net/hns3: fix config when creating RSS rule after flush
[dpdk.git] / drivers / net / hns3 / hns3_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdio.h>
9 #include <stdint.h>
10 #include <inttypes.h>
11 #include <unistd.h>
12 #include <rte_atomic.h>
13 #include <rte_bus_pci.h>
14 #include <rte_common.h>
15 #include <rte_cycles.h>
16 #include <rte_dev.h>
17 #include <rte_eal.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_interrupts.h>
22 #include <rte_io.h>
23 #include <rte_log.h>
24 #include <rte_pci.h>
25
26 #include "hns3_ethdev.h"
27 #include "hns3_logs.h"
28 #include "hns3_rxtx.h"
29 #include "hns3_intr.h"
30 #include "hns3_regs.h"
31 #include "hns3_dcb.h"
32 #include "hns3_mp.h"
33
34 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE       32
35 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM       1
36
37 #define HNS3_SERVICE_INTERVAL           1000000 /* us */
38 #define HNS3_INVALID_PVID               0xFFFF
39
40 #define HNS3_FILTER_TYPE_VF             0
41 #define HNS3_FILTER_TYPE_PORT           1
42 #define HNS3_FILTER_FE_EGRESS_V1_B      BIT(0)
43 #define HNS3_FILTER_FE_NIC_INGRESS_B    BIT(0)
44 #define HNS3_FILTER_FE_NIC_EGRESS_B     BIT(1)
45 #define HNS3_FILTER_FE_ROCE_INGRESS_B   BIT(2)
46 #define HNS3_FILTER_FE_ROCE_EGRESS_B    BIT(3)
47 #define HNS3_FILTER_FE_EGRESS           (HNS3_FILTER_FE_NIC_EGRESS_B \
48                                         | HNS3_FILTER_FE_ROCE_EGRESS_B)
49 #define HNS3_FILTER_FE_INGRESS          (HNS3_FILTER_FE_NIC_INGRESS_B \
50                                         | HNS3_FILTER_FE_ROCE_INGRESS_B)
51
52 /* Reset related Registers */
53 #define HNS3_GLOBAL_RESET_BIT           0
54 #define HNS3_CORE_RESET_BIT             1
55 #define HNS3_IMP_RESET_BIT              2
56 #define HNS3_FUN_RST_ING_B              0
57
58 #define HNS3_VECTOR0_IMP_RESET_INT_B    1
59 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B     4U
60 #define HNS3_VECTOR0_IMP_RD_POISON_B    5U
61 #define HNS3_VECTOR0_ALL_MSIX_ERR_B     6U
62
63 #define HNS3_RESET_WAIT_MS      100
64 #define HNS3_RESET_WAIT_CNT     200
65
66 enum hns3_evt_cause {
67         HNS3_VECTOR0_EVENT_RST,
68         HNS3_VECTOR0_EVENT_MBX,
69         HNS3_VECTOR0_EVENT_ERR,
70         HNS3_VECTOR0_EVENT_OTHER,
71 };
72
73 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
74                                                  uint64_t *levels);
75 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
76 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
77                                     int on);
78 static int hns3_update_speed_duplex(struct rte_eth_dev *eth_dev);
79
80 static int hns3_add_mc_addr(struct hns3_hw *hw,
81                             struct rte_ether_addr *mac_addr);
82 static int hns3_remove_mc_addr(struct hns3_hw *hw,
83                             struct rte_ether_addr *mac_addr);
84
85 static void
86 hns3_pf_disable_irq0(struct hns3_hw *hw)
87 {
88         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
89 }
90
91 static void
92 hns3_pf_enable_irq0(struct hns3_hw *hw)
93 {
94         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
95 }
96
97 static enum hns3_evt_cause
98 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
99 {
100         struct hns3_hw *hw = &hns->hw;
101         uint32_t vector0_int_stats;
102         uint32_t cmdq_src_val;
103         uint32_t hw_err_src_reg;
104         uint32_t val;
105         enum hns3_evt_cause ret;
106
107         /* fetch the events from their corresponding regs */
108         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
109         cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
110         hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
111
112         /*
113          * Assumption: If by any chance reset and mailbox events are reported
114          * together then we will only process reset event and defer the
115          * processing of the mailbox events. Since, we would have not cleared
116          * RX CMDQ event this time we would receive again another interrupt
117          * from H/W just for the mailbox.
118          */
119         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
120                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
121                 hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
122                 val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
123                 if (clearval) {
124                         hw->reset.stats.imp_cnt++;
125                         hns3_warn(hw, "IMP reset detected, clear reset status");
126                 } else {
127                         hns3_schedule_delayed_reset(hns);
128                         hns3_warn(hw, "IMP reset detected, don't clear reset status");
129                 }
130
131                 ret = HNS3_VECTOR0_EVENT_RST;
132                 goto out;
133         }
134
135         /* Global reset */
136         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
137                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
138                 hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
139                 val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
140                 if (clearval) {
141                         hw->reset.stats.global_cnt++;
142                         hns3_warn(hw, "Global reset detected, clear reset status");
143                 } else {
144                         hns3_schedule_delayed_reset(hns);
145                         hns3_warn(hw, "Global reset detected, don't clear reset status");
146                 }
147
148                 ret = HNS3_VECTOR0_EVENT_RST;
149                 goto out;
150         }
151
152         /* check for vector0 msix event source */
153         if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
154             hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
155                 val = vector0_int_stats | hw_err_src_reg;
156                 ret = HNS3_VECTOR0_EVENT_ERR;
157                 goto out;
158         }
159
160         /* check for vector0 mailbox(=CMDQ RX) event source */
161         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
162                 cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
163                 val = cmdq_src_val;
164                 ret = HNS3_VECTOR0_EVENT_MBX;
165                 goto out;
166         }
167
168         if (clearval && (vector0_int_stats || cmdq_src_val || hw_err_src_reg))
169                 hns3_warn(hw, "vector0_int_stats:0x%x cmdq_src_val:0x%x hw_err_src_reg:0x%x",
170                           vector0_int_stats, cmdq_src_val, hw_err_src_reg);
171         val = vector0_int_stats;
172         ret = HNS3_VECTOR0_EVENT_OTHER;
173 out:
174
175         if (clearval)
176                 *clearval = val;
177         return ret;
178 }
179
180 static void
181 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
182 {
183         if (event_type == HNS3_VECTOR0_EVENT_RST)
184                 hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
185         else if (event_type == HNS3_VECTOR0_EVENT_MBX)
186                 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
187 }
188
189 static void
190 hns3_clear_all_event_cause(struct hns3_hw *hw)
191 {
192         uint32_t vector0_int_stats;
193         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
194
195         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
196                 hns3_warn(hw, "Probe during IMP reset interrupt");
197
198         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
199                 hns3_warn(hw, "Probe during Global reset interrupt");
200
201         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
202                                BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
203                                BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
204                                BIT(HNS3_VECTOR0_CORERESET_INT_B));
205         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
206 }
207
208 static void
209 hns3_interrupt_handler(void *param)
210 {
211         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
212         struct hns3_adapter *hns = dev->data->dev_private;
213         struct hns3_hw *hw = &hns->hw;
214         enum hns3_evt_cause event_cause;
215         uint32_t clearval = 0;
216
217         /* Disable interrupt */
218         hns3_pf_disable_irq0(hw);
219
220         event_cause = hns3_check_event_cause(hns, &clearval);
221
222         /* vector 0 interrupt is shared with reset and mailbox source events. */
223         if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
224                 hns3_warn(hw, "Received err interrupt");
225                 hns3_handle_msix_error(hns, &hw->reset.request);
226                 hns3_handle_ras_error(hns, &hw->reset.request);
227                 hns3_schedule_reset(hns);
228         } else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
229                 hns3_warn(hw, "Received reset interrupt");
230                 hns3_schedule_reset(hns);
231         } else if (event_cause == HNS3_VECTOR0_EVENT_MBX)
232                 hns3_dev_handle_mbx_msg(hw);
233         else
234                 hns3_err(hw, "Received unknown event");
235
236         hns3_clear_event_cause(hw, event_cause, clearval);
237         /* Enable interrupt if it is not cause by reset */
238         hns3_pf_enable_irq0(hw);
239 }
240
241 static int
242 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
243 {
244 #define HNS3_VLAN_ID_OFFSET_STEP        160
245 #define HNS3_VLAN_BYTE_SIZE             8
246         struct hns3_vlan_filter_pf_cfg_cmd *req;
247         struct hns3_hw *hw = &hns->hw;
248         uint8_t vlan_offset_byte_val;
249         struct hns3_cmd_desc desc;
250         uint8_t vlan_offset_byte;
251         uint8_t vlan_offset_base;
252         int ret;
253
254         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
255
256         vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
257         vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
258                            HNS3_VLAN_BYTE_SIZE;
259         vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
260
261         req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
262         req->vlan_offset = vlan_offset_base;
263         req->vlan_cfg = on ? 0 : 1;
264         req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
265
266         ret = hns3_cmd_send(hw, &desc, 1);
267         if (ret)
268                 hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
269                          vlan_id, ret);
270
271         return ret;
272 }
273
274 static void
275 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
276 {
277         struct hns3_user_vlan_table *vlan_entry;
278         struct hns3_pf *pf = &hns->pf;
279
280         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
281                 if (vlan_entry->vlan_id == vlan_id) {
282                         if (vlan_entry->hd_tbl_status)
283                                 hns3_set_port_vlan_filter(hns, vlan_id, 0);
284                         LIST_REMOVE(vlan_entry, next);
285                         rte_free(vlan_entry);
286                         break;
287                 }
288         }
289 }
290
291 static void
292 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
293                         bool writen_to_tbl)
294 {
295         struct hns3_user_vlan_table *vlan_entry;
296         struct hns3_hw *hw = &hns->hw;
297         struct hns3_pf *pf = &hns->pf;
298
299         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
300                 if (vlan_entry->vlan_id == vlan_id)
301                         return;
302         }
303
304         vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
305         if (vlan_entry == NULL) {
306                 hns3_err(hw, "Failed to malloc hns3 vlan table");
307                 return;
308         }
309
310         vlan_entry->hd_tbl_status = writen_to_tbl;
311         vlan_entry->vlan_id = vlan_id;
312
313         LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
314 }
315
316 static int
317 hns3_restore_vlan_table(struct hns3_adapter *hns)
318 {
319         struct hns3_user_vlan_table *vlan_entry;
320         struct hns3_hw *hw = &hns->hw;
321         struct hns3_pf *pf = &hns->pf;
322         uint16_t vlan_id;
323         int ret = 0;
324
325         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
326                 return hns3_vlan_pvid_configure(hns,
327                                                 hw->port_base_vlan_cfg.pvid, 1);
328
329         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
330                 if (vlan_entry->hd_tbl_status) {
331                         vlan_id = vlan_entry->vlan_id;
332                         ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
333                         if (ret)
334                                 break;
335                 }
336         }
337
338         return ret;
339 }
340
341 static int
342 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
343 {
344         struct hns3_hw *hw = &hns->hw;
345         bool writen_to_tbl = false;
346         int ret = 0;
347
348         /*
349          * When vlan filter is enabled, hardware regards packets without vlan
350          * as packets with vlan 0. So, to receive packets without vlan, vlan id
351          * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
352          */
353         if (on == 0 && vlan_id == 0)
354                 return 0;
355
356         /*
357          * When port base vlan enabled, we use port base vlan as the vlan
358          * filter condition. In this case, we don't update vlan filter table
359          * when user add new vlan or remove exist vlan, just update the
360          * vlan list. The vlan id in vlan list will be writen in vlan filter
361          * table until port base vlan disabled
362          */
363         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
364                 ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
365                 writen_to_tbl = true;
366         }
367
368         if (ret == 0) {
369                 if (on)
370                         hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
371                 else
372                         hns3_rm_dev_vlan_table(hns, vlan_id);
373         }
374         return ret;
375 }
376
377 static int
378 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
379 {
380         struct hns3_adapter *hns = dev->data->dev_private;
381         struct hns3_hw *hw = &hns->hw;
382         int ret;
383
384         rte_spinlock_lock(&hw->lock);
385         ret = hns3_vlan_filter_configure(hns, vlan_id, on);
386         rte_spinlock_unlock(&hw->lock);
387         return ret;
388 }
389
390 static int
391 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
392                          uint16_t tpid)
393 {
394         struct hns3_rx_vlan_type_cfg_cmd *rx_req;
395         struct hns3_tx_vlan_type_cfg_cmd *tx_req;
396         struct hns3_hw *hw = &hns->hw;
397         struct hns3_cmd_desc desc;
398         int ret;
399
400         if ((vlan_type != ETH_VLAN_TYPE_INNER &&
401              vlan_type != ETH_VLAN_TYPE_OUTER)) {
402                 hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
403                 return -EINVAL;
404         }
405
406         if (tpid != RTE_ETHER_TYPE_VLAN) {
407                 hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
408                 return -EINVAL;
409         }
410
411         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
412         rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
413
414         if (vlan_type == ETH_VLAN_TYPE_OUTER) {
415                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
416                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
417         } else if (vlan_type == ETH_VLAN_TYPE_INNER) {
418                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
419                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
420                 rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
421                 rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
422         }
423
424         ret = hns3_cmd_send(hw, &desc, 1);
425         if (ret) {
426                 hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
427                          ret);
428                 return ret;
429         }
430
431         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
432
433         tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
434         tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
435         tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
436
437         ret = hns3_cmd_send(hw, &desc, 1);
438         if (ret)
439                 hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
440                          ret);
441         return ret;
442 }
443
444 static int
445 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
446                    uint16_t tpid)
447 {
448         struct hns3_adapter *hns = dev->data->dev_private;
449         struct hns3_hw *hw = &hns->hw;
450         int ret;
451
452         rte_spinlock_lock(&hw->lock);
453         ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
454         rte_spinlock_unlock(&hw->lock);
455         return ret;
456 }
457
458 static int
459 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
460                              struct hns3_rx_vtag_cfg *vcfg)
461 {
462         struct hns3_vport_vtag_rx_cfg_cmd *req;
463         struct hns3_hw *hw = &hns->hw;
464         struct hns3_cmd_desc desc;
465         uint16_t vport_id;
466         uint8_t bitmap;
467         int ret;
468
469         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
470
471         req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
472         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
473                      vcfg->strip_tag1_en ? 1 : 0);
474         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
475                      vcfg->strip_tag2_en ? 1 : 0);
476         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
477                      vcfg->vlan1_vlan_prionly ? 1 : 0);
478         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
479                      vcfg->vlan2_vlan_prionly ? 1 : 0);
480
481         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
482         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
483                      vcfg->strip_tag1_discard_en ? 1 : 0);
484         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
485                      vcfg->strip_tag2_discard_en ? 1 : 0);
486         /*
487          * In current version VF is not supported when PF is driven by DPDK
488          * driver, just need to configure parameters for PF vport.
489          */
490         vport_id = HNS3_PF_FUNC_ID;
491         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
492         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
493         req->vf_bitmap[req->vf_offset] = bitmap;
494
495         ret = hns3_cmd_send(hw, &desc, 1);
496         if (ret)
497                 hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
498         return ret;
499 }
500
501 static void
502 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
503                            struct hns3_rx_vtag_cfg *vcfg)
504 {
505         struct hns3_pf *pf = &hns->pf;
506         memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
507 }
508
509 static void
510 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
511                            struct hns3_tx_vtag_cfg *vcfg)
512 {
513         struct hns3_pf *pf = &hns->pf;
514         memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
515 }
516
517 static int
518 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
519 {
520         struct hns3_rx_vtag_cfg rxvlan_cfg;
521         struct hns3_hw *hw = &hns->hw;
522         int ret;
523
524         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
525                 rxvlan_cfg.strip_tag1_en = false;
526                 rxvlan_cfg.strip_tag2_en = enable;
527                 rxvlan_cfg.strip_tag2_discard_en = false;
528         } else {
529                 rxvlan_cfg.strip_tag1_en = enable;
530                 rxvlan_cfg.strip_tag2_en = true;
531                 rxvlan_cfg.strip_tag2_discard_en = true;
532         }
533
534         rxvlan_cfg.strip_tag1_discard_en = false;
535         rxvlan_cfg.vlan1_vlan_prionly = false;
536         rxvlan_cfg.vlan2_vlan_prionly = false;
537         rxvlan_cfg.rx_vlan_offload_en = enable;
538
539         ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
540         if (ret) {
541                 hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
542                 return ret;
543         }
544
545         hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
546
547         return ret;
548 }
549
550 static int
551 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
552                           uint8_t fe_type, bool filter_en, uint8_t vf_id)
553 {
554         struct hns3_vlan_filter_ctrl_cmd *req;
555         struct hns3_cmd_desc desc;
556         int ret;
557
558         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
559
560         req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
561         req->vlan_type = vlan_type;
562         req->vlan_fe = filter_en ? fe_type : 0;
563         req->vf_id = vf_id;
564
565         ret = hns3_cmd_send(hw, &desc, 1);
566         if (ret)
567                 hns3_err(hw, "set vlan filter fail, ret =%d", ret);
568
569         return ret;
570 }
571
572 static int
573 hns3_vlan_filter_init(struct hns3_adapter *hns)
574 {
575         struct hns3_hw *hw = &hns->hw;
576         int ret;
577
578         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
579                                         HNS3_FILTER_FE_EGRESS, false,
580                                         HNS3_PF_FUNC_ID);
581         if (ret) {
582                 hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
583                 return ret;
584         }
585
586         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
587                                         HNS3_FILTER_FE_INGRESS, false,
588                                         HNS3_PF_FUNC_ID);
589         if (ret)
590                 hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
591
592         return ret;
593 }
594
595 static int
596 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
597 {
598         struct hns3_hw *hw = &hns->hw;
599         int ret;
600
601         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
602                                         HNS3_FILTER_FE_INGRESS, enable,
603                                         HNS3_PF_FUNC_ID);
604         if (ret)
605                 hns3_err(hw, "failed to %s port vlan filter, ret = %d",
606                          enable ? "enable" : "disable", ret);
607
608         return ret;
609 }
610
611 static int
612 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
613 {
614         struct hns3_adapter *hns = dev->data->dev_private;
615         struct hns3_hw *hw = &hns->hw;
616         struct rte_eth_rxmode *rxmode;
617         unsigned int tmp_mask;
618         bool enable;
619         int ret = 0;
620
621         rte_spinlock_lock(&hw->lock);
622         rxmode = &dev->data->dev_conf.rxmode;
623         tmp_mask = (unsigned int)mask;
624         if (tmp_mask & ETH_VLAN_FILTER_MASK) {
625                 /* ignore vlan filter configuration during promiscuous mode */
626                 if (!dev->data->promiscuous) {
627                         /* Enable or disable VLAN filter */
628                         enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
629                                  true : false;
630
631                         ret = hns3_enable_vlan_filter(hns, enable);
632                         if (ret) {
633                                 rte_spinlock_unlock(&hw->lock);
634                                 hns3_err(hw, "failed to %s rx filter, ret = %d",
635                                          enable ? "enable" : "disable", ret);
636                                 return ret;
637                         }
638                 }
639         }
640
641         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
642                 /* Enable or disable VLAN stripping */
643                 enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
644                     true : false;
645
646                 ret = hns3_en_hw_strip_rxvtag(hns, enable);
647                 if (ret) {
648                         rte_spinlock_unlock(&hw->lock);
649                         hns3_err(hw, "failed to %s rx strip, ret = %d",
650                                  enable ? "enable" : "disable", ret);
651                         return ret;
652                 }
653         }
654
655         rte_spinlock_unlock(&hw->lock);
656
657         return ret;
658 }
659
660 static int
661 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
662                              struct hns3_tx_vtag_cfg *vcfg)
663 {
664         struct hns3_vport_vtag_tx_cfg_cmd *req;
665         struct hns3_cmd_desc desc;
666         struct hns3_hw *hw = &hns->hw;
667         uint16_t vport_id;
668         uint8_t bitmap;
669         int ret;
670
671         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
672
673         req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
674         req->def_vlan_tag1 = vcfg->default_tag1;
675         req->def_vlan_tag2 = vcfg->default_tag2;
676         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
677                      vcfg->accept_tag1 ? 1 : 0);
678         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
679                      vcfg->accept_untag1 ? 1 : 0);
680         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
681                      vcfg->accept_tag2 ? 1 : 0);
682         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
683                      vcfg->accept_untag2 ? 1 : 0);
684         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
685                      vcfg->insert_tag1_en ? 1 : 0);
686         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
687                      vcfg->insert_tag2_en ? 1 : 0);
688         hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
689
690         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
691         hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
692                      vcfg->tag_shift_mode_en ? 1 : 0);
693
694         /*
695          * In current version VF is not supported when PF is driven by DPDK
696          * driver, just need to configure parameters for PF vport.
