net/hns3: check setting VF PCI bus return value
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <errno.h>
6 #include <stdio.h>
7 #include <stdbool.h>
8 #include <string.h>
9 #include <inttypes.h>
10 #include <unistd.h>
11 #include <arpa/inet.h>
12 #include <linux/pci_regs.h>
13
14 #include <rte_alarm.h>
15 #include <rte_atomic.h>
16 #include <rte_bus_pci.h>
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_dev.h>
21 #include <rte_eal.h>
22 #include <rte_ether.h>
23 #include <rte_ethdev_driver.h>
24 #include <rte_ethdev_pci.h>
25 #include <rte_interrupts.h>
26 #include <rte_io.h>
27 #include <rte_log.h>
28 #include <rte_pci.h>
29 #include <rte_vfio.h>
30
31 #include "hns3_ethdev.h"
32 #include "hns3_logs.h"
33 #include "hns3_rxtx.h"
34 #include "hns3_regs.h"
35 #include "hns3_intr.h"
36 #include "hns3_dcb.h"
37 #include "hns3_mp.h"
38
39 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
40 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
41
42 #define HNS3VF_RESET_WAIT_MS    20
43 #define HNS3VF_RESET_WAIT_CNT   2000
44
45 /* Reset related Registers */
46 #define HNS3_GLOBAL_RESET_BIT           0
47 #define HNS3_CORE_RESET_BIT             1
48 #define HNS3_IMP_RESET_BIT              2
49 #define HNS3_FUN_RST_ING_B              0
50
51 enum hns3vf_evt_cause {
52         HNS3VF_VECTOR0_EVENT_RST,
53         HNS3VF_VECTOR0_EVENT_MBX,
54         HNS3VF_VECTOR0_EVENT_OTHER,
55 };
56
57 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
58                                                     uint64_t *levels);
59 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
60 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
61
62 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
63                                   struct rte_ether_addr *mac_addr);
64 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
65                                      struct rte_ether_addr *mac_addr);
66 /* set PCI bus mastering */
67 static int
68 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
69 {
70         uint16_t reg;
71         int ret;
72
73         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
74         if (ret < 0) {
75                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
76                              PCI_COMMAND);
77                 return ret;
78         }
79
80         if (op)
81                 /* set the master bit */
82                 reg |= PCI_COMMAND_MASTER;
83         else
84                 reg &= ~(PCI_COMMAND_MASTER);
85
86         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
87 }
88
89 /**
90  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
91  * @cap: the capability
92  *
93  * Return the address of the given capability within the PCI capability list.
94  */
95 static int
96 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
97 {
98 #define MAX_PCIE_CAPABILITY 48
99         uint16_t status;
100         uint8_t pos;
101         uint8_t id;
102         int ttl;
103         int ret;
104
105         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
106         if (ret < 0) {
107                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
108                 return 0;
109         }
110
111         if (!(status & PCI_STATUS_CAP_LIST))
112                 return 0;
113
114         ttl = MAX_PCIE_CAPABILITY;
115         ret = rte_pci_read_config(device, &pos, sizeof(pos),
116                                   PCI_CAPABILITY_LIST);
117         if (ret < 0) {
118                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
119                              PCI_CAPABILITY_LIST);
120                 return 0;
121         }
122
123         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
124                 ret = rte_pci_read_config(device, &id, sizeof(id),
125                                           (pos + PCI_CAP_LIST_ID));
126                 if (ret < 0) {
127                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
128                                      (pos + PCI_CAP_LIST_ID));
129                         break;
130                 }
131
132                 if (id == 0xFF)
133                         break;
134
135                 if (id == cap)
136                         return (int)pos;
137
138                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
139                                           (pos + PCI_CAP_LIST_NEXT));
140                 if (ret < 0) {
141                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
142                                      (pos + PCI_CAP_LIST_NEXT));
143                         break;
144                 }
145         }
146         return 0;
147 }
148
149 static int
150 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
151 {
152         uint16_t control;
153         int pos;
154         int ret;
155
156         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
157         if (pos) {
158                 ret = rte_pci_read_config(device, &control, sizeof(control),
159                                     (pos + PCI_MSIX_FLAGS));
160                 if (ret < 0) {
161                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
162                                      (pos + PCI_MSIX_FLAGS));
163                         return -ENXIO;
164                 }
165
166                 if (op)
167                         control |= PCI_MSIX_FLAGS_ENABLE;
168                 else
169                         control &= ~PCI_MSIX_FLAGS_ENABLE;
170                 rte_pci_write_config(device, &control, sizeof(control),
171                                      (pos + PCI_MSIX_FLAGS));
172                 return 0;
173         }
174         return -ENXIO;
175 }
176
177 static int
178 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
179 {
180         /* mac address was checked by upper level interface */
181         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
182         int ret;
183
184         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
185                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
186                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
187         if (ret) {
188                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
189                                       mac_addr);
190                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
191                          mac_str, ret);
192         }
193         return ret;
194 }
195
196 static int
197 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
198 {
199         /* mac address was checked by upper level interface */
200         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
201         int ret;
202
203         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
204                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
205                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
206                                 false, NULL, 0);
207         if (ret) {
208                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
209                                       mac_addr);
210                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
211                          mac_str, ret);
212         }
213         return ret;
214 }
215
216 static int
217 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
218 {
219         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
220         struct rte_ether_addr *addr;
221         int ret;
222         int i;
223
224         for (i = 0; i < hw->mc_addrs_num; i++) {
225                 addr = &hw->mc_addrs[i];
226                 /* Check if there are duplicate addresses */
227                 if (rte_is_same_ether_addr(addr, mac_addr)) {
228                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
229                                               addr);
230                         hns3_err(hw, "failed to add mc mac addr, same addrs"
231                                  "(%s) is added by the set_mc_mac_addr_list "
232                                  "API", mac_str);
233                         return -EINVAL;
234                 }
235         }
236
237         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
238         if (ret) {
239                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
240                                       mac_addr);
241                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
242                          mac_str, ret);
243         }
244         return ret;
245 }
246
247 static int
248 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
249                     __rte_unused uint32_t idx,
250                     __rte_unused uint32_t pool)
251 {
252         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
253         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
254         int ret;
255
256         rte_spinlock_lock(&hw->lock);
257
258         /*
259          * In hns3 network engine adding UC and MC mac address with different
260          * commands with firmware. We need to determine whether the input
261          * address is a UC or a MC address to call different commands.
262          * By the way, it is recommended calling the API function named
263          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
264          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
265          * may affect the specifications of UC mac addresses.
266          */
267         if (rte_is_multicast_ether_addr(mac_addr))
268                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
269         else
270                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
271
272         rte_spinlock_unlock(&hw->lock);
273         if (ret) {
274                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
275                                       mac_addr);
276                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
277                          ret);
278         }
279
280         return ret;
281 }
282
283 static void
284 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
285 {
286         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
287         /* index will be checked by upper level rte interface */
288         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
289         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
290         int ret;
291
292         rte_spinlock_lock(&hw->lock);
293
294         if (rte_is_multicast_ether_addr(mac_addr))
295                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
296         else
297                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
298
299         rte_spinlock_unlock(&hw->lock);
300         if (ret) {
301                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
302                                       mac_addr);
303                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
304                          mac_str, ret);
305         }
306 }
307
308 static int
309 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
310                             struct rte_ether_addr *mac_addr)
311 {
312 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
313         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
314         struct rte_ether_addr *old_addr;
315         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
316         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
317         int ret;
318
319         /*
320          * It has been guaranteed that input parameter named mac_addr is valid
321          * address in the rte layer of DPDK framework.
322          */
323         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
324         rte_spinlock_lock(&hw->lock);
325         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
326         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
327                RTE_ETHER_ADDR_LEN);
328
329         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
330                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
331                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
332         if (ret) {
333                 /*
334                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
335                  * driver. When user has configured a MAC address for VF device
336                  * by "ip link set ..." command based on the PF device, the hns3
337                  * PF kernel ethdev driver does not allow VF driver to request
338                  * reconfiguring a different default MAC address, and return
339                  * -EPREM to VF driver through mailbox.
