1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2013-2015 Intel Corporation
7 #include <rte_ethdev_driver.h>
8 #include <rte_common.h>
10 #include "base/fm10k_type.h"
12 #include <tmmintrin.h>
14 #ifndef __INTEL_COMPILER
15 #pragma GCC diagnostic ignored "-Wcast-qual"
19 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq);
21 /* Handling the offload flags (olflags) field takes computation
22 * time when receiving packets. Therefore we provide a flag to disable
23 * the processing of the olflags field when they are not needed. This
24 * gives improved performance, at the cost of losing the offload info
25 * in the received packet
27 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
29 /* Vlan present flag shift */
32 #define L3TYPE_SHIFT (4)
34 #define L4TYPE_SHIFT (7)
36 #define HBOFLAG_SHIFT (10)
38 #define RXEFLAG_SHIFT (13)
39 /* IPE/L4E flag shift */
40 #define L3L4EFLAG_SHIFT (14)
41 /* shift PKT_RX_L4_CKSUM_GOOD into one byte by 1 bit */
42 #define CKSUM_SHIFT (1)
45 fm10k_desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
47 __m128i ptype0, ptype1, vtag0, vtag1, eflag0, eflag1, cksumflag;
53 const __m128i pkttype_msk = _mm_set_epi16(
54 0x0000, 0x0000, 0x0000, 0x0000,
55 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
56 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
57 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
58 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
60 /* mask everything except rss type */
61 const __m128i rsstype_msk = _mm_set_epi16(
62 0x0000, 0x0000, 0x0000, 0x0000,
63 0x000F, 0x000F, 0x000F, 0x000F);
65 /* mask for HBO and RXE flag flags */
66 const __m128i rxe_msk = _mm_set_epi16(
67 0x0000, 0x0000, 0x0000, 0x0000,
68 0x0001, 0x0001, 0x0001, 0x0001);
70 /* mask the lower byte of ol_flags */
71 const __m128i ol_flags_msk = _mm_set_epi16(
72 0x0000, 0x0000, 0x0000, 0x0000,
73 0x00FF, 0x00FF, 0x00FF, 0x00FF);
75 const __m128i l3l4cksum_flag = _mm_set_epi8(0, 0, 0, 0,
78 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
79 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT,
80 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
81 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT);
83 const __m128i rxe_flag = _mm_set_epi8(0, 0, 0, 0,
88 /* map rss type to rss hash flag */
89 const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
90 0, 0, 0, PKT_RX_RSS_HASH,
91 PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
92 PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);
94 /* Calculate RSS_hash and Vlan fields */
95 ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
96 ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
97 vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
98 vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
100 ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
101 ptype0 = _mm_and_si128(ptype0, rsstype_msk);
102 ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
104 vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
107 vtag1 = _mm_srli_epi16(vtag1, VP_SHIFT);
108 vtag1 = _mm_and_si128(vtag1, pkttype_msk);
110 vtag1 = _mm_or_si128(ptype0, vtag1);
112 /* Process err flags, simply set RECIP_ERR bit if HBO/IXE is set */
113 eflag1 = _mm_srli_epi16(eflag0, RXEFLAG_SHIFT);
114 eflag0 = _mm_srli_epi16(eflag0, HBOFLAG_SHIFT);
115 eflag0 = _mm_or_si128(eflag0, eflag1);
116 eflag0 = _mm_and_si128(eflag0, rxe_msk);
117 eflag0 = _mm_shuffle_epi8(rxe_flag, eflag0);
119 vtag1 = _mm_or_si128(eflag0, vtag1);
121 /* Process L4/L3 checksum error flags */
122 cksumflag = _mm_srli_epi16(cksumflag, L3L4EFLAG_SHIFT);
123 cksumflag = _mm_shuffle_epi8(l3l4cksum_flag, cksumflag);
125 /* clean the higher byte and shift back the flag bits */
126 cksumflag = _mm_and_si128(cksumflag, ol_flags_msk);
127 cksumflag = _mm_slli_epi16(cksumflag, CKSUM_SHIFT);
128 vtag1 = _mm_or_si128(cksumflag, vtag1);
130 vol.dword = _mm_cvtsi128_si64(vtag1);
132 rx_pkts[0]->ol_flags = vol.e[0];
133 rx_pkts[1]->ol_flags = vol.e[1];
134 rx_pkts[2]->ol_flags = vol.e[2];
135 rx_pkts[3]->ol_flags = vol.e[3];
138 /* @note: When this function is changed, make corresponding change to
139 * fm10k_dev_supported_ptypes_get().