697          */
698         vport_id = HNS3_PF_FUNC_ID;
699         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
700         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
701         req->vf_bitmap[req->vf_offset] = bitmap;
702
703         ret = hns3_cmd_send(hw, &desc, 1);
704         if (ret)
705                 hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
706
707         return ret;
708 }
709
710 static int
711 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
712                      uint16_t pvid)
713 {
714         struct hns3_hw *hw = &hns->hw;
715         struct hns3_tx_vtag_cfg txvlan_cfg;
716         int ret;
717
718         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
719                 txvlan_cfg.accept_tag1 = true;
720                 txvlan_cfg.insert_tag1_en = false;
721                 txvlan_cfg.default_tag1 = 0;
722         } else {
723                 txvlan_cfg.accept_tag1 =
724                         hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
725                 txvlan_cfg.insert_tag1_en = true;
726                 txvlan_cfg.default_tag1 = pvid;
727         }
728
729         txvlan_cfg.accept_untag1 = true;
730         txvlan_cfg.accept_tag2 = true;
731         txvlan_cfg.accept_untag2 = true;
732         txvlan_cfg.insert_tag2_en = false;
733         txvlan_cfg.default_tag2 = 0;
734         txvlan_cfg.tag_shift_mode_en = true;
735
736         ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
737         if (ret) {
738                 hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
739                          ret);
740                 return ret;
741         }
742
743         hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
744         return ret;
745 }
746
747
748 static void
749 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
750 {
751         struct hns3_user_vlan_table *vlan_entry;
752         struct hns3_pf *pf = &hns->pf;
753
754         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
755                 if (vlan_entry->hd_tbl_status) {
756                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
757                         vlan_entry->hd_tbl_status = false;
758                 }
759         }
760
761         if (is_del_list) {
762                 vlan_entry = LIST_FIRST(&pf->vlan_list);
763                 while (vlan_entry) {
764                         LIST_REMOVE(vlan_entry, next);
765                         rte_free(vlan_entry);
766                         vlan_entry = LIST_FIRST(&pf->vlan_list);
767                 }
768         }
769 }
770
771 static void
772 hns3_add_all_vlan_table(struct hns3_adapter *hns)
773 {
774         struct hns3_user_vlan_table *vlan_entry;
775         struct hns3_pf *pf = &hns->pf;
776
777         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
778                 if (!vlan_entry->hd_tbl_status) {
779                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
780                         vlan_entry->hd_tbl_status = true;
781                 }
782         }
783 }
784
785 static void
786 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
787 {
788         struct hns3_hw *hw = &hns->hw;
789         int ret;
790
791         hns3_rm_all_vlan_table(hns, true);
792         if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
793                 ret = hns3_set_port_vlan_filter(hns,
794                                                 hw->port_base_vlan_cfg.pvid, 0);
795                 if (ret) {
796                         hns3_err(hw, "Failed to remove all vlan table, ret =%d",
797                                  ret);
798                         return;
799                 }
800         }
801 }
802
803 static int
804 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
805                         uint16_t port_base_vlan_state, uint16_t new_pvid)
806 {
807         struct hns3_hw *hw = &hns->hw;
808         uint16_t old_pvid;
809         int ret;
810
811         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
812                 old_pvid = hw->port_base_vlan_cfg.pvid;
813                 if (old_pvid != HNS3_INVALID_PVID) {
814                         ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
815                         if (ret) {
816                                 hns3_err(hw, "failed to remove old pvid %u, "
817                                                 "ret = %d", old_pvid, ret);
818                                 return ret;
819                         }
820                 }
821
822                 hns3_rm_all_vlan_table(hns, false);
823                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
824                 if (ret) {
825                         hns3_err(hw, "failed to add new pvid %u, ret = %d",
826                                         new_pvid, ret);
827                         return ret;
828                 }
829         } else {
830                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
831                 if (ret) {
832                         hns3_err(hw, "failed to remove pvid %u, ret = %d",
833                                         new_pvid, ret);
834                         return ret;
835                 }
836
837                 hns3_add_all_vlan_table(hns);
838         }
839         return 0;
840 }
841
842 static int
843 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
844 {
845         struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
846         struct hns3_rx_vtag_cfg rx_vlan_cfg;
847         bool rx_strip_en;
848         int ret;
849
850         rx_strip_en = old_cfg->rx_vlan_offload_en;
851         if (on) {
852                 rx_vlan_cfg.strip_tag1_en = rx_strip_en;
853                 rx_vlan_cfg.strip_tag2_en = true;
854                 rx_vlan_cfg.strip_tag2_discard_en = true;
855         } else {
856                 rx_vlan_cfg.strip_tag1_en = false;
857                 rx_vlan_cfg.strip_tag2_en = rx_strip_en;
858                 rx_vlan_cfg.strip_tag2_discard_en = false;
859         }
860         rx_vlan_cfg.strip_tag1_discard_en = false;
861         rx_vlan_cfg.vlan1_vlan_prionly = false;
862         rx_vlan_cfg.vlan2_vlan_prionly = false;
863         rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
864
865         ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
866         if (ret)
867                 return ret;
868
869         hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
870         return ret;
871 }
872
873 static int
874 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
875 {
876         struct hns3_hw *hw = &hns->hw;
877         uint16_t port_base_vlan_state;
878         int ret;
879
880         if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
881                 if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
882                         hns3_warn(hw, "Invalid operation! As current pvid set "
883                                   "is %u, disable pvid %u is invalid",
884                                   hw->port_base_vlan_cfg.pvid, pvid);
885                 return 0;
886         }
887
888         port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
889                                     HNS3_PORT_BASE_VLAN_DISABLE;
890         ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
891         if (ret) {
892                 hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
893                          ret);
894                 return ret;
895         }
896
897         ret = hns3_en_pvid_strip(hns, on);
898         if (ret) {
899                 hns3_err(hw, "failed to config rx vlan strip for pvid, "
900                          "ret = %d", ret);
901                 return ret;
902         }
903
904         if (pvid == HNS3_INVALID_PVID)
905                 goto out;
906         ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
907         if (ret) {
908                 hns3_err(hw, "failed to update vlan filter entries, ret = %d",
909                          ret);
910                 return ret;
911         }
912
913 out:
914         hw->port_base_vlan_cfg.state = port_base_vlan_state;
915         hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
916         return ret;
917 }
918
919 static int
920 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
921 {
922         struct hns3_adapter *hns = dev->data->dev_private;
923         struct hns3_hw *hw = &hns->hw;
924         bool pvid_en_state_change;
925         uint16_t pvid_state;
926         int ret;
927
928         if (pvid > RTE_ETHER_MAX_VLAN_ID) {
929                 hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
930                          RTE_ETHER_MAX_VLAN_ID);
931                 return -EINVAL;
932         }
933
934         /*
935          * If PVID configuration state change, should refresh the PVID
936          * configuration state in struct hns3_tx_queue/hns3_rx_queue.
937          */
938         pvid_state = hw->port_base_vlan_cfg.state;
939         if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
940             (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
941                 pvid_en_state_change = false;
942         else
943                 pvid_en_state_change = true;
944
945         rte_spinlock_lock(&hw->lock);
946         ret = hns3_vlan_pvid_configure(hns, pvid, on);
947         rte_spinlock_unlock(&hw->lock);
948         if (ret)
949                 return ret;
950         /*
951          * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
952          * need be processed by PMD driver.
953          */
954         if (pvid_en_state_change &&
955             hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
956                 hns3_update_all_queues_pvid_proc_en(hw);
957
958         return 0;
959 }
960
961 static int
962 hns3_default_vlan_config(struct hns3_adapter *hns)
963 {
964         struct hns3_hw *hw = &hns->hw;
965         int ret;
966
967         /*
968          * When vlan filter is enabled, hardware regards packets without vlan
969          * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
970          * table, packets without vlan won't be received. So, add vlan 0 as
971          * the default vlan.
972          */
973         ret = hns3_vlan_filter_configure(hns, 0, 1);
974         if (ret)
975                 hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
976         return ret;
977 }
978
979 static int
980 hns3_init_vlan_config(struct hns3_adapter *hns)
981 {
982         struct hns3_hw *hw = &hns->hw;
983         int ret;
984
985         /*
986          * This function can be called in the initialization and reset process,
987          * when in reset process, it means that hardware had been reseted
988          * successfully and we need to restore the hardware configuration to
989          * ensure that the hardware configuration remains unchanged before and
990          * after reset.
991          */
992         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
993                 hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
994                 hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
995         }
996
997         ret = hns3_vlan_filter_init(hns);
998         if (ret) {
999                 hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1000                 return ret;
1001         }
1002
1003         ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1004                                        RTE_ETHER_TYPE_VLAN);
1005         if (ret) {
1006                 hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1007                 return ret;
1008         }
1009
1010         /*
1011          * When in the reinit dev stage of the reset process, the following
1012          * vlan-related configurations may differ from those at initialization,
1013          * we will restore configurations to hardware in hns3_restore_vlan_table
1014          * and hns3_restore_vlan_conf later.
1015          */
1016         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1017                 ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1018                 if (ret) {
1019                         hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1020                         return ret;
1021                 }
1022
1023                 ret = hns3_en_hw_strip_rxvtag(hns, false);
1024                 if (ret) {
1025                         hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1026                                  ret);
1027                         return ret;
1028                 }
1029         }
1030
1031         return hns3_default_vlan_config(hns);
1032 }
1033
1034 static int
1035 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1036 {
1037         struct hns3_pf *pf = &hns->pf;
1038         struct hns3_hw *hw = &hns->hw;
1039         uint64_t offloads;
1040         bool enable;
1041         int ret;
1042
1043         if (!hw->data->promiscuous) {
1044                 /* restore vlan filter states */
1045                 offloads = hw->data->dev_conf.rxmode.offloads;
1046                 enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1047                 ret = hns3_enable_vlan_filter(hns, enable);
1048                 if (ret) {
1049                         hns3_err(hw, "failed to restore vlan rx filter conf, "
1050                                  "ret = %d", ret);
1051                         return ret;
1052                 }
1053         }
1054
1055         ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1056         if (ret) {
1057                 hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1058                 return ret;
1059         }
1060
1061         ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1062         if (ret)
1063                 hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1064
1065         return ret;
1066 }
1067
1068 static int
1069 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1070 {
1071         struct hns3_adapter *hns = dev->data->dev_private;
1072         struct rte_eth_dev_data *data = dev->data;
1073         struct rte_eth_txmode *txmode;
1074         struct hns3_hw *hw = &hns->hw;
1075         int mask;
1076         int ret;
1077
1078         txmode = &data->dev_conf.txmode;
1079         if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1080                 hns3_warn(hw,
1081                           "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1082                           "configuration is not supported! Ignore these two "
1083                           "parameters: hw_vlan_reject_tagged(%d), "
1084                           "hw_vlan_reject_untagged(%d)",
1085                           txmode->hw_vlan_reject_tagged,
1086                           txmode->hw_vlan_reject_untagged);
1087
1088         /* Apply vlan offload setting */
1089         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1090         ret = hns3_vlan_offload_set(dev, mask);
1091         if (ret) {
1092                 hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1093                          ret);
1094                 return ret;
1095         }
1096
1097         /*
1098          * If pvid config is not set in rte_eth_conf, driver needn't to set
1099          * VLAN pvid related configuration to hardware.
1100          */
1101         if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1102                 return 0;
1103
1104         /* Apply pvid setting */
1105         ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1106                                  txmode->hw_vlan_insert_pvid);
1107         if (ret)
1108                 hns3_err(hw, "dev config vlan pvid(%d) failed, ret = %d",
1109                          txmode->pvid, ret);
1110
1111         return ret;
1112 }
1113
1114 static int
1115 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1116                 unsigned int tso_mss_max)
1117 {
1118         struct hns3_cfg_tso_status_cmd *req;
1119         struct hns3_cmd_desc desc;
1120         uint16_t tso_mss;
1121
1122         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1123
1124         req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1125
1126         tso_mss = 0;
1127         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1128                        tso_mss_min);
1129         req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1130
1131         tso_mss = 0;
1132         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1133                        tso_mss_max);
1134         req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1135
1136         return hns3_cmd_send(hw, &desc, 1);
1137 }
1138
1139 static int
1140 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1141                    uint16_t *allocated_size, bool is_alloc)
1142 {
1143         struct hns3_umv_spc_alc_cmd *req;
1144         struct hns3_cmd_desc desc;
1145         int ret;
1146
1147         req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1148         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1149         hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1150         req->space_size = rte_cpu_to_le_32(space_size);
1151
1152         ret = hns3_cmd_send(hw, &desc, 1);
1153         if (ret) {
1154                 PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1155                              is_alloc ? "allocate" : "free", ret);
1156                 return ret;
1157         }
1158
1159         if (is_alloc && allocated_size)
1160                 *allocated_size = rte_le_to_cpu_32(desc.data[1]);
1161
1162         return 0;
1163 }
1164
1165 static int
1166 hns3_init_umv_space(struct hns3_hw *hw)
1167 {
1168         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1169         struct hns3_pf *pf = &hns->pf;
1170         uint16_t allocated_size = 0;
1171         int ret;
1172
1173         ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1174                                  true);
1175         if (ret)
1176                 return ret;
1177
1178         if (allocated_size < pf->wanted_umv_size)
1179                 PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1180                              pf->wanted_umv_size, allocated_size);
1181
1182         pf->max_umv_size = (!!allocated_size) ? allocated_size :
1183                                                 pf->wanted_umv_size;
1184         pf->used_umv_size = 0;
1185         return 0;
1186 }
1187
1188 static int
1189 hns3_uninit_umv_space(struct hns3_hw *hw)
1190 {
1191         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1192         struct hns3_pf *pf = &hns->pf;
1193         int ret;
1194
1195         if (pf->max_umv_size == 0)
1196                 return 0;
1197
1198         ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1199         if (ret)
1200                 return ret;
1201
1202         pf->max_umv_size = 0;
1203
1204         return 0;
1205 }
1206
1207 static bool
1208 hns3_is_umv_space_full(struct hns3_hw *hw)
1209 {
1210         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1211         struct hns3_pf *pf = &hns->pf;
1212         bool is_full;
1213
1214         is_full = (pf->used_umv_size >= pf->max_umv_size);
1215
1216         return is_full;
1217 }
1218
1219 static void
1220 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1221 {
1222         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1223         struct hns3_pf *pf = &hns->pf;
1224
1225         if (is_free) {
1226                 if (pf->used_umv_size > 0)
1227                         pf->used_umv_size--;
1228         } else
1229                 pf->used_umv_size++;
1230 }
1231
1232 static void
1233 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1234                       const uint8_t *addr, bool is_mc)
1235 {
1236         const unsigned char *mac_addr = addr;
1237         uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1238                             ((uint32_t)mac_addr[2] << 16) |
1239                             ((uint32_t)mac_addr[1] << 8) |
1240                             (uint32_t)mac_addr[0];
1241         uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1242
1243         hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1244         if (is_mc) {
1245                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1246                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1247                 hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1248         }
1249
1250         new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1251         new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1252 }
1253
1254 static int
1255 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1256                              uint8_t resp_code,
1257                              enum hns3_mac_vlan_tbl_opcode op)
1258 {
1259         if (cmdq_resp) {
1260                 hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1261                          cmdq_resp);
1262                 return -EIO;
1263         }
1264
1265         if (op == HNS3_MAC_VLAN_ADD) {
1266                 if (resp_code == 0 || resp_code == 1) {
1267                         return 0;
1268                 } else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1269                         hns3_err(hw, "add mac addr failed for uc_overflow");
1270                         return -ENOSPC;
1271                 } else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1272                         hns3_err(hw, "add mac addr failed for mc_overflow");
1273                         return -ENOSPC;
1274                 }
1275
1276                 hns3_err(hw, "add mac addr failed for undefined, code=%u",
1277                          resp_code);
1278                 return -EIO;
1279         } else if (op == HNS3_MAC_VLAN_REMOVE) {
1280                 if (resp_code == 0) {
1281                         return 0;
1282                 } else if (resp_code == 1) {
1283                         hns3_dbg(hw, "remove mac addr failed for miss");
1284                         return -ENOENT;
1285                 }
1286
1287                 hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1288                          resp_code);
1289                 return -EIO;
1290         } else if (op == HNS3_MAC_VLAN_LKUP) {
1291                 if (resp_code == 0) {
1292                         return 0;
1293                 } else if (resp_code == 1) {
1294                         hns3_dbg(hw, "lookup mac addr failed for miss");
1295                         return -ENOENT;
1296                 }
1297
1298                 hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1299                          resp_code);
1300                 return -EIO;
1301         }
1302
1303         hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1304                  op);
1305
1306         return -EINVAL;
1307 }
1308
1309 static int
1310 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1311                          struct hns3_mac_vlan_tbl_entry_cmd *req,
1312                          struct hns3_cmd_desc *desc, bool is_mc)
1313 {
1314         uint8_t resp_code;
1315         uint16_t retval;
1316         int ret;
1317
1318         hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1319         if (is_mc) {
1320                 desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1321                 memcpy(desc[0].data, req,
1322                            sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1323                 hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1324                                           true);
1325                 desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1326                 hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1327                                           true);
1328                 ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1329         } else {
1330                 memcpy(desc[0].data, req,
1331                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1332                 ret = hns3_cmd_send(hw, desc, 1);
1333         }
1334         if (ret) {
1335                 hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1336                          ret);
1337                 return ret;
1338         }
1339         resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1340         retval = rte_le_to_cpu_16(desc[0].retval);
1341
1342         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1343                                             HNS3_MAC_VLAN_LKUP);
1344 }
1345
1346 static int
1347 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1348                       struct hns3_mac_vlan_tbl_entry_cmd *req,
1349                       struct hns3_cmd_desc *mc_desc)
1350 {
1351         uint8_t resp_code;
1352         uint16_t retval;
1353         int cfg_status;
1354         int ret;
1355
1356         if (mc_desc == NULL) {
1357                 struct hns3_cmd_desc desc;
1358
1359                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1360                 memcpy(desc.data, req,
1361                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1362                 ret = hns3_cmd_send(hw, &desc, 1);
1363                 resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1364                 retval = rte_le_to_cpu_16(desc.retval);
1365
1366                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1367                                                           HNS3_MAC_VLAN_ADD);
1368         } else {
1369                 hns3_cmd_reuse_desc(&mc_desc[0], false);
1370                 mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1371                 hns3_cmd_reuse_desc(&mc_desc[1], false);
1372                 mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1373                 hns3_cmd_reuse_desc(&mc_desc[2], false);
1374                 mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1375                 memcpy(mc_desc[0].data, req,
1376                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1377                 mc_desc[0].retval = 0;
1378                 ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1379                 resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1380                 retval = rte_le_to_cpu_16(mc_desc[0].retval);
1381
1382                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1383                                                           HNS3_MAC_VLAN_ADD);
1384         }
1385
1386         if (ret) {
1387                 hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1388                 return ret;
1389         }
1390
1391         return cfg_status;
1392 }
1393
1394 static int
1395 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1396                          struct hns3_mac_vlan_tbl_entry_cmd *req)
1397 {
1398         struct hns3_cmd_desc desc;
1399         uint8_t resp_code;
1400         uint16_t retval;
1401         int ret;
1402
1403         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1404
1405         memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1406
1407         ret = hns3_cmd_send(hw, &desc, 1);
1408         if (ret) {
1409                 hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1410                 return ret;
1411         }
1412         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1413         retval = rte_le_to_cpu_16(desc.retval);
1414
1415         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1416                                             HNS3_MAC_VLAN_REMOVE);
1417 }
1418
1419 static int
1420 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1421 {
1422         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1423         struct hns3_mac_vlan_tbl_entry_cmd req;
1424         struct hns3_pf *pf = &hns->pf;
1425         struct hns3_cmd_desc desc[3];
1426         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1427         uint16_t egress_port = 0;
1428         uint8_t vf_id;
1429         int ret;
1430
1431         /* check if mac addr is valid */
1432         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1433                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1434                                       mac_addr);
1435                 hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1436                          mac_str);
1437                 return -EINVAL;
1438         }
1439
1440         memset(&req, 0, sizeof(req));
1441
1442         /*
1443          * In current version VF is not supported when PF is driven by DPDK
1444          * driver, just need to configure parameters for PF vport.
1445          */
1446         vf_id = HNS3_PF_FUNC_ID;
1447         hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1448                        HNS3_MAC_EPORT_VFID_S, vf_id);
1449
1450         req.egress_port = rte_cpu_to_le_16(egress_port);
1451
1452         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1453
1454         /*
1455          * Lookup the mac address in the mac_vlan table, and add
1456          * it if the entry is inexistent. Repeated unicast entry
1457          * is not allowed in the mac vlan table.