340                  */
341                 if (ret == -EPERM) {
342                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
343                                               old_addr);
344                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
345                                   mac_str);
346                 } else {
347                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
348                                               mac_addr);
349                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
350                                  mac_str, ret);
351                 }
352         }
353
354         rte_ether_addr_copy(mac_addr,
355                             (struct rte_ether_addr *)hw->mac.mac_addr);
356         rte_spinlock_unlock(&hw->lock);
357
358         return ret;
359 }
360
361 static int
362 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
363 {
364         struct hns3_hw *hw = &hns->hw;
365         struct rte_ether_addr *addr;
366         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
367         int err = 0;
368         int ret;
369         int i;
370
371         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
372                 addr = &hw->data->mac_addrs[i];
373                 if (rte_is_zero_ether_addr(addr))
374                         continue;
375                 if (rte_is_multicast_ether_addr(addr))
376                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
377                               hns3vf_add_mc_mac_addr(hw, addr);
378                 else
379                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
380                               hns3vf_add_uc_mac_addr(hw, addr);
381
382                 if (ret) {
383                         err = ret;
384                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
385                                               addr);
386                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
387                                  "ret = %d.", del ? "remove" : "restore",
388                                  mac_str, i, ret);
389                 }
390         }
391         return err;
392 }
393
394 static int
395 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
396                        struct rte_ether_addr *mac_addr)
397 {
398         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
399         int ret;
400
401         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
402                                 HNS3_MBX_MAC_VLAN_MC_ADD,
403                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
404                                 NULL, 0);
405         if (ret) {
406                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
407                                       mac_addr);
408                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
409                          mac_str, ret);
410         }
411
412         return ret;
413 }
414
415 static int
416 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
417                           struct rte_ether_addr *mac_addr)
418 {
419         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
420         int ret;
421
422         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
423                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
424                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
425                                 NULL, 0);
426         if (ret) {
427                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
428                                       mac_addr);
429                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
430                          mac_str, ret);
431         }
432
433         return ret;
434 }
435
436 static int
437 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
438                              struct rte_ether_addr *mc_addr_set,
439                              uint32_t nb_mc_addr)
440 {
441         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
442         struct rte_ether_addr *addr;
443         uint32_t i;
444         uint32_t j;
445
446         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
447                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
448                          "invalid. valid range: 0~%d",
449                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
450                 return -EINVAL;
451         }
452
453         /* Check if input mac addresses are valid */
454         for (i = 0; i < nb_mc_addr; i++) {
455                 addr = &mc_addr_set[i];
456                 if (!rte_is_multicast_ether_addr(addr)) {
457                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
458                                               addr);
459                         hns3_err(hw,
460                                  "failed to set mc mac addr, addr(%s) invalid.",
461                                  mac_str);
462                         return -EINVAL;
463                 }
464
465                 /* Check if there are duplicate addresses */
466                 for (j = i + 1; j < nb_mc_addr; j++) {
467                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
468                                 rte_ether_format_addr(mac_str,
469                                                       RTE_ETHER_ADDR_FMT_SIZE,
470                                                       addr);
471                                 hns3_err(hw, "failed to set mc mac addr, "
472                                          "addrs invalid. two same addrs(%s).",
473                                          mac_str);
474                                 return -EINVAL;
475                         }
476                 }
477
478                 /*
479                  * Check if there are duplicate addresses between mac_addrs
480                  * and mc_addr_set
481                  */
482                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
483                         if (rte_is_same_ether_addr(addr,
484                                                    &hw->data->mac_addrs[j])) {
485                                 rte_ether_format_addr(mac_str,
486                                                       RTE_ETHER_ADDR_FMT_SIZE,
487                                                       addr);
488                                 hns3_err(hw, "failed to set mc mac addr, "
489                                          "addrs invalid. addrs(%s) has already "
490                                          "configured in mac_addr add API",
491                                          mac_str);
492                                 return -EINVAL;
493                         }
494                 }
495         }
496
497         return 0;
498 }
499
500 static int
501 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
502                             struct rte_ether_addr *mc_addr_set,
503                             uint32_t nb_mc_addr)
504 {
505         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
506         struct rte_ether_addr *addr;
507         int cur_addr_num;
508         int set_addr_num;
509         int num;
510         int ret;
511         int i;
512
513         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
514         if (ret)
515                 return ret;
516
517         rte_spinlock_lock(&hw->lock);
518         cur_addr_num = hw->mc_addrs_num;
519         for (i = 0; i < cur_addr_num; i++) {
520                 num = cur_addr_num - i - 1;
521                 addr = &hw->mc_addrs[num];
522                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
523                 if (ret) {
524                         rte_spinlock_unlock(&hw->lock);
525                         return ret;
526                 }
527
528                 hw->mc_addrs_num--;
529         }
530
531         set_addr_num = (int)nb_mc_addr;
532         for (i = 0; i < set_addr_num; i++) {
533                 addr = &mc_addr_set[i];
534                 ret = hns3vf_add_mc_mac_addr(hw, addr);
535                 if (ret) {
536                         rte_spinlock_unlock(&hw->lock);
537                         return ret;
538                 }
539
540                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
541                 hw->mc_addrs_num++;
542         }
543         rte_spinlock_unlock(&hw->lock);
544
545         return 0;
546 }
547
548 static int
549 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
550 {
551         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
552         struct hns3_hw *hw = &hns->hw;
553         struct rte_ether_addr *addr;
554         int err = 0;
555         int ret;
556         int i;
557
558         for (i = 0; i < hw->mc_addrs_num; i++) {
559                 addr = &hw->mc_addrs[i];
560                 if (!rte_is_multicast_ether_addr(addr))
561                         continue;
562                 if (del)
563                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
564                 else
565                         ret = hns3vf_add_mc_mac_addr(hw, addr);
566                 if (ret) {
567                         err = ret;
568                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
569                                               addr);
570                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
571                                  del ? "Remove" : "Restore", mac_str, ret);
572                 }
573         }
574         return err;
575 }
576
577 static int
578 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
579                         bool en_uc_pmc, bool en_mc_pmc)
580 {
581         struct hns3_mbx_vf_to_pf_cmd *req;
582         struct hns3_cmd_desc desc;
583         int ret;
584
585         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
586
587         /*
588          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
589          * so there are some features for promiscuous/allmulticast mode in hns3
590          * VF PMD driver as below:
591          * 1. The promiscuous/allmulticast mode can be configured successfully
592          *    only based on the trusted VF device. If based on the non trusted
593          *    VF device, configuring promiscuous/allmulticast mode will fail.
594          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
595          *    kernel ethdev driver on the host by the following command:
596          *      "ip link set <eth num> vf <vf id> turst on"
597          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
598          *    driver can receive the ingress and outgoing traffic. In the words,
599          *    all the ingress packets, all the packets sent from the PF and
600          *    other VFs on the same physical port.
601          * 3. Note: Because of the hardware constraints, By default vlan filter
602          *    is enabled and couldn't be turned off based on VF device, so vlan
603          *    filter is still effective even in promiscuous mode. If upper
604          *    applications don't call rte_eth_dev_vlan_filter API function to
605          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
606          *    the packets with vlan tag in promiscuoue mode.
607          */
608         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
609         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
610         req->msg[1] = en_bc_pmc ? 1 : 0;
611         req->msg[2] = en_uc_pmc ? 1 : 0;
612         req->msg[3] = en_mc_pmc ? 1 : 0;
613
614         ret = hns3_cmd_send(hw, &desc, 1);
615         if (ret)
616                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
617
618         return ret;
619 }
620
621 static int
622 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
623 {
624         struct hns3_adapter *hns = dev->data->dev_private;
625         struct hns3_hw *hw = &hns->hw;
626         int ret;
627
628         ret = hns3vf_set_promisc_mode(hw, true, true, true);
629         if (ret)
630                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
631                         ret);
632         return ret;
633 }
634
635 static int
636 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
637 {
638         bool allmulti = dev->data->all_multicast ? true : false;
639         struct hns3_adapter *hns = dev->data->dev_private;
640         struct hns3_hw *hw = &hns->hw;
641         int ret;
642
643         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
644         if (ret)
645                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
646                         ret);
647         return ret;
648 }
649
650 static int
651 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
652 {
653         struct hns3_adapter *hns = dev->data->dev_private;
654         struct hns3_hw *hw = &hns->hw;
655         int ret;
656
657         if (dev->data->promiscuous)
658                 return 0;
659
660         ret = hns3vf_set_promisc_mode(hw, true, false, true);
661         if (ret)
662                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
663                         ret);
664         return ret;
665 }
666
667 static int
668 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
669 {
670         struct hns3_adapter *hns = dev->data->dev_private;
671         struct hns3_hw *hw = &hns->hw;
672         int ret;
673
674         if (dev->data->promiscuous)
675                 return 0;
676
677         ret = hns3vf_set_promisc_mode(hw, true, false, false);
678         if (ret)
679                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
680                         ret);
681         return ret;
682 }
683
684 static int
685 hns3vf_restore_promisc(struct hns3_adapter *hns)
686 {
687         struct hns3_hw *hw = &hns->hw;
688         bool allmulti = hw->data->all_multicast ? true : false;
689
690         if (hw->data->promiscuous)
691                 return hns3vf_set_promisc_mode(hw, true, true, true);
692
693         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
694 }
695
696 static int
697 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
698                              bool mmap, enum hns3_ring_type queue_type,
699                              uint16_t queue_id)
700 {
701         struct hns3_vf_bind_vector_msg bind_msg;
702         const char *op_str;
703         uint16_t code;
704         int ret;
705
706         memset(&bind_msg, 0, sizeof(bind_msg));
707         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
708                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
709         bind_msg.vector_id = vector_id;
710
711         if (queue_type == HNS3_RING_TYPE_RX)
712                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
713         else
714                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
715
716         bind_msg.param[0].ring_type = queue_type;
717         bind_msg.ring_num = 1;
718         bind_msg.param[0].tqp_index = queue_id;
719         op_str = mmap ? "Map" : "Unmap";
720         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
721                                 sizeof(bind_msg), false, NULL, 0);
722         if (ret)
723                 hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
724                          op_str, queue_id, bind_msg.vector_id, ret);
725
726         return ret;
727 }
728
729 static int
730 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
731 {
732         uint16_t vec;
733         int ret;
734         int i;
735
736         /*
737          * In hns3 network engine, vector 0 is always the misc interrupt of this
738          * function, vector 1~N can be used respectively for the queues of the
739          * function. Tx and Rx queues with the same number share the interrupt
740          * vector. In the initialization clearing the all hardware mapping
741          * relationship configurations between queues and interrupt vectors is
742          * needed, so some error caused by the residual configurations, such as
743          * the unexpected Tx interrupt, can be avoid.
744          */
745         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
746         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
747                 vec = vec - 1; /* the last interrupt is reserved */
748         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
749         for (i = 0; i < hw->intr_tqps_num; i++) {
750                 /*
751                  * Set gap limiter/rate limiter/quanity limiter algorithm
752                  * configuration for interrupt coalesce of queue's interrupt.
753                  */
754                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
755                                        HNS3_TQP_INTR_GL_DEFAULT);
756                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
757                                        HNS3_TQP_INTR_GL_DEFAULT);
758                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
759                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
760
761                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
762                                                    HNS3_RING_TYPE_TX, i);
763                 if (ret) {
764                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
765                                           "vector: %d, ret=%d", i, vec, ret);
766                         return ret;
767                 }
768
769                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
770                                                    HNS3_RING_TYPE_RX, i);
771                 if (ret) {
772                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
773                                           "vector: %d, ret=%d", i, vec, ret);
774                         return ret;
775                 }
776         }
777
778         return 0;
779 }
780
781 static int
782 hns3vf_dev_configure(struct rte_eth_dev *dev)
783 {
784         struct hns3_adapter *hns = dev->data->dev_private;
785         struct hns3_hw *hw = &hns->hw;
786         struct hns3_rss_conf *rss_cfg = &hw->rss_info;
787         struct rte_eth_conf *conf = &dev->data->dev_conf;
788         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
789         uint16_t nb_rx_q = dev->data->nb_rx_queues;
790         uint16_t nb_tx_q = dev->data->nb_tx_queues;
791         struct rte_eth_rss_conf rss_conf;
792         uint16_t mtu;
793         bool gro_en;
794         int ret;
795
796         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
797
798         /*
799          * Some versions of hardware network engine does not support
800          * individually enable/disable/reset the Tx or Rx queue. These devices
801          * must enable/disable/reset Tx and Rx queues at the same time. When the
802          * numbers of Tx queues allocated by upper applications are not equal to
803          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
804          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
805          * work as usual. But these fake queues are imperceptible, and can not
806          * be used by upper applications.
