net/qede: accept bigger RSS table
[dpdk.git] / drivers / net / hns3 / hns3_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 #include <rte_kvargs.h>
10
11 #include "hns3_ethdev.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18
19 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE       32
20 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM       1
21
22 #define HNS3_SERVICE_INTERVAL           1000000 /* us */
23 #define HNS3_SERVICE_QUICK_INTERVAL     10
24 #define HNS3_INVALID_PVID               0xFFFF
25
26 #define HNS3_FILTER_TYPE_VF             0
27 #define HNS3_FILTER_TYPE_PORT           1
28 #define HNS3_FILTER_FE_EGRESS_V1_B      BIT(0)
29 #define HNS3_FILTER_FE_NIC_INGRESS_B    BIT(0)
30 #define HNS3_FILTER_FE_NIC_EGRESS_B     BIT(1)
31 #define HNS3_FILTER_FE_ROCE_INGRESS_B   BIT(2)
32 #define HNS3_FILTER_FE_ROCE_EGRESS_B    BIT(3)
33 #define HNS3_FILTER_FE_EGRESS           (HNS3_FILTER_FE_NIC_EGRESS_B \
34                                         | HNS3_FILTER_FE_ROCE_EGRESS_B)
35 #define HNS3_FILTER_FE_INGRESS          (HNS3_FILTER_FE_NIC_INGRESS_B \
36                                         | HNS3_FILTER_FE_ROCE_INGRESS_B)
37
38 /* Reset related Registers */
39 #define HNS3_GLOBAL_RESET_BIT           0
40 #define HNS3_CORE_RESET_BIT             1
41 #define HNS3_IMP_RESET_BIT              2
42 #define HNS3_FUN_RST_ING_B              0
43
44 #define HNS3_VECTOR0_IMP_RESET_INT_B    1
45 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B     4U
46 #define HNS3_VECTOR0_IMP_RD_POISON_B    5U
47 #define HNS3_VECTOR0_ALL_MSIX_ERR_B     6U
48
49 #define HNS3_RESET_WAIT_MS      100
50 #define HNS3_RESET_WAIT_CNT     200
51
52 /* FEC mode order defined in HNS3 hardware */
53 #define HNS3_HW_FEC_MODE_NOFEC  0
54 #define HNS3_HW_FEC_MODE_BASER  1
55 #define HNS3_HW_FEC_MODE_RS     2
56
57 enum hns3_evt_cause {
58         HNS3_VECTOR0_EVENT_RST,
59         HNS3_VECTOR0_EVENT_MBX,
60         HNS3_VECTOR0_EVENT_ERR,
61         HNS3_VECTOR0_EVENT_OTHER,
62 };
63
64 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
65         { ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
66                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
67                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
68
69         { ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
70                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
71                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
72                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
73
74         { ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
75                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
76                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
77
78         { ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
79                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
80                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
81                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
82
83         { ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
84                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
85                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
86
87         { ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
88                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
89                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
90 };
91
92 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
93                                                  uint64_t *levels);
94 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
95 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
96                                     int on);
97 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
98 static bool hns3_update_link_status(struct hns3_hw *hw);
99
100 static int hns3_add_mc_addr(struct hns3_hw *hw,
101                             struct rte_ether_addr *mac_addr);
102 static int hns3_remove_mc_addr(struct hns3_hw *hw,
103                             struct rte_ether_addr *mac_addr);
104 static int hns3_restore_fec(struct hns3_hw *hw);
105 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
106 static int hns3_do_stop(struct hns3_adapter *hns);
107
108 void hns3_ether_format_addr(char *buf, uint16_t size,
109                             const struct rte_ether_addr *ether_addr)
110 {
111         snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
112                 ether_addr->addr_bytes[0],
113                 ether_addr->addr_bytes[4],
114                 ether_addr->addr_bytes[5]);
115 }
116
117 static void
118 hns3_pf_disable_irq0(struct hns3_hw *hw)
119 {
120         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
121 }
122
123 static void
124 hns3_pf_enable_irq0(struct hns3_hw *hw)
125 {
126         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
127 }
128
129 static enum hns3_evt_cause
130 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
131                           uint32_t *vec_val)
132 {
133         struct hns3_hw *hw = &hns->hw;
134
135         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
136         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
137         *vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
138         if (!is_delay) {
139                 hw->reset.stats.imp_cnt++;
140                 hns3_warn(hw, "IMP reset detected, clear reset status");
141         } else {
142                 hns3_schedule_delayed_reset(hns);
143                 hns3_warn(hw, "IMP reset detected, don't clear reset status");
144         }
145
146         return HNS3_VECTOR0_EVENT_RST;
147 }
148
149 static enum hns3_evt_cause
150 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
151                              uint32_t *vec_val)
152 {
153         struct hns3_hw *hw = &hns->hw;
154
155         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
156         hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
157         *vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
158         if (!is_delay) {
159                 hw->reset.stats.global_cnt++;
160                 hns3_warn(hw, "Global reset detected, clear reset status");
161         } else {
162                 hns3_schedule_delayed_reset(hns);
163                 hns3_warn(hw,
164                           "Global reset detected, don't clear reset status");
165         }
166
167         return HNS3_VECTOR0_EVENT_RST;
168 }
169
170 static enum hns3_evt_cause
171 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
172 {
173         struct hns3_hw *hw = &hns->hw;
174         uint32_t vector0_int_stats;
175         uint32_t cmdq_src_val;
176         uint32_t hw_err_src_reg;
177         uint32_t val;
178         enum hns3_evt_cause ret;
179         bool is_delay;
180
181         /* fetch the events from their corresponding regs */
182         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
183         cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
184         hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
185
186         is_delay = clearval == NULL ? true : false;
187         /*
188          * Assumption: If by any chance reset and mailbox events are reported
189          * together then we will only process reset event and defer the
190          * processing of the mailbox events. Since, we would have not cleared
191          * RX CMDQ event this time we would receive again another interrupt
192          * from H/W just for the mailbox.
193          */
194         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
195                 ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
196                 goto out;
197         }
198
199         /* Global reset */
200         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
201                 ret = hns3_proc_global_reset_event(hns, is_delay, &val);
202                 goto out;
203         }
204
205         /* check for vector0 msix event source */
206         if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
207             hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
208                 val = vector0_int_stats | hw_err_src_reg;
209                 ret = HNS3_VECTOR0_EVENT_ERR;
210                 goto out;
211         }
212
213         /* check for vector0 mailbox(=CMDQ RX) event source */
214         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
215                 cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
216                 val = cmdq_src_val;
217                 ret = HNS3_VECTOR0_EVENT_MBX;
218                 goto out;
219         }
220
221         val = vector0_int_stats;
222         ret = HNS3_VECTOR0_EVENT_OTHER;
223 out:
224
225         if (clearval)
226                 *clearval = val;
227         return ret;
228 }
229
230 static void
231 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
232 {
233         if (event_type == HNS3_VECTOR0_EVENT_RST)
234                 hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
235         else if (event_type == HNS3_VECTOR0_EVENT_MBX)
236                 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
237 }
238
239 static void
240 hns3_clear_all_event_cause(struct hns3_hw *hw)
241 {
242         uint32_t vector0_int_stats;
243         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
244
245         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
246                 hns3_warn(hw, "Probe during IMP reset interrupt");
247
248         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
249                 hns3_warn(hw, "Probe during Global reset interrupt");
250
251         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
252                                BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
253                                BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
254                                BIT(HNS3_VECTOR0_CORERESET_INT_B));
255         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
256 }
257
258 static void
259 hns3_handle_mac_tnl(struct hns3_hw *hw)
260 {
261         struct hns3_cmd_desc desc;
262         uint32_t status;
263         int ret;
264
265         /* query and clear mac tnl interruptions */
266         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
267         ret = hns3_cmd_send(hw, &desc, 1);
268         if (ret) {
269                 hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
270                 return;
271         }
272
273         status = rte_le_to_cpu_32(desc.data[0]);
274         if (status) {
275                 hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
276                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
277                                           false);
278                 desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
279                 ret = hns3_cmd_send(hw, &desc, 1);
280                 if (ret)
281                         hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
282                                  ret);
283         }
284 }
285
286 static void
287 hns3_interrupt_handler(void *param)
288 {
289         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
290         struct hns3_adapter *hns = dev->data->dev_private;
291         struct hns3_hw *hw = &hns->hw;
292         enum hns3_evt_cause event_cause;
293         uint32_t clearval = 0;
294         uint32_t vector0_int;
295         uint32_t ras_int;
296         uint32_t cmdq_int;
297
298         /* Disable interrupt */
299         hns3_pf_disable_irq0(hw);
300
301         event_cause = hns3_check_event_cause(hns, &clearval);
302         vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
303         ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
304         cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
305         /* vector 0 interrupt is shared with reset and mailbox source events. */
306         if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
307                 hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
308                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
309                           vector0_int, ras_int, cmdq_int);
310                 hns3_handle_msix_error(hns, &hw->reset.request);
311                 hns3_handle_ras_error(hns, &hw->reset.request);
312                 hns3_handle_mac_tnl(hw);
313                 hns3_schedule_reset(hns);
314         } else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
315                 hns3_warn(hw, "received reset interrupt");
316                 hns3_schedule_reset(hns);
317         } else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
318                 hns3_dev_handle_mbx_msg(hw);
319         } else {
320                 hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
321                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
322                           vector0_int, ras_int, cmdq_int);
323         }
324
325         hns3_clear_event_cause(hw, event_cause, clearval);
326         /* Enable interrupt if it is not cause by reset */
327         hns3_pf_enable_irq0(hw);
328 }
329
330 static int
331 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
332 {
333 #define HNS3_VLAN_ID_OFFSET_STEP        160
334 #define HNS3_VLAN_BYTE_SIZE             8
335         struct hns3_vlan_filter_pf_cfg_cmd *req;
336         struct hns3_hw *hw = &hns->hw;
337         uint8_t vlan_offset_byte_val;
338         struct hns3_cmd_desc desc;
339         uint8_t vlan_offset_byte;
340         uint8_t vlan_offset_base;
341         int ret;
342
343         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
344
345         vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
346         vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
347                            HNS3_VLAN_BYTE_SIZE;
348         vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
349
350         req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
351         req->vlan_offset = vlan_offset_base;
352         req->vlan_cfg = on ? 0 : 1;
353         req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
354
355         ret = hns3_cmd_send(hw, &desc, 1);
356         if (ret)
357                 hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
358                          vlan_id, ret);
359
360         return ret;
361 }
362
363 static void
364 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
365 {
366         struct hns3_user_vlan_table *vlan_entry;
367         struct hns3_pf *pf = &hns->pf;
368
369         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
370                 if (vlan_entry->vlan_id == vlan_id) {
371                         if (vlan_entry->hd_tbl_status)
372                                 hns3_set_port_vlan_filter(hns, vlan_id, 0);
373                         LIST_REMOVE(vlan_entry, next);
374                         rte_free(vlan_entry);
375                         break;
376                 }
377         }
378 }
379
380 static void
381 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
382                         bool writen_to_tbl)
383 {
384         struct hns3_user_vlan_table *vlan_entry;
385         struct hns3_hw *hw = &hns->hw;
386         struct hns3_pf *pf = &hns->pf;
387
388         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
389                 if (vlan_entry->vlan_id == vlan_id)
390                         return;
391         }
392
393         vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
394         if (vlan_entry == NULL) {
395                 hns3_err(hw, "Failed to malloc hns3 vlan table");
396                 return;
397         }
398
399         vlan_entry->hd_tbl_status = writen_to_tbl;
400         vlan_entry->vlan_id = vlan_id;
401
402         LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
403 }
404
405 static int
406 hns3_restore_vlan_table(struct hns3_adapter *hns)
407 {
408         struct hns3_user_vlan_table *vlan_entry;
409         struct hns3_hw *hw = &hns->hw;
410         struct hns3_pf *pf = &hns->pf;
411         uint16_t vlan_id;
412         int ret = 0;
413
414         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
415                 return hns3_vlan_pvid_configure(hns,
416                                                 hw->port_base_vlan_cfg.pvid, 1);
417
418         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
419                 if (vlan_entry->hd_tbl_status) {
420                         vlan_id = vlan_entry->vlan_id;
421                         ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
422                         if (ret)
423                                 break;
424                 }
425         }
426
427         return ret;
428 }
429
430 static int
431 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
432 {
433         struct hns3_hw *hw = &hns->hw;
434         bool writen_to_tbl = false;
435         int ret = 0;
436
437         /*
438          * When vlan filter is enabled, hardware regards packets without vlan
439          * as packets with vlan 0. So, to receive packets without vlan, vlan id
440          * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
441          */
442         if (on == 0 && vlan_id == 0)
443                 return 0;
444
445         /*
446          * When port base vlan enabled, we use port base vlan as the vlan
447          * filter condition. In this case, we don't update vlan filter table
448          * when user add new vlan or remove exist vlan, just update the
449          * vlan list. The vlan id in vlan list will be writen in vlan filter
450          * table until port base vlan disabled
451          */
452         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
453                 ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
454                 writen_to_tbl = true;
455         }
456
457         if (ret == 0) {
458                 if (on)
459                         hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
460                 else
461                         hns3_rm_dev_vlan_table(hns, vlan_id);
462         }
463         return ret;
464 }
465
466 static int
467 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
468 {
469         struct hns3_adapter *hns = dev->data->dev_private;
470         struct hns3_hw *hw = &hns->hw;
471         int ret;
472
473         rte_spinlock_lock(&hw->lock);
474         ret = hns3_vlan_filter_configure(hns, vlan_id, on);
475         rte_spinlock_unlock(&hw->lock);
476         return ret;
477 }
478
479 static int
480 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
481                          uint16_t tpid)
482 {
483         struct hns3_rx_vlan_type_cfg_cmd *rx_req;
484         struct hns3_tx_vlan_type_cfg_cmd *tx_req;
485         struct hns3_hw *hw = &hns->hw;
486         struct hns3_cmd_desc desc;
487         int ret;
488
489         if ((vlan_type != ETH_VLAN_TYPE_INNER &&
490              vlan_type != ETH_VLAN_TYPE_OUTER)) {
491                 hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
492                 return -EINVAL;
493         }
494
495         if (tpid != RTE_ETHER_TYPE_VLAN) {
496                 hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
497                 return -EINVAL;
498         }
499
500         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
501         rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
502
503         if (vlan_type == ETH_VLAN_TYPE_OUTER) {
504                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
505                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
506         } else if (vlan_type == ETH_VLAN_TYPE_INNER) {
507                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
508                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
509                 rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
510                 rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
511         }
512
513         ret = hns3_cmd_send(hw, &desc, 1);
514         if (ret) {
515                 hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
516                          ret);
517                 return ret;
518         }
519
520         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
521
522         tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
523         tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
524         tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
525
526         ret = hns3_cmd_send(hw, &desc, 1);
527         if (ret)
528                 hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
529                          ret);
530         return ret;
531 }
532
533 static int
534 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
535                    uint16_t tpid)
536 {
537         struct hns3_adapter *hns = dev->data->dev_private;
538         struct hns3_hw *hw = &hns->hw;
539         int ret;
540
541         rte_spinlock_lock(&hw->lock);
542         ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
543         rte_spinlock_unlock(&hw->lock);
544         return ret;
545 }
546
547 static int
548 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
549                              struct hns3_rx_vtag_cfg *vcfg)
550 {
551         struct hns3_vport_vtag_rx_cfg_cmd *req;
552         struct hns3_hw *hw = &hns->hw;
553         struct hns3_cmd_desc desc;
554         uint16_t vport_id;
555         uint8_t bitmap;
556         int ret;
557
558         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
559
560         req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
561         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
562                      vcfg->strip_tag1_en ? 1 : 0);
563         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
564                      vcfg->strip_tag2_en ? 1 : 0);
565         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
566                      vcfg->vlan1_vlan_prionly ? 1 : 0);
567         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
568                      vcfg->vlan2_vlan_prionly ? 1 : 0);
569
570         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
571         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
572                      vcfg->strip_tag1_discard_en ? 1 : 0);
573         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
574                      vcfg->strip_tag2_discard_en ? 1 : 0);
575         /*
576          * In current version VF is not supported when PF is driven by DPDK
577          * driver, just need to configure parameters for PF vport.
578          */
579         vport_id = HNS3_PF_FUNC_ID;
580         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
581         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
582         req->vf_bitmap[req->vf_offset] = bitmap;
583
584         ret = hns3_cmd_send(hw, &desc, 1);
585         if (ret)
586                 hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
587         return ret;
588 }
589
590 static void
591 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
592                            struct hns3_rx_vtag_cfg *vcfg)
593 {
594         struct hns3_pf *pf = &hns->pf;
595         memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
596 }
597
598 static void
599 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
600                            struct hns3_tx_vtag_cfg *vcfg)
601 {
602         struct hns3_pf *pf = &hns->pf;
603         memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
604 }
605
606 static int
607 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
608 {
609         struct hns3_rx_vtag_cfg rxvlan_cfg;
610         struct hns3_hw *hw = &hns->hw;
611         int ret;
612
613         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
614                 rxvlan_cfg.strip_tag1_en = false;
615                 rxvlan_cfg.strip_tag2_en = enable;
616                 rxvlan_cfg.strip_tag2_discard_en = false;
617         } else {
618                 rxvlan_cfg.strip_tag1_en = enable;
619                 rxvlan_cfg.strip_tag2_en = true;
620                 rxvlan_cfg.strip_tag2_discard_en = true;
621         }
622
623         rxvlan_cfg.strip_tag1_discard_en = false;
624         rxvlan_cfg.vlan1_vlan_prionly = false;
625         rxvlan_cfg.vlan2_vlan_prionly = false;
626         rxvlan_cfg.rx_vlan_offload_en = enable;
627
628         ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
629         if (ret) {
630                 hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
631                 return ret;
632         }
633
634         hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
635
636         return ret;
637 }
638
639 static int
640 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
641                           uint8_t fe_type, bool filter_en, uint8_t vf_id)
642 {
643         struct hns3_vlan_filter_ctrl_cmd *req;
644         struct hns3_cmd_desc desc;
645         int ret;
646
647         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
648
649         req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
650         req->vlan_type = vlan_type;
651         req->vlan_fe = filter_en ? fe_type : 0;
652         req->vf_id = vf_id;
653
654         ret = hns3_cmd_send(hw, &desc, 1);
655         if (ret)
656                 hns3_err(hw, "set vlan filter fail, ret =%d", ret);
657
658         return ret;
659 }
660
661 static int
662 hns3_vlan_filter_init(struct hns3_adapter *hns)
663 {
664         struct hns3_hw *hw = &hns->hw;
665         int ret;
666
667         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
668                                         HNS3_FILTER_FE_EGRESS, false,
669                                         HNS3_PF_FUNC_ID);
670         if (ret) {
671                 hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
672                 return ret;
673         }
674
675         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
676                                         HNS3_FILTER_FE_INGRESS, false,
677                                         HNS3_PF_FUNC_ID);
678         if (ret)
679                 hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
680
681         return ret;
682 }
683
684 static int
685 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
686 {
687         struct hns3_hw *hw = &hns->hw;
688         int ret;
689
690         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
691                                         HNS3_FILTER_FE_INGRESS, enable,
692                                         HNS3_PF_FUNC_ID);
693         if (ret)
694                 hns3_err(hw, "failed to %s port vlan filter, ret = %d",
695                          enable ? "enable" : "disable", ret);
696
697         return ret;
698 }
699
700 static int
701 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
702 {
703         struct hns3_adapter *hns = dev->data->dev_private;
704         struct hns3_hw *hw = &hns->hw;
705         struct rte_eth_rxmode *rxmode;
706         unsigned int tmp_mask;
707         bool enable;
708         int ret = 0;
709
710         rte_spinlock_lock(&hw->lock);
711         rxmode = &dev->data->dev_conf.rxmode;
712         tmp_mask = (unsigned int)mask;
713         if (tmp_mask & ETH_VLAN_FILTER_MASK) {
714                 /* ignore vlan filter configuration during promiscuous mode */
715                 if (!dev->data->promiscuous) {
716                         /* Enable or disable VLAN filter */
717                         enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
718                                  true : false;
719
720                         ret = hns3_enable_vlan_filter(hns, enable);
721                         if (ret) {
722                                 rte_spinlock_unlock(&hw->lock);
723                                 hns3_err(hw, "failed to %s rx filter, ret = %d",
724                                          enable ? "enable" : "disable", ret);
725                                 return ret;
726                         }
727                 }
728         }
729
730         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
731                 /* Enable or disable VLAN stripping */
732                 enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
733                     true : false;
734
735                 ret = hns3_en_hw_strip_rxvtag(hns, enable);
736                 if (ret) {
737                         rte_spinlock_unlock(&hw->lock);
738                         hns3_err(hw, "failed to %s rx strip, ret = %d",
739                                  enable ? "enable" : "disable", ret);
740                         return ret;
741                 }
742         }
743
744         rte_spinlock_unlock(&hw->lock);
745
746         return ret;
747 }
748
749 static int
750 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
751                              struct hns3_tx_vtag_cfg *vcfg)
752 {
753         struct hns3_vport_vtag_tx_cfg_cmd *req;
754         struct hns3_cmd_desc desc;
755         struct hns3_hw *hw = &hns->hw;
756         uint16_t vport_id;
757         uint8_t bitmap;
758         int ret;
759
760         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
761
762         req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
763         req->def_vlan_tag1 = vcfg->default_tag1;
764         req->def_vlan_tag2 = vcfg->default_tag2;
765         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
766                      vcfg->accept_tag1 ? 1 : 0);
767         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
768                      vcfg->accept_untag1 ? 1 : 0);
769         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
770                      vcfg->accept_tag2 ? 1 : 0);
771         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
772                      vcfg->accept_untag2 ? 1 : 0);
773         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
774                      vcfg->insert_tag1_en ? 1 : 0);
775         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
776                      vcfg->insert_tag2_en ? 1 : 0);
777         hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
778
779         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
780         hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
781                      vcfg->tag_shift_mode_en ? 1 : 0);
782
783         /*
784          * In current version VF is not supported when PF is driven by DPDK
785          * driver, just need to configure parameters for PF vport.
