
714         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
715         int i, diag;
716
717         PMD_INIT_FUNC_TRACE();
718
719         /* stop, init, then start the hw */
720         diag = fm10k_stop_hw(hw);
721         if (diag != FM10K_SUCCESS) {
722                 PMD_INIT_LOG(ERR, "Hardware stop failed: %d", diag);
723                 return -EIO;
724         }
725
726         diag = fm10k_init_hw(hw);
727         if (diag != FM10K_SUCCESS) {
728                 PMD_INIT_LOG(ERR, "Hardware init failed: %d", diag);
729                 return -EIO;
730         }
731
732         diag = fm10k_start_hw(hw);
733         if (diag != FM10K_SUCCESS) {
734                 PMD_INIT_LOG(ERR, "Hardware start failed: %d", diag);
735                 return -EIO;
736         }
737
738         diag = fm10k_dev_tx_init(dev);
739         if (diag) {
740                 PMD_INIT_LOG(ERR, "TX init failed: %d", diag);
741                 return diag;
742         }
743
744         diag = fm10k_dev_rx_init(dev);
745         if (diag) {
746                 PMD_INIT_LOG(ERR, "RX init failed: %d", diag);
747                 return diag;
748         }
749
750         if (hw->mac.type == fm10k_mac_pf) {
751                 /* Establish only VSI 0 as valid */
752                 FM10K_WRITE_REG(hw, FM10K_DGLORTMAP(0), FM10K_DGLORTMAP_ANY);
753
754                 /* Configure RSS bits used in RETA table */
755                 FM10K_WRITE_REG(hw, FM10K_DGLORTDEC(0),
756                                 fls(dev->data->nb_rx_queues - 1) <<
757                                 FM10K_DGLORTDEC_RSSLENGTH_SHIFT);
758
759                 /* Invalidate all other GLORT entries */
760                 for (i = 1; i < FM10K_DGLORT_COUNT; i++)
761                         FM10K_WRITE_REG(hw, FM10K_DGLORTMAP(i),
762                                         FM10K_DGLORTMAP_NONE);
763         }
764
765         for (i = 0; i < dev->data->nb_rx_queues; i++) {
766                 struct fm10k_rx_queue *rxq;
767                 rxq = dev->data->rx_queues[i];
768
769                 if (rxq->rx_deferred_start)
770                         continue;
771                 diag = fm10k_dev_rx_queue_start(dev, i);
772                 if (diag != 0) {
773                         int j;
774                         for (j = 0; j < i; ++j)
775                                 rx_queue_clean(dev->data->rx_queues[j]);
776                         return diag;
777                 }
778         }
779
780         for (i = 0; i < dev->data->nb_tx_queues; i++) {
781                 struct fm10k_tx_queue *txq;
782                 txq = dev->data->tx_queues[i];
783
784                 if (txq->tx_deferred_start)
785                         continue;
786                 diag = fm10k_dev_tx_queue_start(dev, i);
787                 if (diag != 0) {
788                         int j;
789                         for (j = 0; j < dev->data->nb_rx_queues; ++j)
790                                 rx_queue_clean(dev->data->rx_queues[j]);
791                         return diag;
792                 }
793         }
794
795         /* Update default vlan */
796         if (hw->mac.default_vid && hw->mac.default_vid <= ETHER_MAX_VLAN_ID)
797                 fm10k_vlan_filter_set(dev, hw->mac.default_vid, true);
798
799         return 0;
800 }
801
802 static void
803 fm10k_dev_stop(struct rte_eth_dev *dev)
804 {
805         int i;
806
807         PMD_INIT_FUNC_TRACE();
808
809         if (dev->data->tx_queues)
810                 for (i = 0; i < dev->data->nb_tx_queues; i++)
811                         fm10k_dev_tx_queue_stop(dev, i);
812
813         if (dev->data->rx_queues)
814                 for (i = 0; i < dev->data->nb_rx_queues; i++)
815                         fm10k_dev_rx_queue_stop(dev, i);
816 }
817
818 static void
819 fm10k_dev_queue_release(struct rte_eth_dev *dev)
820 {
821         int i;
822
823         PMD_INIT_FUNC_TRACE();
824
825         if (dev->data->tx_queues) {
826                 for (i = 0; i < dev->data->nb_tx_queues; i++)
827                         fm10k_tx_queue_release(dev->data->tx_queues[i]);
828         }
829
830         if (dev->data->rx_queues) {
831                 for (i = 0; i < dev->data->nb_rx_queues; i++)
832                         fm10k_rx_queue_release(dev->data->rx_queues[i]);
833         }
834 }
835
836 static void
837 fm10k_dev_close(struct rte_eth_dev *dev)
838 {
839         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
840
841         PMD_INIT_FUNC_TRACE();
842
843         fm10k_MACVLAN_remove_all(dev);
844
845         /* Stop mailbox service first */
846         fm10k_close_mbx_service(hw);
847         fm10k_dev_stop(dev);
848         fm10k_dev_queue_release(dev);
849         fm10k_stop_hw(hw);
850 }
851
852 static int
853 fm10k_link_update(struct rte_eth_dev *dev,
854         __rte_unused int wait_to_complete)
855 {
856         PMD_INIT_FUNC_TRACE();
857
858         /* The host-interface link is always up.  The speed is ~50Gbps per Gen3
859          * x8 PCIe interface. For now, we leave the speed undefined since there
860          * is no 50Gbps Ethernet. */
861         dev->data->dev_link.link_speed  = 0;
862         dev->data->dev_link.link_duplex = ETH_LINK_FULL_DUPLEX;
863         dev->data->dev_link.link_status = 1;
864
865         return 0;
866 }
867
868 static void
869 fm10k_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
870 {
871         uint64_t ipackets, opackets, ibytes, obytes;
872         struct fm10k_hw *hw =
873                 FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
874         struct fm10k_hw_stats *hw_stats =
875                 FM10K_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
876         int i;
877
878         PMD_INIT_FUNC_TRACE();
879
880         fm10k_update_hw_stats(hw, hw_stats);
881
882         ipackets = opackets = ibytes = obytes = 0;
883         for (i = 0; (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) &&
884                 (i < hw->mac.max_queues); ++i) {
885                 stats->q_ipackets[i] = hw_stats->q[i].rx_packets.count;
886                 stats->q_opackets[i] = hw_stats->q[i].tx_packets.count;
887                 stats->q_ibytes[i]   = hw_stats->q[i].rx_bytes.count;
888                 stats->q_obytes[i]   = hw_stats->q[i].tx_bytes.count;
889                 ipackets += stats->q_ipackets[i];
890                 opackets += stats->q_opackets[i];
891                 ibytes   += stats->q_ibytes[i];
892                 obytes   += stats->q_obytes[i];
893         }
894         stats->ipackets = ipackets;
895         stats->opackets = opackets;
896         stats->ibytes = ibytes;
897         stats->obytes = obytes;
898 }
899
900 static void
901 fm10k_stats_reset(struct rte_eth_dev *dev)
902 {
903         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
904         struct fm10k_hw_stats *hw_stats =
905                 FM10K_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
906
907         PMD_INIT_FUNC_TRACE();
908
909         memset(hw_stats, 0, sizeof(*hw_stats));
910         fm10k_rebind_hw_stats(hw, hw_stats);
911 }
912
913 static void
914 fm10k_dev_infos_get(struct rte_eth_dev *dev,
915         struct rte_eth_dev_info *dev_info)
916 {
917         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
918
919         PMD_INIT_FUNC_TRACE();
920
921         dev_info->min_rx_bufsize     = FM10K_MIN_RX_BUF_SIZE;
922         dev_info->max_rx_pktlen      = FM10K_MAX_PKT_SIZE;
923         dev_info->max_rx_queues      = hw->mac.max_queues;
924         dev_info->max_tx_queues      = hw->mac.max_queues;
925         dev_info->max_mac_addrs      = FM10K_MAX_MACADDR_NUM;
926         dev_info->max_hash_mac_addrs = 0;
927         dev_info->max_vfs            = dev->pci_dev->max_vfs;
928         dev_info->max_vmdq_pools     = ETH_64_POOLS;
929         dev_info->rx_offload_capa =
930                 DEV_RX_OFFLOAD_VLAN_STRIP |
931                 DEV_RX_OFFLOAD_IPV4_CKSUM |
932                 DEV_RX_OFFLOAD_UDP_CKSUM  |
933                 DEV_RX_OFFLOAD_TCP_CKSUM;
934         dev_info->tx_offload_capa =
935                 DEV_TX_OFFLOAD_VLAN_INSERT;
936         dev_info->hash_key_size = FM10K_RSSRK_SIZE * sizeof(uint32_t);
937         dev_info->reta_size = FM10K_MAX_RSS_INDICES;
938
939         dev_info->default_rxconf = (struct rte_eth_rxconf) {
940                 .rx_thresh = {
941                         .pthresh = FM10K_DEFAULT_RX_PTHRESH,