807          */
808         if (!hns3_dev_indep_txrx_supported(hw)) {
809                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
810                 if (ret) {
811                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
812                                  ret);
813                         return ret;
814                 }
815         }
816
817         hw->adapter_state = HNS3_NIC_CONFIGURING;
818         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
819                 hns3_err(hw, "setting link speed/duplex not supported");
820                 ret = -EINVAL;
821                 goto cfg_err;
822         }
823
824         /* When RSS is not configured, redirect the packet queue 0 */
825         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
826                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
827                 hw->rss_dis_flag = false;
828                 rss_conf = conf->rx_adv_conf.rss_conf;
829                 if (rss_conf.rss_key == NULL) {
830                         rss_conf.rss_key = rss_cfg->key;
831                         rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
832                 }
833
834                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
835                 if (ret)
836                         goto cfg_err;
837         }
838
839         /*
840          * If jumbo frames are enabled, MTU needs to be refreshed
841          * according to the maximum RX packet length.
842          */
843         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
844                 /*
845                  * Security of max_rx_pkt_len is guaranteed in dpdk frame.
846                  * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
847                  * can safely assign to "uint16_t" type variable.
848                  */
849                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
850                 ret = hns3vf_dev_mtu_set(dev, mtu);
851                 if (ret)
852                         goto cfg_err;
853                 dev->data->mtu = mtu;
854         }
855
856         ret = hns3vf_dev_configure_vlan(dev);
857         if (ret)
858                 goto cfg_err;
859
860         /* config hardware GRO */
861         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
862         ret = hns3_config_gro(hw, gro_en);
863         if (ret)
864                 goto cfg_err;
865
866         hns->rx_simple_allowed = true;
867         hns->rx_vec_allowed = true;
868         hns->tx_simple_allowed = true;
869         hns->tx_vec_allowed = true;
870
871         hns3_init_rx_ptype_tble(dev);
872
873         hw->adapter_state = HNS3_NIC_CONFIGURED;
874         return 0;
875
876 cfg_err:
877         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
878         hw->adapter_state = HNS3_NIC_INITIALIZED;
879
880         return ret;
881 }
882
883 static int
884 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
885 {
886         int ret;
887
888         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
889                                 sizeof(mtu), true, NULL, 0);
890         if (ret)
891                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
892
893         return ret;
894 }
895
896 static int
897 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
898 {
899         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
900         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
901         int ret;
902
903         /*
904          * The hns3 PF/VF devices on the same port share the hardware MTU
905          * configuration. Currently, we send mailbox to inform hns3 PF kernel
906          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
907          * driver, there is no need to stop the port for hns3 VF device, and the
908          * MTU value issued by hns3 VF PMD driver must be less than or equal to
909          * PF's MTU.
910          */
911         if (rte_atomic16_read(&hw->reset.resetting)) {
912                 hns3_err(hw, "Failed to set mtu during resetting");
913                 return -EIO;
914         }
915
916         /*
917          * when Rx of scattered packets is off, we have some possibility of
918          * using vector Rx process function or simple Rx functions in hns3 PMD
919          * driver. If the input MTU is increased and the maximum length of
920          * received packets is greater than the length of a buffer for Rx
921          * packet, the hardware network engine needs to use multiple BDs and
922          * buffers to store these packets. This will cause problems when still
923          * using vector Rx process function or simple Rx function to receiving
924          * packets. So, when Rx of scattered packets is off and device is
925          * started, it is not permitted to increase MTU so that the maximum
926          * length of Rx packets is greater than Rx buffer length.
927          */
928         if (dev->data->dev_started && !dev->data->scattered_rx &&
929             frame_size > hw->rx_buf_len) {
930                 hns3_err(hw, "failed to set mtu because current is "
931                         "not scattered rx mode");
932                 return -EOPNOTSUPP;
933         }
934
935         rte_spinlock_lock(&hw->lock);
936         ret = hns3vf_config_mtu(hw, mtu);
937         if (ret) {
938                 rte_spinlock_unlock(&hw->lock);
939                 return ret;
940         }
941         if (frame_size > RTE_ETHER_MAX_LEN)
942                 dev->data->dev_conf.rxmode.offloads |=
943                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
944         else
945                 dev->data->dev_conf.rxmode.offloads &=
946                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
947         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
948         rte_spinlock_unlock(&hw->lock);
949
950         return 0;
951 }
952
953 static int
954 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
955 {
956         struct hns3_adapter *hns = eth_dev->data->dev_private;
957         struct hns3_hw *hw = &hns->hw;
958         uint16_t q_num = hw->tqps_num;
959
960         /*
961          * In interrupt mode, 'max_rx_queues' is set based on the number of
962          * MSI-X interrupt resources of the hardware.
963          */
964         if (hw->data->dev_conf.intr_conf.rxq == 1)
965                 q_num = hw->intr_tqps_num;
966
967         info->max_rx_queues = q_num;
968         info->max_tx_queues = hw->tqps_num;
969         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
970         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
971         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
972         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
973         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
974
975         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
976                                  DEV_RX_OFFLOAD_UDP_CKSUM |
977                                  DEV_RX_OFFLOAD_TCP_CKSUM |
978                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
979                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
980                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
981                                  DEV_RX_OFFLOAD_SCATTER |
982                                  DEV_RX_OFFLOAD_VLAN_STRIP |
983                                  DEV_RX_OFFLOAD_VLAN_FILTER |
984                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
985                                  DEV_RX_OFFLOAD_RSS_HASH |
986                                  DEV_RX_OFFLOAD_TCP_LRO);
987         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
988                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
989                                  DEV_TX_OFFLOAD_TCP_CKSUM |
990                                  DEV_TX_OFFLOAD_UDP_CKSUM |
991                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
992                                  DEV_TX_OFFLOAD_MULTI_SEGS |
993                                  DEV_TX_OFFLOAD_TCP_TSO |
994                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
995                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
996                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
997                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
998                                  hns3_txvlan_cap_get(hw));
999
1000         if (hns3_dev_indep_txrx_supported(hw))
1001                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
1002                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
1003
1004         info->rx_desc_lim = (struct rte_eth_desc_lim) {
1005                 .nb_max = HNS3_MAX_RING_DESC,
1006                 .nb_min = HNS3_MIN_RING_DESC,
1007                 .nb_align = HNS3_ALIGN_RING_DESC,
1008         };
1009
1010         info->tx_desc_lim = (struct rte_eth_desc_lim) {
1011                 .nb_max = HNS3_MAX_RING_DESC,
1012                 .nb_min = HNS3_MIN_RING_DESC,
1013                 .nb_align = HNS3_ALIGN_RING_DESC,
1014                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1015                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1016         };
1017
1018         info->default_rxconf = (struct rte_eth_rxconf) {
1019                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1020                 /*
1021                  * If there are no available Rx buffer descriptors, incoming
1022                  * packets are always dropped by hardware based on hns3 network
1023                  * engine.
1024                  */
1025                 .rx_drop_en = 1,
1026                 .offloads = 0,
1027         };
1028         info->default_txconf = (struct rte_eth_txconf) {
1029                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1030                 .offloads = 0,
1031         };
1032
1033         info->vmdq_queue_num = 0;
1034
1035         info->reta_size = HNS3_RSS_IND_TBL_SIZE;
1036         info->hash_key_size = HNS3_RSS_KEY_SIZE;
1037         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1038         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1039         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1040
1041         return 0;
1042 }
1043
1044 static void
1045 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1046 {
1047         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1048 }
1049
1050 static void
1051 hns3vf_disable_irq0(struct hns3_hw *hw)
1052 {
1053         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1054 }
1055
1056 static void
1057 hns3vf_enable_irq0(struct hns3_hw *hw)
1058 {
1059         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1060 }
1061
1062 static enum hns3vf_evt_cause
1063 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1064 {
1065         struct hns3_hw *hw = &hns->hw;
1066         enum hns3vf_evt_cause ret;
1067         uint32_t cmdq_stat_reg;
1068         uint32_t rst_ing_reg;
1069         uint32_t val;
1070
1071         /* Fetch the events from their corresponding regs */
1072         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1073
1074         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1075                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1076                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1077                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1078                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
1079                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1080                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1081                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1082                 if (clearval) {
1083                         hw->reset.stats.global_cnt++;
1084                         hns3_warn(hw, "Global reset detected, clear reset status");
1085                 } else {
1086                         hns3_schedule_delayed_reset(hns);
1087                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1088                 }
1089
1090                 ret = HNS3VF_VECTOR0_EVENT_RST;
1091                 goto out;
1092         }
1093
1094         /* Check for vector0 mailbox(=CMDQ RX) event source */
1095         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1096                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1097                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1098                 goto out;
1099         }
1100
1101         val = 0;
1102         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1103 out:
1104         if (clearval)
1105                 *clearval = val;
1106         return ret;
1107 }
1108
1109 static void
1110 hns3vf_interrupt_handler(void *param)
1111 {
1112         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1113         struct hns3_adapter *hns = dev->data->dev_private;
1114         struct hns3_hw *hw = &hns->hw;
1115         enum hns3vf_evt_cause event_cause;
1116         uint32_t clearval;
1117
1118         if (hw->irq_thread_id == 0)
1119                 hw->irq_thread_id = pthread_self();
1120
1121         /* Disable interrupt */
1122         hns3vf_disable_irq0(hw);
1123
1124         /* Read out interrupt causes */
1125         event_cause = hns3vf_check_event_cause(hns, &clearval);
1126
1127         switch (event_cause) {
1128         case HNS3VF_VECTOR0_EVENT_RST:
1129                 hns3_schedule_reset(hns);
1130                 break;
1131         case HNS3VF_VECTOR0_EVENT_MBX:
1132                 hns3_dev_handle_mbx_msg(hw);
1133                 break;
1134         default:
1135                 break;
1136         }
1137
1138         /* Clear interrupt causes */
1139         hns3vf_clear_event_cause(hw, clearval);
1140
1141         /* Enable interrupt */
1142         hns3vf_enable_irq0(hw);
1143 }
1144
1145 static void
1146 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1147 {
1148         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1149         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1150         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1151 }
1152
1153 static void
1154 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1155 {
1156         struct hns3_dev_specs_0_cmd *req0;
1157
1158         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1159
1160         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1161         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1162         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1163 }
1164
1165 static int
1166 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1167 {
1168         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1169         int ret;
1170         int i;
1171
1172         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1173                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1174                                           true);
1175                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1176         }
1177         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1178
1179         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1180         if (ret)
1181                 return ret;
1182
1183         hns3vf_parse_dev_specifications(hw, desc);
1184
1185         return 0;
1186 }
1187
1188 static int
1189 hns3vf_get_capability(struct hns3_hw *hw)
1190 {
1191         struct rte_pci_device *pci_dev;
1192         struct rte_eth_dev *eth_dev;
1193         uint8_t revision;
1194         int ret;
1195
1196         eth_dev = &rte_eth_devices[hw->data->port_id];
1197         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1198
1199         /* Get PCI revision id */
1200         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1201                                   HNS3_PCI_REVISION_ID);
1202         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1203                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1204                              ret);
1205                 return -EIO;
1206         }
1207         hw->revision = revision;
1208
1209         if (revision < PCI_REVISION_ID_HIP09_A) {
1210                 hns3vf_set_default_dev_specifications(hw);
1211                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1212                 hw->intr.coalesce_mode = HNS3_INTR_COALESCE_NON_QL;
1213                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1214                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1215                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1216                 hw->rss_info.ipv6_sctp_offload_supported = false;
1217                 return 0;
1218         }
1219
