6aa8a9b6ed43934da25b0cbe2cc95f9dba671898
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19
20 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
22
23 #define HNS3VF_RESET_WAIT_MS    20
24 #define HNS3VF_RESET_WAIT_CNT   2000
25
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT           0
28 #define HNS3_CORE_RESET_BIT             1
29 #define HNS3_IMP_RESET_BIT              2
30 #define HNS3_FUN_RST_ING_B              0
31
32 enum hns3vf_evt_cause {
33         HNS3VF_VECTOR0_EVENT_RST,
34         HNS3VF_VECTOR0_EVENT_MBX,
35         HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39                                                     uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44                                   struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46                                      struct rte_ether_addr *mac_addr);
47 static int hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
48                                    __rte_unused int wait_to_complete);
49
50 /* set PCI bus mastering */
51 static int
52 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
53 {
54         uint16_t reg;
55         int ret;
56
57         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
58         if (ret < 0) {
59                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
60                              PCI_COMMAND);
61                 return ret;
62         }
63
64         if (op)
65                 /* set the master bit */
66                 reg |= PCI_COMMAND_MASTER;
67         else
68                 reg &= ~(PCI_COMMAND_MASTER);
69
70         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
71 }
72
73 /**
74  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
75  * @cap: the capability
76  *
77  * Return the address of the given capability within the PCI capability list.
78  */
79 static int
80 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
81 {
82 #define MAX_PCIE_CAPABILITY 48
83         uint16_t status;
84         uint8_t pos;
85         uint8_t id;
86         int ttl;
87         int ret;
88
89         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
90         if (ret < 0) {
91                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
92                 return 0;
93         }
94
95         if (!(status & PCI_STATUS_CAP_LIST))
96                 return 0;
97
98         ttl = MAX_PCIE_CAPABILITY;
99         ret = rte_pci_read_config(device, &pos, sizeof(pos),
100                                   PCI_CAPABILITY_LIST);
101         if (ret < 0) {
102                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
103                              PCI_CAPABILITY_LIST);
104                 return 0;
105         }
106
107         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
108                 ret = rte_pci_read_config(device, &id, sizeof(id),
109                                           (pos + PCI_CAP_LIST_ID));
110                 if (ret < 0) {
111                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
112                                      (pos + PCI_CAP_LIST_ID));
113                         break;
114                 }
115
116                 if (id == 0xFF)
117                         break;
118
119                 if (id == cap)
120                         return (int)pos;
121
122                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
123                                           (pos + PCI_CAP_LIST_NEXT));
124                 if (ret < 0) {
125                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
126                                      (pos + PCI_CAP_LIST_NEXT));
127                         break;
128                 }
129         }
130         return 0;
131 }
132
133 static int
134 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
135 {
136         uint16_t control;
137         int pos;
138         int ret;
139
140         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
141         if (pos) {
142                 ret = rte_pci_read_config(device, &control, sizeof(control),
143                                     (pos + PCI_MSIX_FLAGS));
144                 if (ret < 0) {
145                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
146                                      (pos + PCI_MSIX_FLAGS));
147                         return -ENXIO;
148                 }
149
150                 if (op)
151                         control |= PCI_MSIX_FLAGS_ENABLE;
152                 else
153                         control &= ~PCI_MSIX_FLAGS_ENABLE;
154                 ret = rte_pci_write_config(device, &control, sizeof(control),
155                                           (pos + PCI_MSIX_FLAGS));
156                 if (ret < 0) {
157                         PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
158                                     (pos + PCI_MSIX_FLAGS));
159                 }
160                 return 0;
161         }
162         return -ENXIO;
163 }
164
165 static int
166 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
167 {
168         /* mac address was checked by upper level interface */
169         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
170         int ret;
171
172         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
173                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
174                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
175         if (ret) {
176                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
177                                       mac_addr);
178                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
179                          mac_str, ret);
180         }
181         return ret;
182 }
183
184 static int
185 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
186 {
187         /* mac address was checked by upper level interface */
188         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
189         int ret;
190
191         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
192                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
193                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
194                                 false, NULL, 0);
195         if (ret) {
196                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
197                                       mac_addr);
198                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
199                          mac_str, ret);
200         }
201         return ret;
202 }
203
204 static int
205 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
206 {
207         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
208         struct rte_ether_addr *addr;
209         int ret;
210         int i;
211
212         for (i = 0; i < hw->mc_addrs_num; i++) {
213                 addr = &hw->mc_addrs[i];
214                 /* Check if there are duplicate addresses */
215                 if (rte_is_same_ether_addr(addr, mac_addr)) {
216                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
217                                               addr);
218                         hns3_err(hw, "failed to add mc mac addr, same addrs"
219                                  "(%s) is added by the set_mc_mac_addr_list "
220                                  "API", mac_str);
221                         return -EINVAL;
222                 }
223         }
224
225         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
226         if (ret) {
227                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
228                                       mac_addr);
229                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
230                          mac_str, ret);
231         }
232         return ret;
233 }
234
235 static int
236 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
237                     __rte_unused uint32_t idx,
238                     __rte_unused uint32_t pool)
239 {
240         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
241         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
242         int ret;
243
244         rte_spinlock_lock(&hw->lock);
245
246         /*
247          * In hns3 network engine adding UC and MC mac address with different
248          * commands with firmware. We need to determine whether the input
249          * address is a UC or a MC address to call different commands.