786          */
787         vport_id = HNS3_PF_FUNC_ID;
788         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
789         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
790         req->vf_bitmap[req->vf_offset] = bitmap;
791
792         ret = hns3_cmd_send(hw, &desc, 1);
793         if (ret)
794                 hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
795
796         return ret;
797 }
798
799 static int
800 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
801                      uint16_t pvid)
802 {
803         struct hns3_hw *hw = &hns->hw;
804         struct hns3_tx_vtag_cfg txvlan_cfg;
805         int ret;
806
807         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
808                 txvlan_cfg.accept_tag1 = true;
809                 txvlan_cfg.insert_tag1_en = false;
810                 txvlan_cfg.default_tag1 = 0;
811         } else {
812                 txvlan_cfg.accept_tag1 =
813                         hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
814                 txvlan_cfg.insert_tag1_en = true;
815                 txvlan_cfg.default_tag1 = pvid;
816         }
817
818         txvlan_cfg.accept_untag1 = true;
819         txvlan_cfg.accept_tag2 = true;
820         txvlan_cfg.accept_untag2 = true;
821         txvlan_cfg.insert_tag2_en = false;
822         txvlan_cfg.default_tag2 = 0;
823         txvlan_cfg.tag_shift_mode_en = true;
824
825         ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
826         if (ret) {
827                 hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
828                          ret);
829                 return ret;
830         }
831
832         hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
833         return ret;
834 }
835
836
837 static void
838 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
839 {
840         struct hns3_user_vlan_table *vlan_entry;
841         struct hns3_pf *pf = &hns->pf;
842
843         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
844                 if (vlan_entry->hd_tbl_status) {
845                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
846                         vlan_entry->hd_tbl_status = false;
847                 }
848         }
849
850         if (is_del_list) {
851                 vlan_entry = LIST_FIRST(&pf->vlan_list);
852                 while (vlan_entry) {
853                         LIST_REMOVE(vlan_entry, next);
854                         rte_free(vlan_entry);
855                         vlan_entry = LIST_FIRST(&pf->vlan_list);
856                 }
857         }
858 }
859
860 static void
861 hns3_add_all_vlan_table(struct hns3_adapter *hns)
862 {
863         struct hns3_user_vlan_table *vlan_entry;
864         struct hns3_pf *pf = &hns->pf;
865
866         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
867                 if (!vlan_entry->hd_tbl_status) {
868                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
869                         vlan_entry->hd_tbl_status = true;
870                 }
871         }
872 }
873
874 static void
875 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
876 {
877         struct hns3_hw *hw = &hns->hw;
878         int ret;
879
880         hns3_rm_all_vlan_table(hns, true);
881         if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
882                 ret = hns3_set_port_vlan_filter(hns,
883                                                 hw->port_base_vlan_cfg.pvid, 0);
884                 if (ret) {
885                         hns3_err(hw, "Failed to remove all vlan table, ret =%d",
886                                  ret);
887                         return;
888                 }
889         }
890 }
891
892 static int
893 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
894                         uint16_t port_base_vlan_state, uint16_t new_pvid)
895 {
896         struct hns3_hw *hw = &hns->hw;
897         uint16_t old_pvid;
898         int ret;
899
900         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
901                 old_pvid = hw->port_base_vlan_cfg.pvid;
902                 if (old_pvid != HNS3_INVALID_PVID) {
903                         ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
904                         if (ret) {
905                                 hns3_err(hw, "failed to remove old pvid %u, "
906                                                 "ret = %d", old_pvid, ret);
907                                 return ret;
908                         }
909                 }
910
911                 hns3_rm_all_vlan_table(hns, false);
912                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
913                 if (ret) {
914                         hns3_err(hw, "failed to add new pvid %u, ret = %d",
915                                         new_pvid, ret);
916                         return ret;
917                 }
918         } else {
919                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
920                 if (ret) {
921                         hns3_err(hw, "failed to remove pvid %u, ret = %d",
922                                         new_pvid, ret);
923                         return ret;
924                 }
925
926                 hns3_add_all_vlan_table(hns);
927         }
928         return 0;
929 }
930
931 static int
932 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
933 {
934         struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
935         struct hns3_rx_vtag_cfg rx_vlan_cfg;
936         bool rx_strip_en;
937         int ret;
938
939         rx_strip_en = old_cfg->rx_vlan_offload_en;
940         if (on) {
941                 rx_vlan_cfg.strip_tag1_en = rx_strip_en;
942                 rx_vlan_cfg.strip_tag2_en = true;
943                 rx_vlan_cfg.strip_tag2_discard_en = true;
944         } else {
945                 rx_vlan_cfg.strip_tag1_en = false;
946                 rx_vlan_cfg.strip_tag2_en = rx_strip_en;
947                 rx_vlan_cfg.strip_tag2_discard_en = false;
948         }
949         rx_vlan_cfg.strip_tag1_discard_en = false;
950         rx_vlan_cfg.vlan1_vlan_prionly = false;
951         rx_vlan_cfg.vlan2_vlan_prionly = false;
952         rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
953
954         ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
955         if (ret)
956                 return ret;
957
958         hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
959         return ret;
960 }
961
962 static int
963 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
964 {
965         struct hns3_hw *hw = &hns->hw;
966         uint16_t port_base_vlan_state;
967         int ret;
968
969         if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
970                 if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
971                         hns3_warn(hw, "Invalid operation! As current pvid set "
972                                   "is %u, disable pvid %u is invalid",
973                                   hw->port_base_vlan_cfg.pvid, pvid);
974                 return 0;
975         }
976
977         port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
978                                     HNS3_PORT_BASE_VLAN_DISABLE;
979         ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
980         if (ret) {
981                 hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
982                          ret);
983                 return ret;
984         }
985
986         ret = hns3_en_pvid_strip(hns, on);
987         if (ret) {
988                 hns3_err(hw, "failed to config rx vlan strip for pvid, "
989                          "ret = %d", ret);
990                 return ret;
991         }
992
993         if (pvid == HNS3_INVALID_PVID)
994                 goto out;
995         ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
996         if (ret) {
997                 hns3_err(hw, "failed to update vlan filter entries, ret = %d",
998                          ret);
999                 return ret;
1000         }
1001
1002 out:
1003         hw->port_base_vlan_cfg.state = port_base_vlan_state;
1004         hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1005         return ret;
1006 }
1007
1008 static int
1009 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1010 {
1011         struct hns3_adapter *hns = dev->data->dev_private;
1012         struct hns3_hw *hw = &hns->hw;
1013         bool pvid_en_state_change;
1014         uint16_t pvid_state;
1015         int ret;
1016
1017         if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1018                 hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1019                          RTE_ETHER_MAX_VLAN_ID);
1020                 return -EINVAL;
1021         }
1022
1023         /*
1024          * If PVID configuration state change, should refresh the PVID
1025          * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1026          */
1027         pvid_state = hw->port_base_vlan_cfg.state;
1028         if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1029             (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1030                 pvid_en_state_change = false;
1031         else
1032                 pvid_en_state_change = true;
1033
1034         rte_spinlock_lock(&hw->lock);
1035         ret = hns3_vlan_pvid_configure(hns, pvid, on);
1036         rte_spinlock_unlock(&hw->lock);
1037         if (ret)
1038                 return ret;
1039         /*
1040          * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1041          * need be processed by PMD driver.
1042          */
1043         if (pvid_en_state_change &&
1044             hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1045                 hns3_update_all_queues_pvid_proc_en(hw);
1046
1047         return 0;
1048 }
1049
1050 static int
1051 hns3_default_vlan_config(struct hns3_adapter *hns)
1052 {
1053         struct hns3_hw *hw = &hns->hw;
1054         int ret;
1055
1056         /*
1057          * When vlan filter is enabled, hardware regards packets without vlan
1058          * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1059          * table, packets without vlan won't be received. So, add vlan 0 as
1060          * the default vlan.
1061          */
1062         ret = hns3_vlan_filter_configure(hns, 0, 1);
1063         if (ret)
1064                 hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1065         return ret;
1066 }
1067
1068 static int
1069 hns3_init_vlan_config(struct hns3_adapter *hns)
1070 {
1071         struct hns3_hw *hw = &hns->hw;
1072         int ret;
1073
1074         /*
1075          * This function can be called in the initialization and reset process,
1076          * when in reset process, it means that hardware had been reseted
1077          * successfully and we need to restore the hardware configuration to
1078          * ensure that the hardware configuration remains unchanged before and
1079          * after reset.
1080          */
1081         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1082                 hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1083                 hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1084         }
1085
1086         ret = hns3_vlan_filter_init(hns);
1087         if (ret) {
1088                 hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1089                 return ret;
1090         }
1091
1092         ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1093                                        RTE_ETHER_TYPE_VLAN);
1094         if (ret) {
1095                 hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1096                 return ret;
1097         }
1098
1099         /*
1100          * When in the reinit dev stage of the reset process, the following
1101          * vlan-related configurations may differ from those at initialization,
1102          * we will restore configurations to hardware in hns3_restore_vlan_table
1103          * and hns3_restore_vlan_conf later.
1104          */
1105         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1106                 ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1107                 if (ret) {
1108                         hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1109                         return ret;
1110                 }
1111
1112                 ret = hns3_en_hw_strip_rxvtag(hns, false);
1113                 if (ret) {
1114                         hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1115                                  ret);
1116                         return ret;
1117                 }
1118         }
1119
1120         return hns3_default_vlan_config(hns);
1121 }
1122
1123 static int
1124 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1125 {
1126         struct hns3_pf *pf = &hns->pf;
1127         struct hns3_hw *hw = &hns->hw;
1128         uint64_t offloads;
1129         bool enable;
1130         int ret;
1131
1132         if (!hw->data->promiscuous) {
1133                 /* restore vlan filter states */
1134                 offloads = hw->data->dev_conf.rxmode.offloads;
1135                 enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1136                 ret = hns3_enable_vlan_filter(hns, enable);
1137                 if (ret) {
1138                         hns3_err(hw, "failed to restore vlan rx filter conf, "
1139                                  "ret = %d", ret);
1140                         return ret;
1141                 }
1142         }
1143
1144         ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1145         if (ret) {
1146                 hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1147                 return ret;
1148         }
1149
1150         ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1151         if (ret)
1152                 hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1153
1154         return ret;
1155 }
1156
1157 static int
1158 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1159 {
1160         struct hns3_adapter *hns = dev->data->dev_private;
1161         struct rte_eth_dev_data *data = dev->data;
1162         struct rte_eth_txmode *txmode;
1163         struct hns3_hw *hw = &hns->hw;
1164         int mask;
1165         int ret;
1166
1167         txmode = &data->dev_conf.txmode;
1168         if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1169                 hns3_warn(hw,
1170                           "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1171                           "configuration is not supported! Ignore these two "
1172                           "parameters: hw_vlan_reject_tagged(%u), "
1173                           "hw_vlan_reject_untagged(%u)",
1174                           txmode->hw_vlan_reject_tagged,
1175                           txmode->hw_vlan_reject_untagged);
1176
1177         /* Apply vlan offload setting */
1178         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1179         ret = hns3_vlan_offload_set(dev, mask);
1180         if (ret) {
1181                 hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1182                          ret);
1183                 return ret;
1184         }
1185
1186         /*
1187          * If pvid config is not set in rte_eth_conf, driver needn't to set
1188          * VLAN pvid related configuration to hardware.
1189          */
1190         if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1191                 return 0;
1192
1193         /* Apply pvid setting */
1194         ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1195                                  txmode->hw_vlan_insert_pvid);
1196         if (ret)
1197                 hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1198                          txmode->pvid, ret);
1199
1200         return ret;
1201 }
1202
1203 static int
1204 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1205                 unsigned int tso_mss_max)
1206 {
1207         struct hns3_cfg_tso_status_cmd *req;
1208         struct hns3_cmd_desc desc;
1209         uint16_t tso_mss;
1210
1211         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1212
1213         req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1214
1215         tso_mss = 0;
1216         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1217                        tso_mss_min);
1218         req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1219
1220         tso_mss = 0;
1221         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1222                        tso_mss_max);
1223         req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1224
1225         return hns3_cmd_send(hw, &desc, 1);
1226 }
1227
1228 static int
1229 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1230                    uint16_t *allocated_size, bool is_alloc)
1231 {
1232         struct hns3_umv_spc_alc_cmd *req;
1233         struct hns3_cmd_desc desc;
1234         int ret;
1235
1236         req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1237         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1238         hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1239         req->space_size = rte_cpu_to_le_32(space_size);
1240
1241         ret = hns3_cmd_send(hw, &desc, 1);
1242         if (ret) {
1243                 PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1244                              is_alloc ? "allocate" : "free", ret);
1245                 return ret;
1246         }
1247
1248         if (is_alloc && allocated_size)
1249                 *allocated_size = rte_le_to_cpu_32(desc.data[1]);
1250
1251         return 0;
1252 }
1253
1254 static int
1255 hns3_init_umv_space(struct hns3_hw *hw)
1256 {
1257         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1258         struct hns3_pf *pf = &hns->pf;
1259         uint16_t allocated_size = 0;
1260         int ret;
1261
1262         ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1263                                  true);
1264         if (ret)
1265                 return ret;
1266
1267         if (allocated_size < pf->wanted_umv_size)
1268                 PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1269                              pf->wanted_umv_size, allocated_size);
1270
1271         pf->max_umv_size = (!!allocated_size) ? allocated_size :
1272                                                 pf->wanted_umv_size;
1273         pf->used_umv_size = 0;
1274         return 0;
1275 }
1276
1277 static int
1278 hns3_uninit_umv_space(struct hns3_hw *hw)
1279 {
1280         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1281         struct hns3_pf *pf = &hns->pf;
1282         int ret;
1283
1284         if (pf->max_umv_size == 0)
1285                 return 0;
1286
1287         ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1288         if (ret)
1289                 return ret;
1290
1291         pf->max_umv_size = 0;
1292
1293         return 0;
1294 }
1295
1296 static bool
1297 hns3_is_umv_space_full(struct hns3_hw *hw)
1298 {
1299         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1300         struct hns3_pf *pf = &hns->pf;
1301         bool is_full;
1302
1303         is_full = (pf->used_umv_size >= pf->max_umv_size);
1304
1305         return is_full;
1306 }
1307
1308 static void
1309 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1310 {
1311         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1312         struct hns3_pf *pf = &hns->pf;
1313
1314         if (is_free) {
1315                 if (pf->used_umv_size > 0)
1316                         pf->used_umv_size--;
1317         } else
1318                 pf->used_umv_size++;
1319 }
1320
1321 static void
1322 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1323                       const uint8_t *addr, bool is_mc)
1324 {
1325         const unsigned char *mac_addr = addr;
1326         uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1327                             ((uint32_t)mac_addr[2] << 16) |
1328                             ((uint32_t)mac_addr[1] << 8) |
1329                             (uint32_t)mac_addr[0];
1330         uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1331
1332         hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1333         if (is_mc) {
1334                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1335                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1336                 hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1337         }
1338
1339         new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1340         new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1341 }
1342
1343 static int
1344 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1345                              uint8_t resp_code,
1346                              enum hns3_mac_vlan_tbl_opcode op)
1347 {
1348         if (cmdq_resp) {
1349                 hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1350                          cmdq_resp);
1351                 return -EIO;
1352         }
1353
1354         if (op == HNS3_MAC_VLAN_ADD) {
1355                 if (resp_code == 0 || resp_code == 1) {
1356                         return 0;
1357                 } else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1358                         hns3_err(hw, "add mac addr failed for uc_overflow");
1359                         return -ENOSPC;
1360                 } else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1361                         hns3_err(hw, "add mac addr failed for mc_overflow");
1362                         return -ENOSPC;
1363                 }
1364
1365                 hns3_err(hw, "add mac addr failed for undefined, code=%u",
1366                          resp_code);
1367                 return -EIO;
1368         } else if (op == HNS3_MAC_VLAN_REMOVE) {
1369                 if (resp_code == 0) {
1370                         return 0;
1371                 } else if (resp_code == 1) {
1372                         hns3_dbg(hw, "remove mac addr failed for miss");
1373                         return -ENOENT;
1374                 }
1375
1376                 hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1377                          resp_code);
1378                 return -EIO;
1379         } else if (op == HNS3_MAC_VLAN_LKUP) {
1380                 if (resp_code == 0) {
1381                         return 0;
1382                 } else if (resp_code == 1) {
1383                         hns3_dbg(hw, "lookup mac addr failed for miss");
1384                         return -ENOENT;
1385                 }
1386
1387                 hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1388                          resp_code);
1389                 return -EIO;
1390         }
1391
1392         hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1393                  op);
1394
1395         return -EINVAL;
1396 }
1397
1398 static int
1399 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1400                          struct hns3_mac_vlan_tbl_entry_cmd *req,
1401                          struct hns3_cmd_desc *desc, bool is_mc)
1402 {
1403         uint8_t resp_code;
1404         uint16_t retval;
1405         int ret;
1406
1407         hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1408         if (is_mc) {
1409                 desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1410                 memcpy(desc[0].data, req,
1411                            sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1412                 hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1413                                           true);
1414                 desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1415                 hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1416                                           true);
1417                 ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1418         } else {
1419                 memcpy(desc[0].data, req,
1420                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1421                 ret = hns3_cmd_send(hw, desc, 1);
1422         }
1423         if (ret) {
1424                 hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1425                          ret);
1426                 return ret;
1427         }
1428         resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1429         retval = rte_le_to_cpu_16(desc[0].retval);
1430
1431         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1432                                             HNS3_MAC_VLAN_LKUP);
1433 }
1434
1435 static int
1436 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1437                       struct hns3_mac_vlan_tbl_entry_cmd *req,
1438                       struct hns3_cmd_desc *mc_desc)
1439 {
1440         uint8_t resp_code;
1441         uint16_t retval;
1442         int cfg_status;
1443         int ret;
1444
1445         if (mc_desc == NULL) {
1446                 struct hns3_cmd_desc desc;
1447
1448                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1449                 memcpy(desc.data, req,
1450                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1451                 ret = hns3_cmd_send(hw, &desc, 1);
1452                 resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1453                 retval = rte_le_to_cpu_16(desc.retval);
1454
1455                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1456                                                           HNS3_MAC_VLAN_ADD);
1457         } else {
1458                 hns3_cmd_reuse_desc(&mc_desc[0], false);
1459                 mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1460                 hns3_cmd_reuse_desc(&mc_desc[1], false);
1461                 mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1462                 hns3_cmd_reuse_desc(&mc_desc[2], false);
1463                 mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1464                 memcpy(mc_desc[0].data, req,
1465                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1466                 mc_desc[0].retval = 0;
1467                 ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1468                 resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1469                 retval = rte_le_to_cpu_16(mc_desc[0].retval);
1470
1471                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1472                                                           HNS3_MAC_VLAN_ADD);
1473         }
1474
1475         if (ret) {
1476                 hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1477                 return ret;
1478         }
1479
1480         return cfg_status;
1481 }
1482
1483 static int
1484 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1485                          struct hns3_mac_vlan_tbl_entry_cmd *req)
1486 {
1487         struct hns3_cmd_desc desc;
1488         uint8_t resp_code;
1489         uint16_t retval;
1490         int ret;
1491
1492         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1493
1494         memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1495
1496         ret = hns3_cmd_send(hw, &desc, 1);
1497         if (ret) {
1498                 hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1499                 return ret;
1500         }
1501         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1502         retval = rte_le_to_cpu_16(desc.retval);
1503
1504         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1505                                             HNS3_MAC_VLAN_REMOVE);
1506 }
1507
1508 static int
1509 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1510 {
1511         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1512         struct hns3_mac_vlan_tbl_entry_cmd req;
1513         struct hns3_pf *pf = &hns->pf;
1514         struct hns3_cmd_desc desc[3];
1515         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1516         uint16_t egress_port = 0;
1517         uint8_t vf_id;
1518         int ret;
1519
1520         /* check if mac addr is valid */
1521         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1522                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1523                                       mac_addr);
1524                 hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1525                          mac_str);
1526                 return -EINVAL;
1527         }
1528
1529         memset(&req, 0, sizeof(req));
1530
1531         /*
1532          * In current version VF is not supported when PF is driven by DPDK
1533          * driver, just need to configure parameters for PF vport.
1534          */
1535         vf_id = HNS3_PF_FUNC_ID;
1536         hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1537                        HNS3_MAC_EPORT_VFID_S, vf_id);
1538
1539         req.egress_port = rte_cpu_to_le_16(egress_port);
1540
1541         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1542
1543         /*
1544          * Lookup the mac address in the mac_vlan table, and add
1545          * it if the entry is inexistent. Repeated unicast entry
1546          * is not allowed in the mac vlan table.
1547          */
1548         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1549         if (ret == -ENOENT) {
1550                 if (!hns3_is_umv_space_full(hw)) {
1551                         ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1552                         if (!ret)
1553                                 hns3_update_umv_space(hw, false);
1554                         return ret;
1555                 }
1556
1557                 hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1558
1559                 return -ENOSPC;
1560         }
1561
1562         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1563
1564         /* check if we just hit the duplicate */
1565         if (ret == 0) {
1566                 hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1567                 return 0;
1568         }
1569
1570         hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1571                  mac_str);
1572
1573         return ret;
1574 }
1575
1576 static int
1577 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1578 {
1579         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1580         struct rte_ether_addr *addr;
1581         int ret;
1582         int i;
1583
1584         for (i = 0; i < hw->mc_addrs_num; i++) {
1585                 addr = &hw->mc_addrs[i];
1586                 /* Check if there are duplicate addresses */
1587                 if (rte_is_same_ether_addr(addr, mac_addr)) {
1588                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1589                                               addr);
1590                         hns3_err(hw, "failed to add mc mac addr, same addrs"
1591                                  "(%s) is added by the set_mc_mac_addr_list "
1592                                  "API", mac_str);
1593                         return -EINVAL;
1594                 }
1595         }
1596
1597         ret = hns3_add_mc_addr(hw, mac_addr);
1598         if (ret) {
1599                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1600                                       mac_addr);
1601                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1602                          mac_str, ret);
1603         }
1604         return ret;
1605 }
1606
1607 static int
1608 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1609 {
1610         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1611         int ret;
1612
1613         ret = hns3_remove_mc_addr(hw, mac_addr);
1614         if (ret) {
1615                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1616                                       mac_addr);
1617                 hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1618                          mac_str, ret);
1619         }
1620         return ret;
1621 }
1622
1623 static int
1624 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1625                   uint32_t idx, __rte_unused uint32_t pool)
1626 {
1627         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1628         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1629         int ret;
1630
1631         rte_spinlock_lock(&hw->lock);
1632
1633         /*
1634          * In hns3 network engine adding UC and MC mac address with different
1635          * commands with firmware. We need to determine whether the input
1636          * address is a UC or a MC address to call different commands.
1637          * By the way, it is recommended calling the API function named
1638          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1639          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1640          * may affect the specifications of UC mac addresses.
1641          */
1642         if (rte_is_multicast_ether_addr(mac_addr))
1643                 ret = hns3_add_mc_addr_common(hw, mac_addr);
1644         else
1645                 ret = hns3_add_uc_addr_common(hw, mac_addr);
1646
1647         if (ret) {
1648                 rte_spinlock_unlock(&hw->lock);
1649                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1650                                       mac_addr);
1651                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1652                          ret);
1653                 return ret;
1654         }
1655
1656         if (idx == 0)
1657                 hw->mac.default_addr_setted = true;
1658         rte_spinlock_unlock(&hw->lock);
1659
1660         return ret;
1661 }
1662
1663 static int
1664 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1665 {
1666         struct hns3_mac_vlan_tbl_entry_cmd req;
1667         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1668         int ret;
1669
1670         /* check if mac addr is valid */
1671         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1672                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1673                                       mac_addr);
1674                 hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1675                          mac_str);
1676                 return -EINVAL;
1677         }
1678
1679         memset(&req, 0, sizeof(req));
1680         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1681         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1682         ret = hns3_remove_mac_vlan_tbl(hw, &req);
1683         if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1684                 return 0;
1685         else if (ret == 0)
1686                 hns3_update_umv_space(hw, true);
1687
1688         return ret;
1689 }
1690
1691 static void
1692 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1693 {
1694         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1695         /* index will be checked by upper level rte interface */
1696         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1697         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1698         int ret;
1699
1700         rte_spinlock_lock(&hw->lock);
1701
1702         if (rte_is_multicast_ether_addr(mac_addr))
1703                 ret = hns3_remove_mc_addr_common(hw, mac_addr);
1704         else
1705                 ret = hns3_remove_uc_addr_common(hw, mac_addr);
1706         rte_spinlock_unlock(&hw->lock);
1707         if (ret) {
1708                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1709                                       mac_addr);
1710                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1711                          ret);
1712         }
1713 }
1714
1715 static int
1716 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1717                           struct rte_ether_addr *mac_addr)
1718 {
1719         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1720         struct rte_ether_addr *oaddr;
1721         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1722         bool default_addr_setted;
1723         bool rm_succes = false;
1724         int ret, ret_val;
1725
1726         /*
1727          * It has been guaranteed that input parameter named mac_addr is valid
1728          * address in the rte layer of DPDK framework.
