net/hns3: fix Tx checksum for UDP packets with special port
[dpdk.git] / drivers / net / hns3 / hns3_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 #include <rte_kvargs.h>
10
11 #include "hns3_ethdev.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18
19 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE       32
20 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM       1
21
22 #define HNS3_SERVICE_INTERVAL           1000000 /* us */
23 #define HNS3_SERVICE_QUICK_INTERVAL     10
24 #define HNS3_INVALID_PVID               0xFFFF
25
26 #define HNS3_FILTER_TYPE_VF             0
27 #define HNS3_FILTER_TYPE_PORT           1
28 #define HNS3_FILTER_FE_EGRESS_V1_B      BIT(0)
29 #define HNS3_FILTER_FE_NIC_INGRESS_B    BIT(0)
30 #define HNS3_FILTER_FE_NIC_EGRESS_B     BIT(1)
31 #define HNS3_FILTER_FE_ROCE_INGRESS_B   BIT(2)
32 #define HNS3_FILTER_FE_ROCE_EGRESS_B    BIT(3)
33 #define HNS3_FILTER_FE_EGRESS           (HNS3_FILTER_FE_NIC_EGRESS_B \
34                                         | HNS3_FILTER_FE_ROCE_EGRESS_B)
35 #define HNS3_FILTER_FE_INGRESS          (HNS3_FILTER_FE_NIC_INGRESS_B \
36                                         | HNS3_FILTER_FE_ROCE_INGRESS_B)
37
38 /* Reset related Registers */
39 #define HNS3_GLOBAL_RESET_BIT           0
40 #define HNS3_CORE_RESET_BIT             1
41 #define HNS3_IMP_RESET_BIT              2
42 #define HNS3_FUN_RST_ING_B              0
43
44 #define HNS3_VECTOR0_IMP_RESET_INT_B    1
45 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B     4U
46 #define HNS3_VECTOR0_IMP_RD_POISON_B    5U
47 #define HNS3_VECTOR0_ALL_MSIX_ERR_B     6U
48
49 #define HNS3_RESET_WAIT_MS      100
50 #define HNS3_RESET_WAIT_CNT     200
51
52 /* FEC mode order defined in HNS3 hardware */
53 #define HNS3_HW_FEC_MODE_NOFEC  0
54 #define HNS3_HW_FEC_MODE_BASER  1
55 #define HNS3_HW_FEC_MODE_RS     2
56
57 enum hns3_evt_cause {
58         HNS3_VECTOR0_EVENT_RST,
59         HNS3_VECTOR0_EVENT_MBX,
60         HNS3_VECTOR0_EVENT_ERR,
61         HNS3_VECTOR0_EVENT_OTHER,
62 };
63
64 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
65         { ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
66                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
67                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
68
69         { ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
70                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
71                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
72                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
73
74         { ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
75                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
76                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
77
78         { ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
79                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
80                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
81                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
82
83         { ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
84                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
85                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
86
87         { ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
88                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
89                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
90 };
91
92 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
93                                                  uint64_t *levels);
94 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
95 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
96                                     int on);
97 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
98 static bool hns3_update_link_status(struct hns3_hw *hw);
99
100 static int hns3_add_mc_addr(struct hns3_hw *hw,
101                             struct rte_ether_addr *mac_addr);
102 static int hns3_remove_mc_addr(struct hns3_hw *hw,
103                             struct rte_ether_addr *mac_addr);
104 static int hns3_restore_fec(struct hns3_hw *hw);
105 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
106 static int hns3_do_stop(struct hns3_adapter *hns);
107
108 void hns3_ether_format_addr(char *buf, uint16_t size,
109                             const struct rte_ether_addr *ether_addr)
110 {
111         snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
112                 ether_addr->addr_bytes[0],
113                 ether_addr->addr_bytes[4],
114                 ether_addr->addr_bytes[5]);
115 }
116
117 static void
118 hns3_pf_disable_irq0(struct hns3_hw *hw)
119 {
120         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
121 }
122
123 static void
124 hns3_pf_enable_irq0(struct hns3_hw *hw)
125 {
126         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
127 }
128
129 static enum hns3_evt_cause
130 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
131                           uint32_t *vec_val)
132 {
133         struct hns3_hw *hw = &hns->hw;
134
135         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
136         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
137         *vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
138         if (!is_delay) {
139                 hw->reset.stats.imp_cnt++;
140                 hns3_warn(hw, "IMP reset detected, clear reset status");
141         } else {
142                 hns3_schedule_delayed_reset(hns);
143                 hns3_warn(hw, "IMP reset detected, don't clear reset status");
144         }
145
146         return HNS3_VECTOR0_EVENT_RST;
147 }
148
149 static enum hns3_evt_cause
150 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
151                              uint32_t *vec_val)
152 {
153         struct hns3_hw *hw = &hns->hw;
154
155         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
156         hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
157         *vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
158         if (!is_delay) {
159                 hw->reset.stats.global_cnt++;
160                 hns3_warn(hw, "Global reset detected, clear reset status");
161         } else {
162                 hns3_schedule_delayed_reset(hns);
163                 hns3_warn(hw,
164                           "Global reset detected, don't clear reset status");
165         }
166
167         return HNS3_VECTOR0_EVENT_RST;
168 }
169
170 static enum hns3_evt_cause
171 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
172 {
173         struct hns3_hw *hw = &hns->hw;
174         uint32_t vector0_int_stats;
175         uint32_t cmdq_src_val;
176         uint32_t hw_err_src_reg;
177         uint32_t val;
178         enum hns3_evt_cause ret;
179         bool is_delay;
180
181         /* fetch the events from their corresponding regs */
182         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
183         cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
184         hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
185
186         is_delay = clearval == NULL ? true : false;
187         /*
188          * Assumption: If by any chance reset and mailbox events are reported
189          * together then we will only process reset event and defer the
190          * processing of the mailbox events. Since, we would have not cleared
191          * RX CMDQ event this time we would receive again another interrupt
192          * from H/W just for the mailbox.
193          */
194         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
195                 ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
196                 goto out;
197         }
198
199         /* Global reset */
200         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
201                 ret = hns3_proc_global_reset_event(hns, is_delay, &val);
202                 goto out;
203         }
204
205         /* check for vector0 msix event source */
206         if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
207             hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
208                 val = vector0_int_stats | hw_err_src_reg;
209                 ret = HNS3_VECTOR0_EVENT_ERR;
210                 goto out;
211         }
212
213         /* check for vector0 mailbox(=CMDQ RX) event source */
214         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
215                 cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
216                 val = cmdq_src_val;
217                 ret = HNS3_VECTOR0_EVENT_MBX;
218                 goto out;
219         }
220
221         val = vector0_int_stats;
222         ret = HNS3_VECTOR0_EVENT_OTHER;
223 out:
224
225         if (clearval)
226                 *clearval = val;
227         return ret;
228 }
229
230 static void
231 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
232 {
233         if (event_type == HNS3_VECTOR0_EVENT_RST)
234                 hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
235         else if (event_type == HNS3_VECTOR0_EVENT_MBX)
236                 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
237 }
238
239 static void
240 hns3_clear_all_event_cause(struct hns3_hw *hw)
241 {
242         uint32_t vector0_int_stats;
243         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
244
245         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
246                 hns3_warn(hw, "Probe during IMP reset interrupt");
247
248         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
249                 hns3_warn(hw, "Probe during Global reset interrupt");
250
251         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
252                                BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
253                                BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
254                                BIT(HNS3_VECTOR0_CORERESET_INT_B));
255         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
256 }
257
258 static void
259 hns3_handle_mac_tnl(struct hns3_hw *hw)
260 {
261         struct hns3_cmd_desc desc;
262         uint32_t status;
263         int ret;
264
265         /* query and clear mac tnl interruptions */
266         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
267         ret = hns3_cmd_send(hw, &desc, 1);
268         if (ret) {
269                 hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
270                 return;
271         }
272
273         status = rte_le_to_cpu_32(desc.data[0]);
274         if (status) {
275                 hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
276                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
277                                           false);
278                 desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
279                 ret = hns3_cmd_send(hw, &desc, 1);
280                 if (ret)
281                         hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
282                                  ret);
283         }
284 }
285
286 static void
287 hns3_interrupt_handler(void *param)
288 {
289         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
290         struct hns3_adapter *hns = dev->data->dev_private;
291         struct hns3_hw *hw = &hns->hw;
292         enum hns3_evt_cause event_cause;
293         uint32_t clearval = 0;
294         uint32_t vector0_int;
295         uint32_t ras_int;
296         uint32_t cmdq_int;
297
298         /* Disable interrupt */
299         hns3_pf_disable_irq0(hw);
300
301         event_cause = hns3_check_event_cause(hns, &clearval);
302         vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
303         ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
304         cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
305         /* vector 0 interrupt is shared with reset and mailbox source events. */
306         if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
307                 hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
308                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
309                           vector0_int, ras_int, cmdq_int);
310                 hns3_handle_msix_error(hns, &hw->reset.request);
311                 hns3_handle_ras_error(hns, &hw->reset.request);
312                 hns3_handle_mac_tnl(hw);
313                 hns3_schedule_reset(hns);
314         } else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
315                 hns3_warn(hw, "received reset interrupt");
316                 hns3_schedule_reset(hns);
317         } else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
318                 hns3_dev_handle_mbx_msg(hw);
319         } else {
320                 hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
321                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
322                           vector0_int, ras_int, cmdq_int);
323         }
324
325         hns3_clear_event_cause(hw, event_cause, clearval);
326         /* Enable interrupt if it is not cause by reset */
327         hns3_pf_enable_irq0(hw);
328 }
329
330 static int
331 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
332 {
333 #define HNS3_VLAN_ID_OFFSET_STEP        160
334 #define HNS3_VLAN_BYTE_SIZE             8
335         struct hns3_vlan_filter_pf_cfg_cmd *req;
336         struct hns3_hw *hw = &hns->hw;
337         uint8_t vlan_offset_byte_val;
338         struct hns3_cmd_desc desc;
339         uint8_t vlan_offset_byte;
340         uint8_t vlan_offset_base;
341         int ret;
342
343         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
344
345         vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
346         vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
347                            HNS3_VLAN_BYTE_SIZE;
348         vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
349
350         req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
351         req->vlan_offset = vlan_offset_base;
352         req->vlan_cfg = on ? 0 : 1;
353         req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
354
355         ret = hns3_cmd_send(hw, &desc, 1);
356         if (ret)
357                 hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
358                          vlan_id, ret);
359
360         return ret;
361 }
362
363 static void
364 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
365 {
366         struct hns3_user_vlan_table *vlan_entry;
367         struct hns3_pf *pf = &hns->pf;
368
369         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
370                 if (vlan_entry->vlan_id == vlan_id) {
371                         if (vlan_entry->hd_tbl_status)
372                                 hns3_set_port_vlan_filter(hns, vlan_id, 0);
373                         LIST_REMOVE(vlan_entry, next);
374                         rte_free(vlan_entry);
375                         break;
376                 }
377         }
378 }
379
380 static void
381 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
382                         bool writen_to_tbl)
383 {
384         struct hns3_user_vlan_table *vlan_entry;
385         struct hns3_hw *hw = &hns->hw;
386         struct hns3_pf *pf = &hns->pf;
387
388         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
389                 if (vlan_entry->vlan_id == vlan_id)
390                         return;
391         }
392
393         vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
394         if (vlan_entry == NULL) {
395                 hns3_err(hw, "Failed to malloc hns3 vlan table");
396                 return;
397         }
398
399         vlan_entry->hd_tbl_status = writen_to_tbl;
400         vlan_entry->vlan_id = vlan_id;
401
402         LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
403 }
404
405 static int
406 hns3_restore_vlan_table(struct hns3_adapter *hns)
407 {
408         struct hns3_user_vlan_table *vlan_entry;
409         struct hns3_hw *hw = &hns->hw;
410         struct hns3_pf *pf = &hns->pf;
411         uint16_t vlan_id;
412         int ret = 0;
413
414         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
415                 return hns3_vlan_pvid_configure(hns,
416                                                 hw->port_base_vlan_cfg.pvid, 1);
417
418         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
419                 if (vlan_entry->hd_tbl_status) {
420                         vlan_id = vlan_entry->vlan_id;
421                         ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
422                         if (ret)
423                                 break;
424                 }
425         }
426
427         return ret;
428 }
429
430 static int
431 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
432 {
433         struct hns3_hw *hw = &hns->hw;
434         bool writen_to_tbl = false;
435         int ret = 0;
436
437         /*
438          * When vlan filter is enabled, hardware regards packets without vlan
439          * as packets with vlan 0. So, to receive packets without vlan, vlan id
440          * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
441          */
442         if (on == 0 && vlan_id == 0)
443                 return 0;
444
445         /*
446          * When port base vlan enabled, we use port base vlan as the vlan
447          * filter condition. In this case, we don't update vlan filter table
448          * when user add new vlan or remove exist vlan, just update the
449          * vlan list. The vlan id in vlan list will be writen in vlan filter
450          * table until port base vlan disabled
451          */
452         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
453                 ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
454                 writen_to_tbl = true;
455         }
456
457         if (ret == 0) {
458                 if (on)
459                         hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
460                 else
461                         hns3_rm_dev_vlan_table(hns, vlan_id);
462         }
463         return ret;
464 }
465
466 static int
467 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
468 {
469         struct hns3_adapter *hns = dev->data->dev_private;
470         struct hns3_hw *hw = &hns->hw;
471         int ret;
472
473         rte_spinlock_lock(&hw->lock);
474         ret = hns3_vlan_filter_configure(hns, vlan_id, on);
475         rte_spinlock_unlock(&hw->lock);
476         return ret;
477 }
478
479 static int
480 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
481                          uint16_t tpid)
482 {
483         struct hns3_rx_vlan_type_cfg_cmd *rx_req;
484         struct hns3_tx_vlan_type_cfg_cmd *tx_req;
485         struct hns3_hw *hw = &hns->hw;
486         struct hns3_cmd_desc desc;
487         int ret;
488
489         if ((vlan_type != ETH_VLAN_TYPE_INNER &&
490              vlan_type != ETH_VLAN_TYPE_OUTER)) {
491                 hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
492                 return -EINVAL;
493         }
494
495         if (tpid != RTE_ETHER_TYPE_VLAN) {
496                 hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
497                 return -EINVAL;
498         }
499
500         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
501         rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
502
503         if (vlan_type == ETH_VLAN_TYPE_OUTER) {
504                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
505                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
506         } else if (vlan_type == ETH_VLAN_TYPE_INNER) {
507                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
508                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
509                 rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
510                 rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
511         }
512
513         ret = hns3_cmd_send(hw, &desc, 1);
514         if (ret) {
515                 hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
516                          ret);
517                 return ret;
518         }
519
520         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
521
522         tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
523         tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
524         tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
525
526         ret = hns3_cmd_send(hw, &desc, 1);
527         if (ret)
528                 hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
529                          ret);
530         return ret;
531 }
532
533 static int
534 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
535                    uint16_t tpid)
536 {
537         struct hns3_adapter *hns = dev->data->dev_private;
538         struct hns3_hw *hw = &hns->hw;
539         int ret;
540
541         rte_spinlock_lock(&hw->lock);
542         ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
543         rte_spinlock_unlock(&hw->lock);
544         return ret;
545 }
546
547 static int
548 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
549                              struct hns3_rx_vtag_cfg *vcfg)
550 {
551         struct hns3_vport_vtag_rx_cfg_cmd *req;
552         struct hns3_hw *hw = &hns->hw;
553         struct hns3_cmd_desc desc;
554         uint16_t vport_id;
555         uint8_t bitmap;
556         int ret;
557
558         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
559
560         req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
561         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
562                      vcfg->strip_tag1_en ? 1 : 0);
563         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
564                      vcfg->strip_tag2_en ? 1 : 0);
565         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
566                      vcfg->vlan1_vlan_prionly ? 1 : 0);
567         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
568                      vcfg->vlan2_vlan_prionly ? 1 : 0);
569
570         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
571         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
572                      vcfg->strip_tag1_discard_en ? 1 : 0);
573         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
574                      vcfg->strip_tag2_discard_en ? 1 : 0);
575         /*
576          * In current version VF is not supported when PF is driven by DPDK
577          * driver, just need to configure parameters for PF vport.
578          */
579         vport_id = HNS3_PF_FUNC_ID;
580         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
581         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
582         req->vf_bitmap[req->vf_offset] = bitmap;
583
584         ret = hns3_cmd_send(hw, &desc, 1);
585         if (ret)
586                 hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
587         return ret;
588 }
589
590 static void
591 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
592                            struct hns3_rx_vtag_cfg *vcfg)
593 {
594         struct hns3_pf *pf = &hns->pf;
595         memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
596 }
597
598 static void
599 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
600                            struct hns3_tx_vtag_cfg *vcfg)
601 {
602         struct hns3_pf *pf = &hns->pf;
603         memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
604 }
605
606 static int
607 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
608 {
609         struct hns3_rx_vtag_cfg rxvlan_cfg;
610         struct hns3_hw *hw = &hns->hw;
611         int ret;
612
613         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
614                 rxvlan_cfg.strip_tag1_en = false;
615                 rxvlan_cfg.strip_tag2_en = enable;
616                 rxvlan_cfg.strip_tag2_discard_en = false;
617         } else {
618                 rxvlan_cfg.strip_tag1_en = enable;
619                 rxvlan_cfg.strip_tag2_en = true;
620                 rxvlan_cfg.strip_tag2_discard_en = true;
621         }
622
623         rxvlan_cfg.strip_tag1_discard_en = false;
624         rxvlan_cfg.vlan1_vlan_prionly = false;
625         rxvlan_cfg.vlan2_vlan_prionly = false;
626         rxvlan_cfg.rx_vlan_offload_en = enable;
627
628         ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
629         if (ret) {
630                 hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
631                 return ret;
632         }
633
634         hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
635
636         return ret;
637 }
638
639 static int
640 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
641                           uint8_t fe_type, bool filter_en, uint8_t vf_id)
642 {
643         struct hns3_vlan_filter_ctrl_cmd *req;
644         struct hns3_cmd_desc desc;
645         int ret;
646
647         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
648
649         req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
650         req->vlan_type = vlan_type;
651         req->vlan_fe = filter_en ? fe_type : 0;
652         req->vf_id = vf_id;
653
654         ret = hns3_cmd_send(hw, &desc, 1);
655         if (ret)
656                 hns3_err(hw, "set vlan filter fail, ret =%d", ret);
657
658         return ret;
659 }
660
661 static int
662 hns3_vlan_filter_init(struct hns3_adapter *hns)
663 {
664         struct hns3_hw *hw = &hns->hw;
665         int ret;
666
667         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
668                                         HNS3_FILTER_FE_EGRESS, false,
669                                         HNS3_PF_FUNC_ID);
670         if (ret) {
671                 hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
672                 return ret;
673         }
674
675         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
676                                         HNS3_FILTER_FE_INGRESS, false,
677                                         HNS3_PF_FUNC_ID);
678         if (ret)
679                 hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
680
681         return ret;
682 }
683
684 static int
685 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
686 {
687         struct hns3_hw *hw = &hns->hw;
688         int ret;
689
690         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
691                                         HNS3_FILTER_FE_INGRESS, enable,
692                                         HNS3_PF_FUNC_ID);
693         if (ret)
694                 hns3_err(hw, "failed to %s port vlan filter, ret = %d",
695                          enable ? "enable" : "disable", ret);
696
697         return ret;
698 }
699
700 static int
701 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
702 {
703         struct hns3_adapter *hns = dev->data->dev_private;
704         struct hns3_hw *hw = &hns->hw;
705         struct rte_eth_rxmode *rxmode;
706         unsigned int tmp_mask;
707         bool enable;
708         int ret = 0;
709
710         rte_spinlock_lock(&hw->lock);
711         rxmode = &dev->data->dev_conf.rxmode;
712         tmp_mask = (unsigned int)mask;
713         if (tmp_mask & ETH_VLAN_FILTER_MASK) {
714                 /* ignore vlan filter configuration during promiscuous mode */
715                 if (!dev->data->promiscuous) {
716                         /* Enable or disable VLAN filter */
717                         enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
718                                  true : false;
719
720                         ret = hns3_enable_vlan_filter(hns, enable);
721                         if (ret) {
722                                 rte_spinlock_unlock(&hw->lock);
723                                 hns3_err(hw, "failed to %s rx filter, ret = %d",
724                                          enable ? "enable" : "disable", ret);
725                                 return ret;
726                         }
727                 }
728         }
729
730         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
731                 /* Enable or disable VLAN stripping */
732                 enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
733                     true : false;
734
735                 ret = hns3_en_hw_strip_rxvtag(hns, enable);
736                 if (ret) {
737                         rte_spinlock_unlock(&hw->lock);
738                         hns3_err(hw, "failed to %s rx strip, ret = %d",
739                                  enable ? "enable" : "disable", ret);
740                         return ret;
741                 }
742         }
743
744         rte_spinlock_unlock(&hw->lock);
745
746         return ret;
747 }
748
749 static int
750 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
751                              struct hns3_tx_vtag_cfg *vcfg)
752 {
753         struct hns3_vport_vtag_tx_cfg_cmd *req;
754         struct hns3_cmd_desc desc;
755         struct hns3_hw *hw = &hns->hw;
756         uint16_t vport_id;
757         uint8_t bitmap;
758         int ret;
759
760         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
761
762         req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
763         req->def_vlan_tag1 = vcfg->default_tag1;
764         req->def_vlan_tag2 = vcfg->default_tag2;
765         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
766                      vcfg->accept_tag1 ? 1 : 0);
767         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
768                      vcfg->accept_untag1 ? 1 : 0);
769         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
770                      vcfg->accept_tag2 ? 1 : 0);
771         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
772                      vcfg->accept_untag2 ? 1 : 0);
773         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
774                      vcfg->insert_tag1_en ? 1 : 0);
775         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
776                      vcfg->insert_tag2_en ? 1 : 0);
777         hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
778
779         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
780         hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
781                      vcfg->tag_shift_mode_en ? 1 : 0);
782
783         /*
784          * In current version VF is not supported when PF is driven by DPDK
785          * driver, just need to configure parameters for PF vport.