250          * By the way, it is recommended calling the API function named
251          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
252          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
253          * may affect the specifications of UC mac addresses.
254          */
255         if (rte_is_multicast_ether_addr(mac_addr))
256                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
257         else
258                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
259
260         rte_spinlock_unlock(&hw->lock);
261         if (ret) {
262                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
263                                       mac_addr);
264                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
265                          ret);
266         }
267
268         return ret;
269 }
270
271 static void
272 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
273 {
274         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
275         /* index will be checked by upper level rte interface */
276         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
277         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
278         int ret;
279
280         rte_spinlock_lock(&hw->lock);
281
282         if (rte_is_multicast_ether_addr(mac_addr))
283                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
284         else
285                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
286
287         rte_spinlock_unlock(&hw->lock);
288         if (ret) {
289                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
290                                       mac_addr);
291                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
292                          mac_str, ret);
293         }
294 }
295
296 static int
297 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
298                             struct rte_ether_addr *mac_addr)
299 {
300 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
301         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
302         struct rte_ether_addr *old_addr;
303         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
304         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
305         int ret;
306
307         /*
308          * It has been guaranteed that input parameter named mac_addr is valid
309          * address in the rte layer of DPDK framework.
310          */
311         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
312         rte_spinlock_lock(&hw->lock);
313         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
314         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
315                RTE_ETHER_ADDR_LEN);
316
317         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
318                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
319                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
320         if (ret) {
321                 /*
322                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
323                  * driver. When user has configured a MAC address for VF device
324                  * by "ip link set ..." command based on the PF device, the hns3
325                  * PF kernel ethdev driver does not allow VF driver to request
326                  * reconfiguring a different default MAC address, and return
327                  * -EPREM to VF driver through mailbox.
328                  */
329                 if (ret == -EPERM) {
330                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
331                                               old_addr);
332                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
333                                   mac_str);
334                 } else {
335                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
336                                               mac_addr);
337                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
338                                  mac_str, ret);
339                 }
340         }
341
342         rte_ether_addr_copy(mac_addr,
343                             (struct rte_ether_addr *)hw->mac.mac_addr);
344         rte_spinlock_unlock(&hw->lock);
345
346         return ret;
347 }
348
349 static int
350 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
351 {
352         struct hns3_hw *hw = &hns->hw;
353         struct rte_ether_addr *addr;
354         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
355         int err = 0;
356         int ret;
357         int i;
358
359         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
360                 addr = &hw->data->mac_addrs[i];
361                 if (rte_is_zero_ether_addr(addr))
362                         continue;
363                 if (rte_is_multicast_ether_addr(addr))
364                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
365                               hns3vf_add_mc_mac_addr(hw, addr);
366                 else
367                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
368                               hns3vf_add_uc_mac_addr(hw, addr);
369
370                 if (ret) {
371                         err = ret;
372                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
373                                               addr);
374                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
375                                  "ret = %d.", del ? "remove" : "restore",
376                                  mac_str, i, ret);
377                 }
378         }
379         return err;
380 }
381
382 static int
383 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
384                        struct rte_ether_addr *mac_addr)
385 {
386         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
387         int ret;
388
389         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
390                                 HNS3_MBX_MAC_VLAN_MC_ADD,
391                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
392                                 NULL, 0);
393         if (ret) {
394                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
395                                       mac_addr);
396                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
397                          mac_str, ret);
398         }
399
400         return ret;
401 }
402
403 static int
404 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
405                           struct rte_ether_addr *mac_addr)
406 {
407         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
408         int ret;
409
410         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
411                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
412                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