942                         .hthresh = FM10K_DEFAULT_RX_HTHRESH,
943                         .wthresh = FM10K_DEFAULT_RX_WTHRESH,
944                 },
945                 .rx_free_thresh = FM10K_RX_FREE_THRESH_DEFAULT(0),
946                 .rx_drop_en = 0,
947         };
948
949         dev_info->default_txconf = (struct rte_eth_txconf) {
950                 .tx_thresh = {
951                         .pthresh = FM10K_DEFAULT_TX_PTHRESH,
952                         .hthresh = FM10K_DEFAULT_TX_HTHRESH,
953                         .wthresh = FM10K_DEFAULT_TX_WTHRESH,
954                 },
955                 .tx_free_thresh = FM10K_TX_FREE_THRESH_DEFAULT(0),
956                 .tx_rs_thresh = FM10K_TX_RS_THRESH_DEFAULT(0),
957                 .txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
958                                 ETH_TXQ_FLAGS_NOOFFLOADS,
959         };
960
961 }
962
963 static int
964 fm10k_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
965 {
966         s32 result;
967         uint16_t mac_num = 0;
968         uint32_t vid_idx, vid_bit, mac_index;
969         struct fm10k_hw *hw;
970         struct fm10k_macvlan_filter_info *macvlan;
971         struct rte_eth_dev_data *data = dev->data;
972
973         hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
974         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
975
976         if (vlan_id > ETH_VLAN_ID_MAX) {
977                 PMD_INIT_LOG(ERR, "Invalid vlan_id: must be < 4096");
978                 return (-EINVAL);
979         }
980
981         vid_idx = FM10K_VFTA_IDX(vlan_id);
982         vid_bit = FM10K_VFTA_BIT(vlan_id);
983         /* this VLAN ID is already in the VLAN filter table, return SUCCESS */
984         if (on && (macvlan->vfta[vid_idx] & vid_bit))
985                 return 0;
986         /* this VLAN ID is NOT in the VLAN filter table, cannot remove */
987         if (!on && !(macvlan->vfta[vid_idx] & vid_bit)) {
988                 PMD_INIT_LOG(ERR, "Invalid vlan_id: not existing "
989                         "in the VLAN filter table");
990                 return (-EINVAL);
991         }
992
993         fm10k_mbx_lock(hw);
994         result = fm10k_update_vlan(hw, vlan_id, 0, on);
995         fm10k_mbx_unlock(hw);
996         if (result != FM10K_SUCCESS) {
997                 PMD_INIT_LOG(ERR, "VLAN update failed: %d", result);
998                 return (-EIO);
999         }
1000
1001         for (mac_index = 0; (mac_index < FM10K_MAX_MACADDR_NUM) &&
1002                         (result == FM10K_SUCCESS); mac_index++) {
1003                 if (is_zero_ether_addr(&data->mac_addrs[mac_index]))
1004                         continue;
1005                 if (mac_num > macvlan->mac_num - 1) {
1006                         PMD_INIT_LOG(ERR, "MAC address number "
1007                                         "not match");
1008                         break;
1009                 }
1010                 fm10k_mbx_lock(hw);
1011                 result = fm10k_update_uc_addr(hw, hw->mac.dglort_map,
1012                         data->mac_addrs[mac_index].addr_bytes,
1013                         vlan_id, on, 0);
1014                 fm10k_mbx_unlock(hw);
1015                 mac_num++;
1016         }
1017         if (result != FM10K_SUCCESS) {
1018                 PMD_INIT_LOG(ERR, "MAC address update failed: %d", result);
1019                 return (-EIO);
1020         }
1021
1022         if (on) {
1023                 macvlan->vlan_num++;
1024                 macvlan->vfta[vid_idx] |= vid_bit;
1025         } else {
1026                 macvlan->vlan_num--;
1027                 macvlan->vfta[vid_idx] &= ~vid_bit;
1028         }
1029         return 0;
1030 }
1031
1032 static void
1033 fm10k_vlan_offload_set(__rte_unused struct rte_eth_dev *dev, int mask)
1034 {
1035         if (mask & ETH_VLAN_STRIP_MASK) {
1036                 if (!dev->data->dev_conf.rxmode.hw_vlan_strip)
1037                         PMD_INIT_LOG(ERR, "VLAN stripping is "
1038                                         "always on in fm10k");
1039         }
1040
1041         if (mask & ETH_VLAN_EXTEND_MASK) {
1042                 if (dev->data->dev_conf.rxmode.hw_vlan_extend)
1043                         PMD_INIT_LOG(ERR, "VLAN QinQ is not "
1044                                         "supported in fm10k");
1045         }
1046
1047         if (mask & ETH_VLAN_FILTER_MASK) {
1048                 if (!dev->data->dev_conf.rxmode.hw_vlan_filter)
1049                         PMD_INIT_LOG(ERR, "VLAN filter is always on in fm10k");
1050         }
1051 }
1052
1053 /* Add/Remove a MAC address, and update filters */
1054 static void
1055 fm10k_MAC_filter_set(struct rte_eth_dev *dev, const u8 *mac, bool add)
1056 {
1057         uint32_t i, j, k;
1058         struct fm10k_hw *hw;
1059         struct fm10k_macvlan_filter_info *macvlan;
1060
1061         hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1062         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
1063
1064         i = 0;
1065         for (j = 0; j < FM10K_VFTA_SIZE; j++) {
1066                 if (macvlan->vfta[j]) {
1067                         for (k = 0; k < FM10K_UINT32_BIT_SIZE; k++) {
1068                                 if (macvlan->vfta[j] & (1 << k)) {
1069                                         if (i + 1 > macvlan->vlan_num) {
1070                                                 PMD_INIT_LOG(ERR, "vlan number "
1071                                                                 "not match");
1072                                                 return;
1073                                         }
1074                                         fm10k_mbx_lock(hw);
1075                                         fm10k_update_uc_addr(hw,
1076                                                 hw->mac.dglort_map, mac,
1077                                                 j * FM10K_UINT32_BIT_SIZE + k,
1078                                                 add, 0);
1079                                         fm10k_mbx_unlock(hw);
1080                                         i++;
1081                                 }
1082                         }
1083                 }
1084         }
1085
1086         if (add)
1087                 macvlan->mac_num++;
1088         else
1089                 macvlan->mac_num--;
1090 }
1091
1092 /* Add a MAC address, and update filters */
1093 static void
1094 fm10k_macaddr_add(struct rte_eth_dev *dev,
1095                  struct ether_addr *mac_addr,
1096                  __rte_unused uint32_t index,
1097                  __rte_unused uint32_t pool)
1098 {
1099         fm10k_MAC_filter_set(dev, mac_addr->addr_bytes, TRUE);
1100 }
1101
1102 /* Remove a MAC address, and update filters */
1103 static void
1104 fm10k_macaddr_remove(struct rte_eth_dev *dev, uint32_t index)
1105 {
1106         struct rte_eth_dev_data *data = dev->data;
1107
1108         if (index < FM10K_MAX_MACADDR_NUM)
1109                 fm10k_MAC_filter_set(dev, data->mac_addrs[index].addr_bytes,
1110                                 FALSE);
1111 }
1112
1113 /* Remove all VLAN and MAC address table entries */
1114 static void
1115 fm10k_MACVLAN_remove_all(struct rte_eth_dev *dev)
1116 {
1117         uint32_t j, k;
1118         struct fm10k_macvlan_filter_info *macvlan;
1119
1120         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
1121         for (j = 0; j < FM10K_VFTA_SIZE; j++) {
1122                 if (macvlan->vfta[j]) {
1123                         for (k = 0; k < FM10K_UINT32_BIT_SIZE; k++) {
1124                                 if (macvlan->vfta[j] & (1 << k))
1125                                         fm10k_vlan_filter_set(dev,
1126                                                 j * FM10K_UINT32_BIT_SIZE + k, false);
1127                         }
1128                 }
1129         }
1130 }
1131
1132 static inline int
1133 check_nb_desc(uint16_t min, uint16_t max, uint16_t mult, uint16_t request)
1134 {
1135         if ((request < min) || (request > max) || ((request % mult) != 0))
1136                 return -1;
1137         else
1138                 return 0;
1139 }
1140
1141 /*
1142  * Create a memzone for hardware descriptor rings. Malloc cannot be used since
1143  * the physical address is required. If the memzone is already created, then
1144  * this function returns a pointer to the existing memzone.