1220         ret = hns3vf_query_dev_specifications(hw);
1221         if (ret) {
1222                 PMD_INIT_LOG(ERR,
1223                              "failed to query dev specifications, ret = %d",
1224                              ret);
1225                 return ret;
1226         }
1227
1228         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1229         hw->intr.coalesce_mode = HNS3_INTR_COALESCE_QL;
1230         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1231         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1232         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1233         hw->rss_info.ipv6_sctp_offload_supported = true;
1234
1235         return 0;
1236 }
1237
1238 static int
1239 hns3vf_check_tqp_info(struct hns3_hw *hw)
1240 {
1241         if (hw->tqps_num == 0) {
1242                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1243                 return -EINVAL;
1244         }
1245
1246         if (hw->rss_size_max == 0) {
1247                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1248                 return -EINVAL;
1249         }
1250
1251         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1252
1253         return 0;
1254 }
1255
1256 static int
1257 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1258 {
1259         uint8_t resp_msg;
1260         int ret;
1261
1262         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1263                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1264                                 true, &resp_msg, sizeof(resp_msg));
1265         if (ret) {
1266                 if (ret == -ETIME) {
1267                         /*
1268                          * Getting current port based VLAN state from PF driver
1269                          * will not affect VF driver's basic function. Because
1270                          * the VF driver relies on hns3 PF kernel ether driver,
1271                          * to avoid introducing compatibility issues with older
1272                          * version of PF driver, no failure will be returned
1273                          * when the return value is ETIME. This return value has
1274                          * the following scenarios:
1275                          * 1) Firmware didn't return the results in time
1276                          * 2) the result return by firmware is timeout
1277                          * 3) the older version of kernel side PF driver does
1278                          *    not support this mailbox message.
1279                          * For scenarios 1 and 2, it is most likely that a
1280                          * hardware error has occurred, or a hardware reset has
1281                          * occurred. In this case, these errors will be caught
1282                          * by other functions.
1283                          */
1284                         PMD_INIT_LOG(WARNING,
1285                                 "failed to get PVID state for timeout, maybe "
1286                                 "kernel side PF driver doesn't support this "
1287                                 "mailbox message, or firmware didn't respond.");
1288                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1289                 } else {
1290                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1291                                 " ret = %d", ret);
1292                         return ret;
1293                 }
1294         }
1295         hw->port_base_vlan_cfg.state = resp_msg ?
1296                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1297         return 0;
1298 }
1299
1300 static int
1301 hns3vf_get_queue_info(struct hns3_hw *hw)
1302 {
1303 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1304         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1305         int ret;
1306
1307         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1308                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1309         if (ret) {
1310                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1311                 return ret;
1312         }
1313
1314         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1315         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1316
1317         return hns3vf_check_tqp_info(hw);
1318 }
1319
1320 static int
1321 hns3vf_get_queue_depth(struct hns3_hw *hw)
1322 {
1323 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1324         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1325         int ret;
1326
1327         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1328                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1329         if (ret) {
1330                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1331                              ret);
1332                 return ret;
1333         }
1334
1335         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1336         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1337
1338         return 0;
1339 }
1340
1341 static int
1342 hns3vf_get_tc_info(struct hns3_hw *hw)
1343 {
1344         uint8_t resp_msg;
1345         int ret;
1346         int i;
1347
1348         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1349                                 true, &resp_msg, sizeof(resp_msg));
1350         if (ret) {
1351                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1352                          ret);
1353                 return ret;
1354         }
1355
1356         hw->hw_tc_map = resp_msg;
1357
1358         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1359                 if (hw->hw_tc_map & BIT(i))
1360                         hw->num_tc++;
1361         }
1362
1363         return 0;
1364 }
1365
1366 static int
1367 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1368 {
1369         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1370         int ret;
1371
1372         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1373                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1374         if (ret) {
1375                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1376                 return ret;
1377         }
1378
1379         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1380
1381         return 0;
1382 }
1383
1384 static int
1385 hns3vf_get_configuration(struct hns3_hw *hw)
1386 {
1387         int ret;
1388
1389         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1390         hw->rss_dis_flag = false;
1391
1392         /* Get device capability */
1393         ret = hns3vf_get_capability(hw);
1394         if (ret) {
1395                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1396                 return ret;
1397         }
1398
1399         /* Get queue configuration from PF */
1400         ret = hns3vf_get_queue_info(hw);
1401         if (ret)
1402                 return ret;
1403
1404         /* Get queue depth info from PF */
1405         ret = hns3vf_get_queue_depth(hw);
1406         if (ret)
1407                 return ret;
1408
1409         /* Get user defined VF MAC addr from PF */
1410         ret = hns3vf_get_host_mac_addr(hw);
1411         if (ret)
1412                 return ret;
1413
1414         ret = hns3vf_get_port_base_vlan_filter_state(hw);
1415         if (ret)
1416                 return ret;
1417
1418         /* Get tc configuration from PF */
1419         return hns3vf_get_tc_info(hw);
1420 }
1421
1422 static int
1423 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1424                             uint16_t nb_tx_q)
1425 {
1426         struct hns3_hw *hw = &hns->hw;
1427
1428         if (nb_rx_q < hw->num_tc) {
1429                 hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
1430                          nb_rx_q, hw->num_tc);
1431                 return -EINVAL;
1432         }
1433
1434         if (nb_tx_q < hw->num_tc) {
1435                 hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
1436                          nb_tx_q, hw->num_tc);
1437                 return -EINVAL;
1438         }
1439
1440         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1441 }
1442
1443 static void
1444 hns3vf_request_link_info(struct hns3_hw *hw)
1445 {
1446         uint8_t resp_msg;
1447         int ret;
1448
1449         if (rte_atomic16_read(&hw->reset.resetting))
1450                 return;
1451         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1452                                 &resp_msg, sizeof(resp_msg));
1453         if (ret)
1454                 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1455 }
1456
1457 static int
1458 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1459 {
1460 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1461         struct hns3_hw *hw = &hns->hw;
1462         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1463         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1464         uint8_t is_kill = on ? 0 : 1;
1465
1466         msg_data[0] = is_kill;
1467         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1468         memcpy(&msg_data[3], &proto, sizeof(proto));
1469
1470         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1471                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1472                                  0);
1473 }
1474
1475 static int
1476 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1477 {
1478         struct hns3_adapter *hns = dev->data->dev_private;
1479         struct hns3_hw *hw = &hns->hw;
1480         int ret;
1481
1482         if (rte_atomic16_read(&hw->reset.resetting)) {
1483                 hns3_err(hw,
1484                          "vf set vlan id failed during resetting, vlan_id =%u",
1485                          vlan_id);
1486                 return -EIO;
1487         }
1488         rte_spinlock_lock(&hw->lock);
1489         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1490         rte_spinlock_unlock(&hw->lock);
1491         if (ret)
1492                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1493                          vlan_id, ret);
1494
1495         return ret;
1496 }
1497
1498 static int
1499 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1500 {
1501         uint8_t msg_data;
1502         int ret;
1503
1504         msg_data = enable ? 1 : 0;
1505         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1506                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1507         if (ret)
1508                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1509
1510         return ret;
1511 }
1512
1513 static int
1514 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1515 {
1516         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1517         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1518         unsigned int tmp_mask;
1519         int ret = 0;
1520
1521         if (rte_atomic16_read(&hw->reset.resetting)) {
1522                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1523                              "mask = 0x%x", mask);
1524                 return -EIO;
1525         }
1526
1527         tmp_mask = (unsigned int)mask;
1528         /* Vlan stripping setting */
1529         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1530                 rte_spinlock_lock(&hw->lock);
1531                 /* Enable or disable VLAN stripping */
1532                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1533                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1534                 else
1535                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1536                 rte_spinlock_unlock(&hw->lock);
1537         }
1538
1539         return ret;
1540 }
1541
1542 static int
1543 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1544 {
1545         struct rte_vlan_filter_conf *vfc;
1546         struct hns3_hw *hw = &hns->hw;
1547         uint16_t vlan_id;
1548         uint64_t vbit;
1549         uint64_t ids;
1550         int ret = 0;
1551         uint32_t i;
1552
1553         vfc = &hw->data->vlan_filter_conf;
1554         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1555                 if (vfc->ids[i] == 0)
1556                         continue;
1557                 ids = vfc->ids[i];
1558                 while (ids) {
1559                         /*
1560                          * 64 means the num bits of ids, one bit corresponds to
1561                          * one vlan id
1562                          */
1563                         vlan_id = 64 * i;
1564                         /* count trailing zeroes */
1565                         vbit = ~ids & (ids - 1);
1566                         /* clear least significant bit set */
1567                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1568                         for (; vbit;) {
1569                                 vbit >>= 1;
1570                                 vlan_id++;
1571                         }
1572                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1573                         if (ret) {
1574                                 hns3_err(hw,
1575                                          "VF handle vlan table failed, ret =%d, on = %d",
1576                                          ret, on);
1577                                 return ret;
1578                         }
1579                 }
1580         }
1581
1582         return ret;
1583 }
1584
1585 static int
1586 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1587 {
1588         return hns3vf_handle_all_vlan_table(hns, 0);
1589 }
1590
1591 static int
1592 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1593 {
1594         struct hns3_hw *hw = &hns->hw;
1595         struct rte_eth_conf *dev_conf;
1596         bool en;
1597         int ret;
1598
1599         dev_conf = &hw->data->dev_conf;
1600         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1601                                                                    : false;
1602         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1603         if (ret)
1604                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1605                          ret);
1606         return ret;
1607 }
1608
1609 static int
1610 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1611 {
1612         struct hns3_adapter *hns = dev->data->dev_private;
1613         struct rte_eth_dev_data *data = dev->data;
1614         struct hns3_hw *hw = &hns->hw;
1615         int ret;
1616
1617         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1618             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1619             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1620                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1621                               "or hw_vlan_insert_pvid is not support!");
1622         }
1623
1624         /* Apply vlan offload setting */
1625         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1626         if (ret)
1627                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1628
1629         return ret;
1630 }
1631
1632 static int
1633 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1634 {
1635         uint8_t msg_data;
1636
1637         msg_data = alive ? 1 : 0;
1638         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1639                                  sizeof(msg_data), false, NULL, 0);
1640 }
1641
1642 static void
1643 hns3vf_keep_alive_handler(void *param)
1644 {
1645         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1646         struct hns3_adapter *hns = eth_dev->data->dev_private;
1647         struct hns3_hw *hw = &hns->hw;
1648         uint8_t respmsg;
1649         int ret;
1650
1651         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1652                                 false, &respmsg, sizeof(uint8_t));
1653         if (ret)
1654                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1655                          ret);
1656
1657         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1658                           eth_dev);
1659 }
1660
1661 static void
1662 hns3vf_service_handler(void *param)
1663 {
1664         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1665         struct hns3_adapter *hns = eth_dev->data->dev_private;
1666         struct hns3_hw *hw = &hns->hw;
1667
1668         /*
1669          * The query link status and reset processing are executed in the
1670          * interrupt thread.When the IMP reset occurs, IMP will not respond,
1671          * and the query operation will time out after 30ms. In the case of
1672          * multiple PF/VFs, each query failure timeout causes the IMP reset
1673          * interrupt to fail to respond within 100ms.