1458          */
1459         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1460         if (ret == -ENOENT) {
1461                 if (!hns3_is_umv_space_full(hw)) {
1462                         ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1463                         if (!ret)
1464                                 hns3_update_umv_space(hw, false);
1465                         return ret;
1466                 }
1467
1468                 hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1469
1470                 return -ENOSPC;
1471         }
1472
1473         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1474
1475         /* check if we just hit the duplicate */
1476         if (ret == 0) {
1477                 hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1478                 return 0;
1479         }
1480
1481         hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1482                  mac_str);
1483
1484         return ret;
1485 }
1486
1487 static int
1488 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1489 {
1490         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1491         struct rte_ether_addr *addr;
1492         int ret;
1493         int i;
1494
1495         for (i = 0; i < hw->mc_addrs_num; i++) {
1496                 addr = &hw->mc_addrs[i];
1497                 /* Check if there are duplicate addresses */
1498                 if (rte_is_same_ether_addr(addr, mac_addr)) {
1499                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1500                                               addr);
1501                         hns3_err(hw, "failed to add mc mac addr, same addrs"
1502                                  "(%s) is added by the set_mc_mac_addr_list "
1503                                  "API", mac_str);
1504                         return -EINVAL;
1505                 }
1506         }
1507
1508         ret = hns3_add_mc_addr(hw, mac_addr);
1509         if (ret) {
1510                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1511                                       mac_addr);
1512                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1513                          mac_str, ret);
1514         }
1515         return ret;
1516 }
1517
1518 static int
1519 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1520 {
1521         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1522         int ret;
1523
1524         ret = hns3_remove_mc_addr(hw, mac_addr);
1525         if (ret) {
1526                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1527                                       mac_addr);
1528                 hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1529                          mac_str, ret);
1530         }
1531         return ret;
1532 }
1533
1534 static int
1535 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1536                   uint32_t idx, __rte_unused uint32_t pool)
1537 {
1538         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1539         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1540         int ret;
1541
1542         rte_spinlock_lock(&hw->lock);
1543
1544         /*
1545          * In hns3 network engine adding UC and MC mac address with different
1546          * commands with firmware. We need to determine whether the input
1547          * address is a UC or a MC address to call different commands.
1548          * By the way, it is recommended calling the API function named
1549          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1550          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1551          * may affect the specifications of UC mac addresses.
1552          */
1553         if (rte_is_multicast_ether_addr(mac_addr))
1554                 ret = hns3_add_mc_addr_common(hw, mac_addr);
1555         else
1556                 ret = hns3_add_uc_addr_common(hw, mac_addr);
1557
1558         if (ret) {
1559                 rte_spinlock_unlock(&hw->lock);
1560                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1561                                       mac_addr);
1562                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1563                          ret);
1564                 return ret;
1565         }
1566
1567         if (idx == 0)
1568                 hw->mac.default_addr_setted = true;
1569         rte_spinlock_unlock(&hw->lock);
1570
1571         return ret;
1572 }
1573
1574 static int
1575 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1576 {
1577         struct hns3_mac_vlan_tbl_entry_cmd req;
1578         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1579         int ret;
1580
1581         /* check if mac addr is valid */
1582         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1583                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1584                                       mac_addr);
1585                 hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1586                          mac_str);
1587                 return -EINVAL;
1588         }
1589
1590         memset(&req, 0, sizeof(req));
1591         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1592         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1593         ret = hns3_remove_mac_vlan_tbl(hw, &req);
1594         if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1595                 return 0;
1596         else if (ret == 0)
1597                 hns3_update_umv_space(hw, true);
1598
1599         return ret;
1600 }
1601
1602 static void
1603 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1604 {
1605         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1606         /* index will be checked by upper level rte interface */
1607         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1608         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1609         int ret;
1610
1611         rte_spinlock_lock(&hw->lock);
1612
1613         if (rte_is_multicast_ether_addr(mac_addr))
1614                 ret = hns3_remove_mc_addr_common(hw, mac_addr);
1615         else
1616                 ret = hns3_remove_uc_addr_common(hw, mac_addr);
1617         rte_spinlock_unlock(&hw->lock);
1618         if (ret) {
1619                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1620                                       mac_addr);
1621                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1622                          ret);
1623         }
1624 }
1625
1626 static int
1627 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1628                           struct rte_ether_addr *mac_addr)
1629 {
1630         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1631         struct rte_ether_addr *oaddr;
1632         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1633         bool default_addr_setted;
1634         bool rm_succes = false;
1635         int ret, ret_val;
1636
1637         /*
1638          * It has been guaranteed that input parameter named mac_addr is valid
1639          * address in the rte layer of DPDK framework.
1640          */
1641         oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1642         default_addr_setted = hw->mac.default_addr_setted;
1643         if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1644                 return 0;
1645
1646         rte_spinlock_lock(&hw->lock);
1647         if (default_addr_setted) {
1648                 ret = hns3_remove_uc_addr_common(hw, oaddr);
1649                 if (ret) {
1650                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1651                                               oaddr);
1652                         hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1653                                   mac_str, ret);
1654                         rm_succes = false;
1655                 } else
1656                         rm_succes = true;
1657         }
1658
1659         ret = hns3_add_uc_addr_common(hw, mac_addr);
1660         if (ret) {
1661                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1662                                       mac_addr);
1663                 hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1664                 goto err_add_uc_addr;
1665         }
1666
1667         ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1668         if (ret) {
1669                 hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1670                 goto err_pause_addr_cfg;
1671         }
1672
1673         rte_ether_addr_copy(mac_addr,
1674                             (struct rte_ether_addr *)hw->mac.mac_addr);
1675         hw->mac.default_addr_setted = true;
1676         rte_spinlock_unlock(&hw->lock);
1677
1678         return 0;
1679
1680 err_pause_addr_cfg:
1681         ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1682         if (ret_val) {
1683                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1684                                       mac_addr);
1685                 hns3_warn(hw,
1686                           "Failed to roll back to del setted mac addr(%s): %d",
1687                           mac_str, ret_val);
1688         }
1689
1690 err_add_uc_addr:
1691         if (rm_succes) {
1692                 ret_val = hns3_add_uc_addr_common(hw, oaddr);
1693                 if (ret_val) {
1694                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1695                                               oaddr);
1696                         hns3_warn(hw,
1697                                   "Failed to restore old uc mac addr(%s): %d",
1698                                   mac_str, ret_val);
1699                         hw->mac.default_addr_setted = false;
1700                 }
1701         }
1702         rte_spinlock_unlock(&hw->lock);
1703
1704         return ret;
1705 }
1706
1707 static int
1708 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1709 {
1710         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1711         struct hns3_hw *hw = &hns->hw;
1712         struct rte_ether_addr *addr;
1713         int err = 0;
1714         int ret;
1715         int i;
1716
1717         for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1718                 addr = &hw->data->mac_addrs[i];
1719                 if (rte_is_zero_ether_addr(addr))
1720                         continue;
1721                 if (rte_is_multicast_ether_addr(addr))
1722                         ret = del ? hns3_remove_mc_addr(hw, addr) :
1723                               hns3_add_mc_addr(hw, addr);
1724                 else
1725                         ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1726                               hns3_add_uc_addr_common(hw, addr);
1727
1728                 if (ret) {
1729                         err = ret;
1730                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1731                                               addr);
1732                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1733                                  "ret = %d.", del ? "remove" : "restore",
1734                                  mac_str, i, ret);
1735                 }
1736         }
1737         return err;
1738 }
1739
1740 static void
1741 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1742 {
1743 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1744         uint8_t word_num;
1745         uint8_t bit_num;
1746
1747         if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1748                 word_num = vfid / 32;
1749                 bit_num = vfid % 32;
1750                 if (clr)
1751                         desc[1].data[word_num] &=
1752                             rte_cpu_to_le_32(~(1UL << bit_num));
1753                 else
1754                         desc[1].data[word_num] |=
1755                             rte_cpu_to_le_32(1UL << bit_num);
1756         } else {
1757                 word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1758                 bit_num = vfid % 32;
1759                 if (clr)
1760                         desc[2].data[word_num] &=
1761                             rte_cpu_to_le_32(~(1UL << bit_num));
1762                 else
1763                         desc[2].data[word_num] |=
1764                             rte_cpu_to_le_32(1UL << bit_num);
1765         }
1766 }
1767
1768 static int
1769 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1770 {
1771         struct hns3_mac_vlan_tbl_entry_cmd req;
1772         struct hns3_cmd_desc desc[3];
1773         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1774         uint8_t vf_id;
1775         int ret;
1776
1777         /* Check if mac addr is valid */
1778         if (!rte_is_multicast_ether_addr(mac_addr)) {
1779                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1780                                       mac_addr);
1781                 hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1782                          mac_str);
1783                 return -EINVAL;
1784         }
1785
1786         memset(&req, 0, sizeof(req));
1787         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1788         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1789         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1790         if (ret) {
1791                 /* This mac addr do not exist, add new entry for it */
1792                 memset(desc[0].data, 0, sizeof(desc[0].data));
1793                 memset(desc[1].data, 0, sizeof(desc[0].data));
1794                 memset(desc[2].data, 0, sizeof(desc[0].data));
1795         }
1796
1797         /*
1798          * In current version VF is not supported when PF is driven by DPDK
1799          * driver, just need to configure parameters for PF vport.
1800          */
1801         vf_id = HNS3_PF_FUNC_ID;
1802         hns3_update_desc_vfid(desc, vf_id, false);
1803         ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1804         if (ret) {
1805                 if (ret == -ENOSPC)
1806                         hns3_err(hw, "mc mac vlan table is full");
1807                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1808                                       mac_addr);
1809                 hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1810         }
1811
1812         return ret;
1813 }
1814
1815 static int
1816 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1817 {
1818         struct hns3_mac_vlan_tbl_entry_cmd req;
1819         struct hns3_cmd_desc desc[3];
1820         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1821         uint8_t vf_id;
1822         int ret;
1823
1824         /* Check if mac addr is valid */
1825         if (!rte_is_multicast_ether_addr(mac_addr)) {
1826                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1827                                       mac_addr);
1828                 hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1829                          mac_str);
1830                 return -EINVAL;
1831         }
1832
1833         memset(&req, 0, sizeof(req));
1834         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1835         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1836         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1837         if (ret == 0) {
1838                 /*
1839                  * This mac addr exist, remove this handle's VFID for it.
1840                  * In current version VF is not supported when PF is driven by
1841                  * DPDK driver, just need to configure parameters for PF vport.
1842                  */
1843                 vf_id = HNS3_PF_FUNC_ID;
1844                 hns3_update_desc_vfid(desc, vf_id, true);
1845
1846                 /* All the vfid is zero, so need to delete this entry */
1847                 ret = hns3_remove_mac_vlan_tbl(hw, &req);
1848         } else if (ret == -ENOENT) {
1849                 /* This mac addr doesn't exist. */
1850                 return 0;
1851         }
1852
1853         if (ret) {
1854                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1855                                       mac_addr);
1856                 hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1857         }
1858
1859         return ret;
1860 }
1861
1862 static int
1863 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1864                            struct rte_ether_addr *mc_addr_set,
1865                            uint32_t nb_mc_addr)
1866 {
1867         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1868         struct rte_ether_addr *addr;
1869         uint32_t i;
1870         uint32_t j;
1871
1872         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1873                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
1874                          "invalid. valid range: 0~%d",
1875                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
1876                 return -EINVAL;
1877         }
1878
1879         /* Check if input mac addresses are valid */
1880         for (i = 0; i < nb_mc_addr; i++) {
1881                 addr = &mc_addr_set[i];
1882                 if (!rte_is_multicast_ether_addr(addr)) {
1883                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1884                                               addr);
1885                         hns3_err(hw,
1886                                  "failed to set mc mac addr, addr(%s) invalid.",
1887                                  mac_str);
1888                         return -EINVAL;
1889                 }
1890
1891                 /* Check if there are duplicate addresses */
1892                 for (j = i + 1; j < nb_mc_addr; j++) {
1893                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1894                                 rte_ether_format_addr(mac_str,
1895                                                       RTE_ETHER_ADDR_FMT_SIZE,
1896                                                       addr);
1897                                 hns3_err(hw, "failed to set mc mac addr, "
1898                                          "addrs invalid. two same addrs(%s).",
1899                                          mac_str);
1900                                 return -EINVAL;
1901                         }
1902                 }
1903
1904                 /*
1905                  * Check if there are duplicate addresses between mac_addrs
1906                  * and mc_addr_set
1907                  */
1908                 for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1909                         if (rte_is_same_ether_addr(addr,
1910                                                    &hw->data->mac_addrs[j])) {
1911                                 rte_ether_format_addr(mac_str,
1912                                                       RTE_ETHER_ADDR_FMT_SIZE,
1913                                                       addr);
1914                                 hns3_err(hw, "failed to set mc mac addr, "
1915                                          "addrs invalid. addrs(%s) has already "
1916                                          "configured in mac_addr add API",
1917                                          mac_str);
1918                                 return -EINVAL;
1919                         }
1920                 }
1921         }
1922
1923         return 0;
1924 }
1925
1926 static void
1927 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
1928                            struct rte_ether_addr *mc_addr_set,
1929                            int mc_addr_num,
1930                            struct rte_ether_addr *reserved_addr_list,
1931                            int *reserved_addr_num,
1932                            struct rte_ether_addr *add_addr_list,
1933                            int *add_addr_num,
1934                            struct rte_ether_addr *rm_addr_list,
1935                            int *rm_addr_num)
1936 {
1937         struct rte_ether_addr *addr;
1938         int current_addr_num;
1939         int reserved_num = 0;
1940         int add_num = 0;
1941         int rm_num = 0;
1942         int num;
1943         int i;
1944         int j;
1945         bool same_addr;
1946
1947         /* Calculate the mc mac address list that should be removed */
1948         current_addr_num = hw->mc_addrs_num;
1949         for (i = 0; i < current_addr_num; i++) {
1950                 addr = &hw->mc_addrs[i];
1951                 same_addr = false;
1952                 for (j = 0; j < mc_addr_num; j++) {
1953                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1954                                 same_addr = true;
1955                                 break;
1956                         }
1957                 }
1958
1959                 if (!same_addr) {
1960                         rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
1961                         rm_num++;
1962                 } else {
1963                         rte_ether_addr_copy(addr,
1964                                             &reserved_addr_list[reserved_num]);
1965                         reserved_num++;
1966                 }
1967         }
1968
1969         /* Calculate the mc mac address list that should be added */
1970         for (i = 0; i < mc_addr_num; i++) {
1971                 addr = &mc_addr_set[i];
1972                 same_addr = false;
1973                 for (j = 0; j < current_addr_num; j++) {
1974                         if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
1975                                 same_addr = true;
1976                                 break;
1977                         }
1978                 }
1979
1980                 if (!same_addr) {
1981                         rte_ether_addr_copy(addr, &add_addr_list[add_num]);
1982                         add_num++;
1983                 }
1984         }
1985
1986         /* Reorder the mc mac address list maintained by driver */
1987         for (i = 0; i < reserved_num; i++)
1988                 rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
1989
1990         for (i = 0; i < rm_num; i++) {
1991                 num = reserved_num + i;
1992                 rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
1993         }
1994
1995         *reserved_addr_num = reserved_num;
1996         *add_addr_num = add_num;
1997         *rm_addr_num = rm_num;
1998 }
1999
2000 static int
2001 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2002                           struct rte_ether_addr *mc_addr_set,
2003                           uint32_t nb_mc_addr)
2004 {
2005         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2006         struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2007         struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2008         struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2009         struct rte_ether_addr *addr;
2010         int reserved_addr_num;
2011         int add_addr_num;
2012         int rm_addr_num;
2013         int mc_addr_num;
2014         int num;
2015         int ret;
2016         int i;
2017
2018         /* Check if input parameters are valid */
2019         ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2020         if (ret)
2021                 return ret;
2022
2023         rte_spinlock_lock(&hw->lock);
2024
2025         /*
2026          * Calculate the mc mac address lists those should be removed and be
2027          * added, Reorder the mc mac address list maintained by driver.
2028          */
2029         mc_addr_num = (int)nb_mc_addr;
2030         hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2031                                    reserved_addr_list, &reserved_addr_num,
2032                                    add_addr_list, &add_addr_num,
2033                                    rm_addr_list, &rm_addr_num);
2034
2035         /* Remove mc mac addresses */
2036         for (i = 0; i < rm_addr_num; i++) {
2037                 num = rm_addr_num - i - 1;
2038                 addr = &rm_addr_list[num];
2039                 ret = hns3_remove_mc_addr(hw, addr);
2040                 if (ret) {
2041                         rte_spinlock_unlock(&hw->lock);
2042                         return ret;
2043                 }
2044                 hw->mc_addrs_num--;
2045         }
2046
2047         /* Add mc mac addresses */
2048         for (i = 0; i < add_addr_num; i++) {
2049                 addr = &add_addr_list[i];
2050                 ret = hns3_add_mc_addr(hw, addr);
2051                 if (ret) {
2052                         rte_spinlock_unlock(&hw->lock);
2053                         return ret;
2054                 }
2055
2056                 num = reserved_addr_num + i;
2057                 rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2058                 hw->mc_addrs_num++;
2059         }
2060         rte_spinlock_unlock(&hw->lock);
2061
2062         return 0;
2063 }
2064
2065 static int
2066 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2067 {
2068         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2069         struct hns3_hw *hw = &hns->hw;
2070         struct rte_ether_addr *addr;
2071         int err = 0;
2072         int ret;
2073         int i;
2074
2075         for (i = 0; i < hw->mc_addrs_num; i++) {
2076                 addr = &hw->mc_addrs[i];
2077                 if (!rte_is_multicast_ether_addr(addr))
2078                         continue;
2079                 if (del)
2080                         ret = hns3_remove_mc_addr(hw, addr);
2081                 else
2082                         ret = hns3_add_mc_addr(hw, addr);
2083                 if (ret) {
2084                         err = ret;
2085                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2086                                               addr);
2087                         hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2088                                  del ? "Remove" : "Restore", mac_str, ret);
2089                 }
2090         }
2091         return err;
2092 }
2093
2094 static int
2095 hns3_check_mq_mode(struct rte_eth_dev *dev)
2096 {
2097         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2098         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2099         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2100         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2101         struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2102         struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2103         uint8_t num_tc;
2104         int max_tc = 0;
2105         int i;
2106
2107         dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2108         dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2109
2110         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2111                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2112                          "rx_mq_mode = %d", rx_mq_mode);
2113                 return -EINVAL;
2114         }
2115
2116         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2117             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2118                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2119                          "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2120                          rx_mq_mode, tx_mq_mode);
2121                 return -EINVAL;
2122         }
2123
2124         if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2125                 if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2126                         hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2127                                  dcb_rx_conf->nb_tcs, pf->tc_max);
2128                         return -EINVAL;
2129                 }
2130
2131                 if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2132                       dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2133                         hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2134                                  "nb_tcs(%d) != %d or %d in rx direction.",
2135                                  dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2136                         return -EINVAL;
2137                 }
2138
2139                 if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2140                         hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2141                                  dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2142                         return -EINVAL;
2143                 }
2144
2145                 for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2146                         if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2147                                 hns3_err(hw, "dcb_tc[%d] = %d in rx direction, "
2148                                          "is not equal to one in tx direction.",
2149                                          i, dcb_rx_conf->dcb_tc[i]);
2150                                 return -EINVAL;
2151                         }
2152                         if (dcb_rx_conf->dcb_tc[i] > max_tc)
2153                                 max_tc = dcb_rx_conf->dcb_tc[i];
2154                 }
2155
2156                 num_tc = max_tc + 1;
2157                 if (num_tc > dcb_rx_conf->nb_tcs) {
2158                         hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2159                                  num_tc, dcb_rx_conf->nb_tcs);
2160                         return -EINVAL;
2161                 }
2162         }
2163
2164         return 0;
2165 }
2166
2167 static int
2168 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2169 {
2170         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2171
2172         if (!hns3_dev_dcb_supported(hw)) {
2173                 hns3_err(hw, "this port does not support dcb configurations.");
2174                 return -EOPNOTSUPP;
2175         }
2176
2177         if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2178                 hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2179                 return -EOPNOTSUPP;
2180         }
2181
2182         /* Check multiple queue mode */
2183         return hns3_check_mq_mode(dev);
2184 }
2185
2186 static int
2187 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id, bool mmap,
2188                            enum hns3_ring_type queue_type, uint16_t queue_id)
2189 {
2190         struct hns3_cmd_desc desc;
2191         struct hns3_ctrl_vector_chain_cmd *req =
2192                 (struct hns3_ctrl_vector_chain_cmd *)desc.data;
2193         enum hns3_cmd_status status;
2194         enum hns3_opcode_type op;
2195         uint16_t tqp_type_and_id = 0;
2196         const char *op_str;
2197         uint16_t type;
2198         uint16_t gl;
2199
2200         op = mmap ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2201         hns3_cmd_setup_basic_desc(&desc, op, false);
2202         req->int_vector_id = vector_id;
2203
2204         if (queue_type == HNS3_RING_TYPE_RX)
2205                 gl = HNS3_RING_GL_RX;
2206         else
2207                 gl = HNS3_RING_GL_TX;
2208
2209         type = queue_type;
2210
2211         hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2212                        type);
2213         hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2214         hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2215                        gl);
2216         req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2217         req->int_cause_num = 1;
2218         op_str = mmap ? "Map" : "Unmap";
2219         status = hns3_cmd_send(hw, &desc, 1);
2220         if (status) {
2221                 hns3_err(hw, "%s TQP %d fail, vector_id is %d, status is %d.",
2222                          op_str, queue_id, req->int_vector_id, status);
2223                 return status;
2224         }
2225
2226         return 0;
2227 }
2228
2229 static int
2230 hns3_init_ring_with_vector(struct hns3_hw *hw)
2231 {
2232         uint16_t vec;
2233         int ret;
2234         int i;
2235
2236         /*
2237          * In hns3 network engine, vector 0 is always the misc interrupt of this
2238          * function, vector 1~N can be used respectively for the queues of the
2239          * function. Tx and Rx queues with the same number share the interrupt
2240          * vector. In the initialization clearing the all hardware mapping
2241          * relationship configurations between queues and interrupt vectors is
2242          * needed, so some error caused by the residual configurations, such as
2243          * the unexpected Tx interrupt, can be avoid.