1729          */
1730         oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1731         default_addr_setted = hw->mac.default_addr_setted;
1732         if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1733                 return 0;
1734
1735         rte_spinlock_lock(&hw->lock);
1736         if (default_addr_setted) {
1737                 ret = hns3_remove_uc_addr_common(hw, oaddr);
1738                 if (ret) {
1739                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1740                                               oaddr);
1741                         hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1742                                   mac_str, ret);
1743                         rm_succes = false;
1744                 } else
1745                         rm_succes = true;
1746         }
1747
1748         ret = hns3_add_uc_addr_common(hw, mac_addr);
1749         if (ret) {
1750                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1751                                       mac_addr);
1752                 hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1753                 goto err_add_uc_addr;
1754         }
1755
1756         ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1757         if (ret) {
1758                 hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1759                 goto err_pause_addr_cfg;
1760         }
1761
1762         rte_ether_addr_copy(mac_addr,
1763                             (struct rte_ether_addr *)hw->mac.mac_addr);
1764         hw->mac.default_addr_setted = true;
1765         rte_spinlock_unlock(&hw->lock);
1766
1767         return 0;
1768
1769 err_pause_addr_cfg:
1770         ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1771         if (ret_val) {
1772                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1773                                       mac_addr);
1774                 hns3_warn(hw,
1775                           "Failed to roll back to del setted mac addr(%s): %d",
1776                           mac_str, ret_val);
1777         }
1778
1779 err_add_uc_addr:
1780         if (rm_succes) {
1781                 ret_val = hns3_add_uc_addr_common(hw, oaddr);
1782                 if (ret_val) {
1783                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1784                                               oaddr);
1785                         hns3_warn(hw,
1786                                   "Failed to restore old uc mac addr(%s): %d",
1787                                   mac_str, ret_val);
1788                         hw->mac.default_addr_setted = false;
1789                 }
1790         }
1791         rte_spinlock_unlock(&hw->lock);
1792
1793         return ret;
1794 }
1795
1796 static int
1797 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1798 {
1799         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1800         struct hns3_hw *hw = &hns->hw;
1801         struct rte_ether_addr *addr;
1802         int err = 0;
1803         int ret;
1804         int i;
1805
1806         for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1807                 addr = &hw->data->mac_addrs[i];
1808                 if (rte_is_zero_ether_addr(addr))
1809                         continue;
1810                 if (rte_is_multicast_ether_addr(addr))
1811                         ret = del ? hns3_remove_mc_addr(hw, addr) :
1812                               hns3_add_mc_addr(hw, addr);
1813                 else
1814                         ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1815                               hns3_add_uc_addr_common(hw, addr);
1816
1817                 if (ret) {
1818                         err = ret;
1819                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1820                                               addr);
1821                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1822                                  "ret = %d.", del ? "remove" : "restore",
1823                                  mac_str, i, ret);
1824                 }
1825         }
1826         return err;
1827 }
1828
1829 static void
1830 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1831 {
1832 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1833         uint8_t word_num;
1834         uint8_t bit_num;
1835
1836         if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1837                 word_num = vfid / 32;
1838                 bit_num = vfid % 32;
1839                 if (clr)
1840                         desc[1].data[word_num] &=
1841                             rte_cpu_to_le_32(~(1UL << bit_num));
1842                 else
1843                         desc[1].data[word_num] |=
1844                             rte_cpu_to_le_32(1UL << bit_num);
1845         } else {
1846                 word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1847                 bit_num = vfid % 32;
1848                 if (clr)
1849                         desc[2].data[word_num] &=
1850                             rte_cpu_to_le_32(~(1UL << bit_num));
1851                 else
1852                         desc[2].data[word_num] |=
1853                             rte_cpu_to_le_32(1UL << bit_num);
1854         }
1855 }
1856
1857 static int
1858 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1859 {
1860         struct hns3_mac_vlan_tbl_entry_cmd req;
1861         struct hns3_cmd_desc desc[3];
1862         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1863         uint8_t vf_id;
1864         int ret;
1865
1866         /* Check if mac addr is valid */
1867         if (!rte_is_multicast_ether_addr(mac_addr)) {
1868                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1869                                       mac_addr);
1870                 hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1871                          mac_str);
1872                 return -EINVAL;
1873         }
1874
1875         memset(&req, 0, sizeof(req));
1876         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1877         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1878         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1879         if (ret) {
1880                 /* This mac addr do not exist, add new entry for it */
1881                 memset(desc[0].data, 0, sizeof(desc[0].data));
1882                 memset(desc[1].data, 0, sizeof(desc[0].data));
1883                 memset(desc[2].data, 0, sizeof(desc[0].data));
1884         }
1885
1886         /*
1887          * In current version VF is not supported when PF is driven by DPDK
1888          * driver, just need to configure parameters for PF vport.
1889          */
1890         vf_id = HNS3_PF_FUNC_ID;
1891         hns3_update_desc_vfid(desc, vf_id, false);
1892         ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1893         if (ret) {
1894                 if (ret == -ENOSPC)
1895                         hns3_err(hw, "mc mac vlan table is full");
1896                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1897                                       mac_addr);
1898                 hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1899         }
1900
1901         return ret;
1902 }
1903
1904 static int
1905 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1906 {
1907         struct hns3_mac_vlan_tbl_entry_cmd req;
1908         struct hns3_cmd_desc desc[3];
1909         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1910         uint8_t vf_id;
1911         int ret;
1912
1913         /* Check if mac addr is valid */
1914         if (!rte_is_multicast_ether_addr(mac_addr)) {
1915                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1916                                       mac_addr);
1917                 hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1918                          mac_str);
1919                 return -EINVAL;
1920         }
1921
1922         memset(&req, 0, sizeof(req));
1923         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1924         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1925         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1926         if (ret == 0) {
1927                 /*
1928                  * This mac addr exist, remove this handle's VFID for it.
1929                  * In current version VF is not supported when PF is driven by
1930                  * DPDK driver, just need to configure parameters for PF vport.
1931                  */
1932                 vf_id = HNS3_PF_FUNC_ID;
1933                 hns3_update_desc_vfid(desc, vf_id, true);
1934
1935                 /* All the vfid is zero, so need to delete this entry */
1936                 ret = hns3_remove_mac_vlan_tbl(hw, &req);
1937         } else if (ret == -ENOENT) {
1938                 /* This mac addr doesn't exist. */
1939                 return 0;
1940         }
1941
1942         if (ret) {
1943                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1944                                       mac_addr);
1945                 hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1946         }
1947
1948         return ret;
1949 }
1950
1951 static int
1952 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1953                            struct rte_ether_addr *mc_addr_set,
1954                            uint32_t nb_mc_addr)
1955 {
1956         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1957         struct rte_ether_addr *addr;
1958         uint32_t i;
1959         uint32_t j;
1960
1961         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1962                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1963                          "invalid. valid range: 0~%d",
1964                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
1965                 return -EINVAL;
1966         }
1967
1968         /* Check if input mac addresses are valid */
1969         for (i = 0; i < nb_mc_addr; i++) {
1970                 addr = &mc_addr_set[i];
1971                 if (!rte_is_multicast_ether_addr(addr)) {
1972                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1973                                               addr);
1974                         hns3_err(hw,
1975                                  "failed to set mc mac addr, addr(%s) invalid.",
1976                                  mac_str);
1977                         return -EINVAL;
1978                 }
1979
1980                 /* Check if there are duplicate addresses */
1981                 for (j = i + 1; j < nb_mc_addr; j++) {
1982                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1983                                 hns3_ether_format_addr(mac_str,
1984                                                       RTE_ETHER_ADDR_FMT_SIZE,
1985                                                       addr);
1986                                 hns3_err(hw, "failed to set mc mac addr, "
1987                                          "addrs invalid. two same addrs(%s).",
1988                                          mac_str);
1989                                 return -EINVAL;
1990                         }
1991                 }
1992
1993                 /*
1994                  * Check if there are duplicate addresses between mac_addrs
1995                  * and mc_addr_set
1996                  */
1997                 for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1998                         if (rte_is_same_ether_addr(addr,
1999                                                    &hw->data->mac_addrs[j])) {
2000                                 hns3_ether_format_addr(mac_str,
2001                                                       RTE_ETHER_ADDR_FMT_SIZE,
2002                                                       addr);
2003                                 hns3_err(hw, "failed to set mc mac addr, "
2004                                          "addrs invalid. addrs(%s) has already "
2005                                          "configured in mac_addr add API",
2006                                          mac_str);
2007                                 return -EINVAL;
2008                         }
2009                 }
2010         }
2011
2012         return 0;
2013 }
2014
2015 static void
2016 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
2017                            struct rte_ether_addr *mc_addr_set,
2018                            int mc_addr_num,
2019                            struct rte_ether_addr *reserved_addr_list,
2020                            int *reserved_addr_num,
2021                            struct rte_ether_addr *add_addr_list,
2022                            int *add_addr_num,
2023                            struct rte_ether_addr *rm_addr_list,
2024                            int *rm_addr_num)
2025 {
2026         struct rte_ether_addr *addr;
2027         int current_addr_num;
2028         int reserved_num = 0;
2029         int add_num = 0;
2030         int rm_num = 0;
2031         int num;
2032         int i;
2033         int j;
2034         bool same_addr;
2035
2036         /* Calculate the mc mac address list that should be removed */
2037         current_addr_num = hw->mc_addrs_num;
2038         for (i = 0; i < current_addr_num; i++) {
2039                 addr = &hw->mc_addrs[i];
2040                 same_addr = false;
2041                 for (j = 0; j < mc_addr_num; j++) {
2042                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2043                                 same_addr = true;
2044                                 break;
2045                         }
2046                 }
2047
2048                 if (!same_addr) {
2049                         rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
2050                         rm_num++;
2051                 } else {
2052                         rte_ether_addr_copy(addr,
2053                                             &reserved_addr_list[reserved_num]);
2054                         reserved_num++;
2055                 }
2056         }
2057
2058         /* Calculate the mc mac address list that should be added */
2059         for (i = 0; i < mc_addr_num; i++) {
2060                 addr = &mc_addr_set[i];
2061                 same_addr = false;
2062                 for (j = 0; j < current_addr_num; j++) {
2063                         if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2064                                 same_addr = true;
2065                                 break;
2066                         }
2067                 }
2068
2069                 if (!same_addr) {
2070                         rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2071                         add_num++;
2072                 }
2073         }
2074
2075         /* Reorder the mc mac address list maintained by driver */
2076         for (i = 0; i < reserved_num; i++)
2077                 rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2078
2079         for (i = 0; i < rm_num; i++) {
2080                 num = reserved_num + i;
2081                 rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2082         }
2083
2084         *reserved_addr_num = reserved_num;
2085         *add_addr_num = add_num;
2086         *rm_addr_num = rm_num;
2087 }
2088
2089 static int
2090 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2091                           struct rte_ether_addr *mc_addr_set,
2092                           uint32_t nb_mc_addr)
2093 {
2094         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2095         struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2096         struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2097         struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2098         struct rte_ether_addr *addr;
2099         int reserved_addr_num;
2100         int add_addr_num;
2101         int rm_addr_num;
2102         int mc_addr_num;
2103         int num;
2104         int ret;
2105         int i;
2106
2107         /* Check if input parameters are valid */
2108         ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2109         if (ret)
2110                 return ret;
2111
2112         rte_spinlock_lock(&hw->lock);
2113
2114         /*
2115          * Calculate the mc mac address lists those should be removed and be
2116          * added, Reorder the mc mac address list maintained by driver.
2117          */
2118         mc_addr_num = (int)nb_mc_addr;
2119         hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2120                                    reserved_addr_list, &reserved_addr_num,
2121                                    add_addr_list, &add_addr_num,
2122                                    rm_addr_list, &rm_addr_num);
2123
2124         /* Remove mc mac addresses */
2125         for (i = 0; i < rm_addr_num; i++) {
2126                 num = rm_addr_num - i - 1;
2127                 addr = &rm_addr_list[num];
2128                 ret = hns3_remove_mc_addr(hw, addr);
2129                 if (ret) {
2130                         rte_spinlock_unlock(&hw->lock);
2131                         return ret;
2132                 }
2133                 hw->mc_addrs_num--;
2134         }
2135
2136         /* Add mc mac addresses */
2137         for (i = 0; i < add_addr_num; i++) {
2138                 addr = &add_addr_list[i];
2139                 ret = hns3_add_mc_addr(hw, addr);
2140                 if (ret) {
2141                         rte_spinlock_unlock(&hw->lock);
2142                         return ret;
2143                 }
2144
2145                 num = reserved_addr_num + i;
2146                 rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2147                 hw->mc_addrs_num++;
2148         }
2149         rte_spinlock_unlock(&hw->lock);
2150
2151         return 0;
2152 }
2153
2154 static int
2155 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2156 {
2157         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2158         struct hns3_hw *hw = &hns->hw;
2159         struct rte_ether_addr *addr;
2160         int err = 0;
2161         int ret;
2162         int i;
2163
2164         for (i = 0; i < hw->mc_addrs_num; i++) {
2165                 addr = &hw->mc_addrs[i];
2166                 if (!rte_is_multicast_ether_addr(addr))
2167                         continue;
2168                 if (del)
2169                         ret = hns3_remove_mc_addr(hw, addr);
2170                 else
2171                         ret = hns3_add_mc_addr(hw, addr);
2172                 if (ret) {
2173                         err = ret;
2174                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2175                                               addr);
2176                         hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2177                                  del ? "Remove" : "Restore", mac_str, ret);
2178                 }
2179         }
2180         return err;
2181 }
2182
2183 static int
2184 hns3_check_mq_mode(struct rte_eth_dev *dev)
2185 {
2186         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2187         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2188         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2189         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2190         struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2191         struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2192         uint8_t num_tc;
2193         int max_tc = 0;
2194         int i;
2195
2196         dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2197         dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2198
2199         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2200                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2201                          "rx_mq_mode = %d", rx_mq_mode);
2202                 return -EINVAL;
2203         }
2204
2205         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2206             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2207                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2208                          "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2209                          rx_mq_mode, tx_mq_mode);
2210                 return -EINVAL;
2211         }
2212
2213         if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2214                 if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2215                         hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2216                                  dcb_rx_conf->nb_tcs, pf->tc_max);
2217                         return -EINVAL;
2218                 }
2219
2220                 if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2221                       dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2222                         hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2223                                  "nb_tcs(%d) != %d or %d in rx direction.",
2224                                  dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2225                         return -EINVAL;
2226                 }
2227
2228                 if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2229                         hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2230                                  dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2231                         return -EINVAL;
2232                 }
2233
2234                 for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2235                         if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2236                                 hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2237                                          "is not equal to one in tx direction.",
2238                                          i, dcb_rx_conf->dcb_tc[i]);
2239                                 return -EINVAL;
2240                         }
2241                         if (dcb_rx_conf->dcb_tc[i] > max_tc)
2242                                 max_tc = dcb_rx_conf->dcb_tc[i];
2243                 }
2244
2245                 num_tc = max_tc + 1;
2246                 if (num_tc > dcb_rx_conf->nb_tcs) {
2247                         hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2248                                  num_tc, dcb_rx_conf->nb_tcs);
2249                         return -EINVAL;
2250                 }
2251         }
2252
2253         return 0;
2254 }
2255
2256 static int
2257 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2258 {
2259         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2260
2261         if (!hns3_dev_dcb_supported(hw)) {
2262                 hns3_err(hw, "this port does not support dcb configurations.");
2263                 return -EOPNOTSUPP;
2264         }
2265
2266         if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2267                 hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2268                 return -EOPNOTSUPP;
2269         }
2270
2271         /* Check multiple queue mode */
2272         return hns3_check_mq_mode(dev);
2273 }
2274
2275 static int
2276 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
2277                            enum hns3_ring_type queue_type, uint16_t queue_id)
2278 {
2279         struct hns3_cmd_desc desc;
2280         struct hns3_ctrl_vector_chain_cmd *req =
2281                 (struct hns3_ctrl_vector_chain_cmd *)desc.data;
2282         enum hns3_cmd_status status;
2283         enum hns3_opcode_type op;
2284         uint16_t tqp_type_and_id = 0;
2285         uint16_t type;
2286         uint16_t gl;
2287
2288         op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2289         hns3_cmd_setup_basic_desc(&desc, op, false);
2290         req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
2291                                               HNS3_TQP_INT_ID_L_S);
2292         req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
2293                                               HNS3_TQP_INT_ID_H_S);
2294
2295         if (queue_type == HNS3_RING_TYPE_RX)
2296                 gl = HNS3_RING_GL_RX;
2297         else
2298                 gl = HNS3_RING_GL_TX;
2299
2300         type = queue_type;
2301
2302         hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2303                        type);
2304         hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2305         hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2306                        gl);
2307         req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2308         req->int_cause_num = 1;
2309         status = hns3_cmd_send(hw, &desc, 1);
2310         if (status) {
2311                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, status is %d.",
2312                          en ? "Map" : "Unmap", queue_id, vector_id, status);
2313                 return status;
2314         }
2315
2316         return 0;
2317 }
2318
2319 static int
2320 hns3_init_ring_with_vector(struct hns3_hw *hw)
2321 {
2322         uint16_t vec;
2323         int ret;
2324         int i;
2325
2326         /*
2327          * In hns3 network engine, vector 0 is always the misc interrupt of this
2328          * function, vector 1~N can be used respectively for the queues of the
2329          * function. Tx and Rx queues with the same number share the interrupt
2330          * vector. In the initialization clearing the all hardware mapping
2331          * relationship configurations between queues and interrupt vectors is
2332          * needed, so some error caused by the residual configurations, such as
2333          * the unexpected Tx interrupt, can be avoid.
2334          */
2335         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2336         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2337                 vec = vec - 1; /* the last interrupt is reserved */
2338         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2339         for (i = 0; i < hw->intr_tqps_num; i++) {
2340                 /*
2341                  * Set gap limiter/rate limiter/quanity limiter algorithm
2342                  * configuration for interrupt coalesce of queue's interrupt.
2343                  */
2344                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2345                                        HNS3_TQP_INTR_GL_DEFAULT);
2346                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2347                                        HNS3_TQP_INTR_GL_DEFAULT);
2348                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2349                 /*
2350                  * QL(quantity limiter) is not used currently, just set 0 to
2351                  * close it.
2352                  */
2353                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2354
2355                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2356                                                  HNS3_RING_TYPE_TX, i);
2357                 if (ret) {
2358                         PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2359                                           "vector: %u, ret=%d", i, vec, ret);
2360                         return ret;
2361                 }
2362
2363                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2364                                                  HNS3_RING_TYPE_RX, i);
2365                 if (ret) {
2366                         PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2367                                           "vector: %u, ret=%d", i, vec, ret);
2368                         return ret;
2369                 }
2370         }
2371
2372         return 0;
2373 }
2374
2375 static int
2376 hns3_dev_configure(struct rte_eth_dev *dev)
2377 {
2378         struct hns3_adapter *hns = dev->data->dev_private;
2379         struct rte_eth_conf *conf = &dev->data->dev_conf;
2380         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2381         struct hns3_hw *hw = &hns->hw;
2382         uint16_t nb_rx_q = dev->data->nb_rx_queues;
2383         uint16_t nb_tx_q = dev->data->nb_tx_queues;
2384         struct rte_eth_rss_conf rss_conf;
2385         uint32_t max_rx_pkt_len;
2386         uint16_t mtu;
2387         bool gro_en;
2388         int ret;
2389
2390         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2391
2392         /*
2393          * Some versions of hardware network engine does not support
2394          * individually enable/disable/reset the Tx or Rx queue. These devices
2395          * must enable/disable/reset Tx and Rx queues at the same time. When the
2396          * numbers of Tx queues allocated by upper applications are not equal to
2397          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2398          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2399          * work as usual. But these fake queues are imperceptible, and can not
2400          * be used by upper applications.
2401          */
2402         if (!hns3_dev_indep_txrx_supported(hw)) {
2403                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2404                 if (ret) {
2405                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
2406                                  ret);
2407                         return ret;
2408                 }
2409         }
2410
2411         hw->adapter_state = HNS3_NIC_CONFIGURING;
2412         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2413                 hns3_err(hw, "setting link speed/duplex not supported");
2414                 ret = -EINVAL;
2415                 goto cfg_err;
2416         }
2417
2418         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2419                 ret = hns3_check_dcb_cfg(dev);
2420                 if (ret)
2421                         goto cfg_err;
2422         }
2423
2424         /* When RSS is not configured, redirect the packet queue 0 */
2425         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2426                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2427                 rss_conf = conf->rx_adv_conf.rss_conf;
2428                 hw->rss_dis_flag = false;
2429                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2430                 if (ret)
2431                         goto cfg_err;
2432         }
2433
2434         /*
2435          * If jumbo frames are enabled, MTU needs to be refreshed
2436          * according to the maximum RX packet length.
2437          */
2438         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2439                 max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
2440                 if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
2441                     max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
2442                         hns3_err(hw, "maximum Rx packet length must be greater "
2443                                  "than %u and less than %u when jumbo frame enabled.",
2444                                  (uint16_t)HNS3_DEFAULT_FRAME_LEN,
2445                                  (uint16_t)HNS3_MAX_FRAME_LEN);
2446                         ret = -EINVAL;
2447                         goto cfg_err;
2448                 }
2449
2450                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
2451                 ret = hns3_dev_mtu_set(dev, mtu);
2452                 if (ret)
2453                         goto cfg_err;
2454                 dev->data->mtu = mtu;
2455         }
2456
2457         ret = hns3_dev_configure_vlan(dev);
2458         if (ret)
2459                 goto cfg_err;
2460
2461         /* config hardware GRO */
2462         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2463         ret = hns3_config_gro(hw, gro_en);
2464         if (ret)
2465                 goto cfg_err;
2466
2467         hns->rx_simple_allowed = true;
2468         hns->rx_vec_allowed = true;
2469         hns->tx_simple_allowed = true;
2470         hns->tx_vec_allowed = true;
2471
2472         hns3_init_rx_ptype_tble(dev);
2473         hw->adapter_state = HNS3_NIC_CONFIGURED;
2474
2475         return 0;
2476
2477 cfg_err:
2478         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2479         hw->adapter_state = HNS3_NIC_INITIALIZED;
2480
2481         return ret;
2482 }
2483
2484 static int
2485 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2486 {
2487         struct hns3_config_max_frm_size_cmd *req;
2488         struct hns3_cmd_desc desc;
2489
2490         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2491
2492         req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2493         req->max_frm_size = rte_cpu_to_le_16(new_mps);
2494         req->min_frm_size = RTE_ETHER_MIN_LEN;
2495
2496         return hns3_cmd_send(hw, &desc, 1);
2497 }
2498
2499 static int
2500 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2501 {
2502         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2503         uint16_t original_mps = hns->pf.mps;
2504         int err;
2505         int ret;
2506
2507         ret = hns3_set_mac_mtu(hw, mps);
2508         if (ret) {
2509                 hns3_err(hw, "failed to set mtu, ret = %d", ret);
2510                 return ret;
2511         }
2512
2513         hns->pf.mps = mps;
2514         ret = hns3_buffer_alloc(hw);
2515         if (ret) {
2516                 hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2517                 goto rollback;
2518         }
2519
2520         return 0;
2521
2522 rollback:
2523         err = hns3_set_mac_mtu(hw, original_mps);
2524         if (err) {
2525                 hns3_err(hw, "fail to rollback MTU, err = %d", err);
2526                 return ret;
2527         }
2528         hns->pf.mps = original_mps;
2529
2530         return ret;
2531 }
2532
2533 static int
2534 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2535 {
2536         struct hns3_adapter *hns = dev->data->dev_private;
2537         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2538         struct hns3_hw *hw = &hns->hw;
2539         bool is_jumbo_frame;
2540         int ret;
2541
2542         if (dev->data->dev_started) {
2543                 hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2544                          "before configuration", dev->data->port_id);
2545                 return -EBUSY;
2546         }
2547
2548         rte_spinlock_lock(&hw->lock);
2549         is_jumbo_frame = frame_size > HNS3_DEFAULT_FRAME_LEN ? true : false;
2550         frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2551
2552         /*
2553          * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2554          * assign to "uint16_t" type variable.
2555          */
2556         ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2557         if (ret) {
2558                 rte_spinlock_unlock(&hw->lock);
2559                 hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2560                          dev->data->port_id, mtu, ret);
2561                 return ret;
2562         }
2563
2564         if (is_jumbo_frame)
2565                 dev->data->dev_conf.rxmode.offloads |=
2566                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
2567         else
2568                 dev->data->dev_conf.rxmode.offloads &=
2569                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
2570         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2571         rte_spinlock_unlock(&hw->lock);
2572
2573         return 0;
2574 }
2575
2576 int
2577 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2578 {
2579         struct hns3_adapter *hns = eth_dev->data->dev_private;
2580         struct hns3_hw *hw = &hns->hw;
2581         uint16_t queue_num = hw->tqps_num;
2582
2583         /*
2584          * In interrupt mode, 'max_rx_queues' is set based on the number of
2585          * MSI-X interrupt resources of the hardware.
2586          */
2587         if (hw->data->dev_conf.intr_conf.rxq == 1)
2588                 queue_num = hw->intr_tqps_num;
2589
2590         info->max_rx_queues = queue_num;
2591         info->max_tx_queues = hw->tqps_num;
2592         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2593         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2594         info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2595         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2596         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2597         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2598                                  DEV_RX_OFFLOAD_TCP_CKSUM |
2599                                  DEV_RX_OFFLOAD_UDP_CKSUM |
2600                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
2601                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2602                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2603                                  DEV_RX_OFFLOAD_KEEP_CRC |
2604                                  DEV_RX_OFFLOAD_SCATTER |
2605                                  DEV_RX_OFFLOAD_VLAN_STRIP |
2606                                  DEV_RX_OFFLOAD_VLAN_FILTER |
2607                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
2608                                  DEV_RX_OFFLOAD_RSS_HASH |
2609                                  DEV_RX_OFFLOAD_TCP_LRO);
2610         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2611                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
2612                                  DEV_TX_OFFLOAD_TCP_CKSUM |
2613                                  DEV_TX_OFFLOAD_UDP_CKSUM |
2614                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
2615                                  DEV_TX_OFFLOAD_MULTI_SEGS |
2616                                  DEV_TX_OFFLOAD_TCP_TSO |
2617                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2618                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
2619                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2620                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2621                                  hns3_txvlan_cap_get(hw));
2622
2623         if (hns3_dev_outer_udp_cksum_supported(hw))
2624                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
2625
2626         if (hns3_dev_indep_txrx_supported(hw))
2627                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2628                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2629
2630         info->rx_desc_lim = (struct rte_eth_desc_lim) {
2631                 .nb_max = HNS3_MAX_RING_DESC,
2632                 .nb_min = HNS3_MIN_RING_DESC,
2633                 .nb_align = HNS3_ALIGN_RING_DESC,
2634         };
2635
2636         info->tx_desc_lim = (struct rte_eth_desc_lim) {
2637                 .nb_max = HNS3_MAX_RING_DESC,
2638                 .nb_min = HNS3_MIN_RING_DESC,
2639                 .nb_align = HNS3_ALIGN_RING_DESC,
2640                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2641                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
2642         };
2643
2644         info->default_rxconf = (struct rte_eth_rxconf) {
2645                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2646                 /*
2647                  * If there are no available Rx buffer descriptors, incoming
2648                  * packets are always dropped by hardware based on hns3 network
2649                  * engine.