786          */
787         vport_id = HNS3_PF_FUNC_ID;
788         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
789         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
790         req->vf_bitmap[req->vf_offset] = bitmap;
791
792         ret = hns3_cmd_send(hw, &desc, 1);
793         if (ret)
794                 hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
795
796         return ret;
797 }
798
799 static int
800 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
801                      uint16_t pvid)
802 {
803         struct hns3_hw *hw = &hns->hw;
804         struct hns3_tx_vtag_cfg txvlan_cfg;
805         int ret;
806
807         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
808                 txvlan_cfg.accept_tag1 = true;
809                 txvlan_cfg.insert_tag1_en = false;
810                 txvlan_cfg.default_tag1 = 0;
811         } else {
812                 txvlan_cfg.accept_tag1 =
813                         hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
814                 txvlan_cfg.insert_tag1_en = true;
815                 txvlan_cfg.default_tag1 = pvid;
816         }
817
818         txvlan_cfg.accept_untag1 = true;
819         txvlan_cfg.accept_tag2 = true;
820         txvlan_cfg.accept_untag2 = true;
821         txvlan_cfg.insert_tag2_en = false;
822         txvlan_cfg.default_tag2 = 0;
823         txvlan_cfg.tag_shift_mode_en = true;
824
825         ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
826         if (ret) {
827                 hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
828                          ret);
829                 return ret;
830         }
831
832         hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
833         return ret;
834 }
835
836
837 static void
838 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
839 {
840         struct hns3_user_vlan_table *vlan_entry;
841         struct hns3_pf *pf = &hns->pf;
842
843         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
844                 if (vlan_entry->hd_tbl_status) {
845                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
846                         vlan_entry->hd_tbl_status = false;
847                 }
848         }
849
850         if (is_del_list) {
851                 vlan_entry = LIST_FIRST(&pf->vlan_list);
852                 while (vlan_entry) {
853                         LIST_REMOVE(vlan_entry, next);
854                         rte_free(vlan_entry);
855                         vlan_entry = LIST_FIRST(&pf->vlan_list);
856                 }
857         }
858 }
859
860 static void
861 hns3_add_all_vlan_table(struct hns3_adapter *hns)
862 {
863         struct hns3_user_vlan_table *vlan_entry;
864         struct hns3_pf *pf = &hns->pf;
865
866         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
867                 if (!vlan_entry->hd_tbl_status) {
868                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
869                         vlan_entry->hd_tbl_status = true;
870                 }
871         }
872 }
873
874 static void
875 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
876 {
877         struct hns3_hw *hw = &hns->hw;
878         int ret;
879
880         hns3_rm_all_vlan_table(hns, true);
881         if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
882                 ret = hns3_set_port_vlan_filter(hns,
883                                                 hw->port_base_vlan_cfg.pvid, 0);
884                 if (ret) {
885                         hns3_err(hw, "Failed to remove all vlan table, ret =%d",
886                                  ret);
887                         return;
888                 }
889         }
890 }
891
892 static int
893 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
894                         uint16_t port_base_vlan_state, uint16_t new_pvid)
895 {
896         struct hns3_hw *hw = &hns->hw;
897         uint16_t old_pvid;
898         int ret;
899
900         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
901                 old_pvid = hw->port_base_vlan_cfg.pvid;
902                 if (old_pvid != HNS3_INVALID_PVID) {
903                         ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
904                         if (ret) {
905                                 hns3_err(hw, "failed to remove old pvid %u, "
906                                                 "ret = %d", old_pvid, ret);
907                                 return ret;
908                         }
909                 }
910
911                 hns3_rm_all_vlan_table(hns, false);
912                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
913                 if (ret) {
914                         hns3_err(hw, "failed to add new pvid %u, ret = %d",
915                                         new_pvid, ret);
916                         return ret;
917                 }
918         } else {
919                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
920                 if (ret) {
921                         hns3_err(hw, "failed to remove pvid %u, ret = %d",
922                                         new_pvid, ret);
923                         return ret;
924                 }
925
926                 hns3_add_all_vlan_table(hns);
927         }
928         return 0;
929 }
930
931 static int
932 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
933 {
934         struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
935         struct hns3_rx_vtag_cfg rx_vlan_cfg;
936         bool rx_strip_en;
937         int ret;
938
939         rx_strip_en = old_cfg->rx_vlan_offload_en;
940         if (on) {
941                 rx_vlan_cfg.strip_tag1_en = rx_strip_en;
942                 rx_vlan_cfg.strip_tag2_en = true;
943                 rx_vlan_cfg.strip_tag2_discard_en = true;
944         } else {
945                 rx_vlan_cfg.strip_tag1_en = false;
946                 rx_vlan_cfg.strip_tag2_en = rx_strip_en;
947                 rx_vlan_cfg.strip_tag2_discard_en = false;
948         }
949         rx_vlan_cfg.strip_tag1_discard_en = false;
950         rx_vlan_cfg.vlan1_vlan_prionly = false;
951         rx_vlan_cfg.vlan2_vlan_prionly = false;
952         rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
953
954         ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
955         if (ret)
956                 return ret;
957
958         hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
959         return ret;
960 }
961
962 static int
963 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
964 {
965         struct hns3_hw *hw = &hns->hw;
966         uint16_t port_base_vlan_state;
967         int ret;
968
969         if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
970                 if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
971                         hns3_warn(hw, "Invalid operation! As current pvid set "
972                                   "is %u, disable pvid %u is invalid",
973                                   hw->port_base_vlan_cfg.pvid, pvid);
974                 return 0;
975         }
976
977         port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
978                                     HNS3_PORT_BASE_VLAN_DISABLE;
979         ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
980         if (ret) {
981                 hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
982                          ret);
983                 return ret;
984         }
985
986         ret = hns3_en_pvid_strip(hns, on);
987         if (ret) {
988                 hns3_err(hw, "failed to config rx vlan strip for pvid, "
989                          "ret = %d", ret);
990                 return ret;
991         }
992
993         if (pvid == HNS3_INVALID_PVID)
994                 goto out;
995         ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
996         if (ret) {
997                 hns3_err(hw, "failed to update vlan filter entries, ret = %d",
998                          ret);
999                 return ret;
1000         }
1001
1002 out:
1003         hw->port_base_vlan_cfg.state = port_base_vlan_state;
1004         hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1005         return ret;
1006 }
1007
1008 static int
1009 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1010 {
1011         struct hns3_adapter *hns = dev->data->dev_private;
1012         struct hns3_hw *hw = &hns->hw;
1013         bool pvid_en_state_change;
1014         uint16_t pvid_state;
1015         int ret;
1016
1017         if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1018                 hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1019                          RTE_ETHER_MAX_VLAN_ID);
1020                 return -EINVAL;
1021         }
1022
1023         /*
1024          * If PVID configuration state change, should refresh the PVID
1025          * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1026          */
1027         pvid_state = hw->port_base_vlan_cfg.state;
1028         if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1029             (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1030                 pvid_en_state_change = false;
1031         else
1032                 pvid_en_state_change = true;
1033
1034         rte_spinlock_lock(&hw->lock);
1035         ret = hns3_vlan_pvid_configure(hns, pvid, on);
1036         rte_spinlock_unlock(&hw->lock);
1037         if (ret)
1038                 return ret;
1039         /*
1040          * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1041          * need be processed by PMD driver.
1042          */
1043         if (pvid_en_state_change &&
1044             hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1045                 hns3_update_all_queues_pvid_proc_en(hw);
1046
1047         return 0;
1048 }
1049
1050 static int
1051 hns3_default_vlan_config(struct hns3_adapter *hns)
1052 {
1053         struct hns3_hw *hw = &hns->hw;
1054         int ret;
1055
1056         /*
1057          * When vlan filter is enabled, hardware regards packets without vlan
1058          * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1059          * table, packets without vlan won't be received. So, add vlan 0 as
1060          * the default vlan.
1061          */
1062         ret = hns3_vlan_filter_configure(hns, 0, 1);
1063         if (ret)
1064                 hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1065         return ret;
1066 }
1067
1068 static int
1069 hns3_init_vlan_config(struct hns3_adapter *hns)
1070 {
1071         struct hns3_hw *hw = &hns->hw;
1072         int ret;
1073
1074         /*
1075          * This function can be called in the initialization and reset process,
1076          * when in reset process, it means that hardware had been reseted
1077          * successfully and we need to restore the hardware configuration to
1078          * ensure that the hardware configuration remains unchanged before and
1079          * after reset.
1080          */
1081         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1082                 hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1083                 hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1084         }
1085
1086         ret = hns3_vlan_filter_init(hns);
1087         if (ret) {
1088                 hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1089                 return ret;
1090         }
1091
1092         ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1093                                        RTE_ETHER_TYPE_VLAN);
1094         if (ret) {
1095                 hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1096                 return ret;
1097         }
1098
1099         /*
1100          * When in the reinit dev stage of the reset process, the following
1101          * vlan-related configurations may differ from those at initialization,
1102          * we will restore configurations to hardware in hns3_restore_vlan_table
1103          * and hns3_restore_vlan_conf later.
1104          */
1105         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1106                 ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1107                 if (ret) {
1108                         hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1109                         return ret;
1110                 }
1111
1112                 ret = hns3_en_hw_strip_rxvtag(hns, false);
1113                 if (ret) {
1114                         hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1115                                  ret);
1116                         return ret;
1117                 }
1118         }
1119
1120         return hns3_default_vlan_config(hns);
1121 }
1122
1123 static int
1124 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1125 {
1126         struct hns3_pf *pf = &hns->pf;
1127         struct hns3_hw *hw = &hns->hw;
1128         uint64_t offloads;
1129         bool enable;
1130         int ret;
1131
1132         if (!hw->data->promiscuous) {
1133                 /* restore vlan filter states */
1134                 offloads = hw->data->dev_conf.rxmode.offloads;
1135                 enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1136                 ret = hns3_enable_vlan_filter(hns, enable);
1137                 if (ret) {
1138                         hns3_err(hw, "failed to restore vlan rx filter conf, "
1139                                  "ret = %d", ret);
1140                         return ret;
1141                 }
1142         }
1143
1144         ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1145         if (ret) {
1146                 hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1147                 return ret;
1148         }
1149
1150         ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1151         if (ret)
1152                 hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1153
1154         return ret;
1155 }
1156
1157 static int
1158 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1159 {
1160         struct hns3_adapter *hns = dev->data->dev_private;
1161         struct rte_eth_dev_data *data = dev->data;
1162         struct rte_eth_txmode *txmode;
1163         struct hns3_hw *hw = &hns->hw;
1164         int mask;
1165         int ret;
1166
1167         txmode = &data->dev_conf.txmode;
1168         if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1169                 hns3_warn(hw,
1170                           "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1171                           "configuration is not supported! Ignore these two "
1172                           "parameters: hw_vlan_reject_tagged(%u), "
1173                           "hw_vlan_reject_untagged(%u)",
1174                           txmode->hw_vlan_reject_tagged,
1175                           txmode->hw_vlan_reject_untagged);
1176
1177         /* Apply vlan offload setting */
1178         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1179         ret = hns3_vlan_offload_set(dev, mask);
1180         if (ret) {
1181                 hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1182                          ret);
1183                 return ret;
1184         }
1185
1186         /*
1187          * If pvid config is not set in rte_eth_conf, driver needn't to set
1188          * VLAN pvid related configuration to hardware.
1189          */
1190         if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1191                 return 0;
1192
1193         /* Apply pvid setting */
1194         ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1195                                  txmode->hw_vlan_insert_pvid);
1196         if (ret)
1197                 hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1198                          txmode->pvid, ret);
1199
1200         return ret;
1201 }
1202
1203 static int
1204 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1205                 unsigned int tso_mss_max)
1206 {
1207         struct hns3_cfg_tso_status_cmd *req;
1208         struct hns3_cmd_desc desc;
1209         uint16_t tso_mss;
1210
1211         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1212
1213         req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1214
1215         tso_mss = 0;
1216         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1217                        tso_mss_min);
1218         req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1219
1220         tso_mss = 0;
1221         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1222                        tso_mss_max);
1223         req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1224
1225         return hns3_cmd_send(hw, &desc, 1);
1226 }
1227
1228 static int
1229 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1230                    uint16_t *allocated_size, bool is_alloc)
1231 {
1232         struct hns3_umv_spc_alc_cmd *req;
1233         struct hns3_cmd_desc desc;
1234         int ret;
1235
1236         req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1237         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1238         hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1239         req->space_size = rte_cpu_to_le_32(space_size);
1240
1241         ret = hns3_cmd_send(hw, &desc, 1);
1242         if (ret) {
1243                 PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1244                              is_alloc ? "allocate" : "free", ret);
1245                 return ret;
1246         }
1247
1248         if (is_alloc && allocated_size)
1249                 *allocated_size = rte_le_to_cpu_32(desc.data[1]);
1250
1251         return 0;
1252 }
1253
1254 static int
1255 hns3_init_umv_space(struct hns3_hw *hw)
1256 {
1257         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1258         struct hns3_pf *pf = &hns->pf;
1259         uint16_t allocated_size = 0;
1260         int ret;
1261
1262         ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1263                                  true);
1264         if (ret)
1265                 return ret;
1266
1267         if (allocated_size < pf->wanted_umv_size)
1268                 PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1269                              pf->wanted_umv_size, allocated_size);
1270
1271         pf->max_umv_size = (!!allocated_size) ? allocated_size :
1272                                                 pf->wanted_umv_size;
1273         pf->used_umv_size = 0;
1274         return 0;
1275 }
1276
1277 static int
1278 hns3_uninit_umv_space(struct hns3_hw *hw)
1279 {
1280         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1281         struct hns3_pf *pf = &hns->pf;
1282         int ret;
1283
1284         if (pf->max_umv_size == 0)
1285                 return 0;
1286
1287         ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1288         if (ret)
1289                 return ret;
1290
1291         pf->max_umv_size = 0;
1292
1293         return 0;
1294 }
1295
1296 static bool
1297 hns3_is_umv_space_full(struct hns3_hw *hw)
1298 {
1299         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1300         struct hns3_pf *pf = &hns->pf;
1301         bool is_full;
1302
1303         is_full = (pf->used_umv_size >= pf->max_umv_size);
1304
1305         return is_full;
1306 }
1307
1308 static void
1309 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1310 {
1311         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1312         struct hns3_pf *pf = &hns->pf;
1313
1314         if (is_free) {
1315                 if (pf->used_umv_size > 0)
1316                         pf->used_umv_size--;
1317         } else
1318                 pf->used_umv_size++;
1319 }
1320
1321 static void
1322 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1323                       const uint8_t *addr, bool is_mc)
1324 {
1325         const unsigned char *mac_addr = addr;
1326         uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1327                             ((uint32_t)mac_addr[2] << 16) |
1328                             ((uint32_t)mac_addr[1] << 8) |
1329                             (uint32_t)mac_addr[0];
1330         uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1331
1332         hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1333         if (is_mc) {
1334                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1335                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1336                 hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1337         }
1338
1339         new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1340         new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1341 }
1342
1343 static int
1344 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1345                              uint8_t resp_code,
1346                              enum hns3_mac_vlan_tbl_opcode op)
1347 {
1348         if (cmdq_resp) {
1349                 hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1350                          cmdq_resp);
1351                 return -EIO;
1352         }
1353
1354         if (op == HNS3_MAC_VLAN_ADD) {
1355                 if (resp_code == 0 || resp_code == 1) {
1356                         return 0;
1357                 } else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1358                         hns3_err(hw, "add mac addr failed for uc_overflow");
1359                         return -ENOSPC;
1360                 } else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1361                         hns3_err(hw, "add mac addr failed for mc_overflow");
1362                         return -ENOSPC;
1363                 }
1364
1365                 hns3_err(hw, "add mac addr failed for undefined, code=%u",
1366                          resp_code);
1367                 return -EIO;
1368         } else if (op == HNS3_MAC_VLAN_REMOVE) {
1369                 if (resp_code == 0) {
1370                         return 0;
1371                 } else if (resp_code == 1) {
1372                         hns3_dbg(hw, "remove mac addr failed for miss");
1373                         return -ENOENT;
1374                 }
1375
1376                 hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1377                          resp_code);
1378                 return -EIO;
1379         } else if (op == HNS3_MAC_VLAN_LKUP) {
1380                 if (resp_code == 0) {
1381                         return 0;
1382                 } else if (resp_code == 1) {
1383                         hns3_dbg(hw, "lookup mac addr failed for miss");
1384                         return -ENOENT;
1385                 }
1386
1387                 hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1388                          resp_code);
1389                 return -EIO;
1390         }
1391
1392         hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1393                  op);
1394
1395         return -EINVAL;
1396 }
1397
1398 static int
1399 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1400                          struct hns3_mac_vlan_tbl_entry_cmd *req,
1401                          struct hns3_cmd_desc *desc, bool is_mc)
1402 {
1403         uint8_t resp_code;
1404         uint16_t retval;
1405         int ret;
1406
1407         hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1408         if (is_mc) {
1409                 desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1410                 memcpy(desc[0].data, req,
1411                            sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1412                 hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1413                                           true);
1414                 desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1415                 hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1416                                           true);
1417                 ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1418         } else {
1419                 memcpy(desc[0].data, req,
1420                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1421                 ret = hns3_cmd_send(hw, desc, 1);
1422         }
1423         if (ret) {
1424                 hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1425                          ret);
1426                 return ret;
1427         }
1428         resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1429         retval = rte_le_to_cpu_16(desc[0].retval);
1430
1431         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1432                                             HNS3_MAC_VLAN_LKUP);
1433 }
1434
1435 static int
1436 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1437                       struct hns3_mac_vlan_tbl_entry_cmd *req,
1438                       struct hns3_cmd_desc *mc_desc)
1439 {
1440         uint8_t resp_code;
1441         uint16_t retval;
1442         int cfg_status;
1443         int ret;
1444
1445         if (mc_desc == NULL) {
1446                 struct hns3_cmd_desc desc;
1447
1448                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1449                 memcpy(desc.data, req,
1450                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1451                 ret = hns3_cmd_send(hw, &desc, 1);
1452                 resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1453                 retval = rte_le_to_cpu_16(desc.retval);
1454
1455                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1456                                                           HNS3_MAC_VLAN_ADD);
1457         } else {
1458                 hns3_cmd_reuse_desc(&mc_desc[0], false);
1459                 mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1460                 hns3_cmd_reuse_desc(&mc_desc[1], false);
1461                 mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1462                 hns3_cmd_reuse_desc(&mc_desc[2], false);
1463                 mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1464                 memcpy(mc_desc[0].data, req,
1465                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1466                 mc_desc[0].retval = 0;
1467                 ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1468                 resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1469                 retval = rte_le_to_cpu_16(mc_desc[0].retval);
1470
1471                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1472                                                           HNS3_MAC_VLAN_ADD);
1473         }
1474
1475         if (ret) {
1476                 hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1477                 return ret;
1478         }
1479
1480         return cfg_status;
1481 }
1482
1483 static int
1484 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1485                          struct hns3_mac_vlan_tbl_entry_cmd *req)
1486 {
1487         struct hns3_cmd_desc desc;
1488         uint8_t resp_code;
1489         uint16_t retval;
1490         int ret;
1491
1492         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1493
1494         memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1495
1496         ret = hns3_cmd_send(hw, &desc, 1);
1497         if (ret) {
1498                 hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1499                 return ret;
1500         }
1501         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1502         retval = rte_le_to_cpu_16(desc.retval);
1503
1504         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1505                                             HNS3_MAC_VLAN_REMOVE);
1506 }
1507
1508 static int
1509 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1510 {
1511         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1512         struct hns3_mac_vlan_tbl_entry_cmd req;
1513         struct hns3_pf *pf = &hns->pf;
1514         struct hns3_cmd_desc desc[3];
1515         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1516         uint16_t egress_port = 0;
1517         uint8_t vf_id;
1518         int ret;
1519
1520         /* check if mac addr is valid */
1521         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1522                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1523                                       mac_addr);
1524                 hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1525                          mac_str);
1526                 return -EINVAL;
1527         }
1528
1529         memset(&req, 0, sizeof(req));
1530
1531         /*
1532          * In current version VF is not supported when PF is driven by DPDK
1533          * driver, just need to configure parameters for PF vport.
1534          */
1535         vf_id = HNS3_PF_FUNC_ID;
1536         hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1537                        HNS3_MAC_EPORT_VFID_S, vf_id);
1538
1539         req.egress_port = rte_cpu_to_le_16(egress_port);
1540
1541         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1542
1543         /*
1544          * Lookup the mac address in the mac_vlan table, and add
1545          * it if the entry is inexistent. Repeated unicast entry
1546          * is not allowed in the mac vlan table.
1547          */
1548         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1549         if (ret == -ENOENT) {
1550                 if (!hns3_is_umv_space_full(hw)) {
1551                         ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1552                         if (!ret)
1553                                 hns3_update_umv_space(hw, false);
1554                         return ret;
1555                 }
1556
1557                 hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1558
1559                 return -ENOSPC;
1560         }
1561
1562         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1563
1564         /* check if we just hit the duplicate */
1565         if (ret == 0) {
1566                 hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1567                 return 0;
1568         }
1569
1570         hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1571                  mac_str);
1572
1573         return ret;
1574 }
1575
1576 static int
1577 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1578 {
1579         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1580         struct rte_ether_addr *addr;
1581         int ret;
1582         int i;
1583
1584         for (i = 0; i < hw->mc_addrs_num; i++) {
1585                 addr = &hw->mc_addrs[i];
1586                 /* Check if there are duplicate addresses */
1587                 if (rte_is_same_ether_addr(addr, mac_addr)) {
1588                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1589                                               addr);
1590                         hns3_err(hw, "failed to add mc mac addr, same addrs"
1591                                  "(%s) is added by the set_mc_mac_addr_list "
1592                                  "API", mac_str);
1593                         return -EINVAL;
1594                 }
1595         }
1596
1597         ret = hns3_add_mc_addr(hw, mac_addr);
1598         if (ret) {
1599                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1600                                       mac_addr);
1601                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1602                          mac_str, ret);
1603         }
1604         return ret;
1605 }
1606
1607 static int
1608 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1609 {
1610         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1611         int ret;
1612
1613         ret = hns3_remove_mc_addr(hw, mac_addr);
1614         if (ret) {
1615                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1616                                       mac_addr);
1617                 hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1618                          mac_str, ret);
1619         }
1620         return ret;
1621 }
1622
1623 static int
1624 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1625                   uint32_t idx, __rte_unused uint32_t pool)
1626 {
1627         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1628         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1629         int ret;
1630
1631         rte_spinlock_lock(&hw->lock);
1632
1633         /*
1634          * In hns3 network engine adding UC and MC mac address with different
1635          * commands with firmware. We need to determine whether the input
1636          * address is a UC or a MC address to call different commands.
1637          * By the way, it is recommended calling the API function named
1638          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1639          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1640          * may affect the specifications of UC mac addresses.
1641          */
1642         if (rte_is_multicast_ether_addr(mac_addr))
1643                 ret = hns3_add_mc_addr_common(hw, mac_addr);
1644         else
1645                 ret = hns3_add_uc_addr_common(hw, mac_addr);
1646
1647         if (ret) {
1648                 rte_spinlock_unlock(&hw->lock);
1649                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1650                                       mac_addr);
1651                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1652                          ret);
1653                 return ret;
1654         }
1655
1656         if (idx == 0)
1657                 hw->mac.default_addr_setted = true;
1658         rte_spinlock_unlock(&hw->lock);
1659
1660         return ret;
1661 }
1662
1663 static int
1664 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1665 {
1666         struct hns3_mac_vlan_tbl_entry_cmd req;
1667         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1668         int ret;
1669
1670         /* check if mac addr is valid */
1671         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1672                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1673                                       mac_addr);
1674                 hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1675                          mac_str);
1676                 return -EINVAL;
1677         }
1678
1679         memset(&req, 0, sizeof(req));
1680         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1681         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1682         ret = hns3_remove_mac_vlan_tbl(hw, &req);
1683         if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1684                 return 0;
1685         else if (ret == 0)
1686                 hns3_update_umv_space(hw, true);
1687
1688         return ret;
1689 }
1690
1691 static void
1692 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1693 {
1694         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1695         /* index will be checked by upper level rte interface */
1696         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1697         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1698         int ret;
1699
1700         rte_spinlock_lock(&hw->lock);
1701
1702         if (rte_is_multicast_ether_addr(mac_addr))
1703                 ret = hns3_remove_mc_addr_common(hw, mac_addr);
1704         else
1705                 ret = hns3_remove_uc_addr_common(hw, mac_addr);
1706         rte_spinlock_unlock(&hw->lock);
1707         if (ret) {
1708                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1709                                       mac_addr);
1710                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1711                          ret);
1712         }
1713 }
1714
1715 static int
1716 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1717                           struct rte_ether_addr *mac_addr)
1718 {
1719         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1720         struct rte_ether_addr *oaddr;
1721         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1722         bool default_addr_setted;
1723         bool rm_succes = false;
1724         int ret, ret_val;
1725
1726         /*
1727          * It has been guaranteed that input parameter named mac_addr is valid
1728          * address in the rte layer of DPDK framework.