2244          */
2245         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2246         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2247                 vec = vec - 1; /* the last interrupt is reserved */
2248         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2249         for (i = 0; i < hw->intr_tqps_num; i++) {
2250                 /*
2251                  * Set gap limiter/rate limiter/quanity limiter algorithm
2252                  * configuration for interrupt coalesce of queue's interrupt.
2253                  */
2254                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2255                                        HNS3_TQP_INTR_GL_DEFAULT);
2256                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2257                                        HNS3_TQP_INTR_GL_DEFAULT);
2258                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2259                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2260
2261                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2262                                                  HNS3_RING_TYPE_TX, i);
2263                 if (ret) {
2264                         PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2265                                           "vector: %d, ret=%d", i, vec, ret);
2266                         return ret;
2267                 }
2268
2269                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2270                                                  HNS3_RING_TYPE_RX, i);
2271                 if (ret) {
2272                         PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2273                                           "vector: %d, ret=%d", i, vec, ret);
2274                         return ret;
2275                 }
2276         }
2277
2278         return 0;
2279 }
2280
2281 static int
2282 hns3_dev_configure(struct rte_eth_dev *dev)
2283 {
2284         struct hns3_adapter *hns = dev->data->dev_private;
2285         struct rte_eth_conf *conf = &dev->data->dev_conf;
2286         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2287         struct hns3_hw *hw = &hns->hw;
2288         struct hns3_rss_conf *rss_cfg = &hw->rss_info;
2289         uint16_t nb_rx_q = dev->data->nb_rx_queues;
2290         uint16_t nb_tx_q = dev->data->nb_tx_queues;
2291         struct rte_eth_rss_conf rss_conf;
2292         uint16_t mtu;
2293         bool gro_en;
2294         int ret;
2295
2296         /*
2297          * Hardware does not support individually enable/disable/reset the Tx or
2298          * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
2299          * and Rx queues at the same time. When the numbers of Tx queues
2300          * allocated by upper applications are not equal to the numbers of Rx
2301          * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
2302          * of Tx/Rx queues. otherwise, network engine can not work as usual. But
2303          * these fake queues are imperceptible, and can not be used by upper
2304          * applications.
2305          */
2306         ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2307         if (ret) {
2308                 hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
2309                 return ret;
2310         }
2311
2312         hw->adapter_state = HNS3_NIC_CONFIGURING;
2313         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2314                 hns3_err(hw, "setting link speed/duplex not supported");
2315                 ret = -EINVAL;
2316                 goto cfg_err;
2317         }
2318
2319         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2320                 ret = hns3_check_dcb_cfg(dev);
2321                 if (ret)
2322                         goto cfg_err;
2323         }
2324
2325         /* When RSS is not configured, redirect the packet queue 0 */
2326         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2327                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2328                 rss_conf = conf->rx_adv_conf.rss_conf;
2329                 if (rss_conf.rss_key == NULL) {
2330                         rss_conf.rss_key = rss_cfg->key;
2331                         rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
2332                 }
2333
2334                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2335                 if (ret)
2336                         goto cfg_err;
2337         }
2338
2339         /*
2340          * If jumbo frames are enabled, MTU needs to be refreshed
2341          * according to the maximum RX packet length.
2342          */
2343         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2344                 /*
2345                  * Security of max_rx_pkt_len is guaranteed in dpdk frame.
2346                  * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
2347                  * can safely assign to "uint16_t" type variable.
2348                  */
2349                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
2350                 ret = hns3_dev_mtu_set(dev, mtu);
2351                 if (ret)
2352                         goto cfg_err;
2353                 dev->data->mtu = mtu;
2354         }
2355
2356         ret = hns3_dev_configure_vlan(dev);
2357         if (ret)
2358                 goto cfg_err;
2359
2360         /* config hardware GRO */
2361         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2362         ret = hns3_config_gro(hw, gro_en);
2363         if (ret)
2364                 goto cfg_err;
2365
2366         hns->rx_simple_allowed = true;
2367         hns->rx_vec_allowed = true;
2368         hns->tx_simple_allowed = true;
2369         hns->tx_vec_allowed = true;
2370
2371         hns3_init_rx_ptype_tble(dev);
2372         hw->adapter_state = HNS3_NIC_CONFIGURED;
2373
2374         return 0;
2375
2376 cfg_err:
2377         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2378         hw->adapter_state = HNS3_NIC_INITIALIZED;
2379
2380         return ret;
2381 }
2382
2383 static int
2384 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2385 {
2386         struct hns3_config_max_frm_size_cmd *req;
2387         struct hns3_cmd_desc desc;
2388
2389         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2390
2391         req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2392         req->max_frm_size = rte_cpu_to_le_16(new_mps);
2393         req->min_frm_size = RTE_ETHER_MIN_LEN;
2394
2395         return hns3_cmd_send(hw, &desc, 1);
2396 }
2397
2398 static int
2399 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2400 {
2401         int ret;
2402
2403         ret = hns3_set_mac_mtu(hw, mps);
2404         if (ret) {
2405                 hns3_err(hw, "Failed to set mtu, ret = %d", ret);
2406                 return ret;
2407         }
2408
2409         ret = hns3_buffer_alloc(hw);
2410         if (ret)
2411                 hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
2412
2413         return ret;
2414 }
2415
2416 static int
2417 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2418 {
2419         struct hns3_adapter *hns = dev->data->dev_private;
2420         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2421         struct hns3_hw *hw = &hns->hw;
2422         bool is_jumbo_frame;
2423         int ret;
2424
2425         if (dev->data->dev_started) {
2426                 hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2427                          "before configuration", dev->data->port_id);
2428                 return -EBUSY;
2429         }
2430
2431         rte_spinlock_lock(&hw->lock);
2432         is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
2433         frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2434
2435         /*
2436          * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2437          * assign to "uint16_t" type variable.
2438          */
2439         ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2440         if (ret) {
2441                 rte_spinlock_unlock(&hw->lock);
2442                 hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2443                          dev->data->port_id, mtu, ret);
2444                 return ret;
2445         }
2446         hns->pf.mps = (uint16_t)frame_size;
2447         if (is_jumbo_frame)
2448                 dev->data->dev_conf.rxmode.offloads |=
2449                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
2450         else
2451                 dev->data->dev_conf.rxmode.offloads &=
2452                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
2453         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2454         rte_spinlock_unlock(&hw->lock);
2455
2456         return 0;
2457 }
2458
2459 static int
2460 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2461 {
2462         struct hns3_adapter *hns = eth_dev->data->dev_private;
2463         struct hns3_hw *hw = &hns->hw;
2464         uint16_t queue_num = hw->tqps_num;
2465
2466         /*
2467          * In interrupt mode, 'max_rx_queues' is set based on the number of
2468          * MSI-X interrupt resources of the hardware.
2469          */
2470         if (hw->data->dev_conf.intr_conf.rxq == 1)
2471                 queue_num = hw->intr_tqps_num;
2472
2473         info->max_rx_queues = queue_num;
2474         info->max_tx_queues = hw->tqps_num;
2475         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2476         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2477         info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2478         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2479         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2480         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2481                                  DEV_RX_OFFLOAD_TCP_CKSUM |
2482                                  DEV_RX_OFFLOAD_UDP_CKSUM |
2483                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
2484                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2485                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2486                                  DEV_RX_OFFLOAD_KEEP_CRC |
2487                                  DEV_RX_OFFLOAD_SCATTER |
2488                                  DEV_RX_OFFLOAD_VLAN_STRIP |
2489                                  DEV_RX_OFFLOAD_VLAN_FILTER |
2490                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
2491                                  DEV_RX_OFFLOAD_RSS_HASH |
2492                                  DEV_RX_OFFLOAD_TCP_LRO);
2493         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2494                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
2495                                  DEV_TX_OFFLOAD_TCP_CKSUM |
2496                                  DEV_TX_OFFLOAD_UDP_CKSUM |
2497                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
2498                                  DEV_TX_OFFLOAD_MULTI_SEGS |
2499                                  DEV_TX_OFFLOAD_TCP_TSO |
2500                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2501                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
2502                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2503                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2504                                  hns3_txvlan_cap_get(hw));
2505
2506         info->rx_desc_lim = (struct rte_eth_desc_lim) {
2507                 .nb_max = HNS3_MAX_RING_DESC,
2508                 .nb_min = HNS3_MIN_RING_DESC,
2509                 .nb_align = HNS3_ALIGN_RING_DESC,
2510         };
2511
2512         info->tx_desc_lim = (struct rte_eth_desc_lim) {
2513                 .nb_max = HNS3_MAX_RING_DESC,
2514                 .nb_min = HNS3_MIN_RING_DESC,
2515                 .nb_align = HNS3_ALIGN_RING_DESC,
2516                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2517                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
2518         };
2519
2520         info->default_rxconf = (struct rte_eth_rxconf) {
2521                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2522                 /*
2523                  * If there are no available Rx buffer descriptors, incoming
2524                  * packets are always dropped by hardware based on hns3 network
2525                  * engine.
2526                  */
2527                 .rx_drop_en = 1,
2528                 .offloads = 0,
2529         };
2530         info->default_txconf = (struct rte_eth_txconf) {
2531                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2532                 .offloads = 0,
2533         };
2534
2535         info->vmdq_queue_num = 0;
2536
2537         info->reta_size = HNS3_RSS_IND_TBL_SIZE;
2538         info->hash_key_size = HNS3_RSS_KEY_SIZE;
2539         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2540
2541         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2542         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2543         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2544         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2545         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2546         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2547
2548         return 0;
2549 }
2550
2551 static int
2552 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2553                     size_t fw_size)
2554 {
2555         struct hns3_adapter *hns = eth_dev->data->dev_private;
2556         struct hns3_hw *hw = &hns->hw;
2557         uint32_t version = hw->fw_version;
2558         int ret;
2559
2560         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2561                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2562                                       HNS3_FW_VERSION_BYTE3_S),
2563                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2564                                       HNS3_FW_VERSION_BYTE2_S),
2565                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2566                                       HNS3_FW_VERSION_BYTE1_S),
2567                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2568                                       HNS3_FW_VERSION_BYTE0_S));
2569         ret += 1; /* add the size of '\0' */
2570         if (fw_size < (uint32_t)ret)
2571                 return ret;
2572         else
2573                 return 0;
2574 }
2575
2576 static int
2577 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2578                      __rte_unused int wait_to_complete)
2579 {
2580         struct hns3_adapter *hns = eth_dev->data->dev_private;
2581         struct hns3_hw *hw = &hns->hw;
2582         struct hns3_mac *mac = &hw->mac;
2583         struct rte_eth_link new_link;
2584
2585         if (!hns3_is_reset_pending(hns)) {
2586                 hns3_update_speed_duplex(eth_dev);
2587                 hns3_update_link_status(hw);
2588         }
2589
2590         memset(&new_link, 0, sizeof(new_link));
2591         switch (mac->link_speed) {
2592         case ETH_SPEED_NUM_10M:
2593         case ETH_SPEED_NUM_100M:
2594         case ETH_SPEED_NUM_1G:
2595         case ETH_SPEED_NUM_10G:
2596         case ETH_SPEED_NUM_25G:
2597         case ETH_SPEED_NUM_40G:
2598         case ETH_SPEED_NUM_50G:
2599         case ETH_SPEED_NUM_100G:
2600         case ETH_SPEED_NUM_200G:
2601                 new_link.link_speed = mac->link_speed;
2602                 break;
2603         default:
2604                 new_link.link_speed = ETH_SPEED_NUM_100M;
2605                 break;
2606         }
2607
2608         new_link.link_duplex = mac->link_duplex;
2609         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2610         new_link.link_autoneg =
2611             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2612
2613         return rte_eth_linkstatus_set(eth_dev, &new_link);
2614 }
2615
2616 static int
2617 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2618 {
2619         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2620         struct hns3_pf *pf = &hns->pf;
2621
2622         if (!(status->pf_state & HNS3_PF_STATE_DONE))
2623                 return -EINVAL;
2624
2625         pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2626
2627         return 0;
2628 }
2629
2630 static int
2631 hns3_query_function_status(struct hns3_hw *hw)
2632 {
2633 #define HNS3_QUERY_MAX_CNT              10
2634 #define HNS3_QUERY_SLEEP_MSCOEND        1
2635         struct hns3_func_status_cmd *req;
2636         struct hns3_cmd_desc desc;
2637         int timeout = 0;
2638         int ret;
2639
2640         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2641         req = (struct hns3_func_status_cmd *)desc.data;
2642
2643         do {
2644                 ret = hns3_cmd_send(hw, &desc, 1);
2645                 if (ret) {
2646                         PMD_INIT_LOG(ERR, "query function status failed %d",
2647                                      ret);
2648                         return ret;
2649                 }
2650
2651                 /* Check pf reset is done */
2652                 if (req->pf_state)
2653                         break;
2654
2655                 rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2656         } while (timeout++ < HNS3_QUERY_MAX_CNT);
2657
2658         return hns3_parse_func_status(hw, req);
2659 }
2660
2661 static int
2662 hns3_query_pf_resource(struct hns3_hw *hw)
2663 {
2664         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2665         struct hns3_pf *pf = &hns->pf;
2666         struct hns3_pf_res_cmd *req;
2667         struct hns3_cmd_desc desc;
2668         int ret;
2669
2670         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2671         ret = hns3_cmd_send(hw, &desc, 1);
2672         if (ret) {
2673                 PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2674                 return ret;
2675         }
2676
2677         req = (struct hns3_pf_res_cmd *)desc.data;
2678         hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num);
2679         pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2680         hw->tqps_num = RTE_MIN(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
2681         pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2682
2683         if (req->tx_buf_size)
2684                 pf->tx_buf_size =
2685                     rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2686         else
2687                 pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2688
2689         pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2690
2691         if (req->dv_buf_size)
2692                 pf->dv_buf_size =
2693                     rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2694         else
2695                 pf->dv_buf_size = HNS3_DEFAULT_DV;
2696
2697         pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2698
2699         hw->num_msi =
2700                 hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2701                                HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2702
2703         return 0;
2704 }
2705
2706 static void
2707 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2708 {
2709         struct hns3_cfg_param_cmd *req;
2710         uint64_t mac_addr_tmp_high;
2711         uint64_t mac_addr_tmp;
2712         uint32_t i;
2713
2714         req = (struct hns3_cfg_param_cmd *)desc[0].data;
2715
2716         /* get the configuration */
2717         cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2718                                              HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2719         cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2720                                      HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2721         cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2722                                            HNS3_CFG_TQP_DESC_N_M,
2723                                            HNS3_CFG_TQP_DESC_N_S);
2724
2725         cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2726                                        HNS3_CFG_PHY_ADDR_M,
2727                                        HNS3_CFG_PHY_ADDR_S);
2728         cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2729                                          HNS3_CFG_MEDIA_TP_M,
2730                                          HNS3_CFG_MEDIA_TP_S);
2731         cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2732                                          HNS3_CFG_RX_BUF_LEN_M,
2733                                          HNS3_CFG_RX_BUF_LEN_S);
2734         /* get mac address */
2735         mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2736         mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2737                                            HNS3_CFG_MAC_ADDR_H_M,
2738                                            HNS3_CFG_MAC_ADDR_H_S);
2739
2740         mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2741
2742         cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2743                                             HNS3_CFG_DEFAULT_SPEED_M,
2744                                             HNS3_CFG_DEFAULT_SPEED_S);
2745         cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2746                                            HNS3_CFG_RSS_SIZE_M,
2747                                            HNS3_CFG_RSS_SIZE_S);
2748
2749         for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2750                 cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2751
2752         req = (struct hns3_cfg_param_cmd *)desc[1].data;
2753         cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2754
2755         cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2756                                             HNS3_CFG_SPEED_ABILITY_M,
2757                                             HNS3_CFG_SPEED_ABILITY_S);
2758         cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2759                                         HNS3_CFG_UMV_TBL_SPACE_M,
2760                                         HNS3_CFG_UMV_TBL_SPACE_S);
2761         if (!cfg->umv_space)
2762                 cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2763 }
2764
2765 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2766  * @hw: pointer to struct hns3_hw
2767  * @hcfg: the config structure to be getted
2768  */
2769 static int
2770 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2771 {
2772         struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2773         struct hns3_cfg_param_cmd *req;
2774         uint32_t offset;
2775         uint32_t i;
2776         int ret;
2777
2778         for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2779                 offset = 0;
2780                 req = (struct hns3_cfg_param_cmd *)desc[i].data;
2781                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2782                                           true);
2783                 hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2784                                i * HNS3_CFG_RD_LEN_BYTES);
2785                 /* Len should be divided by 4 when send to hardware */
2786                 hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2787                                HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2788                 req->offset = rte_cpu_to_le_32(offset);
2789         }
2790
2791         ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2792         if (ret) {
2793                 PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2794                 return ret;
2795         }
2796
2797         hns3_parse_cfg(hcfg, desc);
2798
2799         return 0;
2800 }
2801
2802 static int
2803 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2804 {
2805         switch (speed_cmd) {
2806         case HNS3_CFG_SPEED_10M:
2807                 *speed = ETH_SPEED_NUM_10M;
2808                 break;
2809         case HNS3_CFG_SPEED_100M:
2810                 *speed = ETH_SPEED_NUM_100M;
2811                 break;
2812         case HNS3_CFG_SPEED_1G:
2813                 *speed = ETH_SPEED_NUM_1G;
2814                 break;
2815         case HNS3_CFG_SPEED_10G:
2816                 *speed = ETH_SPEED_NUM_10G;
2817                 break;
2818         case HNS3_CFG_SPEED_25G:
2819                 *speed = ETH_SPEED_NUM_25G;
2820                 break;
2821         case HNS3_CFG_SPEED_40G:
2822                 *speed = ETH_SPEED_NUM_40G;
2823                 break;
2824         case HNS3_CFG_SPEED_50G:
2825                 *speed = ETH_SPEED_NUM_50G;
2826                 break;
2827         case HNS3_CFG_SPEED_100G:
2828                 *speed = ETH_SPEED_NUM_100G;
2829                 break;
2830         case HNS3_CFG_SPEED_200G:
2831                 *speed = ETH_SPEED_NUM_200G;
2832                 break;
2833         default:
2834                 return -EINVAL;
2835         }
2836
2837         return 0;
2838 }
2839
2840 static void
2841 hns3_set_default_dev_specifications(struct hns3_hw *hw)
2842 {
2843         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
2844         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
2845         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
2846         hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
2847 }
2848
2849 static void
2850 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
2851 {
2852         struct hns3_dev_specs_0_cmd *req0;
2853
2854         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
2855
2856         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
2857         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
2858         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
2859         hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
2860 }
2861
2862 static int
2863 hns3_query_dev_specifications(struct hns3_hw *hw)
2864 {
2865         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
2866         int ret;
2867         int i;
2868
2869         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2870                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
2871                                           true);
2872                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
2873         }
2874         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
2875
2876         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
2877         if (ret)
2878                 return ret;
2879
2880         hns3_parse_dev_specifications(hw, desc);
2881
2882         return 0;
2883 }
2884
2885 static int
2886 hns3_get_capability(struct hns3_hw *hw)
2887 {
2888         struct rte_pci_device *pci_dev;
2889         struct rte_eth_dev *eth_dev;
2890         uint16_t device_id;
2891         uint8_t revision;
2892         int ret;
2893
2894         eth_dev = &rte_eth_devices[hw->data->port_id];
2895         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2896         device_id = pci_dev->id.device_id;
2897
2898         if (device_id == HNS3_DEV_ID_25GE_RDMA ||
2899             device_id == HNS3_DEV_ID_50GE_RDMA ||
2900             device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
2901             device_id == HNS3_DEV_ID_200G_RDMA)
2902                 hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
2903
2904         /* Get PCI revision id */
2905         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
2906                                   HNS3_PCI_REVISION_ID);
2907         if (ret != HNS3_PCI_REVISION_ID_LEN) {
2908                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
2909                              ret);
2910                 return -EIO;
2911         }
2912         hw->revision = revision;
2913
2914         if (revision < PCI_REVISION_ID_HIP09_A) {
2915                 hns3_set_default_dev_specifications(hw);
2916                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
2917                 hw->intr.coalesce_mode = HNS3_INTR_COALESCE_NON_QL;
2918                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
2919                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
2920                 hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
2921                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
2922                 return 0;
2923         }
2924
2925         ret = hns3_query_dev_specifications(hw);
2926         if (ret) {
2927                 PMD_INIT_LOG(ERR,
2928                              "failed to query dev specifications, ret = %d",
2929                              ret);
2930                 return ret;
2931         }
2932
2933         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
2934         hw->intr.coalesce_mode = HNS3_INTR_COALESCE_QL;
2935         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
2936         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
2937         hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
2938         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
2939
2940         return 0;
2941 }
2942
2943 static int
2944 hns3_get_board_configuration(struct hns3_hw *hw)
2945 {
2946         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2947         struct hns3_pf *pf = &hns->pf;
2948         struct hns3_cfg cfg;
2949         int ret;
2950
2951         ret = hns3_get_board_cfg(hw, &cfg);
2952         if (ret) {
2953                 PMD_INIT_LOG(ERR, "get board config failed %d", ret);
2954                 return ret;
2955         }
2956
2957         if (cfg.media_type == HNS3_MEDIA_TYPE_COPPER &&
2958             !hns3_dev_copper_supported(hw)) {
2959                 PMD_INIT_LOG(ERR, "media type is copper, not supported.");
2960                 return -EOPNOTSUPP;
2961         }
2962
2963         hw->mac.media_type = cfg.media_type;
2964         hw->rss_size_max = cfg.rss_size_max;
2965         hw->rss_dis_flag = false;
2966         memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
2967         hw->mac.phy_addr = cfg.phy_addr;
2968         hw->mac.default_addr_setted = false;
2969         hw->num_tx_desc = cfg.tqp_desc_num;
2970         hw->num_rx_desc = cfg.tqp_desc_num;
2971         hw->dcb_info.num_pg = 1;
2972         hw->dcb_info.hw_pfc_map = 0;
2973
2974         ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
2975         if (ret) {
2976                 PMD_INIT_LOG(ERR, "Get wrong speed %d, ret = %d",
2977                              cfg.default_speed, ret);
2978                 return ret;
2979         }
2980
2981         pf->tc_max = cfg.tc_num;
2982         if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
2983                 PMD_INIT_LOG(WARNING,
2984                              "Get TC num(%u) from flash, set TC num to 1",
2985                              pf->tc_max);
2986                 pf->tc_max = 1;
2987         }
2988
2989         /* Dev does not support DCB */
2990         if (!hns3_dev_dcb_supported(hw)) {
2991                 pf->tc_max = 1;
2992                 pf->pfc_max = 0;
2993         } else
2994                 pf->pfc_max = pf->tc_max;
2995
2996         hw->dcb_info.num_tc = 1;
2997         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
2998                                      hw->tqps_num / hw->dcb_info.num_tc);
2999         hns3_set_bit(hw->hw_tc_map, 0, 1);
3000         pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3001
3002         pf->wanted_umv_size = cfg.umv_space;
3003
3004         return ret;
3005 }
3006
3007 static int
3008 hns3_get_configuration(struct hns3_hw *hw)
3009 {
3010         int ret;
3011
3012         ret = hns3_query_function_status(hw);
3013         if (ret) {
3014                 PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3015                 return ret;
3016         }
3017
3018         /* Get device capability */
3019         ret = hns3_get_capability(hw);
3020         if (ret) {
3021                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3022                 return ret;
3023         }
3024
3025         /* Get pf resource */
3026         ret = hns3_query_pf_resource(hw);
3027         if (ret) {
3028                 PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3029                 return ret;
3030         }
3031
3032         ret = hns3_get_board_configuration(hw);
3033         if (ret)
3034                 PMD_INIT_LOG(ERR, "Failed to get board configuration: %d", ret);
3035
3036         return ret;
3037 }
3038
3039 static int
3040 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3041                       uint16_t tqp_vid, bool is_pf)
3042 {
3043         struct hns3_tqp_map_cmd *req;
3044         struct hns3_cmd_desc desc;
3045         int ret;
3046
3047         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3048
3049         req = (struct hns3_tqp_map_cmd *)desc.data;
3050         req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3051         req->tqp_vf = func_id;
3052         req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3053         if (!is_pf)
3054                 req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3055         req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3056
3057         ret = hns3_cmd_send(hw, &desc, 1);
3058         if (ret)
3059                 PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3060
3061         return ret;
3062 }
3063
3064 static int
3065 hns3_map_tqp(struct hns3_hw *hw)
3066 {
3067         uint16_t tqps_num = hw->total_tqps_num;
3068         uint16_t func_id;
3069         uint16_t tqp_id;
3070         bool is_pf;
3071         int num;
3072         int ret;
3073         int i;
3074
3075         /*
3076          * In current version VF is not supported when PF is driven by DPDK
3077          * driver, so we allocate tqps to PF as much as possible.
