4 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 #include <rte_ethdev.h>
37 #include <rte_common.h>
39 #include "base/fm10k_type.h"
41 #include <tmmintrin.h>
43 #ifndef __INTEL_COMPILER
44 #pragma GCC diagnostic ignored "-Wcast-qual"
48 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq);
50 /* Handling the offload flags (olflags) field takes computation
51 * time when receiving packets. Therefore we provide a flag to disable
52 * the processing of the olflags field when they are not needed. This
53 * gives improved performance, at the cost of losing the offload info
54 * in the received packet
56 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
58 /* Vlan present flag shift */
61 #define L3TYPE_SHIFT (4)
63 #define L4TYPE_SHIFT (7)
65 #define HBOFLAG_SHIFT (10)
67 #define RXEFLAG_SHIFT (13)
68 /* IPE/L4E flag shift */
69 #define L3L4EFLAG_SHIFT (14)
70 /* shift PKT_RX_L4_CKSUM_GOOD into one byte by 1 bit */
71 #define CKSUM_SHIFT (1)
74 fm10k_desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
76 __m128i ptype0, ptype1, vtag0, vtag1, eflag0, eflag1, cksumflag;
82 const __m128i pkttype_msk = _mm_set_epi16(
83 0x0000, 0x0000, 0x0000, 0x0000,
84 PKT_RX_VLAN_PKT, PKT_RX_VLAN_PKT,
85 PKT_RX_VLAN_PKT, PKT_RX_VLAN_PKT);
87 /* mask everything except rss type */
88 const __m128i rsstype_msk = _mm_set_epi16(
89 0x0000, 0x0000, 0x0000, 0x0000,
90 0x000F, 0x000F, 0x000F, 0x000F);
92 /* mask for HBO and RXE flag flags */
93 const __m128i rxe_msk = _mm_set_epi16(
94 0x0000, 0x0000, 0x0000, 0x0000,
95 0x0001, 0x0001, 0x0001, 0x0001);
97 /* mask the lower byte of ol_flags */
98 const __m128i ol_flags_msk = _mm_set_epi16(
99 0x0000, 0x0000, 0x0000, 0x0000,
100 0x00FF, 0x00FF, 0x00FF, 0x00FF);
102 const __m128i l3l4cksum_flag = _mm_set_epi8(0, 0, 0, 0,
105 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
106 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT,
107 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
108 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT);
110 const __m128i rxe_flag = _mm_set_epi8(0, 0, 0, 0,
115 /* map rss type to rss hash flag */
116 const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
117 0, 0, 0, PKT_RX_RSS_HASH,
118 PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
119 PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);
121 /* Calculate RSS_hash and Vlan fields */
122 ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
123 ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
124 vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
125 vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
127 ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
128 ptype0 = _mm_and_si128(ptype0, rsstype_msk);
129 ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
131 vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
134 vtag1 = _mm_srli_epi16(vtag1, VP_SHIFT);
135 vtag1 = _mm_and_si128(vtag1, pkttype_msk);
137 vtag1 = _mm_or_si128(ptype0, vtag1);
139 /* Process err flags, simply set RECIP_ERR bit if HBO/IXE is set */
140 eflag1 = _mm_srli_epi16(eflag0, RXEFLAG_SHIFT);
141 eflag0 = _mm_srli_epi16(eflag0, HBOFLAG_SHIFT);
142 eflag0 = _mm_or_si128(eflag0, eflag1);
143 eflag0 = _mm_and_si128(eflag0, rxe_msk);
144 eflag0 = _mm_shuffle_epi8(rxe_flag, eflag0);
146 vtag1 = _mm_or_si128(eflag0, vtag1);
148 /* Process L4/L3 checksum error flags */
149 cksumflag = _mm_srli_epi16(cksumflag, L3L4EFLAG_SHIFT);
150 cksumflag = _mm_shuffle_epi8(l3l4cksum_flag, cksumflag);
152 /* clean the higher byte and shift back the flag bits */
153 cksumflag = _mm_and_si128(cksumflag, ol_flags_msk);
154 cksumflag = _mm_slli_epi16(cksumflag, CKSUM_SHIFT);
155 vtag1 = _mm_or_si128(cksumflag, vtag1);
157 vol.dword = _mm_cvtsi128_si64(vtag1);
159 rx_pkts[0]->ol_flags = vol.e[0];
160 rx_pkts[1]->ol_flags = vol.e[1];
161 rx_pkts[2]->ol_flags = vol.e[2];
162 rx_pkts[3]->ol_flags = vol.e[3];
165 /* @note: When this function is changed, make corresponding change to
166 * fm10k_dev_supported_ptypes_get().