1729          */
1730         oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1731         default_addr_setted = hw->mac.default_addr_setted;
1732         if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1733                 return 0;
1734
1735         rte_spinlock_lock(&hw->lock);
1736         if (default_addr_setted) {
1737                 ret = hns3_remove_uc_addr_common(hw, oaddr);
1738                 if (ret) {
1739                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1740                                               oaddr);
1741                         hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1742                                   mac_str, ret);
1743                         rm_succes = false;
1744                 } else
1745                         rm_succes = true;
1746         }
1747
1748         ret = hns3_add_uc_addr_common(hw, mac_addr);
1749         if (ret) {
1750                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1751                                       mac_addr);
1752                 hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1753                 goto err_add_uc_addr;
1754         }
1755
1756         ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1757         if (ret) {
1758                 hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1759                 goto err_pause_addr_cfg;
1760         }
1761
1762         rte_ether_addr_copy(mac_addr,
1763                             (struct rte_ether_addr *)hw->mac.mac_addr);
1764         hw->mac.default_addr_setted = true;
1765         rte_spinlock_unlock(&hw->lock);
1766
1767         return 0;
1768
1769 err_pause_addr_cfg:
1770         ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1771         if (ret_val) {
1772                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1773                                       mac_addr);
1774                 hns3_warn(hw,
1775                           "Failed to roll back to del setted mac addr(%s): %d",
1776                           mac_str, ret_val);
1777         }
1778
1779 err_add_uc_addr:
1780         if (rm_succes) {
1781                 ret_val = hns3_add_uc_addr_common(hw, oaddr);
1782                 if (ret_val) {
1783                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1784                                               oaddr);
1785                         hns3_warn(hw,
1786                                   "Failed to restore old uc mac addr(%s): %d",
1787                                   mac_str, ret_val);
1788                         hw->mac.default_addr_setted = false;
1789                 }
1790         }
1791         rte_spinlock_unlock(&hw->lock);
1792
1793         return ret;
1794 }
1795
1796 static int
1797 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1798 {
1799         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1800         struct hns3_hw *hw = &hns->hw;
1801         struct rte_ether_addr *addr;
1802         int err = 0;
1803         int ret;
1804         int i;
1805
1806         for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1807                 addr = &hw->data->mac_addrs[i];
1808                 if (rte_is_zero_ether_addr(addr))
1809                         continue;
1810                 if (rte_is_multicast_ether_addr(addr))
1811                         ret = del ? hns3_remove_mc_addr(hw, addr) :
1812                               hns3_add_mc_addr(hw, addr);
1813                 else
1814                         ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1815                               hns3_add_uc_addr_common(hw, addr);
1816
1817                 if (ret) {
1818                         err = ret;
1819                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1820                                               addr);
1821                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1822                                  "ret = %d.", del ? "remove" : "restore",
1823                                  mac_str, i, ret);
1824                 }
1825         }
1826         return err;
1827 }
1828
1829 static void
1830 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1831 {
1832 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1833         uint8_t word_num;
1834         uint8_t bit_num;
1835
1836         if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1837                 word_num = vfid / 32;
1838                 bit_num = vfid % 32;
1839                 if (clr)
1840                         desc[1].data[word_num] &=
1841                             rte_cpu_to_le_32(~(1UL << bit_num));
1842                 else
1843                         desc[1].data[word_num] |=
1844                             rte_cpu_to_le_32(1UL << bit_num);
1845         } else {
1846                 word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1847                 bit_num = vfid % 32;
1848                 if (clr)
1849                         desc[2].data[word_num] &=
1850                             rte_cpu_to_le_32(~(1UL << bit_num));
1851                 else
1852                         desc[2].data[word_num] |=
1853                             rte_cpu_to_le_32(1UL << bit_num);
1854         }
1855 }
1856
1857 static int
1858 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1859 {
1860         struct hns3_mac_vlan_tbl_entry_cmd req;
1861         struct hns3_cmd_desc desc[3];
1862         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1863         uint8_t vf_id;
1864         int ret;
1865
1866         /* Check if mac addr is valid */
1867         if (!rte_is_multicast_ether_addr(mac_addr)) {
1868                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1869                                       mac_addr);
1870                 hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1871                          mac_str);
1872                 return -EINVAL;
1873         }
1874
1875         memset(&req, 0, sizeof(req));
1876         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1877         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1878         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1879         if (ret) {
1880                 /* This mac addr do not exist, add new entry for it */
1881                 memset(desc[0].data, 0, sizeof(desc[0].data));
1882                 memset(desc[1].data, 0, sizeof(desc[0].data));
1883                 memset(desc[2].data, 0, sizeof(desc[0].data));
1884         }
1885
1886         /*
1887          * In current version VF is not supported when PF is driven by DPDK
1888          * driver, just need to configure parameters for PF vport.
1889          */
1890         vf_id = HNS3_PF_FUNC_ID;
1891         hns3_update_desc_vfid(desc, vf_id, false);
1892         ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1893         if (ret) {
1894                 if (ret == -ENOSPC)
1895                         hns3_err(hw, "mc mac vlan table is full");
1896                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1897                                       mac_addr);
1898                 hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1899         }
1900
1901         return ret;
1902 }
1903
1904 static int
1905 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1906 {
1907         struct hns3_mac_vlan_tbl_entry_cmd req;
1908         struct hns3_cmd_desc desc[3];
1909         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1910         uint8_t vf_id;
1911         int ret;
1912
1913         /* Check if mac addr is valid */
1914         if (!rte_is_multicast_ether_addr(mac_addr)) {
1915                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1916                                       mac_addr);
1917                 hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1918                          mac_str);
1919                 return -EINVAL;
1920         }
1921
1922         memset(&req, 0, sizeof(req));
1923         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1924         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1925         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1926         if (ret == 0) {
1927                 /*
1928                  * This mac addr exist, remove this handle's VFID for it.
1929                  * In current version VF is not supported when PF is driven by
1930                  * DPDK driver, just need to configure parameters for PF vport.
1931                  */
1932                 vf_id = HNS3_PF_FUNC_ID;
1933                 hns3_update_desc_vfid(desc, vf_id, true);
1934
1935                 /* All the vfid is zero, so need to delete this entry */
1936                 ret = hns3_remove_mac_vlan_tbl(hw, &req);
1937         } else if (ret == -ENOENT) {
1938                 /* This mac addr doesn't exist. */
1939                 return 0;
1940         }
1941
1942         if (ret) {
1943                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1944                                       mac_addr);
1945                 hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1946         }
1947
1948         return ret;
1949 }
1950
1951 static int
1952 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1953                            struct rte_ether_addr *mc_addr_set,
1954                            uint32_t nb_mc_addr)
1955 {
1956         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1957         struct rte_ether_addr *addr;
1958         uint32_t i;
1959         uint32_t j;
1960
1961         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1962                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1963                          "invalid. valid range: 0~%d",
1964                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
1965                 return -EINVAL;
1966         }
1967
1968         /* Check if input mac addresses are valid */
1969         for (i = 0; i < nb_mc_addr; i++) {
1970                 addr = &mc_addr_set[i];
1971                 if (!rte_is_multicast_ether_addr(addr)) {
1972                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1973                                               addr);
1974                         hns3_err(hw,
1975                                  "failed to set mc mac addr, addr(%s) invalid.",
1976                                  mac_str);
1977                         return -EINVAL;
1978                 }
1979
1980                 /* Check if there are duplicate addresses */
1981                 for (j = i + 1; j < nb_mc_addr; j++) {
1982                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1983                                 hns3_ether_format_addr(mac_str,
1984                                                       RTE_ETHER_ADDR_FMT_SIZE,
1985                                                       addr);
1986                                 hns3_err(hw, "failed to set mc mac addr, "
1987                                          "addrs invalid. two same addrs(%s).",
1988                                          mac_str);
1989                                 return -EINVAL;
1990                         }
1991                 }
1992
1993                 /*
1994                  * Check if there are duplicate addresses between mac_addrs
1995                  * and mc_addr_set
1996                  */
1997                 for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1998                         if (rte_is_same_ether_addr(addr,
1999                                                    &hw->data->mac_addrs[j])) {
2000                                 hns3_ether_format_addr(mac_str,
2001                                                       RTE_ETHER_ADDR_FMT_SIZE,
2002                                                       addr);
2003                                 hns3_err(hw, "failed to set mc mac addr, "
2004                                          "addrs invalid. addrs(%s) has already "
2005                                          "configured in mac_addr add API",
2006                                          mac_str);
2007                                 return -EINVAL;
2008                         }
2009                 }
2010         }
2011
2012         return 0;
2013 }
2014
2015 static void
2016 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
2017                            struct rte_ether_addr *mc_addr_set,
2018                            int mc_addr_num,
2019                            struct rte_ether_addr *reserved_addr_list,
2020                            int *reserved_addr_num,
2021                            struct rte_ether_addr *add_addr_list,
2022                            int *add_addr_num,
2023                            struct rte_ether_addr *rm_addr_list,
2024                            int *rm_addr_num)
2025 {
2026         struct rte_ether_addr *addr;
2027         int current_addr_num;
2028         int reserved_num = 0;
2029         int add_num = 0;
2030         int rm_num = 0;
2031         int num;
2032         int i;
2033         int j;
2034         bool same_addr;
2035
2036         /* Calculate the mc mac address list that should be removed */
2037         current_addr_num = hw->mc_addrs_num;
2038         for (i = 0; i < current_addr_num; i++) {
2039                 addr = &hw->mc_addrs[i];
2040                 same_addr = false;
2041                 for (j = 0; j < mc_addr_num; j++) {
2042                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2043                                 same_addr = true;
2044                                 break;
2045                         }
2046                 }
2047
2048                 if (!same_addr) {
2049                         rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
2050                         rm_num++;
2051                 } else {
2052                         rte_ether_addr_copy(addr,
2053                                             &reserved_addr_list[reserved_num]);
2054                         reserved_num++;
2055                 }
2056         }
2057
2058         /* Calculate the mc mac address list that should be added */
2059         for (i = 0; i < mc_addr_num; i++) {
2060                 addr = &mc_addr_set[i];
2061                 same_addr = false;
2062                 for (j = 0; j < current_addr_num; j++) {
2063                         if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2064                                 same_addr = true;
2065                                 break;
2066                         }
2067                 }
2068
2069                 if (!same_addr) {
2070                         rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2071                         add_num++;
2072                 }
2073         }
2074
2075         /* Reorder the mc mac address list maintained by driver */
2076         for (i = 0; i < reserved_num; i++)
2077                 rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2078
2079         for (i = 0; i < rm_num; i++) {
2080                 num = reserved_num + i;
2081                 rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2082         }
2083
2084         *reserved_addr_num = reserved_num;
2085         *add_addr_num = add_num;
2086         *rm_addr_num = rm_num;
2087 }
2088
2089 static int
2090 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2091                           struct rte_ether_addr *mc_addr_set,
2092                           uint32_t nb_mc_addr)
2093 {
2094         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2095         struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2096         struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2097         struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2098         struct rte_ether_addr *addr;
2099         int reserved_addr_num;
2100         int add_addr_num;
2101         int rm_addr_num;
2102         int mc_addr_num;
2103         int num;
2104         int ret;
2105         int i;
2106
2107         /* Check if input parameters are valid */
2108         ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2109         if (ret)
2110                 return ret;
2111
2112         rte_spinlock_lock(&hw->lock);
2113
2114         /*
2115          * Calculate the mc mac address lists those should be removed and be
2116          * added, Reorder the mc mac address list maintained by driver.
2117          */
2118         mc_addr_num = (int)nb_mc_addr;
2119         hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2120                                    reserved_addr_list, &reserved_addr_num,
2121                                    add_addr_list, &add_addr_num,
2122                                    rm_addr_list, &rm_addr_num);
2123
2124         /* Remove mc mac addresses */
2125         for (i = 0; i < rm_addr_num; i++) {
2126                 num = rm_addr_num - i - 1;
2127                 addr = &rm_addr_list[num];
2128                 ret = hns3_remove_mc_addr(hw, addr);
2129                 if (ret) {
2130                         rte_spinlock_unlock(&hw->lock);
2131                         return ret;
2132                 }
2133                 hw->mc_addrs_num--;
2134         }
2135
2136         /* Add mc mac addresses */
2137         for (i = 0; i < add_addr_num; i++) {
2138                 addr = &add_addr_list[i];
2139                 ret = hns3_add_mc_addr(hw, addr);
2140                 if (ret) {
2141                         rte_spinlock_unlock(&hw->lock);
2142                         return ret;
2143                 }
2144
2145                 num = reserved_addr_num + i;
2146                 rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2147                 hw->mc_addrs_num++;
2148         }
2149         rte_spinlock_unlock(&hw->lock);
2150
2151         return 0;
2152 }
2153
2154 static int
2155 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2156 {
2157         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2158         struct hns3_hw *hw = &hns->hw;
2159         struct rte_ether_addr *addr;
2160         int err = 0;
2161         int ret;
2162         int i;
2163
2164         for (i = 0; i < hw->mc_addrs_num; i++) {
2165                 addr = &hw->mc_addrs[i];
2166                 if (!rte_is_multicast_ether_addr(addr))
2167                         continue;
2168                 if (del)
2169                         ret = hns3_remove_mc_addr(hw, addr);
2170                 else
2171                         ret = hns3_add_mc_addr(hw, addr);
2172                 if (ret) {
2173                         err = ret;
2174                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2175                                               addr);
2176                         hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2177                                  del ? "Remove" : "Restore", mac_str, ret);
2178                 }
2179         }
2180         return err;
2181 }
2182
2183 static int
2184 hns3_check_mq_mode(struct rte_eth_dev *dev)
2185 {
2186         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2187         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2188         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2189         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2190         struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2191         struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2192         uint8_t num_tc;
2193         int max_tc = 0;
2194         int i;
2195
2196         dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2197         dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2198
2199         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2200                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2201                          "rx_mq_mode = %d", rx_mq_mode);
2202                 return -EINVAL;
2203         }
2204
2205         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2206             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2207                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2208                          "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2209                          rx_mq_mode, tx_mq_mode);
2210                 return -EINVAL;
2211         }
2212
2213         if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2214                 if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2215                         hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2216                                  dcb_rx_conf->nb_tcs, pf->tc_max);
2217                         return -EINVAL;
2218                 }
2219
2220                 if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2221                       dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2222                         hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2223                                  "nb_tcs(%d) != %d or %d in rx direction.",
2224                                  dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2225                         return -EINVAL;
2226                 }
2227
2228                 if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2229                         hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2230                                  dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2231                         return -EINVAL;
2232                 }
2233
2234                 for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2235                         if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2236                                 hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2237                                          "is not equal to one in tx direction.",
2238                                          i, dcb_rx_conf->dcb_tc[i]);
2239                                 return -EINVAL;
2240                         }
2241                         if (dcb_rx_conf->dcb_tc[i] > max_tc)
2242                                 max_tc = dcb_rx_conf->dcb_tc[i];
2243                 }
2244
2245                 num_tc = max_tc + 1;
2246                 if (num_tc > dcb_rx_conf->nb_tcs) {
2247                         hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2248                                  num_tc, dcb_rx_conf->nb_tcs);
2249                         return -EINVAL;
2250                 }
2251         }
2252
2253         return 0;
2254 }
2255
2256 static int
2257 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2258 {
2259         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2260
2261         if (!hns3_dev_dcb_supported(hw)) {
2262                 hns3_err(hw, "this port does not support dcb configurations.");
2263                 return -EOPNOTSUPP;
2264         }
2265
2266         if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2267                 hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2268                 return -EOPNOTSUPP;
2269         }
2270
2271         /* Check multiple queue mode */
2272         return hns3_check_mq_mode(dev);
2273 }
2274
2275 static int
2276 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
2277                            enum hns3_ring_type queue_type, uint16_t queue_id)
2278 {
2279         struct hns3_cmd_desc desc;
2280         struct hns3_ctrl_vector_chain_cmd *req =
2281                 (struct hns3_ctrl_vector_chain_cmd *)desc.data;
2282         enum hns3_cmd_status status;
2283         enum hns3_opcode_type op;
2284         uint16_t tqp_type_and_id = 0;
2285         uint16_t type;
2286         uint16_t gl;
2287
2288         op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2289         hns3_cmd_setup_basic_desc(&desc, op, false);
2290         req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
2291                                               HNS3_TQP_INT_ID_L_S);
2292         req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
2293                                               HNS3_TQP_INT_ID_H_S);
2294
2295         if (queue_type == HNS3_RING_TYPE_RX)
2296                 gl = HNS3_RING_GL_RX;
2297         else
2298                 gl = HNS3_RING_GL_TX;
2299
2300         type = queue_type;
2301
2302         hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2303                        type);
2304         hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2305         hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2306                        gl);
2307         req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2308         req->int_cause_num = 1;
2309         status = hns3_cmd_send(hw, &desc, 1);
2310         if (status) {
2311                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, status is %d.",
2312                          en ? "Map" : "Unmap", queue_id, vector_id, status);
2313                 return status;
2314         }
2315
2316         return 0;
2317 }
2318
2319 static int
2320 hns3_init_ring_with_vector(struct hns3_hw *hw)
2321 {
2322         uint16_t vec;
2323         int ret;
2324         int i;
2325
2326         /*
2327          * In hns3 network engine, vector 0 is always the misc interrupt of this
2328          * function, vector 1~N can be used respectively for the queues of the
2329          * function. Tx and Rx queues with the same number share the interrupt
2330          * vector. In the initialization clearing the all hardware mapping
2331          * relationship configurations between queues and interrupt vectors is
2332          * needed, so some error caused by the residual configurations, such as
2333          * the unexpected Tx interrupt, can be avoid.
2334          */
2335         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2336         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2337                 vec = vec - 1; /* the last interrupt is reserved */
2338         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2339         for (i = 0; i < hw->intr_tqps_num; i++) {
2340                 /*
2341                  * Set gap limiter/rate limiter/quanity limiter algorithm
2342                  * configuration for interrupt coalesce of queue's interrupt.
2343                  */
2344                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2345                                        HNS3_TQP_INTR_GL_DEFAULT);
2346                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2347                                        HNS3_TQP_INTR_GL_DEFAULT);
2348                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2349                 /*
2350                  * QL(quantity limiter) is not used currently, just set 0 to
2351                  * close it.
2352                  */
2353                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2354
2355                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2356                                                  HNS3_RING_TYPE_TX, i);
2357                 if (ret) {
2358                         PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2359                                           "vector: %u, ret=%d", i, vec, ret);
2360                         return ret;
2361                 }
2362
2363                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2364                                                  HNS3_RING_TYPE_RX, i);
2365                 if (ret) {
2366                         PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2367                                           "vector: %u, ret=%d", i, vec, ret);
2368                         return ret;
2369                 }
2370         }
2371
2372         return 0;
2373 }
2374
2375 static int
2376 hns3_dev_configure(struct rte_eth_dev *dev)
2377 {
2378         struct hns3_adapter *hns = dev->data->dev_private;
2379         struct rte_eth_conf *conf = &dev->data->dev_conf;
2380         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2381         struct hns3_hw *hw = &hns->hw;
2382         uint16_t nb_rx_q = dev->data->nb_rx_queues;
2383         uint16_t nb_tx_q = dev->data->nb_tx_queues;
2384         struct rte_eth_rss_conf rss_conf;
2385         uint32_t max_rx_pkt_len;
2386         uint16_t mtu;
2387         bool gro_en;
2388         int ret;
2389
2390         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2391
2392         /*
2393          * Some versions of hardware network engine does not support
2394          * individually enable/disable/reset the Tx or Rx queue. These devices
2395          * must enable/disable/reset Tx and Rx queues at the same time. When the
2396          * numbers of Tx queues allocated by upper applications are not equal to
2397          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2398          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2399          * work as usual. But these fake queues are imperceptible, and can not
2400          * be used by upper applications.
2401          */
2402         if (!hns3_dev_indep_txrx_supported(hw)) {
2403                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2404                 if (ret) {
2405                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
2406                                  ret);
2407                         return ret;
2408                 }
2409         }
2410
2411         hw->adapter_state = HNS3_NIC_CONFIGURING;
2412         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2413                 hns3_err(hw, "setting link speed/duplex not supported");
2414                 ret = -EINVAL;
2415                 goto cfg_err;
2416         }
2417
2418         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2419                 ret = hns3_check_dcb_cfg(dev);
2420                 if (ret)
2421                         goto cfg_err;
2422         }
2423
2424         /* When RSS is not configured, redirect the packet queue 0 */
2425         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2426                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2427                 rss_conf = conf->rx_adv_conf.rss_conf;
2428                 hw->rss_dis_flag = false;
2429                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2430                 if (ret)
2431                         goto cfg_err;
2432         }
2433
2434         /*
2435          * If jumbo frames are enabled, MTU needs to be refreshed
2436          * according to the maximum RX packet length.
2437          */
2438         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2439                 max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
2440                 if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
2441                     max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
2442                         hns3_err(hw, "maximum Rx packet length must be greater "
2443                                  "than %u and less than %u when jumbo frame enabled.",
2444                                  (uint16_t)HNS3_DEFAULT_FRAME_LEN,
2445                                  (uint16_t)HNS3_MAX_FRAME_LEN);
2446                         ret = -EINVAL;
2447                         goto cfg_err;
2448                 }
2449
2450                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
2451                 ret = hns3_dev_mtu_set(dev, mtu);
2452                 if (ret)
2453                         goto cfg_err;
2454                 dev->data->mtu = mtu;
2455         }
2456
2457         ret = hns3_dev_configure_vlan(dev);
2458         if (ret)
2459                 goto cfg_err;
2460
2461         /* config hardware GRO */
2462         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2463         ret = hns3_config_gro(hw, gro_en);
2464         if (ret)
2465                 goto cfg_err;
2466
2467         hns->rx_simple_allowed = true;
2468         hns->rx_vec_allowed = true;
2469         hns->tx_simple_allowed = true;
2470         hns->tx_vec_allowed = true;
2471
2472         hns3_init_rx_ptype_tble(dev);
2473         hw->adapter_state = HNS3_NIC_CONFIGURED;
2474
2475         return 0;
2476
2477 cfg_err:
2478         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2479         hw->adapter_state = HNS3_NIC_INITIALIZED;
2480
2481         return ret;
2482 }
2483
2484 static int
2485 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2486 {
2487         struct hns3_config_max_frm_size_cmd *req;
2488         struct hns3_cmd_desc desc;
2489
2490         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2491
2492         req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2493         req->max_frm_size = rte_cpu_to_le_16(new_mps);
2494         req->min_frm_size = RTE_ETHER_MIN_LEN;
2495
2496         return hns3_cmd_send(hw, &desc, 1);
2497 }
2498
2499 static int
2500 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2501 {
2502         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2503         uint16_t original_mps = hns->pf.mps;
2504         int err;
2505         int ret;
2506
2507         ret = hns3_set_mac_mtu(hw, mps);
2508         if (ret) {
2509                 hns3_err(hw, "failed to set mtu, ret = %d", ret);
2510                 return ret;
2511         }
2512
2513         hns->pf.mps = mps;
2514         ret = hns3_buffer_alloc(hw);
2515         if (ret) {
2516                 hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2517                 goto rollback;
2518         }
2519
2520         return 0;
2521
2522 rollback:
2523         err = hns3_set_mac_mtu(hw, original_mps);
2524         if (err) {
2525                 hns3_err(hw, "fail to rollback MTU, err = %d", err);
2526                 return ret;
2527         }
2528         hns->pf.mps = original_mps;
2529
2530         return ret;
2531 }
2532
2533 static int
2534 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2535 {
2536         struct hns3_adapter *hns = dev->data->dev_private;
2537         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2538         struct hns3_hw *hw = &hns->hw;
2539         bool is_jumbo_frame;
2540         int ret;
2541
2542         if (dev->data->dev_started) {
2543                 hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2544                          "before configuration", dev->data->port_id);
2545                 return -EBUSY;
2546         }
2547
2548         rte_spinlock_lock(&hw->lock);
2549         is_jumbo_frame = frame_size > HNS3_DEFAULT_FRAME_LEN ? true : false;
2550         frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2551
2552         /*
2553          * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2554          * assign to "uint16_t" type variable.
2555          */
2556         ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2557         if (ret) {
2558                 rte_spinlock_unlock(&hw->lock);
2559                 hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2560                          dev->data->port_id, mtu, ret);
2561                 return ret;
2562         }
2563
2564         if (is_jumbo_frame)
2565                 dev->data->dev_conf.rxmode.offloads |=
2566                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
2567         else
2568                 dev->data->dev_conf.rxmode.offloads &=
2569                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
2570         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2571         rte_spinlock_unlock(&hw->lock);
2572
2573         return 0;
2574 }
2575
2576 int
2577 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2578 {
2579         struct hns3_adapter *hns = eth_dev->data->dev_private;
2580         struct hns3_hw *hw = &hns->hw;
2581         uint16_t queue_num = hw->tqps_num;
2582
2583         /*
2584          * In interrupt mode, 'max_rx_queues' is set based on the number of
2585          * MSI-X interrupt resources of the hardware.
2586          */
2587         if (hw->data->dev_conf.intr_conf.rxq == 1)
2588                 queue_num = hw->intr_tqps_num;
2589
2590         info->max_rx_queues = queue_num;
2591         info->max_tx_queues = hw->tqps_num;
2592         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2593         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2594         info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2595         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2596         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2597         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2598                                  DEV_RX_OFFLOAD_TCP_CKSUM |
2599                                  DEV_RX_OFFLOAD_UDP_CKSUM |
2600                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
2601                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2602                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2603                                  DEV_RX_OFFLOAD_KEEP_CRC |
2604                                  DEV_RX_OFFLOAD_SCATTER |
2605                                  DEV_RX_OFFLOAD_VLAN_STRIP |
2606                                  DEV_RX_OFFLOAD_VLAN_FILTER |
2607                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
2608                                  DEV_RX_OFFLOAD_RSS_HASH |
2609                                  DEV_RX_OFFLOAD_TCP_LRO);
2610         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2611                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
2612                                  DEV_TX_OFFLOAD_TCP_CKSUM |
2613                                  DEV_TX_OFFLOAD_UDP_CKSUM |
2614                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
2615                                  DEV_TX_OFFLOAD_MULTI_SEGS |
2616                                  DEV_TX_OFFLOAD_TCP_TSO |
2617                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2618                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
2619                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2620                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2621                                  hns3_txvlan_cap_get(hw));
2622
2623         if (hns3_dev_outer_udp_cksum_supported(hw))
2624                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
2625
2626         if (hns3_dev_indep_txrx_supported(hw))
2627                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2628                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2629
2630         info->rx_desc_lim = (struct rte_eth_desc_lim) {
2631                 .nb_max = HNS3_MAX_RING_DESC,
2632                 .nb_min = HNS3_MIN_RING_DESC,
2633                 .nb_align = HNS3_ALIGN_RING_DESC,
2634         };
2635
2636         info->tx_desc_lim = (struct rte_eth_desc_lim) {
2637                 .nb_max = HNS3_MAX_RING_DESC,
2638                 .nb_min = HNS3_MIN_RING_DESC,
2639                 .nb_align = HNS3_ALIGN_RING_DESC,
2640                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2641                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
2642         };
2643
2644         info->default_rxconf = (struct rte_eth_rxconf) {
2645                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2646                 /*
2647                  * If there are no available Rx buffer descriptors, incoming
2648                  * packets are always dropped by hardware based on hns3 network
2649                  * engine.