2650                  */
2651                 .rx_drop_en = 1,
2652                 .offloads = 0,
2653         };
2654         info->default_txconf = (struct rte_eth_txconf) {
2655                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2656                 .offloads = 0,
2657         };
2658
2659         info->vmdq_queue_num = 0;
2660
2661         info->reta_size = hw->rss_ind_tbl_size;
2662         info->hash_key_size = HNS3_RSS_KEY_SIZE;
2663         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2664
2665         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2666         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2667         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2668         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2669         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2670         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2671
2672         return 0;
2673 }
2674
2675 static int
2676 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2677                     size_t fw_size)
2678 {
2679         struct hns3_adapter *hns = eth_dev->data->dev_private;
2680         struct hns3_hw *hw = &hns->hw;
2681         uint32_t version = hw->fw_version;
2682         int ret;
2683
2684         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2685                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2686                                       HNS3_FW_VERSION_BYTE3_S),
2687                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2688                                       HNS3_FW_VERSION_BYTE2_S),
2689                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2690                                       HNS3_FW_VERSION_BYTE1_S),
2691                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2692                                       HNS3_FW_VERSION_BYTE0_S));
2693         ret += 1; /* add the size of '\0' */
2694         if (fw_size < (uint32_t)ret)
2695                 return ret;
2696         else
2697                 return 0;
2698 }
2699
2700 static int
2701 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2702                      __rte_unused int wait_to_complete)
2703 {
2704         struct hns3_adapter *hns = eth_dev->data->dev_private;
2705         struct hns3_hw *hw = &hns->hw;
2706         struct hns3_mac *mac = &hw->mac;
2707         struct rte_eth_link new_link;
2708
2709         if (!hns3_is_reset_pending(hns)) {
2710                 hns3_update_link_status(hw);
2711                 hns3_update_link_info(eth_dev);
2712         }
2713
2714         memset(&new_link, 0, sizeof(new_link));
2715         switch (mac->link_speed) {
2716         case ETH_SPEED_NUM_10M:
2717         case ETH_SPEED_NUM_100M:
2718         case ETH_SPEED_NUM_1G:
2719         case ETH_SPEED_NUM_10G:
2720         case ETH_SPEED_NUM_25G:
2721         case ETH_SPEED_NUM_40G:
2722         case ETH_SPEED_NUM_50G:
2723         case ETH_SPEED_NUM_100G:
2724         case ETH_SPEED_NUM_200G:
2725                 new_link.link_speed = mac->link_speed;
2726                 break;
2727         default:
2728                 new_link.link_speed = ETH_SPEED_NUM_100M;
2729                 break;
2730         }
2731
2732         new_link.link_duplex = mac->link_duplex;
2733         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2734         new_link.link_autoneg =
2735             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2736
2737         return rte_eth_linkstatus_set(eth_dev, &new_link);
2738 }
2739
2740 static int
2741 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2742 {
2743         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2744         struct hns3_pf *pf = &hns->pf;
2745
2746         if (!(status->pf_state & HNS3_PF_STATE_DONE))
2747                 return -EINVAL;
2748
2749         pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2750
2751         return 0;
2752 }
2753
2754 static int
2755 hns3_query_function_status(struct hns3_hw *hw)
2756 {
2757 #define HNS3_QUERY_MAX_CNT              10
2758 #define HNS3_QUERY_SLEEP_MSCOEND        1
2759         struct hns3_func_status_cmd *req;
2760         struct hns3_cmd_desc desc;
2761         int timeout = 0;
2762         int ret;
2763
2764         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2765         req = (struct hns3_func_status_cmd *)desc.data;
2766
2767         do {
2768                 ret = hns3_cmd_send(hw, &desc, 1);
2769                 if (ret) {
2770                         PMD_INIT_LOG(ERR, "query function status failed %d",
2771                                      ret);
2772                         return ret;
2773                 }
2774
2775                 /* Check pf reset is done */
2776                 if (req->pf_state)
2777                         break;
2778
2779                 rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2780         } while (timeout++ < HNS3_QUERY_MAX_CNT);
2781
2782         return hns3_parse_func_status(hw, req);
2783 }
2784
2785 static int
2786 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2787 {
2788         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2789         struct hns3_pf *pf = &hns->pf;
2790
2791         if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2792                 /*
2793                  * The total_tqps_num obtained from firmware is maximum tqp
2794                  * numbers of this port, which should be used for PF and VFs.
2795                  * There is no need for pf to have so many tqp numbers in
2796                  * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2797                  * coming from config file, is assigned to maximum queue number
2798                  * for the PF of this port by user. So users can modify the
2799                  * maximum queue number of PF according to their own application
2800                  * scenarios, which is more flexible to use. In addition, many
2801                  * memories can be saved due to allocating queue statistics
2802                  * room according to the actual number of queues required. The
2803                  * maximum queue number of PF for network engine with
2804                  * revision_id greater than 0x30 is assigned by config file.
2805                  */
2806                 if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2807                         hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2808                                  "must be greater than 0.",
2809                                  RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2810                         return -EINVAL;
2811                 }
2812
2813                 hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2814                                        hw->total_tqps_num);
2815         } else {
2816                 /*
2817                  * Due to the limitation on the number of PF interrupts
2818                  * available, the maximum queue number assigned to PF on
2819                  * the network engine with revision_id 0x21 is 64.
2820                  */
2821                 hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2822                                        HNS3_MAX_TQP_NUM_HIP08_PF);
2823         }
2824
2825         return 0;
2826 }
2827
2828 static int
2829 hns3_query_pf_resource(struct hns3_hw *hw)
2830 {
2831         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2832         struct hns3_pf *pf = &hns->pf;
2833         struct hns3_pf_res_cmd *req;
2834         struct hns3_cmd_desc desc;
2835         int ret;
2836
2837         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2838         ret = hns3_cmd_send(hw, &desc, 1);
2839         if (ret) {
2840                 PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2841                 return ret;
2842         }
2843
2844         req = (struct hns3_pf_res_cmd *)desc.data;
2845         hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2846                              rte_le_to_cpu_16(req->ext_tqp_num);
2847         ret = hns3_get_pf_max_tqp_num(hw);
2848         if (ret)
2849                 return ret;
2850
2851         pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2852         pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2853
2854         if (req->tx_buf_size)
2855                 pf->tx_buf_size =
2856                     rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2857         else
2858                 pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2859
2860         pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2861
2862         if (req->dv_buf_size)
2863                 pf->dv_buf_size =
2864                     rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2865         else
2866                 pf->dv_buf_size = HNS3_DEFAULT_DV;
2867
2868         pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2869
2870         hw->num_msi =
2871                 hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2872                                HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2873
2874         return 0;
2875 }
2876
2877 static void
2878 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2879 {
2880         struct hns3_cfg_param_cmd *req;
2881         uint64_t mac_addr_tmp_high;
2882         uint8_t ext_rss_size_max;
2883         uint64_t mac_addr_tmp;
2884         uint32_t i;
2885
2886         req = (struct hns3_cfg_param_cmd *)desc[0].data;
2887
2888         /* get the configuration */
2889         cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2890                                              HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2891         cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2892                                      HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2893         cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2894                                            HNS3_CFG_TQP_DESC_N_M,
2895                                            HNS3_CFG_TQP_DESC_N_S);
2896
2897         cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2898                                        HNS3_CFG_PHY_ADDR_M,
2899                                        HNS3_CFG_PHY_ADDR_S);
2900         cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2901                                          HNS3_CFG_MEDIA_TP_M,
2902                                          HNS3_CFG_MEDIA_TP_S);
2903         cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2904                                          HNS3_CFG_RX_BUF_LEN_M,
2905                                          HNS3_CFG_RX_BUF_LEN_S);
2906         /* get mac address */
2907         mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2908         mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2909                                            HNS3_CFG_MAC_ADDR_H_M,
2910                                            HNS3_CFG_MAC_ADDR_H_S);
2911
2912         mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2913
2914         cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2915                                             HNS3_CFG_DEFAULT_SPEED_M,
2916                                             HNS3_CFG_DEFAULT_SPEED_S);
2917         cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2918                                            HNS3_CFG_RSS_SIZE_M,
2919                                            HNS3_CFG_RSS_SIZE_S);
2920
2921         for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2922                 cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2923
2924         req = (struct hns3_cfg_param_cmd *)desc[1].data;
2925         cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2926
2927         cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2928                                             HNS3_CFG_SPEED_ABILITY_M,
2929                                             HNS3_CFG_SPEED_ABILITY_S);
2930         cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2931                                         HNS3_CFG_UMV_TBL_SPACE_M,
2932                                         HNS3_CFG_UMV_TBL_SPACE_S);
2933         if (!cfg->umv_space)
2934                 cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2935
2936         ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2937                                                HNS3_CFG_EXT_RSS_SIZE_M,
2938                                                HNS3_CFG_EXT_RSS_SIZE_S);
2939
2940         /*
2941          * Field ext_rss_size_max obtained from firmware will be more flexible
2942          * for future changes and expansions, which is an exponent of 2, instead
2943          * of reading out directly. If this field is not zero, hns3 PF PMD
2944          * driver uses it as rss_size_max under one TC. Device, whose revision
2945          * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2946          * maximum number of queues supported under a TC through this field.
2947          */
2948         if (ext_rss_size_max)
2949                 cfg->rss_size_max = 1U << ext_rss_size_max;
2950 }
2951
2952 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2953  * @hw: pointer to struct hns3_hw
2954  * @hcfg: the config structure to be getted
2955  */
2956 static int
2957 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2958 {
2959         struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2960         struct hns3_cfg_param_cmd *req;
2961         uint32_t offset;
2962         uint32_t i;
2963         int ret;
2964
2965         for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2966                 offset = 0;
2967                 req = (struct hns3_cfg_param_cmd *)desc[i].data;
2968                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2969                                           true);
2970                 hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2971                                i * HNS3_CFG_RD_LEN_BYTES);
2972                 /* Len should be divided by 4 when send to hardware */
2973                 hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2974                                HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2975                 req->offset = rte_cpu_to_le_32(offset);
2976         }
2977
2978         ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2979         if (ret) {
2980                 PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2981                 return ret;
2982         }
2983
2984         hns3_parse_cfg(hcfg, desc);
2985
2986         return 0;
2987 }
2988
2989 static int
2990 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2991 {
2992         switch (speed_cmd) {
2993         case HNS3_CFG_SPEED_10M:
2994                 *speed = ETH_SPEED_NUM_10M;
2995                 break;
2996         case HNS3_CFG_SPEED_100M:
2997                 *speed = ETH_SPEED_NUM_100M;
2998                 break;
2999         case HNS3_CFG_SPEED_1G:
3000                 *speed = ETH_SPEED_NUM_1G;
3001                 break;
3002         case HNS3_CFG_SPEED_10G:
3003                 *speed = ETH_SPEED_NUM_10G;
3004                 break;
3005         case HNS3_CFG_SPEED_25G:
3006                 *speed = ETH_SPEED_NUM_25G;
3007                 break;
3008         case HNS3_CFG_SPEED_40G:
3009                 *speed = ETH_SPEED_NUM_40G;
3010                 break;
3011         case HNS3_CFG_SPEED_50G:
3012                 *speed = ETH_SPEED_NUM_50G;
3013                 break;
3014         case HNS3_CFG_SPEED_100G:
3015                 *speed = ETH_SPEED_NUM_100G;
3016                 break;
3017         case HNS3_CFG_SPEED_200G:
3018                 *speed = ETH_SPEED_NUM_200G;
3019                 break;
3020         default:
3021                 return -EINVAL;
3022         }
3023
3024         return 0;
3025 }
3026
3027 static void
3028 hns3_set_default_dev_specifications(struct hns3_hw *hw)
3029 {
3030         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
3031         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
3032         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
3033         hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
3034         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
3035 }
3036
3037 static void
3038 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
3039 {
3040         struct hns3_dev_specs_0_cmd *req0;
3041
3042         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
3043
3044         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
3045         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
3046         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
3047         hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
3048         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
3049 }
3050
3051 static int
3052 hns3_check_dev_specifications(struct hns3_hw *hw)
3053 {
3054         if (hw->rss_ind_tbl_size == 0 ||
3055             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
3056                 hns3_err(hw, "the size of hash lookup table configured (%u)"
3057                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
3058                               HNS3_RSS_IND_TBL_SIZE_MAX);
3059                 return -EINVAL;
3060         }
3061
3062         return 0;
3063 }
3064
3065 static int
3066 hns3_query_dev_specifications(struct hns3_hw *hw)
3067 {
3068         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
3069         int ret;
3070         int i;
3071
3072         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3073                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
3074                                           true);
3075                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3076         }
3077         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
3078
3079         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
3080         if (ret)
3081                 return ret;
3082
3083         hns3_parse_dev_specifications(hw, desc);
3084
3085         return hns3_check_dev_specifications(hw);
3086 }
3087
3088 static int
3089 hns3_get_capability(struct hns3_hw *hw)
3090 {
3091         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3092         struct rte_pci_device *pci_dev;
3093         struct hns3_pf *pf = &hns->pf;
3094         struct rte_eth_dev *eth_dev;
3095         uint16_t device_id;
3096         uint8_t revision;
3097         int ret;
3098
3099         eth_dev = &rte_eth_devices[hw->data->port_id];
3100         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3101         device_id = pci_dev->id.device_id;
3102
3103         if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3104             device_id == HNS3_DEV_ID_50GE_RDMA ||
3105             device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3106             device_id == HNS3_DEV_ID_200G_RDMA)
3107                 hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3108
3109         /* Get PCI revision id */
3110         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3111                                   HNS3_PCI_REVISION_ID);
3112         if (ret != HNS3_PCI_REVISION_ID_LEN) {
3113                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3114                              ret);
3115                 return -EIO;
3116         }
3117         hw->revision = revision;
3118
3119         if (revision < PCI_REVISION_ID_HIP09_A) {
3120                 hns3_set_default_dev_specifications(hw);
3121                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3122                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3123                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3124                 hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3125                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
3126                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3127                 pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3128                 hw->rss_info.ipv6_sctp_offload_supported = false;
3129                 return 0;
3130         }
3131
3132         ret = hns3_query_dev_specifications(hw);
3133         if (ret) {
3134                 PMD_INIT_LOG(ERR,
3135                              "failed to query dev specifications, ret = %d",
3136                              ret);
3137                 return ret;
3138         }
3139
3140         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3141         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3142         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3143         hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3144         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
3145         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3146         pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3147         hw->rss_info.ipv6_sctp_offload_supported = true;
3148
3149         return 0;
3150 }
3151
3152 static int
3153 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
3154 {
3155         int ret;
3156
3157         switch (media_type) {
3158         case HNS3_MEDIA_TYPE_COPPER:
3159                 if (!hns3_dev_copper_supported(hw)) {
3160                         PMD_INIT_LOG(ERR,
3161                                      "Media type is copper, not supported.");
3162                         ret = -EOPNOTSUPP;
3163                 } else {
3164                         ret = 0;
3165                 }
3166                 break;
3167         case HNS3_MEDIA_TYPE_FIBER:
3168                 ret = 0;
3169                 break;
3170         case HNS3_MEDIA_TYPE_BACKPLANE:
3171                 PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
3172                 ret = -EOPNOTSUPP;
3173                 break;
3174         default:
3175                 PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
3176                 ret = -EINVAL;
3177                 break;
3178         }
3179
3180         return ret;
3181 }
3182
3183 static int
3184 hns3_get_board_configuration(struct hns3_hw *hw)
3185 {
3186         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3187         struct hns3_pf *pf = &hns->pf;
3188         struct hns3_cfg cfg;
3189         int ret;
3190
3191         ret = hns3_get_board_cfg(hw, &cfg);
3192         if (ret) {
3193                 PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3194                 return ret;
3195         }
3196
3197         ret = hns3_check_media_type(hw, cfg.media_type);
3198         if (ret)
3199                 return ret;
3200
3201         hw->mac.media_type = cfg.media_type;
3202         hw->rss_size_max = cfg.rss_size_max;
3203         hw->rss_dis_flag = false;
3204         memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3205         hw->mac.phy_addr = cfg.phy_addr;
3206         hw->mac.default_addr_setted = false;
3207         hw->num_tx_desc = cfg.tqp_desc_num;
3208         hw->num_rx_desc = cfg.tqp_desc_num;
3209         hw->dcb_info.num_pg = 1;
3210         hw->dcb_info.hw_pfc_map = 0;
3211
3212         ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3213         if (ret) {
3214                 PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3215                              cfg.default_speed, ret);
3216                 return ret;
3217         }
3218
3219         pf->tc_max = cfg.tc_num;
3220         if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3221                 PMD_INIT_LOG(WARNING,
3222                              "Get TC num(%u) from flash, set TC num to 1",
3223                              pf->tc_max);
3224                 pf->tc_max = 1;
3225         }
3226
3227         /* Dev does not support DCB */
3228         if (!hns3_dev_dcb_supported(hw)) {
3229                 pf->tc_max = 1;
3230                 pf->pfc_max = 0;
3231         } else
3232                 pf->pfc_max = pf->tc_max;
3233
3234         hw->dcb_info.num_tc = 1;
3235         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3236                                      hw->tqps_num / hw->dcb_info.num_tc);
3237         hns3_set_bit(hw->hw_tc_map, 0, 1);
3238         pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3239
3240         pf->wanted_umv_size = cfg.umv_space;
3241
3242         return ret;
3243 }
3244
3245 static int
3246 hns3_get_configuration(struct hns3_hw *hw)
3247 {
3248         int ret;
3249
3250         ret = hns3_query_function_status(hw);
3251         if (ret) {
3252                 PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3253                 return ret;
3254         }
3255
3256         /* Get device capability */
3257         ret = hns3_get_capability(hw);
3258         if (ret) {
3259                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3260                 return ret;
3261         }
3262
3263         /* Get pf resource */
3264         ret = hns3_query_pf_resource(hw);
3265         if (ret) {
3266                 PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3267                 return ret;
3268         }
3269
3270         ret = hns3_get_board_configuration(hw);
3271         if (ret) {
3272                 PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3273                 return ret;
3274         }
3275
3276         ret = hns3_query_dev_fec_info(hw);
3277         if (ret)
3278                 PMD_INIT_LOG(ERR,
3279                              "failed to query FEC information, ret = %d", ret);
3280
3281         return ret;
3282 }
3283
3284 static int
3285 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3286                       uint16_t tqp_vid, bool is_pf)
3287 {
3288         struct hns3_tqp_map_cmd *req;
3289         struct hns3_cmd_desc desc;
3290         int ret;
3291
3292         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3293
3294         req = (struct hns3_tqp_map_cmd *)desc.data;
3295         req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3296         req->tqp_vf = func_id;
3297         req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3298         if (!is_pf)
3299                 req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3300         req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3301
3302         ret = hns3_cmd_send(hw, &desc, 1);
3303         if (ret)
3304                 PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3305
3306         return ret;
3307 }
3308
3309 static int
3310 hns3_map_tqp(struct hns3_hw *hw)
3311 {
3312         int ret;
3313         int i;
3314
3315         /*
3316          * In current version, VF is not supported when PF is driven by DPDK
3317          * driver, so we assign total tqps_num tqps allocated to this port
3318          * to PF.