1145  */
1146 static inline const struct rte_memzone *
1147 allocate_hw_ring(const char *driver_name, const char *ring_name,
1148         uint8_t port_id, uint16_t queue_id, int socket_id,
1149         uint32_t size, uint32_t align)
1150 {
1151         char name[RTE_MEMZONE_NAMESIZE];
1152         const struct rte_memzone *mz;
1153
1154         snprintf(name, sizeof(name), "%s_%s_%d_%d_%d",
1155                  driver_name, ring_name, port_id, queue_id, socket_id);
1156
1157         /* return the memzone if it already exists */
1158         mz = rte_memzone_lookup(name);
1159         if (mz)
1160                 return mz;
1161
1162 #ifdef RTE_LIBRTE_XEN_DOM0
1163         return rte_memzone_reserve_bounded(name, size, socket_id, 0, align,
1164                                            RTE_PGSIZE_2M);
1165 #else
1166         return rte_memzone_reserve_aligned(name, size, socket_id, 0, align);
1167 #endif
1168 }
1169
1170 static inline int
1171 check_thresh(uint16_t min, uint16_t max, uint16_t div, uint16_t request)
1172 {
1173         if ((request < min) || (request > max) || ((div % request) != 0))
1174                 return -1;
1175         else
1176                 return 0;
1177 }
1178
1179 static inline int
1180 handle_rxconf(struct fm10k_rx_queue *q, const struct rte_eth_rxconf *conf)
1181 {
1182         uint16_t rx_free_thresh;
1183
1184         if (conf->rx_free_thresh == 0)
1185                 rx_free_thresh = FM10K_RX_FREE_THRESH_DEFAULT(q);
1186         else
1187                 rx_free_thresh = conf->rx_free_thresh;
1188
1189         /* make sure the requested threshold satisfies the constraints */
1190         if (check_thresh(FM10K_RX_FREE_THRESH_MIN(q),
1191                         FM10K_RX_FREE_THRESH_MAX(q),
1192                         FM10K_RX_FREE_THRESH_DIV(q),
1193                         rx_free_thresh)) {
1194                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be "
1195                         "less than or equal to %u, "
1196                         "greater than or equal to %u, "
1197                         "and a divisor of %u",
1198                         rx_free_thresh, FM10K_RX_FREE_THRESH_MAX(q),
1199                         FM10K_RX_FREE_THRESH_MIN(q),
1200                         FM10K_RX_FREE_THRESH_DIV(q));
1201                 return (-EINVAL);
1202         }
1203
1204         q->alloc_thresh = rx_free_thresh;
1205         q->drop_en = conf->rx_drop_en;
1206         q->rx_deferred_start = conf->rx_deferred_start;
1207
1208         return 0;
1209 }
1210
1211 /*
1212  * Hardware requires specific alignment for Rx packet buffers. At
1213  * least one of the following two conditions must be satisfied.
1214  *  1. Address is 512B aligned
1215  *  2. Address is 8B aligned and buffer does not cross 4K boundary.
1216  *
1217  * As such, the driver may need to adjust the DMA address within the
1218  * buffer by up to 512B.
1219  *
1220  * return 1 if the element size is valid, otherwise return 0.
1221  */
1222 static int
1223 mempool_element_size_valid(struct rte_mempool *mp)
1224 {
1225         uint32_t min_size;
1226
1227         /* elt_size includes mbuf header and headroom */
1228         min_size = mp->elt_size - sizeof(struct rte_mbuf) -
1229                         RTE_PKTMBUF_HEADROOM;
1230
1231         /* account for up to 512B of alignment */
1232         min_size -= FM10K_RX_DATABUF_ALIGN;
1233
1234         /* sanity check for overflow */
1235         if (min_size > mp->elt_size)
1236                 return 0;
1237
1238         /* size is valid */
1239         return 1;
1240 }
1241
1242 static int
1243 fm10k_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_id,
1244         uint16_t nb_desc, unsigned int socket_id,
1245         const struct rte_eth_rxconf *conf, struct rte_mempool *mp)
1246 {
1247         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1248         struct fm10k_rx_queue *q;
1249         const struct rte_memzone *mz;
1250
1251         PMD_INIT_FUNC_TRACE();
1252
1253         /* make sure the mempool element size can account for alignment. */
1254         if (!mempool_element_size_valid(mp)) {
1255                 PMD_INIT_LOG(ERR, "Error : Mempool element size is too small");
1256                 return (-EINVAL);
1257         }
1258
1259         /* make sure a valid number of descriptors have been requested */
1260         if (check_nb_desc(FM10K_MIN_RX_DESC, FM10K_MAX_RX_DESC,
1261                                 FM10K_MULT_RX_DESC, nb_desc)) {
1262                 PMD_INIT_LOG(ERR, "Number of Rx descriptors (%u) must be "
1263                         "less than or equal to %"PRIu32", "
1264                         "greater than or equal to %u, "
1265                         "and a multiple of %u",
1266                         nb_desc, (uint32_t)FM10K_MAX_RX_DESC, FM10K_MIN_RX_DESC,
1267                         FM10K_MULT_RX_DESC);
1268                 return (-EINVAL);
1269         }
1270
1271         /*
1272          * if this queue existed already, free the associated memory. The
1273          * queue cannot be reused in case we need to allocate memory on
1274          * different socket than was previously used.
1275          */
1276         if (dev->data->rx_queues[queue_id] != NULL) {
1277                 rx_queue_free(dev->data->rx_queues[queue_id]);
1278                 dev->data->rx_queues[queue_id] = NULL;
1279         }
1280
1281         /* allocate memory for the queue structure */
1282         q = rte_zmalloc_socket("fm10k", sizeof(*q), RTE_CACHE_LINE_SIZE,
1283                                 socket_id);
1284         if (q == NULL) {
1285                 PMD_INIT_LOG(ERR, "Cannot allocate queue structure");
1286                 return (-ENOMEM);
1287         }
1288
1289         /* setup queue */
1290         q->mp = mp;
1291         q->nb_desc = nb_desc;
1292         q->port_id = dev->data->port_id;
1293         q->queue_id = queue_id;
1294         q->tail_ptr = (volatile uint32_t *)
1295                 &((uint32_t *)hw->hw_addr)[FM10K_RDT(queue_id)];
1296         if (handle_rxconf(q, conf))
1297                 return (-EINVAL);
1298
1299         /* allocate memory for the software ring */
1300         q->sw_ring = rte_zmalloc_socket("fm10k sw ring",
1301                                         nb_desc * sizeof(struct rte_mbuf *),
1302                                         RTE_CACHE_LINE_SIZE, socket_id);
1303         if (q->sw_ring == NULL) {
1304                 PMD_INIT_LOG(ERR, "Cannot allocate software ring");
1305                 rte_free(q);
1306                 return (-ENOMEM);
1307         }
1308
1309         /*
1310          * allocate memory for the hardware descriptor ring. A memzone large
1311          * enough to hold the maximum ring size is requested to allow for
1312          * resizing in later calls to the queue setup function.