2650                  */
2651                 .rx_drop_en = 1,
2652                 .offloads = 0,
2653         };
2654         info->default_txconf = (struct rte_eth_txconf) {
2655                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2656                 .offloads = 0,
2657         };
2658
2659         info->vmdq_queue_num = 0;
2660
2661         info->reta_size = hw->rss_ind_tbl_size;
2662         info->hash_key_size = HNS3_RSS_KEY_SIZE;
2663         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2664
2665         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2666         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2667         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2668         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2669         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2670         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2671
2672         return 0;
2673 }
2674
2675 static int
2676 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2677                     size_t fw_size)
2678 {
2679         struct hns3_adapter *hns = eth_dev->data->dev_private;
2680         struct hns3_hw *hw = &hns->hw;
2681         uint32_t version = hw->fw_version;
2682         int ret;
2683
2684         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2685                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2686                                       HNS3_FW_VERSION_BYTE3_S),
2687                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2688                                       HNS3_FW_VERSION_BYTE2_S),
2689                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2690                                       HNS3_FW_VERSION_BYTE1_S),
2691                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2692                                       HNS3_FW_VERSION_BYTE0_S));
2693         ret += 1; /* add the size of '\0' */
2694         if (fw_size < (uint32_t)ret)
2695                 return ret;
2696         else
2697                 return 0;
2698 }
2699
2700 static int
2701 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2702                      __rte_unused int wait_to_complete)
2703 {
2704         struct hns3_adapter *hns = eth_dev->data->dev_private;
2705         struct hns3_hw *hw = &hns->hw;
2706         struct hns3_mac *mac = &hw->mac;
2707         struct rte_eth_link new_link;
2708
2709         if (!hns3_is_reset_pending(hns)) {
2710                 hns3_update_link_status(hw);
2711                 hns3_update_link_info(eth_dev);
2712         }
2713
2714         memset(&new_link, 0, sizeof(new_link));
2715         switch (mac->link_speed) {
2716         case ETH_SPEED_NUM_10M:
2717         case ETH_SPEED_NUM_100M:
2718         case ETH_SPEED_NUM_1G:
2719         case ETH_SPEED_NUM_10G:
2720         case ETH_SPEED_NUM_25G:
2721         case ETH_SPEED_NUM_40G:
2722         case ETH_SPEED_NUM_50G:
2723         case ETH_SPEED_NUM_100G:
2724         case ETH_SPEED_NUM_200G:
2725                 new_link.link_speed = mac->link_speed;
2726                 break;
2727         default:
2728                 if (mac->link_status)
2729                         new_link.link_speed = ETH_SPEED_NUM_UNKNOWN;
2730                 else
2731                         new_link.link_speed = ETH_SPEED_NUM_NONE;
2732                 break;
2733         }
2734
2735         new_link.link_duplex = mac->link_duplex;
2736         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2737         new_link.link_autoneg =
2738             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2739
2740         return rte_eth_linkstatus_set(eth_dev, &new_link);
2741 }
2742
2743 static int
2744 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2745 {
2746         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2747         struct hns3_pf *pf = &hns->pf;
2748
2749         if (!(status->pf_state & HNS3_PF_STATE_DONE))
2750                 return -EINVAL;
2751
2752         pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2753
2754         return 0;
2755 }
2756
2757 static int
2758 hns3_query_function_status(struct hns3_hw *hw)
2759 {
2760 #define HNS3_QUERY_MAX_CNT              10
2761 #define HNS3_QUERY_SLEEP_MSCOEND        1
2762         struct hns3_func_status_cmd *req;
2763         struct hns3_cmd_desc desc;
2764         int timeout = 0;
2765         int ret;
2766
2767         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2768         req = (struct hns3_func_status_cmd *)desc.data;
2769
2770         do {
2771                 ret = hns3_cmd_send(hw, &desc, 1);
2772                 if (ret) {
2773                         PMD_INIT_LOG(ERR, "query function status failed %d",
2774                                      ret);
2775                         return ret;
2776                 }
2777
2778                 /* Check pf reset is done */
2779                 if (req->pf_state)
2780                         break;
2781
2782                 rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2783         } while (timeout++ < HNS3_QUERY_MAX_CNT);
2784
2785         return hns3_parse_func_status(hw, req);
2786 }
2787
2788 static int
2789 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2790 {
2791         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2792         struct hns3_pf *pf = &hns->pf;
2793
2794         if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2795                 /*
2796                  * The total_tqps_num obtained from firmware is maximum tqp
2797                  * numbers of this port, which should be used for PF and VFs.
2798                  * There is no need for pf to have so many tqp numbers in
2799                  * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2800                  * coming from config file, is assigned to maximum queue number
2801                  * for the PF of this port by user. So users can modify the
2802                  * maximum queue number of PF according to their own application
2803                  * scenarios, which is more flexible to use. In addition, many
2804                  * memories can be saved due to allocating queue statistics
2805                  * room according to the actual number of queues required. The
2806                  * maximum queue number of PF for network engine with
2807                  * revision_id greater than 0x30 is assigned by config file.
2808                  */
2809                 if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2810                         hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2811                                  "must be greater than 0.",
2812                                  RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2813                         return -EINVAL;
2814                 }
2815
2816                 hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2817                                        hw->total_tqps_num);
2818         } else {
2819                 /*
2820                  * Due to the limitation on the number of PF interrupts
2821                  * available, the maximum queue number assigned to PF on
2822                  * the network engine with revision_id 0x21 is 64.
2823                  */
2824                 hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2825                                        HNS3_MAX_TQP_NUM_HIP08_PF);
2826         }
2827
2828         return 0;
2829 }
2830
2831 static int
2832 hns3_query_pf_resource(struct hns3_hw *hw)
2833 {
2834         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2835         struct hns3_pf *pf = &hns->pf;
2836         struct hns3_pf_res_cmd *req;
2837         struct hns3_cmd_desc desc;
2838         int ret;
2839
2840         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2841         ret = hns3_cmd_send(hw, &desc, 1);
2842         if (ret) {
2843                 PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2844                 return ret;
2845         }
2846
2847         req = (struct hns3_pf_res_cmd *)desc.data;
2848         hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2849                              rte_le_to_cpu_16(req->ext_tqp_num);
2850         ret = hns3_get_pf_max_tqp_num(hw);
2851         if (ret)
2852                 return ret;
2853
2854         pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2855         pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2856
2857         if (req->tx_buf_size)
2858                 pf->tx_buf_size =
2859                     rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2860         else
2861                 pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2862
2863         pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2864
2865         if (req->dv_buf_size)
2866                 pf->dv_buf_size =
2867                     rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2868         else
2869                 pf->dv_buf_size = HNS3_DEFAULT_DV;
2870
2871         pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2872
2873         hw->num_msi =
2874                 hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2875                                HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2876
2877         return 0;
2878 }
2879
2880 static void
2881 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2882 {
2883         struct hns3_cfg_param_cmd *req;
2884         uint64_t mac_addr_tmp_high;
2885         uint8_t ext_rss_size_max;
2886         uint64_t mac_addr_tmp;
2887         uint32_t i;
2888
2889         req = (struct hns3_cfg_param_cmd *)desc[0].data;
2890
2891         /* get the configuration */
2892         cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2893                                              HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2894         cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2895                                      HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2896         cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2897                                            HNS3_CFG_TQP_DESC_N_M,
2898                                            HNS3_CFG_TQP_DESC_N_S);
2899
2900         cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2901                                        HNS3_CFG_PHY_ADDR_M,
2902                                        HNS3_CFG_PHY_ADDR_S);
2903         cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2904                                          HNS3_CFG_MEDIA_TP_M,
2905                                          HNS3_CFG_MEDIA_TP_S);
2906         cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2907                                          HNS3_CFG_RX_BUF_LEN_M,
2908                                          HNS3_CFG_RX_BUF_LEN_S);
2909         /* get mac address */
2910         mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2911         mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2912                                            HNS3_CFG_MAC_ADDR_H_M,
2913                                            HNS3_CFG_MAC_ADDR_H_S);
2914
2915         mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2916
2917         cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2918                                             HNS3_CFG_DEFAULT_SPEED_M,
2919                                             HNS3_CFG_DEFAULT_SPEED_S);
2920         cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2921                                            HNS3_CFG_RSS_SIZE_M,
2922                                            HNS3_CFG_RSS_SIZE_S);
2923
2924         for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2925                 cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2926
2927         req = (struct hns3_cfg_param_cmd *)desc[1].data;
2928         cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2929
2930         cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2931                                             HNS3_CFG_SPEED_ABILITY_M,
2932                                             HNS3_CFG_SPEED_ABILITY_S);
2933         cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2934                                         HNS3_CFG_UMV_TBL_SPACE_M,
2935                                         HNS3_CFG_UMV_TBL_SPACE_S);
2936         if (!cfg->umv_space)
2937                 cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2938
2939         ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2940                                                HNS3_CFG_EXT_RSS_SIZE_M,
2941                                                HNS3_CFG_EXT_RSS_SIZE_S);
2942
2943         /*
2944          * Field ext_rss_size_max obtained from firmware will be more flexible
2945          * for future changes and expansions, which is an exponent of 2, instead
2946          * of reading out directly. If this field is not zero, hns3 PF PMD
2947          * driver uses it as rss_size_max under one TC. Device, whose revision
2948          * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2949          * maximum number of queues supported under a TC through this field.
2950          */
2951         if (ext_rss_size_max)
2952                 cfg->rss_size_max = 1U << ext_rss_size_max;
2953 }
2954
2955 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2956  * @hw: pointer to struct hns3_hw
2957  * @hcfg: the config structure to be getted
2958  */
2959 static int
2960 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2961 {
2962         struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2963         struct hns3_cfg_param_cmd *req;
2964         uint32_t offset;
2965         uint32_t i;
2966         int ret;
2967
2968         for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2969                 offset = 0;
2970                 req = (struct hns3_cfg_param_cmd *)desc[i].data;
2971                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2972                                           true);
2973                 hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2974                                i * HNS3_CFG_RD_LEN_BYTES);
2975                 /* Len should be divided by 4 when send to hardware */
2976                 hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2977                                HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2978                 req->offset = rte_cpu_to_le_32(offset);
2979         }
2980
2981         ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2982         if (ret) {
2983                 PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2984                 return ret;
2985         }
2986
2987         hns3_parse_cfg(hcfg, desc);
2988
2989         return 0;
2990 }
2991
2992 static int
2993 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2994 {
2995         switch (speed_cmd) {
2996         case HNS3_CFG_SPEED_10M:
2997                 *speed = ETH_SPEED_NUM_10M;
2998                 break;
2999         case HNS3_CFG_SPEED_100M:
3000                 *speed = ETH_SPEED_NUM_100M;
3001                 break;
3002         case HNS3_CFG_SPEED_1G:
3003                 *speed = ETH_SPEED_NUM_1G;
3004                 break;
3005         case HNS3_CFG_SPEED_10G:
3006                 *speed = ETH_SPEED_NUM_10G;
3007                 break;
3008         case HNS3_CFG_SPEED_25G:
3009                 *speed = ETH_SPEED_NUM_25G;
3010                 break;
3011         case HNS3_CFG_SPEED_40G:
3012                 *speed = ETH_SPEED_NUM_40G;
3013                 break;
3014         case HNS3_CFG_SPEED_50G:
3015                 *speed = ETH_SPEED_NUM_50G;
3016                 break;
3017         case HNS3_CFG_SPEED_100G:
3018                 *speed = ETH_SPEED_NUM_100G;
3019                 break;
3020         case HNS3_CFG_SPEED_200G:
3021                 *speed = ETH_SPEED_NUM_200G;
3022                 break;
3023         default:
3024                 return -EINVAL;
3025         }
3026
3027         return 0;
3028 }
3029
3030 static void
3031 hns3_set_default_dev_specifications(struct hns3_hw *hw)
3032 {
3033         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
3034         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
3035         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
3036         hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
3037         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
3038 }
3039
3040 static void
3041 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
3042 {
3043         struct hns3_dev_specs_0_cmd *req0;
3044
3045         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
3046
3047         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
3048         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
3049         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
3050         hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
3051         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
3052 }
3053
3054 static int
3055 hns3_check_dev_specifications(struct hns3_hw *hw)
3056 {
3057         if (hw->rss_ind_tbl_size == 0 ||
3058             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
3059                 hns3_err(hw, "the size of hash lookup table configured (%u)"
3060                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
3061                               HNS3_RSS_IND_TBL_SIZE_MAX);
3062                 return -EINVAL;
3063         }
3064
3065         return 0;
3066 }
3067
3068 static int
3069 hns3_query_dev_specifications(struct hns3_hw *hw)
3070 {
3071         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
3072         int ret;
3073         int i;
3074
3075         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3076                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
3077                                           true);
3078                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3079         }
3080         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
3081
3082         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
3083         if (ret)
3084                 return ret;
3085
3086         hns3_parse_dev_specifications(hw, desc);
3087
3088         return hns3_check_dev_specifications(hw);
3089 }
3090
3091 static int
3092 hns3_get_capability(struct hns3_hw *hw)
3093 {
3094         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3095         struct rte_pci_device *pci_dev;
3096         struct hns3_pf *pf = &hns->pf;
3097         struct rte_eth_dev *eth_dev;
3098         uint16_t device_id;
3099         uint8_t revision;
3100         int ret;
3101
3102         eth_dev = &rte_eth_devices[hw->data->port_id];
3103         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3104         device_id = pci_dev->id.device_id;
3105
3106         if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3107             device_id == HNS3_DEV_ID_50GE_RDMA ||
3108             device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3109             device_id == HNS3_DEV_ID_200G_RDMA)
3110                 hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3111
3112         /* Get PCI revision id */
3113         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3114                                   HNS3_PCI_REVISION_ID);
3115         if (ret != HNS3_PCI_REVISION_ID_LEN) {
3116                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3117                              ret);
3118                 return -EIO;
3119         }
3120         hw->revision = revision;
3121
3122         if (revision < PCI_REVISION_ID_HIP09_A) {
3123                 hns3_set_default_dev_specifications(hw);
3124                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3125                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3126                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3127                 hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3128                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
3129                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3130                 pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3131                 hw->rss_info.ipv6_sctp_offload_supported = false;
3132                 hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
3133                 return 0;
3134         }
3135
3136         ret = hns3_query_dev_specifications(hw);
3137         if (ret) {
3138                 PMD_INIT_LOG(ERR,
3139                              "failed to query dev specifications, ret = %d",
3140                              ret);
3141                 return ret;
3142         }
3143
3144         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3145         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3146         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3147         hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3148         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
3149         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3150         pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3151         hw->rss_info.ipv6_sctp_offload_supported = true;
3152         hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
3153
3154         return 0;
3155 }
3156
3157 static int
3158 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
3159 {
3160         int ret;
3161
3162         switch (media_type) {
3163         case HNS3_MEDIA_TYPE_COPPER:
3164                 if (!hns3_dev_copper_supported(hw)) {
3165                         PMD_INIT_LOG(ERR,
3166                                      "Media type is copper, not supported.");
3167                         ret = -EOPNOTSUPP;
3168                 } else {
3169                         ret = 0;
3170                 }
3171                 break;
3172         case HNS3_MEDIA_TYPE_FIBER:
3173                 ret = 0;
3174                 break;
3175         case HNS3_MEDIA_TYPE_BACKPLANE:
3176                 PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
3177                 ret = -EOPNOTSUPP;
3178                 break;
3179         default:
3180                 PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
3181                 ret = -EINVAL;
3182                 break;
3183         }
3184
3185         return ret;
3186 }
3187
3188 static int
3189 hns3_get_board_configuration(struct hns3_hw *hw)
3190 {
3191         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3192         struct hns3_pf *pf = &hns->pf;
3193         struct hns3_cfg cfg;
3194         int ret;
3195
3196         ret = hns3_get_board_cfg(hw, &cfg);
3197         if (ret) {
3198                 PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3199                 return ret;
3200         }
3201
3202         ret = hns3_check_media_type(hw, cfg.media_type);
3203         if (ret)
3204                 return ret;
3205
3206         hw->mac.media_type = cfg.media_type;
3207         hw->rss_size_max = cfg.rss_size_max;
3208         hw->rss_dis_flag = false;
3209         memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3210         hw->mac.phy_addr = cfg.phy_addr;
3211         hw->mac.default_addr_setted = false;
3212         hw->num_tx_desc = cfg.tqp_desc_num;
3213         hw->num_rx_desc = cfg.tqp_desc_num;
3214         hw->dcb_info.num_pg = 1;
3215         hw->dcb_info.hw_pfc_map = 0;
3216
3217         ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3218         if (ret) {
3219                 PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3220                              cfg.default_speed, ret);
3221                 return ret;
3222         }
3223
3224         pf->tc_max = cfg.tc_num;
3225         if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3226                 PMD_INIT_LOG(WARNING,
3227                              "Get TC num(%u) from flash, set TC num to 1",
3228                              pf->tc_max);
3229                 pf->tc_max = 1;
3230         }
3231
3232         /* Dev does not support DCB */
3233         if (!hns3_dev_dcb_supported(hw)) {
3234                 pf->tc_max = 1;
3235                 pf->pfc_max = 0;
3236         } else
3237                 pf->pfc_max = pf->tc_max;
3238
3239         hw->dcb_info.num_tc = 1;
3240         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3241                                      hw->tqps_num / hw->dcb_info.num_tc);
3242         hns3_set_bit(hw->hw_tc_map, 0, 1);
3243         pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3244
3245         pf->wanted_umv_size = cfg.umv_space;
3246
3247         return ret;
3248 }
3249
3250 static int
3251 hns3_get_configuration(struct hns3_hw *hw)
3252 {
3253         int ret;
3254
3255         ret = hns3_query_function_status(hw);
3256         if (ret) {
3257                 PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3258                 return ret;
3259         }
3260
3261         /* Get device capability */
3262         ret = hns3_get_capability(hw);
3263         if (ret) {
3264                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3265                 return ret;
3266         }
3267
3268         /* Get pf resource */
3269         ret = hns3_query_pf_resource(hw);
3270         if (ret) {
3271                 PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3272                 return ret;
3273         }
3274
3275         ret = hns3_get_board_configuration(hw);
3276         if (ret) {
3277                 PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3278                 return ret;
3279         }
3280
3281         ret = hns3_query_dev_fec_info(hw);
3282         if (ret)
3283                 PMD_INIT_LOG(ERR,
3284                              "failed to query FEC information, ret = %d", ret);
3285
3286         return ret;
3287 }
3288
3289 static int
3290 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3291                       uint16_t tqp_vid, bool is_pf)
3292 {
3293         struct hns3_tqp_map_cmd *req;
3294         struct hns3_cmd_desc desc;
3295         int ret;
3296
3297         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3298
3299         req = (struct hns3_tqp_map_cmd *)desc.data;
3300         req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3301         req->tqp_vf = func_id;
3302         req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3303         if (!is_pf)
3304                 req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3305         req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3306
3307         ret = hns3_cmd_send(hw, &desc, 1);
3308         if (ret)
3309                 PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3310
3311         return ret;
3312 }
3313
3314 static int
3315 hns3_map_tqp(struct hns3_hw *hw)
3316 {
3317         int ret;
3318         int i;
3319
3320         /*
3321          * In current version, VF is not supported when PF is driven by DPDK
3322          * driver, so we assign total tqps_num tqps allocated to this port
3323          * to PF.