1674          * Before querying the link status, check whether there is a reset
1675          * pending, and if so, abandon the query.
1676          */
1677         if (!hns3vf_is_reset_pending(hns))
1678                 hns3vf_request_link_info(hw);
1679         else
1680                 hns3_warn(hw, "Cancel the query when reset is pending");
1681
1682         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1683                           eth_dev);
1684 }
1685
1686 static int
1687 hns3_query_vf_resource(struct hns3_hw *hw)
1688 {
1689         struct hns3_vf_res_cmd *req;
1690         struct hns3_cmd_desc desc;
1691         uint16_t num_msi;
1692         int ret;
1693
1694         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1695         ret = hns3_cmd_send(hw, &desc, 1);
1696         if (ret) {
1697                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1698                 return ret;
1699         }
1700
1701         req = (struct hns3_vf_res_cmd *)desc.data;
1702         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1703                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1704         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1705                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1706                          num_msi, HNS3_MIN_VECTOR_NUM);
1707                 return -EINVAL;
1708         }
1709
1710         hw->num_msi = num_msi;
1711
1712         return 0;
1713 }
1714
1715 static int
1716 hns3vf_init_hardware(struct hns3_adapter *hns)
1717 {
1718         struct hns3_hw *hw = &hns->hw;
1719         uint16_t mtu = hw->data->mtu;
1720         int ret;
1721
1722         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1723         if (ret)
1724                 return ret;
1725
1726         ret = hns3vf_config_mtu(hw, mtu);
1727         if (ret)
1728                 goto err_init_hardware;
1729
1730         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1731         if (ret) {
1732                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1733                 goto err_init_hardware;
1734         }
1735
1736         ret = hns3_config_gro(hw, false);
1737         if (ret) {
1738                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1739                 goto err_init_hardware;
1740         }
1741
1742         /*
1743          * In the initialization clearing the all hardware mapping relationship
1744          * configurations between queues and interrupt vectors is needed, so
1745          * some error caused by the residual configurations, such as the
1746          * unexpected interrupt, can be avoid.
1747          */
1748         ret = hns3vf_init_ring_with_vector(hw);
1749         if (ret) {
1750                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1751                 goto err_init_hardware;
1752         }
1753
1754         ret = hns3vf_set_alive(hw, true);
1755         if (ret) {
1756                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1757                 goto err_init_hardware;
1758         }
1759
1760         hns3vf_request_link_info(hw);
1761         return 0;
1762
1763 err_init_hardware:
1764         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1765         return ret;
1766 }
1767
1768 static int
1769 hns3vf_clear_vport_list(struct hns3_hw *hw)
1770 {
1771         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1772                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1773                                  NULL, 0);
1774 }
1775
1776 static int
1777 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1778 {
1779         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1780         struct hns3_adapter *hns = eth_dev->data->dev_private;
1781         struct hns3_hw *hw = &hns->hw;
1782         int ret;
1783
1784         PMD_INIT_FUNC_TRACE();
1785
1786         /* Get hardware io base address from pcie BAR2 IO space */
1787         hw->io_base = pci_dev->mem_resource[2].addr;
1788
1789         /* Firmware command queue initialize */
1790         ret = hns3_cmd_init_queue(hw);
1791         if (ret) {
1792                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1793                 goto err_cmd_init_queue;
1794         }
1795
1796         /* Firmware command initialize */
1797         ret = hns3_cmd_init(hw);
1798         if (ret) {
1799                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1800                 goto err_cmd_init;
1801         }
1802
1803         /* Get VF resource */
1804         ret = hns3_query_vf_resource(hw);
1805         if (ret)
1806                 goto err_cmd_init;
1807
1808         rte_spinlock_init(&hw->mbx_resp.lock);
1809
1810         hns3vf_clear_event_cause(hw, 0);
1811
1812         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1813                                          hns3vf_interrupt_handler, eth_dev);
1814         if (ret) {
1815                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1816                 goto err_intr_callback_register;
1817         }
1818
1819         /* Enable interrupt */
1820         rte_intr_enable(&pci_dev->intr_handle);
1821         hns3vf_enable_irq0(hw);
1822
1823         /* Get configuration from PF */
1824         ret = hns3vf_get_configuration(hw);
1825         if (ret) {
1826                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1827                 goto err_get_config;
1828         }
1829
1830         ret = hns3_tqp_stats_init(hw);
1831         if (ret)
1832                 goto err_get_config;
1833
1834         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1835         if (ret) {
1836                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1837                 goto err_set_tc_queue;
1838         }
1839
1840         ret = hns3vf_clear_vport_list(hw);
1841         if (ret) {
1842                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1843                 goto err_set_tc_queue;
1844         }
1845
1846         ret = hns3vf_init_hardware(hns);
1847         if (ret)
1848                 goto err_set_tc_queue;
1849
1850         hns3_set_default_rss_args(hw);
1851
1852         return 0;
1853
1854 err_set_tc_queue:
1855         hns3_tqp_stats_uninit(hw);
1856
1857 err_get_config:
1858         hns3vf_disable_irq0(hw);
1859         rte_intr_disable(&pci_dev->intr_handle);
1860         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1861                              eth_dev);
1862 err_intr_callback_register:
1863 err_cmd_init:
1864         hns3_cmd_uninit(hw);
1865         hns3_cmd_destroy_queue(hw);
1866 err_cmd_init_queue:
1867         hw->io_base = NULL;
1868
1869         return ret;
1870 }
1871
1872 static void
1873 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1874 {
1875         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1876         struct hns3_adapter *hns = eth_dev->data->dev_private;
1877         struct hns3_hw *hw = &hns->hw;
1878
1879         PMD_INIT_FUNC_TRACE();
1880
1881         hns3_rss_uninit(hns);
1882         (void)hns3_config_gro(hw, false);
1883         (void)hns3vf_set_alive(hw, false);
1884         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1885         hns3_tqp_stats_uninit(hw);
1886         hns3vf_disable_irq0(hw);
1887         rte_intr_disable(&pci_dev->intr_handle);
1888         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1889                              eth_dev);
1890         hns3_cmd_uninit(hw);
1891         hns3_cmd_destroy_queue(hw);
1892         hw->io_base = NULL;
1893 }
1894
1895 static int
1896 hns3vf_do_stop(struct hns3_adapter *hns)
1897 {
1898         struct hns3_hw *hw = &hns->hw;
1899         int ret;
1900
1901         hw->mac.link_status = ETH_LINK_DOWN;
1902
1903         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1904                 hns3vf_configure_mac_addr(hns, true);
1905                 ret = hns3_reset_all_tqps(hns);
1906                 if (ret) {
1907                         hns3_err(hw, "failed to reset all queues ret = %d",
1908                                  ret);
1909                         return ret;
1910                 }
1911         }
1912         return 0;
1913 }
1914
1915 static void
1916 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1917 {
1918         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1919         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1920         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1921         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1922         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1923         uint16_t q_id;
1924
1925         if (dev->data->dev_conf.intr_conf.rxq == 0)
1926                 return;
1927
1928         /* unmap the ring with vector */
1929         if (rte_intr_allow_others(intr_handle)) {
1930                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1931                 base = RTE_INTR_VEC_RXTX_OFFSET;
1932         }
1933         if (rte_intr_dp_is_en(intr_handle)) {
1934                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1935                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1936                                                            HNS3_RING_TYPE_RX,
1937                                                            q_id);
1938                         if (vec < base + intr_handle->nb_efd - 1)
1939                                 vec++;
1940                 }
1941         }
1942         /* Clean datapath event and queue/vec mapping */
1943         rte_intr_efd_disable(intr_handle);
1944         if (intr_handle->intr_vec) {
1945                 rte_free(intr_handle->intr_vec);
1946                 intr_handle->intr_vec = NULL;
1947         }
1948 }
1949
1950 static int
1951 hns3vf_dev_stop(struct rte_eth_dev *dev)
1952 {
1953         struct hns3_adapter *hns = dev->data->dev_private;
1954         struct hns3_hw *hw = &hns->hw;
1955
1956         PMD_INIT_FUNC_TRACE();
1957         dev->data->dev_started = 0;
1958
1959         hw->adapter_state = HNS3_NIC_STOPPING;
1960         hns3_set_rxtx_function(dev);
1961         rte_wmb();
1962         /* Disable datapath on secondary process. */
1963         hns3_mp_req_stop_rxtx(dev);
1964         /* Prevent crashes when queues are still in use. */
1965         rte_delay_ms(hw->tqps_num);
1966
1967         rte_spinlock_lock(&hw->lock);
1968         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1969                 hns3_stop_tqps(hw);
1970                 hns3vf_do_stop(hns);
1971                 hns3vf_unmap_rx_interrupt(dev);
1972                 hns3_dev_release_mbufs(hns);
1973                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1974         }
1975         hns3_rx_scattered_reset(dev);
1976         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1977         rte_spinlock_unlock(&hw->lock);
1978
1979         return 0;
1980 }
1981
1982 static int
1983 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1984 {