413                                 NULL, 0);
414         if (ret) {
415                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
416                                       mac_addr);
417                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
418                          mac_str, ret);
419         }
420
421         return ret;
422 }
423
424 static int
425 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
426                              struct rte_ether_addr *mc_addr_set,
427                              uint32_t nb_mc_addr)
428 {
429         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
430         struct rte_ether_addr *addr;
431         uint32_t i;
432         uint32_t j;
433
434         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
435                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
436                          "invalid. valid range: 0~%d",
437                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
438                 return -EINVAL;
439         }
440
441         /* Check if input mac addresses are valid */
442         for (i = 0; i < nb_mc_addr; i++) {
443                 addr = &mc_addr_set[i];
444                 if (!rte_is_multicast_ether_addr(addr)) {
445                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
446                                               addr);
447                         hns3_err(hw,
448                                  "failed to set mc mac addr, addr(%s) invalid.",
449                                  mac_str);
450                         return -EINVAL;
451                 }
452
453                 /* Check if there are duplicate addresses */
454                 for (j = i + 1; j < nb_mc_addr; j++) {
455                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
456                                 hns3_ether_format_addr(mac_str,
457                                                       RTE_ETHER_ADDR_FMT_SIZE,
458                                                       addr);
459                                 hns3_err(hw, "failed to set mc mac addr, "
460                                          "addrs invalid. two same addrs(%s).",
461                                          mac_str);
462                                 return -EINVAL;
463                         }
464                 }
465
466                 /*
467                  * Check if there are duplicate addresses between mac_addrs
468                  * and mc_addr_set
469                  */
470                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
471                         if (rte_is_same_ether_addr(addr,
472                                                    &hw->data->mac_addrs[j])) {
473                                 hns3_ether_format_addr(mac_str,
474                                                       RTE_ETHER_ADDR_FMT_SIZE,
475                                                       addr);
476                                 hns3_err(hw, "failed to set mc mac addr, "
477                                          "addrs invalid. addrs(%s) has already "
478                                          "configured in mac_addr add API",
479                                          mac_str);
480                                 return -EINVAL;
481                         }
482                 }
483         }
484
485         return 0;
486 }
487
488 static int
489 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
490                             struct rte_ether_addr *mc_addr_set,
491                             uint32_t nb_mc_addr)
492 {
493         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
494         struct rte_ether_addr *addr;
495         int cur_addr_num;
496         int set_addr_num;
497         int num;
498         int ret;
499         int i;
500
501         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
502         if (ret)
503                 return ret;
504
505         rte_spinlock_lock(&hw->lock);
506         cur_addr_num = hw->mc_addrs_num;
507         for (i = 0; i < cur_addr_num; i++) {
508                 num = cur_addr_num - i - 1;
509                 addr = &hw->mc_addrs[num];
510                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
511                 if (ret) {
512                         rte_spinlock_unlock(&hw->lock);
513                         return ret;
514                 }
515
516                 hw->mc_addrs_num--;
517         }
518
519         set_addr_num = (int)nb_mc_addr;
520         for (i = 0; i < set_addr_num; i++) {
521                 addr = &mc_addr_set[i];
522                 ret = hns3vf_add_mc_mac_addr(hw, addr);
523                 if (ret) {
524                         rte_spinlock_unlock(&hw->lock);
525                         return ret;
526                 }
527
528                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
529                 hw->mc_addrs_num++;
530         }
531         rte_spinlock_unlock(&hw->lock);
532
533         return 0;
534 }
535
536 static int
537 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
538 {
539         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
540         struct hns3_hw *hw = &hns->hw;
541         struct rte_ether_addr *addr;
542         int err = 0;
543         int ret;
544         int i;
545
546         for (i = 0; i < hw->mc_addrs_num; i++) {
547                 addr = &hw->mc_addrs[i];
548                 if (!rte_is_multicast_ether_addr(addr))
549                         continue;
550                 if (del)
551                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
552                 else
553                         ret = hns3vf_add_mc_mac_addr(hw, addr);
554                 if (ret) {
555                         err = ret;
556                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
557                                               addr);
558                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
559                                  del ? "Remove" : "Restore", mac_str, ret);
560                 }
561         }
562         return err;
563 }
564
565 static int
566 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
567                         bool en_uc_pmc, bool en_mc_pmc)
568 {
569         struct hns3_mbx_vf_to_pf_cmd *req;
570         struct hns3_cmd_desc desc;
571         int ret;
572
573         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
574
575         /*
576          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
577          * so there are some features for promiscuous/allmulticast mode in hns3
578          * VF PMD driver as below:
579          * 1. The promiscuous/allmulticast mode can be configured successfully
580          *    only based on the trusted VF device. If based on the non trusted
581          *    VF device, configuring promiscuous/allmulticast mode will fail.