142 fm10k_desc_to_pktype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
144 __m128i l3l4type0, l3l4type1, l3type, l4type;
150 /* L3 pkt type mask Bit4 to Bit6 */
151 const __m128i l3type_msk = _mm_set_epi16(
152 0x0000, 0x0000, 0x0000, 0x0000,
153 0x0070, 0x0070, 0x0070, 0x0070);
155 /* L4 pkt type mask Bit7 to Bit9 */
156 const __m128i l4type_msk = _mm_set_epi16(
157 0x0000, 0x0000, 0x0000, 0x0000,
158 0x0380, 0x0380, 0x0380, 0x0380);
160 /* convert RRC l3 type to mbuf format */
161 const __m128i l3type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
162 0, 0, 0, RTE_PTYPE_L3_IPV6_EXT,
163 RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV4_EXT,
164 RTE_PTYPE_L3_IPV4, 0);
166 /* Convert RRC l4 type to mbuf format l4type_flags shift-left 8 bits
167 * to fill into8 bits length.
169 const __m128i l4type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
170 RTE_PTYPE_TUNNEL_GENEVE >> 8,
171 RTE_PTYPE_TUNNEL_NVGRE >> 8,
172 RTE_PTYPE_TUNNEL_VXLAN >> 8,
173 RTE_PTYPE_TUNNEL_GRE >> 8,
174 RTE_PTYPE_L4_UDP >> 8,
175 RTE_PTYPE_L4_TCP >> 8,
178 l3l4type0 = _mm_unpacklo_epi16(descs[0], descs[1]);
179 l3l4type1 = _mm_unpacklo_epi16(descs[2], descs[3]);
180 l3l4type0 = _mm_unpacklo_epi32(l3l4type0, l3l4type1);
182 l3type = _mm_and_si128(l3l4type0, l3type_msk);
183 l4type = _mm_and_si128(l3l4type0, l4type_msk);
185 l3type = _mm_srli_epi16(l3type, L3TYPE_SHIFT);
186 l4type = _mm_srli_epi16(l4type, L4TYPE_SHIFT);
188 l3type = _mm_shuffle_epi8(l3type_flags, l3type);
189 /* l4type_flags shift-left for 8 bits, need shift-right back */
190 l4type = _mm_shuffle_epi8(l4type_flags, l4type);
192 l4type = _mm_slli_epi16(l4type, 8);
193 l3l4type0 = _mm_or_si128(l3type, l4type);
194 vol.dword = _mm_cvtsi128_si64(l3l4type0);
196 rx_pkts[0]->packet_type = vol.e[0];
197 rx_pkts[1]->packet_type = vol.e[1];
198 rx_pkts[2]->packet_type = vol.e[2];
199 rx_pkts[3]->packet_type = vol.e[3];
202 #define fm10k_desc_to_olflags_v(desc, rx_pkts) do {} while (0)
203 #define fm10k_desc_to_pktype_v(desc, rx_pkts) do {} while (0)
207 fm10k_rx_vec_condition_check(struct rte_eth_dev *dev)
209 #ifndef RTE_LIBRTE_IEEE1588
210 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
211 struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
213 #ifndef RTE_FM10K_RX_OLFLAGS_ENABLE
214 /* whithout rx ol_flags, no VP flag report */
215 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
219 /* no fdir support */
220 if (fconf->mode != RTE_FDIR_MODE_NONE)
223 /* no header split support */
224 if (rxmode->offloads & DEV_RX_OFFLOAD_HEADER_SPLIT)
235 fm10k_rxq_vec_setup(struct fm10k_rx_queue *rxq)