3319          */
3320         for (i = 0; i < hw->total_tqps_num; i++) {
3321                 ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3322                 if (ret)
3323                         return ret;
3324         }
3325
3326         return 0;
3327 }
3328
3329 static int
3330 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3331 {
3332         struct hns3_config_mac_speed_dup_cmd *req;
3333         struct hns3_cmd_desc desc;
3334         int ret;
3335
3336         req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3337
3338         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3339
3340         hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3341
3342         switch (speed) {
3343         case ETH_SPEED_NUM_10M:
3344                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3345                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3346                 break;
3347         case ETH_SPEED_NUM_100M:
3348                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3349                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3350                 break;
3351         case ETH_SPEED_NUM_1G:
3352                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3353                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3354                 break;
3355         case ETH_SPEED_NUM_10G:
3356                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3357                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3358                 break;
3359         case ETH_SPEED_NUM_25G:
3360                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3361                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3362                 break;
3363         case ETH_SPEED_NUM_40G:
3364                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3365                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3366                 break;
3367         case ETH_SPEED_NUM_50G:
3368                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3369                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3370                 break;
3371         case ETH_SPEED_NUM_100G:
3372                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3373                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3374                 break;
3375         case ETH_SPEED_NUM_200G:
3376                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3377                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3378                 break;
3379         default:
3380                 PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3381                 return -EINVAL;
3382         }
3383
3384         hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3385
3386         ret = hns3_cmd_send(hw, &desc, 1);
3387         if (ret)
3388                 PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3389
3390         return ret;
3391 }
3392
3393 static int
3394 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3395 {
3396         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3397         struct hns3_pf *pf = &hns->pf;
3398         struct hns3_priv_buf *priv;
3399         uint32_t i, total_size;
3400
3401         total_size = pf->pkt_buf_size;
3402
3403         /* alloc tx buffer for all enabled tc */
3404         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3405                 priv = &buf_alloc->priv_buf[i];
3406
3407                 if (hw->hw_tc_map & BIT(i)) {
3408                         if (total_size < pf->tx_buf_size)
3409                                 return -ENOMEM;
3410
3411                         priv->tx_buf_size = pf->tx_buf_size;
3412                 } else
3413                         priv->tx_buf_size = 0;
3414
3415                 total_size -= priv->tx_buf_size;
3416         }
3417
3418         return 0;
3419 }
3420
3421 static int
3422 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3423 {
3424 /* TX buffer size is unit by 128 byte */
3425 #define HNS3_BUF_SIZE_UNIT_SHIFT        7
3426 #define HNS3_BUF_SIZE_UPDATE_EN_MSK     BIT(15)
3427         struct hns3_tx_buff_alloc_cmd *req;
3428         struct hns3_cmd_desc desc;
3429         uint32_t buf_size;
3430         uint32_t i;
3431         int ret;
3432
3433         req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3434
3435         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3436         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3437                 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3438
3439                 buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3440                 req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3441                                                 HNS3_BUF_SIZE_UPDATE_EN_MSK);
3442         }
3443
3444         ret = hns3_cmd_send(hw, &desc, 1);
3445         if (ret)
3446                 PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3447
3448         return ret;
3449 }
3450
3451 static int
3452 hns3_get_tc_num(struct hns3_hw *hw)
3453 {
3454         int cnt = 0;
3455         uint8_t i;
3456
3457         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3458                 if (hw->hw_tc_map & BIT(i))
3459                         cnt++;
3460         return cnt;
3461 }
3462
3463 static uint32_t
3464 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3465 {
3466         struct hns3_priv_buf *priv;
3467         uint32_t rx_priv = 0;
3468         int i;
3469
3470         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3471                 priv = &buf_alloc->priv_buf[i];
3472                 if (priv->enable)
3473                         rx_priv += priv->buf_size;
3474         }
3475         return rx_priv;
3476 }
3477
3478 static uint32_t
3479 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3480 {
3481         uint32_t total_tx_size = 0;
3482         uint32_t i;
3483
3484         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3485                 total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3486
3487         return total_tx_size;
3488 }
3489
3490 /* Get the number of pfc enabled TCs, which have private buffer */
3491 static int
3492 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3493 {
3494         struct hns3_priv_buf *priv;
3495         int cnt = 0;
3496         uint8_t i;
3497
3498         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3499                 priv = &buf_alloc->priv_buf[i];
3500                 if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3501                         cnt++;
3502         }
3503
3504         return cnt;
3505 }
3506
3507 /* Get the number of pfc disabled TCs, which have private buffer */
3508 static int
3509 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3510                          struct hns3_pkt_buf_alloc *buf_alloc)
3511 {
3512         struct hns3_priv_buf *priv;
3513         int cnt = 0;
3514         uint8_t i;
3515
3516         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3517                 priv = &buf_alloc->priv_buf[i];
3518                 if (hw->hw_tc_map & BIT(i) &&
3519                     !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3520                         cnt++;
3521         }
3522
3523         return cnt;
3524 }
3525
3526 static bool
3527 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3528                   uint32_t rx_all)
3529 {
3530         uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3531         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3532         struct hns3_pf *pf = &hns->pf;
3533         uint32_t shared_buf, aligned_mps;
3534         uint32_t rx_priv;
3535         uint8_t tc_num;
3536         uint8_t i;
3537
3538         tc_num = hns3_get_tc_num(hw);
3539         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3540
3541         if (hns3_dev_dcb_supported(hw))
3542                 shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3543                                         pf->dv_buf_size;
3544         else
3545                 shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3546                                         + pf->dv_buf_size;
3547
3548         shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3549         shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3550                              HNS3_BUF_SIZE_UNIT);
3551
3552         rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3553         if (rx_all < rx_priv + shared_std)
3554                 return false;
3555
3556         shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3557         buf_alloc->s_buf.buf_size = shared_buf;
3558         if (hns3_dev_dcb_supported(hw)) {
3559                 buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3560                 buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3561                         - roundup(aligned_mps / HNS3_BUF_DIV_BY,
3562                                   HNS3_BUF_SIZE_UNIT);
3563         } else {
3564                 buf_alloc->s_buf.self.high =
3565                         aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3566                 buf_alloc->s_buf.self.low = aligned_mps;
3567         }
3568
3569         if (hns3_dev_dcb_supported(hw)) {
3570                 hi_thrd = shared_buf - pf->dv_buf_size;
3571
3572                 if (tc_num <= NEED_RESERVE_TC_NUM)
3573                         hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3574                                   BUF_MAX_PERCENT;
3575
3576                 if (tc_num)
3577                         hi_thrd = hi_thrd / tc_num;
3578
3579                 hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3580                 hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3581                 lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3582         } else {
3583                 hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3584                 lo_thrd = aligned_mps;
3585         }
3586
3587         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3588                 buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3589                 buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3590         }
3591
3592         return true;
3593 }
3594
3595 static bool
3596 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3597                      struct hns3_pkt_buf_alloc *buf_alloc)
3598 {
3599         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3600         struct hns3_pf *pf = &hns->pf;
3601         struct hns3_priv_buf *priv;
3602         uint32_t aligned_mps;
3603         uint32_t rx_all;
3604         uint8_t i;
3605
3606         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3607         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3608
3609         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3610                 priv = &buf_alloc->priv_buf[i];
3611
3612                 priv->enable = 0;
3613                 priv->wl.low = 0;
3614                 priv->wl.high = 0;
3615                 priv->buf_size = 0;
3616
3617                 if (!(hw->hw_tc_map & BIT(i)))
3618                         continue;
3619
3620                 priv->enable = 1;
3621                 if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3622                         priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3623                         priv->wl.high = roundup(priv->wl.low + aligned_mps,
3624                                                 HNS3_BUF_SIZE_UNIT);
3625                 } else {
3626                         priv->wl.low = 0;
3627                         priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3628                                         aligned_mps;
3629                 }
3630
3631                 priv->buf_size = priv->wl.high + pf->dv_buf_size;
3632         }
3633
3634         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3635 }
3636
3637 static bool
3638 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3639                              struct hns3_pkt_buf_alloc *buf_alloc)
3640 {
3641         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3642         struct hns3_pf *pf = &hns->pf;
3643         struct hns3_priv_buf *priv;
3644         int no_pfc_priv_num;
3645         uint32_t rx_all;
3646         uint8_t mask;
3647         int i;
3648
3649         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3650         no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3651
3652         /* let the last to be cleared first */
3653         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3654                 priv = &buf_alloc->priv_buf[i];
3655                 mask = BIT((uint8_t)i);
3656
3657                 if (hw->hw_tc_map & mask &&
3658                     !(hw->dcb_info.hw_pfc_map & mask)) {
3659                         /* Clear the no pfc TC private buffer */
3660                         priv->wl.low = 0;
3661                         priv->wl.high = 0;
3662                         priv->buf_size = 0;
3663                         priv->enable = 0;
3664                         no_pfc_priv_num--;
3665                 }
3666
3667                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3668                     no_pfc_priv_num == 0)
3669                         break;
3670         }
3671
3672         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3673 }
3674
3675 static bool
3676 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3677                            struct hns3_pkt_buf_alloc *buf_alloc)
3678 {
3679         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3680         struct hns3_pf *pf = &hns->pf;
3681         struct hns3_priv_buf *priv;
3682         uint32_t rx_all;
3683         int pfc_priv_num;
3684         uint8_t mask;
3685         int i;
3686
3687         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3688         pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3689
3690         /* let the last to be cleared first */
3691         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3692                 priv = &buf_alloc->priv_buf[i];
3693                 mask = BIT((uint8_t)i);
3694                 if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3695                         /* Reduce the number of pfc TC with private buffer */
3696                         priv->wl.low = 0;
3697                         priv->enable = 0;
3698                         priv->wl.high = 0;
3699                         priv->buf_size = 0;
3700                         pfc_priv_num--;
3701                 }
3702                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3703                     pfc_priv_num == 0)
3704                         break;
3705         }
3706
3707         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3708 }
3709
3710 static bool
3711 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3712                           struct hns3_pkt_buf_alloc *buf_alloc)
3713 {
3714 #define COMPENSATE_BUFFER       0x3C00
3715 #define COMPENSATE_HALF_MPS_NUM 5
3716 #define PRIV_WL_GAP             0x1800
3717         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3718         struct hns3_pf *pf = &hns->pf;
3719         uint32_t tc_num = hns3_get_tc_num(hw);
3720         uint32_t half_mps = pf->mps >> 1;
3721         struct hns3_priv_buf *priv;
3722         uint32_t min_rx_priv;
3723         uint32_t rx_priv;
3724         uint8_t i;
3725
3726         rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3727         if (tc_num)
3728                 rx_priv = rx_priv / tc_num;
3729
3730         if (tc_num <= NEED_RESERVE_TC_NUM)
3731                 rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3732
3733         /*
3734          * Minimum value of private buffer in rx direction (min_rx_priv) is
3735          * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3736          * buffer if rx_priv is greater than min_rx_priv.
3737          */
3738         min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3739                         COMPENSATE_HALF_MPS_NUM * half_mps;
3740         min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3741         rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3742
3743         if (rx_priv < min_rx_priv)
3744                 return false;
3745
3746         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3747                 priv = &buf_alloc->priv_buf[i];
3748                 priv->enable = 0;
3749                 priv->wl.low = 0;
3750                 priv->wl.high = 0;
3751                 priv->buf_size = 0;
3752
3753                 if (!(hw->hw_tc_map & BIT(i)))
3754                         continue;
3755
3756                 priv->enable = 1;
3757                 priv->buf_size = rx_priv;
3758                 priv->wl.high = rx_priv - pf->dv_buf_size;
3759                 priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3760         }
3761
3762         buf_alloc->s_buf.buf_size = 0;
3763
3764         return true;
3765 }
3766
3767 /*
3768  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3769  * @hw: pointer to struct hns3_hw
3770  * @buf_alloc: pointer to buffer calculation data
3771  * @return: 0: calculate sucessful, negative: fail
3772  */
3773 static int
3774 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3775 {
3776         /* When DCB is not supported, rx private buffer is not allocated. */
3777         if (!hns3_dev_dcb_supported(hw)) {
3778                 struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3779                 struct hns3_pf *pf = &hns->pf;
3780                 uint32_t rx_all = pf->pkt_buf_size;
3781
3782                 rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3783                 if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3784                         return -ENOMEM;
3785
3786                 return 0;
3787         }
3788
3789         /*
3790          * Try to allocate privated packet buffer for all TCs without share
3791          * buffer.
3792          */
3793         if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3794                 return 0;
3795
3796         /*
3797          * Try to allocate privated packet buffer for all TCs with share
3798          * buffer.
3799          */
3800         if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3801                 return 0;
3802
3803         /*
3804          * For different application scenes, the enabled port number, TC number
3805          * and no_drop TC number are different. In order to obtain the better
3806          * performance, software could allocate the buffer size and configure
3807          * the waterline by tring to decrease the private buffer size according
3808          * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3809          * enabled tc.
3810          */
3811         if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3812                 return 0;
3813
3814         if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3815                 return 0;
3816
3817         if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3818                 return 0;
3819
3820         return -ENOMEM;
3821 }
3822
3823 static int
3824 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3825 {
3826         struct hns3_rx_priv_buff_cmd *req;
3827         struct hns3_cmd_desc desc;
3828         uint32_t buf_size;
3829         int ret;
3830         int i;
3831
3832         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3833         req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3834
3835         /* Alloc private buffer TCs */
3836         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3837                 struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3838
3839                 req->buf_num[i] =
3840                         rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3841                 req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3842         }
3843
3844         buf_size = buf_alloc->s_buf.buf_size;
3845         req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3846                                            (1 << HNS3_TC0_PRI_BUF_EN_B));
3847
3848         ret = hns3_cmd_send(hw, &desc, 1);
3849         if (ret)
3850                 PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3851
3852         return ret;
3853 }
3854
3855 static int
3856 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3857 {
3858 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3859         struct hns3_rx_priv_wl_buf *req;
3860         struct hns3_priv_buf *priv;
3861         struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3862         int i, j;
3863         int ret;
3864
3865         for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3866                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3867                                           false);
3868                 req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3869
3870                 /* The first descriptor set the NEXT bit to 1 */
3871                 if (i == 0)
3872                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3873                 else
3874                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3875
3876                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3877                         uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3878
3879                         priv = &buf_alloc->priv_buf[idx];
3880                         req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3881                                                         HNS3_BUF_UNIT_S);
3882                         req->tc_wl[j].high |=
3883                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3884                         req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3885                                                         HNS3_BUF_UNIT_S);
3886                         req->tc_wl[j].low |=
3887                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3888                 }
3889         }
3890
3891         /* Send 2 descriptor at one time */
3892         ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3893         if (ret)
3894                 PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3895                              ret);
3896         return ret;
3897 }
3898
3899 static int
3900 hns3_common_thrd_config(struct hns3_hw *hw,
3901                         struct hns3_pkt_buf_alloc *buf_alloc)
3902 {
3903 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3904         struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3905         struct hns3_rx_com_thrd *req;
3906         struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3907         struct hns3_tc_thrd *tc;
3908         int tc_idx;
3909         int i, j;
3910         int ret;
3911
3912         for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3913                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3914                                           false);
3915                 req = (struct hns3_rx_com_thrd *)&desc[i].data;
3916
3917                 /* The first descriptor set the NEXT bit to 1 */
3918                 if (i == 0)
3919                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3920                 else
3921                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3922
3923                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3924                         tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3925                         tc = &s_buf->tc_thrd[tc_idx];
3926
3927                         req->com_thrd[j].high =
3928                                 rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3929                         req->com_thrd[j].high |=
3930                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3931                         req->com_thrd[j].low =
3932                                 rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3933                         req->com_thrd[j].low |=
3934                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3935                 }
3936         }
3937
3938         /* Send 2 descriptors at one time */
3939         ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3940         if (ret)
3941                 PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3942
3943         return ret;
3944 }
3945
3946 static int
3947 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3948 {
3949         struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3950         struct hns3_rx_com_wl *req;
3951         struct hns3_cmd_desc desc;
3952         int ret;
3953
3954         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3955
3956         req = (struct hns3_rx_com_wl *)desc.data;
3957         req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3958         req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3959
3960         req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3961         req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3962
3963         ret = hns3_cmd_send(hw, &desc, 1);
3964         if (ret)
3965                 PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3966
3967         return ret;
3968 }
3969
3970 int
3971 hns3_buffer_alloc(struct hns3_hw *hw)
3972 {
3973         struct hns3_pkt_buf_alloc pkt_buf;
3974         int ret;
3975
3976         memset(&pkt_buf, 0, sizeof(pkt_buf));
3977         ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3978         if (ret) {
3979                 PMD_INIT_LOG(ERR,
3980                              "could not calc tx buffer size for all TCs %d",
3981                              ret);
3982                 return ret;
3983         }
3984
3985         ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3986         if (ret) {
3987                 PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3988                 return ret;
3989         }
3990
3991         ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3992         if (ret) {
3993                 PMD_INIT_LOG(ERR,
3994                              "could not calc rx priv buffer size for all TCs %d",
3995                              ret);
3996                 return ret;
3997         }
3998
3999         ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
4000         if (ret) {
4001                 PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
4002                 return ret;
4003         }
4004
4005         if (hns3_dev_dcb_supported(hw)) {
4006                 ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
4007                 if (ret) {
4008                         PMD_INIT_LOG(ERR,
4009                                      "could not configure rx private waterline %d",
4010                                      ret);
4011                         return ret;
4012                 }
4013
4014                 ret = hns3_common_thrd_config(hw, &pkt_buf);
4015                 if (ret) {
4016                         PMD_INIT_LOG(ERR,
4017                                      "could not configure common threshold %d",
4018                                      ret);
4019                         return ret;
4020                 }
4021         }
4022
4023         ret = hns3_common_wl_config(hw, &pkt_buf);
4024         if (ret)
4025                 PMD_INIT_LOG(ERR, "could not configure common waterline %d",
4026                              ret);
4027
4028         return ret;
4029 }
4030
4031 static int
4032 hns3_firmware_compat_config(struct hns3_hw *hw, bool is_init)
4033 {
4034         struct hns3_firmware_compat_cmd *req;
4035         struct hns3_cmd_desc desc;
4036         uint32_t compat = 0;
4037
4038         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FIRMWARE_COMPAT_CFG, false);
4039         req = (struct hns3_firmware_compat_cmd *)desc.data;
4040
4041         if (is_init) {
4042                 hns3_set_bit(compat, HNS3_LINK_EVENT_REPORT_EN_B, 1);
4043                 hns3_set_bit(compat, HNS3_NCSI_ERROR_REPORT_EN_B, 0);
4044                 if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4045                         hns3_set_bit(compat, HNS3_FIRMWARE_PHY_DRIVER_EN_B, 1);
4046         }
4047
4048         req->compat = rte_cpu_to_le_32(compat);
4049
4050         return hns3_cmd_send(hw, &desc, 1);
4051 }
4052
4053 static int
4054 hns3_mac_init(struct hns3_hw *hw)
4055 {
4056         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4057         struct hns3_mac *mac = &hw->mac;
4058         struct hns3_pf *pf = &hns->pf;
4059         int ret;
4060
4061         pf->support_sfp_query = true;
4062         mac->link_duplex = ETH_LINK_FULL_DUPLEX;
4063         ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
4064         if (ret) {
4065                 PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
4066                 return ret;
4067         }
4068
4069         mac->link_status = ETH_LINK_DOWN;
4070
4071         return hns3_config_mtu(hw, pf->mps);
4072 }
4073
4074 static int
4075 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
4076 {
4077 #define HNS3_ETHERTYPE_SUCCESS_ADD              0
4078 #define HNS3_ETHERTYPE_ALREADY_ADD              1
4079 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW         2
4080 #define HNS3_ETHERTYPE_KEY_CONFLICT             3
4081         int return_status;
4082
4083         if (cmdq_resp) {
4084                 PMD_INIT_LOG(ERR,
4085                              "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
4086                              cmdq_resp);
4087                 return -EIO;
4088         }
4089
4090         switch (resp_code) {
4091         case HNS3_ETHERTYPE_SUCCESS_ADD:
4092         case HNS3_ETHERTYPE_ALREADY_ADD:
4093                 return_status = 0;
4094                 break;
4095         case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
4096                 PMD_INIT_LOG(ERR,
4097                              "add mac ethertype failed for manager table overflow.");
4098                 return_status = -EIO;
4099                 break;
4100         case HNS3_ETHERTYPE_KEY_CONFLICT:
4101                 PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
4102                 return_status = -EIO;
4103                 break;
4104         default:
4105                 PMD_INIT_LOG(ERR,
4106                              "add mac ethertype failed for undefined, code=%u.",
4107                              resp_code);
4108                 return_status = -EIO;
4109                 break;
4110         }
4111
4112         return return_status;
4113 }
4114
4115 static int
4116 hns3_add_mgr_tbl(struct hns3_hw *hw,
4117                  const struct hns3_mac_mgr_tbl_entry_cmd *req)
4118 {
4119         struct hns3_cmd_desc desc;
4120         uint8_t resp_code;
4121         uint16_t retval;
4122         int ret;
4123
4124         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
4125         memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
4126
4127         ret = hns3_cmd_send(hw, &desc, 1);
4128         if (ret) {
4129                 PMD_INIT_LOG(ERR,
4130                              "add mac ethertype failed for cmd_send, ret =%d.",
4131                              ret);
4132                 return ret;
4133         }
4134
4135         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
4136         retval = rte_le_to_cpu_16(desc.retval);
4137
4138         return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
4139 }
4140
4141 static void
4142 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
4143                      int *table_item_num)
4144 {
4145         struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4146
4147         /*
4148          * In current version, we add one item in management table as below:
4149          * 0x0180C200000E -- LLDP MC address
4150          */
4151         tbl = mgr_table;
4152         tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4153         tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4154         tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4155         tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4156         tbl->i_port_bitmap = 0x1;
4157         *table_item_num = 1;
4158 }
4159
4160 static int
4161 hns3_init_mgr_tbl(struct hns3_hw *hw)
4162 {
4163 #define HNS_MAC_MGR_TBL_MAX_SIZE        16
4164         struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4165         int table_item_num;
4166         int ret;
4167         int i;
4168
4169         memset(mgr_table, 0, sizeof(mgr_table));
4170         hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4171         for (i = 0; i < table_item_num; i++) {
4172                 ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4173                 if (ret) {
4174                         PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4175                                      ret);
4176                         return ret;
4177                 }
4178         }
4179
4180         return 0;
4181 }
4182
4183 static void
4184 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4185                         bool en_mc, bool en_bc, int vport_id)
4186 {
4187         if (!param)
4188                 return;
4189
4190         memset(param, 0, sizeof(struct hns3_promisc_param));
4191         if (en_uc)
4192                 param->enable = HNS3_PROMISC_EN_UC;
4193         if (en_mc)
4194                 param->enable |= HNS3_PROMISC_EN_MC;
4195         if (en_bc)
4196                 param->enable |= HNS3_PROMISC_EN_BC;
4197         param->vf_id = vport_id;
4198 }
4199
4200 static int
4201 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4202 {
4203         struct hns3_promisc_cfg_cmd *req;
4204         struct hns3_cmd_desc desc;
4205         int ret;
4206
4207         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4208
4209         req = (struct hns3_promisc_cfg_cmd *)desc.data;
4210         req->vf_id = param->vf_id;
4211         req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4212             HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4213
4214         ret = hns3_cmd_send(hw, &desc, 1);
4215         if (ret)
4216                 PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4217
4218         return ret;
4219 }
4220
4221 static int
4222 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4223 {
4224         struct hns3_promisc_param param;
4225         bool en_bc_pmc = true;
4226         uint8_t vf_id;
4227
4228         /*
4229          * In current version VF is not supported when PF is driven by DPDK
4230          * driver, just need to configure parameters for PF vport.
4231          */
4232         vf_id = HNS3_PF_FUNC_ID;
4233
4234         hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4235         return hns3_cmd_set_promisc_mode(hw, &param);
4236 }
4237
4238 static int
4239 hns3_promisc_init(struct hns3_hw *hw)
4240 {
4241         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4242         struct hns3_pf *pf = &hns->pf;
4243         struct hns3_promisc_param param;
4244         uint16_t func_id;
4245         int ret;
4246
4247         ret = hns3_set_promisc_mode(hw, false, false);
4248         if (ret) {
4249                 PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4250                 return ret;
4251         }
4252
4253         /*
4254          * In current version VFs are not supported when PF is driven by DPDK
4255          * driver. After PF has been taken over by DPDK, the original VF will
4256          * be invalid. So, there is a possibility of entry residues. It should
4257          * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4258          * during init.
4259          */
4260         for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4261                 hns3_promisc_param_init(&param, false, false, false, func_id);
4262                 ret = hns3_cmd_set_promisc_mode(hw, &param);
4263                 if (ret) {
4264                         PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4265                                         " ret = %d", func_id, ret);
4266                         return ret;
4267                 }
4268         }
4269
4270         return 0;
4271 }
4272
4273 static void
4274 hns3_promisc_uninit(struct hns3_hw *hw)
4275 {
4276         struct hns3_promisc_param param;
4277         uint16_t func_id;
4278         int ret;
4279
4280         func_id = HNS3_PF_FUNC_ID;
4281
4282         /*
4283          * In current version VFs are not supported when PF is driven by
4284          * DPDK driver, and VFs' promisc mode status has been cleared during
4285          * init and their status will not change. So just clear PF's promisc
4286          * mode status during uninit.
4287          */
4288         hns3_promisc_param_init(&param, false, false, false, func_id);
4289         ret = hns3_cmd_set_promisc_mode(hw, &param);
4290         if (ret)
4291                 PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4292                                 " uninit, ret = %d", ret);
4293 }
4294
4295 static int
4296 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4297 {
4298         bool allmulti = dev->data->all_multicast ? true : false;
4299         struct hns3_adapter *hns = dev->data->dev_private;
4300         struct hns3_hw *hw = &hns->hw;
4301         uint64_t offloads;
4302         int err;
4303         int ret;
4304
4305         rte_spinlock_lock(&hw->lock);
4306         ret = hns3_set_promisc_mode(hw, true, true);
4307         if (ret) {
4308                 rte_spinlock_unlock(&hw->lock);
4309                 hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4310                          ret);
4311                 return ret;
4312         }
4313
4314         /*
4315          * When promiscuous mode was enabled, disable the vlan filter to let
4316          * all packets coming in in the receiving direction.