1313          */
1314         mz = allocate_hw_ring(dev->driver->pci_drv.name, "rx_ring",
1315                                 dev->data->port_id, queue_id, socket_id,
1316                                 FM10K_MAX_RX_RING_SZ, FM10K_ALIGN_RX_DESC);
1317         if (mz == NULL) {
1318                 PMD_INIT_LOG(ERR, "Cannot allocate hardware ring");
1319                 rte_free(q->sw_ring);
1320                 rte_free(q);
1321                 return (-ENOMEM);
1322         }
1323         q->hw_ring = mz->addr;
1324 #ifdef RTE_LIBRTE_XEN_DOM0
1325         q->hw_ring_phys_addr = rte_mem_phy2mch(mz->memseg_id, mz->phys_addr);
1326 #else
1327         q->hw_ring_phys_addr = mz->phys_addr;
1328 #endif
1329
1330         dev->data->rx_queues[queue_id] = q;
1331         return 0;
1332 }
1333
1334 static void
1335 fm10k_rx_queue_release(void *queue)
1336 {
1337         PMD_INIT_FUNC_TRACE();
1338
1339         rx_queue_free(queue);
1340 }
1341
1342 static inline int
1343 handle_txconf(struct fm10k_tx_queue *q, const struct rte_eth_txconf *conf)
1344 {
1345         uint16_t tx_free_thresh;
1346         uint16_t tx_rs_thresh;
1347
1348         /* constraint MACROs require that tx_free_thresh is configured
1349          * before tx_rs_thresh */
1350         if (conf->tx_free_thresh == 0)
1351                 tx_free_thresh = FM10K_TX_FREE_THRESH_DEFAULT(q);
1352         else
1353                 tx_free_thresh = conf->tx_free_thresh;
1354
1355         /* make sure the requested threshold satisfies the constraints */
1356         if (check_thresh(FM10K_TX_FREE_THRESH_MIN(q),
1357                         FM10K_TX_FREE_THRESH_MAX(q),
1358                         FM10K_TX_FREE_THRESH_DIV(q),
1359                         tx_free_thresh)) {
1360                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be "
1361                         "less than or equal to %u, "
1362                         "greater than or equal to %u, "
1363                         "and a divisor of %u",
1364                         tx_free_thresh, FM10K_TX_FREE_THRESH_MAX(q),
1365                         FM10K_TX_FREE_THRESH_MIN(q),
1366                         FM10K_TX_FREE_THRESH_DIV(q));
1367                 return (-EINVAL);
1368         }
1369
1370         q->free_thresh = tx_free_thresh;
1371
1372         if (conf->tx_rs_thresh == 0)
1373                 tx_rs_thresh = FM10K_TX_RS_THRESH_DEFAULT(q);
1374         else
1375                 tx_rs_thresh = conf->tx_rs_thresh;
1376
1377         q->tx_deferred_start = conf->tx_deferred_start;
1378
1379         /* make sure the requested threshold satisfies the constraints */
1380         if (check_thresh(FM10K_TX_RS_THRESH_MIN(q),
1381                         FM10K_TX_RS_THRESH_MAX(q),
1382                         FM10K_TX_RS_THRESH_DIV(q),
1383                         tx_rs_thresh)) {
1384                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be "
1385                         "less than or equal to %u, "
1386                         "greater than or equal to %u, "
1387                         "and a divisor of %u",
1388                         tx_rs_thresh, FM10K_TX_RS_THRESH_MAX(q),
1389                         FM10K_TX_RS_THRESH_MIN(q),
1390                         FM10K_TX_RS_THRESH_DIV(q));
1391                 return (-EINVAL);
1392         }
1393
1394         q->rs_thresh = tx_rs_thresh;
1395
1396         return 0;
1397 }
1398
1399 static int
1400 fm10k_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_id,
1401         uint16_t nb_desc, unsigned int socket_id,
1402         const struct rte_eth_txconf *conf)
1403 {
1404         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1405         struct fm10k_tx_queue *q;
1406         const struct rte_memzone *mz;
1407
1408         PMD_INIT_FUNC_TRACE();
1409
1410         /* make sure a valid number of descriptors have been requested */
1411         if (check_nb_desc(FM10K_MIN_TX_DESC, FM10K_MAX_TX_DESC,
1412                                 FM10K_MULT_TX_DESC, nb_desc)) {
1413                 PMD_INIT_LOG(ERR, "Number of Tx descriptors (%u) must be "
1414                         "less than or equal to %"PRIu32", "
1415                         "greater than or equal to %u, "
1416                         "and a multiple of %u",
1417                         nb_desc, (uint32_t)FM10K_MAX_TX_DESC, FM10K_MIN_TX_DESC,
1418                         FM10K_MULT_TX_DESC);
1419                 return (-EINVAL);
1420         }
1421
1422         /*
1423          * if this queue existed already, free the associated memory. The
1424          * queue cannot be reused in case we need to allocate memory on
1425          * different socket than was previously used.
1426          */
1427         if (dev->data->tx_queues[queue_id] != NULL) {
1428                 tx_queue_free(dev->data->tx_queues[queue_id]);
1429                 dev->data->tx_queues[queue_id] = NULL;
1430         }
1431
1432         /* allocate memory for the queue structure */
1433         q = rte_zmalloc_socket("fm10k", sizeof(*q), RTE_CACHE_LINE_SIZE,
1434                                 socket_id);
1435         if (q == NULL) {
1436                 PMD_INIT_LOG(ERR, "Cannot allocate queue structure");
1437                 return (-ENOMEM);
1438         }
1439
1440         /* setup queue */
1441         q->nb_desc = nb_desc;
1442         q->port_id = dev->data->port_id;
1443         q->queue_id = queue_id;
1444         q->tail_ptr = (volatile uint32_t *)
1445                 &((uint32_t *)hw->hw_addr)[FM10K_TDT(queue_id)];
1446         if (handle_txconf(q, conf))
1447                 return (-EINVAL);
1448
1449         /* allocate memory for the software ring */
1450         q->sw_ring = rte_zmalloc_socket("fm10k sw ring",
1451                                         nb_desc * sizeof(struct rte_mbuf *),
1452                                         RTE_CACHE_LINE_SIZE, socket_id);
1453         if (q->sw_ring == NULL) {
1454                 PMD_INIT_LOG(ERR, "Cannot allocate software ring");
1455                 rte_free(q);
1456                 return (-ENOMEM);
1457         }
1458
1459         /*
1460          * allocate memory for the hardware descriptor ring. A memzone large
1461          * enough to hold the maximum ring size is requested to allow for
1462          * resizing in later calls to the queue setup function.
1463          */
1464         mz = allocate_hw_ring(dev->driver->pci_drv.name, "tx_ring",
1465                                 dev->data->port_id, queue_id, socket_id,
1466                                 FM10K_MAX_TX_RING_SZ, FM10K_ALIGN_TX_DESC);
1467         if (mz == NULL) {
1468                 PMD_INIT_LOG(ERR, "Cannot allocate hardware ring");
1469                 rte_free(q->sw_ring);
1470                 rte_free(q);
1471                 return (-ENOMEM);
1472         }
1473         q->hw_ring = mz->addr;
1474 #ifdef RTE_LIBRTE_XEN_DOM0
1475         q->hw_ring_phys_addr = rte_mem_phy2mch(mz->memseg_id, mz->phys_addr);
1476 #else
1477         q->hw_ring_phys_addr = mz->phys_addr;
1478 #endif
1479
1480         /*
1481          * allocate memory for the RS bit tracker. Enough slots to hold the
1482          * descriptor index for each RS bit needing to be set are required.