582          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
583          *    kernel ethdev driver on the host by the following command:
584          *      "ip link set <eth num> vf <vf id> turst on"
585          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
586          *    driver can receive the ingress and outgoing traffic. In the words,
587          *    all the ingress packets, all the packets sent from the PF and
588          *    other VFs on the same physical port.
589          * 3. Note: Because of the hardware constraints, By default vlan filter
590          *    is enabled and couldn't be turned off based on VF device, so vlan
591          *    filter is still effective even in promiscuous mode. If upper
592          *    applications don't call rte_eth_dev_vlan_filter API function to
593          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
594          *    the packets with vlan tag in promiscuoue mode.
595          */
596         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
597         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
598         req->msg[1] = en_bc_pmc ? 1 : 0;
599         req->msg[2] = en_uc_pmc ? 1 : 0;
600         req->msg[3] = en_mc_pmc ? 1 : 0;
601         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
602
603         ret = hns3_cmd_send(hw, &desc, 1);
604         if (ret)
605                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
606
607         return ret;
608 }
609
610 static int
611 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
612 {
613         struct hns3_adapter *hns = dev->data->dev_private;
614         struct hns3_hw *hw = &hns->hw;
615         int ret;
616
617         ret = hns3vf_set_promisc_mode(hw, true, true, true);
618         if (ret)
619                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
620                         ret);
621         return ret;
622 }
623
624 static int
625 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
626 {
627         bool allmulti = dev->data->all_multicast ? true : false;
628         struct hns3_adapter *hns = dev->data->dev_private;
629         struct hns3_hw *hw = &hns->hw;
630         int ret;
631
632         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
633         if (ret)
634                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
635                         ret);
636         return ret;
637 }
638
639 static int
640 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
641 {
642         struct hns3_adapter *hns = dev->data->dev_private;
643         struct hns3_hw *hw = &hns->hw;
644         int ret;
645
646         if (dev->data->promiscuous)
647                 return 0;
648
649         ret = hns3vf_set_promisc_mode(hw, true, false, true);
650         if (ret)
651                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
652                         ret);
653         return ret;
654 }
655
656 static int
657 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
658 {
659         struct hns3_adapter *hns = dev->data->dev_private;
660         struct hns3_hw *hw = &hns->hw;
661         int ret;
662
663         if (dev->data->promiscuous)
664                 return 0;
665
666         ret = hns3vf_set_promisc_mode(hw, true, false, false);
667         if (ret)
668                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
669                         ret);
670         return ret;
671 }
672
673 static int
674 hns3vf_restore_promisc(struct hns3_adapter *hns)
675 {
676         struct hns3_hw *hw = &hns->hw;
677         bool allmulti = hw->data->all_multicast ? true : false;
678
679         if (hw->data->promiscuous)
680                 return hns3vf_set_promisc_mode(hw, true, true, true);
681
682         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
683 }
684
685 static int
686 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
687                              bool mmap, enum hns3_ring_type queue_type,
688                              uint16_t queue_id)
689 {
690         struct hns3_vf_bind_vector_msg bind_msg;
691         const char *op_str;
692         uint16_t code;
693         int ret;
694
695         memset(&bind_msg, 0, sizeof(bind_msg));
696         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
697                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
698         bind_msg.vector_id = vector_id;
699
700         if (queue_type == HNS3_RING_TYPE_RX)
701                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
702         else
703                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
704
705         bind_msg.param[0].ring_type = queue_type;
706         bind_msg.ring_num = 1;
707         bind_msg.param[0].tqp_index = queue_id;
708         op_str = mmap ? "Map" : "Unmap";
709         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
710                                 sizeof(bind_msg), false, NULL, 0);
711         if (ret)
712                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
713                          op_str, queue_id, bind_msg.vector_id, ret);
714
715         return ret;
716 }
717
718 static int
719 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
720 {
721         uint16_t vec;
722         int ret;
723         int i;
724
725         /*
726          * In hns3 network engine, vector 0 is always the misc interrupt of this
727          * function, vector 1~N can be used respectively for the queues of the
728          * function. Tx and Rx queues with the same number share the interrupt
729          * vector. In the initialization clearing the all hardware mapping
730          * relationship configurations between queues and interrupt vectors is
731          * needed, so some error caused by the residual configurations, such as
732          * the unexpected Tx interrupt, can be avoid.