238 struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
241 /* data_off will be ajusted after new mbuf allocated for 512-byte
244 mb_def.data_off = RTE_PKTMBUF_HEADROOM;
245 mb_def.port = rxq->port_id;
246 rte_mbuf_refcnt_set(&mb_def, 1);
248 /* prevent compiler reordering: rearm_data covers previous fields */
249 rte_compiler_barrier();
250 p = (uintptr_t)&mb_def.rearm_data;
251 rxq->mbuf_initializer = *(uint64_t *)p;
256 fm10k_rxq_rearm(struct fm10k_rx_queue *rxq)
260 volatile union fm10k_rx_desc *rxdp;
261 struct rte_mbuf **mb_alloc = &rxq->sw_ring[rxq->rxrearm_start];
262 struct rte_mbuf *mb0, *mb1;
263 __m128i head_off = _mm_set_epi64x(
264 RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1,
265 RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1);
266 __m128i dma_addr0, dma_addr1;
267 /* Rx buffer need to be aligned with 512 byte */
268 const __m128i hba_msk = _mm_set_epi64x(0,
269 UINT64_MAX - FM10K_RX_DATABUF_ALIGN + 1);
271 rxdp = rxq->hw_ring + rxq->rxrearm_start;
273 /* Pull 'n' more MBUFs into the software ring */
274 if (rte_mempool_get_bulk(rxq->mp,
276 RTE_FM10K_RXQ_REARM_THRESH) < 0) {
277 dma_addr0 = _mm_setzero_si128();
278 /* Clean up all the HW/SW ring content */
279 for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i++) {
280 mb_alloc[i] = &rxq->fake_mbuf;
281 _mm_store_si128((__m128i *)&rxdp[i].q,
285 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
286 RTE_FM10K_RXQ_REARM_THRESH;
290 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
291 for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i += 2, mb_alloc += 2) {
292 __m128i vaddr0, vaddr1;
298 /* Flush mbuf with pkt template.
299 * Data to be rearmed is 6 bytes long.
301 p0 = (uintptr_t)&mb0->rearm_data;
302 *(uint64_t *)p0 = rxq->mbuf_initializer;
303 p1 = (uintptr_t)&mb1->rearm_data;
304 *(uint64_t *)p1 = rxq->mbuf_initializer;
306 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
307 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
308 offsetof(struct rte_mbuf, buf_addr) + 8);
309 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
310 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
312 /* convert pa to dma_addr hdr/data */
313 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
314 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
316 /* add headroom to pa values */
317 dma_addr0 = _mm_add_epi64(dma_addr0, head_off);
318 dma_addr1 = _mm_add_epi64(dma_addr1, head_off);
320 /* Do 512 byte alignment to satisfy HW requirement, in the
321 * meanwhile, set Header Buffer Address to zero.