1483          */
1484         q->rs_tracker.list = rte_zmalloc_socket("fm10k rs tracker",
1485                                 ((nb_desc + 1) / q->rs_thresh) *
1486                                 sizeof(uint16_t),
1487                                 RTE_CACHE_LINE_SIZE, socket_id);
1488         if (q->rs_tracker.list == NULL) {
1489                 PMD_INIT_LOG(ERR, "Cannot allocate RS bit tracker");
1490                 rte_free(q->sw_ring);
1491                 rte_free(q);
1492                 return (-ENOMEM);
1493         }
1494
1495         dev->data->tx_queues[queue_id] = q;
1496         return 0;
1497 }
1498
1499 static void
1500 fm10k_tx_queue_release(void *queue)
1501 {
1502         PMD_INIT_FUNC_TRACE();
1503
1504         tx_queue_free(queue);
1505 }
1506
1507 static int
1508 fm10k_reta_update(struct rte_eth_dev *dev,
1509                         struct rte_eth_rss_reta_entry64 *reta_conf,
1510                         uint16_t reta_size)
1511 {
1512         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1513         uint16_t i, j, idx, shift;
1514         uint8_t mask;
1515         uint32_t reta;
1516
1517         PMD_INIT_FUNC_TRACE();
1518
1519         if (reta_size > FM10K_MAX_RSS_INDICES) {
1520                 PMD_INIT_LOG(ERR, "The size of hash lookup table configured "
1521                         "(%d) doesn't match the number hardware can supported "
1522                         "(%d)", reta_size, FM10K_MAX_RSS_INDICES);
1523                 return -EINVAL;
1524         }
1525
1526         /*
1527          * Update Redirection Table RETA[n], n=0..31. The redirection table has
1528          * 128-entries in 32 registers
1529          */
1530         for (i = 0; i < FM10K_MAX_RSS_INDICES; i += CHARS_PER_UINT32) {
1531                 idx = i / RTE_RETA_GROUP_SIZE;
1532                 shift = i % RTE_RETA_GROUP_SIZE;
1533                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
1534                                 BIT_MASK_PER_UINT32);
1535                 if (mask == 0)
1536                         continue;
1537
1538                 reta = 0;
1539                 if (mask != BIT_MASK_PER_UINT32)
1540                         reta = FM10K_READ_REG(hw, FM10K_RETA(0, i >> 2));
1541
1542                 for (j = 0; j < CHARS_PER_UINT32; j++) {
1543                         if (mask & (0x1 << j)) {
1544                                 if (mask != 0xF)
1545                                         reta &= ~(UINT8_MAX << CHAR_BIT * j);
1546                                 reta |= reta_conf[idx].reta[shift + j] <<
1547                                                 (CHAR_BIT * j);
1548                         }
1549                 }
1550                 FM10K_WRITE_REG(hw, FM10K_RETA(0, i >> 2), reta);
1551         }
1552
1553         return 0;
1554 }
1555
1556 static int
1557 fm10k_reta_query(struct rte_eth_dev *dev,
1558                         struct rte_eth_rss_reta_entry64 *reta_conf,
1559                         uint16_t reta_size)
1560 {
1561         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1562         uint16_t i, j, idx, shift;
1563         uint8_t mask;
1564         uint32_t reta;
1565
1566         PMD_INIT_FUNC_TRACE();
1567
1568         if (reta_size < FM10K_MAX_RSS_INDICES) {
1569                 PMD_INIT_LOG(ERR, "The size of hash lookup table configured "
1570                         "(%d) doesn't match the number hardware can supported "
1571                         "(%d)", reta_size, FM10K_MAX_RSS_INDICES);
1572                 return -EINVAL;
1573         }
1574
1575         /*
1576          * Read Redirection Table RETA[n], n=0..31. The redirection table has
1577          * 128-entries in 32 registers
1578          */
1579         for (i = 0; i < FM10K_MAX_RSS_INDICES; i += CHARS_PER_UINT32) {
1580                 idx = i / RTE_RETA_GROUP_SIZE;
1581                 shift = i % RTE_RETA_GROUP_SIZE;
1582                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
1583                                 BIT_MASK_PER_UINT32);
1584                 if (mask == 0)
1585                         continue;
1586
1587                 reta = FM10K_READ_REG(hw, FM10K_RETA(0, i >> 2));
1588                 for (j = 0; j < CHARS_PER_UINT32; j++) {
1589                         if (mask & (0x1 << j))
1590                                 reta_conf[idx].reta[shift + j] = ((reta >>
1591                                         CHAR_BIT * j) & UINT8_MAX);
1592                 }
1593         }
1594
1595         return 0;
1596 }
1597
1598 static int
1599 fm10k_rss_hash_update(struct rte_eth_dev *dev,
1600         struct rte_eth_rss_conf *rss_conf)
1601 {
1602         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1603         uint32_t *key = (uint32_t *)rss_conf->rss_key;
1604         uint32_t mrqc;
1605         uint64_t hf = rss_conf->rss_hf;
1606         int i;
1607
1608         PMD_INIT_FUNC_TRACE();
1609
1610         if (rss_conf->rss_key_len < FM10K_RSSRK_SIZE *
1611                 FM10K_RSSRK_ENTRIES_PER_REG)
1612                 return -EINVAL;
1613
1614         if (hf == 0)
1615                 return -EINVAL;
1616
1617         mrqc = 0;
1618         mrqc |= (hf & ETH_RSS_IPV4)              ? FM10K_MRQC_IPV4     : 0;
1619         mrqc |= (hf & ETH_RSS_IPV6)              ? FM10K_MRQC_IPV6     : 0;
1620         mrqc |= (hf & ETH_RSS_IPV6_EX)           ? FM10K_MRQC_IPV6     : 0;
1621         mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_TCP)  ? FM10K_MRQC_TCP_IPV4 : 0;
1622         mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_TCP)  ? FM10K_MRQC_TCP_IPV6 : 0;
1623         mrqc |= (hf & ETH_RSS_IPV6_TCP_EX)       ? FM10K_MRQC_TCP_IPV6 : 0;
1624         mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_UDP)  ? FM10K_MRQC_UDP_IPV4 : 0;
1625         mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_UDP)  ? FM10K_MRQC_UDP_IPV6 : 0;
1626         mrqc |= (hf & ETH_RSS_IPV6_UDP_EX)       ? FM10K_MRQC_UDP_IPV6 : 0;
1627
1628         /* If the mapping doesn't fit any supported, return */
1629         if (mrqc == 0)
1630                 return -EINVAL;
1631
1632         if (key != NULL)
1633                 for (i = 0; i < FM10K_RSSRK_SIZE; ++i)
1634                         FM10K_WRITE_REG(hw, FM10K_RSSRK(0, i), key[i]);
1635
1636         FM10K_WRITE_REG(hw, FM10K_MRQC(0), mrqc);
1637
1638         return 0;
1639 }
1640
1641 static int
1642 fm10k_rss_hash_conf_get(struct rte_eth_dev *dev,
1643         struct rte_eth_rss_conf *rss_conf)
1644 {
1645         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1646         uint32_t *key = (uint32_t *)rss_conf->rss_key;
1647         uint32_t mrqc;
1648         uint64_t hf;
1649         int i;
1650
1651         PMD_INIT_FUNC_TRACE();
1652
1653         if (rss_conf->rss_key_len < FM10K_RSSRK_SIZE *
1654                                 FM10K_RSSRK_ENTRIES_PER_REG)
1655                 return -EINVAL;
1656
1657         if (key != NULL)
1658                 for (i = 0; i < FM10K_RSSRK_SIZE; ++i)
1659                         key[i] = FM10K_READ_REG(hw, FM10K_RSSRK(0, i));
1660
1661         mrqc = FM10K_READ_REG(hw, FM10K_MRQC(0));
1662         hf = 0;
1663         hf |= (mrqc & FM10K_MRQC_IPV4)     ? ETH_RSS_IPV4              : 0;
1664         hf |= (mrqc & FM10K_MRQC_IPV6)     ? ETH_RSS_IPV6              : 0;
1665         hf |= (mrqc & FM10K_MRQC_IPV6)     ? ETH_RSS_IPV6_EX           : 0;
1666         hf |= (mrqc & FM10K_MRQC_TCP_IPV4) ? ETH_RSS_NONFRAG_IPV4_TCP  : 0;
1667         hf |= (mrqc & FM10K_MRQC_TCP_IPV6) ? ETH_RSS_NONFRAG_IPV6_TCP  : 0;
1668         hf |= (mrqc & FM10K_MRQC_TCP_IPV6) ? ETH_RSS_IPV6_TCP_EX       : 0;
1669         hf |= (mrqc & FM10K_MRQC_UDP_IPV4) ? ETH_RSS_NONFRAG_IPV4_UDP  : 0;
1670         hf |= (mrqc & FM10K_MRQC_UDP_IPV6) ? ETH_RSS_NONFRAG_IPV6_UDP  : 0;
1671         hf |= (mrqc & FM10K_MRQC_UDP_IPV6) ? ETH_RSS_IPV6_UDP_EX       : 0;
1672
1673         rss_conf->rss_hf = hf;
1674
1675         return 0;
1676 }
1677
1678 static void
1679 fm10k_dev_enable_intr_pf(struct rte_eth_dev *dev)
1680 {
1681         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1682         uint32_t int_map = FM10K_INT_MAP_IMMEDIATE;
1683
1684         /* Bind all local non-queue interrupt to vector 0 */
1685         int_map |= 0;
1686
1687         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_Mailbox), int_map);
1688         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_PCIeFault), int_map);