3324          */
3325         for (i = 0; i < hw->total_tqps_num; i++) {
3326                 ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3327                 if (ret)
3328                         return ret;
3329         }
3330
3331         return 0;
3332 }
3333
3334 static int
3335 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3336 {
3337         struct hns3_config_mac_speed_dup_cmd *req;
3338         struct hns3_cmd_desc desc;
3339         int ret;
3340
3341         req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3342
3343         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3344
3345         hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3346
3347         switch (speed) {
3348         case ETH_SPEED_NUM_10M:
3349                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3350                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3351                 break;
3352         case ETH_SPEED_NUM_100M:
3353                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3354                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3355                 break;
3356         case ETH_SPEED_NUM_1G:
3357                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3358                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3359                 break;
3360         case ETH_SPEED_NUM_10G:
3361                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3362                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3363                 break;
3364         case ETH_SPEED_NUM_25G:
3365                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3366                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3367                 break;
3368         case ETH_SPEED_NUM_40G:
3369                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3370                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3371                 break;
3372         case ETH_SPEED_NUM_50G:
3373                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3374                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3375                 break;
3376         case ETH_SPEED_NUM_100G:
3377                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3378                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3379                 break;
3380         case ETH_SPEED_NUM_200G:
3381                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3382                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3383                 break;
3384         default:
3385                 PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3386                 return -EINVAL;
3387         }
3388
3389         hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3390
3391         ret = hns3_cmd_send(hw, &desc, 1);
3392         if (ret)
3393                 PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3394
3395         return ret;
3396 }
3397
3398 static int
3399 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3400 {
3401         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3402         struct hns3_pf *pf = &hns->pf;
3403         struct hns3_priv_buf *priv;
3404         uint32_t i, total_size;
3405
3406         total_size = pf->pkt_buf_size;
3407
3408         /* alloc tx buffer for all enabled tc */
3409         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3410                 priv = &buf_alloc->priv_buf[i];
3411
3412                 if (hw->hw_tc_map & BIT(i)) {
3413                         if (total_size < pf->tx_buf_size)
3414                                 return -ENOMEM;
3415
3416                         priv->tx_buf_size = pf->tx_buf_size;
3417                 } else
3418                         priv->tx_buf_size = 0;
3419
3420                 total_size -= priv->tx_buf_size;
3421         }
3422
3423         return 0;
3424 }
3425
3426 static int
3427 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3428 {
3429 /* TX buffer size is unit by 128 byte */
3430 #define HNS3_BUF_SIZE_UNIT_SHIFT        7
3431 #define HNS3_BUF_SIZE_UPDATE_EN_MSK     BIT(15)
3432         struct hns3_tx_buff_alloc_cmd *req;
3433         struct hns3_cmd_desc desc;
3434         uint32_t buf_size;
3435         uint32_t i;
3436         int ret;
3437
3438         req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3439
3440         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3441         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3442                 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3443
3444                 buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3445                 req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3446                                                 HNS3_BUF_SIZE_UPDATE_EN_MSK);
3447         }
3448
3449         ret = hns3_cmd_send(hw, &desc, 1);
3450         if (ret)
3451                 PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3452
3453         return ret;
3454 }
3455
3456 static int
3457 hns3_get_tc_num(struct hns3_hw *hw)
3458 {
3459         int cnt = 0;
3460         uint8_t i;
3461
3462         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3463                 if (hw->hw_tc_map & BIT(i))
3464                         cnt++;
3465         return cnt;
3466 }
3467
3468 static uint32_t
3469 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3470 {
3471         struct hns3_priv_buf *priv;
3472         uint32_t rx_priv = 0;
3473         int i;
3474
3475         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3476                 priv = &buf_alloc->priv_buf[i];
3477                 if (priv->enable)
3478                         rx_priv += priv->buf_size;
3479         }
3480         return rx_priv;
3481 }
3482
3483 static uint32_t
3484 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3485 {
3486         uint32_t total_tx_size = 0;
3487         uint32_t i;
3488
3489         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3490                 total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3491
3492         return total_tx_size;
3493 }
3494
3495 /* Get the number of pfc enabled TCs, which have private buffer */
3496 static int
3497 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3498 {
3499         struct hns3_priv_buf *priv;
3500         int cnt = 0;
3501         uint8_t i;
3502
3503         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3504                 priv = &buf_alloc->priv_buf[i];
3505                 if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3506                         cnt++;
3507         }
3508
3509         return cnt;
3510 }
3511
3512 /* Get the number of pfc disabled TCs, which have private buffer */
3513 static int
3514 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3515                          struct hns3_pkt_buf_alloc *buf_alloc)
3516 {
3517         struct hns3_priv_buf *priv;
3518         int cnt = 0;
3519         uint8_t i;
3520
3521         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3522                 priv = &buf_alloc->priv_buf[i];
3523                 if (hw->hw_tc_map & BIT(i) &&
3524                     !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3525                         cnt++;
3526         }
3527
3528         return cnt;
3529 }
3530
3531 static bool
3532 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3533                   uint32_t rx_all)
3534 {
3535         uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3536         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3537         struct hns3_pf *pf = &hns->pf;
3538         uint32_t shared_buf, aligned_mps;
3539         uint32_t rx_priv;
3540         uint8_t tc_num;
3541         uint8_t i;
3542
3543         tc_num = hns3_get_tc_num(hw);
3544         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3545
3546         if (hns3_dev_dcb_supported(hw))
3547                 shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3548                                         pf->dv_buf_size;
3549         else
3550                 shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3551                                         + pf->dv_buf_size;
3552
3553         shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3554         shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3555                              HNS3_BUF_SIZE_UNIT);
3556
3557         rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3558         if (rx_all < rx_priv + shared_std)
3559                 return false;
3560
3561         shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3562         buf_alloc->s_buf.buf_size = shared_buf;
3563         if (hns3_dev_dcb_supported(hw)) {
3564                 buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3565                 buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3566                         - roundup(aligned_mps / HNS3_BUF_DIV_BY,
3567                                   HNS3_BUF_SIZE_UNIT);
3568         } else {
3569                 buf_alloc->s_buf.self.high =
3570                         aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3571                 buf_alloc->s_buf.self.low = aligned_mps;
3572         }
3573
3574         if (hns3_dev_dcb_supported(hw)) {
3575                 hi_thrd = shared_buf - pf->dv_buf_size;
3576
3577                 if (tc_num <= NEED_RESERVE_TC_NUM)
3578                         hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3579                                   BUF_MAX_PERCENT;
3580
3581                 if (tc_num)
3582                         hi_thrd = hi_thrd / tc_num;
3583
3584                 hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3585                 hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3586                 lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3587         } else {
3588                 hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3589                 lo_thrd = aligned_mps;
3590         }
3591
3592         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3593                 buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3594                 buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3595         }
3596
3597         return true;
3598 }
3599
3600 static bool
3601 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3602                      struct hns3_pkt_buf_alloc *buf_alloc)
3603 {
3604         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3605         struct hns3_pf *pf = &hns->pf;
3606         struct hns3_priv_buf *priv;
3607         uint32_t aligned_mps;
3608         uint32_t rx_all;
3609         uint8_t i;
3610
3611         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3612         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3613
3614         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3615                 priv = &buf_alloc->priv_buf[i];
3616
3617                 priv->enable = 0;
3618                 priv->wl.low = 0;
3619                 priv->wl.high = 0;
3620                 priv->buf_size = 0;
3621
3622                 if (!(hw->hw_tc_map & BIT(i)))
3623                         continue;
3624
3625                 priv->enable = 1;
3626                 if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3627                         priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3628                         priv->wl.high = roundup(priv->wl.low + aligned_mps,
3629                                                 HNS3_BUF_SIZE_UNIT);
3630                 } else {
3631                         priv->wl.low = 0;
3632                         priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3633                                         aligned_mps;
3634                 }
3635
3636                 priv->buf_size = priv->wl.high + pf->dv_buf_size;
3637         }
3638
3639         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3640 }
3641
3642 static bool
3643 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3644                              struct hns3_pkt_buf_alloc *buf_alloc)
3645 {
3646         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3647         struct hns3_pf *pf = &hns->pf;
3648         struct hns3_priv_buf *priv;
3649         int no_pfc_priv_num;
3650         uint32_t rx_all;
3651         uint8_t mask;
3652         int i;
3653
3654         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3655         no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3656
3657         /* let the last to be cleared first */
3658         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3659                 priv = &buf_alloc->priv_buf[i];
3660                 mask = BIT((uint8_t)i);
3661
3662                 if (hw->hw_tc_map & mask &&
3663                     !(hw->dcb_info.hw_pfc_map & mask)) {
3664                         /* Clear the no pfc TC private buffer */
3665                         priv->wl.low = 0;
3666                         priv->wl.high = 0;
3667                         priv->buf_size = 0;
3668                         priv->enable = 0;
3669                         no_pfc_priv_num--;
3670                 }
3671
3672                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3673                     no_pfc_priv_num == 0)
3674                         break;
3675         }
3676
3677         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3678 }
3679
3680 static bool
3681 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3682                            struct hns3_pkt_buf_alloc *buf_alloc)
3683 {
3684         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3685         struct hns3_pf *pf = &hns->pf;
3686         struct hns3_priv_buf *priv;
3687         uint32_t rx_all;
3688         int pfc_priv_num;
3689         uint8_t mask;
3690         int i;
3691
3692         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3693         pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3694
3695         /* let the last to be cleared first */
3696         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3697                 priv = &buf_alloc->priv_buf[i];
3698                 mask = BIT((uint8_t)i);
3699                 if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3700                         /* Reduce the number of pfc TC with private buffer */
3701                         priv->wl.low = 0;
3702                         priv->enable = 0;
3703                         priv->wl.high = 0;
3704                         priv->buf_size = 0;
3705                         pfc_priv_num--;
3706                 }
3707                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3708                     pfc_priv_num == 0)
3709                         break;
3710         }
3711
3712         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3713 }
3714
3715 static bool
3716 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3717                           struct hns3_pkt_buf_alloc *buf_alloc)
3718 {
3719 #define COMPENSATE_BUFFER       0x3C00
3720 #define COMPENSATE_HALF_MPS_NUM 5
3721 #define PRIV_WL_GAP             0x1800
3722         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3723         struct hns3_pf *pf = &hns->pf;
3724         uint32_t tc_num = hns3_get_tc_num(hw);
3725         uint32_t half_mps = pf->mps >> 1;
3726         struct hns3_priv_buf *priv;
3727         uint32_t min_rx_priv;
3728         uint32_t rx_priv;
3729         uint8_t i;
3730
3731         rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3732         if (tc_num)
3733                 rx_priv = rx_priv / tc_num;
3734
3735         if (tc_num <= NEED_RESERVE_TC_NUM)
3736                 rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3737
3738         /*
3739          * Minimum value of private buffer in rx direction (min_rx_priv) is
3740          * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3741          * buffer if rx_priv is greater than min_rx_priv.
3742          */
3743         min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3744                         COMPENSATE_HALF_MPS_NUM * half_mps;
3745         min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3746         rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3747
3748         if (rx_priv < min_rx_priv)
3749                 return false;
3750
3751         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3752                 priv = &buf_alloc->priv_buf[i];
3753                 priv->enable = 0;
3754                 priv->wl.low = 0;
3755                 priv->wl.high = 0;
3756                 priv->buf_size = 0;
3757
3758                 if (!(hw->hw_tc_map & BIT(i)))
3759                         continue;
3760
3761                 priv->enable = 1;
3762                 priv->buf_size = rx_priv;
3763                 priv->wl.high = rx_priv - pf->dv_buf_size;
3764                 priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3765         }
3766
3767         buf_alloc->s_buf.buf_size = 0;
3768
3769         return true;
3770 }
3771
3772 /*
3773  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3774  * @hw: pointer to struct hns3_hw
3775  * @buf_alloc: pointer to buffer calculation data
3776  * @return: 0: calculate sucessful, negative: fail
3777  */
3778 static int
3779 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3780 {
3781         /* When DCB is not supported, rx private buffer is not allocated. */
3782         if (!hns3_dev_dcb_supported(hw)) {
3783                 struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3784                 struct hns3_pf *pf = &hns->pf;
3785                 uint32_t rx_all = pf->pkt_buf_size;
3786
3787                 rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3788                 if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3789                         return -ENOMEM;
3790
3791                 return 0;
3792         }
3793
3794         /*
3795          * Try to allocate privated packet buffer for all TCs without share
3796          * buffer.
3797          */
3798         if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3799                 return 0;
3800
3801         /*
3802          * Try to allocate privated packet buffer for all TCs with share
3803          * buffer.
3804          */
3805         if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3806                 return 0;
3807
3808         /*
3809          * For different application scenes, the enabled port number, TC number
3810          * and no_drop TC number are different. In order to obtain the better
3811          * performance, software could allocate the buffer size and configure
3812          * the waterline by tring to decrease the private buffer size according
3813          * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3814          * enabled tc.
3815          */
3816         if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3817                 return 0;
3818
3819         if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3820                 return 0;
3821
3822         if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3823                 return 0;
3824
3825         return -ENOMEM;
3826 }
3827
3828 static int
3829 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3830 {
3831         struct hns3_rx_priv_buff_cmd *req;
3832         struct hns3_cmd_desc desc;
3833         uint32_t buf_size;
3834         int ret;
3835         int i;
3836
3837         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3838         req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3839
3840         /* Alloc private buffer TCs */
3841         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3842                 struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3843
3844                 req->buf_num[i] =
3845                         rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3846                 req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3847         }
3848
3849         buf_size = buf_alloc->s_buf.buf_size;
3850         req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3851                                            (1 << HNS3_TC0_PRI_BUF_EN_B));
3852
3853         ret = hns3_cmd_send(hw, &desc, 1);
3854         if (ret)
3855                 PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3856
3857         return ret;
3858 }
3859
3860 static int
3861 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3862 {
3863 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3864         struct hns3_rx_priv_wl_buf *req;
3865         struct hns3_priv_buf *priv;
3866         struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3867         int i, j;
3868         int ret;
3869
3870         for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3871                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3872                                           false);
3873                 req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3874
3875                 /* The first descriptor set the NEXT bit to 1 */
3876                 if (i == 0)
3877                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3878                 else
3879                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3880
3881                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3882                         uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3883
3884                         priv = &buf_alloc->priv_buf[idx];
3885                         req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3886                                                         HNS3_BUF_UNIT_S);
3887                         req->tc_wl[j].high |=
3888                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3889                         req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3890                                                         HNS3_BUF_UNIT_S);
3891                         req->tc_wl[j].low |=
3892                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3893                 }
3894         }
3895
3896         /* Send 2 descriptor at one time */
3897         ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3898         if (ret)
3899                 PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3900                              ret);
3901         return ret;
3902 }
3903
3904 static int
3905 hns3_common_thrd_config(struct hns3_hw *hw,
3906                         struct hns3_pkt_buf_alloc *buf_alloc)
3907 {
3908 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3909         struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3910         struct hns3_rx_com_thrd *req;
3911         struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3912         struct hns3_tc_thrd *tc;
3913         int tc_idx;
3914         int i, j;
3915         int ret;
3916
3917         for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3918                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3919                                           false);
3920                 req = (struct hns3_rx_com_thrd *)&desc[i].data;
3921
3922                 /* The first descriptor set the NEXT bit to 1 */
3923                 if (i == 0)
3924                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3925                 else
3926                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3927
3928                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3929                         tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3930                         tc = &s_buf->tc_thrd[tc_idx];
3931
3932                         req->com_thrd[j].high =
3933                                 rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3934                         req->com_thrd[j].high |=
3935                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3936                         req->com_thrd[j].low =
3937                                 rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3938                         req->com_thrd[j].low |=
3939                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3940                 }
3941         }
3942
3943         /* Send 2 descriptors at one time */
3944         ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3945         if (ret)
3946                 PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3947
3948         return ret;
3949 }
3950
3951 static int
3952 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3953 {
3954         struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3955         struct hns3_rx_com_wl *req;
3956         struct hns3_cmd_desc desc;
3957         int ret;
3958
3959         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3960
3961         req = (struct hns3_rx_com_wl *)desc.data;
3962         req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3963         req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3964
3965         req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3966         req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3967
3968         ret = hns3_cmd_send(hw, &desc, 1);
3969         if (ret)
3970                 PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3971
3972         return ret;
3973 }
3974
3975 int
3976 hns3_buffer_alloc(struct hns3_hw *hw)
3977 {
3978         struct hns3_pkt_buf_alloc pkt_buf;
3979         int ret;
3980
3981         memset(&pkt_buf, 0, sizeof(pkt_buf));
3982         ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3983         if (ret) {
3984                 PMD_INIT_LOG(ERR,
3985                              "could not calc tx buffer size for all TCs %d",
3986                              ret);
3987                 return ret;
3988         }
3989
3990         ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3991         if (ret) {
3992                 PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3993                 return ret;
3994         }
3995
3996         ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3997         if (ret) {
3998                 PMD_INIT_LOG(ERR,
3999                              "could not calc rx priv buffer size for all TCs %d",
4000                              ret);
4001                 return ret;
4002         }
4003
4004         ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
4005         if (ret) {
4006                 PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
4007                 return ret;
4008         }
4009
4010         if (hns3_dev_dcb_supported(hw)) {
4011                 ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
4012                 if (ret) {
4013                         PMD_INIT_LOG(ERR,
4014                                      "could not configure rx private waterline %d",
4015                                      ret);
4016                         return ret;
4017                 }
4018
4019                 ret = hns3_common_thrd_config(hw, &pkt_buf);
4020                 if (ret) {
4021                         PMD_INIT_LOG(ERR,
4022                                      "could not configure common threshold %d",
4023                                      ret);
4024                         return ret;
4025                 }
4026         }
4027
4028         ret = hns3_common_wl_config(hw, &pkt_buf);
4029         if (ret)
4030                 PMD_INIT_LOG(ERR, "could not configure common waterline %d",
4031                              ret);
4032
4033         return ret;
4034 }
4035
4036 static int
4037 hns3_firmware_compat_config(struct hns3_hw *hw, bool is_init)
4038 {
4039         struct hns3_firmware_compat_cmd *req;
4040         struct hns3_cmd_desc desc;
4041         uint32_t compat = 0;
4042
4043         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FIRMWARE_COMPAT_CFG, false);
4044         req = (struct hns3_firmware_compat_cmd *)desc.data;
4045
4046         if (is_init) {
4047                 hns3_set_bit(compat, HNS3_LINK_EVENT_REPORT_EN_B, 1);
4048                 hns3_set_bit(compat, HNS3_NCSI_ERROR_REPORT_EN_B, 0);
4049                 if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4050                         hns3_set_bit(compat, HNS3_FIRMWARE_PHY_DRIVER_EN_B, 1);
4051         }
4052
4053         req->compat = rte_cpu_to_le_32(compat);
4054
4055         return hns3_cmd_send(hw, &desc, 1);
4056 }
4057
4058 static int
4059 hns3_mac_init(struct hns3_hw *hw)
4060 {
4061         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4062         struct hns3_mac *mac = &hw->mac;
4063         struct hns3_pf *pf = &hns->pf;
4064         int ret;
4065
4066         pf->support_sfp_query = true;
4067         mac->link_duplex = ETH_LINK_FULL_DUPLEX;
4068         ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
4069         if (ret) {
4070                 PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
4071                 return ret;
4072         }
4073
4074         mac->link_status = ETH_LINK_DOWN;
4075
4076         return hns3_config_mtu(hw, pf->mps);
4077 }
4078
4079 static int
4080 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
4081 {
4082 #define HNS3_ETHERTYPE_SUCCESS_ADD              0
4083 #define HNS3_ETHERTYPE_ALREADY_ADD              1
4084 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW         2
4085 #define HNS3_ETHERTYPE_KEY_CONFLICT             3
4086         int return_status;
4087
4088         if (cmdq_resp) {
4089                 PMD_INIT_LOG(ERR,
4090                              "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
4091                              cmdq_resp);
4092                 return -EIO;
4093         }
4094
4095         switch (resp_code) {
4096         case HNS3_ETHERTYPE_SUCCESS_ADD:
4097         case HNS3_ETHERTYPE_ALREADY_ADD:
4098                 return_status = 0;
4099                 break;
4100         case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
4101                 PMD_INIT_LOG(ERR,
4102                              "add mac ethertype failed for manager table overflow.");
4103                 return_status = -EIO;
4104                 break;
4105         case HNS3_ETHERTYPE_KEY_CONFLICT:
4106                 PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
4107                 return_status = -EIO;
4108                 break;
4109         default:
4110                 PMD_INIT_LOG(ERR,
4111                              "add mac ethertype failed for undefined, code=%u.",
4112                              resp_code);
4113                 return_status = -EIO;
4114                 break;
4115         }
4116
4117         return return_status;
4118 }
4119
4120 static int
4121 hns3_add_mgr_tbl(struct hns3_hw *hw,
4122                  const struct hns3_mac_mgr_tbl_entry_cmd *req)
4123 {
4124         struct hns3_cmd_desc desc;
4125         uint8_t resp_code;
4126         uint16_t retval;
4127         int ret;
4128
4129         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
4130         memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
4131
4132         ret = hns3_cmd_send(hw, &desc, 1);
4133         if (ret) {
4134                 PMD_INIT_LOG(ERR,
4135                              "add mac ethertype failed for cmd_send, ret =%d.",
4136                              ret);
4137                 return ret;
4138         }
4139
4140         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
4141         retval = rte_le_to_cpu_16(desc.retval);
4142
4143         return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
4144 }
4145
4146 static void
4147 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
4148                      int *table_item_num)
4149 {
4150         struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4151
4152         /*
4153          * In current version, we add one item in management table as below:
4154          * 0x0180C200000E -- LLDP MC address
4155          */
4156         tbl = mgr_table;
4157         tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4158         tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4159         tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4160         tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4161         tbl->i_port_bitmap = 0x1;
4162         *table_item_num = 1;
4163 }
4164
4165 static int
4166 hns3_init_mgr_tbl(struct hns3_hw *hw)
4167 {
4168 #define HNS_MAC_MGR_TBL_MAX_SIZE        16
4169         struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4170         int table_item_num;
4171         int ret;
4172         int i;
4173
4174         memset(mgr_table, 0, sizeof(mgr_table));
4175         hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4176         for (i = 0; i < table_item_num; i++) {
4177                 ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4178                 if (ret) {
4179                         PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4180                                      ret);
4181                         return ret;
4182                 }
4183         }
4184
4185         return 0;
4186 }
4187
4188 static void
4189 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4190                         bool en_mc, bool en_bc, int vport_id)
4191 {
4192         if (!param)
4193                 return;
4194
4195         memset(param, 0, sizeof(struct hns3_promisc_param));
4196         if (en_uc)
4197                 param->enable = HNS3_PROMISC_EN_UC;
4198         if (en_mc)
4199                 param->enable |= HNS3_PROMISC_EN_MC;
4200         if (en_bc)
4201                 param->enable |= HNS3_PROMISC_EN_BC;
4202         param->vf_id = vport_id;
4203 }
4204
4205 static int
4206 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4207 {
4208         struct hns3_promisc_cfg_cmd *req;
4209         struct hns3_cmd_desc desc;
4210         int ret;
4211
4212         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4213
4214         req = (struct hns3_promisc_cfg_cmd *)desc.data;
4215         req->vf_id = param->vf_id;
4216         req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4217             HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4218
4219         ret = hns3_cmd_send(hw, &desc, 1);
4220         if (ret)
4221                 PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4222
4223         return ret;
4224 }
4225
4226 static int
4227 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4228 {
4229         struct hns3_promisc_param param;
4230         bool en_bc_pmc = true;
4231         uint8_t vf_id;
4232
4233         /*
4234          * In current version VF is not supported when PF is driven by DPDK
4235          * driver, just need to configure parameters for PF vport.
4236          */
4237         vf_id = HNS3_PF_FUNC_ID;
4238
4239         hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4240         return hns3_cmd_set_promisc_mode(hw, &param);
4241 }
4242
4243 static int
4244 hns3_promisc_init(struct hns3_hw *hw)
4245 {
4246         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4247         struct hns3_pf *pf = &hns->pf;
4248         struct hns3_promisc_param param;
4249         uint16_t func_id;
4250         int ret;
4251
4252         ret = hns3_set_promisc_mode(hw, false, false);
4253         if (ret) {
4254                 PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4255                 return ret;
4256         }
4257
4258         /*
4259          * In current version VFs are not supported when PF is driven by DPDK
4260          * driver. After PF has been taken over by DPDK, the original VF will
4261          * be invalid. So, there is a possibility of entry residues. It should
4262          * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4263          * during init.
4264          */
4265         for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4266                 hns3_promisc_param_init(&param, false, false, false, func_id);
4267                 ret = hns3_cmd_set_promisc_mode(hw, &param);
4268                 if (ret) {
4269                         PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4270                                         " ret = %d", func_id, ret);
4271                         return ret;
4272                 }
4273         }
4274
4275         return 0;
4276 }
4277
4278 static void
4279 hns3_promisc_uninit(struct hns3_hw *hw)
4280 {
4281         struct hns3_promisc_param param;
4282         uint16_t func_id;
4283         int ret;
4284
4285         func_id = HNS3_PF_FUNC_ID;
4286
4287         /*
4288          * In current version VFs are not supported when PF is driven by
4289          * DPDK driver, and VFs' promisc mode status has been cleared during
4290          * init and their status will not change. So just clear PF's promisc
4291          * mode status during uninit.
4292          */
4293         hns3_promisc_param_init(&param, false, false, false, func_id);
4294         ret = hns3_cmd_set_promisc_mode(hw, &param);
4295         if (ret)
4296                 PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4297                                 " uninit, ret = %d", ret);
4298 }
4299
4300 static int
4301 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4302 {
4303         bool allmulti = dev->data->all_multicast ? true : false;
4304         struct hns3_adapter *hns = dev->data->dev_private;
4305         struct hns3_hw *hw = &hns->hw;
4306         uint64_t offloads;
4307         int err;
4308         int ret;
4309
4310         rte_spinlock_lock(&hw->lock);
4311         ret = hns3_set_promisc_mode(hw, true, true);
4312         if (ret) {
4313                 rte_spinlock_unlock(&hw->lock);
4314                 hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4315                          ret);
4316                 return ret;
4317         }
4318
4319         /*
4320          * When promiscuous mode was enabled, disable the vlan filter to let
4321          * all packets coming in in the receiving direction.