323 dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
324 dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);
326 /* flush desc with pa dma_addr */
327 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr0);
328 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr1);
330 /* enforce 512B alignment on default Rx virtual addresses */
331 mb0->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb0->buf_addr
332 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
333 - (char *)mb0->buf_addr);
334 mb1->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb1->buf_addr
335 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
336 - (char *)mb1->buf_addr);
339 rxq->rxrearm_start += RTE_FM10K_RXQ_REARM_THRESH;
340 if (rxq->rxrearm_start >= rxq->nb_desc)
341 rxq->rxrearm_start = 0;
343 rxq->rxrearm_nb -= RTE_FM10K_RXQ_REARM_THRESH;
345 rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
346 (rxq->nb_desc - 1) : (rxq->rxrearm_start - 1));
348 /* Update the tail pointer on the NIC */
349 FM10K_PCI_REG_WRITE(rxq->tail_ptr, rx_id);
353 fm10k_rx_queue_release_mbufs_vec(struct fm10k_rx_queue *rxq)
355 const unsigned mask = rxq->nb_desc - 1;
358 if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_desc)
361 /* free all mbufs that are valid in the ring */
362 if (rxq->rxrearm_nb == 0) {
363 for (i = 0; i < rxq->nb_desc; i++)
364 if (rxq->sw_ring[i] != NULL)
365 rte_pktmbuf_free_seg(rxq->sw_ring[i]);
367 for (i = rxq->next_dd; i != rxq->rxrearm_start;
369 rte_pktmbuf_free_seg(rxq->sw_ring[i]);
371 rxq->rxrearm_nb = rxq->nb_desc;
373 /* set all entries to NULL */
374 memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_desc);
377 static inline uint16_t
378 fm10k_recv_raw_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
379 uint16_t nb_pkts, uint8_t *split_packet)
381 volatile union fm10k_rx_desc *rxdp;
382 struct rte_mbuf **mbufp;
383 uint16_t nb_pkts_recd;
385 struct fm10k_rx_queue *rxq = rx_queue;
388 __m128i dd_check, eop_check;
391 next_dd = rxq->next_dd;
393 /* Just the act of getting into the function from the application is
394 * going to cost about 7 cycles
396 rxdp = rxq->hw_ring + next_dd;
400 /* See if we need to rearm the RX queue - gives the prefetch a bit
403 if (rxq->rxrearm_nb > RTE_FM10K_RXQ_REARM_THRESH)
404 fm10k_rxq_rearm(rxq);
406 /* Before we start moving massive data around, check to see if
407 * there is actually a packet available
409 if (!(rxdp->d.staterr & FM10K_RXD_STATUS_DD))
412 /* Vecotr RX will process 4 packets at a time, strip the unaligned
413 * tails in case it's not multiple of 4.
415 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_FM10K_DESCS_PER_LOOP);
417 /* 4 packets DD mask */
418 dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
420 /* 4 packets EOP mask */
421 eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
423 /* mask to shuffle from desc. to mbuf */
424 shuf_msk = _mm_set_epi8(
425 7, 6, 5, 4, /* octet 4~7, 32bits rss */
426 15, 14, /* octet 14~15, low 16 bits vlan_macip */
427 13, 12, /* octet 12~13, 16 bits data_len */
428 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
429 13, 12, /* octet 12~13, low 16 bits pkt_len */
430 0xFF, 0xFF, /* skip high 16 bits pkt_type */
431 0xFF, 0xFF /* Skip pkt_type field in shuffle operation */
434 * Compile-time verify the shuffle mask
435 * NOTE: some field positions already verified above, but duplicated
436 * here for completeness in case of future modifications.