3078          */
3079         tqp_id = 0;
3080         num = DIV_ROUND_UP(hw->total_tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
3081         for (func_id = HNS3_PF_FUNC_ID; func_id < num; func_id++) {
3082                 is_pf = func_id == HNS3_PF_FUNC_ID ? true : false;
3083                 for (i = 0;
3084                      i < HNS3_MAX_TQP_NUM_PER_FUNC && tqp_id < tqps_num; i++) {
3085                         ret = hns3_map_tqps_to_func(hw, func_id, tqp_id++, i,
3086                                                     is_pf);
3087                         if (ret)
3088                                 return ret;
3089                 }
3090         }
3091
3092         return 0;
3093 }
3094
3095 static int
3096 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3097 {
3098         struct hns3_config_mac_speed_dup_cmd *req;
3099         struct hns3_cmd_desc desc;
3100         int ret;
3101
3102         req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3103
3104         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3105
3106         hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3107
3108         switch (speed) {
3109         case ETH_SPEED_NUM_10M:
3110                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3111                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3112                 break;
3113         case ETH_SPEED_NUM_100M:
3114                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3115                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3116                 break;
3117         case ETH_SPEED_NUM_1G:
3118                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3119                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3120                 break;
3121         case ETH_SPEED_NUM_10G:
3122                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3123                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3124                 break;
3125         case ETH_SPEED_NUM_25G:
3126                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3127                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3128                 break;
3129         case ETH_SPEED_NUM_40G:
3130                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3131                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3132                 break;
3133         case ETH_SPEED_NUM_50G:
3134                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3135                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3136                 break;
3137         case ETH_SPEED_NUM_100G:
3138                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3139                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3140                 break;
3141         case ETH_SPEED_NUM_200G:
3142                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3143                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3144                 break;
3145         default:
3146                 PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3147                 return -EINVAL;
3148         }
3149
3150         hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3151
3152         ret = hns3_cmd_send(hw, &desc, 1);
3153         if (ret)
3154                 PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3155
3156         return ret;
3157 }
3158
3159 static int
3160 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3161 {
3162         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3163         struct hns3_pf *pf = &hns->pf;
3164         struct hns3_priv_buf *priv;
3165         uint32_t i, total_size;
3166
3167         total_size = pf->pkt_buf_size;
3168
3169         /* alloc tx buffer for all enabled tc */
3170         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3171                 priv = &buf_alloc->priv_buf[i];
3172
3173                 if (hw->hw_tc_map & BIT(i)) {
3174                         if (total_size < pf->tx_buf_size)
3175                                 return -ENOMEM;
3176
3177                         priv->tx_buf_size = pf->tx_buf_size;
3178                 } else
3179                         priv->tx_buf_size = 0;
3180
3181                 total_size -= priv->tx_buf_size;
3182         }
3183
3184         return 0;
3185 }
3186
3187 static int
3188 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3189 {
3190 /* TX buffer size is unit by 128 byte */
3191 #define HNS3_BUF_SIZE_UNIT_SHIFT        7
3192 #define HNS3_BUF_SIZE_UPDATE_EN_MSK     BIT(15)
3193         struct hns3_tx_buff_alloc_cmd *req;
3194         struct hns3_cmd_desc desc;
3195         uint32_t buf_size;
3196         uint32_t i;
3197         int ret;
3198
3199         req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3200
3201         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3202         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3203                 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3204
3205                 buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3206                 req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3207                                                 HNS3_BUF_SIZE_UPDATE_EN_MSK);
3208         }
3209
3210         ret = hns3_cmd_send(hw, &desc, 1);
3211         if (ret)
3212                 PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3213
3214         return ret;
3215 }
3216
3217 static int
3218 hns3_get_tc_num(struct hns3_hw *hw)
3219 {
3220         int cnt = 0;
3221         uint8_t i;
3222
3223         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3224                 if (hw->hw_tc_map & BIT(i))
3225                         cnt++;
3226         return cnt;
3227 }
3228
3229 static uint32_t
3230 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3231 {
3232         struct hns3_priv_buf *priv;
3233         uint32_t rx_priv = 0;
3234         int i;
3235
3236         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3237                 priv = &buf_alloc->priv_buf[i];
3238                 if (priv->enable)
3239                         rx_priv += priv->buf_size;
3240         }
3241         return rx_priv;
3242 }
3243
3244 static uint32_t
3245 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3246 {
3247         uint32_t total_tx_size = 0;
3248         uint32_t i;
3249
3250         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3251                 total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3252
3253         return total_tx_size;
3254 }
3255
3256 /* Get the number of pfc enabled TCs, which have private buffer */
3257 static int
3258 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3259 {
3260         struct hns3_priv_buf *priv;
3261         int cnt = 0;
3262         uint8_t i;
3263
3264         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3265                 priv = &buf_alloc->priv_buf[i];
3266                 if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3267                         cnt++;
3268         }
3269
3270         return cnt;
3271 }
3272
3273 /* Get the number of pfc disabled TCs, which have private buffer */
3274 static int
3275 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3276                          struct hns3_pkt_buf_alloc *buf_alloc)
3277 {
3278         struct hns3_priv_buf *priv;
3279         int cnt = 0;
3280         uint8_t i;
3281
3282         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3283                 priv = &buf_alloc->priv_buf[i];
3284                 if (hw->hw_tc_map & BIT(i) &&
3285                     !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3286                         cnt++;
3287         }
3288
3289         return cnt;
3290 }
3291
3292 static bool
3293 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3294                   uint32_t rx_all)
3295 {
3296         uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3297         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3298         struct hns3_pf *pf = &hns->pf;
3299         uint32_t shared_buf, aligned_mps;
3300         uint32_t rx_priv;
3301         uint8_t tc_num;
3302         uint8_t i;
3303
3304         tc_num = hns3_get_tc_num(hw);
3305         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3306
3307         if (hns3_dev_dcb_supported(hw))
3308                 shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3309                                         pf->dv_buf_size;
3310         else
3311                 shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3312                                         + pf->dv_buf_size;
3313
3314         shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3315         shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3316                              HNS3_BUF_SIZE_UNIT);
3317
3318         rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3319         if (rx_all < rx_priv + shared_std)
3320                 return false;
3321
3322         shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3323         buf_alloc->s_buf.buf_size = shared_buf;
3324         if (hns3_dev_dcb_supported(hw)) {
3325                 buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3326                 buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3327                         - roundup(aligned_mps / HNS3_BUF_DIV_BY,
3328                                   HNS3_BUF_SIZE_UNIT);
3329         } else {
3330                 buf_alloc->s_buf.self.high =
3331                         aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3332                 buf_alloc->s_buf.self.low = aligned_mps;
3333         }
3334
3335         if (hns3_dev_dcb_supported(hw)) {
3336                 hi_thrd = shared_buf - pf->dv_buf_size;
3337
3338                 if (tc_num <= NEED_RESERVE_TC_NUM)
3339                         hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
3340                                         / BUF_MAX_PERCENT;
3341
3342                 if (tc_num)
3343                         hi_thrd = hi_thrd / tc_num;
3344
3345                 hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3346                 hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3347                 lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3348         } else {
3349                 hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3350                 lo_thrd = aligned_mps;
3351         }
3352
3353         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3354                 buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3355                 buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3356         }
3357
3358         return true;
3359 }
3360
3361 static bool
3362 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3363                      struct hns3_pkt_buf_alloc *buf_alloc)
3364 {
3365         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3366         struct hns3_pf *pf = &hns->pf;
3367         struct hns3_priv_buf *priv;
3368         uint32_t aligned_mps;
3369         uint32_t rx_all;
3370         uint8_t i;
3371
3372         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3373         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3374
3375         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3376                 priv = &buf_alloc->priv_buf[i];
3377
3378                 priv->enable = 0;
3379                 priv->wl.low = 0;
3380                 priv->wl.high = 0;
3381                 priv->buf_size = 0;
3382
3383                 if (!(hw->hw_tc_map & BIT(i)))
3384                         continue;
3385
3386                 priv->enable = 1;
3387                 if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3388                         priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3389                         priv->wl.high = roundup(priv->wl.low + aligned_mps,
3390                                                 HNS3_BUF_SIZE_UNIT);
3391                 } else {
3392                         priv->wl.low = 0;
3393                         priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3394                                         aligned_mps;
3395                 }
3396
3397                 priv->buf_size = priv->wl.high + pf->dv_buf_size;
3398         }
3399
3400         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3401 }
3402
3403 static bool
3404 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3405                              struct hns3_pkt_buf_alloc *buf_alloc)
3406 {
3407         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3408         struct hns3_pf *pf = &hns->pf;
3409         struct hns3_priv_buf *priv;
3410         int no_pfc_priv_num;
3411         uint32_t rx_all;
3412         uint8_t mask;
3413         int i;
3414
3415         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3416         no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3417
3418         /* let the last to be cleared first */
3419         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3420                 priv = &buf_alloc->priv_buf[i];
3421                 mask = BIT((uint8_t)i);
3422
3423                 if (hw->hw_tc_map & mask &&
3424                     !(hw->dcb_info.hw_pfc_map & mask)) {
3425                         /* Clear the no pfc TC private buffer */
3426                         priv->wl.low = 0;
3427                         priv->wl.high = 0;
3428                         priv->buf_size = 0;
3429                         priv->enable = 0;
3430                         no_pfc_priv_num--;
3431                 }
3432
3433                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3434                     no_pfc_priv_num == 0)
3435                         break;
3436         }
3437
3438         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3439 }
3440
3441 static bool
3442 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3443                            struct hns3_pkt_buf_alloc *buf_alloc)
3444 {
3445         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3446         struct hns3_pf *pf = &hns->pf;
3447         struct hns3_priv_buf *priv;
3448         uint32_t rx_all;
3449         int pfc_priv_num;
3450         uint8_t mask;
3451         int i;
3452
3453         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3454         pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3455
3456         /* let the last to be cleared first */
3457         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3458                 priv = &buf_alloc->priv_buf[i];
3459                 mask = BIT((uint8_t)i);
3460
3461                 if (hw->hw_tc_map & mask &&
3462                     hw->dcb_info.hw_pfc_map & mask) {
3463                         /* Reduce the number of pfc TC with private buffer */
3464                         priv->wl.low = 0;
3465                         priv->enable = 0;
3466                         priv->wl.high = 0;
3467                         priv->buf_size = 0;
3468                         pfc_priv_num--;
3469                 }
3470                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3471                     pfc_priv_num == 0)
3472                         break;
3473         }
3474
3475         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3476 }
3477
3478 static bool
3479 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3480                           struct hns3_pkt_buf_alloc *buf_alloc)
3481 {
3482 #define COMPENSATE_BUFFER       0x3C00
3483 #define COMPENSATE_HALF_MPS_NUM 5
3484 #define PRIV_WL_GAP             0x1800
3485         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3486         struct hns3_pf *pf = &hns->pf;
3487         uint32_t tc_num = hns3_get_tc_num(hw);
3488         uint32_t half_mps = pf->mps >> 1;
3489         struct hns3_priv_buf *priv;
3490         uint32_t min_rx_priv;
3491         uint32_t rx_priv;
3492         uint8_t i;
3493
3494         rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3495         if (tc_num)
3496                 rx_priv = rx_priv / tc_num;
3497
3498         if (tc_num <= NEED_RESERVE_TC_NUM)
3499                 rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3500
3501         /*
3502          * Minimum value of private buffer in rx direction (min_rx_priv) is
3503          * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3504          * buffer if rx_priv is greater than min_rx_priv.
3505          */
3506         min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3507                         COMPENSATE_HALF_MPS_NUM * half_mps;
3508         min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3509         rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3510
3511         if (rx_priv < min_rx_priv)
3512                 return false;
3513
3514         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3515                 priv = &buf_alloc->priv_buf[i];
3516
3517                 priv->enable = 0;
3518                 priv->wl.low = 0;
3519                 priv->wl.high = 0;
3520                 priv->buf_size = 0;
3521
3522                 if (!(hw->hw_tc_map & BIT(i)))
3523                         continue;
3524
3525                 priv->enable = 1;
3526                 priv->buf_size = rx_priv;
3527                 priv->wl.high = rx_priv - pf->dv_buf_size;
3528                 priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3529         }
3530
3531         buf_alloc->s_buf.buf_size = 0;
3532
3533         return true;
3534 }
3535
3536 /*
3537  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3538  * @hw: pointer to struct hns3_hw
3539  * @buf_alloc: pointer to buffer calculation data
3540  * @return: 0: calculate sucessful, negative: fail
3541  */
3542 static int
3543 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3544 {
3545         /* When DCB is not supported, rx private buffer is not allocated. */
3546         if (!hns3_dev_dcb_supported(hw)) {
3547                 struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3548                 struct hns3_pf *pf = &hns->pf;
3549                 uint32_t rx_all = pf->pkt_buf_size;
3550
3551                 rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3552                 if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3553                         return -ENOMEM;
3554
3555                 return 0;
3556         }
3557
3558         /*
3559          * Try to allocate privated packet buffer for all TCs without share
3560          * buffer.
3561          */
3562         if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3563                 return 0;
3564
3565         /*
3566          * Try to allocate privated packet buffer for all TCs with share
3567          * buffer.
3568          */
3569         if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3570                 return 0;
3571
3572         /*
3573          * For different application scenes, the enabled port number, TC number
3574          * and no_drop TC number are different. In order to obtain the better
3575          * performance, software could allocate the buffer size and configure
3576          * the waterline by tring to decrease the private buffer size according
3577          * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3578          * enabled tc.