169 fm10k_desc_to_pktype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
171 __m128i l3l4type0, l3l4type1, l3type, l4type;
177 /* L3 pkt type mask Bit4 to Bit6 */
178 const __m128i l3type_msk = _mm_set_epi16(
179 0x0000, 0x0000, 0x0000, 0x0000,
180 0x0070, 0x0070, 0x0070, 0x0070);
182 /* L4 pkt type mask Bit7 to Bit9 */
183 const __m128i l4type_msk = _mm_set_epi16(
184 0x0000, 0x0000, 0x0000, 0x0000,
185 0x0380, 0x0380, 0x0380, 0x0380);
187 /* convert RRC l3 type to mbuf format */
188 const __m128i l3type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
189 0, 0, 0, RTE_PTYPE_L3_IPV6_EXT,
190 RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV4_EXT,
191 RTE_PTYPE_L3_IPV4, 0);
193 /* Convert RRC l4 type to mbuf format l4type_flags shift-left 8 bits
194 * to fill into8 bits length.
196 const __m128i l4type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
197 RTE_PTYPE_TUNNEL_GENEVE >> 8,
198 RTE_PTYPE_TUNNEL_NVGRE >> 8,
199 RTE_PTYPE_TUNNEL_VXLAN >> 8,
200 RTE_PTYPE_TUNNEL_GRE >> 8,
201 RTE_PTYPE_L4_UDP >> 8,
202 RTE_PTYPE_L4_TCP >> 8,
205 l3l4type0 = _mm_unpacklo_epi16(descs[0], descs[1]);
206 l3l4type1 = _mm_unpacklo_epi16(descs[2], descs[3]);
207 l3l4type0 = _mm_unpacklo_epi32(l3l4type0, l3l4type1);
209 l3type = _mm_and_si128(l3l4type0, l3type_msk);
210 l4type = _mm_and_si128(l3l4type0, l4type_msk);
212 l3type = _mm_srli_epi16(l3type, L3TYPE_SHIFT);
213 l4type = _mm_srli_epi16(l4type, L4TYPE_SHIFT);
215 l3type = _mm_shuffle_epi8(l3type_flags, l3type);
216 /* l4type_flags shift-left for 8 bits, need shift-right back */
217 l4type = _mm_shuffle_epi8(l4type_flags, l4type);
219 l4type = _mm_slli_epi16(l4type, 8);
220 l3l4type0 = _mm_or_si128(l3type, l4type);
221 vol.dword = _mm_cvtsi128_si64(l3l4type0);
223 rx_pkts[0]->packet_type = vol.e[0];
224 rx_pkts[1]->packet_type = vol.e[1];
225 rx_pkts[2]->packet_type = vol.e[2];
226 rx_pkts[3]->packet_type = vol.e[3];
229 #define fm10k_desc_to_olflags_v(desc, rx_pkts) do {} while (0)
230 #define fm10k_desc_to_pktype_v(desc, rx_pkts) do {} while (0)
233 int __attribute__((cold))
234 fm10k_rx_vec_condition_check(struct rte_eth_dev *dev)
236 #ifndef RTE_LIBRTE_IEEE1588
237 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
238 struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
240 #ifndef RTE_FM10K_RX_OLFLAGS_ENABLE
241 /* whithout rx ol_flags, no VP flag report */
242 if (rxmode->hw_vlan_extend != 0)
246 /* no fdir support */
247 if (fconf->mode != RTE_FDIR_MODE_NONE)
250 /* no header split support */
251 if (rxmode->header_split == 1)
261 int __attribute__((cold))
262 fm10k_rxq_vec_setup(struct fm10k_rx_queue *rxq)