438 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
439 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
440 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
441 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
442 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
443 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
444 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
445 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
447 /* Cache is empty -> need to scan the buffer rings, but first move
448 * the next 'n' mbufs into the cache
450 mbufp = &rxq->sw_ring[next_dd];
452 /* A. load 4 packet in one loop
453 * [A*. mask out 4 unused dirty field in desc]
454 * B. copy 4 mbuf point from swring to rx_pkts
455 * C. calc the number of DD bits among the 4 packets
456 * [C*. extract the end-of-packet bit, if requested]
457 * D. fill info. from desc to mbuf
459 for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
460 pos += RTE_FM10K_DESCS_PER_LOOP,
461 rxdp += RTE_FM10K_DESCS_PER_LOOP) {
462 __m128i descs0[RTE_FM10K_DESCS_PER_LOOP];
463 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
464 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
466 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
467 #if defined(RTE_ARCH_X86_64)
471 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
472 mbp1 = _mm_loadu_si128((__m128i *)&mbufp[pos]);
474 /* Read desc statuses backwards to avoid race condition */
475 /* A.1 load 4 pkts desc */
476 descs0[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
477 rte_compiler_barrier();
479 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
480 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
482 #if defined(RTE_ARCH_X86_64)
483 /* B.1 load 2 64 bit mbuf poitns */
484 mbp2 = _mm_loadu_si128((__m128i *)&mbufp[pos+2]);
487 descs0[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
488 rte_compiler_barrier();
489 /* B.1 load 2 mbuf point */
490 descs0[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
491 rte_compiler_barrier();
492 descs0[0] = _mm_loadu_si128((__m128i *)(rxdp));
494 #if defined(RTE_ARCH_X86_64)
495 /* B.2 copy 2 mbuf point into rx_pkts */
496 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
499 /* avoid compiler reorder optimization */
500 rte_compiler_barrier();
503 rte_mbuf_prefetch_part2(rx_pkts[pos]);
504 rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
505 rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
506 rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
509 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
510 pkt_mb4 = _mm_shuffle_epi8(descs0[3], shuf_msk);
511 pkt_mb3 = _mm_shuffle_epi8(descs0[2], shuf_msk);
513 /* C.1 4=>2 filter staterr info only */
514 sterr_tmp2 = _mm_unpackhi_epi32(descs0[3], descs0[2]);
515 /* C.1 4=>2 filter staterr info only */
516 sterr_tmp1 = _mm_unpackhi_epi32(descs0[1], descs0[0]);
518 /* set ol_flags with vlan packet type */
519 fm10k_desc_to_olflags_v(descs0, &rx_pkts[pos]);
521 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
522 pkt_mb2 = _mm_shuffle_epi8(descs0[1], shuf_msk);
523 pkt_mb1 = _mm_shuffle_epi8(descs0[0], shuf_msk);
525 /* C.2 get 4 pkts staterr value */
526 zero = _mm_xor_si128(dd_check, dd_check);
527 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
529 /* D.3 copy final 3,4 data to rx_pkts */
530 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
532 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
535 /* C* extract and record EOP bit */
537 __m128i eop_shuf_mask = _mm_set_epi8(
538 0xFF, 0xFF, 0xFF, 0xFF,
539 0xFF, 0xFF, 0xFF, 0xFF,
540 0xFF, 0xFF, 0xFF, 0xFF,
541 0x04, 0x0C, 0x00, 0x08
544 /* and with mask to extract bits, flipping 1-0 */
545 __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
546 /* the staterr values are not in order, as the count
547 * count of dd bits doesn't care. However, for end of
548 * packet tracking, we do care, so shuffle. This also
549 * compresses the 32-bit values to 8-bit