4322          */
4323         offloads = dev->data->dev_conf.rxmode.offloads;
4324         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4325                 ret = hns3_enable_vlan_filter(hns, false);
4326                 if (ret) {
4327                         hns3_err(hw, "failed to enable promiscuous mode due to "
4328                                      "failure to disable vlan filter, ret = %d",
4329                                  ret);
4330                         err = hns3_set_promisc_mode(hw, false, allmulti);
4331                         if (err)
4332                                 hns3_err(hw, "failed to restore promiscuous "
4333                                          "status after disable vlan filter "
4334                                          "failed during enabling promiscuous "
4335                                          "mode, ret = %d", ret);
4336                 }
4337         }
4338
4339         rte_spinlock_unlock(&hw->lock);
4340
4341         return ret;
4342 }
4343
4344 static int
4345 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4346 {
4347         bool allmulti = dev->data->all_multicast ? true : false;
4348         struct hns3_adapter *hns = dev->data->dev_private;
4349         struct hns3_hw *hw = &hns->hw;
4350         uint64_t offloads;
4351         int err;
4352         int ret;
4353
4354         /* If now in all_multicast mode, must remain in all_multicast mode. */
4355         rte_spinlock_lock(&hw->lock);
4356         ret = hns3_set_promisc_mode(hw, false, allmulti);
4357         if (ret) {
4358                 rte_spinlock_unlock(&hw->lock);
4359                 hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4360                          ret);
4361                 return ret;
4362         }
4363         /* when promiscuous mode was disabled, restore the vlan filter status */
4364         offloads = dev->data->dev_conf.rxmode.offloads;
4365         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4366                 ret = hns3_enable_vlan_filter(hns, true);
4367                 if (ret) {
4368                         hns3_err(hw, "failed to disable promiscuous mode due to"
4369                                  " failure to restore vlan filter, ret = %d",
4370                                  ret);
4371                         err = hns3_set_promisc_mode(hw, true, true);
4372                         if (err)
4373                                 hns3_err(hw, "failed to restore promiscuous "
4374                                          "status after enabling vlan filter "
4375                                          "failed during disabling promiscuous "
4376                                          "mode, ret = %d", ret);
4377                 }
4378         }
4379         rte_spinlock_unlock(&hw->lock);
4380
4381         return ret;
4382 }
4383
4384 static int
4385 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4386 {
4387         struct hns3_adapter *hns = dev->data->dev_private;
4388         struct hns3_hw *hw = &hns->hw;
4389         int ret;
4390
4391         if (dev->data->promiscuous)
4392                 return 0;
4393
4394         rte_spinlock_lock(&hw->lock);
4395         ret = hns3_set_promisc_mode(hw, false, true);
4396         rte_spinlock_unlock(&hw->lock);
4397         if (ret)
4398                 hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4399                          ret);
4400
4401         return ret;
4402 }
4403
4404 static int
4405 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4406 {
4407         struct hns3_adapter *hns = dev->data->dev_private;
4408         struct hns3_hw *hw = &hns->hw;
4409         int ret;
4410
4411         /* If now in promiscuous mode, must remain in all_multicast mode. */
4412         if (dev->data->promiscuous)
4413                 return 0;
4414
4415         rte_spinlock_lock(&hw->lock);
4416         ret = hns3_set_promisc_mode(hw, false, false);
4417         rte_spinlock_unlock(&hw->lock);
4418         if (ret)
4419                 hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4420                          ret);
4421
4422         return ret;
4423 }
4424
4425 static int
4426 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4427 {
4428         struct hns3_hw *hw = &hns->hw;
4429         bool allmulti = hw->data->all_multicast ? true : false;
4430         int ret;
4431
4432         if (hw->data->promiscuous) {
4433                 ret = hns3_set_promisc_mode(hw, true, true);
4434                 if (ret)
4435                         hns3_err(hw, "failed to restore promiscuous mode, "
4436                                  "ret = %d", ret);
4437                 return ret;
4438         }
4439
4440         ret = hns3_set_promisc_mode(hw, false, allmulti);
4441         if (ret)
4442                 hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4443                          ret);
4444         return ret;
4445 }
4446
4447 static int
4448 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4449 {
4450         struct hns3_sfp_speed_cmd *resp;
4451         struct hns3_cmd_desc desc;
4452         int ret;
4453
4454         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4455         resp = (struct hns3_sfp_speed_cmd *)desc.data;
4456         ret = hns3_cmd_send(hw, &desc, 1);
4457         if (ret == -EOPNOTSUPP) {
4458                 hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4459                 return ret;
4460         } else if (ret) {
4461                 hns3_err(hw, "get sfp speed failed %d", ret);
4462                 return ret;
4463         }
4464
4465         *speed = resp->sfp_speed;
4466
4467         return 0;
4468 }
4469
4470 static uint8_t
4471 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4472 {
4473         if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4474                 duplex = ETH_LINK_FULL_DUPLEX;
4475
4476         return duplex;
4477 }
4478
4479 static int
4480 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4481 {
4482         struct hns3_mac *mac = &hw->mac;
4483         int ret;
4484
4485         duplex = hns3_check_speed_dup(duplex, speed);
4486         if (mac->link_speed == speed && mac->link_duplex == duplex)
4487                 return 0;
4488
4489         ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4490         if (ret)
4491                 return ret;
4492
4493         ret = hns3_port_shaper_update(hw, speed);
4494         if (ret)
4495                 return ret;
4496
4497         mac->link_speed = speed;
4498         mac->link_duplex = duplex;
4499
4500         return 0;
4501 }
4502
4503 static int
4504 hns3_update_fiber_link_info(struct hns3_hw *hw)
4505 {
4506         struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4507         uint32_t speed;
4508         int ret;
4509
4510         /* If IMP do not support get SFP/qSFP speed, return directly */
4511         if (!pf->support_sfp_query)
4512                 return 0;
4513
4514         ret = hns3_get_sfp_speed(hw, &speed);
4515         if (ret == -EOPNOTSUPP) {
4516                 pf->support_sfp_query = false;
4517                 return ret;
4518         } else if (ret)
4519                 return ret;
4520
4521         if (speed == ETH_SPEED_NUM_NONE)
4522                 return 0; /* do nothing if no SFP */
4523
4524         /* Config full duplex for SFP */
4525         return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4526 }
4527
4528 static void
4529 hns3_parse_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4530 {
4531         struct hns3_phy_params_bd0_cmd *req;
4532
4533         req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4534         mac->link_speed = rte_le_to_cpu_32(req->speed);
4535         mac->link_duplex = hns3_get_bit(req->duplex,
4536                                            HNS3_PHY_DUPLEX_CFG_B);
4537         mac->link_autoneg = hns3_get_bit(req->autoneg,
4538                                            HNS3_PHY_AUTONEG_CFG_B);
4539         mac->supported_capa = rte_le_to_cpu_32(req->supported);
4540         mac->advertising = rte_le_to_cpu_32(req->advertising);
4541         mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4542         mac->support_autoneg = !!(mac->supported_capa &
4543                                 HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4544 }
4545
4546 static int
4547 hns3_get_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4548 {
4549         struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4550         uint16_t i;
4551         int ret;
4552
4553         for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4554                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4555                                           true);
4556                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4557         }
4558         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4559
4560         ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4561         if (ret) {
4562                 hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4563                 return ret;
4564         }
4565
4566         hns3_parse_phy_params(desc, mac);
4567
4568         return 0;
4569 }
4570
4571 static int
4572 hns3_update_phy_link_info(struct hns3_hw *hw)
4573 {
4574         struct hns3_mac *mac = &hw->mac;
4575         struct hns3_mac mac_info;
4576         int ret;
4577
4578         memset(&mac_info, 0, sizeof(struct hns3_mac));
4579         ret = hns3_get_phy_params(hw, &mac_info);
4580         if (ret)
4581                 return ret;
4582
4583         if (mac_info.link_speed != mac->link_speed) {
4584                 ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4585                 if (ret)
4586                         return ret;
4587         }
4588
4589         mac->link_speed = mac_info.link_speed;
4590         mac->link_duplex = mac_info.link_duplex;
4591         mac->link_autoneg = mac_info.link_autoneg;
4592         mac->supported_capa = mac_info.supported_capa;
4593         mac->advertising = mac_info.advertising;
4594         mac->lp_advertising = mac_info.lp_advertising;
4595         mac->support_autoneg = mac_info.support_autoneg;
4596
4597         return 0;
4598 }
4599
4600 static int
4601 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4602 {
4603         struct hns3_adapter *hns = eth_dev->data->dev_private;
4604         struct hns3_hw *hw = &hns->hw;
4605         int ret = 0;
4606
4607         if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4608                 ret = hns3_update_phy_link_info(hw);
4609         else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4610                 ret = hns3_update_fiber_link_info(hw);
4611
4612         return ret;
4613 }
4614
4615 static int
4616 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4617 {
4618         struct hns3_config_mac_mode_cmd *req;
4619         struct hns3_cmd_desc desc;
4620         uint32_t loop_en = 0;
4621         uint8_t val = 0;
4622         int ret;
4623
4624         req = (struct hns3_config_mac_mode_cmd *)desc.data;
4625
4626         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4627         if (enable)
4628                 val = 1;
4629         hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4630         hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4631         hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4632         hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4633         hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4634         hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4635         hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4636         hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4637         hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4638         hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4639
4640         /*
4641          * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4642          * when receiving frames. Otherwise, CRC will be stripped.
4643          */
4644         if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4645                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4646         else
4647                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4648         hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4649         hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4650         hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4651         req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4652
4653         ret = hns3_cmd_send(hw, &desc, 1);
4654         if (ret)
4655                 PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4656
4657         return ret;
4658 }
4659
4660 static int
4661 hns3_get_mac_link_status(struct hns3_hw *hw)
4662 {
4663         struct hns3_link_status_cmd *req;
4664         struct hns3_cmd_desc desc;
4665         int link_status;
4666         int ret;
4667
4668         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4669         ret = hns3_cmd_send(hw, &desc, 1);
4670         if (ret) {
4671                 hns3_err(hw, "get link status cmd failed %d", ret);
4672                 return ETH_LINK_DOWN;
4673         }
4674
4675         req = (struct hns3_link_status_cmd *)desc.data;
4676         link_status = req->status & HNS3_LINK_STATUS_UP_M;
4677
4678         return !!link_status;
4679 }
4680
4681 static bool
4682 hns3_update_link_status(struct hns3_hw *hw)
4683 {
4684         int state;
4685
4686         state = hns3_get_mac_link_status(hw);
4687         if (state != hw->mac.link_status) {
4688                 hw->mac.link_status = state;
4689                 hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4690                 hns3_config_mac_tnl_int(hw,
4691                                         state == ETH_LINK_UP ? true : false);
4692                 return true;
4693         }
4694
4695         return false;
4696 }
4697
4698 /*
4699  * Current, the PF driver get link status by two ways:
4700  * 1) Periodic polling in the intr thread context, driver call
4701  *    hns3_update_link_status to update link status.
4702  * 2) Firmware report async interrupt, driver process the event in the intr
4703  *    thread context, and call hns3_update_link_status to update link status.
4704  *
4705  * If detect link status changed, driver need report LSE. One method is add the
4706  * report LSE logic in hns3_update_link_status.
4707  *
4708  * But the PF driver ops(link_update) also call hns3_update_link_status to
4709  * update link status.
4710  * If we report LSE in hns3_update_link_status, it may lead to deadlock in the
4711  * bonding application.
4712  *
4713  * So add the one new API which used only in intr thread context.
4714  */
4715 void
4716 hns3_update_link_status_and_event(struct hns3_hw *hw)
4717 {
4718         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4719         bool changed = hns3_update_link_status(hw);
4720         if (changed)
4721                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
4722 }
4723
4724 static void
4725 hns3_service_handler(void *param)
4726 {
4727         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4728         struct hns3_adapter *hns = eth_dev->data->dev_private;
4729         struct hns3_hw *hw = &hns->hw;
4730
4731         if (!hns3_is_reset_pending(hns)) {
4732                 hns3_update_link_status_and_event(hw);
4733                 hns3_update_link_info(eth_dev);
4734         } else {
4735                 hns3_warn(hw, "Cancel the query when reset is pending");
4736         }
4737
4738         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4739 }
4740
4741 static int
4742 hns3_init_hardware(struct hns3_adapter *hns)
4743 {
4744         struct hns3_hw *hw = &hns->hw;
4745         int ret;
4746
4747         ret = hns3_map_tqp(hw);
4748         if (ret) {
4749                 PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4750                 return ret;
4751         }
4752
4753         ret = hns3_init_umv_space(hw);
4754         if (ret) {
4755                 PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4756                 return ret;
4757         }
4758
4759         ret = hns3_mac_init(hw);
4760         if (ret) {
4761                 PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4762                 goto err_mac_init;
4763         }
4764
4765         ret = hns3_init_mgr_tbl(hw);
4766         if (ret) {
4767                 PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4768                 goto err_mac_init;
4769         }
4770
4771         ret = hns3_promisc_init(hw);
4772         if (ret) {
4773                 PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4774                              ret);
4775                 goto err_mac_init;
4776         }
4777
4778         ret = hns3_init_vlan_config(hns);
4779         if (ret) {
4780                 PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4781                 goto err_mac_init;
4782         }
4783
4784         ret = hns3_dcb_init(hw);
4785         if (ret) {
4786                 PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4787                 goto err_mac_init;
4788         }
4789
4790         ret = hns3_init_fd_config(hns);
4791         if (ret) {
4792                 PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4793                 goto err_mac_init;
4794         }
4795
4796         ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4797         if (ret) {
4798                 PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4799                 goto err_mac_init;
4800         }
4801
4802         ret = hns3_config_gro(hw, false);
4803         if (ret) {
4804                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4805                 goto err_mac_init;
4806         }
4807
4808         /*
4809          * In the initialization clearing the all hardware mapping relationship
4810          * configurations between queues and interrupt vectors is needed, so
4811          * some error caused by the residual configurations, such as the
4812          * unexpected interrupt, can be avoid.
4813          */
4814         ret = hns3_init_ring_with_vector(hw);
4815         if (ret) {
4816                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4817                 goto err_mac_init;
4818         }
4819
4820         /*
4821          * Requiring firmware to enable some features, driver can
4822          * still work without it.
4823          */
4824         ret = hns3_firmware_compat_config(hw, true);
4825         if (ret)
4826                 PMD_INIT_LOG(WARNING, "firmware compatible features not "
4827                              "supported, ret = %d.", ret);
4828
4829         return 0;
4830
4831 err_mac_init:
4832         hns3_uninit_umv_space(hw);
4833         return ret;
4834 }
4835
4836 static int
4837 hns3_clear_hw(struct hns3_hw *hw)
4838 {
4839         struct hns3_cmd_desc desc;
4840         int ret;
4841
4842         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4843
4844         ret = hns3_cmd_send(hw, &desc, 1);
4845         if (ret && ret != -EOPNOTSUPP)
4846                 return ret;
4847
4848         return 0;
4849 }
4850
4851 static void
4852 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4853 {
4854         uint32_t val;
4855
4856         /*
4857          * The new firmware support report more hardware error types by
4858          * msix mode. These errors are defined as RAS errors in hardware
4859          * and belong to a different type from the MSI-x errors processed
4860          * by the network driver.
4861          *
4862          * Network driver should open the new error report on initialition
4863          */
4864         val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4865         hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4866         hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4867 }
4868
4869 static int
4870 hns3_init_pf(struct rte_eth_dev *eth_dev)
4871 {
4872         struct rte_device *dev = eth_dev->device;
4873         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4874         struct hns3_adapter *hns = eth_dev->data->dev_private;
4875         struct hns3_hw *hw = &hns->hw;
4876         int ret;
4877
4878         PMD_INIT_FUNC_TRACE();
4879
4880         /* Get hardware io base address from pcie BAR2 IO space */
4881         hw->io_base = pci_dev->mem_resource[2].addr;
4882
4883         /* Firmware command queue initialize */
4884         ret = hns3_cmd_init_queue(hw);
4885         if (ret) {
4886                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4887                 goto err_cmd_init_queue;
4888         }
4889
4890         hns3_clear_all_event_cause(hw);
4891
4892         /* Firmware command initialize */
4893         ret = hns3_cmd_init(hw);
4894         if (ret) {
4895                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4896                 goto err_cmd_init;
4897         }
4898
4899         /*
4900          * To ensure that the hardware environment is clean during
4901          * initialization, the driver actively clear the hardware environment
4902          * during initialization, including PF and corresponding VFs' vlan, mac,
4903          * flow table configurations, etc.
4904          */
4905         ret = hns3_clear_hw(hw);
4906         if (ret) {
4907                 PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4908                 goto err_cmd_init;
4909         }
4910
4911         /* Hardware statistics of imissed registers cleared. */
4912         ret = hns3_update_imissed_stats(hw, true);
4913         if (ret) {
4914                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
4915                 return ret;
4916         }
4917
4918         hns3_config_all_msix_error(hw, true);
4919
4920         ret = rte_intr_callback_register(&pci_dev->intr_handle,
4921                                          hns3_interrupt_handler,
4922                                          eth_dev);
4923         if (ret) {
4924                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4925                 goto err_intr_callback_register;
4926         }
4927
4928         /* Enable interrupt */
4929         rte_intr_enable(&pci_dev->intr_handle);
4930         hns3_pf_enable_irq0(hw);
4931
4932         /* Get configuration */
4933         ret = hns3_get_configuration(hw);
4934         if (ret) {
4935                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4936                 goto err_get_config;
4937         }
4938
4939         ret = hns3_tqp_stats_init(hw);
4940         if (ret)
4941                 goto err_get_config;
4942
4943         ret = hns3_init_hardware(hns);
4944         if (ret) {
4945                 PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4946                 goto err_init_hw;
4947         }
4948
4949         /* Initialize flow director filter list & hash */
4950         ret = hns3_fdir_filter_init(hns);
4951         if (ret) {
4952                 PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4953                 goto err_fdir;
4954         }
4955
4956         hns3_rss_set_default_args(hw);
4957
4958         ret = hns3_enable_hw_error_intr(hns, true);
4959         if (ret) {
4960                 PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4961                              ret);
4962                 goto err_enable_intr;
4963         }
4964
4965         hns3_tm_conf_init(eth_dev);
4966
4967         return 0;
4968
4969 err_enable_intr:
4970         hns3_fdir_filter_uninit(hns);
4971 err_fdir:
4972         (void)hns3_firmware_compat_config(hw, false);
4973         hns3_uninit_umv_space(hw);
4974 err_init_hw:
4975         hns3_tqp_stats_uninit(hw);
4976 err_get_config:
4977         hns3_pf_disable_irq0(hw);
4978         rte_intr_disable(&pci_dev->intr_handle);
4979         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4980                              eth_dev);
4981 err_intr_callback_register:
4982 err_cmd_init:
4983         hns3_cmd_uninit(hw);
4984         hns3_cmd_destroy_queue(hw);
4985 err_cmd_init_queue:
4986         hw->io_base = NULL;
4987
4988         return ret;
4989 }
4990
4991 static void
4992 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4993 {
4994         struct hns3_adapter *hns = eth_dev->data->dev_private;
4995         struct rte_device *dev = eth_dev->device;
4996         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4997         struct hns3_hw *hw = &hns->hw;
4998
4999         PMD_INIT_FUNC_TRACE();
5000
5001         hns3_tm_conf_uninit(eth_dev);
5002         hns3_enable_hw_error_intr(hns, false);
5003         hns3_rss_uninit(hns);
5004         (void)hns3_config_gro(hw, false);
5005         hns3_promisc_uninit(hw);
5006         hns3_fdir_filter_uninit(hns);
5007         (void)hns3_firmware_compat_config(hw, false);
5008         hns3_uninit_umv_space(hw);
5009         hns3_tqp_stats_uninit(hw);
5010         hns3_config_mac_tnl_int(hw, false);
5011         hns3_pf_disable_irq0(hw);
5012         rte_intr_disable(&pci_dev->intr_handle);
5013         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5014                              eth_dev);
5015         hns3_config_all_msix_error(hw, false);
5016         hns3_cmd_uninit(hw);
5017         hns3_cmd_destroy_queue(hw);
5018         hw->io_base = NULL;
5019 }
5020
5021 static int
5022 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5023 {
5024         struct hns3_hw *hw = &hns->hw;
5025         int ret;
5026
5027         ret = hns3_dcb_cfg_update(hns);
5028         if (ret)
5029                 return ret;
5030
5031         /*
5032          * The hns3_dcb_cfg_update may configure TM module, so
5033          * hns3_tm_conf_update must called later.
5034          */
5035         ret = hns3_tm_conf_update(hw);
5036         if (ret) {
5037                 PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5038                 return ret;
5039         }
5040
5041         hns3_enable_rxd_adv_layout(hw);
5042
5043         ret = hns3_init_queues(hns, reset_queue);
5044         if (ret) {
5045                 PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5046                 return ret;
5047         }
5048
5049         ret = hns3_cfg_mac_mode(hw, true);
5050         if (ret) {
5051                 PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5052                 goto err_config_mac_mode;
5053         }
5054         return 0;
5055
5056 err_config_mac_mode:
5057         hns3_dev_release_mbufs(hns);
5058         /*
5059          * Here is exception handling, hns3_reset_all_tqps will have the
5060          * corresponding error message if it is handled incorrectly, so it is
5061          * not necessary to check hns3_reset_all_tqps return value, here keep
5062          * ret as the error code causing the exception.
5063          */
5064         (void)hns3_reset_all_tqps(hns);
5065         return ret;
5066 }
5067
5068 static int
5069 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
5070 {
5071         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5072         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5073         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5074         uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
5075         uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5076         uint32_t intr_vector;
5077         uint16_t q_id;
5078         int ret;
5079
5080         /*
5081          * hns3 needs a separate interrupt to be used as event interrupt which
5082          * could not be shared with task queue pair, so KERNEL drivers need
5083          * support multiple interrupt vectors.
5084          */
5085         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
5086             !rte_intr_cap_multiple(intr_handle))
5087                 return 0;
5088
5089         rte_intr_disable(intr_handle);
5090         intr_vector = hw->used_rx_queues;
5091         /* creates event fd for each intr vector when MSIX is used */
5092         if (rte_intr_efd_enable(intr_handle, intr_vector))
5093                 return -EINVAL;
5094
5095         if (intr_handle->intr_vec == NULL) {
5096                 intr_handle->intr_vec =
5097                         rte_zmalloc("intr_vec",
5098                                     hw->used_rx_queues * sizeof(int), 0);
5099                 if (intr_handle->intr_vec == NULL) {
5100                         hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
5101                                         hw->used_rx_queues);
5102                         ret = -ENOMEM;
5103                         goto alloc_intr_vec_error;
5104                 }
5105         }
5106
5107         if (rte_intr_allow_others(intr_handle)) {
5108                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5109                 base = RTE_INTR_VEC_RXTX_OFFSET;
5110         }
5111
5112         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5113                 ret = hns3_bind_ring_with_vector(hw, vec, true,
5114                                                  HNS3_RING_TYPE_RX, q_id);
5115                 if (ret)
5116                         goto bind_vector_error;
5117                 intr_handle->intr_vec[q_id] = vec;
5118                 /*
5119                  * If there are not enough efds (e.g. not enough interrupt),
5120                  * remaining queues will be bond to the last interrupt.
5121                  */
5122                 if (vec < base + intr_handle->nb_efd - 1)
5123                         vec++;
5124         }
5125         rte_intr_enable(intr_handle);
5126         return 0;
5127
5128 bind_vector_error:
5129         rte_free(intr_handle->intr_vec);
5130         intr_handle->intr_vec = NULL;
5131 alloc_intr_vec_error:
5132         rte_intr_efd_disable(intr_handle);
5133         return ret;
5134 }
5135
5136 static int
5137 hns3_restore_rx_interrupt(struct hns3_hw *hw)
5138 {
5139         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
5140         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5141         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5142         uint16_t q_id;
5143         int ret;
5144
5145         if (dev->data->dev_conf.intr_conf.rxq == 0)
5146                 return 0;
5147
5148         if (rte_intr_dp_is_en(intr_handle)) {
5149                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5150                         ret = hns3_bind_ring_with_vector(hw,
5151                                         intr_handle->intr_vec[q_id], true,
5152                                         HNS3_RING_TYPE_RX, q_id);
5153                         if (ret)
5154                                 return ret;
5155                 }
5156         }
5157
5158         return 0;
5159 }
5160
5161 static void
5162 hns3_restore_filter(struct rte_eth_dev *dev)
5163 {
5164         hns3_restore_rss_filter(dev);
5165 }
5166
5167 static int
5168 hns3_dev_start(struct rte_eth_dev *dev)
5169 {
5170         struct hns3_adapter *hns = dev->data->dev_private;
5171         struct hns3_hw *hw = &hns->hw;
5172         int ret;
5173
5174         PMD_INIT_FUNC_TRACE();
5175         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5176                 return -EBUSY;
5177
5178         rte_spinlock_lock(&hw->lock);
5179         hw->adapter_state = HNS3_NIC_STARTING;
5180
5181         ret = hns3_do_start(hns, true);
5182         if (ret) {
5183                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5184                 rte_spinlock_unlock(&hw->lock);
5185                 return ret;
5186         }
5187         ret = hns3_map_rx_interrupt(dev);
5188         if (ret)
5189                 goto map_rx_inter_err;
5190
5191         /*
5192          * There are three register used to control the status of a TQP
5193          * (contains a pair of Tx queue and Rx queue) in the new version network
5194          * engine. One is used to control the enabling of Tx queue, the other is
5195          * used to control the enabling of Rx queue, and the last is the master
5196          * switch used to control the enabling of the tqp. The Tx register and
5197          * TQP register must be enabled at the same time to enable a Tx queue.
5198          * The same applies to the Rx queue. For the older network engine, this
5199          * function only refresh the enabled flag, and it is used to update the
5200          * status of queue in the dpdk framework.
5201          */
5202         ret = hns3_start_all_txqs(dev);
5203         if (ret)
5204                 goto map_rx_inter_err;
5205
5206         ret = hns3_start_all_rxqs(dev);
5207         if (ret)
5208                 goto start_all_rxqs_fail;
5209
5210         hw->adapter_state = HNS3_NIC_STARTED;
5211         rte_spinlock_unlock(&hw->lock);
5212
5213         hns3_rx_scattered_calc(dev);
5214         hns3_set_rxtx_function(dev);
5215         hns3_mp_req_start_rxtx(dev);
5216         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5217
5218         hns3_restore_filter(dev);
5219
5220         /* Enable interrupt of all rx queues before enabling queues */
5221         hns3_dev_all_rx_queue_intr_enable(hw, true);
5222
5223         /*
5224          * After finished the initialization, enable tqps to receive/transmit
5225          * packets and refresh all queue status.
5226          */
5227         hns3_start_tqps(hw);
5228
5229         hns3_tm_dev_start_proc(hw);
5230
5231         hns3_info(hw, "hns3 dev start successful!");
5232
5233         return 0;
5234
5235 start_all_rxqs_fail:
5236         hns3_stop_all_txqs(dev);
5237 map_rx_inter_err:
5238         (void)hns3_do_stop(hns);
5239         hw->adapter_state = HNS3_NIC_CONFIGURED;
5240         rte_spinlock_unlock(&hw->lock);
5241
5242         return ret;
5243 }
5244
5245 static int
5246 hns3_do_stop(struct hns3_adapter *hns)
5247 {
5248         struct hns3_hw *hw = &hns->hw;
5249         int ret;
5250
5251         /*
5252          * The "hns3_do_stop" function will also be called by .stop_service to
5253          * prepare reset. At the time of global or IMP reset, the command cannot
5254          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5255          * accessed during the reset process. So the mbuf can not be released
5256          * during reset and is required to be released after the reset is
5257          * completed.