265 struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
268 /* data_off will be ajusted after new mbuf allocated for 512-byte
271 mb_def.data_off = RTE_PKTMBUF_HEADROOM;
272 mb_def.port = rxq->port_id;
273 rte_mbuf_refcnt_set(&mb_def, 1);
275 /* prevent compiler reordering: rearm_data covers previous fields */
276 rte_compiler_barrier();
277 p = (uintptr_t)&mb_def.rearm_data;
278 rxq->mbuf_initializer = *(uint64_t *)p;
283 fm10k_rxq_rearm(struct fm10k_rx_queue *rxq)
287 volatile union fm10k_rx_desc *rxdp;
288 struct rte_mbuf **mb_alloc = &rxq->sw_ring[rxq->rxrearm_start];
289 struct rte_mbuf *mb0, *mb1;
290 __m128i head_off = _mm_set_epi64x(
291 RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1,
292 RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1);
293 __m128i dma_addr0, dma_addr1;
294 /* Rx buffer need to be aligned with 512 byte */
295 const __m128i hba_msk = _mm_set_epi64x(0,
296 UINT64_MAX - FM10K_RX_DATABUF_ALIGN + 1);
298 rxdp = rxq->hw_ring + rxq->rxrearm_start;
300 /* Pull 'n' more MBUFs into the software ring */
301 if (rte_mempool_get_bulk(rxq->mp,
303 RTE_FM10K_RXQ_REARM_THRESH) < 0) {
304 dma_addr0 = _mm_setzero_si128();
305 /* Clean up all the HW/SW ring content */
306 for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i++) {
307 mb_alloc[i] = &rxq->fake_mbuf;
308 _mm_store_si128((__m128i *)&rxdp[i].q,
312 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
313 RTE_FM10K_RXQ_REARM_THRESH;
317 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
318 for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i += 2, mb_alloc += 2) {
319 __m128i vaddr0, vaddr1;
325 /* Flush mbuf with pkt template.
326 * Data to be rearmed is 6 bytes long.
327 * Though, RX will overwrite ol_flags that are coming next
328 * anyway. So overwrite whole 8 bytes with one load:
329 * 6 bytes of rearm_data plus first 2 bytes of ol_flags.
331 p0 = (uintptr_t)&mb0->rearm_data;
332 *(uint64_t *)p0 = rxq->mbuf_initializer;
333 p1 = (uintptr_t)&mb1->rearm_data;
334 *(uint64_t *)p1 = rxq->mbuf_initializer;
336 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
337 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
338 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
340 /* convert pa to dma_addr hdr/data */
341 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
342 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
344 /* add headroom to pa values */
345 dma_addr0 = _mm_add_epi64(dma_addr0, head_off);
346 dma_addr1 = _mm_add_epi64(dma_addr1, head_off);
348 /* Do 512 byte alignment to satisfy HW requirement, in the
349 * meanwhile, set Header Buffer Address to zero.