3579          */
3580         if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3581                 return 0;
3582
3583         if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3584                 return 0;
3585
3586         if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3587                 return 0;
3588
3589         return -ENOMEM;
3590 }
3591
3592 static int
3593 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3594 {
3595         struct hns3_rx_priv_buff_cmd *req;
3596         struct hns3_cmd_desc desc;
3597         uint32_t buf_size;
3598         int ret;
3599         int i;
3600
3601         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3602         req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3603
3604         /* Alloc private buffer TCs */
3605         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3606                 struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3607
3608                 req->buf_num[i] =
3609                         rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3610                 req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3611         }
3612
3613         buf_size = buf_alloc->s_buf.buf_size;
3614         req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3615                                            (1 << HNS3_TC0_PRI_BUF_EN_B));
3616
3617         ret = hns3_cmd_send(hw, &desc, 1);
3618         if (ret)
3619                 PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3620
3621         return ret;
3622 }
3623
3624 static int
3625 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3626 {
3627 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3628         struct hns3_rx_priv_wl_buf *req;
3629         struct hns3_priv_buf *priv;
3630         struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3631         int i, j;
3632         int ret;
3633
3634         for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3635                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3636                                           false);
3637                 req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3638
3639                 /* The first descriptor set the NEXT bit to 1 */
3640                 if (i == 0)
3641                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3642                 else
3643                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3644
3645                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3646                         uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3647
3648                         priv = &buf_alloc->priv_buf[idx];
3649                         req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3650                                                         HNS3_BUF_UNIT_S);
3651                         req->tc_wl[j].high |=
3652                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3653                         req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3654                                                         HNS3_BUF_UNIT_S);
3655                         req->tc_wl[j].low |=
3656                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3657                 }
3658         }
3659
3660         /* Send 2 descriptor at one time */
3661         ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3662         if (ret)
3663                 PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3664                              ret);
3665         return ret;
3666 }
3667
3668 static int
3669 hns3_common_thrd_config(struct hns3_hw *hw,
3670                         struct hns3_pkt_buf_alloc *buf_alloc)
3671 {
3672 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3673         struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3674         struct hns3_rx_com_thrd *req;
3675         struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3676         struct hns3_tc_thrd *tc;
3677         int tc_idx;
3678         int i, j;
3679         int ret;
3680
3681         for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3682                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3683                                           false);
3684                 req = (struct hns3_rx_com_thrd *)&desc[i].data;
3685
3686                 /* The first descriptor set the NEXT bit to 1 */
3687                 if (i == 0)
3688                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3689                 else
3690                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3691
3692                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3693                         tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3694                         tc = &s_buf->tc_thrd[tc_idx];
3695
3696                         req->com_thrd[j].high =
3697                                 rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3698                         req->com_thrd[j].high |=
3699                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3700                         req->com_thrd[j].low =
3701                                 rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3702                         req->com_thrd[j].low |=
3703                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3704                 }
3705         }
3706
3707         /* Send 2 descriptors at one time */
3708         ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3709         if (ret)
3710                 PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3711
3712         return ret;
3713 }
3714
3715 static int
3716 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3717 {
3718         struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3719         struct hns3_rx_com_wl *req;
3720         struct hns3_cmd_desc desc;
3721         int ret;
3722
3723         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3724
3725         req = (struct hns3_rx_com_wl *)desc.data;
3726         req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3727         req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3728
3729         req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3730         req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3731
3732         ret = hns3_cmd_send(hw, &desc, 1);
3733         if (ret)
3734                 PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3735
3736         return ret;
3737 }
3738
3739 int
3740 hns3_buffer_alloc(struct hns3_hw *hw)
3741 {
3742         struct hns3_pkt_buf_alloc pkt_buf;
3743         int ret;
3744
3745         memset(&pkt_buf, 0, sizeof(pkt_buf));
3746         ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3747         if (ret) {
3748                 PMD_INIT_LOG(ERR,
3749                              "could not calc tx buffer size for all TCs %d",
3750                              ret);
3751                 return ret;
3752         }
3753
3754         ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3755         if (ret) {
3756                 PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3757                 return ret;
3758         }
3759
3760         ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3761         if (ret) {
3762                 PMD_INIT_LOG(ERR,
3763                              "could not calc rx priv buffer size for all TCs %d",
3764                              ret);
3765                 return ret;
3766         }
3767
3768         ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3769         if (ret) {
3770                 PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3771                 return ret;
3772         }
3773
3774         if (hns3_dev_dcb_supported(hw)) {
3775                 ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3776                 if (ret) {
3777                         PMD_INIT_LOG(ERR,
3778                                      "could not configure rx private waterline %d",
3779                                      ret);
3780                         return ret;
3781                 }
3782
3783                 ret = hns3_common_thrd_config(hw, &pkt_buf);
3784                 if (ret) {
3785                         PMD_INIT_LOG(ERR,
3786                                      "could not configure common threshold %d",
3787                                      ret);
3788                         return ret;
3789                 }
3790         }
3791
3792         ret = hns3_common_wl_config(hw, &pkt_buf);
3793         if (ret)
3794                 PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3795                              ret);
3796
3797         return ret;
3798 }
3799
3800 static int
3801 hns3_mac_init(struct hns3_hw *hw)
3802 {
3803         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3804         struct hns3_mac *mac = &hw->mac;
3805         struct hns3_pf *pf = &hns->pf;
3806         int ret;
3807
3808         pf->support_sfp_query = true;
3809         mac->link_duplex = ETH_LINK_FULL_DUPLEX;
3810         ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3811         if (ret) {
3812                 PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3813                 return ret;
3814         }
3815
3816         mac->link_status = ETH_LINK_DOWN;
3817
3818         return hns3_config_mtu(hw, pf->mps);
3819 }
3820
3821 static int
3822 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3823 {
3824 #define HNS3_ETHERTYPE_SUCCESS_ADD              0
3825 #define HNS3_ETHERTYPE_ALREADY_ADD              1
3826 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW         2
3827 #define HNS3_ETHERTYPE_KEY_CONFLICT             3
3828         int return_status;
3829
3830         if (cmdq_resp) {
3831                 PMD_INIT_LOG(ERR,
3832                              "cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n",
3833                              cmdq_resp);
3834                 return -EIO;
3835         }
3836
3837         switch (resp_code) {
3838         case HNS3_ETHERTYPE_SUCCESS_ADD:
3839         case HNS3_ETHERTYPE_ALREADY_ADD:
3840                 return_status = 0;
3841                 break;
3842         case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3843                 PMD_INIT_LOG(ERR,
3844                              "add mac ethertype failed for manager table overflow.");
3845                 return_status = -EIO;
3846                 break;
3847         case HNS3_ETHERTYPE_KEY_CONFLICT:
3848                 PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3849                 return_status = -EIO;
3850                 break;
3851         default:
3852                 PMD_INIT_LOG(ERR,
3853                              "add mac ethertype failed for undefined, code=%d.",
3854                              resp_code);
3855                 return_status = -EIO;
3856                 break;
3857         }
3858
3859         return return_status;
3860 }
3861
3862 static int
3863 hns3_add_mgr_tbl(struct hns3_hw *hw,
3864                  const struct hns3_mac_mgr_tbl_entry_cmd *req)
3865 {
3866         struct hns3_cmd_desc desc;
3867         uint8_t resp_code;
3868         uint16_t retval;
3869         int ret;
3870
3871         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3872         memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3873
3874         ret = hns3_cmd_send(hw, &desc, 1);
3875         if (ret) {
3876                 PMD_INIT_LOG(ERR,
3877                              "add mac ethertype failed for cmd_send, ret =%d.",
3878                              ret);
3879                 return ret;
3880         }
3881
3882         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3883         retval = rte_le_to_cpu_16(desc.retval);
3884
3885         return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3886 }
3887
3888 static void
3889 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3890                      int *table_item_num)
3891 {
3892         struct hns3_mac_mgr_tbl_entry_cmd *tbl;
3893
3894         /*
3895          * In current version, we add one item in management table as below:
3896          * 0x0180C200000E -- LLDP MC address
3897          */
3898         tbl = mgr_table;
3899         tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
3900         tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
3901         tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
3902         tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
3903         tbl->i_port_bitmap = 0x1;
3904         *table_item_num = 1;
3905 }
3906
3907 static int
3908 hns3_init_mgr_tbl(struct hns3_hw *hw)
3909 {
3910 #define HNS_MAC_MGR_TBL_MAX_SIZE        16
3911         struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
3912         int table_item_num;
3913         int ret;
3914         int i;
3915
3916         memset(mgr_table, 0, sizeof(mgr_table));
3917         hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
3918         for (i = 0; i < table_item_num; i++) {
3919                 ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
3920                 if (ret) {
3921                         PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
3922                                      ret);
3923                         return ret;
3924                 }
3925         }
3926
3927         return 0;
3928 }
3929
3930 static void
3931 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
3932                         bool en_mc, bool en_bc, int vport_id)
3933 {
3934         if (!param)
3935                 return;
3936
3937         memset(param, 0, sizeof(struct hns3_promisc_param));
3938         if (en_uc)
3939                 param->enable = HNS3_PROMISC_EN_UC;
3940         if (en_mc)
3941                 param->enable |= HNS3_PROMISC_EN_MC;
3942         if (en_bc)
3943                 param->enable |= HNS3_PROMISC_EN_BC;
3944         param->vf_id = vport_id;
3945 }
3946
3947 static int
3948 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
3949 {
3950         struct hns3_promisc_cfg_cmd *req;
3951         struct hns3_cmd_desc desc;
3952         int ret;
3953
3954         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
3955
3956         req = (struct hns3_promisc_cfg_cmd *)desc.data;
3957         req->vf_id = param->vf_id;
3958         req->flag = (param->enable << HNS3_PROMISC_EN_B) |
3959             HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
3960
3961         ret = hns3_cmd_send(hw, &desc, 1);
3962         if (ret)
3963                 PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
3964
3965         return ret;
3966 }
3967
3968 static int
3969 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
3970 {
3971         struct hns3_promisc_param param;
3972         bool en_bc_pmc = true;
3973         uint8_t vf_id;
3974
3975         /*
3976          * In current version VF is not supported when PF is driven by DPDK
3977          * driver, just need to configure parameters for PF vport.
3978          */
3979         vf_id = HNS3_PF_FUNC_ID;
3980
3981         hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
3982         return hns3_cmd_set_promisc_mode(hw, &param);
3983 }
3984
3985 static int
3986 hns3_promisc_init(struct hns3_hw *hw)
3987 {
3988         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3989         struct hns3_pf *pf = &hns->pf;
3990         struct hns3_promisc_param param;
3991         uint16_t func_id;
3992         int ret;
3993
3994         ret = hns3_set_promisc_mode(hw, false, false);
3995         if (ret) {
3996                 PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
3997                 return ret;
3998         }
3999
4000         /*
4001          * In current version VFs are not supported when PF is driven by DPDK
4002          * driver. After PF has been taken over by DPDK, the original VF will
4003          * be invalid. So, there is a possibility of entry residues. It should
4004          * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4005          * during init.
4006          */
4007         for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4008                 hns3_promisc_param_init(&param, false, false, false, func_id);
4009                 ret = hns3_cmd_set_promisc_mode(hw, &param);
4010                 if (ret) {
4011                         PMD_INIT_LOG(ERR, "failed to clear vf:%d promisc mode,"
4012                                         " ret = %d", func_id, ret);
4013                         return ret;
4014                 }
4015         }
4016
4017         return 0;
4018 }
4019
4020 static void
4021 hns3_promisc_uninit(struct hns3_hw *hw)
4022 {
4023         struct hns3_promisc_param param;
4024         uint16_t func_id;
4025         int ret;
4026
4027         func_id = HNS3_PF_FUNC_ID;
4028
4029         /*
4030          * In current version VFs are not supported when PF is driven by
4031          * DPDK driver, and VFs' promisc mode status has been cleared during
4032          * init and their status will not change. So just clear PF's promisc
4033          * mode status during uninit.
4034          */
4035         hns3_promisc_param_init(&param, false, false, false, func_id);
4036         ret = hns3_cmd_set_promisc_mode(hw, &param);
4037         if (ret)
4038                 PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4039                                 " uninit, ret = %d", ret);
4040 }
4041
4042 static int
4043 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4044 {
4045         bool allmulti = dev->data->all_multicast ? true : false;
4046         struct hns3_adapter *hns = dev->data->dev_private;
4047         struct hns3_hw *hw = &hns->hw;
4048         uint64_t offloads;
4049         int err;
4050         int ret;
4051
4052         rte_spinlock_lock(&hw->lock);
4053         ret = hns3_set_promisc_mode(hw, true, true);
4054         if (ret) {
4055                 rte_spinlock_unlock(&hw->lock);
4056                 hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4057                          ret);
4058                 return ret;
4059         }
4060
4061         /*
4062          * When promiscuous mode was enabled, disable the vlan filter to let
4063          * all packets coming in in the receiving direction.
4064          */
4065         offloads = dev->data->dev_conf.rxmode.offloads;
4066         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4067                 ret = hns3_enable_vlan_filter(hns, false);
4068                 if (ret) {
4069                         hns3_err(hw, "failed to enable promiscuous mode due to "
4070                                      "failure to disable vlan filter, ret = %d",
4071                                  ret);
4072                         err = hns3_set_promisc_mode(hw, false, allmulti);
4073                         if (err)
4074                                 hns3_err(hw, "failed to restore promiscuous "
4075                                          "status after disable vlan filter "
4076                                          "failed during enabling promiscuous "
4077                                          "mode, ret = %d", ret);
4078                 }
4079         }
4080
4081         rte_spinlock_unlock(&hw->lock);
4082
4083         return ret;
4084 }
4085
4086 static int
4087 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4088 {
4089         bool allmulti = dev->data->all_multicast ? true : false;
4090         struct hns3_adapter *hns = dev->data->dev_private;
4091         struct hns3_hw *hw = &hns->hw;
4092         uint64_t offloads;
4093         int err;
4094         int ret;
4095
4096         /* If now in all_multicast mode, must remain in all_multicast mode. */
4097         rte_spinlock_lock(&hw->lock);
4098         ret = hns3_set_promisc_mode(hw, false, allmulti);
4099         if (ret) {
4100                 rte_spinlock_unlock(&hw->lock);
4101                 hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4102                          ret);
4103                 return ret;
4104         }
4105         /* when promiscuous mode was disabled, restore the vlan filter status */
4106         offloads = dev->data->dev_conf.rxmode.offloads;
4107         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4108                 ret = hns3_enable_vlan_filter(hns, true);
4109                 if (ret) {
4110                         hns3_err(hw, "failed to disable promiscuous mode due to"
4111                                  " failure to restore vlan filter, ret = %d",
4112                                  ret);
4113                         err = hns3_set_promisc_mode(hw, true, true);
4114                         if (err)
4115                                 hns3_err(hw, "failed to restore promiscuous "
4116                                          "status after enabling vlan filter "
4117                                          "failed during disabling promiscuous "
4118                                          "mode, ret = %d", ret);
4119                 }
4120         }
4121         rte_spinlock_unlock(&hw->lock);
4122
4123         return ret;
4124 }
4125
4126 static int
4127 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4128 {
4129         struct hns3_adapter *hns = dev->data->dev_private;
4130         struct hns3_hw *hw = &hns->hw;
4131         int ret;
4132
4133         if (dev->data->promiscuous)
4134                 return 0;
4135
4136         rte_spinlock_lock(&hw->lock);
4137         ret = hns3_set_promisc_mode(hw, false, true);
4138         rte_spinlock_unlock(&hw->lock);
4139         if (ret)
4140                 hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4141                          ret);
4142
4143         return ret;
4144 }
4145
4146 static int
4147 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4148 {
4149         struct hns3_adapter *hns = dev->data->dev_private;
4150         struct hns3_hw *hw = &hns->hw;
4151         int ret;
4152
4153         /* If now in promiscuous mode, must remain in all_multicast mode. */
4154         if (dev->data->promiscuous)
4155                 return 0;
4156
4157         rte_spinlock_lock(&hw->lock);
4158         ret = hns3_set_promisc_mode(hw, false, false);
4159         rte_spinlock_unlock(&hw->lock);
4160         if (ret)
4161                 hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4162                          ret);
4163
4164         return ret;
4165 }
4166
4167 static int
4168 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4169 {
4170         struct hns3_hw *hw = &hns->hw;
4171         bool allmulti = hw->data->all_multicast ? true : false;
4172         int ret;
4173
4174         if (hw->data->promiscuous) {
4175                 ret = hns3_set_promisc_mode(hw, true, true);
4176                 if (ret)
4177                         hns3_err(hw, "failed to restore promiscuous mode, "
4178                                  "ret = %d", ret);
4179                 return ret;
4180         }
4181
4182         ret = hns3_set_promisc_mode(hw, false, allmulti);
4183         if (ret)
4184                 hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4185                          ret);
4186         return ret;
4187 }
4188
4189 static int
4190 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4191 {
4192         struct hns3_sfp_speed_cmd *resp;
4193         struct hns3_cmd_desc desc;
4194         int ret;
4195
4196         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4197         resp = (struct hns3_sfp_speed_cmd *)desc.data;
4198         ret = hns3_cmd_send(hw, &desc, 1);
4199         if (ret == -EOPNOTSUPP) {
4200                 hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4201                 return ret;
4202         } else if (ret) {
4203                 hns3_err(hw, "get sfp speed failed %d", ret);
4204                 return ret;
4205         }
4206
4207         *speed = resp->sfp_speed;
4208
4209         return 0;
4210 }
4211
4212 static uint8_t
4213 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4214 {
4215         if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4216                 duplex = ETH_LINK_FULL_DUPLEX;
4217
4218         return duplex;
4219 }
4220
4221 static int
4222 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4223 {
4224         struct hns3_mac *mac = &hw->mac;
4225         int ret;
4226
4227         duplex = hns3_check_speed_dup(duplex, speed);
4228         if (mac->link_speed == speed && mac->link_duplex == duplex)
4229                 return 0;
4230
4231         ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4232         if (ret)
4233                 return ret;
4234
4235         mac->link_speed = speed;
4236         mac->link_duplex = duplex;
4237
4238         return 0;
4239 }
4240
4241 static int
4242 hns3_update_speed_duplex(struct rte_eth_dev *eth_dev)
4243 {
4244         struct hns3_adapter *hns = eth_dev->data->dev_private;
4245         struct hns3_hw *hw = &hns->hw;
4246         struct hns3_pf *pf = &hns->pf;
4247         uint32_t speed;
4248         int ret;
4249
4250         /* If IMP do not support get SFP/qSFP speed, return directly */
4251         if (!pf->support_sfp_query)
4252                 return 0;
4253
4254         ret = hns3_get_sfp_speed(hw, &speed);
4255         if (ret == -EOPNOTSUPP) {
4256                 pf->support_sfp_query = false;
4257                 return ret;
4258         } else if (ret)
4259                 return ret;
4260
4261         if (speed == ETH_SPEED_NUM_NONE)
4262                 return 0; /* do nothing if no SFP */
4263
4264         /* Config full duplex for SFP */
4265         return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4266 }
4267
4268 static int
4269 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4270 {
4271         struct hns3_config_mac_mode_cmd *req;
4272         struct hns3_cmd_desc desc;
4273         uint32_t loop_en = 0;
4274         uint8_t val = 0;
4275         int ret;
4276
4277         req = (struct hns3_config_mac_mode_cmd *)desc.data;
4278
4279         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4280         if (enable)
4281                 val = 1;
4282         hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4283         hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4284         hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4285         hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4286         hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4287         hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4288         hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4289         hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4290         hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4291         hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4292
4293         /*
4294          * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4295          * when receiving frames. Otherwise, CRC will be stripped.
4296          */
4297         if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4298                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4299         else
4300                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4301         hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4302         hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4303         hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4304         req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4305
4306         ret = hns3_cmd_send(hw, &desc, 1);
4307         if (ret)
4308                 PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4309
4310         return ret;
4311 }
4312
4313 static int
4314 hns3_get_mac_link_status(struct hns3_hw *hw)
4315 {
4316         struct hns3_link_status_cmd *req;
4317         struct hns3_cmd_desc desc;
4318         int link_status;
4319         int ret;
4320
4321         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4322         ret = hns3_cmd_send(hw, &desc, 1);
4323         if (ret) {
4324                 hns3_err(hw, "get link status cmd failed %d", ret);
4325                 return ETH_LINK_DOWN;
4326         }
4327
4328         req = (struct hns3_link_status_cmd *)desc.data;
4329         link_status = req->status & HNS3_LINK_STATUS_UP_M;
4330
4331         return !!link_status;
4332 }
4333
4334 void
4335 hns3_update_link_status(struct hns3_hw *hw)
4336 {
4337         int state;
4338
4339         state = hns3_get_mac_link_status(hw);
4340         if (state != hw->mac.link_status) {
4341                 hw->mac.link_status = state;
4342                 hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4343         }
4344 }
4345
4346 static void
4347 hns3_service_handler(void *param)
4348 {
4349         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4350         struct hns3_adapter *hns = eth_dev->data->dev_private;
4351         struct hns3_hw *hw = &hns->hw;
4352
4353         if (!hns3_is_reset_pending(hns)) {
4354                 hns3_update_speed_duplex(eth_dev);
4355                 hns3_update_link_status(hw);
4356         } else
4357                 hns3_warn(hw, "Cancel the query when reset is pending");
4358
4359         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4360 }
4361
4362 static int
4363 hns3_init_hardware(struct hns3_adapter *hns)
4364 {
4365         struct hns3_hw *hw = &hns->hw;
4366         int ret;
4367
4368         ret = hns3_map_tqp(hw);
4369         if (ret) {
4370                 PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4371                 return ret;
4372         }
4373
4374         ret = hns3_init_umv_space(hw);
4375         if (ret) {
4376                 PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4377                 return ret;
4378         }
4379
4380         ret = hns3_mac_init(hw);
4381         if (ret) {
4382                 PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4383                 goto err_mac_init;
4384         }
4385
4386         ret = hns3_init_mgr_tbl(hw);
4387         if (ret) {
4388                 PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4389                 goto err_mac_init;
4390         }
4391
4392         ret = hns3_promisc_init(hw);
4393         if (ret) {
4394                 PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4395                              ret);
4396                 goto err_mac_init;
4397         }
4398
4399         ret = hns3_init_vlan_config(hns);
4400         if (ret) {
4401                 PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4402                 goto err_mac_init;
4403         }
4404
4405         ret = hns3_dcb_init(hw);
4406         if (ret) {
4407                 PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4408                 goto err_mac_init;
4409         }
4410
4411         ret = hns3_init_fd_config(hns);
4412         if (ret) {
4413                 PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4414                 goto err_mac_init;
4415         }
4416
4417         ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4418         if (ret) {
4419                 PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4420                 goto err_mac_init;
4421         }
4422
4423         ret = hns3_config_gro(hw, false);
4424         if (ret) {
4425                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4426                 goto err_mac_init;
4427         }
4428
4429         /*
4430          * In the initialization clearing the all hardware mapping relationship
4431          * configurations between queues and interrupt vectors is needed, so
4432          * some error caused by the residual configurations, such as the
4433          * unexpected interrupt, can be avoid.
4434          */
4435         ret = hns3_init_ring_with_vector(hw);
4436         if (ret) {
4437                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4438                 goto err_mac_init;
4439         }
4440
4441         return 0;
4442
4443 err_mac_init:
4444         hns3_uninit_umv_space(hw);
4445         return ret;
4446 }
4447
4448 static int
4449 hns3_clear_hw(struct hns3_hw *hw)
4450 {
4451         struct hns3_cmd_desc desc;
4452         int ret;
4453
4454         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4455
4456         ret = hns3_cmd_send(hw, &desc, 1);
4457         if (ret && ret != -EOPNOTSUPP)
4458                 return ret;
4459
4460         return 0;
4461 }
4462
4463 static void
4464 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4465 {
4466         uint32_t val;
4467
4468         /*
4469          * The new firmware support report more hardware error types by
4470          * msix mode. These errors are defined as RAS errors in hardware
4471          * and belong to a different type from the MSI-x errors processed
4472          * by the network driver.
4473          *
4474          * Network driver should open the new error report on initialition
4475          */
4476         val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4477         hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4478         hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4479 }
4480
4481 static int
4482 hns3_init_pf(struct rte_eth_dev *eth_dev)
4483 {
4484         struct rte_device *dev = eth_dev->device;
4485         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4486         struct hns3_adapter *hns = eth_dev->data->dev_private;
4487         struct hns3_hw *hw = &hns->hw;
4488         int ret;
4489
4490         PMD_INIT_FUNC_TRACE();
4491
4492         /* Get hardware io base address from pcie BAR2 IO space */
4493         hw->io_base = pci_dev->mem_resource[2].addr;
4494
4495         /* Firmware command queue initialize */
4496         ret = hns3_cmd_init_queue(hw);
4497         if (ret) {
4498                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4499                 goto err_cmd_init_queue;
4500         }
4501
4502         hns3_clear_all_event_cause(hw);
4503
4504         /* Firmware command initialize */
4505         ret = hns3_cmd_init(hw);
4506         if (ret) {
4507                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4508                 goto err_cmd_init;
4509         }
4510
4511         /*
4512          * To ensure that the hardware environment is clean during
4513          * initialization, the driver actively clear the hardware environment
4514          * during initialization, including PF and corresponding VFs' vlan, mac,
4515          * flow table configurations, etc.