1689         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_SwitchUpDown), int_map);
1690         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_SwitchEvent), int_map);
1691         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_SRAM), int_map);
1692         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_VFLR), int_map);
1693
1694         /* Enable misc causes */
1695         FM10K_WRITE_REG(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
1696                                 FM10K_EIMR_ENABLE(THI_FAULT) |
1697                                 FM10K_EIMR_ENABLE(FUM_FAULT) |
1698                                 FM10K_EIMR_ENABLE(MAILBOX) |
1699                                 FM10K_EIMR_ENABLE(SWITCHREADY) |
1700                                 FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
1701                                 FM10K_EIMR_ENABLE(SRAMERROR) |
1702                                 FM10K_EIMR_ENABLE(VFLR));
1703
1704         /* Enable ITR 0 */
1705         FM10K_WRITE_REG(hw, FM10K_ITR(0), FM10K_ITR_AUTOMASK |
1706                                         FM10K_ITR_MASK_CLEAR);
1707         FM10K_WRITE_FLUSH(hw);
1708 }
1709
1710 static void
1711 fm10k_dev_disable_intr_pf(struct rte_eth_dev *dev)
1712 {
1713         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1714         uint32_t int_map = FM10K_INT_MAP_DISABLE;
1715
1716         int_map |= 0;
1717
1718         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_Mailbox), int_map);
1719         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_PCIeFault), int_map);
1720         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_SwitchUpDown), int_map);
1721         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_SwitchEvent), int_map);
1722         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_SRAM), int_map);
1723         FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_VFLR), int_map);
1724
1725         /* Disable misc causes */
1726         FM10K_WRITE_REG(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(PCA_FAULT) |
1727                                 FM10K_EIMR_DISABLE(THI_FAULT) |
1728                                 FM10K_EIMR_DISABLE(FUM_FAULT) |
1729                                 FM10K_EIMR_DISABLE(MAILBOX) |
1730                                 FM10K_EIMR_DISABLE(SWITCHREADY) |
1731                                 FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
1732                                 FM10K_EIMR_DISABLE(SRAMERROR) |
1733                                 FM10K_EIMR_DISABLE(VFLR));
1734
1735         /* Disable ITR 0 */
1736         FM10K_WRITE_REG(hw, FM10K_ITR(0), FM10K_ITR_MASK_SET);
1737         FM10K_WRITE_FLUSH(hw);
1738 }
1739
1740 static void
1741 fm10k_dev_enable_intr_vf(struct rte_eth_dev *dev)
1742 {
1743         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1744         uint32_t int_map = FM10K_INT_MAP_IMMEDIATE;
1745
1746         /* Bind all local non-queue interrupt to vector 0 */
1747         int_map |= 0;
1748
1749         /* Only INT 0 available, other 15 are reserved. */
1750         FM10K_WRITE_REG(hw, FM10K_VFINT_MAP, int_map);
1751
1752         /* Enable ITR 0 */
1753         FM10K_WRITE_REG(hw, FM10K_VFITR(0), FM10K_ITR_AUTOMASK |
1754                                         FM10K_ITR_MASK_CLEAR);
1755         FM10K_WRITE_FLUSH(hw);
1756 }
1757
1758 static void
1759 fm10k_dev_disable_intr_vf(struct rte_eth_dev *dev)
1760 {
1761         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1762         uint32_t int_map = FM10K_INT_MAP_DISABLE;
1763
1764         int_map |= 0;
1765
1766         /* Only INT 0 available, other 15 are reserved. */
1767         FM10K_WRITE_REG(hw, FM10K_VFINT_MAP, int_map);
1768
1769         /* Disable ITR 0 */
1770         FM10K_WRITE_REG(hw, FM10K_VFITR(0), FM10K_ITR_MASK_SET);
1771         FM10K_WRITE_FLUSH(hw);
1772 }
1773
1774 static int
1775 fm10k_dev_handle_fault(struct fm10k_hw *hw, uint32_t eicr)
1776 {
1777         struct fm10k_fault fault;
1778         int err;
1779         const char *estr = "Unknown error";
1780
1781         /* Process PCA fault */
1782         if (eicr & FM10K_EICR_PCA_FAULT) {
1783                 err = fm10k_get_fault(hw, FM10K_PCA_FAULT, &fault);
1784                 if (err)
1785                         goto error;
1786                 switch (fault.type) {
1787                 case PCA_NO_FAULT:
1788                         estr = "PCA_NO_FAULT"; break;
1789                 case PCA_UNMAPPED_ADDR:
1790                         estr = "PCA_UNMAPPED_ADDR"; break;
1791                 case PCA_BAD_QACCESS_PF:
1792                         estr = "PCA_BAD_QACCESS_PF"; break;
1793                 case PCA_BAD_QACCESS_VF:
1794                         estr = "PCA_BAD_QACCESS_VF"; break;
1795                 case PCA_MALICIOUS_REQ:
1796                         estr = "PCA_MALICIOUS_REQ"; break;
1797                 case PCA_POISONED_TLP:
1798                         estr = "PCA_POISONED_TLP"; break;
1799                 case PCA_TLP_ABORT:
1800                         estr = "PCA_TLP_ABORT"; break;
1801                 default:
1802                         goto error;
1803                 }
1804                 PMD_INIT_LOG(ERR, "%s: %s(%d) Addr:0x%"PRIx64" Spec: 0x%x",
1805                         estr, fault.func ? "VF" : "PF", fault.func,
1806                         fault.address, fault.specinfo);
1807         }
1808
1809         /* Process THI fault */
1810         if (eicr & FM10K_EICR_THI_FAULT) {
1811                 err = fm10k_get_fault(hw, FM10K_THI_FAULT, &fault);
1812                 if (err)
1813                         goto error;
1814                 switch (fault.type) {
1815                 case THI_NO_FAULT:
1816                         estr = "THI_NO_FAULT"; break;
1817                 case THI_MAL_DIS_Q_FAULT:
1818                         estr = "THI_MAL_DIS_Q_FAULT"; break;
1819                 default:
1820                         goto error;
1821                 }
1822                 PMD_INIT_LOG(ERR, "%s: %s(%d) Addr:0x%"PRIx64" Spec: 0x%x",
1823                         estr, fault.func ? "VF" : "PF", fault.func,
1824                         fault.address, fault.specinfo);
1825         }
1826
1827         /* Process FUM fault */
1828         if (eicr & FM10K_EICR_FUM_FAULT) {
1829                 err = fm10k_get_fault(hw, FM10K_FUM_FAULT, &fault);
1830                 if (err)
1831                         goto error;
1832                 switch (fault.type) {
1833                 case FUM_NO_FAULT:
1834                         estr = "FUM_NO_FAULT"; break;
1835                 case FUM_UNMAPPED_ADDR:
1836                         estr = "FUM_UNMAPPED_ADDR"; break;
1837                 case FUM_POISONED_TLP:
1838                         estr = "FUM_POISONED_TLP"; break;
1839                 case FUM_BAD_VF_QACCESS:
1840                         estr = "FUM_BAD_VF_QACCESS"; break;
1841                 case FUM_ADD_DECODE_ERR:
1842                         estr = "FUM_ADD_DECODE_ERR"; break;
1843                 case FUM_RO_ERROR:
1844                         estr = "FUM_RO_ERROR"; break;
1845                 case FUM_QPRC_CRC_ERROR:
1846                         estr = "FUM_QPRC_CRC_ERROR"; break;
1847                 case FUM_CSR_TIMEOUT:
1848                         estr = "FUM_CSR_TIMEOUT"; break;
1849                 case FUM_INVALID_TYPE:
1850                         estr = "FUM_INVALID_TYPE"; break;
1851                 case FUM_INVALID_LENGTH:
1852                         estr = "FUM_INVALID_LENGTH"; break;
1853                 case FUM_INVALID_BE:
1854                         estr = "FUM_INVALID_BE"; break;
1855                 case FUM_INVALID_ALIGN:
1856                         estr = "FUM_INVALID_ALIGN"; break;
1857                 default:
1858                         goto error;
1859                 }
1860                 PMD_INIT_LOG(ERR, "%s: %s(%d) Addr:0x%"PRIx64" Spec: 0x%x",
1861                         estr, fault.func ? "VF" : "PF", fault.func,
1862                         fault.address, fault.specinfo);
1863         }
1864
1865         return 0;
1866 error:
1867         PMD_INIT_LOG(ERR, "Failed to handle fault event.");
1868         return err;
1869 }
1870
1871 /**
1872  * PF interrupt handler triggered by NIC for handling specific interrupt.
1873  *
1874  * @param handle
1875  *  Pointer to interrupt handle.