4317          */
4318         offloads = dev->data->dev_conf.rxmode.offloads;
4319         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4320                 ret = hns3_enable_vlan_filter(hns, false);
4321                 if (ret) {
4322                         hns3_err(hw, "failed to enable promiscuous mode due to "
4323                                      "failure to disable vlan filter, ret = %d",
4324                                  ret);
4325                         err = hns3_set_promisc_mode(hw, false, allmulti);
4326                         if (err)
4327                                 hns3_err(hw, "failed to restore promiscuous "
4328                                          "status after disable vlan filter "
4329                                          "failed during enabling promiscuous "
4330                                          "mode, ret = %d", ret);
4331                 }
4332         }
4333
4334         rte_spinlock_unlock(&hw->lock);
4335
4336         return ret;
4337 }
4338
4339 static int
4340 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4341 {
4342         bool allmulti = dev->data->all_multicast ? true : false;
4343         struct hns3_adapter *hns = dev->data->dev_private;
4344         struct hns3_hw *hw = &hns->hw;
4345         uint64_t offloads;
4346         int err;
4347         int ret;
4348
4349         /* If now in all_multicast mode, must remain in all_multicast mode. */
4350         rte_spinlock_lock(&hw->lock);
4351         ret = hns3_set_promisc_mode(hw, false, allmulti);
4352         if (ret) {
4353                 rte_spinlock_unlock(&hw->lock);
4354                 hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4355                          ret);
4356                 return ret;
4357         }
4358         /* when promiscuous mode was disabled, restore the vlan filter status */
4359         offloads = dev->data->dev_conf.rxmode.offloads;
4360         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4361                 ret = hns3_enable_vlan_filter(hns, true);
4362                 if (ret) {
4363                         hns3_err(hw, "failed to disable promiscuous mode due to"
4364                                  " failure to restore vlan filter, ret = %d",
4365                                  ret);
4366                         err = hns3_set_promisc_mode(hw, true, true);
4367                         if (err)
4368                                 hns3_err(hw, "failed to restore promiscuous "
4369                                          "status after enabling vlan filter "
4370                                          "failed during disabling promiscuous "
4371                                          "mode, ret = %d", ret);
4372                 }
4373         }
4374         rte_spinlock_unlock(&hw->lock);
4375
4376         return ret;
4377 }
4378
4379 static int
4380 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4381 {
4382         struct hns3_adapter *hns = dev->data->dev_private;
4383         struct hns3_hw *hw = &hns->hw;
4384         int ret;
4385
4386         if (dev->data->promiscuous)
4387                 return 0;
4388
4389         rte_spinlock_lock(&hw->lock);
4390         ret = hns3_set_promisc_mode(hw, false, true);
4391         rte_spinlock_unlock(&hw->lock);
4392         if (ret)
4393                 hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4394                          ret);
4395
4396         return ret;
4397 }
4398
4399 static int
4400 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4401 {
4402         struct hns3_adapter *hns = dev->data->dev_private;
4403         struct hns3_hw *hw = &hns->hw;
4404         int ret;
4405
4406         /* If now in promiscuous mode, must remain in all_multicast mode. */
4407         if (dev->data->promiscuous)
4408                 return 0;
4409
4410         rte_spinlock_lock(&hw->lock);
4411         ret = hns3_set_promisc_mode(hw, false, false);
4412         rte_spinlock_unlock(&hw->lock);
4413         if (ret)
4414                 hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4415                          ret);
4416
4417         return ret;
4418 }
4419
4420 static int
4421 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4422 {
4423         struct hns3_hw *hw = &hns->hw;
4424         bool allmulti = hw->data->all_multicast ? true : false;
4425         int ret;
4426
4427         if (hw->data->promiscuous) {
4428                 ret = hns3_set_promisc_mode(hw, true, true);
4429                 if (ret)
4430                         hns3_err(hw, "failed to restore promiscuous mode, "
4431                                  "ret = %d", ret);
4432                 return ret;
4433         }
4434
4435         ret = hns3_set_promisc_mode(hw, false, allmulti);
4436         if (ret)
4437                 hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4438                          ret);
4439         return ret;
4440 }
4441
4442 static int
4443 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4444 {
4445         struct hns3_sfp_speed_cmd *resp;
4446         struct hns3_cmd_desc desc;
4447         int ret;
4448
4449         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4450         resp = (struct hns3_sfp_speed_cmd *)desc.data;
4451         ret = hns3_cmd_send(hw, &desc, 1);
4452         if (ret == -EOPNOTSUPP) {
4453                 hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4454                 return ret;
4455         } else if (ret) {
4456                 hns3_err(hw, "get sfp speed failed %d", ret);
4457                 return ret;
4458         }
4459
4460         *speed = resp->sfp_speed;
4461
4462         return 0;
4463 }
4464
4465 static uint8_t
4466 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4467 {
4468         if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4469                 duplex = ETH_LINK_FULL_DUPLEX;
4470
4471         return duplex;
4472 }
4473
4474 static int
4475 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4476 {
4477         struct hns3_mac *mac = &hw->mac;
4478         int ret;
4479
4480         duplex = hns3_check_speed_dup(duplex, speed);
4481         if (mac->link_speed == speed && mac->link_duplex == duplex)
4482                 return 0;
4483
4484         ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4485         if (ret)
4486                 return ret;
4487
4488         ret = hns3_port_shaper_update(hw, speed);
4489         if (ret)
4490                 return ret;
4491
4492         mac->link_speed = speed;
4493         mac->link_duplex = duplex;
4494
4495         return 0;
4496 }
4497
4498 static int
4499 hns3_update_fiber_link_info(struct hns3_hw *hw)
4500 {
4501         struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4502         uint32_t speed;
4503         int ret;
4504
4505         /* If IMP do not support get SFP/qSFP speed, return directly */
4506         if (!pf->support_sfp_query)
4507                 return 0;
4508
4509         ret = hns3_get_sfp_speed(hw, &speed);
4510         if (ret == -EOPNOTSUPP) {
4511                 pf->support_sfp_query = false;
4512                 return ret;
4513         } else if (ret)
4514                 return ret;
4515
4516         if (speed == ETH_SPEED_NUM_NONE)
4517                 return 0; /* do nothing if no SFP */
4518
4519         /* Config full duplex for SFP */
4520         return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4521 }
4522
4523 static void
4524 hns3_parse_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4525 {
4526         struct hns3_phy_params_bd0_cmd *req;
4527
4528         req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4529         mac->link_speed = rte_le_to_cpu_32(req->speed);
4530         mac->link_duplex = hns3_get_bit(req->duplex,
4531                                            HNS3_PHY_DUPLEX_CFG_B);
4532         mac->link_autoneg = hns3_get_bit(req->autoneg,
4533                                            HNS3_PHY_AUTONEG_CFG_B);
4534         mac->supported_capa = rte_le_to_cpu_32(req->supported);
4535         mac->advertising = rte_le_to_cpu_32(req->advertising);
4536         mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4537         mac->support_autoneg = !!(mac->supported_capa &
4538                                 HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4539 }
4540
4541 static int
4542 hns3_get_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4543 {
4544         struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4545         uint16_t i;
4546         int ret;
4547
4548         for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4549                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4550                                           true);
4551                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4552         }
4553         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4554
4555         ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4556         if (ret) {
4557                 hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4558                 return ret;
4559         }
4560
4561         hns3_parse_phy_params(desc, mac);
4562
4563         return 0;
4564 }
4565
4566 static int
4567 hns3_update_phy_link_info(struct hns3_hw *hw)
4568 {
4569         struct hns3_mac *mac = &hw->mac;
4570         struct hns3_mac mac_info;
4571         int ret;
4572
4573         memset(&mac_info, 0, sizeof(struct hns3_mac));
4574         ret = hns3_get_phy_params(hw, &mac_info);
4575         if (ret)
4576                 return ret;
4577
4578         if (mac_info.link_speed != mac->link_speed) {
4579                 ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4580                 if (ret)
4581                         return ret;
4582         }
4583
4584         mac->link_speed = mac_info.link_speed;
4585         mac->link_duplex = mac_info.link_duplex;
4586         mac->link_autoneg = mac_info.link_autoneg;
4587         mac->supported_capa = mac_info.supported_capa;
4588         mac->advertising = mac_info.advertising;
4589         mac->lp_advertising = mac_info.lp_advertising;
4590         mac->support_autoneg = mac_info.support_autoneg;
4591
4592         return 0;
4593 }
4594
4595 static int
4596 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4597 {
4598         struct hns3_adapter *hns = eth_dev->data->dev_private;
4599         struct hns3_hw *hw = &hns->hw;
4600         int ret = 0;
4601
4602         if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4603                 ret = hns3_update_phy_link_info(hw);
4604         else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4605                 ret = hns3_update_fiber_link_info(hw);
4606
4607         return ret;
4608 }
4609
4610 static int
4611 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4612 {
4613         struct hns3_config_mac_mode_cmd *req;
4614         struct hns3_cmd_desc desc;
4615         uint32_t loop_en = 0;
4616         uint8_t val = 0;
4617         int ret;
4618
4619         req = (struct hns3_config_mac_mode_cmd *)desc.data;
4620
4621         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4622         if (enable)
4623                 val = 1;
4624         hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4625         hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4626         hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4627         hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4628         hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4629         hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4630         hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4631         hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4632         hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4633         hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4634
4635         /*
4636          * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4637          * when receiving frames. Otherwise, CRC will be stripped.
4638          */
4639         if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4640                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4641         else
4642                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4643         hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4644         hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4645         hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4646         req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4647
4648         ret = hns3_cmd_send(hw, &desc, 1);
4649         if (ret)
4650                 PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4651
4652         return ret;
4653 }
4654
4655 static int
4656 hns3_get_mac_link_status(struct hns3_hw *hw)
4657 {
4658         struct hns3_link_status_cmd *req;
4659         struct hns3_cmd_desc desc;
4660         int link_status;
4661         int ret;
4662
4663         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4664         ret = hns3_cmd_send(hw, &desc, 1);
4665         if (ret) {
4666                 hns3_err(hw, "get link status cmd failed %d", ret);
4667                 return ETH_LINK_DOWN;
4668         }
4669
4670         req = (struct hns3_link_status_cmd *)desc.data;
4671         link_status = req->status & HNS3_LINK_STATUS_UP_M;
4672
4673         return !!link_status;
4674 }
4675
4676 static bool
4677 hns3_update_link_status(struct hns3_hw *hw)
4678 {
4679         int state;
4680
4681         state = hns3_get_mac_link_status(hw);
4682         if (state != hw->mac.link_status) {
4683                 hw->mac.link_status = state;
4684                 hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4685                 hns3_config_mac_tnl_int(hw,
4686                                         state == ETH_LINK_UP ? true : false);
4687                 return true;
4688         }
4689
4690         return false;
4691 }
4692
4693 /*
4694  * Current, the PF driver get link status by two ways:
4695  * 1) Periodic polling in the intr thread context, driver call
4696  *    hns3_update_link_status to update link status.
4697  * 2) Firmware report async interrupt, driver process the event in the intr
4698  *    thread context, and call hns3_update_link_status to update link status.
4699  *
4700  * If detect link status changed, driver need report LSE. One method is add the
4701  * report LSE logic in hns3_update_link_status.
4702  *
4703  * But the PF driver ops(link_update) also call hns3_update_link_status to
4704  * update link status.
4705  * If we report LSE in hns3_update_link_status, it may lead to deadlock in the
4706  * bonding application.
4707  *
4708  * So add the one new API which used only in intr thread context.
4709  */
4710 void
4711 hns3_update_link_status_and_event(struct hns3_hw *hw)
4712 {
4713         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4714         bool changed = hns3_update_link_status(hw);
4715         if (changed)
4716                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
4717 }
4718
4719 static void
4720 hns3_service_handler(void *param)
4721 {
4722         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4723         struct hns3_adapter *hns = eth_dev->data->dev_private;
4724         struct hns3_hw *hw = &hns->hw;
4725
4726         if (!hns3_is_reset_pending(hns)) {
4727                 hns3_update_link_status_and_event(hw);
4728                 hns3_update_link_info(eth_dev);
4729         } else {
4730                 hns3_warn(hw, "Cancel the query when reset is pending");
4731         }
4732
4733         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4734 }
4735
4736 static int
4737 hns3_init_hardware(struct hns3_adapter *hns)
4738 {
4739         struct hns3_hw *hw = &hns->hw;
4740         int ret;
4741
4742         ret = hns3_map_tqp(hw);
4743         if (ret) {
4744                 PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4745                 return ret;
4746         }
4747
4748         ret = hns3_init_umv_space(hw);
4749         if (ret) {
4750                 PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4751                 return ret;
4752         }
4753
4754         ret = hns3_mac_init(hw);
4755         if (ret) {
4756                 PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4757                 goto err_mac_init;
4758         }
4759
4760         ret = hns3_init_mgr_tbl(hw);
4761         if (ret) {
4762                 PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4763                 goto err_mac_init;
4764         }
4765
4766         ret = hns3_promisc_init(hw);
4767         if (ret) {
4768                 PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4769                              ret);
4770                 goto err_mac_init;
4771         }
4772
4773         ret = hns3_init_vlan_config(hns);
4774         if (ret) {
4775                 PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4776                 goto err_mac_init;
4777         }
4778
4779         ret = hns3_dcb_init(hw);
4780         if (ret) {
4781                 PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4782                 goto err_mac_init;
4783         }
4784
4785         ret = hns3_init_fd_config(hns);
4786         if (ret) {
4787                 PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4788                 goto err_mac_init;
4789         }
4790
4791         ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4792         if (ret) {
4793                 PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4794                 goto err_mac_init;
4795         }
4796
4797         ret = hns3_config_gro(hw, false);
4798         if (ret) {
4799                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4800                 goto err_mac_init;
4801         }
4802
4803         /*
4804          * In the initialization clearing the all hardware mapping relationship
4805          * configurations between queues and interrupt vectors is needed, so
4806          * some error caused by the residual configurations, such as the
4807          * unexpected interrupt, can be avoid.
4808          */
4809         ret = hns3_init_ring_with_vector(hw);
4810         if (ret) {
4811                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4812                 goto err_mac_init;
4813         }
4814
4815         /*
4816          * Requiring firmware to enable some features, driver can
4817          * still work without it.
4818          */
4819         ret = hns3_firmware_compat_config(hw, true);
4820         if (ret)
4821                 PMD_INIT_LOG(WARNING, "firmware compatible features not "
4822                              "supported, ret = %d.", ret);
4823
4824         return 0;
4825
4826 err_mac_init:
4827         hns3_uninit_umv_space(hw);
4828         return ret;
4829 }
4830
4831 static int
4832 hns3_clear_hw(struct hns3_hw *hw)
4833 {
4834         struct hns3_cmd_desc desc;
4835         int ret;
4836
4837         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4838
4839         ret = hns3_cmd_send(hw, &desc, 1);
4840         if (ret && ret != -EOPNOTSUPP)
4841                 return ret;
4842
4843         return 0;
4844 }
4845
4846 static void
4847 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4848 {
4849         uint32_t val;
4850
4851         /*
4852          * The new firmware support report more hardware error types by
4853          * msix mode. These errors are defined as RAS errors in hardware
4854          * and belong to a different type from the MSI-x errors processed
4855          * by the network driver.
4856          *
4857          * Network driver should open the new error report on initialition
4858          */
4859         val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4860         hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4861         hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4862 }
4863
4864 static int
4865 hns3_init_pf(struct rte_eth_dev *eth_dev)
4866 {
4867         struct rte_device *dev = eth_dev->device;
4868         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4869         struct hns3_adapter *hns = eth_dev->data->dev_private;
4870         struct hns3_hw *hw = &hns->hw;
4871         int ret;
4872
4873         PMD_INIT_FUNC_TRACE();
4874
4875         /* Get hardware io base address from pcie BAR2 IO space */
4876         hw->io_base = pci_dev->mem_resource[2].addr;
4877
4878         /* Firmware command queue initialize */
4879         ret = hns3_cmd_init_queue(hw);
4880         if (ret) {
4881                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4882                 goto err_cmd_init_queue;
4883         }
4884
4885         hns3_clear_all_event_cause(hw);
4886
4887         /* Firmware command initialize */
4888         ret = hns3_cmd_init(hw);
4889         if (ret) {
4890                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4891                 goto err_cmd_init;
4892         }
4893
4894         /*
4895          * To ensure that the hardware environment is clean during
4896          * initialization, the driver actively clear the hardware environment
4897          * during initialization, including PF and corresponding VFs' vlan, mac,
4898          * flow table configurations, etc.
4899          */
4900         ret = hns3_clear_hw(hw);
4901         if (ret) {
4902                 PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4903                 goto err_cmd_init;
4904         }
4905
4906         /* Hardware statistics of imissed registers cleared. */
4907         ret = hns3_update_imissed_stats(hw, true);
4908         if (ret) {
4909                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
4910                 return ret;
4911         }
4912
4913         hns3_config_all_msix_error(hw, true);
4914
4915         ret = rte_intr_callback_register(&pci_dev->intr_handle,
4916                                          hns3_interrupt_handler,
4917                                          eth_dev);
4918         if (ret) {
4919                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4920                 goto err_intr_callback_register;
4921         }
4922
4923         /* Enable interrupt */
4924         rte_intr_enable(&pci_dev->intr_handle);
4925         hns3_pf_enable_irq0(hw);
4926
4927         /* Get configuration */
4928         ret = hns3_get_configuration(hw);
4929         if (ret) {
4930                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4931                 goto err_get_config;
4932         }
4933
4934         ret = hns3_tqp_stats_init(hw);
4935         if (ret)
4936                 goto err_get_config;
4937
4938         ret = hns3_init_hardware(hns);
4939         if (ret) {
4940                 PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4941                 goto err_init_hw;
4942         }
4943
4944         /* Initialize flow director filter list & hash */
4945         ret = hns3_fdir_filter_init(hns);
4946         if (ret) {
4947                 PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4948                 goto err_fdir;
4949         }
4950
4951         hns3_rss_set_default_args(hw);
4952
4953         ret = hns3_enable_hw_error_intr(hns, true);
4954         if (ret) {
4955                 PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4956                              ret);
4957                 goto err_enable_intr;
4958         }
4959
4960         hns3_tm_conf_init(eth_dev);
4961
4962         return 0;
4963
4964 err_enable_intr:
4965         hns3_fdir_filter_uninit(hns);
4966 err_fdir:
4967         (void)hns3_firmware_compat_config(hw, false);
4968         hns3_uninit_umv_space(hw);
4969 err_init_hw:
4970         hns3_tqp_stats_uninit(hw);
4971 err_get_config:
4972         hns3_pf_disable_irq0(hw);
4973         rte_intr_disable(&pci_dev->intr_handle);
4974         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4975                              eth_dev);
4976 err_intr_callback_register:
4977 err_cmd_init:
4978         hns3_cmd_uninit(hw);
4979         hns3_cmd_destroy_queue(hw);
4980 err_cmd_init_queue:
4981         hw->io_base = NULL;
4982
4983         return ret;
4984 }
4985
4986 static void
4987 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4988 {
4989         struct hns3_adapter *hns = eth_dev->data->dev_private;
4990         struct rte_device *dev = eth_dev->device;
4991         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4992         struct hns3_hw *hw = &hns->hw;
4993
4994         PMD_INIT_FUNC_TRACE();
4995
4996         hns3_tm_conf_uninit(eth_dev);
4997         hns3_enable_hw_error_intr(hns, false);
4998         hns3_rss_uninit(hns);
4999         (void)hns3_config_gro(hw, false);
5000         hns3_promisc_uninit(hw);
5001         hns3_fdir_filter_uninit(hns);
5002         (void)hns3_firmware_compat_config(hw, false);
5003         hns3_uninit_umv_space(hw);
5004         hns3_tqp_stats_uninit(hw);
5005         hns3_config_mac_tnl_int(hw, false);
5006         hns3_pf_disable_irq0(hw);
5007         rte_intr_disable(&pci_dev->intr_handle);
5008         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5009                              eth_dev);
5010         hns3_config_all_msix_error(hw, false);
5011         hns3_cmd_uninit(hw);
5012         hns3_cmd_destroy_queue(hw);
5013         hw->io_base = NULL;
5014 }
5015
5016 static int
5017 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5018 {
5019         struct hns3_hw *hw = &hns->hw;
5020         int ret;
5021
5022         ret = hns3_dcb_cfg_update(hns);
5023         if (ret)
5024                 return ret;
5025
5026         /*
5027          * The hns3_dcb_cfg_update may configure TM module, so
5028          * hns3_tm_conf_update must called later.
5029          */
5030         ret = hns3_tm_conf_update(hw);
5031         if (ret) {
5032                 PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5033                 return ret;
5034         }
5035
5036         hns3_enable_rxd_adv_layout(hw);
5037
5038         ret = hns3_init_queues(hns, reset_queue);
5039         if (ret) {
5040                 PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5041                 return ret;
5042         }
5043
5044         ret = hns3_cfg_mac_mode(hw, true);
5045         if (ret) {
5046                 PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5047                 goto err_config_mac_mode;
5048         }
5049         return 0;
5050
5051 err_config_mac_mode:
5052         hns3_dev_release_mbufs(hns);
5053         /*
5054          * Here is exception handling, hns3_reset_all_tqps will have the
5055          * corresponding error message if it is handled incorrectly, so it is
5056          * not necessary to check hns3_reset_all_tqps return value, here keep
5057          * ret as the error code causing the exception.
5058          */
5059         (void)hns3_reset_all_tqps(hns);
5060         return ret;
5061 }
5062
5063 static int
5064 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
5065 {
5066         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5067         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5068         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5069         uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
5070         uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5071         uint32_t intr_vector;
5072         uint16_t q_id;
5073         int ret;
5074
5075         /*
5076          * hns3 needs a separate interrupt to be used as event interrupt which
5077          * could not be shared with task queue pair, so KERNEL drivers need
5078          * support multiple interrupt vectors.
5079          */
5080         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
5081             !rte_intr_cap_multiple(intr_handle))
5082                 return 0;
5083
5084         rte_intr_disable(intr_handle);
5085         intr_vector = hw->used_rx_queues;
5086         /* creates event fd for each intr vector when MSIX is used */
5087         if (rte_intr_efd_enable(intr_handle, intr_vector))
5088                 return -EINVAL;
5089
5090         if (intr_handle->intr_vec == NULL) {
5091                 intr_handle->intr_vec =
5092                         rte_zmalloc("intr_vec",
5093                                     hw->used_rx_queues * sizeof(int), 0);
5094                 if (intr_handle->intr_vec == NULL) {
5095                         hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
5096                                         hw->used_rx_queues);
5097                         ret = -ENOMEM;
5098                         goto alloc_intr_vec_error;
5099                 }
5100         }
5101
5102         if (rte_intr_allow_others(intr_handle)) {
5103                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5104                 base = RTE_INTR_VEC_RXTX_OFFSET;
5105         }
5106
5107         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5108                 ret = hns3_bind_ring_with_vector(hw, vec, true,
5109                                                  HNS3_RING_TYPE_RX, q_id);
5110                 if (ret)
5111                         goto bind_vector_error;
5112                 intr_handle->intr_vec[q_id] = vec;
5113                 /*
5114                  * If there are not enough efds (e.g. not enough interrupt),
5115                  * remaining queues will be bond to the last interrupt.
5116                  */
5117                 if (vec < base + intr_handle->nb_efd - 1)
5118                         vec++;
5119         }
5120         rte_intr_enable(intr_handle);
5121         return 0;
5122
5123 bind_vector_error:
5124         rte_free(intr_handle->intr_vec);
5125         intr_handle->intr_vec = NULL;
5126 alloc_intr_vec_error:
5127         rte_intr_efd_disable(intr_handle);
5128         return ret;
5129 }
5130
5131 static int
5132 hns3_restore_rx_interrupt(struct hns3_hw *hw)
5133 {
5134         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
5135         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5136         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5137         uint16_t q_id;
5138         int ret;
5139
5140         if (dev->data->dev_conf.intr_conf.rxq == 0)
5141                 return 0;
5142
5143         if (rte_intr_dp_is_en(intr_handle)) {
5144                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5145                         ret = hns3_bind_ring_with_vector(hw,
5146                                         intr_handle->intr_vec[q_id], true,
5147                                         HNS3_RING_TYPE_RX, q_id);
5148                         if (ret)
5149                                 return ret;
5150                 }
5151         }
5152
5153         return 0;
5154 }
5155
5156 static void
5157 hns3_restore_filter(struct rte_eth_dev *dev)
5158 {
5159         hns3_restore_rss_filter(dev);
5160 }
5161
5162 static int
5163 hns3_dev_start(struct rte_eth_dev *dev)
5164 {
5165         struct hns3_adapter *hns = dev->data->dev_private;
5166         struct hns3_hw *hw = &hns->hw;
5167         int ret;
5168
5169         PMD_INIT_FUNC_TRACE();
5170         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5171                 return -EBUSY;
5172
5173         rte_spinlock_lock(&hw->lock);
5174         hw->adapter_state = HNS3_NIC_STARTING;
5175
5176         ret = hns3_do_start(hns, true);
5177         if (ret) {
5178                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5179                 rte_spinlock_unlock(&hw->lock);
5180                 return ret;
5181         }
5182         ret = hns3_map_rx_interrupt(dev);
5183         if (ret)
5184                 goto map_rx_inter_err;
5185
5186         /*
5187          * There are three register used to control the status of a TQP
5188          * (contains a pair of Tx queue and Rx queue) in the new version network
5189          * engine. One is used to control the enabling of Tx queue, the other is
5190          * used to control the enabling of Rx queue, and the last is the master
5191          * switch used to control the enabling of the tqp. The Tx register and
5192          * TQP register must be enabled at the same time to enable a Tx queue.
5193          * The same applies to the Rx queue. For the older network engine, this
5194          * function only refresh the enabled flag, and it is used to update the
5195          * status of queue in the dpdk framework.
5196          */
5197         ret = hns3_start_all_txqs(dev);
5198         if (ret)
5199                 goto map_rx_inter_err;
5200
5201         ret = hns3_start_all_rxqs(dev);
5202         if (ret)
5203                 goto start_all_rxqs_fail;
5204
5205         hw->adapter_state = HNS3_NIC_STARTED;
5206         rte_spinlock_unlock(&hw->lock);
5207
5208         hns3_rx_scattered_calc(dev);
5209         hns3_set_rxtx_function(dev);
5210         hns3_mp_req_start_rxtx(dev);
5211         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5212
5213         hns3_restore_filter(dev);
5214
5215         /* Enable interrupt of all rx queues before enabling queues */
5216         hns3_dev_all_rx_queue_intr_enable(hw, true);
5217
5218         /*
5219          * After finished the initialization, enable tqps to receive/transmit
5220          * packets and refresh all queue status.
5221          */
5222         hns3_start_tqps(hw);
5223
5224         hns3_tm_dev_start_proc(hw);
5225
5226         hns3_info(hw, "hns3 dev start successful!");
5227
5228         return 0;
5229
5230 start_all_rxqs_fail:
5231         hns3_stop_all_txqs(dev);
5232 map_rx_inter_err:
5233         (void)hns3_do_stop(hns);
5234         hw->adapter_state = HNS3_NIC_CONFIGURED;
5235         rte_spinlock_unlock(&hw->lock);
5236
5237         return ret;
5238 }
5239
5240 static int
5241 hns3_do_stop(struct hns3_adapter *hns)
5242 {
5243         struct hns3_hw *hw = &hns->hw;
5244         int ret;
5245
5246         /*
5247          * The "hns3_do_stop" function will also be called by .stop_service to
5248          * prepare reset. At the time of global or IMP reset, the command cannot
5249          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5250          * accessed during the reset process. So the mbuf can not be released
5251          * during reset and is required to be released after the reset is
5252          * completed.