351 dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
352 dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);
354 /* flush desc with pa dma_addr */
355 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr0);
356 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr1);
358 /* enforce 512B alignment on default Rx virtual addresses */
359 mb0->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb0->buf_addr
360 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
361 - (char *)mb0->buf_addr);
362 mb1->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb1->buf_addr
363 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
364 - (char *)mb1->buf_addr);
367 rxq->rxrearm_start += RTE_FM10K_RXQ_REARM_THRESH;
368 if (rxq->rxrearm_start >= rxq->nb_desc)
369 rxq->rxrearm_start = 0;
371 rxq->rxrearm_nb -= RTE_FM10K_RXQ_REARM_THRESH;
373 rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
374 (rxq->nb_desc - 1) : (rxq->rxrearm_start - 1));
376 /* Update the tail pointer on the NIC */
377 FM10K_PCI_REG_WRITE(rxq->tail_ptr, rx_id);
380 void __attribute__((cold))
381 fm10k_rx_queue_release_mbufs_vec(struct fm10k_rx_queue *rxq)
383 const unsigned mask = rxq->nb_desc - 1;
386 if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_desc)
389 /* free all mbufs that are valid in the ring */
390 for (i = rxq->next_dd; i != rxq->rxrearm_start; i = (i + 1) & mask)
391 rte_pktmbuf_free_seg(rxq->sw_ring[i]);
392 rxq->rxrearm_nb = rxq->nb_desc;
394 /* set all entries to NULL */
395 memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_desc);
398 static inline uint16_t
399 fm10k_recv_raw_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
400 uint16_t nb_pkts, uint8_t *split_packet)
402 volatile union fm10k_rx_desc *rxdp;
403 struct rte_mbuf **mbufp;
404 uint16_t nb_pkts_recd;
406 struct fm10k_rx_queue *rxq = rx_queue;
409 __m128i dd_check, eop_check;
412 next_dd = rxq->next_dd;
414 /* Just the act of getting into the function from the application is
415 * going to cost about 7 cycles
417 rxdp = rxq->hw_ring + next_dd;
421 /* See if we need to rearm the RX queue - gives the prefetch a bit
424 if (rxq->rxrearm_nb > RTE_FM10K_RXQ_REARM_THRESH)
425 fm10k_rxq_rearm(rxq);
427 /* Before we start moving massive data around, check to see if
428 * there is actually a packet available
430 if (!(rxdp->d.staterr & FM10K_RXD_STATUS_DD))
433 /* Vecotr RX will process 4 packets at a time, strip the unaligned
434 * tails in case it's not multiple of 4.
436 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_FM10K_DESCS_PER_LOOP);
438 /* 4 packets DD mask */
439 dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
441 /* 4 packets EOP mask */
442 eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
444 /* mask to shuffle from desc. to mbuf */
445 shuf_msk = _mm_set_epi8(
446 7, 6, 5, 4, /* octet 4~7, 32bits rss */
447 15, 14, /* octet 14~15, low 16 bits vlan_macip */
448 13, 12, /* octet 12~13, 16 bits data_len */
449 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
450 13, 12, /* octet 12~13, low 16 bits pkt_len */
451 0xFF, 0xFF, /* skip high 16 bits pkt_type */
452 0xFF, 0xFF /* Skip pkt_type field in shuffle operation */
455 /* Cache is empty -> need to scan the buffer rings, but first move
456 * the next 'n' mbufs into the cache
458 mbufp = &rxq->sw_ring[next_dd];
460 /* A. load 4 packet in one loop
461 * [A*. mask out 4 unused dirty field in desc]
462 * B. copy 4 mbuf point from swring to rx_pkts
463 * C. calc the number of DD bits among the 4 packets
464 * [C*. extract the end-of-packet bit, if requested]
465 * D. fill info. from desc to mbuf
467 for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