5258          */
5259         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5260                 hns3_dev_release_mbufs(hns);
5261
5262         ret = hns3_cfg_mac_mode(hw, false);
5263         if (ret)
5264                 return ret;
5265         hw->mac.link_status = ETH_LINK_DOWN;
5266
5267         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5268                 hns3_configure_all_mac_addr(hns, true);
5269                 ret = hns3_reset_all_tqps(hns);
5270                 if (ret) {
5271                         hns3_err(hw, "failed to reset all queues ret = %d.",
5272                                  ret);
5273                         return ret;
5274                 }
5275         }
5276         hw->mac.default_addr_setted = false;
5277         return 0;
5278 }
5279
5280 static void
5281 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
5282 {
5283         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5284         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5285         struct hns3_adapter *hns = dev->data->dev_private;
5286         struct hns3_hw *hw = &hns->hw;
5287         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
5288         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5289         uint16_t q_id;
5290
5291         if (dev->data->dev_conf.intr_conf.rxq == 0)
5292                 return;
5293
5294         /* unmap the ring with vector */
5295         if (rte_intr_allow_others(intr_handle)) {
5296                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5297                 base = RTE_INTR_VEC_RXTX_OFFSET;
5298         }
5299         if (rte_intr_dp_is_en(intr_handle)) {
5300                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5301                         (void)hns3_bind_ring_with_vector(hw, vec, false,
5302                                                          HNS3_RING_TYPE_RX,
5303                                                          q_id);
5304                         if (vec < base + intr_handle->nb_efd - 1)
5305                                 vec++;
5306                 }
5307         }
5308         /* Clean datapath event and queue/vec mapping */
5309         rte_intr_efd_disable(intr_handle);
5310         if (intr_handle->intr_vec) {
5311                 rte_free(intr_handle->intr_vec);
5312                 intr_handle->intr_vec = NULL;
5313         }
5314 }
5315
5316 static int
5317 hns3_dev_stop(struct rte_eth_dev *dev)
5318 {
5319         struct hns3_adapter *hns = dev->data->dev_private;
5320         struct hns3_hw *hw = &hns->hw;
5321
5322         PMD_INIT_FUNC_TRACE();
5323         dev->data->dev_started = 0;
5324
5325         hw->adapter_state = HNS3_NIC_STOPPING;
5326         hns3_set_rxtx_function(dev);
5327         rte_wmb();
5328         /* Disable datapath on secondary process. */
5329         hns3_mp_req_stop_rxtx(dev);
5330         /* Prevent crashes when queues are still in use. */
5331         rte_delay_ms(hw->tqps_num);
5332
5333         rte_spinlock_lock(&hw->lock);
5334         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5335                 hns3_tm_dev_stop_proc(hw);
5336                 hns3_config_mac_tnl_int(hw, false);
5337                 hns3_stop_tqps(hw);
5338                 hns3_do_stop(hns);
5339                 hns3_unmap_rx_interrupt(dev);
5340                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5341         }
5342         hns3_rx_scattered_reset(dev);
5343         rte_eal_alarm_cancel(hns3_service_handler, dev);
5344         rte_spinlock_unlock(&hw->lock);
5345
5346         return 0;
5347 }
5348
5349 static int
5350 hns3_dev_close(struct rte_eth_dev *eth_dev)
5351 {
5352         struct hns3_adapter *hns = eth_dev->data->dev_private;
5353         struct hns3_hw *hw = &hns->hw;
5354         int ret = 0;
5355
5356         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5357                 rte_free(eth_dev->process_private);
5358                 eth_dev->process_private = NULL;
5359                 return 0;
5360         }
5361
5362         if (hw->adapter_state == HNS3_NIC_STARTED)
5363                 ret = hns3_dev_stop(eth_dev);
5364
5365         hw->adapter_state = HNS3_NIC_CLOSING;
5366         hns3_reset_abort(hns);
5367         hw->adapter_state = HNS3_NIC_CLOSED;
5368
5369         hns3_configure_all_mc_mac_addr(hns, true);
5370         hns3_remove_all_vlan_table(hns);
5371         hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5372         hns3_uninit_pf(eth_dev);
5373         hns3_free_all_queues(eth_dev);
5374         rte_free(hw->reset.wait_data);
5375         rte_free(eth_dev->process_private);
5376         eth_dev->process_private = NULL;
5377         hns3_mp_uninit_primary();
5378         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5379
5380         return ret;
5381 }
5382
5383 static int
5384 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5385 {
5386         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5387         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5388
5389         fc_conf->pause_time = pf->pause_time;
5390
5391         /* return fc current mode */
5392         switch (hw->current_mode) {
5393         case HNS3_FC_FULL:
5394                 fc_conf->mode = RTE_FC_FULL;
5395                 break;
5396         case HNS3_FC_TX_PAUSE:
5397                 fc_conf->mode = RTE_FC_TX_PAUSE;
5398                 break;
5399         case HNS3_FC_RX_PAUSE:
5400                 fc_conf->mode = RTE_FC_RX_PAUSE;
5401                 break;
5402         case HNS3_FC_NONE:
5403         default:
5404                 fc_conf->mode = RTE_FC_NONE;
5405                 break;
5406         }
5407
5408         return 0;
5409 }
5410
5411 static void
5412 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
5413 {
5414         switch (mode) {
5415         case RTE_FC_NONE:
5416                 hw->requested_mode = HNS3_FC_NONE;
5417                 break;
5418         case RTE_FC_RX_PAUSE:
5419                 hw->requested_mode = HNS3_FC_RX_PAUSE;
5420                 break;
5421         case RTE_FC_TX_PAUSE:
5422                 hw->requested_mode = HNS3_FC_TX_PAUSE;
5423                 break;
5424         case RTE_FC_FULL:
5425                 hw->requested_mode = HNS3_FC_FULL;
5426                 break;
5427         default:
5428                 hw->requested_mode = HNS3_FC_NONE;
5429                 hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
5430                           "configured to RTE_FC_NONE", mode);
5431                 break;
5432         }
5433 }
5434
5435 static int
5436 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5437 {
5438         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5439         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5440         int ret;
5441
5442         if (fc_conf->high_water || fc_conf->low_water ||
5443             fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5444                 hns3_err(hw, "Unsupported flow control settings specified, "
5445                          "high_water(%u), low_water(%u), send_xon(%u) and "
5446                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5447                          fc_conf->high_water, fc_conf->low_water,
5448                          fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5449                 return -EINVAL;
5450         }
5451         if (fc_conf->autoneg) {
5452                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5453                 return -EINVAL;
5454         }
5455         if (!fc_conf->pause_time) {
5456                 hns3_err(hw, "Invalid pause time %u setting.",
5457                          fc_conf->pause_time);
5458                 return -EINVAL;
5459         }
5460
5461         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5462             hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5463                 hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5464                          "current_fc_status = %d", hw->current_fc_status);
5465                 return -EOPNOTSUPP;
5466         }
5467
5468         hns3_get_fc_mode(hw, fc_conf->mode);
5469         if (hw->requested_mode == hw->current_mode &&
5470             pf->pause_time == fc_conf->pause_time)
5471                 return 0;
5472
5473         rte_spinlock_lock(&hw->lock);
5474         ret = hns3_fc_enable(dev, fc_conf);
5475         rte_spinlock_unlock(&hw->lock);
5476
5477         return ret;
5478 }
5479
5480 static int
5481 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5482                             struct rte_eth_pfc_conf *pfc_conf)
5483 {
5484         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5485         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5486         uint8_t priority;
5487         int ret;
5488
5489         if (!hns3_dev_dcb_supported(hw)) {
5490                 hns3_err(hw, "This port does not support dcb configurations.");
5491                 return -EOPNOTSUPP;
5492         }
5493
5494         if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5495             pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5496                 hns3_err(hw, "Unsupported flow control settings specified, "
5497                          "high_water(%u), low_water(%u), send_xon(%u) and "
5498                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5499                          pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5500                          pfc_conf->fc.send_xon,
5501                          pfc_conf->fc.mac_ctrl_frame_fwd);
5502                 return -EINVAL;
5503         }
5504         if (pfc_conf->fc.autoneg) {
5505                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5506                 return -EINVAL;
5507         }
5508         if (pfc_conf->fc.pause_time == 0) {
5509                 hns3_err(hw, "Invalid pause time %u setting.",
5510                          pfc_conf->fc.pause_time);
5511                 return -EINVAL;
5512         }
5513
5514         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5515             hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5516                 hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5517                              "current_fc_status = %d", hw->current_fc_status);
5518                 return -EOPNOTSUPP;
5519         }
5520
5521         priority = pfc_conf->priority;
5522         hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5523         if (hw->dcb_info.pfc_en & BIT(priority) &&
5524             hw->requested_mode == hw->current_mode &&
5525             pfc_conf->fc.pause_time == pf->pause_time)
5526                 return 0;
5527
5528         rte_spinlock_lock(&hw->lock);
5529         ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5530         rte_spinlock_unlock(&hw->lock);
5531
5532         return ret;
5533 }
5534
5535 static int
5536 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5537 {
5538         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5539         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5540         enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5541         int i;
5542
5543         rte_spinlock_lock(&hw->lock);
5544         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5545                 dcb_info->nb_tcs = pf->local_max_tc;
5546         else
5547                 dcb_info->nb_tcs = 1;
5548
5549         for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5550                 dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5551         for (i = 0; i < dcb_info->nb_tcs; i++)
5552                 dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5553
5554         for (i = 0; i < hw->num_tc; i++) {
5555                 dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5556                 dcb_info->tc_queue.tc_txq[0][i].base =
5557                                                 hw->tc_queue[i].tqp_offset;
5558                 dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5559                 dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5560                                                 hw->tc_queue[i].tqp_count;
5561         }
5562         rte_spinlock_unlock(&hw->lock);
5563
5564         return 0;
5565 }
5566
5567 static int
5568 hns3_reinit_dev(struct hns3_adapter *hns)
5569 {
5570         struct hns3_hw *hw = &hns->hw;
5571         int ret;
5572
5573         ret = hns3_cmd_init(hw);
5574         if (ret) {
5575                 hns3_err(hw, "Failed to init cmd: %d", ret);
5576                 return ret;
5577         }
5578
5579         ret = hns3_reset_all_tqps(hns);
5580         if (ret) {
5581                 hns3_err(hw, "Failed to reset all queues: %d", ret);
5582                 return ret;
5583         }
5584
5585         ret = hns3_init_hardware(hns);
5586         if (ret) {
5587                 hns3_err(hw, "Failed to init hardware: %d", ret);
5588                 return ret;
5589         }
5590
5591         ret = hns3_enable_hw_error_intr(hns, true);
5592         if (ret) {
5593                 hns3_err(hw, "fail to enable hw error interrupts: %d",
5594                              ret);
5595                 return ret;
5596         }
5597         hns3_info(hw, "Reset done, driver initialization finished.");
5598
5599         return 0;
5600 }
5601
5602 static bool
5603 is_pf_reset_done(struct hns3_hw *hw)
5604 {
5605         uint32_t val, reg, reg_bit;
5606
5607         switch (hw->reset.level) {
5608         case HNS3_IMP_RESET:
5609                 reg = HNS3_GLOBAL_RESET_REG;
5610                 reg_bit = HNS3_IMP_RESET_BIT;
5611                 break;
5612         case HNS3_GLOBAL_RESET:
5613                 reg = HNS3_GLOBAL_RESET_REG;
5614                 reg_bit = HNS3_GLOBAL_RESET_BIT;
5615                 break;
5616         case HNS3_FUNC_RESET:
5617                 reg = HNS3_FUN_RST_ING;
5618                 reg_bit = HNS3_FUN_RST_ING_B;
5619                 break;
5620         case HNS3_FLR_RESET:
5621         default:
5622                 hns3_err(hw, "Wait for unsupported reset level: %d",
5623                          hw->reset.level);
5624                 return true;
5625         }
5626         val = hns3_read_dev(hw, reg);
5627         if (hns3_get_bit(val, reg_bit))
5628                 return false;
5629         else
5630                 return true;
5631 }
5632
5633 bool
5634 hns3_is_reset_pending(struct hns3_adapter *hns)
5635 {
5636         struct hns3_hw *hw = &hns->hw;
5637         enum hns3_reset_level reset;
5638
5639         hns3_check_event_cause(hns, NULL);
5640         reset = hns3_get_reset_level(hns, &hw->reset.pending);
5641         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5642                 hns3_warn(hw, "High level reset %d is pending", reset);
5643                 return true;
5644         }
5645         reset = hns3_get_reset_level(hns, &hw->reset.request);
5646         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5647                 hns3_warn(hw, "High level reset %d is request", reset);
5648                 return true;
5649         }
5650         return false;
5651 }
5652
5653 static int
5654 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5655 {
5656         struct hns3_hw *hw = &hns->hw;
5657         struct hns3_wait_data *wait_data = hw->reset.wait_data;
5658         struct timeval tv;
5659
5660         if (wait_data->result == HNS3_WAIT_SUCCESS)
5661                 return 0;
5662         else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5663                 gettimeofday(&tv, NULL);
5664                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5665                           tv.tv_sec, tv.tv_usec);
5666                 return -ETIME;
5667         } else if (wait_data->result == HNS3_WAIT_REQUEST)
5668                 return -EAGAIN;
5669
5670         wait_data->hns = hns;
5671         wait_data->check_completion = is_pf_reset_done;
5672         wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5673                                       HNS3_RESET_WAIT_MS + get_timeofday_ms();
5674         wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5675         wait_data->count = HNS3_RESET_WAIT_CNT;
5676         wait_data->result = HNS3_WAIT_REQUEST;
5677         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5678         return -EAGAIN;
5679 }
5680
5681 static int
5682 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5683 {
5684         struct hns3_cmd_desc desc;
5685         struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5686
5687         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5688         hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5689         req->fun_reset_vfid = func_id;
5690
5691         return hns3_cmd_send(hw, &desc, 1);
5692 }
5693
5694 static int
5695 hns3_imp_reset_cmd(struct hns3_hw *hw)
5696 {
5697         struct hns3_cmd_desc desc;
5698
5699         hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5700         desc.data[0] = 0xeedd;
5701
5702         return hns3_cmd_send(hw, &desc, 1);
5703 }
5704
5705 static void
5706 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5707 {
5708         struct hns3_hw *hw = &hns->hw;
5709         struct timeval tv;
5710         uint32_t val;
5711
5712         gettimeofday(&tv, NULL);
5713         if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5714             hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5715                 hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5716                           tv.tv_sec, tv.tv_usec);
5717                 return;
5718         }
5719
5720         switch (reset_level) {
5721         case HNS3_IMP_RESET:
5722                 hns3_imp_reset_cmd(hw);
5723                 hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5724                           tv.tv_sec, tv.tv_usec);
5725                 break;
5726         case HNS3_GLOBAL_RESET:
5727                 val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5728                 hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5729                 hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5730                 hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5731                           tv.tv_sec, tv.tv_usec);
5732                 break;
5733         case HNS3_FUNC_RESET:
5734                 hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5735                           tv.tv_sec, tv.tv_usec);
5736                 /* schedule again to check later */
5737                 hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5738                 hns3_schedule_reset(hns);
5739                 break;
5740         default:
5741                 hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5742                 return;
5743         }
5744         hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5745 }
5746
5747 static enum hns3_reset_level
5748 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5749 {
5750         struct hns3_hw *hw = &hns->hw;
5751         enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5752
5753         /* Return the highest priority reset level amongst all */
5754         if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5755                 reset_level = HNS3_IMP_RESET;
5756         else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5757                 reset_level = HNS3_GLOBAL_RESET;
5758         else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5759                 reset_level = HNS3_FUNC_RESET;
5760         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5761                 reset_level = HNS3_FLR_RESET;
5762
5763         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5764                 return HNS3_NONE_RESET;
5765
5766         return reset_level;
5767 }
5768
5769 static void
5770 hns3_record_imp_error(struct hns3_adapter *hns)
5771 {
5772         struct hns3_hw *hw = &hns->hw;
5773         uint32_t reg_val;
5774
5775         reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5776         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5777                 hns3_warn(hw, "Detected IMP RD poison!");
5778                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5779                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5780         }
5781
5782         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5783                 hns3_warn(hw, "Detected IMP CMDQ error!");
5784                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5785                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5786         }
5787 }
5788
5789 static int
5790 hns3_prepare_reset(struct hns3_adapter *hns)
5791 {
5792         struct hns3_hw *hw = &hns->hw;
5793         uint32_t reg_val;
5794         int ret;
5795
5796         switch (hw->reset.level) {
5797         case HNS3_FUNC_RESET:
5798                 ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5799                 if (ret)
5800                         return ret;
5801
5802                 /*
5803                  * After performaning pf reset, it is not necessary to do the
5804                  * mailbox handling or send any command to firmware, because
5805                  * any mailbox handling or command to firmware is only valid
5806                  * after hns3_cmd_init is called.
5807                  */
5808                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
5809                 hw->reset.stats.request_cnt++;
5810                 break;
5811         case HNS3_IMP_RESET:
5812                 hns3_record_imp_error(hns);
5813                 reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5814                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5815                                BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5816                 break;
5817         default:
5818                 break;
5819         }
5820         return 0;
5821 }
5822
5823 static int
5824 hns3_set_rst_done(struct hns3_hw *hw)
5825 {
5826         struct hns3_pf_rst_done_cmd *req;
5827         struct hns3_cmd_desc desc;
5828
5829         req = (struct hns3_pf_rst_done_cmd *)desc.data;
5830         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5831         req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5832         return hns3_cmd_send(hw, &desc, 1);
5833 }
5834
5835 static int
5836 hns3_stop_service(struct hns3_adapter *hns)
5837 {
5838         struct hns3_hw *hw = &hns->hw;
5839         struct rte_eth_dev *eth_dev;
5840
5841         eth_dev = &rte_eth_devices[hw->data->port_id];
5842         if (hw->adapter_state == HNS3_NIC_STARTED) {
5843                 rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5844                 hns3_update_link_status_and_event(hw);
5845         }
5846         hw->mac.link_status = ETH_LINK_DOWN;
5847
5848         hns3_set_rxtx_function(eth_dev);
5849         rte_wmb();
5850         /* Disable datapath on secondary process. */
5851         hns3_mp_req_stop_rxtx(eth_dev);
5852         rte_delay_ms(hw->tqps_num);
5853
5854         rte_spinlock_lock(&hw->lock);
5855         if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5856             hw->adapter_state == HNS3_NIC_STOPPING) {
5857                 hns3_enable_all_queues(hw, false);
5858                 hns3_do_stop(hns);
5859                 hw->reset.mbuf_deferred_free = true;
5860         } else
5861                 hw->reset.mbuf_deferred_free = false;
5862
5863         /*
5864          * It is cumbersome for hardware to pick-and-choose entries for deletion
5865          * from table space. Hence, for function reset software intervention is
5866          * required to delete the entries
5867          */
5868         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
5869                 hns3_configure_all_mc_mac_addr(hns, true);
5870         rte_spinlock_unlock(&hw->lock);
5871
5872         return 0;
5873 }
5874
5875 static int
5876 hns3_start_service(struct hns3_adapter *hns)
5877 {
5878         struct hns3_hw *hw = &hns->hw;
5879         struct rte_eth_dev *eth_dev;
5880
5881         if (hw->reset.level == HNS3_IMP_RESET ||
5882             hw->reset.level == HNS3_GLOBAL_RESET)
5883                 hns3_set_rst_done(hw);
5884         eth_dev = &rte_eth_devices[hw->data->port_id];
5885         hns3_set_rxtx_function(eth_dev);
5886         hns3_mp_req_start_rxtx(eth_dev);
5887         if (hw->adapter_state == HNS3_NIC_STARTED) {
5888                 /*
5889                  * This API parent function already hold the hns3_hw.lock, the
5890                  * hns3_service_handler may report lse, in bonding application
5891                  * it will call driver's ops which may acquire the hns3_hw.lock
5892                  * again, thus lead to deadlock.
5893                  * We defer calls hns3_service_handler to avoid the deadlock.
5894                  */
5895                 rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
5896                                   hns3_service_handler, eth_dev);
5897
5898                 /* Enable interrupt of all rx queues before enabling queues */
5899                 hns3_dev_all_rx_queue_intr_enable(hw, true);
5900                 /*
5901                  * Enable state of each rxq and txq will be recovered after
5902                  * reset, so we need to restore them before enable all tqps;
5903                  */
5904                 hns3_restore_tqp_enable_state(hw);
5905                 /*
5906                  * When finished the initialization, enable queues to receive
5907                  * and transmit packets.
5908                  */
5909                 hns3_enable_all_queues(hw, true);
5910         }
5911
5912         return 0;
5913 }
5914
5915 static int
5916 hns3_restore_conf(struct hns3_adapter *hns)
5917 {
5918         struct hns3_hw *hw = &hns->hw;
5919         int ret;
5920
5921         ret = hns3_configure_all_mac_addr(hns, false);
5922         if (ret)
5923                 return ret;
5924
5925         ret = hns3_configure_all_mc_mac_addr(hns, false);
5926         if (ret)
5927                 goto err_mc_mac;
5928
5929         ret = hns3_dev_promisc_restore(hns);
5930         if (ret)
5931                 goto err_promisc;
5932
5933         ret = hns3_restore_vlan_table(hns);
5934         if (ret)
5935                 goto err_promisc;
5936
5937         ret = hns3_restore_vlan_conf(hns);
5938         if (ret)
5939                 goto err_promisc;
5940
5941         ret = hns3_restore_all_fdir_filter(hns);
5942         if (ret)
5943                 goto err_promisc;
5944
5945         ret = hns3_restore_rx_interrupt(hw);
5946         if (ret)
5947                 goto err_promisc;
5948
5949         ret = hns3_restore_gro_conf(hw);
5950         if (ret)
5951                 goto err_promisc;
5952
5953         ret = hns3_restore_fec(hw);
5954         if (ret)
5955                 goto err_promisc;
5956
5957         if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5958                 ret = hns3_do_start(hns, false);
5959                 if (ret)
5960                         goto err_promisc;
5961                 hns3_info(hw, "hns3 dev restart successful!");
5962         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
5963                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5964         return 0;
5965
5966 err_promisc:
5967         hns3_configure_all_mc_mac_addr(hns, true);
5968 err_mc_mac:
5969         hns3_configure_all_mac_addr(hns, true);
5970         return ret;
5971 }
5972
5973 static void
5974 hns3_reset_service(void *param)
5975 {
5976         struct hns3_adapter *hns = (struct hns3_adapter *)param;
5977         struct hns3_hw *hw = &hns->hw;
5978         enum hns3_reset_level reset_level;
5979         struct timeval tv_delta;
5980         struct timeval tv_start;
5981         struct timeval tv;
5982         uint64_t msec;
5983         int ret;
5984
5985         /*
5986          * The interrupt is not triggered within the delay time.
5987          * The interrupt may have been lost. It is necessary to handle
5988          * the interrupt to recover from the error.
5989          */
5990         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
5991                             SCHEDULE_DEFERRED) {
5992                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
5993                                   __ATOMIC_RELAXED);
5994                 hns3_err(hw, "Handling interrupts in delayed tasks");
5995                 hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5996                 reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5997                 if (reset_level == HNS3_NONE_RESET) {
5998                         hns3_err(hw, "No reset level is set, try IMP reset");
5999                         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
6000                 }
6001         }
6002         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
6003
6004         /*
6005          * Check if there is any ongoing reset in the hardware. This status can
6006          * be checked from reset_pending. If there is then, we need to wait for
6007          * hardware to complete reset.
6008          *    a. If we are able to figure out in reasonable time that hardware
6009          *       has fully resetted then, we can proceed with driver, client
6010          *       reset.
6011          *    b. else, we can come back later to check this status so re-sched
6012          *       now.