1985         struct hns3_adapter *hns = eth_dev->data->dev_private;
1986         struct hns3_hw *hw = &hns->hw;
1987         int ret = 0;
1988
1989         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1990                 return 0;
1991
1992         if (hw->adapter_state == HNS3_NIC_STARTED)
1993                 ret = hns3vf_dev_stop(eth_dev);
1994
1995         hw->adapter_state = HNS3_NIC_CLOSING;
1996         hns3_reset_abort(hns);
1997         hw->adapter_state = HNS3_NIC_CLOSED;
1998         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1999         hns3vf_configure_all_mc_mac_addr(hns, true);
2000         hns3vf_remove_all_vlan_table(hns);
2001         hns3vf_uninit_vf(eth_dev);
2002         hns3_free_all_queues(eth_dev);
2003         rte_free(hw->reset.wait_data);
2004         rte_free(eth_dev->process_private);
2005         eth_dev->process_private = NULL;
2006         hns3_mp_uninit_primary();
2007         hns3_warn(hw, "Close port %d finished", hw->data->port_id);
2008
2009         return ret;
2010 }
2011
2012 static int
2013 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2014                       size_t fw_size)
2015 {
2016         struct hns3_adapter *hns = eth_dev->data->dev_private;
2017         struct hns3_hw *hw = &hns->hw;
2018         uint32_t version = hw->fw_version;
2019         int ret;
2020
2021         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2022                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2023                                       HNS3_FW_VERSION_BYTE3_S),
2024                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2025                                       HNS3_FW_VERSION_BYTE2_S),
2026                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2027                                       HNS3_FW_VERSION_BYTE1_S),
2028                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2029                                       HNS3_FW_VERSION_BYTE0_S));
2030         ret += 1; /* add the size of '\0' */
2031         if (fw_size < (uint32_t)ret)
2032                 return ret;
2033         else
2034                 return 0;
2035 }
2036
2037 static int
2038 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2039                        __rte_unused int wait_to_complete)
2040 {
2041         struct hns3_adapter *hns = eth_dev->data->dev_private;
2042         struct hns3_hw *hw = &hns->hw;
2043         struct hns3_mac *mac = &hw->mac;
2044         struct rte_eth_link new_link;
2045
2046         memset(&new_link, 0, sizeof(new_link));
2047         switch (mac->link_speed) {
2048         case ETH_SPEED_NUM_10M:
2049         case ETH_SPEED_NUM_100M:
2050         case ETH_SPEED_NUM_1G:
2051         case ETH_SPEED_NUM_10G:
2052         case ETH_SPEED_NUM_25G:
2053         case ETH_SPEED_NUM_40G:
2054         case ETH_SPEED_NUM_50G:
2055         case ETH_SPEED_NUM_100G:
2056         case ETH_SPEED_NUM_200G:
2057                 new_link.link_speed = mac->link_speed;
2058                 break;
2059         default:
2060                 new_link.link_speed = ETH_SPEED_NUM_100M;
2061                 break;
2062         }
2063
2064         new_link.link_duplex = mac->link_duplex;
2065         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2066         new_link.link_autoneg =
2067             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2068
2069         return rte_eth_linkstatus_set(eth_dev, &new_link);
2070 }
2071
2072 static int
2073 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2074 {
2075         struct hns3_hw *hw = &hns->hw;
2076         uint16_t nb_rx_q = hw->data->nb_rx_queues;
2077         uint16_t nb_tx_q = hw->data->nb_tx_queues;
2078         int ret;
2079
2080         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2081         if (ret)
2082                 return ret;
2083
2084         ret = hns3_init_queues(hns, reset_queue);
2085         if (ret)
2086                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2087
2088         return ret;
2089 }
2090
2091 static int
2092 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2093 {
2094         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2095         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2096         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2097         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2098         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2099         uint32_t intr_vector;
2100         uint16_t q_id;
2101         int ret;
2102
2103         if (dev->data->dev_conf.intr_conf.rxq == 0)
2104                 return 0;
2105
2106         /* disable uio/vfio intr/eventfd mapping */
2107         rte_intr_disable(intr_handle);
2108
2109         /* check and configure queue intr-vector mapping */
2110         if (rte_intr_cap_multiple(intr_handle) ||
2111             !RTE_ETH_DEV_SRIOV(dev).active) {
2112                 intr_vector = hw->used_rx_queues;
2113                 /* It creates event fd for each intr vector when MSIX is used */
2114                 if (rte_intr_efd_enable(intr_handle, intr_vector))
2115                         return -EINVAL;
2116         }
2117         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
2118                 intr_handle->intr_vec =
2119                         rte_zmalloc("intr_vec",
2120                                     hw->used_rx_queues * sizeof(int), 0);
2121                 if (intr_handle->intr_vec == NULL) {
2122                         hns3_err(hw, "Failed to allocate %d rx_queues"
2123                                      " intr_vec", hw->used_rx_queues);
2124                         ret = -ENOMEM;
2125                         goto vf_alloc_intr_vec_error;
2126                 }
2127         }
2128
2129         if (rte_intr_allow_others(intr_handle)) {
2130                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2131                 base = RTE_INTR_VEC_RXTX_OFFSET;
2132         }
2133         if (rte_intr_dp_is_en(intr_handle)) {
2134                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2135                         ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2136                                                            HNS3_RING_TYPE_RX,
2137                                                            q_id);
2138                         if (ret)
2139                                 goto vf_bind_vector_error;
2140                         intr_handle->intr_vec[q_id] = vec;
2141                         if (vec < base + intr_handle->nb_efd - 1)
2142                                 vec++;
2143                 }
2144         }
2145         rte_intr_enable(intr_handle);
2146         return 0;
2147
2148 vf_bind_vector_error:
2149         rte_intr_efd_disable(intr_handle);
2150         if (intr_handle->intr_vec) {
2151                 free(intr_handle->intr_vec);
2152                 intr_handle->intr_vec = NULL;
2153         }
2154         return ret;
2155 vf_alloc_intr_vec_error:
2156         rte_intr_efd_disable(intr_handle);
2157         return ret;
2158 }
2159
2160 static int
2161 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2162 {
2163         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2164         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2165         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2166         uint16_t q_id;
2167         int ret;
2168
2169         if (dev->data->dev_conf.intr_conf.rxq == 0)
2170                 return 0;
2171
2172         if (rte_intr_dp_is_en(intr_handle)) {
2173                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2174                         ret = hns3vf_bind_ring_with_vector(hw,
2175                                         intr_handle->intr_vec[q_id], true,
2176                                         HNS3_RING_TYPE_RX, q_id);
2177                         if (ret)
2178                                 return ret;
2179                 }
2180         }
2181
2182         return 0;
2183 }
2184
2185 static void
2186 hns3vf_restore_filter(struct rte_eth_dev *dev)
2187 {
2188         hns3_restore_rss_filter(dev);
2189 }
2190
2191 static int
2192 hns3vf_dev_start(struct rte_eth_dev *dev)
2193 {
2194         struct hns3_adapter *hns = dev->data->dev_private;
2195         struct hns3_hw *hw = &hns->hw;
2196         int ret;
2197
2198         PMD_INIT_FUNC_TRACE();
2199         if (rte_atomic16_read(&hw->reset.resetting))
2200                 return -EBUSY;
2201
2202         rte_spinlock_lock(&hw->lock);
2203         hw->adapter_state = HNS3_NIC_STARTING;
2204         ret = hns3vf_do_start(hns, true);
2205         if (ret) {
2206                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2207                 rte_spinlock_unlock(&hw->lock);
2208                 return ret;
2209         }
2210         ret = hns3vf_map_rx_interrupt(dev);
2211         if (ret) {
2212                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2213                 rte_spinlock_unlock(&hw->lock);
2214                 return ret;
2215         }
2216
2217         /*
2218          * There are three register used to control the status of a TQP
2219          * (contains a pair of Tx queue and Rx queue) in the new version network
2220          * engine. One is used to control the enabling of Tx queue, the other is
2221          * used to control the enabling of Rx queue, and the last is the master
2222          * switch used to control the enabling of the tqp. The Tx register and
2223          * TQP register must be enabled at the same time to enable a Tx queue.
2224          * The same applies to the Rx queue. For the older network enginem, this
2225          * function only refresh the enabled flag, and it is used to update the
2226          * status of queue in the dpdk framework.
2227          */
2228         ret = hns3_start_all_txqs(dev);
2229         if (ret) {
2230                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2231                 rte_spinlock_unlock(&hw->lock);
2232                 return ret;
2233         }
2234
2235         ret = hns3_start_all_rxqs(dev);
2236         if (ret) {
2237                 hns3_stop_all_txqs(dev);
2238                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2239                 rte_spinlock_unlock(&hw->lock);
2240                 return ret;
2241         }
2242
2243         hw->adapter_state = HNS3_NIC_STARTED;
2244         rte_spinlock_unlock(&hw->lock);
2245
2246         hns3_rx_scattered_calc(dev);
2247         hns3_set_rxtx_function(dev);
2248         hns3_mp_req_start_rxtx(dev);
2249         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
2250
2251         hns3vf_restore_filter(dev);
2252
2253         /* Enable interrupt of all rx queues before enabling queues */
2254         hns3_dev_all_rx_queue_intr_enable(hw, true);
2255
2256         /*
2257          * After finished the initialization, start all tqps to receive/transmit
2258          * packets and refresh all queue status.