468 pos += RTE_FM10K_DESCS_PER_LOOP,
469 rxdp += RTE_FM10K_DESCS_PER_LOOP) {
470 __m128i descs0[RTE_FM10K_DESCS_PER_LOOP];
471 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
472 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
473 __m128i mbp1, mbp2; /* two mbuf pointer in one XMM reg. */
475 /* B.1 load 1 mbuf point */
476 mbp1 = _mm_loadu_si128((__m128i *)&mbufp[pos]);
478 /* Read desc statuses backwards to avoid race condition */
479 /* A.1 load 4 pkts desc */
480 descs0[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
481 rte_compiler_barrier();
483 /* B.2 copy 2 mbuf point into rx_pkts */
484 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
486 /* B.1 load 1 mbuf point */
487 mbp2 = _mm_loadu_si128((__m128i *)&mbufp[pos+2]);
489 descs0[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
490 rte_compiler_barrier();
491 /* B.1 load 2 mbuf point */
492 descs0[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
493 rte_compiler_barrier();
494 descs0[0] = _mm_loadu_si128((__m128i *)(rxdp));
496 /* B.2 copy 2 mbuf point into rx_pkts */
497 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
499 /* avoid compiler reorder optimization */
500 rte_compiler_barrier();
503 rte_mbuf_prefetch_part2(rx_pkts[pos]);
504 rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
505 rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
506 rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
509 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
510 pkt_mb4 = _mm_shuffle_epi8(descs0[3], shuf_msk);
511 pkt_mb3 = _mm_shuffle_epi8(descs0[2], shuf_msk);
513 /* C.1 4=>2 filter staterr info only */
514 sterr_tmp2 = _mm_unpackhi_epi32(descs0[3], descs0[2]);
515 /* C.1 4=>2 filter staterr info only */
516 sterr_tmp1 = _mm_unpackhi_epi32(descs0[1], descs0[0]);
518 /* set ol_flags with vlan packet type */
519 fm10k_desc_to_olflags_v(descs0, &rx_pkts[pos]);
521 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
522 pkt_mb2 = _mm_shuffle_epi8(descs0[1], shuf_msk);
523 pkt_mb1 = _mm_shuffle_epi8(descs0[0], shuf_msk);
525 /* C.2 get 4 pkts staterr value */
526 zero = _mm_xor_si128(dd_check, dd_check);
527 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
529 /* D.3 copy final 3,4 data to rx_pkts */
530 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
532 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
535 /* C* extract and record EOP bit */
537 __m128i eop_shuf_mask = _mm_set_epi8(
538 0xFF, 0xFF, 0xFF, 0xFF,
539 0xFF, 0xFF, 0xFF, 0xFF,
540 0xFF, 0xFF, 0xFF, 0xFF,
541 0x04, 0x0C, 0x00, 0x08
544 /* and with mask to extract bits, flipping 1-0 */
545 __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
546 /* the staterr values are not in order, as the count
547 * count of dd bits doesn't care. However, for end of
548 * packet tracking, we do care, so shuffle. This also
549 * compresses the 32-bit values to 8-bit
551 eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
552 /* store the resulting 32-bit value */
553 *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
554 split_packet += RTE_FM10K_DESCS_PER_LOOP;
556 /* zero-out next pointers */
557 rx_pkts[pos]->next = NULL;
558 rx_pkts[pos + 1]->next = NULL;
559 rx_pkts[pos + 2]->next = NULL;
560 rx_pkts[pos + 3]->next = NULL;
563 /* C.3 calc available number of desc */
564 staterr = _mm_and_si128(staterr, dd_check);
565 staterr = _mm_packs_epi32(staterr, zero);
567 /* D.3 copy final 1,2 data to rx_pkts */
568 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
570 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
573 fm10k_desc_to_pktype_v(descs0, &rx_pkts[pos]);
575 /* C.4 calc avaialbe number of desc */
576 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