551 eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
552 /* store the resulting 32-bit value */
553 *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
554 split_packet += RTE_FM10K_DESCS_PER_LOOP;
556 /* zero-out next pointers */
557 rx_pkts[pos]->next = NULL;
558 rx_pkts[pos + 1]->next = NULL;
559 rx_pkts[pos + 2]->next = NULL;
560 rx_pkts[pos + 3]->next = NULL;
563 /* C.3 calc available number of desc */
564 staterr = _mm_and_si128(staterr, dd_check);
565 staterr = _mm_packs_epi32(staterr, zero);
567 /* D.3 copy final 1,2 data to rx_pkts */
568 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
570 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
573 fm10k_desc_to_pktype_v(descs0, &rx_pkts[pos]);
575 /* C.4 calc avaialbe number of desc */
576 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
578 if (likely(var != RTE_FM10K_DESCS_PER_LOOP))
582 /* Update our internal tail pointer */
583 rxq->next_dd = (uint16_t)(rxq->next_dd + nb_pkts_recd);
584 rxq->next_dd = (uint16_t)(rxq->next_dd & (rxq->nb_desc - 1));
585 rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
590 /* vPMD receive routine
593 * - don't support ol_flags for rss and csum err
596 fm10k_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
599 return fm10k_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
602 static inline uint16_t
603 fm10k_reassemble_packets(struct fm10k_rx_queue *rxq,
604 struct rte_mbuf **rx_bufs,
605 uint16_t nb_bufs, uint8_t *split_flags)
607 struct rte_mbuf *pkts[RTE_FM10K_MAX_RX_BURST]; /*finished pkts*/
608 struct rte_mbuf *start = rxq->pkt_first_seg;
609 struct rte_mbuf *end = rxq->pkt_last_seg;
610 unsigned pkt_idx, buf_idx;
612 for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
614 /* processing a split packet */
615 end->next = rx_bufs[buf_idx];
617 start->pkt_len += rx_bufs[buf_idx]->data_len;
620 if (!split_flags[buf_idx]) {
621 /* it's the last packet of the set */
622 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
623 start->hash = end->hash;
624 start->ol_flags = end->ol_flags;
625 start->packet_type = end->packet_type;
627 pkts[pkt_idx++] = start;
631 /* not processing a split packet */
632 if (!split_flags[buf_idx]) {
633 /* not a split packet, save and skip */
634 pkts[pkt_idx++] = rx_bufs[buf_idx];
637 end = start = rx_bufs[buf_idx];
641 /* save the partial packet for next time */
642 rxq->pkt_first_seg = start;
643 rxq->pkt_last_seg = end;
644 memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
649 * vPMD receive routine that reassembles scattered packets
652 * - don't support ol_flags for rss and csum err
653 * - nb_pkts > RTE_FM10K_MAX_RX_BURST, only scan RTE_FM10K_MAX_RX_BURST
657 fm10k_recv_scattered_pkts_vec(void *rx_queue,
658 struct rte_mbuf **rx_pkts,
661 struct fm10k_rx_queue *rxq = rx_queue;
662 uint8_t split_flags[RTE_FM10K_MAX_RX_BURST] = {0};
665 /* Split_flags only can support max of RTE_FM10K_MAX_RX_BURST */
666 nb_pkts = RTE_MIN(nb_pkts, RTE_FM10K_MAX_RX_BURST);
667 /* get some new buffers */
668 uint16_t nb_bufs = fm10k_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
673 /* happy day case, full burst + no packets to be joined */
674 const uint64_t *split_fl64 = (uint64_t *)split_flags;
676 if (rxq->pkt_first_seg == NULL &&
677 split_fl64[0] == 0 && split_fl64[1] == 0 &&
678 split_fl64[2] == 0 && split_fl64[3] == 0)
681 /* reassemble any packets that need reassembly*/
682 if (rxq->pkt_first_seg == NULL) {
683 /* find the first split flag, and only reassemble then*/
684 while (i < nb_bufs && !split_flags[i])
688 rxq->pkt_first_seg = rx_pkts[i];
690 return i + fm10k_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
694 static const struct fm10k_txq_ops vec_txq_ops = {
695 .reset = fm10k_reset_tx_queue,
699 fm10k_txq_vec_setup(struct fm10k_tx_queue *txq)
701 txq->ops = &vec_txq_ops;
705 fm10k_tx_vec_condition_check(struct fm10k_tx_queue *txq)
707 /* Vector TX can't offload any features yet */
708 if (txq->offloads != 0)
718 vtx1(volatile struct fm10k_tx_desc *txdp,
719 struct rte_mbuf *pkt, uint64_t flags)