2259          */
2260         hns3_start_tqps(hw);
2261
2262         return ret;
2263 }
2264
2265 static bool
2266 is_vf_reset_done(struct hns3_hw *hw)
2267 {
2268 #define HNS3_FUN_RST_ING_BITS \
2269         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2270          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2271          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2272          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2273
2274         uint32_t val;
2275
2276         if (hw->reset.level == HNS3_VF_RESET) {
2277                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2278                 if (val & HNS3_VF_RST_ING_BIT)
2279                         return false;
2280         } else {
2281                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2282                 if (val & HNS3_FUN_RST_ING_BITS)
2283                         return false;
2284         }
2285         return true;
2286 }
2287
2288 bool
2289 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2290 {
2291         struct hns3_hw *hw = &hns->hw;
2292         enum hns3_reset_level reset;
2293
2294         /*
2295          * According to the protocol of PCIe, FLR to a PF device resets the PF
2296          * state as well as the SR-IOV extended capability including VF Enable
2297          * which means that VFs no longer exist.
2298          *
2299          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2300          * is in FLR stage, the register state of VF device is not reliable,
2301          * so register states detection can not be carried out. In this case,
2302          * we just ignore the register states and return false to indicate that
2303          * there are no other reset states that need to be processed by driver.
2304          */
2305         if (hw->reset.level == HNS3_VF_FULL_RESET)
2306                 return false;
2307
2308         /* Check the registers to confirm whether there is reset pending */
2309         hns3vf_check_event_cause(hns, NULL);
2310         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2311         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2312                 hns3_warn(hw, "High level reset %d is pending", reset);
2313                 return true;
2314         }
2315         return false;
2316 }
2317
2318 static int
2319 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2320 {
2321         struct hns3_hw *hw = &hns->hw;
2322         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2323         struct timeval tv;
2324
2325         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2326                 /*
2327                  * After vf reset is ready, the PF may not have completed
2328                  * the reset processing. The vf sending mbox to PF may fail
2329                  * during the pf reset, so it is better to add extra delay.
2330                  */
2331                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2332                     hw->reset.level == HNS3_FLR_RESET)
2333                         return 0;
2334                 /* Reset retry process, no need to add extra delay. */
2335                 if (hw->reset.attempts)
2336                         return 0;
2337                 if (wait_data->check_completion == NULL)
2338                         return 0;
2339
2340                 wait_data->check_completion = NULL;
2341                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2342                 wait_data->count = 1;
2343                 wait_data->result = HNS3_WAIT_REQUEST;
2344                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2345                                   wait_data);
2346                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2347                 return -EAGAIN;
2348         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2349                 gettimeofday(&tv, NULL);
2350                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2351                           tv.tv_sec, tv.tv_usec);
2352                 return -ETIME;
2353         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2354                 return -EAGAIN;
2355
2356         wait_data->hns = hns;
2357         wait_data->check_completion = is_vf_reset_done;
2358         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2359                                       HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2360         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2361         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2362         wait_data->result = HNS3_WAIT_REQUEST;
2363         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2364         return -EAGAIN;
2365 }
2366
2367 static int
2368 hns3vf_prepare_reset(struct hns3_adapter *hns)
2369 {
2370         struct hns3_hw *hw = &hns->hw;
2371         int ret = 0;
2372
2373         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2374                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2375                                         0, true, NULL, 0);
2376         }
2377         rte_atomic16_set(&hw->reset.disable_cmd, 1);
2378
2379         return ret;
2380 }
2381
2382 static int
2383 hns3vf_stop_service(struct hns3_adapter *hns)
2384 {
2385         struct hns3_hw *hw = &hns->hw;
2386         struct rte_eth_dev *eth_dev;
2387
2388         eth_dev = &rte_eth_devices[hw->data->port_id];
2389         if (hw->adapter_state == HNS3_NIC_STARTED)
2390                 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2391         hw->mac.link_status = ETH_LINK_DOWN;
2392
2393         hns3_set_rxtx_function(eth_dev);
2394         rte_wmb();
2395         /* Disable datapath on secondary process. */
2396         hns3_mp_req_stop_rxtx(eth_dev);
2397         rte_delay_ms(hw->tqps_num);
2398
2399         rte_spinlock_lock(&hw->lock);
2400         if (hw->adapter_state == HNS3_NIC_STARTED ||
2401             hw->adapter_state == HNS3_NIC_STOPPING) {
2402                 hns3_enable_all_queues(hw, false);
2403                 hns3vf_do_stop(hns);
2404                 hw->reset.mbuf_deferred_free = true;
2405         } else
2406                 hw->reset.mbuf_deferred_free = false;
2407
2408         /*
2409          * It is cumbersome for hardware to pick-and-choose entries for deletion
2410          * from table space. Hence, for function reset software intervention is
2411          * required to delete the entries.
2412          */
2413         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2414                 hns3vf_configure_all_mc_mac_addr(hns, true);
2415         rte_spinlock_unlock(&hw->lock);
2416
2417         return 0;
2418 }
2419
2420 static int
2421 hns3vf_start_service(struct hns3_adapter *hns)
2422 {
2423         struct hns3_hw *hw = &hns->hw;
2424         struct rte_eth_dev *eth_dev;
2425
2426         eth_dev = &rte_eth_devices[hw->data->port_id];
2427         hns3_set_rxtx_function(eth_dev);
2428         hns3_mp_req_start_rxtx(eth_dev);
2429         if (hw->adapter_state == HNS3_NIC_STARTED) {
2430                 hns3vf_service_handler(eth_dev);
2431
2432                 /* Enable interrupt of all rx queues before enabling queues */
2433                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2434                 /*
2435                  * When finished the initialization, enable queues to receive
2436                  * and transmit packets.
2437                  */
2438                 hns3_enable_all_queues(hw, true);
2439         }
2440
2441         return 0;
2442 }
2443
2444 static int
2445 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2446 {
2447         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2448         struct rte_ether_addr *hw_mac;
2449         int ret;
2450
2451         /*
2452          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2453          * on the host by "ip link set ..." command. If the hns3 PF kernel
2454          * ethdev driver sets the MAC address for VF device after the
2455          * initialization of the related VF device, the PF driver will notify
2456          * VF driver to reset VF device to make the new MAC address effective
2457          * immediately. The hns3 VF PMD driver should check whether the MAC
2458          * address has been changed by the PF kernel ethdev driver, if changed
2459          * VF driver should configure hardware using the new MAC address in the
2460          * recovering hardware configuration stage of the reset process.
2461          */
2462         ret = hns3vf_get_host_mac_addr(hw);
2463         if (ret)
2464                 return ret;
2465
2466         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2467         ret = rte_is_zero_ether_addr(hw_mac);
2468         if (ret) {
2469                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2470         } else {
2471                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2472                 if (!ret) {
2473                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2474                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2475                                               &hw->data->mac_addrs[0]);
2476                         hns3_warn(hw, "Default MAC address has been changed to:"
2477                                   " %s by the host PF kernel ethdev driver",
2478                                   mac_str);
2479                 }
2480         }
2481
2482         return 0;
2483 }
2484
2485 static int
2486 hns3vf_restore_conf(struct hns3_adapter *hns)
2487 {
2488         struct hns3_hw *hw = &hns->hw;
2489         int ret;
2490
2491         ret = hns3vf_check_default_mac_change(hw);
2492         if (ret)
2493                 return ret;
2494
2495         ret = hns3vf_configure_mac_addr(hns, false);
2496         if (ret)
2497                 return ret;
2498
2499         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2500         if (ret)
2501                 goto err_mc_mac;
2502
2503         ret = hns3vf_restore_promisc(hns);
2504         if (ret)
2505                 goto err_vlan_table;
2506
2507         ret = hns3vf_restore_vlan_conf(hns);
2508         if (ret)
2509                 goto err_vlan_table;
2510
2511         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2512         if (ret)
2513                 goto err_vlan_table;
2514
2515         ret = hns3vf_restore_rx_interrupt(hw);
2516         if (ret)
2517                 goto err_vlan_table;
2518
2519         ret = hns3_restore_gro_conf(hw);
2520         if (ret)
2521                 goto err_vlan_table;
2522
2523         if (hw->adapter_state == HNS3_NIC_STARTED) {
2524                 ret = hns3vf_do_start(hns, false);
2525                 if (ret)
2526                         goto err_vlan_table;
2527                 hns3_info(hw, "hns3vf dev restart successful!");
2528         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2529                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2530         return 0;
2531
2532 err_vlan_table:
2533         hns3vf_configure_all_mc_mac_addr(hns, true);
2534 err_mc_mac:
2535         hns3vf_configure_mac_addr(hns, true);
2536         return ret;
2537 }
2538
2539 static enum hns3_reset_level
2540 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2541 {
2542         enum hns3_reset_level reset_level;
2543
2544         /* return the highest priority reset level amongst all */
2545         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2546                 reset_level = HNS3_VF_RESET;
2547         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2548                 reset_level = HNS3_VF_FULL_RESET;
2549         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2550                 reset_level = HNS3_VF_PF_FUNC_RESET;
2551         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2552                 reset_level = HNS3_VF_FUNC_RESET;
2553         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2554                 reset_level = HNS3_FLR_RESET;
2555         else
2556                 reset_level = HNS3_NONE_RESET;
2557
2558         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2559                 return HNS3_NONE_RESET;
2560
2561         return reset_level;
2562 }
2563
2564 static void
2565 hns3vf_reset_service(void *param)
2566 {
2567         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2568         struct hns3_hw *hw = &hns->hw;
2569         enum hns3_reset_level reset_level;
2570         struct timeval tv_delta;
2571         struct timeval tv_start;
2572         struct timeval tv;
2573         uint64_t msec;
2574
2575         /*
2576          * The interrupt is not triggered within the delay time.
2577          * The interrupt may have been lost. It is necessary to handle
2578          * the interrupt to recover from the error.
2579          */
2580         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2581                 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2582                 hns3_err(hw, "Handling interrupts in delayed tasks");
2583                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2584                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2585                 if (reset_level == HNS3_NONE_RESET) {
2586                         hns3_err(hw, "No reset level is set, try global reset");
2587                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2588                 }
2589         }
2590         rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2591
2592         /*
2593          * Hardware reset has been notified, we now have to poll & check if
2594          * hardware has actually completed the reset sequence.