5253          */
5254         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5255                 hns3_dev_release_mbufs(hns);
5256
5257         ret = hns3_cfg_mac_mode(hw, false);
5258         if (ret)
5259                 return ret;
5260         hw->mac.link_status = ETH_LINK_DOWN;
5261
5262         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5263                 hns3_configure_all_mac_addr(hns, true);
5264                 ret = hns3_reset_all_tqps(hns);
5265                 if (ret) {
5266                         hns3_err(hw, "failed to reset all queues ret = %d.",
5267                                  ret);
5268                         return ret;
5269                 }
5270         }
5271         hw->mac.default_addr_setted = false;
5272         return 0;
5273 }
5274
5275 static void
5276 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
5277 {
5278         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5279         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5280         struct hns3_adapter *hns = dev->data->dev_private;
5281         struct hns3_hw *hw = &hns->hw;
5282         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
5283         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5284         uint16_t q_id;
5285
5286         if (dev->data->dev_conf.intr_conf.rxq == 0)
5287                 return;
5288
5289         /* unmap the ring with vector */
5290         if (rte_intr_allow_others(intr_handle)) {
5291                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5292                 base = RTE_INTR_VEC_RXTX_OFFSET;
5293         }
5294         if (rte_intr_dp_is_en(intr_handle)) {
5295                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5296                         (void)hns3_bind_ring_with_vector(hw, vec, false,
5297                                                          HNS3_RING_TYPE_RX,
5298                                                          q_id);
5299                         if (vec < base + intr_handle->nb_efd - 1)
5300                                 vec++;
5301                 }
5302         }
5303         /* Clean datapath event and queue/vec mapping */
5304         rte_intr_efd_disable(intr_handle);
5305         if (intr_handle->intr_vec) {
5306                 rte_free(intr_handle->intr_vec);
5307                 intr_handle->intr_vec = NULL;
5308         }
5309 }
5310
5311 static int
5312 hns3_dev_stop(struct rte_eth_dev *dev)
5313 {
5314         struct hns3_adapter *hns = dev->data->dev_private;
5315         struct hns3_hw *hw = &hns->hw;
5316
5317         PMD_INIT_FUNC_TRACE();
5318         dev->data->dev_started = 0;
5319
5320         hw->adapter_state = HNS3_NIC_STOPPING;
5321         hns3_set_rxtx_function(dev);
5322         rte_wmb();
5323         /* Disable datapath on secondary process. */
5324         hns3_mp_req_stop_rxtx(dev);
5325         /* Prevent crashes when queues are still in use. */
5326         rte_delay_ms(hw->tqps_num);
5327
5328         rte_spinlock_lock(&hw->lock);
5329         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5330                 hns3_tm_dev_stop_proc(hw);
5331                 hns3_config_mac_tnl_int(hw, false);
5332                 hns3_stop_tqps(hw);
5333                 hns3_do_stop(hns);
5334                 hns3_unmap_rx_interrupt(dev);
5335                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5336         }
5337         hns3_rx_scattered_reset(dev);
5338         rte_eal_alarm_cancel(hns3_service_handler, dev);
5339         rte_spinlock_unlock(&hw->lock);
5340
5341         return 0;
5342 }
5343
5344 static int
5345 hns3_dev_close(struct rte_eth_dev *eth_dev)
5346 {
5347         struct hns3_adapter *hns = eth_dev->data->dev_private;
5348         struct hns3_hw *hw = &hns->hw;
5349         int ret = 0;
5350
5351         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5352                 rte_free(eth_dev->process_private);
5353                 eth_dev->process_private = NULL;
5354                 return 0;
5355         }
5356
5357         if (hw->adapter_state == HNS3_NIC_STARTED)
5358                 ret = hns3_dev_stop(eth_dev);
5359
5360         hw->adapter_state = HNS3_NIC_CLOSING;
5361         hns3_reset_abort(hns);
5362         hw->adapter_state = HNS3_NIC_CLOSED;
5363
5364         hns3_configure_all_mc_mac_addr(hns, true);
5365         hns3_remove_all_vlan_table(hns);
5366         hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5367         hns3_uninit_pf(eth_dev);
5368         hns3_free_all_queues(eth_dev);
5369         rte_free(hw->reset.wait_data);
5370         rte_free(eth_dev->process_private);
5371         eth_dev->process_private = NULL;
5372         hns3_mp_uninit_primary();
5373         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5374
5375         return ret;
5376 }
5377
5378 static int
5379 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5380 {
5381         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5382         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5383
5384         fc_conf->pause_time = pf->pause_time;
5385
5386         /* return fc current mode */
5387         switch (hw->current_mode) {
5388         case HNS3_FC_FULL:
5389                 fc_conf->mode = RTE_FC_FULL;
5390                 break;
5391         case HNS3_FC_TX_PAUSE:
5392                 fc_conf->mode = RTE_FC_TX_PAUSE;
5393                 break;
5394         case HNS3_FC_RX_PAUSE:
5395                 fc_conf->mode = RTE_FC_RX_PAUSE;
5396                 break;
5397         case HNS3_FC_NONE:
5398         default:
5399                 fc_conf->mode = RTE_FC_NONE;
5400                 break;
5401         }
5402
5403         return 0;
5404 }
5405
5406 static void
5407 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
5408 {
5409         switch (mode) {
5410         case RTE_FC_NONE:
5411                 hw->requested_mode = HNS3_FC_NONE;
5412                 break;
5413         case RTE_FC_RX_PAUSE:
5414                 hw->requested_mode = HNS3_FC_RX_PAUSE;
5415                 break;
5416         case RTE_FC_TX_PAUSE:
5417                 hw->requested_mode = HNS3_FC_TX_PAUSE;
5418                 break;
5419         case RTE_FC_FULL:
5420                 hw->requested_mode = HNS3_FC_FULL;
5421                 break;
5422         default:
5423                 hw->requested_mode = HNS3_FC_NONE;
5424                 hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
5425                           "configured to RTE_FC_NONE", mode);
5426                 break;
5427         }
5428 }
5429
5430 static int
5431 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5432 {
5433         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5434         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5435         int ret;
5436
5437         if (fc_conf->high_water || fc_conf->low_water ||
5438             fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5439                 hns3_err(hw, "Unsupported flow control settings specified, "
5440                          "high_water(%u), low_water(%u), send_xon(%u) and "
5441                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5442                          fc_conf->high_water, fc_conf->low_water,
5443                          fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5444                 return -EINVAL;
5445         }
5446         if (fc_conf->autoneg) {
5447                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5448                 return -EINVAL;
5449         }
5450         if (!fc_conf->pause_time) {
5451                 hns3_err(hw, "Invalid pause time %u setting.",
5452                          fc_conf->pause_time);
5453                 return -EINVAL;
5454         }
5455
5456         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5457             hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5458                 hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5459                          "current_fc_status = %d", hw->current_fc_status);
5460                 return -EOPNOTSUPP;
5461         }
5462
5463         hns3_get_fc_mode(hw, fc_conf->mode);
5464         if (hw->requested_mode == hw->current_mode &&
5465             pf->pause_time == fc_conf->pause_time)
5466                 return 0;
5467
5468         rte_spinlock_lock(&hw->lock);
5469         ret = hns3_fc_enable(dev, fc_conf);
5470         rte_spinlock_unlock(&hw->lock);
5471
5472         return ret;
5473 }
5474
5475 static int
5476 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5477                             struct rte_eth_pfc_conf *pfc_conf)
5478 {
5479         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5480         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5481         uint8_t priority;
5482         int ret;
5483
5484         if (!hns3_dev_dcb_supported(hw)) {
5485                 hns3_err(hw, "This port does not support dcb configurations.");
5486                 return -EOPNOTSUPP;
5487         }
5488
5489         if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5490             pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5491                 hns3_err(hw, "Unsupported flow control settings specified, "
5492                          "high_water(%u), low_water(%u), send_xon(%u) and "
5493                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5494                          pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5495                          pfc_conf->fc.send_xon,
5496                          pfc_conf->fc.mac_ctrl_frame_fwd);
5497                 return -EINVAL;
5498         }
5499         if (pfc_conf->fc.autoneg) {
5500                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5501                 return -EINVAL;
5502         }
5503         if (pfc_conf->fc.pause_time == 0) {
5504                 hns3_err(hw, "Invalid pause time %u setting.",
5505                          pfc_conf->fc.pause_time);
5506                 return -EINVAL;
5507         }
5508
5509         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5510             hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5511                 hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5512                              "current_fc_status = %d", hw->current_fc_status);
5513                 return -EOPNOTSUPP;
5514         }
5515
5516         priority = pfc_conf->priority;
5517         hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5518         if (hw->dcb_info.pfc_en & BIT(priority) &&
5519             hw->requested_mode == hw->current_mode &&
5520             pfc_conf->fc.pause_time == pf->pause_time)
5521                 return 0;
5522
5523         rte_spinlock_lock(&hw->lock);
5524         ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5525         rte_spinlock_unlock(&hw->lock);
5526
5527         return ret;
5528 }
5529
5530 static int
5531 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5532 {
5533         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5534         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5535         enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5536         int i;
5537
5538         rte_spinlock_lock(&hw->lock);
5539         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5540                 dcb_info->nb_tcs = pf->local_max_tc;
5541         else
5542                 dcb_info->nb_tcs = 1;
5543
5544         for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5545                 dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5546         for (i = 0; i < dcb_info->nb_tcs; i++)
5547                 dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5548
5549         for (i = 0; i < hw->num_tc; i++) {
5550                 dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5551                 dcb_info->tc_queue.tc_txq[0][i].base =
5552                                                 hw->tc_queue[i].tqp_offset;
5553                 dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5554                 dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5555                                                 hw->tc_queue[i].tqp_count;
5556         }
5557         rte_spinlock_unlock(&hw->lock);
5558
5559         return 0;
5560 }
5561
5562 static int
5563 hns3_reinit_dev(struct hns3_adapter *hns)
5564 {
5565         struct hns3_hw *hw = &hns->hw;
5566         int ret;
5567
5568         ret = hns3_cmd_init(hw);
5569         if (ret) {
5570                 hns3_err(hw, "Failed to init cmd: %d", ret);
5571                 return ret;
5572         }
5573
5574         ret = hns3_reset_all_tqps(hns);
5575         if (ret) {
5576                 hns3_err(hw, "Failed to reset all queues: %d", ret);
5577                 return ret;
5578         }
5579
5580         ret = hns3_init_hardware(hns);
5581         if (ret) {
5582                 hns3_err(hw, "Failed to init hardware: %d", ret);
5583                 return ret;
5584         }
5585
5586         ret = hns3_enable_hw_error_intr(hns, true);
5587         if (ret) {
5588                 hns3_err(hw, "fail to enable hw error interrupts: %d",
5589                              ret);
5590                 return ret;
5591         }
5592         hns3_info(hw, "Reset done, driver initialization finished.");
5593
5594         return 0;
5595 }
5596
5597 static bool
5598 is_pf_reset_done(struct hns3_hw *hw)
5599 {
5600         uint32_t val, reg, reg_bit;
5601
5602         switch (hw->reset.level) {
5603         case HNS3_IMP_RESET:
5604                 reg = HNS3_GLOBAL_RESET_REG;
5605                 reg_bit = HNS3_IMP_RESET_BIT;
5606                 break;
5607         case HNS3_GLOBAL_RESET:
5608                 reg = HNS3_GLOBAL_RESET_REG;
5609                 reg_bit = HNS3_GLOBAL_RESET_BIT;
5610                 break;
5611         case HNS3_FUNC_RESET:
5612                 reg = HNS3_FUN_RST_ING;
5613                 reg_bit = HNS3_FUN_RST_ING_B;
5614                 break;
5615         case HNS3_FLR_RESET:
5616         default:
5617                 hns3_err(hw, "Wait for unsupported reset level: %d",
5618                          hw->reset.level);
5619                 return true;
5620         }
5621         val = hns3_read_dev(hw, reg);
5622         if (hns3_get_bit(val, reg_bit))
5623                 return false;
5624         else
5625                 return true;
5626 }
5627
5628 bool
5629 hns3_is_reset_pending(struct hns3_adapter *hns)
5630 {
5631         struct hns3_hw *hw = &hns->hw;
5632         enum hns3_reset_level reset;
5633
5634         hns3_check_event_cause(hns, NULL);
5635         reset = hns3_get_reset_level(hns, &hw->reset.pending);
5636         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5637                 hns3_warn(hw, "High level reset %d is pending", reset);
5638                 return true;
5639         }
5640         reset = hns3_get_reset_level(hns, &hw->reset.request);
5641         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5642                 hns3_warn(hw, "High level reset %d is request", reset);
5643                 return true;
5644         }
5645         return false;
5646 }
5647
5648 static int
5649 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5650 {
5651         struct hns3_hw *hw = &hns->hw;
5652         struct hns3_wait_data *wait_data = hw->reset.wait_data;
5653         struct timeval tv;
5654
5655         if (wait_data->result == HNS3_WAIT_SUCCESS)
5656                 return 0;
5657         else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5658                 gettimeofday(&tv, NULL);
5659                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5660                           tv.tv_sec, tv.tv_usec);
5661                 return -ETIME;
5662         } else if (wait_data->result == HNS3_WAIT_REQUEST)
5663                 return -EAGAIN;
5664
5665         wait_data->hns = hns;
5666         wait_data->check_completion = is_pf_reset_done;
5667         wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5668                                       HNS3_RESET_WAIT_MS + get_timeofday_ms();
5669         wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5670         wait_data->count = HNS3_RESET_WAIT_CNT;
5671         wait_data->result = HNS3_WAIT_REQUEST;
5672         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5673         return -EAGAIN;
5674 }
5675
5676 static int
5677 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5678 {
5679         struct hns3_cmd_desc desc;
5680         struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5681
5682         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5683         hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5684         req->fun_reset_vfid = func_id;
5685
5686         return hns3_cmd_send(hw, &desc, 1);
5687 }
5688
5689 static int
5690 hns3_imp_reset_cmd(struct hns3_hw *hw)
5691 {
5692         struct hns3_cmd_desc desc;
5693
5694         hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5695         desc.data[0] = 0xeedd;
5696
5697         return hns3_cmd_send(hw, &desc, 1);
5698 }
5699
5700 static void
5701 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5702 {
5703         struct hns3_hw *hw = &hns->hw;
5704         struct timeval tv;
5705         uint32_t val;
5706
5707         gettimeofday(&tv, NULL);
5708         if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5709             hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5710                 hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5711                           tv.tv_sec, tv.tv_usec);
5712                 return;
5713         }
5714
5715         switch (reset_level) {
5716         case HNS3_IMP_RESET:
5717                 hns3_imp_reset_cmd(hw);
5718                 hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5719                           tv.tv_sec, tv.tv_usec);
5720                 break;
5721         case HNS3_GLOBAL_RESET:
5722                 val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5723                 hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5724                 hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5725                 hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5726                           tv.tv_sec, tv.tv_usec);
5727                 break;
5728         case HNS3_FUNC_RESET:
5729                 hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5730                           tv.tv_sec, tv.tv_usec);
5731                 /* schedule again to check later */
5732                 hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5733                 hns3_schedule_reset(hns);
5734                 break;
5735         default:
5736                 hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5737                 return;
5738         }
5739         hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5740 }
5741
5742 static enum hns3_reset_level
5743 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5744 {
5745         struct hns3_hw *hw = &hns->hw;
5746         enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5747
5748         /* Return the highest priority reset level amongst all */
5749         if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5750                 reset_level = HNS3_IMP_RESET;
5751         else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5752                 reset_level = HNS3_GLOBAL_RESET;
5753         else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5754                 reset_level = HNS3_FUNC_RESET;
5755         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5756                 reset_level = HNS3_FLR_RESET;
5757
5758         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5759                 return HNS3_NONE_RESET;
5760
5761         return reset_level;
5762 }
5763
5764 static void
5765 hns3_record_imp_error(struct hns3_adapter *hns)
5766 {
5767         struct hns3_hw *hw = &hns->hw;
5768         uint32_t reg_val;
5769
5770         reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5771         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5772                 hns3_warn(hw, "Detected IMP RD poison!");
5773                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5774                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5775         }
5776
5777         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5778                 hns3_warn(hw, "Detected IMP CMDQ error!");
5779                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5780                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5781         }
5782 }
5783
5784 static int
5785 hns3_prepare_reset(struct hns3_adapter *hns)
5786 {
5787         struct hns3_hw *hw = &hns->hw;
5788         uint32_t reg_val;
5789         int ret;
5790
5791         switch (hw->reset.level) {
5792         case HNS3_FUNC_RESET:
5793                 ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5794                 if (ret)
5795                         return ret;
5796
5797                 /*
5798                  * After performaning pf reset, it is not necessary to do the
5799                  * mailbox handling or send any command to firmware, because
5800                  * any mailbox handling or command to firmware is only valid
5801                  * after hns3_cmd_init is called.
5802                  */
5803                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
5804                 hw->reset.stats.request_cnt++;
5805                 break;
5806         case HNS3_IMP_RESET:
5807                 hns3_record_imp_error(hns);
5808                 reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5809                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5810                                BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5811                 break;
5812         default:
5813                 break;
5814         }
5815         return 0;
5816 }
5817
5818 static int
5819 hns3_set_rst_done(struct hns3_hw *hw)
5820 {
5821         struct hns3_pf_rst_done_cmd *req;
5822         struct hns3_cmd_desc desc;
5823
5824         req = (struct hns3_pf_rst_done_cmd *)desc.data;
5825         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5826         req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5827         return hns3_cmd_send(hw, &desc, 1);
5828 }
5829
5830 static int
5831 hns3_stop_service(struct hns3_adapter *hns)
5832 {
5833         struct hns3_hw *hw = &hns->hw;
5834         struct rte_eth_dev *eth_dev;
5835
5836         eth_dev = &rte_eth_devices[hw->data->port_id];
5837         if (hw->adapter_state == HNS3_NIC_STARTED) {
5838                 rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5839                 hns3_update_link_status_and_event(hw);
5840         }
5841         hw->mac.link_status = ETH_LINK_DOWN;
5842
5843         hns3_set_rxtx_function(eth_dev);
5844         rte_wmb();
5845         /* Disable datapath on secondary process. */
5846         hns3_mp_req_stop_rxtx(eth_dev);
5847         rte_delay_ms(hw->tqps_num);
5848
5849         rte_spinlock_lock(&hw->lock);
5850         if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5851             hw->adapter_state == HNS3_NIC_STOPPING) {
5852                 hns3_enable_all_queues(hw, false);
5853                 hns3_do_stop(hns);
5854                 hw->reset.mbuf_deferred_free = true;
5855         } else
5856                 hw->reset.mbuf_deferred_free = false;
5857
5858         /*
5859          * It is cumbersome for hardware to pick-and-choose entries for deletion
5860          * from table space. Hence, for function reset software intervention is
5861          * required to delete the entries
5862          */
5863         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
5864                 hns3_configure_all_mc_mac_addr(hns, true);
5865         rte_spinlock_unlock(&hw->lock);
5866
5867         return 0;
5868 }
5869
5870 static int
5871 hns3_start_service(struct hns3_adapter *hns)
5872 {
5873         struct hns3_hw *hw = &hns->hw;
5874         struct rte_eth_dev *eth_dev;
5875
5876         if (hw->reset.level == HNS3_IMP_RESET ||
5877             hw->reset.level == HNS3_GLOBAL_RESET)
5878                 hns3_set_rst_done(hw);
5879         eth_dev = &rte_eth_devices[hw->data->port_id];
5880         hns3_set_rxtx_function(eth_dev);
5881         hns3_mp_req_start_rxtx(eth_dev);
5882         if (hw->adapter_state == HNS3_NIC_STARTED) {
5883                 /*
5884                  * This API parent function already hold the hns3_hw.lock, the
5885                  * hns3_service_handler may report lse, in bonding application
5886                  * it will call driver's ops which may acquire the hns3_hw.lock
5887                  * again, thus lead to deadlock.
5888                  * We defer calls hns3_service_handler to avoid the deadlock.
5889                  */
5890                 rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
5891                                   hns3_service_handler, eth_dev);
5892
5893                 /* Enable interrupt of all rx queues before enabling queues */
5894                 hns3_dev_all_rx_queue_intr_enable(hw, true);
5895                 /*
5896                  * Enable state of each rxq and txq will be recovered after
5897                  * reset, so we need to restore them before enable all tqps;
5898                  */
5899                 hns3_restore_tqp_enable_state(hw);
5900                 /*
5901                  * When finished the initialization, enable queues to receive
5902                  * and transmit packets.
5903                  */
5904                 hns3_enable_all_queues(hw, true);
5905         }
5906
5907         return 0;
5908 }
5909
5910 static int
5911 hns3_restore_conf(struct hns3_adapter *hns)
5912 {
5913         struct hns3_hw *hw = &hns->hw;
5914         int ret;
5915
5916         ret = hns3_configure_all_mac_addr(hns, false);
5917         if (ret)
5918                 return ret;
5919
5920         ret = hns3_configure_all_mc_mac_addr(hns, false);
5921         if (ret)
5922                 goto err_mc_mac;
5923
5924         ret = hns3_dev_promisc_restore(hns);
5925         if (ret)
5926                 goto err_promisc;
5927
5928         ret = hns3_restore_vlan_table(hns);
5929         if (ret)
5930                 goto err_promisc;
5931
5932         ret = hns3_restore_vlan_conf(hns);
5933         if (ret)
5934                 goto err_promisc;
5935
5936         ret = hns3_restore_all_fdir_filter(hns);
5937         if (ret)
5938                 goto err_promisc;
5939
5940         ret = hns3_restore_rx_interrupt(hw);
5941         if (ret)
5942                 goto err_promisc;
5943
5944         ret = hns3_restore_gro_conf(hw);
5945         if (ret)
5946                 goto err_promisc;
5947
5948         ret = hns3_restore_fec(hw);
5949         if (ret)
5950                 goto err_promisc;
5951
5952         if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5953                 ret = hns3_do_start(hns, false);
5954                 if (ret)
5955                         goto err_promisc;
5956                 hns3_info(hw, "hns3 dev restart successful!");
5957         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
5958                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5959         return 0;
5960
5961 err_promisc:
5962         hns3_configure_all_mc_mac_addr(hns, true);
5963 err_mc_mac:
5964         hns3_configure_all_mac_addr(hns, true);
5965         return ret;
5966 }
5967
5968 static void
5969 hns3_reset_service(void *param)
5970 {
5971         struct hns3_adapter *hns = (struct hns3_adapter *)param;
5972         struct hns3_hw *hw = &hns->hw;
5973         enum hns3_reset_level reset_level;
5974         struct timeval tv_delta;
5975         struct timeval tv_start;
5976         struct timeval tv;
5977         uint64_t msec;
5978         int ret;
5979
5980         /*
5981          * The interrupt is not triggered within the delay time.
5982          * The interrupt may have been lost. It is necessary to handle
5983          * the interrupt to recover from the error.
5984          */
5985         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
5986                             SCHEDULE_DEFERRED) {
5987                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
5988                                   __ATOMIC_RELAXED);
5989                 hns3_err(hw, "Handling interrupts in delayed tasks");
5990                 hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5991                 reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5992                 if (reset_level == HNS3_NONE_RESET) {
5993                         hns3_err(hw, "No reset level is set, try IMP reset");
5994                         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5995                 }
5996         }
5997         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
5998
5999         /*
6000          * Check if there is any ongoing reset in the hardware. This status can
6001          * be checked from reset_pending. If there is then, we need to wait for
6002          * hardware to complete reset.
6003          *    a. If we are able to figure out in reasonable time that hardware
6004          *       has fully resetted then, we can proceed with driver, client
6005          *       reset.
6006          *    b. else, we can come back later to check this status so re-sched
6007          *       now.