6013          */
6014         reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6015         if (reset_level != HNS3_NONE_RESET) {
6016                 gettimeofday(&tv_start, NULL);
6017                 ret = hns3_reset_process(hns, reset_level);
6018                 gettimeofday(&tv, NULL);
6019                 timersub(&tv, &tv_start, &tv_delta);
6020                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
6021                        tv_delta.tv_usec / USEC_PER_MSEC;
6022                 if (msec > HNS3_RESET_PROCESS_MS)
6023                         hns3_err(hw, "%d handle long time delta %" PRIx64
6024                                      " ms time=%ld.%.6ld",
6025                                  hw->reset.level, msec,
6026                                  tv.tv_sec, tv.tv_usec);
6027                 if (ret == -EAGAIN)
6028                         return;
6029         }
6030
6031         /* Check if we got any *new* reset requests to be honored */
6032         reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6033         if (reset_level != HNS3_NONE_RESET)
6034                 hns3_msix_process(hns, reset_level);
6035 }
6036
6037 static unsigned int
6038 hns3_get_speed_capa_num(uint16_t device_id)
6039 {
6040         unsigned int num;
6041
6042         switch (device_id) {
6043         case HNS3_DEV_ID_25GE:
6044         case HNS3_DEV_ID_25GE_RDMA:
6045                 num = 2;
6046                 break;
6047         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6048         case HNS3_DEV_ID_200G_RDMA:
6049                 num = 1;
6050                 break;
6051         default:
6052                 num = 0;
6053                 break;
6054         }
6055
6056         return num;
6057 }
6058
6059 static int
6060 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6061                         uint16_t device_id)
6062 {
6063         switch (device_id) {
6064         case HNS3_DEV_ID_25GE:
6065         /* fallthrough */
6066         case HNS3_DEV_ID_25GE_RDMA:
6067                 speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6068                 speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6069
6070                 /* In HNS3 device, the 25G NIC is compatible with 10G rate */
6071                 speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6072                 speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6073                 break;
6074         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6075                 speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6076                 speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6077                 break;
6078         case HNS3_DEV_ID_200G_RDMA:
6079                 speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6080                 speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6081                 break;
6082         default:
6083                 return -ENOTSUP;
6084         }
6085
6086         return 0;
6087 }
6088
6089 static int
6090 hns3_fec_get_capability(struct rte_eth_dev *dev,
6091                         struct rte_eth_fec_capa *speed_fec_capa,
6092                         unsigned int num)
6093 {
6094         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6095         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6096         uint16_t device_id = pci_dev->id.device_id;
6097         unsigned int capa_num;
6098         int ret;
6099
6100         capa_num = hns3_get_speed_capa_num(device_id);
6101         if (capa_num == 0) {
6102                 hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6103                          device_id);
6104                 return -ENOTSUP;
6105         }
6106
6107         if (speed_fec_capa == NULL || num < capa_num)
6108                 return capa_num;
6109
6110         ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6111         if (ret)
6112                 return -ENOTSUP;
6113
6114         return capa_num;
6115 }
6116
6117 static int
6118 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6119 {
6120         struct hns3_config_fec_cmd *req;
6121         struct hns3_cmd_desc desc;
6122         int ret;
6123
6124         /*
6125          * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6126          * in device of link speed
6127          * below 10 Gbps.
6128          */
6129         if (hw->mac.link_speed < ETH_SPEED_NUM_10G) {
6130                 *state = 0;
6131                 return 0;
6132         }
6133
6134         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6135         req = (struct hns3_config_fec_cmd *)desc.data;
6136         ret = hns3_cmd_send(hw, &desc, 1);
6137         if (ret) {
6138                 hns3_err(hw, "get current fec auto state failed, ret = %d",
6139                          ret);
6140                 return ret;
6141         }
6142
6143         *state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6144         return 0;
6145 }
6146
6147 static int
6148 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6149 {
6150 #define QUERY_ACTIVE_SPEED      1
6151         struct hns3_sfp_speed_cmd *resp;
6152         uint32_t tmp_fec_capa;
6153         uint8_t auto_state;
6154         struct hns3_cmd_desc desc;
6155         int ret;
6156
6157         /*
6158          * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6159          * configured FEC mode is returned.
6160          * If link is up, current FEC mode is returned.
6161          */
6162         if (hw->mac.link_status == ETH_LINK_DOWN) {
6163                 ret = get_current_fec_auto_state(hw, &auto_state);
6164                 if (ret)
6165                         return ret;
6166
6167                 if (auto_state == 0x1) {
6168                         *fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6169                         return 0;
6170                 }
6171         }
6172
6173         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
6174         resp = (struct hns3_sfp_speed_cmd *)desc.data;
6175         resp->query_type = QUERY_ACTIVE_SPEED;
6176
6177         ret = hns3_cmd_send(hw, &desc, 1);
6178         if (ret == -EOPNOTSUPP) {
6179                 hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6180                 return ret;
6181         } else if (ret) {
6182                 hns3_err(hw, "get FEC failed, ret = %d", ret);
6183                 return ret;
6184         }
6185
6186         /*
6187          * FEC mode order defined in hns3 hardware is inconsistend with
6188          * that defined in the ethdev library. So the sequence needs
6189          * to be converted.
6190          */
6191         switch (resp->active_fec) {
6192         case HNS3_HW_FEC_MODE_NOFEC:
6193                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6194                 break;
6195         case HNS3_HW_FEC_MODE_BASER:
6196                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6197                 break;
6198         case HNS3_HW_FEC_MODE_RS:
6199                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6200                 break;
6201         default:
6202                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6203                 break;
6204         }
6205
6206         *fec_capa = tmp_fec_capa;
6207         return 0;
6208 }
6209
6210 static int
6211 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6212 {
6213         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6214
6215         return hns3_fec_get_internal(hw, fec_capa);
6216 }
6217
6218 static int
6219 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6220 {
6221         struct hns3_config_fec_cmd *req;
6222         struct hns3_cmd_desc desc;
6223         int ret;
6224
6225         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6226
6227         req = (struct hns3_config_fec_cmd *)desc.data;
6228         switch (mode) {
6229         case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6230                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6231                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6232                 break;
6233         case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6234                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6235                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6236                 break;
6237         case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6238                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6239                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6240                 break;
6241         case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6242                 hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6243                 break;
6244         default:
6245                 return 0;
6246         }
6247         ret = hns3_cmd_send(hw, &desc, 1);
6248         if (ret)
6249                 hns3_err(hw, "set fec mode failed, ret = %d", ret);
6250
6251         return ret;
6252 }
6253
6254 static uint32_t
6255 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6256 {
6257         struct hns3_mac *mac = &hw->mac;
6258         uint32_t cur_capa;
6259
6260         switch (mac->link_speed) {
6261         case ETH_SPEED_NUM_10G:
6262                 cur_capa = fec_capa[1].capa;
6263                 break;
6264         case ETH_SPEED_NUM_25G:
6265         case ETH_SPEED_NUM_100G:
6266         case ETH_SPEED_NUM_200G:
6267                 cur_capa = fec_capa[0].capa;
6268                 break;
6269         default:
6270                 cur_capa = 0;
6271                 break;
6272         }
6273
6274         return cur_capa;
6275 }
6276
6277 static bool
6278 is_fec_mode_one_bit_set(uint32_t mode)
6279 {
6280         int cnt = 0;
6281         uint8_t i;
6282
6283         for (i = 0; i < sizeof(mode); i++)
6284                 if (mode >> i & 0x1)
6285                         cnt++;
6286
6287         return cnt == 1 ? true : false;
6288 }
6289
6290 static int
6291 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6292 {
6293 #define FEC_CAPA_NUM 2
6294         struct hns3_adapter *hns = dev->data->dev_private;
6295         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6296         struct hns3_pf *pf = &hns->pf;
6297
6298         struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6299         uint32_t cur_capa;
6300         uint32_t num = FEC_CAPA_NUM;
6301         int ret;
6302
6303         ret = hns3_fec_get_capability(dev, fec_capa, num);
6304         if (ret < 0)
6305                 return ret;
6306
6307         /* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
6308         if (!is_fec_mode_one_bit_set(mode))
6309                 hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD,"
6310                              "FEC mode should be only one bit set", mode);
6311
6312         /*
6313          * Check whether the configured mode is within the FEC capability.
6314          * If not, the configured mode will not be supported.
6315          */
6316         cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6317         if (!(cur_capa & mode)) {
6318                 hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6319                 return -EINVAL;
6320         }
6321
6322         ret = hns3_set_fec_hw(hw, mode);
6323         if (ret)
6324                 return ret;
6325
6326         pf->fec_mode = mode;
6327         return 0;
6328 }
6329
6330 static int
6331 hns3_restore_fec(struct hns3_hw *hw)
6332 {
6333         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6334         struct hns3_pf *pf = &hns->pf;
6335         uint32_t mode = pf->fec_mode;
6336         int ret;
6337
6338         ret = hns3_set_fec_hw(hw, mode);
6339         if (ret)
6340                 hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6341                          mode, ret);
6342
6343         return ret;
6344 }
6345
6346 static int
6347 hns3_query_dev_fec_info(struct hns3_hw *hw)
6348 {
6349         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6350         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6351         int ret;
6352
6353         ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6354         if (ret)
6355                 hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6356
6357         return ret;
6358 }
6359
6360 static bool
6361 hns3_optical_module_existed(struct hns3_hw *hw)
6362 {
6363         struct hns3_cmd_desc desc;
6364         bool existed;
6365         int ret;
6366
6367         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6368         ret = hns3_cmd_send(hw, &desc, 1);
6369         if (ret) {
6370                 hns3_err(hw,
6371                          "fail to get optical module exist state, ret = %d.\n",
6372                          ret);
6373                 return false;
6374         }
6375         existed = !!desc.data[0];
6376
6377         return existed;
6378 }
6379
6380 static int
6381 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6382                                 uint32_t len, uint8_t *data)
6383 {
6384 #define HNS3_SFP_INFO_CMD_NUM 6
6385 #define HNS3_SFP_INFO_MAX_LEN \
6386         (HNS3_SFP_INFO_BD0_LEN + \
6387         (HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6388         struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6389         struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6390         uint16_t read_len;
6391         uint16_t copy_len;
6392         int ret;
6393         int i;
6394
6395         for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6396                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6397                                           true);
6398                 if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6399                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6400         }
6401
6402         sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6403         sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6404         read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6405         sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6406
6407         ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6408         if (ret) {
6409                 hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
6410                                 ret);
6411                 return ret;
6412         }
6413
6414         /* The data format in BD0 is different with the others. */
6415         copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6416         memcpy(data, sfp_info_bd0->data, copy_len);
6417         read_len = copy_len;
6418
6419         for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6420                 if (read_len >= len)
6421                         break;
6422
6423                 copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6424                 memcpy(data + read_len, desc[i].data, copy_len);
6425                 read_len += copy_len;
6426         }
6427
6428         return (int)read_len;
6429 }
6430
6431 static int
6432 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6433                        struct rte_dev_eeprom_info *info)
6434 {
6435         struct hns3_adapter *hns = dev->data->dev_private;
6436         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6437         uint32_t offset = info->offset;
6438         uint32_t len = info->length;
6439         uint8_t *data = info->data;
6440         uint32_t read_len = 0;
6441
6442         if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6443                 return -ENOTSUP;
6444
6445         if (!hns3_optical_module_existed(hw)) {
6446                 hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
6447                 return -EIO;
6448         }
6449
6450         while (read_len < len) {
6451                 int ret;
6452                 ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6453                                                   len - read_len,
6454                                                   data + read_len);
6455                 if (ret < 0)
6456                         return -EIO;
6457                 read_len += ret;
6458         }
6459
6460         return 0;
6461 }
6462
6463 static int
6464 hns3_get_module_info(struct rte_eth_dev *dev,
6465                      struct rte_eth_dev_module_info *modinfo)
6466 {
6467 #define HNS3_SFF8024_ID_SFP             0x03
6468 #define HNS3_SFF8024_ID_QSFP_8438       0x0c
6469 #define HNS3_SFF8024_ID_QSFP_8436_8636  0x0d
6470 #define HNS3_SFF8024_ID_QSFP28_8636     0x11
6471 #define HNS3_SFF_8636_V1_3              0x03
6472         struct hns3_adapter *hns = dev->data->dev_private;
6473         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6474         struct rte_dev_eeprom_info info;
6475         struct hns3_sfp_type sfp_type;
6476         int ret;
6477
6478         memset(&sfp_type, 0, sizeof(sfp_type));
6479         memset(&info, 0, sizeof(info));
6480         info.data = (uint8_t *)&sfp_type;
6481         info.length = sizeof(sfp_type);
6482         ret = hns3_get_module_eeprom(dev, &info);
6483         if (ret)
6484                 return ret;
6485
6486         switch (sfp_type.type) {
6487         case HNS3_SFF8024_ID_SFP:
6488                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
6489                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6490                 break;
6491         case HNS3_SFF8024_ID_QSFP_8438:
6492                 modinfo->type = RTE_ETH_MODULE_SFF_8436;
6493                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6494                 break;
6495         case HNS3_SFF8024_ID_QSFP_8436_8636:
6496                 if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6497                         modinfo->type = RTE_ETH_MODULE_SFF_8436;
6498                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6499                 } else {
6500                         modinfo->type = RTE_ETH_MODULE_SFF_8636;
6501                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6502                 }
6503                 break;
6504         case HNS3_SFF8024_ID_QSFP28_8636:
6505                 modinfo->type = RTE_ETH_MODULE_SFF_8636;
6506                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6507                 break;
6508         default:
6509                 hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
6510                          sfp_type.type, sfp_type.ext_type);
6511                 return -EINVAL;
6512         }
6513
6514         return 0;
6515 }
6516
6517 static int
6518 hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
6519 {
6520         uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
6521
6522         RTE_SET_USED(key);
6523
6524         if (strcmp(value, "vec") == 0)
6525                 hint = HNS3_IO_FUNC_HINT_VEC;
6526         else if (strcmp(value, "sve") == 0)
6527                 hint = HNS3_IO_FUNC_HINT_SVE;
6528         else if (strcmp(value, "simple") == 0)
6529                 hint = HNS3_IO_FUNC_HINT_SIMPLE;
6530         else if (strcmp(value, "common") == 0)
6531                 hint = HNS3_IO_FUNC_HINT_COMMON;
6532
6533         /* If the hint is valid then update output parameters */
6534         if (hint != HNS3_IO_FUNC_HINT_NONE)
6535                 *(uint32_t *)extra_args = hint;
6536
6537         return 0;
6538 }
6539
6540 static const char *
6541 hns3_get_io_hint_func_name(uint32_t hint)
6542 {
6543         switch (hint) {
6544         case HNS3_IO_FUNC_HINT_VEC:
6545                 return "vec";
6546         case HNS3_IO_FUNC_HINT_SVE:
6547                 return "sve";
6548         case HNS3_IO_FUNC_HINT_SIMPLE:
6549                 return "simple";
6550         case HNS3_IO_FUNC_HINT_COMMON:
6551                 return "common";
6552         default:
6553                 return "none";
6554         }
6555 }
6556
6557 void
6558 hns3_parse_devargs(struct rte_eth_dev *dev)
6559 {
6560         struct hns3_adapter *hns = dev->data->dev_private;
6561         uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6562         uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6563         struct hns3_hw *hw = &hns->hw;
6564         struct rte_kvargs *kvlist;
6565
6566         if (dev->device->devargs == NULL)
6567                 return;
6568
6569         kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
6570         if (!kvlist)
6571                 return;
6572
6573         rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
6574                            &hns3_parse_io_hint_func, &rx_func_hint);
6575         rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
6576                            &hns3_parse_io_hint_func, &tx_func_hint);
6577         rte_kvargs_free(kvlist);
6578
6579         if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6580                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
6581                           hns3_get_io_hint_func_name(rx_func_hint));
6582         hns->rx_func_hint = rx_func_hint;
6583         if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6584                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
6585                           hns3_get_io_hint_func_name(tx_func_hint));
6586         hns->tx_func_hint = tx_func_hint;
6587 }
6588
6589 static const struct eth_dev_ops hns3_eth_dev_ops = {
6590         .dev_configure      = hns3_dev_configure,
6591         .dev_start          = hns3_dev_start,
6592         .dev_stop           = hns3_dev_stop,
6593         .dev_close          = hns3_dev_close,
6594         .promiscuous_enable = hns3_dev_promiscuous_enable,
6595         .promiscuous_disable = hns3_dev_promiscuous_disable,
6596         .allmulticast_enable  = hns3_dev_allmulticast_enable,
6597         .allmulticast_disable = hns3_dev_allmulticast_disable,
6598         .mtu_set            = hns3_dev_mtu_set,
6599         .stats_get          = hns3_stats_get,
6600         .stats_reset        = hns3_stats_reset,
6601         .xstats_get         = hns3_dev_xstats_get,
6602         .xstats_get_names   = hns3_dev_xstats_get_names,
6603         .xstats_reset       = hns3_dev_xstats_reset,
6604         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6605         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6606         .dev_infos_get          = hns3_dev_infos_get,
6607         .fw_version_get         = hns3_fw_version_get,
6608         .rx_queue_setup         = hns3_rx_queue_setup,
6609         .tx_queue_setup         = hns3_tx_queue_setup,
6610         .rx_queue_release       = hns3_dev_rx_queue_release,
6611         .tx_queue_release       = hns3_dev_tx_queue_release,
6612         .rx_queue_start         = hns3_dev_rx_queue_start,
6613         .rx_queue_stop          = hns3_dev_rx_queue_stop,
6614         .tx_queue_start         = hns3_dev_tx_queue_start,
6615         .tx_queue_stop          = hns3_dev_tx_queue_stop,
6616         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6617         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6618         .rxq_info_get           = hns3_rxq_info_get,
6619         .txq_info_get           = hns3_txq_info_get,
6620         .rx_burst_mode_get      = hns3_rx_burst_mode_get,
6621         .tx_burst_mode_get      = hns3_tx_burst_mode_get,
6622         .flow_ctrl_get          = hns3_flow_ctrl_get,
6623         .flow_ctrl_set          = hns3_flow_ctrl_set,
6624         .priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6625         .mac_addr_add           = hns3_add_mac_addr,
6626         .mac_addr_remove        = hns3_remove_mac_addr,
6627         .mac_addr_set           = hns3_set_default_mac_addr,
6628         .set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6629         .link_update            = hns3_dev_link_update,
6630         .rss_hash_update        = hns3_dev_rss_hash_update,
6631         .rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6632         .reta_update            = hns3_dev_rss_reta_update,
6633         .reta_query             = hns3_dev_rss_reta_query,
6634         .flow_ops_get           = hns3_dev_flow_ops_get,
6635         .vlan_filter_set        = hns3_vlan_filter_set,
6636         .vlan_tpid_set          = hns3_vlan_tpid_set,
6637         .vlan_offload_set       = hns3_vlan_offload_set,
6638         .vlan_pvid_set          = hns3_vlan_pvid_set,
6639         .get_reg                = hns3_get_regs,
6640         .get_module_info        = hns3_get_module_info,
6641         .get_module_eeprom      = hns3_get_module_eeprom,
6642         .get_dcb_info           = hns3_get_dcb_info,
6643         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6644         .fec_get_capability     = hns3_fec_get_capability,
6645         .fec_get                = hns3_fec_get,
6646         .fec_set                = hns3_fec_set,
6647         .tm_ops_get             = hns3_tm_ops_get,
6648         .tx_done_cleanup        = hns3_tx_done_cleanup,
6649 };
6650
6651 static const struct hns3_reset_ops hns3_reset_ops = {
6652         .reset_service       = hns3_reset_service,
6653         .stop_service        = hns3_stop_service,
6654         .prepare_reset       = hns3_prepare_reset,
6655         .wait_hardware_ready = hns3_wait_hardware_ready,
6656         .reinit_dev          = hns3_reinit_dev,
6657         .restore_conf        = hns3_restore_conf,
6658         .start_service       = hns3_start_service,
6659 };
6660
6661 static int
6662 hns3_dev_init(struct rte_eth_dev *eth_dev)
6663 {
6664         struct hns3_adapter *hns = eth_dev->data->dev_private;
6665         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
6666         struct rte_ether_addr *eth_addr;
6667         struct hns3_hw *hw = &hns->hw;
6668         int ret;
6669
6670         PMD_INIT_FUNC_TRACE();
6671
6672         eth_dev->process_private = (struct hns3_process_private *)
6673             rte_zmalloc_socket("hns3_filter_list",
6674                                sizeof(struct hns3_process_private),
6675                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
6676         if (eth_dev->process_private == NULL) {
6677                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
6678                 return -ENOMEM;
6679         }
6680         /* initialize flow filter lists */
6681         hns3_filterlist_init(eth_dev);
6682
6683         hns3_set_rxtx_function(eth_dev);
6684         eth_dev->dev_ops = &hns3_eth_dev_ops;
6685         eth_dev->rx_queue_count = hns3_rx_queue_count;
6686         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6687                 ret = hns3_mp_init_secondary();
6688                 if (ret) {
6689                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
6690                                      "process, ret = %d", ret);
6691                         goto err_mp_init_secondary;
6692                 }
6693
6694                 hw->secondary_cnt++;
6695                 return 0;
6696         }
6697
6698         ret = hns3_mp_init_primary();
6699         if (ret) {
6700                 PMD_INIT_LOG(ERR,
6701                              "Failed to init for primary process, ret = %d",
6702                              ret);
6703                 goto err_mp_init_primary;
6704         }
6705
6706         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6707         hns->is_vf = false;
6708         hw->data = eth_dev->data;
6709         hns3_parse_devargs(eth_dev);
6710
6711         /*
6712          * Set default max packet size according to the mtu
6713          * default vale in DPDK frame.
6714          */
6715         hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6716
6717         ret = hns3_reset_init(hw);
6718         if (ret)
6719                 goto err_init_reset;
6720         hw->reset.ops = &hns3_reset_ops;
6721
6722         ret = hns3_init_pf(eth_dev);
6723         if (ret) {
6724                 PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6725                 goto err_init_pf;
6726         }
6727
6728         /* Allocate memory for storing MAC addresses */
6729         eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
6730                                                sizeof(struct rte_ether_addr) *
6731                                                HNS3_UC_MACADDR_NUM, 0);
6732         if (eth_dev->data->mac_addrs == NULL) {
6733                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
6734                              "to store MAC addresses",
6735                              sizeof(struct rte_ether_addr) *
6736                              HNS3_UC_MACADDR_NUM);
6737                 ret = -ENOMEM;
6738                 goto err_rte_zmalloc;
6739         }
6740
6741         eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
6742         if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
6743                 rte_eth_random_addr(hw->mac.mac_addr);
6744                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
6745                                 (struct rte_ether_addr *)hw->mac.mac_addr);
6746                 hns3_warn(hw, "default mac_addr from firmware is an invalid "
6747                           "unicast address, using random MAC address %s",
6748                           mac_str);
6749         }
6750         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
6751                             &eth_dev->data->mac_addrs[0]);
6752
6753         hw->adapter_state = HNS3_NIC_INITIALIZED;
6754
6755         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6756                             SCHEDULE_PENDING) {
6757                 hns3_err(hw, "Reschedule reset service after dev_init");
6758                 hns3_schedule_reset(hns);
6759         } else {
6760                 /* IMP will wait ready flag before reset */
6761                 hns3_notify_reset_ready(hw, false);
6762         }
6763
6764         hns3_info(hw, "hns3 dev initialization successful!");
6765         return 0;
6766
6767 err_rte_zmalloc:
6768         hns3_uninit_pf(eth_dev);
6769
6770 err_init_pf:
6771         rte_free(hw->reset.wait_data);
6772
6773 err_init_reset:
6774         hns3_mp_uninit_primary();
6775
6776 err_mp_init_primary:
6777 err_mp_init_secondary:
6778         eth_dev->dev_ops = NULL;
6779         eth_dev->rx_pkt_burst = NULL;
6780         eth_dev->rx_descriptor_status = NULL;
6781         eth_dev->tx_pkt_burst = NULL;
6782         eth_dev->tx_pkt_prepare = NULL;
6783         eth_dev->tx_descriptor_status = NULL;
6784         rte_free(eth_dev->process_private);
6785         eth_dev->process_private = NULL;
6786         return ret;
6787 }
6788
6789 static int
6790 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6791 {
6792         struct hns3_adapter *hns = eth_dev->data->dev_private;
6793         struct hns3_hw *hw = &hns->hw;
6794
6795         PMD_INIT_FUNC_TRACE();
6796
6797         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6798                 rte_free(eth_dev->process_private);
6799                 eth_dev->process_private = NULL;
6800                 return 0;
6801         }
6802
6803         if (hw->adapter_state < HNS3_NIC_CLOSING)
6804                 hns3_dev_close(eth_dev);
6805
6806         hw->adapter_state = HNS3_NIC_REMOVED;
6807         return 0;
6808 }
6809
6810 static int
6811 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6812                    struct rte_pci_device *pci_dev)
6813 {
6814         return rte_eth_dev_pci_generic_probe(pci_dev,
6815                                              sizeof(struct hns3_adapter),
6816                                              hns3_dev_init);
6817 }
6818
6819 static int
6820 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6821 {
6822         return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6823 }
6824
6825 static const struct rte_pci_id pci_id_hns3_map[] = {
6826         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6827         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6828         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6829         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6830         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6831         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6832         { .vendor_id = 0, }, /* sentinel */
6833 };
6834
6835 static struct rte_pci_driver rte_hns3_pmd = {
6836         .id_table = pci_id_hns3_map,
6837         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
6838         .probe = eth_hns3_pci_probe,
6839         .remove = eth_hns3_pci_remove,
6840 };
6841
6842 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6843 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6844 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6845 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
6846                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
6847                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common ");
6848 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
6849 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);