2595          */
2596         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2597         if (reset_level != HNS3_NONE_RESET) {
2598                 gettimeofday(&tv_start, NULL);
2599                 hns3_reset_process(hns, reset_level);
2600                 gettimeofday(&tv, NULL);
2601                 timersub(&tv, &tv_start, &tv_delta);
2602                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2603                        tv_delta.tv_usec / USEC_PER_MSEC;
2604                 if (msec > HNS3_RESET_PROCESS_MS)
2605                         hns3_err(hw, "%d handle long time delta %" PRIx64
2606                                  " ms time=%ld.%.6ld",
2607                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2608         }
2609 }
2610
2611 static int
2612 hns3vf_reinit_dev(struct hns3_adapter *hns)
2613 {
2614         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2615         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2616         struct hns3_hw *hw = &hns->hw;
2617         int ret;
2618
2619         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2620                 rte_intr_disable(&pci_dev->intr_handle);
2621                 ret = hns3vf_set_bus_master(pci_dev, true);
2622                 if (ret < 0) {
2623                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2624                         return ret;
2625                 }
2626         }
2627
2628         /* Firmware command initialize */
2629         ret = hns3_cmd_init(hw);
2630         if (ret) {
2631                 hns3_err(hw, "Failed to init cmd: %d", ret);
2632                 return ret;
2633         }
2634
2635         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2636                 /*
2637                  * UIO enables msix by writing the pcie configuration space
2638                  * vfio_pci enables msix in rte_intr_enable.
2639                  */
2640                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2641                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2642                         if (hns3vf_enable_msix(pci_dev, true))
2643                                 hns3_err(hw, "Failed to enable msix");
2644                 }
2645
2646                 rte_intr_enable(&pci_dev->intr_handle);
2647         }
2648
2649         ret = hns3_reset_all_tqps(hns);
2650         if (ret) {
2651                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2652                 return ret;
2653         }
2654
2655         ret = hns3vf_init_hardware(hns);
2656         if (ret) {
2657                 hns3_err(hw, "Failed to init hardware: %d", ret);
2658                 return ret;
2659         }
2660
2661         return 0;
2662 }
2663
2664 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2665         .dev_configure      = hns3vf_dev_configure,
2666         .dev_start          = hns3vf_dev_start,
2667         .dev_stop           = hns3vf_dev_stop,
2668         .dev_close          = hns3vf_dev_close,
2669         .mtu_set            = hns3vf_dev_mtu_set,
2670         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2671         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2672         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2673         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2674         .stats_get          = hns3_stats_get,
2675         .stats_reset        = hns3_stats_reset,
2676         .xstats_get         = hns3_dev_xstats_get,
2677         .xstats_get_names   = hns3_dev_xstats_get_names,
2678         .xstats_reset       = hns3_dev_xstats_reset,
2679         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2680         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2681         .dev_infos_get      = hns3vf_dev_infos_get,
2682         .fw_version_get     = hns3vf_fw_version_get,
2683         .rx_queue_setup     = hns3_rx_queue_setup,
2684         .tx_queue_setup     = hns3_tx_queue_setup,
2685         .rx_queue_release   = hns3_dev_rx_queue_release,
2686         .tx_queue_release   = hns3_dev_tx_queue_release,
2687         .rx_queue_start     = hns3_dev_rx_queue_start,
2688         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2689         .tx_queue_start     = hns3_dev_tx_queue_start,
2690         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2691         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2692         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2693         .rxq_info_get       = hns3_rxq_info_get,
2694         .txq_info_get       = hns3_txq_info_get,
2695         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2696         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2697         .mac_addr_add       = hns3vf_add_mac_addr,
2698         .mac_addr_remove    = hns3vf_remove_mac_addr,
2699         .mac_addr_set       = hns3vf_set_default_mac_addr,
2700         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2701         .link_update        = hns3vf_dev_link_update,
2702         .rss_hash_update    = hns3_dev_rss_hash_update,
2703         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2704         .reta_update        = hns3_dev_rss_reta_update,
2705         .reta_query         = hns3_dev_rss_reta_query,
2706         .filter_ctrl        = hns3_dev_filter_ctrl,
2707         .vlan_filter_set    = hns3vf_vlan_filter_set,
2708         .vlan_offload_set   = hns3vf_vlan_offload_set,
2709         .get_reg            = hns3_get_regs,
2710         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2711 };
2712
2713 static const struct hns3_reset_ops hns3vf_reset_ops = {
2714         .reset_service       = hns3vf_reset_service,
2715         .stop_service        = hns3vf_stop_service,
2716         .prepare_reset       = hns3vf_prepare_reset,
2717         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2718         .reinit_dev          = hns3vf_reinit_dev,
2719         .restore_conf        = hns3vf_restore_conf,
2720         .start_service       = hns3vf_start_service,
2721 };
2722
2723 static int
2724 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2725 {
2726         struct hns3_adapter *hns = eth_dev->data->dev_private;
2727         struct hns3_hw *hw = &hns->hw;
2728         int ret;
2729
2730         PMD_INIT_FUNC_TRACE();
2731
2732         eth_dev->process_private = (struct hns3_process_private *)
2733             rte_zmalloc_socket("hns3_filter_list",
2734                                sizeof(struct hns3_process_private),
2735                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2736         if (eth_dev->process_private == NULL) {
2737                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2738                 return -ENOMEM;
2739         }
2740
2741         /* initialize flow filter lists */
2742         hns3_filterlist_init(eth_dev);
2743
2744         hns3_set_rxtx_function(eth_dev);
2745         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2746         eth_dev->rx_queue_count = hns3_rx_queue_count;
2747         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2748                 ret = hns3_mp_init_secondary();
2749                 if (ret) {
2750                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2751                                           "process, ret = %d", ret);
2752                         goto err_mp_init_secondary;
2753                 }
2754
2755                 hw->secondary_cnt++;
2756                 return 0;
2757         }
2758
2759         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2760
2761         ret = hns3_mp_init_primary();
2762         if (ret) {
2763                 PMD_INIT_LOG(ERR,
2764                              "Failed to init for primary process, ret = %d",
2765                              ret);
2766                 goto err_mp_init_primary;
2767         }
2768
2769         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2770         hns->is_vf = true;
2771         hw->data = eth_dev->data;
2772
2773         ret = hns3_reset_init(hw);
2774         if (ret)
2775                 goto err_init_reset;
2776         hw->reset.ops = &hns3vf_reset_ops;
2777
2778         ret = hns3vf_init_vf(eth_dev);
2779         if (ret) {
2780                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2781                 goto err_init_vf;
2782         }
2783
2784         /* Allocate memory for storing MAC addresses */
2785         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2786                                                sizeof(struct rte_ether_addr) *
2787                                                HNS3_VF_UC_MACADDR_NUM, 0);
2788         if (eth_dev->data->mac_addrs == NULL) {
2789                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2790                              "to store MAC addresses",
2791                              sizeof(struct rte_ether_addr) *
2792                              HNS3_VF_UC_MACADDR_NUM);
2793                 ret = -ENOMEM;
2794                 goto err_rte_zmalloc;
2795         }
2796
2797         /*
2798          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2799          * on the host by "ip link set ..." command. To avoid some incorrect
2800          * scenes, for example, hns3 VF PMD driver fails to receive and send
2801          * packets after user configure the MAC address by using the
2802          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2803          * address strategy as the hns3 kernel ethdev driver in the
2804          * initialization. If user configure a MAC address by the ip command
2805          * for VF device, then hns3 VF PMD driver will start with it, otherwise
2806          * start with a random MAC address in the initialization.
2807          */
2808         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2809                 rte_eth_random_addr(hw->mac.mac_addr);
2810         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2811                             &eth_dev->data->mac_addrs[0]);
2812
2813         hw->adapter_state = HNS3_NIC_INITIALIZED;
2814
2815         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2816                 hns3_err(hw, "Reschedule reset service after dev_init");
2817                 hns3_schedule_reset(hns);
2818         } else {
2819                 /* IMP will wait ready flag before reset */
2820                 hns3_notify_reset_ready(hw, false);
2821         }
2822         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2823                           eth_dev);
2824         return 0;
2825
2826 err_rte_zmalloc:
2827         hns3vf_uninit_vf(eth_dev);
2828
2829 err_init_vf:
2830         rte_free(hw->reset.wait_data);
2831
2832 err_init_reset:
2833         hns3_mp_uninit_primary();
2834
2835 err_mp_init_primary:
2836 err_mp_init_secondary:
2837         eth_dev->dev_ops = NULL;
2838         eth_dev->rx_pkt_burst = NULL;
2839         eth_dev->tx_pkt_burst = NULL;
2840         eth_dev->tx_pkt_prepare = NULL;
2841         rte_free(eth_dev->process_private);
2842         eth_dev->process_private = NULL;
2843
2844         return ret;
2845 }
2846
2847 static int
2848 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2849 {
2850         struct hns3_adapter *hns = eth_dev->data->dev_private;
2851         struct hns3_hw *hw = &hns->hw;
2852
2853         PMD_INIT_FUNC_TRACE();
2854
2855         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2856                 return -EPERM;
2857
2858         if (hw->adapter_state < HNS3_NIC_CLOSING)
2859                 hns3vf_dev_close(eth_dev);
2860
2861         hw->adapter_state = HNS3_NIC_REMOVED;
2862         return 0;
2863 }
2864
2865 static int
2866 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2867                      struct rte_pci_device *pci_dev)
2868 {
2869         return rte_eth_dev_pci_generic_probe(pci_dev,
2870                                              sizeof(struct hns3_adapter),
2871                                              hns3vf_dev_init);
2872 }
2873
2874 static int
2875 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2876 {
2877         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2878 }
2879
2880 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2881         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2882         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2883         { .vendor_id = 0, /* sentinel */ },
2884 };
2885
2886 static struct rte_pci_driver rte_hns3vf_pmd = {
2887         .id_table = pci_id_hns3vf_map,
2888         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2889         .probe = eth_hns3vf_pci_probe,
2890         .remove = eth_hns3vf_pci_remove,
2891 };
2892
2893 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2894 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2895 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");