1876  * @param param
1877  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1878  *
1879  * @return
1880  *  void
1881  */
1882 static void
1883 fm10k_dev_interrupt_handler_pf(
1884                         __rte_unused struct rte_intr_handle *handle,
1885                         void *param)
1886 {
1887         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1888         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1889         uint32_t cause, status;
1890
1891         if (hw->mac.type != fm10k_mac_pf)
1892                 return;
1893
1894         cause = FM10K_READ_REG(hw, FM10K_EICR);
1895
1896         /* Handle PCI fault cases */
1897         if (cause & FM10K_EICR_FAULT_MASK) {
1898                 PMD_INIT_LOG(ERR, "INT: find fault!");
1899                 fm10k_dev_handle_fault(hw, cause);
1900         }
1901
1902         /* Handle switch up/down */
1903         if (cause & FM10K_EICR_SWITCHNOTREADY)
1904                 PMD_INIT_LOG(ERR, "INT: Switch is not ready");
1905
1906         if (cause & FM10K_EICR_SWITCHREADY)
1907                 PMD_INIT_LOG(INFO, "INT: Switch is ready");
1908
1909         /* Handle mailbox message */
1910         fm10k_mbx_lock(hw);
1911         hw->mbx.ops.process(hw, &hw->mbx);
1912         fm10k_mbx_unlock(hw);
1913
1914         /* Handle SRAM error */
1915         if (cause & FM10K_EICR_SRAMERROR) {
1916                 PMD_INIT_LOG(ERR, "INT: SRAM error on PEP");
1917
1918                 status = FM10K_READ_REG(hw, FM10K_SRAM_IP);
1919                 /* Write to clear pending bits */
1920                 FM10K_WRITE_REG(hw, FM10K_SRAM_IP, status);
1921
1922                 /* Todo: print out error message after shared code  updates */
1923         }
1924
1925         /* Clear these 3 events if having any */
1926         cause &= FM10K_EICR_SWITCHNOTREADY | FM10K_EICR_MAILBOX |
1927                  FM10K_EICR_SWITCHREADY;
1928         if (cause)
1929                 FM10K_WRITE_REG(hw, FM10K_EICR, cause);
1930
1931         /* Re-enable interrupt from device side */
1932         FM10K_WRITE_REG(hw, FM10K_ITR(0), FM10K_ITR_AUTOMASK |
1933                                         FM10K_ITR_MASK_CLEAR);
1934         /* Re-enable interrupt from host side */
1935         rte_intr_enable(&(dev->pci_dev->intr_handle));
1936 }
1937
1938 /**
1939  * VF interrupt handler triggered by NIC for handling specific interrupt.
1940  *
1941  * @param handle
1942  *  Pointer to interrupt handle.
1943  * @param param
1944  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1945  *
1946  * @return
1947  *  void
1948  */
1949 static void
1950 fm10k_dev_interrupt_handler_vf(
1951                         __rte_unused struct rte_intr_handle *handle,
1952                         void *param)
1953 {
1954         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1955         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1956
1957         if (hw->mac.type != fm10k_mac_vf)
1958                 return;
1959
1960         /* Handle mailbox message if lock is acquired */
1961         fm10k_mbx_lock(hw);
1962         hw->mbx.ops.process(hw, &hw->mbx);
1963         fm10k_mbx_unlock(hw);
1964
1965         /* Re-enable interrupt from device side */
1966         FM10K_WRITE_REG(hw, FM10K_VFITR(0), FM10K_ITR_AUTOMASK |
1967                                         FM10K_ITR_MASK_CLEAR);
1968         /* Re-enable interrupt from host side */
1969         rte_intr_enable(&(dev->pci_dev->intr_handle));
1970 }
1971
1972 /* Mailbox message handler in VF */
1973 static const struct fm10k_msg_data fm10k_msgdata_vf[] = {
1974         FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1975         FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_msg_mac_vlan_vf),
1976         FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
1977         FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1978 };
1979
1980 /* Mailbox message handler in PF */
1981 static const struct fm10k_msg_data fm10k_msgdata_pf[] = {
1982         FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1983         FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1984         FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1985         FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1986         FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1987         FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1988         FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1989 };
1990
1991 static int
1992 fm10k_setup_mbx_service(struct fm10k_hw *hw)
1993 {
1994         int err;
1995
1996         /* Initialize mailbox lock */
1997         fm10k_mbx_initlock(hw);
1998
1999         /* Replace default message handler with new ones */
2000         if (hw->mac.type == fm10k_mac_pf)
2001                 err = hw->mbx.ops.register_handlers(&hw->mbx, fm10k_msgdata_pf);
2002         else
2003                 err = hw->mbx.ops.register_handlers(&hw->mbx, fm10k_msgdata_vf);
2004
2005         if (err) {
2006                 PMD_INIT_LOG(ERR, "Failed to register mailbox handler.err:%d",
2007                                 err);
2008                 return err;
2009         }
2010         /* Connect to SM for PF device or PF for VF device */
2011         return hw->mbx.ops.connect(hw, &hw->mbx);
2012 }
2013
2014 static void
2015 fm10k_close_mbx_service(struct fm10k_hw *hw)
2016 {
2017         /* Disconnect from SM for PF device or PF for VF device */
2018         hw->mbx.ops.disconnect(hw, &hw->mbx);
2019 }
2020
2021 static const struct eth_dev_ops fm10k_eth_dev_ops = {
2022         .dev_configure          = fm10k_dev_configure,
2023         .dev_start              = fm10k_dev_start,
2024         .dev_stop               = fm10k_dev_stop,
2025         .dev_close              = fm10k_dev_close,
2026         .promiscuous_enable     = fm10k_dev_promiscuous_enable,
2027         .promiscuous_disable    = fm10k_dev_promiscuous_disable,
2028         .allmulticast_enable    = fm10k_dev_allmulticast_enable,
2029         .allmulticast_disable   = fm10k_dev_allmulticast_disable,
2030         .stats_get              = fm10k_stats_get,
2031         .stats_reset            = fm10k_stats_reset,
2032         .link_update            = fm10k_link_update,
2033         .dev_infos_get          = fm10k_dev_infos_get,
2034         .vlan_filter_set        = fm10k_vlan_filter_set,
2035         .vlan_offload_set       = fm10k_vlan_offload_set,
2036         .mac_addr_add           = fm10k_macaddr_add,
2037         .mac_addr_remove        = fm10k_macaddr_remove,
2038         .rx_queue_start         = fm10k_dev_rx_queue_start,
2039         .rx_queue_stop          = fm10k_dev_rx_queue_stop,
2040         .tx_queue_start         = fm10k_dev_tx_queue_start,
2041         .tx_queue_stop          = fm10k_dev_tx_queue_stop,
2042         .rx_queue_setup         = fm10k_rx_queue_setup,
2043         .rx_queue_release       = fm10k_rx_queue_release,
2044         .tx_queue_setup         = fm10k_tx_queue_setup,
2045         .tx_queue_release       = fm10k_tx_queue_release,
2046         .reta_update            = fm10k_reta_update,
2047         .reta_query             = fm10k_reta_query,
2048         .rss_hash_update        = fm10k_rss_hash_update,
2049         .rss_hash_conf_get      = fm10k_rss_hash_conf_get,
2050 };
2051
2052 static int
2053 eth_fm10k_dev_init(struct rte_eth_dev *dev)
2054 {
2055         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2056         int diag;
2057         struct fm10k_macvlan_filter_info *macvlan;
2058
2059         PMD_INIT_FUNC_TRACE();
2060
2061         dev->dev_ops = &fm10k_eth_dev_ops;
2062         dev->rx_pkt_burst = &fm10k_recv_pkts;
2063         dev->tx_pkt_burst = &fm10k_xmit_pkts;
2064
2065         if (dev->data->scattered_rx)
2066                 dev->rx_pkt_burst = &fm10k_recv_scattered_pkts;
2067
2068         /* only initialize in the primary process */
2069         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2070                 return 0;
2071
2072         macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
2073         memset(macvlan, 0, sizeof(*macvlan));
2074         /* Vendor and Device ID need to be set before init of shared code */
2075         memset(hw, 0, sizeof(*hw));
2076         hw->device_id = dev->pci_dev->id.device_id;
2077         hw->vendor_id = dev->pci_dev->id.vendor_id;
2078         hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
2079         hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
2080         hw->revision_id = 0;
2081         hw->hw_addr = (void *)dev->pci_dev->mem_resource[0].addr;
2082         if (hw->hw_addr == NULL) {
2083                 PMD_INIT_LOG(ERR, "Bad mem resource."
2084                         " Try to blacklist unused devices.");
2085                 return -EIO;
2086         }
2087
2088         /* Store fm10k_adapter pointer */
2089         hw->back = dev->data->dev_private;
2090
2091         /* Initialize the shared code */
2092         diag = fm10k_init_shared_code(hw);
2093         if (diag != FM10K_SUCCESS) {
2094                 PMD_INIT_LOG(ERR, "Shared code init failed: %d", diag);
2095                 return -EIO;
2096         }
2097
2098         /*
2099          * Inialize bus info. Normally we would call fm10k_get_bus_info(), but
2100          * there is no way to get link status without reading BAR4.  Until this
2101          * works, assume we have maximum bandwidth.