4516          */
4517         ret = hns3_clear_hw(hw);
4518         if (ret) {
4519                 PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4520                 goto err_cmd_init;
4521         }
4522
4523         hns3_config_all_msix_error(hw, true);
4524
4525         ret = rte_intr_callback_register(&pci_dev->intr_handle,
4526                                          hns3_interrupt_handler,
4527                                          eth_dev);
4528         if (ret) {
4529                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4530                 goto err_intr_callback_register;
4531         }
4532
4533         /* Enable interrupt */
4534         rte_intr_enable(&pci_dev->intr_handle);
4535         hns3_pf_enable_irq0(hw);
4536
4537         /* Get configuration */
4538         ret = hns3_get_configuration(hw);
4539         if (ret) {
4540                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4541                 goto err_get_config;
4542         }
4543
4544         ret = hns3_init_hardware(hns);
4545         if (ret) {
4546                 PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4547                 goto err_get_config;
4548         }
4549
4550         /* Initialize flow director filter list & hash */
4551         ret = hns3_fdir_filter_init(hns);
4552         if (ret) {
4553                 PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4554                 goto err_hw_init;
4555         }
4556
4557         hns3_set_default_rss_args(hw);
4558
4559         ret = hns3_enable_hw_error_intr(hns, true);
4560         if (ret) {
4561                 PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4562                              ret);
4563                 goto err_fdir;
4564         }
4565
4566         return 0;
4567
4568 err_fdir:
4569         hns3_fdir_filter_uninit(hns);
4570 err_hw_init:
4571         hns3_uninit_umv_space(hw);
4572
4573 err_get_config:
4574         hns3_pf_disable_irq0(hw);
4575         rte_intr_disable(&pci_dev->intr_handle);
4576         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4577                              eth_dev);
4578 err_intr_callback_register:
4579 err_cmd_init:
4580         hns3_cmd_uninit(hw);
4581         hns3_cmd_destroy_queue(hw);
4582 err_cmd_init_queue:
4583         hw->io_base = NULL;
4584
4585         return ret;
4586 }
4587
4588 static void
4589 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4590 {
4591         struct hns3_adapter *hns = eth_dev->data->dev_private;
4592         struct rte_device *dev = eth_dev->device;
4593         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4594         struct hns3_hw *hw = &hns->hw;
4595
4596         PMD_INIT_FUNC_TRACE();
4597
4598         hns3_enable_hw_error_intr(hns, false);
4599         hns3_rss_uninit(hns);
4600         (void)hns3_config_gro(hw, false);
4601         hns3_promisc_uninit(hw);
4602         hns3_fdir_filter_uninit(hns);
4603         hns3_uninit_umv_space(hw);
4604         hns3_pf_disable_irq0(hw);
4605         rte_intr_disable(&pci_dev->intr_handle);
4606         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4607                              eth_dev);
4608         hns3_config_all_msix_error(hw, false);
4609         hns3_cmd_uninit(hw);
4610         hns3_cmd_destroy_queue(hw);
4611         hw->io_base = NULL;
4612 }
4613
4614 static int
4615 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
4616 {
4617         struct hns3_hw *hw = &hns->hw;
4618         int ret;
4619
4620         ret = hns3_dcb_cfg_update(hns);
4621         if (ret)
4622                 return ret;
4623
4624         /* Enable queues */
4625         ret = hns3_start_queues(hns, reset_queue);
4626         if (ret) {
4627                 PMD_INIT_LOG(ERR, "Failed to start queues: %d", ret);
4628                 return ret;
4629         }
4630
4631         /* Enable MAC */
4632         ret = hns3_cfg_mac_mode(hw, true);
4633         if (ret) {
4634                 PMD_INIT_LOG(ERR, "Failed to enable MAC: %d", ret);
4635                 goto err_config_mac_mode;
4636         }
4637         return 0;
4638
4639 err_config_mac_mode:
4640         hns3_stop_queues(hns, true);
4641         return ret;
4642 }
4643
4644 static int
4645 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
4646 {
4647         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4648         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4649         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4650         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4651         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4652         uint32_t intr_vector;
4653         uint16_t q_id;
4654         int ret;
4655
4656         if (dev->data->dev_conf.intr_conf.rxq == 0)
4657                 return 0;
4658
4659         /* disable uio/vfio intr/eventfd mapping */
4660         rte_intr_disable(intr_handle);
4661
4662         /* check and configure queue intr-vector mapping */
4663         if (rte_intr_cap_multiple(intr_handle) ||
4664             !RTE_ETH_DEV_SRIOV(dev).active) {
4665                 intr_vector = hw->used_rx_queues;
4666                 /* creates event fd for each intr vector when MSIX is used */
4667                 if (rte_intr_efd_enable(intr_handle, intr_vector))
4668                         return -EINVAL;
4669         }
4670         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
4671                 intr_handle->intr_vec =
4672                         rte_zmalloc("intr_vec",
4673                                     hw->used_rx_queues * sizeof(int), 0);
4674                 if (intr_handle->intr_vec == NULL) {
4675                         hns3_err(hw, "Failed to allocate %d rx_queues"
4676                                      " intr_vec", hw->used_rx_queues);
4677                         ret = -ENOMEM;
4678                         goto alloc_intr_vec_error;
4679                 }
4680         }
4681
4682         if (rte_intr_allow_others(intr_handle)) {
4683                 vec = RTE_INTR_VEC_RXTX_OFFSET;
4684                 base = RTE_INTR_VEC_RXTX_OFFSET;
4685         }
4686         if (rte_intr_dp_is_en(intr_handle)) {
4687                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4688                         ret = hns3_bind_ring_with_vector(hw, vec, true,
4689                                                          HNS3_RING_TYPE_RX,
4690                                                          q_id);
4691                         if (ret)
4692                                 goto bind_vector_error;
4693                         intr_handle->intr_vec[q_id] = vec;
4694                         if (vec < base + intr_handle->nb_efd - 1)
4695                                 vec++;
4696                 }
4697         }
4698         rte_intr_enable(intr_handle);
4699         return 0;
4700
4701 bind_vector_error:
4702         rte_intr_efd_disable(intr_handle);
4703         if (intr_handle->intr_vec) {
4704                 free(intr_handle->intr_vec);
4705                 intr_handle->intr_vec = NULL;
4706         }
4707         return ret;
4708 alloc_intr_vec_error:
4709         rte_intr_efd_disable(intr_handle);
4710         return ret;
4711 }
4712
4713 static int
4714 hns3_restore_rx_interrupt(struct hns3_hw *hw)
4715 {
4716         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4717         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4718         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4719         uint16_t q_id;
4720         int ret;
4721
4722         if (dev->data->dev_conf.intr_conf.rxq == 0)
4723                 return 0;
4724
4725         if (rte_intr_dp_is_en(intr_handle)) {
4726                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4727                         ret = hns3_bind_ring_with_vector(hw,
4728                                         intr_handle->intr_vec[q_id], true,
4729                                         HNS3_RING_TYPE_RX, q_id);
4730                         if (ret)
4731                                 return ret;
4732                 }
4733         }
4734
4735         return 0;
4736 }
4737
4738 static void
4739 hns3_restore_filter(struct rte_eth_dev *dev)
4740 {
4741         hns3_restore_rss_filter(dev);
4742 }
4743
4744 static int
4745 hns3_dev_start(struct rte_eth_dev *dev)
4746 {
4747         struct hns3_adapter *hns = dev->data->dev_private;
4748         struct hns3_hw *hw = &hns->hw;
4749         int ret;
4750
4751         PMD_INIT_FUNC_TRACE();
4752         if (rte_atomic16_read(&hw->reset.resetting))
4753                 return -EBUSY;
4754
4755         rte_spinlock_lock(&hw->lock);
4756         hw->adapter_state = HNS3_NIC_STARTING;
4757
4758         ret = hns3_do_start(hns, true);
4759         if (ret) {
4760                 hw->adapter_state = HNS3_NIC_CONFIGURED;
4761                 rte_spinlock_unlock(&hw->lock);
4762                 return ret;
4763         }
4764         ret = hns3_map_rx_interrupt(dev);
4765         if (ret) {
4766                 hw->adapter_state = HNS3_NIC_CONFIGURED;
4767                 rte_spinlock_unlock(&hw->lock);
4768                 return ret;
4769         }
4770
4771         hw->adapter_state = HNS3_NIC_STARTED;
4772         rte_spinlock_unlock(&hw->lock);
4773
4774         hns3_rx_scattered_calc(dev);
4775         hns3_set_rxtx_function(dev);
4776         hns3_mp_req_start_rxtx(dev);
4777         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
4778
4779         hns3_restore_filter(dev);
4780
4781         /* Enable interrupt of all rx queues before enabling queues */
4782         hns3_dev_all_rx_queue_intr_enable(hw, true);
4783         /*
4784          * When finished the initialization, enable queues to receive/transmit
4785          * packets.
4786          */
4787         hns3_enable_all_queues(hw, true);
4788
4789         hns3_info(hw, "hns3 dev start successful!");
4790         return 0;
4791 }
4792
4793 static int
4794 hns3_do_stop(struct hns3_adapter *hns)
4795 {
4796         struct hns3_hw *hw = &hns->hw;
4797         bool reset_queue;
4798         int ret;
4799
4800         ret = hns3_cfg_mac_mode(hw, false);
4801         if (ret)
4802                 return ret;
4803         hw->mac.link_status = ETH_LINK_DOWN;
4804
4805         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
4806                 hns3_configure_all_mac_addr(hns, true);
4807                 reset_queue = true;
4808         } else
4809                 reset_queue = false;
4810         hw->mac.default_addr_setted = false;
4811         return hns3_stop_queues(hns, reset_queue);
4812 }
4813
4814 static void
4815 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
4816 {
4817         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4818         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4819         struct hns3_adapter *hns = dev->data->dev_private;
4820         struct hns3_hw *hw = &hns->hw;
4821         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4822         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4823         uint16_t q_id;
4824
4825         if (dev->data->dev_conf.intr_conf.rxq == 0)
4826                 return;
4827
4828         /* unmap the ring with vector */
4829         if (rte_intr_allow_others(intr_handle)) {
4830                 vec = RTE_INTR_VEC_RXTX_OFFSET;
4831                 base = RTE_INTR_VEC_RXTX_OFFSET;
4832         }
4833         if (rte_intr_dp_is_en(intr_handle)) {
4834                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4835                         (void)hns3_bind_ring_with_vector(hw, vec, false,
4836                                                          HNS3_RING_TYPE_RX,
4837                                                          q_id);
4838                         if (vec < base + intr_handle->nb_efd - 1)
4839                                 vec++;
4840                 }
4841         }
4842         /* Clean datapath event and queue/vec mapping */
4843         rte_intr_efd_disable(intr_handle);
4844         if (intr_handle->intr_vec) {
4845                 rte_free(intr_handle->intr_vec);
4846                 intr_handle->intr_vec = NULL;
4847         }
4848 }
4849
4850 static void
4851 hns3_dev_stop(struct rte_eth_dev *dev)
4852 {
4853         struct hns3_adapter *hns = dev->data->dev_private;
4854         struct hns3_hw *hw = &hns->hw;
4855
4856         PMD_INIT_FUNC_TRACE();
4857
4858         hw->adapter_state = HNS3_NIC_STOPPING;
4859         hns3_set_rxtx_function(dev);
4860         rte_wmb();
4861         /* Disable datapath on secondary process. */
4862         hns3_mp_req_stop_rxtx(dev);
4863         /* Prevent crashes when queues are still in use. */
4864         rte_delay_ms(hw->tqps_num);
4865
4866         rte_spinlock_lock(&hw->lock);
4867         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
4868                 hns3_do_stop(hns);
4869                 hns3_unmap_rx_interrupt(dev);
4870                 hns3_dev_release_mbufs(hns);
4871                 hw->adapter_state = HNS3_NIC_CONFIGURED;
4872         }
4873         hns3_rx_scattered_reset(dev);
4874         rte_eal_alarm_cancel(hns3_service_handler, dev);
4875         rte_spinlock_unlock(&hw->lock);
4876 }
4877
4878 static void
4879 hns3_dev_close(struct rte_eth_dev *eth_dev)
4880 {
4881         struct hns3_adapter *hns = eth_dev->data->dev_private;
4882         struct hns3_hw *hw = &hns->hw;
4883
4884         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
4885                 rte_free(eth_dev->process_private);
4886                 eth_dev->process_private = NULL;
4887                 return;
4888         }
4889
4890         if (hw->adapter_state == HNS3_NIC_STARTED)
4891                 hns3_dev_stop(eth_dev);
4892
4893         hw->adapter_state = HNS3_NIC_CLOSING;
4894         hns3_reset_abort(hns);
4895         hw->adapter_state = HNS3_NIC_CLOSED;
4896
4897         hns3_configure_all_mc_mac_addr(hns, true);
4898         hns3_remove_all_vlan_table(hns);
4899         hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
4900         hns3_uninit_pf(eth_dev);
4901         hns3_free_all_queues(eth_dev);
4902         rte_free(hw->reset.wait_data);
4903         rte_free(eth_dev->process_private);
4904         eth_dev->process_private = NULL;
4905         hns3_mp_uninit_primary();
4906         hns3_warn(hw, "Close port %d finished", hw->data->port_id);
4907 }
4908
4909 static int
4910 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4911 {
4912         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4913         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4914
4915         fc_conf->pause_time = pf->pause_time;
4916
4917         /* return fc current mode */
4918         switch (hw->current_mode) {
4919         case HNS3_FC_FULL:
4920                 fc_conf->mode = RTE_FC_FULL;
4921                 break;
4922         case HNS3_FC_TX_PAUSE:
4923                 fc_conf->mode = RTE_FC_TX_PAUSE;
4924                 break;
4925         case HNS3_FC_RX_PAUSE:
4926                 fc_conf->mode = RTE_FC_RX_PAUSE;
4927                 break;
4928         case HNS3_FC_NONE:
4929         default:
4930                 fc_conf->mode = RTE_FC_NONE;
4931                 break;
4932         }
4933
4934         return 0;
4935 }
4936
4937 static void
4938 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
4939 {
4940         switch (mode) {
4941         case RTE_FC_NONE:
4942                 hw->requested_mode = HNS3_FC_NONE;
4943                 break;
4944         case RTE_FC_RX_PAUSE:
4945                 hw->requested_mode = HNS3_FC_RX_PAUSE;
4946                 break;
4947         case RTE_FC_TX_PAUSE:
4948                 hw->requested_mode = HNS3_FC_TX_PAUSE;
4949                 break;
4950         case RTE_FC_FULL:
4951                 hw->requested_mode = HNS3_FC_FULL;
4952                 break;
4953         default:
4954                 hw->requested_mode = HNS3_FC_NONE;
4955                 hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
4956                           "configured to RTE_FC_NONE", mode);
4957                 break;
4958         }
4959 }
4960
4961 static int
4962 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
4963 {
4964         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4965         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4966         int ret;
4967
4968         if (fc_conf->high_water || fc_conf->low_water ||
4969             fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
4970                 hns3_err(hw, "Unsupported flow control settings specified, "
4971                          "high_water(%u), low_water(%u), send_xon(%u) and "
4972                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
4973                          fc_conf->high_water, fc_conf->low_water,
4974                          fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
4975                 return -EINVAL;
4976         }
4977         if (fc_conf->autoneg) {
4978                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
4979                 return -EINVAL;
4980         }
4981         if (!fc_conf->pause_time) {
4982                 hns3_err(hw, "Invalid pause time %d setting.",
4983                          fc_conf->pause_time);
4984                 return -EINVAL;
4985         }
4986
4987         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
4988             hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
4989                 hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
4990                          "current_fc_status = %d", hw->current_fc_status);
4991                 return -EOPNOTSUPP;
4992         }
4993
4994         hns3_get_fc_mode(hw, fc_conf->mode);
4995         if (hw->requested_mode == hw->current_mode &&
4996             pf->pause_time == fc_conf->pause_time)
4997                 return 0;
4998
4999         rte_spinlock_lock(&hw->lock);
5000         ret = hns3_fc_enable(dev, fc_conf);
5001         rte_spinlock_unlock(&hw->lock);
5002
5003         return ret;
5004 }
5005
5006 static int
5007 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5008                             struct rte_eth_pfc_conf *pfc_conf)
5009 {
5010         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5011         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5012         uint8_t priority;
5013         int ret;
5014
5015         if (!hns3_dev_dcb_supported(hw)) {
5016                 hns3_err(hw, "This port does not support dcb configurations.");
5017                 return -EOPNOTSUPP;
5018         }
5019
5020         if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5021             pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5022                 hns3_err(hw, "Unsupported flow control settings specified, "
5023                          "high_water(%u), low_water(%u), send_xon(%u) and "
5024                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5025                          pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5026                          pfc_conf->fc.send_xon,
5027                          pfc_conf->fc.mac_ctrl_frame_fwd);
5028                 return -EINVAL;
5029         }
5030         if (pfc_conf->fc.autoneg) {
5031                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5032                 return -EINVAL;
5033         }
5034         if (pfc_conf->fc.pause_time == 0) {
5035                 hns3_err(hw, "Invalid pause time %d setting.",
5036                          pfc_conf->fc.pause_time);
5037                 return -EINVAL;
5038         }
5039
5040         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5041             hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5042                 hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5043                              "current_fc_status = %d", hw->current_fc_status);
5044                 return -EOPNOTSUPP;
5045         }
5046
5047         priority = pfc_conf->priority;
5048         hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5049         if (hw->dcb_info.pfc_en & BIT(priority) &&
5050             hw->requested_mode == hw->current_mode &&
5051             pfc_conf->fc.pause_time == pf->pause_time)
5052                 return 0;
5053
5054         rte_spinlock_lock(&hw->lock);
5055         ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5056         rte_spinlock_unlock(&hw->lock);
5057
5058         return ret;
5059 }
5060
5061 static int
5062 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5063 {
5064         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5065         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5066         enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5067         int i;
5068
5069         rte_spinlock_lock(&hw->lock);
5070         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5071                 dcb_info->nb_tcs = pf->local_max_tc;
5072         else
5073                 dcb_info->nb_tcs = 1;
5074
5075         for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5076                 dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5077         for (i = 0; i < dcb_info->nb_tcs; i++)
5078                 dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5079
5080         for (i = 0; i < hw->num_tc; i++) {
5081                 dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5082                 dcb_info->tc_queue.tc_txq[0][i].base =
5083                                                 hw->tc_queue[i].tqp_offset;
5084                 dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5085                 dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5086                                                 hw->tc_queue[i].tqp_count;
5087         }
5088         rte_spinlock_unlock(&hw->lock);
5089
5090         return 0;
5091 }
5092
5093 static int
5094 hns3_reinit_dev(struct hns3_adapter *hns)
5095 {
5096         struct hns3_hw *hw = &hns->hw;
5097         int ret;
5098
5099         ret = hns3_cmd_init(hw);
5100         if (ret) {
5101                 hns3_err(hw, "Failed to init cmd: %d", ret);
5102                 return ret;
5103         }
5104
5105         ret = hns3_reset_all_queues(hns);
5106         if (ret) {
5107                 hns3_err(hw, "Failed to reset all queues: %d", ret);
5108                 return ret;
5109         }
5110
5111         ret = hns3_init_hardware(hns);
5112         if (ret) {
5113                 hns3_err(hw, "Failed to init hardware: %d", ret);
5114                 return ret;
5115         }
5116
5117         ret = hns3_enable_hw_error_intr(hns, true);
5118         if (ret) {
5119                 hns3_err(hw, "fail to enable hw error interrupts: %d",
5120                              ret);
5121                 return ret;
5122         }
5123         hns3_info(hw, "Reset done, driver initialization finished.");
5124
5125         return 0;
5126 }
5127
5128 static bool
5129 is_pf_reset_done(struct hns3_hw *hw)
5130 {
5131         uint32_t val, reg, reg_bit;
5132
5133         switch (hw->reset.level) {
5134         case HNS3_IMP_RESET:
5135                 reg = HNS3_GLOBAL_RESET_REG;
5136                 reg_bit = HNS3_IMP_RESET_BIT;
5137                 break;
5138         case HNS3_GLOBAL_RESET:
5139                 reg = HNS3_GLOBAL_RESET_REG;
5140                 reg_bit = HNS3_GLOBAL_RESET_BIT;
5141                 break;
5142         case HNS3_FUNC_RESET:
5143                 reg = HNS3_FUN_RST_ING;
5144                 reg_bit = HNS3_FUN_RST_ING_B;
5145                 break;
5146         case HNS3_FLR_RESET:
5147         default:
5148                 hns3_err(hw, "Wait for unsupported reset level: %d",
5149                          hw->reset.level);
5150                 return true;
5151         }
5152         val = hns3_read_dev(hw, reg);
5153         if (hns3_get_bit(val, reg_bit))
5154                 return false;
5155         else
5156                 return true;
5157 }
5158
5159 bool
5160 hns3_is_reset_pending(struct hns3_adapter *hns)
5161 {
5162         struct hns3_hw *hw = &hns->hw;
5163         enum hns3_reset_level reset;
5164
5165         hns3_check_event_cause(hns, NULL);
5166         reset = hns3_get_reset_level(hns, &hw->reset.pending);
5167         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5168                 hns3_warn(hw, "High level reset %d is pending", reset);
5169                 return true;
5170         }
5171         reset = hns3_get_reset_level(hns, &hw->reset.request);
5172         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5173                 hns3_warn(hw, "High level reset %d is request", reset);
5174                 return true;
5175         }
5176         return false;
5177 }
5178
5179 static int
5180 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5181 {
5182         struct hns3_hw *hw = &hns->hw;
5183         struct hns3_wait_data *wait_data = hw->reset.wait_data;
5184         struct timeval tv;
5185
5186         if (wait_data->result == HNS3_WAIT_SUCCESS)
5187                 return 0;
5188         else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5189                 gettimeofday(&tv, NULL);
5190                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5191                           tv.tv_sec, tv.tv_usec);
5192                 return -ETIME;
5193         } else if (wait_data->result == HNS3_WAIT_REQUEST)
5194                 return -EAGAIN;
5195
5196         wait_data->hns = hns;
5197         wait_data->check_completion = is_pf_reset_done;
5198         wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5199                                       HNS3_RESET_WAIT_MS + get_timeofday_ms();
5200         wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5201         wait_data->count = HNS3_RESET_WAIT_CNT;
5202         wait_data->result = HNS3_WAIT_REQUEST;
5203         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5204         return -EAGAIN;
5205 }
5206
5207 static int
5208 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5209 {
5210         struct hns3_cmd_desc desc;
5211         struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5212
5213         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5214         hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5215         req->fun_reset_vfid = func_id;
5216
5217         return hns3_cmd_send(hw, &desc, 1);
5218 }
5219
5220 static int
5221 hns3_imp_reset_cmd(struct hns3_hw *hw)
5222 {
5223         struct hns3_cmd_desc desc;
5224
5225         hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5226         desc.data[0] = 0xeedd;
5227
5228         return hns3_cmd_send(hw, &desc, 1);
5229 }
5230
5231 static void
5232 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5233 {
5234         struct hns3_hw *hw = &hns->hw;
5235         struct timeval tv;
5236         uint32_t val;
5237
5238         gettimeofday(&tv, NULL);
5239         if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5240             hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5241                 hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5242                           tv.tv_sec, tv.tv_usec);
5243                 return;
5244         }
5245
5246         switch (reset_level) {
5247         case HNS3_IMP_RESET:
5248                 hns3_imp_reset_cmd(hw);
5249                 hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5250                           tv.tv_sec, tv.tv_usec);
5251                 break;
5252         case HNS3_GLOBAL_RESET:
5253                 val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5254                 hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5255                 hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5256                 hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5257                           tv.tv_sec, tv.tv_usec);
5258                 break;
5259         case HNS3_FUNC_RESET:
5260                 hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5261                           tv.tv_sec, tv.tv_usec);
5262                 /* schedule again to check later */
5263                 hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5264                 hns3_schedule_reset(hns);
5265                 break;
5266         default:
5267                 hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5268                 return;
5269         }
5270         hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5271 }
5272
5273 static enum hns3_reset_level
5274 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5275 {
5276         struct hns3_hw *hw = &hns->hw;
5277         enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5278
5279         /* Return the highest priority reset level amongst all */
5280         if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5281                 reset_level = HNS3_IMP_RESET;
5282         else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5283                 reset_level = HNS3_GLOBAL_RESET;
5284         else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5285                 reset_level = HNS3_FUNC_RESET;
5286         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5287                 reset_level = HNS3_FLR_RESET;
5288
5289         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5290                 return HNS3_NONE_RESET;
5291
5292         return reset_level;
5293 }
5294
5295 static void
5296 hns3_record_imp_error(struct hns3_adapter *hns)
5297 {
5298         struct hns3_hw *hw = &hns->hw;
5299         uint32_t reg_val;
5300
5301         reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5302         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5303                 hns3_warn(hw, "Detected IMP RD poison!");
5304                 hns3_error_int_stats_add(hns, "IMP_RD_POISON_INT_STS");
5305                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5306                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5307         }
5308
5309         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5310                 hns3_warn(hw, "Detected IMP CMDQ error!");
5311                 hns3_error_int_stats_add(hns, "CMDQ_MEM_ECC_INT_STS");
5312                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5313                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5314         }
5315 }
5316
5317 static int
5318 hns3_prepare_reset(struct hns3_adapter *hns)
5319 {
5320         struct hns3_hw *hw = &hns->hw;
5321         uint32_t reg_val;
5322         int ret;
5323
5324         switch (hw->reset.level) {
5325         case HNS3_FUNC_RESET:
5326                 ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5327                 if (ret)
5328                         return ret;
5329
5330                 /*
5331                  * After performaning pf reset, it is not necessary to do the
5332                  * mailbox handling or send any command to firmware, because
5333                  * any mailbox handling or command to firmware is only valid
5334                  * after hns3_cmd_init is called.