578 if (likely(var != RTE_FM10K_DESCS_PER_LOOP))
582 /* Update our internal tail pointer */
583 rxq->next_dd = (uint16_t)(rxq->next_dd + nb_pkts_recd);
584 rxq->next_dd = (uint16_t)(rxq->next_dd & (rxq->nb_desc - 1));
585 rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
590 /* vPMD receive routine
593 * - don't support ol_flags for rss and csum err
596 fm10k_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
599 return fm10k_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
602 static inline uint16_t
603 fm10k_reassemble_packets(struct fm10k_rx_queue *rxq,
604 struct rte_mbuf **rx_bufs,
605 uint16_t nb_bufs, uint8_t *split_flags)
607 struct rte_mbuf *pkts[RTE_FM10K_MAX_RX_BURST]; /*finished pkts*/
608 struct rte_mbuf *start = rxq->pkt_first_seg;
609 struct rte_mbuf *end = rxq->pkt_last_seg;
610 unsigned pkt_idx, buf_idx;
612 for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
614 /* processing a split packet */
615 end->next = rx_bufs[buf_idx];
617 start->pkt_len += rx_bufs[buf_idx]->data_len;
620 if (!split_flags[buf_idx]) {
621 /* it's the last packet of the set */
622 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
623 start->hash = end->hash;
624 start->ol_flags = end->ol_flags;
625 start->packet_type = end->packet_type;
627 pkts[pkt_idx++] = start;
631 /* not processing a split packet */
632 if (!split_flags[buf_idx]) {
633 /* not a split packet, save and skip */
634 pkts[pkt_idx++] = rx_bufs[buf_idx];
637 end = start = rx_bufs[buf_idx];
641 /* save the partial packet for next time */
642 rxq->pkt_first_seg = start;
643 rxq->pkt_last_seg = end;
644 memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
649 * vPMD receive routine that reassembles scattered packets
652 * - don't support ol_flags for rss and csum err
653 * - nb_pkts > RTE_FM10K_MAX_RX_BURST, only scan RTE_FM10K_MAX_RX_BURST
657 fm10k_recv_scattered_pkts_vec(void *rx_queue,
658 struct rte_mbuf **rx_pkts,
661 struct fm10k_rx_queue *rxq = rx_queue;
662 uint8_t split_flags[RTE_FM10K_MAX_RX_BURST] = {0};
665 /* Split_flags only can support max of RTE_FM10K_MAX_RX_BURST */
666 nb_pkts = RTE_MIN(nb_pkts, RTE_FM10K_MAX_RX_BURST);
667 /* get some new buffers */
668 uint16_t nb_bufs = fm10k_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
673 /* happy day case, full burst + no packets to be joined */
674 const uint64_t *split_fl64 = (uint64_t *)split_flags;
676 if (rxq->pkt_first_seg == NULL &&
677 split_fl64[0] == 0 && split_fl64[1] == 0 &&
678 split_fl64[2] == 0 && split_fl64[3] == 0)
681 /* reassemble any packets that need reassembly*/
682 if (rxq->pkt_first_seg == NULL) {
683 /* find the first split flag, and only reassemble then*/
684 while (i < nb_bufs && !split_flags[i])
689 return i + fm10k_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
693 static const struct fm10k_txq_ops vec_txq_ops = {
694 .reset = fm10k_reset_tx_queue,
697 void __attribute__((cold))
698 fm10k_txq_vec_setup(struct fm10k_tx_queue *txq)
700 txq->ops = &vec_txq_ops;
703 int __attribute__((cold))
704 fm10k_tx_vec_condition_check(struct fm10k_tx_queue *txq)
706 /* Vector TX can't offload any features yet */
707 if ((txq->txq_flags & FM10K_SIMPLE_TX_FLAG) != FM10K_SIMPLE_TX_FLAG)
717 vtx1(volatile struct fm10k_tx_desc *txdp,
718 struct rte_mbuf *pkt, uint64_t flags)
720 __m128i descriptor = _mm_set_epi64x(flags << 56 |
721 pkt->vlan_tci << 16 | pkt->data_len,
723 _mm_store_si128((__m128i *)txdp, descriptor);
727 vtx(volatile struct fm10k_tx_desc *txdp,
728 struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
732 for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
733 vtx1(txdp, *pkt, flags);