2102          * @todo - fix bus info
2103          */
2104         hw->bus_caps.speed = fm10k_bus_speed_8000;
2105         hw->bus_caps.width = fm10k_bus_width_pcie_x8;
2106         hw->bus_caps.payload = fm10k_bus_payload_512;
2107         hw->bus.speed = fm10k_bus_speed_8000;
2108         hw->bus.width = fm10k_bus_width_pcie_x8;
2109         hw->bus.payload = fm10k_bus_payload_256;
2110
2111         /* Initialize the hw */
2112         diag = fm10k_init_hw(hw);
2113         if (diag != FM10K_SUCCESS) {
2114                 PMD_INIT_LOG(ERR, "Hardware init failed: %d", diag);
2115                 return -EIO;
2116         }
2117
2118         /* Initialize MAC address(es) */
2119         dev->data->mac_addrs = rte_zmalloc("fm10k",
2120                         ETHER_ADDR_LEN * FM10K_MAX_MACADDR_NUM, 0);
2121         if (dev->data->mac_addrs == NULL) {
2122                 PMD_INIT_LOG(ERR, "Cannot allocate memory for MAC addresses");
2123                 return -ENOMEM;
2124         }
2125
2126         diag = fm10k_read_mac_addr(hw);
2127
2128         ether_addr_copy((const struct ether_addr *)hw->mac.addr,
2129                         &dev->data->mac_addrs[0]);
2130
2131         if (diag != FM10K_SUCCESS ||
2132                 !is_valid_assigned_ether_addr(dev->data->mac_addrs)) {
2133
2134                 /* Generate a random addr */
2135                 eth_random_addr(hw->mac.addr);
2136                 memcpy(hw->mac.perm_addr, hw->mac.addr, ETH_ALEN);
2137                 ether_addr_copy((const struct ether_addr *)hw->mac.addr,
2138                 &dev->data->mac_addrs[0]);
2139         }
2140
2141         /* Reset the hw statistics */
2142         fm10k_stats_reset(dev);
2143
2144         /* Reset the hw */
2145         diag = fm10k_reset_hw(hw);
2146         if (diag != FM10K_SUCCESS) {
2147                 PMD_INIT_LOG(ERR, "Hardware reset failed: %d", diag);
2148                 return -EIO;
2149         }
2150
2151         /* Setup mailbox service */
2152         diag = fm10k_setup_mbx_service(hw);
2153         if (diag != FM10K_SUCCESS) {
2154                 PMD_INIT_LOG(ERR, "Failed to setup mailbox: %d", diag);
2155                 return -EIO;
2156         }
2157
2158         /*PF/VF has different interrupt handling mechanism */
2159         if (hw->mac.type == fm10k_mac_pf) {
2160                 /* register callback func to eal lib */
2161                 rte_intr_callback_register(&(dev->pci_dev->intr_handle),
2162                         fm10k_dev_interrupt_handler_pf, (void *)dev);
2163
2164                 /* enable MISC interrupt */
2165                 fm10k_dev_enable_intr_pf(dev);
2166         } else { /* VF */
2167                 rte_intr_callback_register(&(dev->pci_dev->intr_handle),
2168                         fm10k_dev_interrupt_handler_vf, (void *)dev);
2169
2170                 fm10k_dev_enable_intr_vf(dev);
2171         }
2172
2173         /* Enable uio intr after callback registered */
2174         rte_intr_enable(&(dev->pci_dev->intr_handle));
2175
2176         hw->mac.ops.update_int_moderator(hw);
2177
2178         /* Make sure Switch Manager is ready before going forward. */
2179         if (hw->mac.type == fm10k_mac_pf) {
2180                 int switch_ready = 0;
2181                 int i;
2182
2183                 for (i = 0; i < MAX_QUERY_SWITCH_STATE_TIMES; i++) {
2184                         fm10k_mbx_lock(hw);
2185                         hw->mac.ops.get_host_state(hw, &switch_ready);
2186                         fm10k_mbx_unlock(hw);
2187                         if (switch_ready)
2188                                 break;
2189                         /* Delay some time to acquire async LPORT_MAP info. */
2190                         rte_delay_us(WAIT_SWITCH_MSG_US);
2191                 }
2192
2193                 if (switch_ready == 0) {
2194                         PMD_INIT_LOG(ERR, "switch is not ready");
2195                         return -1;
2196                 }
2197         }
2198
2199         /*
2200          * Below function will trigger operations on mailbox, acquire lock to
2201          * avoid race condition from interrupt handler. Operations on mailbox
2202          * FIFO will trigger interrupt to PF/SM, in which interrupt handler
2203          * will handle and generate an interrupt to our side. Then,  FIFO in
2204          * mailbox will be touched.
2205          */
2206         fm10k_mbx_lock(hw);
2207         /* Enable port first */
2208         hw->mac.ops.update_lport_state(hw, hw->mac.dglort_map, 1, 1);
2209
2210         /* Set unicast mode by default. App can change to other mode in other
2211          * API func.
2212          */
2213         hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
2214                                         FM10K_XCAST_MODE_NONE);
2215
2216         fm10k_mbx_unlock(hw);
2217
2218         /* Add default mac address */
2219         fm10k_MAC_filter_set(dev, hw->mac.addr, true);
2220
2221         return 0;
2222 }
2223
2224 static int
2225 eth_fm10k_dev_uninit(struct rte_eth_dev *dev)
2226 {
2227         struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2228
2229         PMD_INIT_FUNC_TRACE();
2230
2231         /* only uninitialize in the primary process */
2232         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2233                 return 0;
2234
2235         /* safe to close dev here */
2236         fm10k_dev_close(dev);
2237
2238         dev->dev_ops = NULL;
2239         dev->rx_pkt_burst = NULL;
2240         dev->tx_pkt_burst = NULL;
2241
2242         /* disable uio/vfio intr */
2243         rte_intr_disable(&(dev->pci_dev->intr_handle));
2244
2245         /*PF/VF has different interrupt handling mechanism */
2246         if (hw->mac.type == fm10k_mac_pf) {
2247                 /* disable interrupt */
2248                 fm10k_dev_disable_intr_pf(dev);
2249
2250                 /* unregister callback func to eal lib */
2251                 rte_intr_callback_unregister(&(dev->pci_dev->intr_handle),
2252                         fm10k_dev_interrupt_handler_pf, (void *)dev);
2253         } else {
2254                 /* disable interrupt */
2255                 fm10k_dev_disable_intr_vf(dev);
2256
2257                 rte_intr_callback_unregister(&(dev->pci_dev->intr_handle),
2258                         fm10k_dev_interrupt_handler_vf, (void *)dev);
2259         }
2260
2261         /* free mac memory */
2262         if (dev->data->mac_addrs) {
2263                 rte_free(dev->data->mac_addrs);
2264                 dev->data->mac_addrs = NULL;
2265         }
2266
2267         memset(hw, 0, sizeof(*hw));
2268
2269         return 0;
2270 }
2271
2272 /*
2273  * The set of PCI devices this driver supports. This driver will enable both PF
2274  * and SRIOV-VF devices.
2275  */
2276 static const struct rte_pci_id pci_id_fm10k_map[] = {
2277 #define RTE_PCI_DEV_ID_DECL_FM10K(vend, dev) { RTE_PCI_DEVICE(vend, dev) },
2278 #define RTE_PCI_DEV_ID_DECL_FM10KVF(vend, dev) { RTE_PCI_DEVICE(vend, dev) },
2279 #include "rte_pci_dev_ids.h"
2280         { .vendor_id = 0, /* sentinel */ },
2281 };
2282
2283 static struct eth_driver rte_pmd_fm10k = {
2284         .pci_drv = {
2285                 .name = "rte_pmd_fm10k",
2286                 .id_table = pci_id_fm10k_map,
2287                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_DETACHABLE,
2288         },
2289         .eth_dev_init = eth_fm10k_dev_init,
2290         .eth_dev_uninit = eth_fm10k_dev_uninit,
2291         .dev_private_size = sizeof(struct fm10k_adapter),
2292 };
2293
2294 /*
2295  * Driver initialization routine.
2296  * Invoked once at EAL init time.
2297  * Register itself as the [Poll Mode] Driver of PCI FM10K devices.
2298  */
2299 static int
2300 rte_pmd_fm10k_init(__rte_unused const char *name,
2301         __rte_unused const char *params)
2302 {
2303         PMD_INIT_FUNC_TRACE();
2304         rte_eth_driver_register(&rte_pmd_fm10k);
2305         return 0;
2306 }
2307
2308 static struct rte_driver rte_fm10k_driver = {
2309         .type = PMD_PDEV,
2310         .init = rte_pmd_fm10k_init,
2311 };
2312
2313 PMD_REGISTER_DRIVER(rte_fm10k_driver);