6008          */
6009         reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6010         if (reset_level != HNS3_NONE_RESET) {
6011                 gettimeofday(&tv_start, NULL);
6012                 ret = hns3_reset_process(hns, reset_level);
6013                 gettimeofday(&tv, NULL);
6014                 timersub(&tv, &tv_start, &tv_delta);
6015                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
6016                        tv_delta.tv_usec / USEC_PER_MSEC;
6017                 if (msec > HNS3_RESET_PROCESS_MS)
6018                         hns3_err(hw, "%d handle long time delta %" PRIx64
6019                                      " ms time=%ld.%.6ld",
6020                                  hw->reset.level, msec,
6021                                  tv.tv_sec, tv.tv_usec);
6022                 if (ret == -EAGAIN)
6023                         return;
6024         }
6025
6026         /* Check if we got any *new* reset requests to be honored */
6027         reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6028         if (reset_level != HNS3_NONE_RESET)
6029                 hns3_msix_process(hns, reset_level);
6030 }
6031
6032 static unsigned int
6033 hns3_get_speed_capa_num(uint16_t device_id)
6034 {
6035         unsigned int num;
6036
6037         switch (device_id) {
6038         case HNS3_DEV_ID_25GE:
6039         case HNS3_DEV_ID_25GE_RDMA:
6040                 num = 2;
6041                 break;
6042         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6043         case HNS3_DEV_ID_200G_RDMA:
6044                 num = 1;
6045                 break;
6046         default:
6047                 num = 0;
6048                 break;
6049         }
6050
6051         return num;
6052 }
6053
6054 static int
6055 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6056                         uint16_t device_id)
6057 {
6058         switch (device_id) {
6059         case HNS3_DEV_ID_25GE:
6060         /* fallthrough */
6061         case HNS3_DEV_ID_25GE_RDMA:
6062                 speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6063                 speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6064
6065                 /* In HNS3 device, the 25G NIC is compatible with 10G rate */
6066                 speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6067                 speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6068                 break;
6069         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6070                 speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6071                 speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6072                 break;
6073         case HNS3_DEV_ID_200G_RDMA:
6074                 speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6075                 speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6076                 break;
6077         default:
6078                 return -ENOTSUP;
6079         }
6080
6081         return 0;
6082 }
6083
6084 static int
6085 hns3_fec_get_capability(struct rte_eth_dev *dev,
6086                         struct rte_eth_fec_capa *speed_fec_capa,
6087                         unsigned int num)
6088 {
6089         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6090         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6091         uint16_t device_id = pci_dev->id.device_id;
6092         unsigned int capa_num;
6093         int ret;
6094
6095         capa_num = hns3_get_speed_capa_num(device_id);
6096         if (capa_num == 0) {
6097                 hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6098                          device_id);
6099                 return -ENOTSUP;
6100         }
6101
6102         if (speed_fec_capa == NULL || num < capa_num)
6103                 return capa_num;
6104
6105         ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6106         if (ret)
6107                 return -ENOTSUP;
6108
6109         return capa_num;
6110 }
6111
6112 static int
6113 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6114 {
6115         struct hns3_config_fec_cmd *req;
6116         struct hns3_cmd_desc desc;
6117         int ret;
6118
6119         /*
6120          * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6121          * in device of link speed
6122          * below 10 Gbps.
6123          */
6124         if (hw->mac.link_speed < ETH_SPEED_NUM_10G) {
6125                 *state = 0;
6126                 return 0;
6127         }
6128
6129         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6130         req = (struct hns3_config_fec_cmd *)desc.data;
6131         ret = hns3_cmd_send(hw, &desc, 1);
6132         if (ret) {
6133                 hns3_err(hw, "get current fec auto state failed, ret = %d",
6134                          ret);
6135                 return ret;
6136         }
6137
6138         *state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6139         return 0;
6140 }
6141
6142 static int
6143 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6144 {
6145 #define QUERY_ACTIVE_SPEED      1
6146         struct hns3_sfp_speed_cmd *resp;
6147         uint32_t tmp_fec_capa;
6148         uint8_t auto_state;
6149         struct hns3_cmd_desc desc;
6150         int ret;
6151
6152         /*
6153          * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6154          * configured FEC mode is returned.
6155          * If link is up, current FEC mode is returned.
6156          */
6157         if (hw->mac.link_status == ETH_LINK_DOWN) {
6158                 ret = get_current_fec_auto_state(hw, &auto_state);
6159                 if (ret)
6160                         return ret;
6161
6162                 if (auto_state == 0x1) {
6163                         *fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6164                         return 0;
6165                 }
6166         }
6167
6168         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
6169         resp = (struct hns3_sfp_speed_cmd *)desc.data;
6170         resp->query_type = QUERY_ACTIVE_SPEED;
6171
6172         ret = hns3_cmd_send(hw, &desc, 1);
6173         if (ret == -EOPNOTSUPP) {
6174                 hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6175                 return ret;
6176         } else if (ret) {
6177                 hns3_err(hw, "get FEC failed, ret = %d", ret);
6178                 return ret;
6179         }
6180
6181         /*
6182          * FEC mode order defined in hns3 hardware is inconsistend with
6183          * that defined in the ethdev library. So the sequence needs
6184          * to be converted.
6185          */
6186         switch (resp->active_fec) {
6187         case HNS3_HW_FEC_MODE_NOFEC:
6188                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6189                 break;
6190         case HNS3_HW_FEC_MODE_BASER:
6191                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6192                 break;
6193         case HNS3_HW_FEC_MODE_RS:
6194                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6195                 break;
6196         default:
6197                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6198                 break;
6199         }
6200
6201         *fec_capa = tmp_fec_capa;
6202         return 0;
6203 }
6204
6205 static int
6206 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6207 {
6208         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6209
6210         return hns3_fec_get_internal(hw, fec_capa);
6211 }
6212
6213 static int
6214 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6215 {
6216         struct hns3_config_fec_cmd *req;
6217         struct hns3_cmd_desc desc;
6218         int ret;
6219
6220         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6221
6222         req = (struct hns3_config_fec_cmd *)desc.data;
6223         switch (mode) {
6224         case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6225                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6226                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6227                 break;
6228         case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6229                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6230                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6231                 break;
6232         case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6233                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6234                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6235                 break;
6236         case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6237                 hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6238                 break;
6239         default:
6240                 return 0;
6241         }
6242         ret = hns3_cmd_send(hw, &desc, 1);
6243         if (ret)
6244                 hns3_err(hw, "set fec mode failed, ret = %d", ret);
6245
6246         return ret;
6247 }
6248
6249 static uint32_t
6250 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6251 {
6252         struct hns3_mac *mac = &hw->mac;
6253         uint32_t cur_capa;
6254
6255         switch (mac->link_speed) {
6256         case ETH_SPEED_NUM_10G:
6257                 cur_capa = fec_capa[1].capa;
6258                 break;
6259         case ETH_SPEED_NUM_25G:
6260         case ETH_SPEED_NUM_100G:
6261         case ETH_SPEED_NUM_200G:
6262                 cur_capa = fec_capa[0].capa;
6263                 break;
6264         default:
6265                 cur_capa = 0;
6266                 break;
6267         }
6268
6269         return cur_capa;
6270 }
6271
6272 static bool
6273 is_fec_mode_one_bit_set(uint32_t mode)
6274 {
6275         int cnt = 0;
6276         uint8_t i;
6277
6278         for (i = 0; i < sizeof(mode); i++)
6279                 if (mode >> i & 0x1)
6280                         cnt++;
6281
6282         return cnt == 1 ? true : false;
6283 }
6284
6285 static int
6286 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6287 {
6288 #define FEC_CAPA_NUM 2
6289         struct hns3_adapter *hns = dev->data->dev_private;
6290         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6291         struct hns3_pf *pf = &hns->pf;
6292
6293         struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6294         uint32_t cur_capa;
6295         uint32_t num = FEC_CAPA_NUM;
6296         int ret;
6297
6298         ret = hns3_fec_get_capability(dev, fec_capa, num);
6299         if (ret < 0)
6300                 return ret;
6301
6302         /* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
6303         if (!is_fec_mode_one_bit_set(mode))
6304                 hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD,"
6305                              "FEC mode should be only one bit set", mode);
6306
6307         /*
6308          * Check whether the configured mode is within the FEC capability.
6309          * If not, the configured mode will not be supported.
6310          */
6311         cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6312         if (!(cur_capa & mode)) {
6313                 hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6314                 return -EINVAL;
6315         }
6316
6317         ret = hns3_set_fec_hw(hw, mode);
6318         if (ret)
6319                 return ret;
6320
6321         pf->fec_mode = mode;
6322         return 0;
6323 }
6324
6325 static int
6326 hns3_restore_fec(struct hns3_hw *hw)
6327 {
6328         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6329         struct hns3_pf *pf = &hns->pf;
6330         uint32_t mode = pf->fec_mode;
6331         int ret;
6332
6333         ret = hns3_set_fec_hw(hw, mode);
6334         if (ret)
6335                 hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6336                          mode, ret);
6337
6338         return ret;
6339 }
6340
6341 static int
6342 hns3_query_dev_fec_info(struct hns3_hw *hw)
6343 {
6344         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6345         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6346         int ret;
6347
6348         ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6349         if (ret)
6350                 hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6351
6352         return ret;
6353 }
6354
6355 static bool
6356 hns3_optical_module_existed(struct hns3_hw *hw)
6357 {
6358         struct hns3_cmd_desc desc;
6359         bool existed;
6360         int ret;
6361
6362         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6363         ret = hns3_cmd_send(hw, &desc, 1);
6364         if (ret) {
6365                 hns3_err(hw,
6366                          "fail to get optical module exist state, ret = %d.\n",
6367                          ret);
6368                 return false;
6369         }
6370         existed = !!desc.data[0];
6371
6372         return existed;
6373 }
6374
6375 static int
6376 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6377                                 uint32_t len, uint8_t *data)
6378 {
6379 #define HNS3_SFP_INFO_CMD_NUM 6
6380 #define HNS3_SFP_INFO_MAX_LEN \
6381         (HNS3_SFP_INFO_BD0_LEN + \
6382         (HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6383         struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6384         struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6385         uint16_t read_len;
6386         uint16_t copy_len;
6387         int ret;
6388         int i;
6389
6390         for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6391                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6392                                           true);
6393                 if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6394                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6395         }
6396
6397         sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6398         sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6399         read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6400         sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6401
6402         ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6403         if (ret) {
6404                 hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
6405                                 ret);
6406                 return ret;
6407         }
6408
6409         /* The data format in BD0 is different with the others. */
6410         copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6411         memcpy(data, sfp_info_bd0->data, copy_len);
6412         read_len = copy_len;
6413
6414         for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6415                 if (read_len >= len)
6416                         break;
6417
6418                 copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6419                 memcpy(data + read_len, desc[i].data, copy_len);
6420                 read_len += copy_len;
6421         }
6422
6423         return (int)read_len;
6424 }
6425
6426 static int
6427 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6428                        struct rte_dev_eeprom_info *info)
6429 {
6430         struct hns3_adapter *hns = dev->data->dev_private;
6431         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6432         uint32_t offset = info->offset;
6433         uint32_t len = info->length;
6434         uint8_t *data = info->data;
6435         uint32_t read_len = 0;
6436
6437         if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6438                 return -ENOTSUP;
6439
6440         if (!hns3_optical_module_existed(hw)) {
6441                 hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
6442                 return -EIO;
6443         }
6444
6445         while (read_len < len) {
6446                 int ret;
6447                 ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6448                                                   len - read_len,
6449                                                   data + read_len);
6450                 if (ret < 0)
6451                         return -EIO;
6452                 read_len += ret;
6453         }
6454
6455         return 0;
6456 }
6457
6458 static int
6459 hns3_get_module_info(struct rte_eth_dev *dev,
6460                      struct rte_eth_dev_module_info *modinfo)
6461 {
6462 #define HNS3_SFF8024_ID_SFP             0x03
6463 #define HNS3_SFF8024_ID_QSFP_8438       0x0c
6464 #define HNS3_SFF8024_ID_QSFP_8436_8636  0x0d
6465 #define HNS3_SFF8024_ID_QSFP28_8636     0x11
6466 #define HNS3_SFF_8636_V1_3              0x03
6467         struct hns3_adapter *hns = dev->data->dev_private;
6468         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6469         struct rte_dev_eeprom_info info;
6470         struct hns3_sfp_type sfp_type;
6471         int ret;
6472
6473         memset(&sfp_type, 0, sizeof(sfp_type));
6474         memset(&info, 0, sizeof(info));
6475         info.data = (uint8_t *)&sfp_type;
6476         info.length = sizeof(sfp_type);
6477         ret = hns3_get_module_eeprom(dev, &info);
6478         if (ret)
6479                 return ret;
6480
6481         switch (sfp_type.type) {
6482         case HNS3_SFF8024_ID_SFP:
6483                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
6484                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6485                 break;
6486         case HNS3_SFF8024_ID_QSFP_8438:
6487                 modinfo->type = RTE_ETH_MODULE_SFF_8436;
6488                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6489                 break;
6490         case HNS3_SFF8024_ID_QSFP_8436_8636:
6491                 if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6492                         modinfo->type = RTE_ETH_MODULE_SFF_8436;
6493                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6494                 } else {
6495                         modinfo->type = RTE_ETH_MODULE_SFF_8636;
6496                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6497                 }
6498                 break;
6499         case HNS3_SFF8024_ID_QSFP28_8636:
6500                 modinfo->type = RTE_ETH_MODULE_SFF_8636;
6501                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6502                 break;
6503         default:
6504                 hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
6505                          sfp_type.type, sfp_type.ext_type);
6506                 return -EINVAL;
6507         }
6508
6509         return 0;
6510 }
6511
6512 static int
6513 hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
6514 {
6515         uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
6516
6517         RTE_SET_USED(key);
6518
6519         if (strcmp(value, "vec") == 0)
6520                 hint = HNS3_IO_FUNC_HINT_VEC;
6521         else if (strcmp(value, "sve") == 0)
6522                 hint = HNS3_IO_FUNC_HINT_SVE;
6523         else if (strcmp(value, "simple") == 0)
6524                 hint = HNS3_IO_FUNC_HINT_SIMPLE;
6525         else if (strcmp(value, "common") == 0)
6526                 hint = HNS3_IO_FUNC_HINT_COMMON;
6527
6528         /* If the hint is valid then update output parameters */
6529         if (hint != HNS3_IO_FUNC_HINT_NONE)
6530                 *(uint32_t *)extra_args = hint;
6531
6532         return 0;
6533 }
6534
6535 static const char *
6536 hns3_get_io_hint_func_name(uint32_t hint)
6537 {
6538         switch (hint) {
6539         case HNS3_IO_FUNC_HINT_VEC:
6540                 return "vec";
6541         case HNS3_IO_FUNC_HINT_SVE:
6542                 return "sve";
6543         case HNS3_IO_FUNC_HINT_SIMPLE:
6544                 return "simple";
6545         case HNS3_IO_FUNC_HINT_COMMON:
6546                 return "common";
6547         default:
6548                 return "none";
6549         }
6550 }
6551
6552 void
6553 hns3_parse_devargs(struct rte_eth_dev *dev)
6554 {
6555         struct hns3_adapter *hns = dev->data->dev_private;
6556         uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6557         uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6558         struct hns3_hw *hw = &hns->hw;
6559         struct rte_kvargs *kvlist;
6560
6561         if (dev->device->devargs == NULL)
6562                 return;
6563
6564         kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
6565         if (!kvlist)
6566                 return;
6567
6568         rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
6569                            &hns3_parse_io_hint_func, &rx_func_hint);
6570         rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
6571                            &hns3_parse_io_hint_func, &tx_func_hint);
6572         rte_kvargs_free(kvlist);
6573
6574         if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6575                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
6576                           hns3_get_io_hint_func_name(rx_func_hint));
6577         hns->rx_func_hint = rx_func_hint;
6578         if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6579                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
6580                           hns3_get_io_hint_func_name(tx_func_hint));
6581         hns->tx_func_hint = tx_func_hint;
6582 }
6583
6584 static const struct eth_dev_ops hns3_eth_dev_ops = {
6585         .dev_configure      = hns3_dev_configure,
6586         .dev_start          = hns3_dev_start,
6587         .dev_stop           = hns3_dev_stop,
6588         .dev_close          = hns3_dev_close,
6589         .promiscuous_enable = hns3_dev_promiscuous_enable,
6590         .promiscuous_disable = hns3_dev_promiscuous_disable,
6591         .allmulticast_enable  = hns3_dev_allmulticast_enable,
6592         .allmulticast_disable = hns3_dev_allmulticast_disable,
6593         .mtu_set            = hns3_dev_mtu_set,
6594         .stats_get          = hns3_stats_get,
6595         .stats_reset        = hns3_stats_reset,
6596         .xstats_get         = hns3_dev_xstats_get,
6597         .xstats_get_names   = hns3_dev_xstats_get_names,
6598         .xstats_reset       = hns3_dev_xstats_reset,
6599         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6600         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6601         .dev_infos_get          = hns3_dev_infos_get,
6602         .fw_version_get         = hns3_fw_version_get,
6603         .rx_queue_setup         = hns3_rx_queue_setup,
6604         .tx_queue_setup         = hns3_tx_queue_setup,
6605         .rx_queue_release       = hns3_dev_rx_queue_release,
6606         .tx_queue_release       = hns3_dev_tx_queue_release,
6607         .rx_queue_start         = hns3_dev_rx_queue_start,
6608         .rx_queue_stop          = hns3_dev_rx_queue_stop,
6609         .tx_queue_start         = hns3_dev_tx_queue_start,
6610         .tx_queue_stop          = hns3_dev_tx_queue_stop,
6611         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6612         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6613         .rxq_info_get           = hns3_rxq_info_get,
6614         .txq_info_get           = hns3_txq_info_get,
6615         .rx_burst_mode_get      = hns3_rx_burst_mode_get,
6616         .tx_burst_mode_get      = hns3_tx_burst_mode_get,
6617         .flow_ctrl_get          = hns3_flow_ctrl_get,
6618         .flow_ctrl_set          = hns3_flow_ctrl_set,
6619         .priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6620         .mac_addr_add           = hns3_add_mac_addr,
6621         .mac_addr_remove        = hns3_remove_mac_addr,
6622         .mac_addr_set           = hns3_set_default_mac_addr,
6623         .set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6624         .link_update            = hns3_dev_link_update,
6625         .rss_hash_update        = hns3_dev_rss_hash_update,
6626         .rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6627         .reta_update            = hns3_dev_rss_reta_update,
6628         .reta_query             = hns3_dev_rss_reta_query,
6629         .filter_ctrl            = hns3_dev_filter_ctrl,
6630         .vlan_filter_set        = hns3_vlan_filter_set,
6631         .vlan_tpid_set          = hns3_vlan_tpid_set,
6632         .vlan_offload_set       = hns3_vlan_offload_set,
6633         .vlan_pvid_set          = hns3_vlan_pvid_set,
6634         .get_reg                = hns3_get_regs,
6635         .get_module_info        = hns3_get_module_info,
6636         .get_module_eeprom      = hns3_get_module_eeprom,
6637         .get_dcb_info           = hns3_get_dcb_info,
6638         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6639         .fec_get_capability     = hns3_fec_get_capability,
6640         .fec_get                = hns3_fec_get,
6641         .fec_set                = hns3_fec_set,
6642         .tm_ops_get             = hns3_tm_ops_get,
6643         .tx_done_cleanup        = hns3_tx_done_cleanup,
6644 };
6645
6646 static const struct hns3_reset_ops hns3_reset_ops = {
6647         .reset_service       = hns3_reset_service,
6648         .stop_service        = hns3_stop_service,
6649         .prepare_reset       = hns3_prepare_reset,
6650         .wait_hardware_ready = hns3_wait_hardware_ready,
6651         .reinit_dev          = hns3_reinit_dev,
6652         .restore_conf        = hns3_restore_conf,
6653         .start_service       = hns3_start_service,
6654 };
6655
6656 static int
6657 hns3_dev_init(struct rte_eth_dev *eth_dev)
6658 {
6659         struct hns3_adapter *hns = eth_dev->data->dev_private;
6660         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
6661         struct rte_ether_addr *eth_addr;
6662         struct hns3_hw *hw = &hns->hw;
6663         int ret;
6664
6665         PMD_INIT_FUNC_TRACE();
6666
6667         eth_dev->process_private = (struct hns3_process_private *)
6668             rte_zmalloc_socket("hns3_filter_list",
6669                                sizeof(struct hns3_process_private),
6670                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
6671         if (eth_dev->process_private == NULL) {
6672                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
6673                 return -ENOMEM;
6674         }
6675         /* initialize flow filter lists */
6676         hns3_filterlist_init(eth_dev);
6677
6678         hns3_set_rxtx_function(eth_dev);
6679         eth_dev->dev_ops = &hns3_eth_dev_ops;
6680         eth_dev->rx_queue_count = hns3_rx_queue_count;
6681         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6682                 ret = hns3_mp_init_secondary();
6683                 if (ret) {
6684                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
6685                                      "process, ret = %d", ret);
6686                         goto err_mp_init_secondary;
6687                 }
6688
6689                 hw->secondary_cnt++;
6690                 return 0;
6691         }
6692
6693         ret = hns3_mp_init_primary();
6694         if (ret) {
6695                 PMD_INIT_LOG(ERR,
6696                              "Failed to init for primary process, ret = %d",
6697                              ret);
6698                 goto err_mp_init_primary;
6699         }
6700
6701         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6702         hns->is_vf = false;
6703         hw->data = eth_dev->data;
6704         hns3_parse_devargs(eth_dev);
6705
6706         /*
6707          * Set default max packet size according to the mtu
6708          * default vale in DPDK frame.
6709          */
6710         hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6711
6712         ret = hns3_reset_init(hw);
6713         if (ret)
6714                 goto err_init_reset;
6715         hw->reset.ops = &hns3_reset_ops;
6716
6717         ret = hns3_init_pf(eth_dev);
6718         if (ret) {
6719                 PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6720                 goto err_init_pf;
6721         }
6722
6723         /* Allocate memory for storing MAC addresses */
6724         eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
6725                                                sizeof(struct rte_ether_addr) *
6726                                                HNS3_UC_MACADDR_NUM, 0);
6727         if (eth_dev->data->mac_addrs == NULL) {
6728                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
6729                              "to store MAC addresses",
6730                              sizeof(struct rte_ether_addr) *
6731                              HNS3_UC_MACADDR_NUM);
6732                 ret = -ENOMEM;
6733                 goto err_rte_zmalloc;
6734         }
6735
6736         eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
6737         if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
6738                 rte_eth_random_addr(hw->mac.mac_addr);
6739                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
6740                                 (struct rte_ether_addr *)hw->mac.mac_addr);
6741                 hns3_warn(hw, "default mac_addr from firmware is an invalid "
6742                           "unicast address, using random MAC address %s",
6743                           mac_str);
6744         }
6745         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
6746                             &eth_dev->data->mac_addrs[0]);
6747
6748         hw->adapter_state = HNS3_NIC_INITIALIZED;
6749
6750         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6751                             SCHEDULE_PENDING) {
6752                 hns3_err(hw, "Reschedule reset service after dev_init");
6753                 hns3_schedule_reset(hns);
6754         } else {
6755                 /* IMP will wait ready flag before reset */
6756                 hns3_notify_reset_ready(hw, false);
6757         }
6758
6759         hns3_info(hw, "hns3 dev initialization successful!");
6760         return 0;
6761
6762 err_rte_zmalloc:
6763         hns3_uninit_pf(eth_dev);
6764
6765 err_init_pf:
6766         rte_free(hw->reset.wait_data);
6767
6768 err_init_reset:
6769         hns3_mp_uninit_primary();
6770
6771 err_mp_init_primary:
6772 err_mp_init_secondary:
6773         eth_dev->dev_ops = NULL;
6774         eth_dev->rx_pkt_burst = NULL;
6775         eth_dev->rx_descriptor_status = NULL;
6776         eth_dev->tx_pkt_burst = NULL;
6777         eth_dev->tx_pkt_prepare = NULL;
6778         eth_dev->tx_descriptor_status = NULL;
6779         rte_free(eth_dev->process_private);
6780         eth_dev->process_private = NULL;
6781         return ret;
6782 }
6783
6784 static int
6785 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6786 {
6787         struct hns3_adapter *hns = eth_dev->data->dev_private;
6788         struct hns3_hw *hw = &hns->hw;
6789
6790         PMD_INIT_FUNC_TRACE();
6791
6792         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6793                 rte_free(eth_dev->process_private);
6794                 eth_dev->process_private = NULL;
6795                 return 0;
6796         }
6797
6798         if (hw->adapter_state < HNS3_NIC_CLOSING)
6799                 hns3_dev_close(eth_dev);
6800
6801         hw->adapter_state = HNS3_NIC_REMOVED;
6802         return 0;
6803 }
6804
6805 static int
6806 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6807                    struct rte_pci_device *pci_dev)
6808 {
6809         return rte_eth_dev_pci_generic_probe(pci_dev,
6810                                              sizeof(struct hns3_adapter),
6811                                              hns3_dev_init);
6812 }
6813
6814 static int
6815 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6816 {
6817         return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6818 }
6819
6820 static const struct rte_pci_id pci_id_hns3_map[] = {
6821         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6822         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6823         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6824         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6825         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6826         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6827         { .vendor_id = 0, }, /* sentinel */
6828 };
6829
6830 static struct rte_pci_driver rte_hns3_pmd = {
6831         .id_table = pci_id_hns3_map,
6832         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
6833         .probe = eth_hns3_pci_probe,
6834         .remove = eth_hns3_pci_remove,
6835 };
6836
6837 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6838 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6839 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6840 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
6841                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
6842                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common ");
6843 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
6844 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);