721 __m128i descriptor = _mm_set_epi64x(flags << 56 |
722 (uint64_t)pkt->vlan_tci << 16 | (uint64_t)pkt->data_len,
724 _mm_store_si128((__m128i *)txdp, descriptor);
728 vtx(volatile struct fm10k_tx_desc *txdp,
729 struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
733 for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
734 vtx1(txdp, *pkt, flags);
737 static __rte_always_inline int
738 fm10k_tx_free_bufs(struct fm10k_tx_queue *txq)
740 struct rte_mbuf **txep;
745 struct rte_mbuf *m, *free[RTE_FM10K_TX_MAX_FREE_BUF_SZ];
747 /* check DD bit on threshold descriptor */
748 flags = txq->hw_ring[txq->next_dd].flags;
749 if (!(flags & FM10K_TXD_FLAG_DONE))
754 /* First buffer to free from S/W ring is at index
755 * next_dd - (rs_thresh-1)
757 txep = &txq->sw_ring[txq->next_dd - (n - 1)];
758 m = rte_pktmbuf_prefree_seg(txep[0]);
759 if (likely(m != NULL)) {
762 for (i = 1; i < n; i++) {
763 m = rte_pktmbuf_prefree_seg(txep[i]);
764 if (likely(m != NULL)) {
765 if (likely(m->pool == free[0]->pool))
768 rte_mempool_put_bulk(free[0]->pool,
769 (void *)free, nb_free);
775 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
777 for (i = 1; i < n; i++) {
778 m = rte_pktmbuf_prefree_seg(txep[i]);
780 rte_mempool_put(m->pool, m);
784 /* buffers were freed, update counters */
785 txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
786 txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
787 if (txq->next_dd >= txq->nb_desc)
788 txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
790 return txq->rs_thresh;
793 static __rte_always_inline void
794 tx_backlog_entry(struct rte_mbuf **txep,
795 struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
799 for (i = 0; i < (int)nb_pkts; ++i)
800 txep[i] = tx_pkts[i];
804 fm10k_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
807 struct fm10k_tx_queue *txq = (struct fm10k_tx_queue *)tx_queue;
808 volatile struct fm10k_tx_desc *txdp;
809 struct rte_mbuf **txep;
810 uint16_t n, nb_commit, tx_id;
811 uint64_t flags = FM10K_TXD_FLAG_LAST;
812 uint64_t rs = FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_LAST;
815 /* cross rx_thresh boundary is not allowed */
816 nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
818 if (txq->nb_free < txq->free_thresh)
819 fm10k_tx_free_bufs(txq);
821 nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
822 if (unlikely(nb_pkts == 0))
825 tx_id = txq->next_free;
826 txdp = &txq->hw_ring[tx_id];
827 txep = &txq->sw_ring[tx_id];
829 txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
831 n = (uint16_t)(txq->nb_desc - tx_id);
832 if (nb_commit >= n) {
833 tx_backlog_entry(txep, tx_pkts, n);
835 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
836 vtx1(txdp, *tx_pkts, flags);
838 vtx1(txdp, *tx_pkts++, rs);
840 nb_commit = (uint16_t)(nb_commit - n);
843 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
845 /* avoid reach the end of ring */
846 txdp = &(txq->hw_ring[tx_id]);
847 txep = &txq->sw_ring[tx_id];
850 tx_backlog_entry(txep, tx_pkts, nb_commit);
852 vtx(txdp, tx_pkts, nb_commit, flags);
854 tx_id = (uint16_t)(tx_id + nb_commit);
855 if (tx_id > txq->next_rs) {
856 txq->hw_ring[txq->next_rs].flags |= FM10K_TXD_FLAG_RS;
857 txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh);
860 txq->next_free = tx_id;
862 FM10K_PCI_REG_WRITE(txq->tail_ptr, txq->next_free);
867 static void __rte_cold
868 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq)
870 static const struct fm10k_tx_desc zeroed_desc = {0};
871 struct rte_mbuf **txe = txq->sw_ring;
874 /* Zero out HW ring memory */
875 for (i = 0; i < txq->nb_desc; i++)
876 txq->hw_ring[i] = zeroed_desc;
878 /* Initialize SW ring entries */
879 for (i = 0; i < txq->nb_desc; i++)
882 txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
883 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
887 /* Always allow 1 descriptor to be un-allocated to avoid
888 * a H/W race condition
890 txq->nb_free = (uint16_t)(txq->nb_desc - 1);
891 FM10K_PCI_REG_WRITE(txq->tail_ptr, 0);