5335                  */
5336                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
5337                 hw->reset.stats.request_cnt++;
5338                 break;
5339         case HNS3_IMP_RESET:
5340                 hns3_record_imp_error(hns);
5341                 reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5342                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5343                                BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5344                 break;
5345         default:
5346                 break;
5347         }
5348         return 0;
5349 }
5350
5351 static int
5352 hns3_set_rst_done(struct hns3_hw *hw)
5353 {
5354         struct hns3_pf_rst_done_cmd *req;
5355         struct hns3_cmd_desc desc;
5356
5357         req = (struct hns3_pf_rst_done_cmd *)desc.data;
5358         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5359         req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5360         return hns3_cmd_send(hw, &desc, 1);
5361 }
5362
5363 static int
5364 hns3_stop_service(struct hns3_adapter *hns)
5365 {
5366         struct hns3_hw *hw = &hns->hw;
5367         struct rte_eth_dev *eth_dev;
5368
5369         eth_dev = &rte_eth_devices[hw->data->port_id];
5370         if (hw->adapter_state == HNS3_NIC_STARTED)
5371                 rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5372         hw->mac.link_status = ETH_LINK_DOWN;
5373
5374         hns3_set_rxtx_function(eth_dev);
5375         rte_wmb();
5376         /* Disable datapath on secondary process. */
5377         hns3_mp_req_stop_rxtx(eth_dev);
5378         rte_delay_ms(hw->tqps_num);
5379
5380         rte_spinlock_lock(&hw->lock);
5381         if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5382             hw->adapter_state == HNS3_NIC_STOPPING) {
5383                 hns3_do_stop(hns);
5384                 hw->reset.mbuf_deferred_free = true;
5385         } else
5386                 hw->reset.mbuf_deferred_free = false;
5387
5388         /*
5389          * It is cumbersome for hardware to pick-and-choose entries for deletion
5390          * from table space. Hence, for function reset software intervention is
5391          * required to delete the entries
5392          */
5393         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
5394                 hns3_configure_all_mc_mac_addr(hns, true);
5395         rte_spinlock_unlock(&hw->lock);
5396
5397         return 0;
5398 }
5399
5400 static int
5401 hns3_start_service(struct hns3_adapter *hns)
5402 {
5403         struct hns3_hw *hw = &hns->hw;
5404         struct rte_eth_dev *eth_dev;
5405
5406         if (hw->reset.level == HNS3_IMP_RESET ||
5407             hw->reset.level == HNS3_GLOBAL_RESET)
5408                 hns3_set_rst_done(hw);
5409         eth_dev = &rte_eth_devices[hw->data->port_id];
5410         hns3_set_rxtx_function(eth_dev);
5411         hns3_mp_req_start_rxtx(eth_dev);
5412         if (hw->adapter_state == HNS3_NIC_STARTED) {
5413                 hns3_service_handler(eth_dev);
5414
5415                 /* Enable interrupt of all rx queues before enabling queues */
5416                 hns3_dev_all_rx_queue_intr_enable(hw, true);
5417                 /*
5418                  * When finished the initialization, enable queues to receive
5419                  * and transmit packets.
5420                  */
5421                 hns3_enable_all_queues(hw, true);
5422         }
5423
5424         return 0;
5425 }
5426
5427 static int
5428 hns3_restore_conf(struct hns3_adapter *hns)
5429 {
5430         struct hns3_hw *hw = &hns->hw;
5431         int ret;
5432
5433         ret = hns3_configure_all_mac_addr(hns, false);
5434         if (ret)
5435                 return ret;
5436
5437         ret = hns3_configure_all_mc_mac_addr(hns, false);
5438         if (ret)
5439                 goto err_mc_mac;
5440
5441         ret = hns3_dev_promisc_restore(hns);
5442         if (ret)
5443                 goto err_promisc;
5444
5445         ret = hns3_restore_vlan_table(hns);
5446         if (ret)
5447                 goto err_promisc;
5448
5449         ret = hns3_restore_vlan_conf(hns);
5450         if (ret)
5451                 goto err_promisc;
5452
5453         ret = hns3_restore_all_fdir_filter(hns);
5454         if (ret)
5455                 goto err_promisc;
5456
5457         ret = hns3_restore_rx_interrupt(hw);
5458         if (ret)
5459                 goto err_promisc;
5460
5461         ret = hns3_restore_gro_conf(hw);
5462         if (ret)
5463                 goto err_promisc;
5464
5465         if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5466                 ret = hns3_do_start(hns, false);
5467                 if (ret)
5468                         goto err_promisc;
5469                 hns3_info(hw, "hns3 dev restart successful!");
5470         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
5471                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5472         return 0;
5473
5474 err_promisc:
5475         hns3_configure_all_mc_mac_addr(hns, true);
5476 err_mc_mac:
5477         hns3_configure_all_mac_addr(hns, true);
5478         return ret;
5479 }
5480
5481 static void
5482 hns3_reset_service(void *param)
5483 {
5484         struct hns3_adapter *hns = (struct hns3_adapter *)param;
5485         struct hns3_hw *hw = &hns->hw;
5486         enum hns3_reset_level reset_level;
5487         struct timeval tv_delta;
5488         struct timeval tv_start;
5489         struct timeval tv;
5490         uint64_t msec;
5491         int ret;
5492
5493         /*
5494          * The interrupt is not triggered within the delay time.
5495          * The interrupt may have been lost. It is necessary to handle
5496          * the interrupt to recover from the error.
5497          */
5498         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
5499                 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
5500                 hns3_err(hw, "Handling interrupts in delayed tasks");
5501                 hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5502                 reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5503                 if (reset_level == HNS3_NONE_RESET) {
5504                         hns3_err(hw, "No reset level is set, try IMP reset");
5505                         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5506                 }
5507         }
5508         rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
5509
5510         /*
5511          * Check if there is any ongoing reset in the hardware. This status can
5512          * be checked from reset_pending. If there is then, we need to wait for
5513          * hardware to complete reset.
5514          *    a. If we are able to figure out in reasonable time that hardware
5515          *       has fully resetted then, we can proceed with driver, client
5516          *       reset.
5517          *    b. else, we can come back later to check this status so re-sched
5518          *       now.
5519          */
5520         reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5521         if (reset_level != HNS3_NONE_RESET) {
5522                 gettimeofday(&tv_start, NULL);
5523                 ret = hns3_reset_process(hns, reset_level);
5524                 gettimeofday(&tv, NULL);
5525                 timersub(&tv, &tv_start, &tv_delta);
5526                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
5527                        tv_delta.tv_usec / USEC_PER_MSEC;
5528                 if (msec > HNS3_RESET_PROCESS_MS)
5529                         hns3_err(hw, "%d handle long time delta %" PRIx64
5530                                      " ms time=%ld.%.6ld",
5531                                  hw->reset.level, msec,
5532                                  tv.tv_sec, tv.tv_usec);
5533                 if (ret == -EAGAIN)
5534                         return;
5535         }
5536
5537         /* Check if we got any *new* reset requests to be honored */
5538         reset_level = hns3_get_reset_level(hns, &hw->reset.request);
5539         if (reset_level != HNS3_NONE_RESET)
5540                 hns3_msix_process(hns, reset_level);
5541 }
5542
5543 static const struct eth_dev_ops hns3_eth_dev_ops = {
5544         .dev_configure      = hns3_dev_configure,
5545         .dev_start          = hns3_dev_start,
5546         .dev_stop           = hns3_dev_stop,
5547         .dev_close          = hns3_dev_close,
5548         .promiscuous_enable = hns3_dev_promiscuous_enable,
5549         .promiscuous_disable = hns3_dev_promiscuous_disable,
5550         .allmulticast_enable  = hns3_dev_allmulticast_enable,
5551         .allmulticast_disable = hns3_dev_allmulticast_disable,
5552         .mtu_set            = hns3_dev_mtu_set,
5553         .stats_get          = hns3_stats_get,
5554         .stats_reset        = hns3_stats_reset,
5555         .xstats_get         = hns3_dev_xstats_get,
5556         .xstats_get_names   = hns3_dev_xstats_get_names,
5557         .xstats_reset       = hns3_dev_xstats_reset,
5558         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
5559         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
5560         .dev_infos_get          = hns3_dev_infos_get,
5561         .fw_version_get         = hns3_fw_version_get,
5562         .rx_queue_setup         = hns3_rx_queue_setup,
5563         .tx_queue_setup         = hns3_tx_queue_setup,
5564         .rx_queue_release       = hns3_dev_rx_queue_release,
5565         .tx_queue_release       = hns3_dev_tx_queue_release,
5566         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
5567         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
5568         .rxq_info_get           = hns3_rxq_info_get,
5569         .txq_info_get           = hns3_txq_info_get,
5570         .rx_burst_mode_get      = hns3_rx_burst_mode_get,
5571         .tx_burst_mode_get      = hns3_tx_burst_mode_get,
5572         .flow_ctrl_get          = hns3_flow_ctrl_get,
5573         .flow_ctrl_set          = hns3_flow_ctrl_set,
5574         .priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
5575         .mac_addr_add           = hns3_add_mac_addr,
5576         .mac_addr_remove        = hns3_remove_mac_addr,
5577         .mac_addr_set           = hns3_set_default_mac_addr,
5578         .set_mc_addr_list       = hns3_set_mc_mac_addr_list,
5579         .link_update            = hns3_dev_link_update,
5580         .rss_hash_update        = hns3_dev_rss_hash_update,
5581         .rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
5582         .reta_update            = hns3_dev_rss_reta_update,
5583         .reta_query             = hns3_dev_rss_reta_query,
5584         .filter_ctrl            = hns3_dev_filter_ctrl,
5585         .vlan_filter_set        = hns3_vlan_filter_set,
5586         .vlan_tpid_set          = hns3_vlan_tpid_set,
5587         .vlan_offload_set       = hns3_vlan_offload_set,
5588         .vlan_pvid_set          = hns3_vlan_pvid_set,
5589         .get_reg                = hns3_get_regs,
5590         .get_dcb_info           = hns3_get_dcb_info,
5591         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
5592 };
5593
5594 static const struct hns3_reset_ops hns3_reset_ops = {
5595         .reset_service       = hns3_reset_service,
5596         .stop_service        = hns3_stop_service,
5597         .prepare_reset       = hns3_prepare_reset,
5598         .wait_hardware_ready = hns3_wait_hardware_ready,
5599         .reinit_dev          = hns3_reinit_dev,
5600         .restore_conf        = hns3_restore_conf,
5601         .start_service       = hns3_start_service,
5602 };
5603
5604 static int
5605 hns3_dev_init(struct rte_eth_dev *eth_dev)
5606 {
5607         struct hns3_adapter *hns = eth_dev->data->dev_private;
5608         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
5609         struct rte_ether_addr *eth_addr;
5610         struct hns3_hw *hw = &hns->hw;
5611         int ret;
5612
5613         PMD_INIT_FUNC_TRACE();
5614
5615         eth_dev->process_private = (struct hns3_process_private *)
5616             rte_zmalloc_socket("hns3_filter_list",
5617                                sizeof(struct hns3_process_private),
5618                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
5619         if (eth_dev->process_private == NULL) {
5620                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
5621                 return -ENOMEM;
5622         }
5623         /* initialize flow filter lists */
5624         hns3_filterlist_init(eth_dev);
5625
5626         hns3_set_rxtx_function(eth_dev);
5627         eth_dev->dev_ops = &hns3_eth_dev_ops;
5628         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5629                 ret = hns3_mp_init_secondary();
5630                 if (ret) {
5631                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
5632                                      "process, ret = %d", ret);
5633                         goto err_mp_init_secondary;
5634                 }
5635
5636                 hw->secondary_cnt++;
5637                 return 0;
5638         }
5639
5640         ret = hns3_mp_init_primary();
5641         if (ret) {
5642                 PMD_INIT_LOG(ERR,
5643                              "Failed to init for primary process, ret = %d",
5644                              ret);
5645                 goto err_mp_init_primary;
5646         }
5647
5648         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
5649         hns->is_vf = false;
5650         hw->data = eth_dev->data;
5651
5652         /*
5653          * Set default max packet size according to the mtu
5654          * default vale in DPDK frame.
5655          */
5656         hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
5657
5658         ret = hns3_reset_init(hw);
5659         if (ret)
5660                 goto err_init_reset;
5661         hw->reset.ops = &hns3_reset_ops;
5662
5663         ret = hns3_init_pf(eth_dev);
5664         if (ret) {
5665                 PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
5666                 goto err_init_pf;
5667         }
5668
5669         /* Allocate memory for storing MAC addresses */
5670         eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
5671                                                sizeof(struct rte_ether_addr) *
5672                                                HNS3_UC_MACADDR_NUM, 0);
5673         if (eth_dev->data->mac_addrs == NULL) {
5674                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
5675                              "to store MAC addresses",
5676                              sizeof(struct rte_ether_addr) *
5677                              HNS3_UC_MACADDR_NUM);
5678                 ret = -ENOMEM;
5679                 goto err_rte_zmalloc;
5680         }
5681
5682         eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
5683         if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
5684                 rte_eth_random_addr(hw->mac.mac_addr);
5685                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
5686                                 (struct rte_ether_addr *)hw->mac.mac_addr);
5687                 hns3_warn(hw, "default mac_addr from firmware is an invalid "
5688                           "unicast address, using random MAC address %s",
5689                           mac_str);
5690         }
5691         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
5692                             &eth_dev->data->mac_addrs[0]);
5693
5694         hw->adapter_state = HNS3_NIC_INITIALIZED;
5695         /*
5696          * Pass the information to the rte_eth_dev_close() that it should also
5697          * release the private port resources.
5698          */
5699         eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
5700
5701         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
5702                 hns3_err(hw, "Reschedule reset service after dev_init");
5703                 hns3_schedule_reset(hns);
5704         } else {
5705                 /* IMP will wait ready flag before reset */
5706                 hns3_notify_reset_ready(hw, false);
5707         }
5708
5709         hns3_info(hw, "hns3 dev initialization successful!");
5710         return 0;
5711
5712 err_rte_zmalloc:
5713         hns3_uninit_pf(eth_dev);
5714
5715 err_init_pf:
5716         rte_free(hw->reset.wait_data);
5717
5718 err_init_reset:
5719         hns3_mp_uninit_primary();
5720
5721 err_mp_init_primary:
5722 err_mp_init_secondary:
5723         eth_dev->dev_ops = NULL;
5724         eth_dev->rx_pkt_burst = NULL;
5725         eth_dev->tx_pkt_burst = NULL;
5726         eth_dev->tx_pkt_prepare = NULL;
5727         rte_free(eth_dev->process_private);
5728         eth_dev->process_private = NULL;
5729         return ret;
5730 }
5731
5732 static int
5733 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
5734 {
5735         struct hns3_adapter *hns = eth_dev->data->dev_private;
5736         struct hns3_hw *hw = &hns->hw;
5737
5738         PMD_INIT_FUNC_TRACE();
5739
5740         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
5741                 return -EPERM;
5742
5743         eth_dev->dev_ops = NULL;
5744         eth_dev->rx_pkt_burst = NULL;
5745         eth_dev->tx_pkt_burst = NULL;
5746         eth_dev->tx_pkt_prepare = NULL;
5747         if (hw->adapter_state < HNS3_NIC_CLOSING)
5748                 hns3_dev_close(eth_dev);
5749
5750         hw->adapter_state = HNS3_NIC_REMOVED;
5751         return 0;
5752 }
5753
5754 static int
5755 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
5756                    struct rte_pci_device *pci_dev)
5757 {
5758         return rte_eth_dev_pci_generic_probe(pci_dev,
5759                                              sizeof(struct hns3_adapter),
5760                                              hns3_dev_init);
5761 }
5762
5763 static int
5764 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
5765 {
5766         return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
5767 }
5768
5769 static const struct rte_pci_id pci_id_hns3_map[] = {
5770         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
5771         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
5772         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
5773         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
5774         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
5775         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
5776         { .vendor_id = 0, /* sentinel */ },
5777 };
5778
5779 static struct rte_pci_driver rte_hns3_pmd = {
5780         .id_table = pci_id_hns3_map,
5781         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
5782         .probe = eth_hns3_pci_probe,
5783         .remove = eth_hns3_pci_remove,
5784 };
5785
5786 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
5787 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
5788 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
5789 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
5790 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);