736 static inline int __attribute__((always_inline))
737 fm10k_tx_free_bufs(struct fm10k_tx_queue *txq)
739 struct rte_mbuf **txep;
744 struct rte_mbuf *m, *free[RTE_FM10K_TX_MAX_FREE_BUF_SZ];
746 /* check DD bit on threshold descriptor */
747 flags = txq->hw_ring[txq->next_dd].flags;
748 if (!(flags & FM10K_TXD_FLAG_DONE))
753 /* First buffer to free from S/W ring is at index
754 * next_dd - (rs_thresh-1)
756 txep = &txq->sw_ring[txq->next_dd - (n - 1)];
757 m = __rte_pktmbuf_prefree_seg(txep[0]);
758 if (likely(m != NULL)) {
761 for (i = 1; i < n; i++) {
762 m = __rte_pktmbuf_prefree_seg(txep[i]);
763 if (likely(m != NULL)) {
764 if (likely(m->pool == free[0]->pool))
767 rte_mempool_put_bulk(free[0]->pool,
768 (void *)free, nb_free);
774 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
776 for (i = 1; i < n; i++) {
777 m = __rte_pktmbuf_prefree_seg(txep[i]);
779 rte_mempool_put(m->pool, m);
783 /* buffers were freed, update counters */
784 txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
785 txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
786 if (txq->next_dd >= txq->nb_desc)
787 txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
789 return txq->rs_thresh;
792 static inline void __attribute__((always_inline))
793 tx_backlog_entry(struct rte_mbuf **txep,
794 struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
798 for (i = 0; i < (int)nb_pkts; ++i)
799 txep[i] = tx_pkts[i];
803 fm10k_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
806 struct fm10k_tx_queue *txq = (struct fm10k_tx_queue *)tx_queue;
807 volatile struct fm10k_tx_desc *txdp;
808 struct rte_mbuf **txep;
809 uint16_t n, nb_commit, tx_id;
810 uint64_t flags = FM10K_TXD_FLAG_LAST;
811 uint64_t rs = FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_LAST;
814 /* cross rx_thresh boundary is not allowed */
815 nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
817 if (txq->nb_free < txq->free_thresh)
818 fm10k_tx_free_bufs(txq);
820 nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
821 if (unlikely(nb_pkts == 0))
824 tx_id = txq->next_free;
825 txdp = &txq->hw_ring[tx_id];
826 txep = &txq->sw_ring[tx_id];
828 txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
830 n = (uint16_t)(txq->nb_desc - tx_id);
831 if (nb_commit >= n) {
832 tx_backlog_entry(txep, tx_pkts, n);
834 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
835 vtx1(txdp, *tx_pkts, flags);
837 vtx1(txdp, *tx_pkts++, rs);
839 nb_commit = (uint16_t)(nb_commit - n);
842 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
844 /* avoid reach the end of ring */
845 txdp = &(txq->hw_ring[tx_id]);
846 txep = &txq->sw_ring[tx_id];
849 tx_backlog_entry(txep, tx_pkts, nb_commit);
851 vtx(txdp, tx_pkts, nb_commit, flags);
853 tx_id = (uint16_t)(tx_id + nb_commit);
854 if (tx_id > txq->next_rs) {
855 txq->hw_ring[txq->next_rs].flags |= FM10K_TXD_FLAG_RS;
856 txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh);
859 txq->next_free = tx_id;
861 FM10K_PCI_REG_WRITE(txq->tail_ptr, txq->next_free);
866 static void __attribute__((cold))
867 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq)
869 static const struct fm10k_tx_desc zeroed_desc = {0};
870 struct rte_mbuf **txe = txq->sw_ring;
873 /* Zero out HW ring memory */
874 for (i = 0; i < txq->nb_desc; i++)
875 txq->hw_ring[i] = zeroed_desc;
877 /* Initialize SW ring entries */
878 for (i = 0; i < txq->nb_desc; i++)
881 txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
882 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
886 /* Always allow 1 descriptor to be un-allocated to avoid
887 * a H/W race condition
889 txq->nb_free = (uint16_t)(txq->nb_desc - 1);
890 FM10K_PCI_REG_WRITE(txq->tail_ptr, 0);