733          */
734         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
735         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
736                 vec = vec - 1; /* the last interrupt is reserved */
737         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
738         for (i = 0; i < hw->intr_tqps_num; i++) {
739                 /*
740                  * Set gap limiter/rate limiter/quanity limiter algorithm
741                  * configuration for interrupt coalesce of queue's interrupt.
742                  */
743                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
744                                        HNS3_TQP_INTR_GL_DEFAULT);
745                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
746                                        HNS3_TQP_INTR_GL_DEFAULT);
747                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
748                 /*
749                  * QL(quantity limiter) is not used currently, just set 0 to
750                  * close it.
751                  */
752                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
753
754                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
755                                                    HNS3_RING_TYPE_TX, i);
756                 if (ret) {
757                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
758                                           "vector: %u, ret=%d", i, vec, ret);
759                         return ret;
760                 }
761
762                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
763                                                    HNS3_RING_TYPE_RX, i);
764                 if (ret) {
765                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
766                                           "vector: %u, ret=%d", i, vec, ret);
767                         return ret;
768                 }
769         }
770
771         return 0;
772 }
773
774 static int
775 hns3vf_dev_configure(struct rte_eth_dev *dev)
776 {
777         struct hns3_adapter *hns = dev->data->dev_private;
778         struct hns3_hw *hw = &hns->hw;
779         struct rte_eth_conf *conf = &dev->data->dev_conf;
780         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
781         uint16_t nb_rx_q = dev->data->nb_rx_queues;
782         uint16_t nb_tx_q = dev->data->nb_tx_queues;
783         struct rte_eth_rss_conf rss_conf;
784         uint32_t max_rx_pkt_len;
785         uint16_t mtu;
786         bool gro_en;
787         int ret;
788
789         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
790
791         /*
792          * Some versions of hardware network engine does not support
793          * individually enable/disable/reset the Tx or Rx queue. These devices
794          * must enable/disable/reset Tx and Rx queues at the same time. When the
795          * numbers of Tx queues allocated by upper applications are not equal to
796          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
797          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
798          * work as usual. But these fake queues are imperceptible, and can not
799          * be used by upper applications.
800          */
801         if (!hns3_dev_indep_txrx_supported(hw)) {
802                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
803                 if (ret) {
804                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
805                                  ret);
806                         return ret;
807                 }
808         }
809
810         hw->adapter_state = HNS3_NIC_CONFIGURING;
811         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
812                 hns3_err(hw, "setting link speed/duplex not supported");
813                 ret = -EINVAL;
814                 goto cfg_err;
815         }
816
817         /* When RSS is not configured, redirect the packet queue 0 */
818         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
819                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
820                 hw->rss_dis_flag = false;
821                 rss_conf = conf->rx_adv_conf.rss_conf;
822                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
823                 if (ret)
824                         goto cfg_err;
825         }
826
827         /*
828          * If jumbo frames are enabled, MTU needs to be refreshed
829          * according to the maximum RX packet length.
830          */
831         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
832                 max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
833                 if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
834                     max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
835                         hns3_err(hw, "maximum Rx packet length must be greater "
836                                  "than %u and less than %u when jumbo frame enabled.",
837                                  (uint16_t)HNS3_DEFAULT_FRAME_LEN,
838                                  (uint16_t)HNS3_MAX_FRAME_LEN);
839                         ret = -EINVAL;
840                         goto cfg_err;
841                 }
842
843                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
844                 ret = hns3vf_dev_mtu_set(dev, mtu);
845                 if (ret)
846                         goto cfg_err;
847                 dev->data->mtu = mtu;
848         }
849
850         ret = hns3vf_dev_configure_vlan(dev);
851         if (ret)
852                 goto cfg_err;
853
854         /* config hardware GRO */
855         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
856         ret = hns3_config_gro(hw, gro_en);
857         if (ret)
858                 goto cfg_err;
859
860         hns3_init_rx_ptype_tble(dev);
861
862         hw->adapter_state = HNS3_NIC_CONFIGURED;
863         return 0;
864
865 cfg_err:
866         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
867         hw->adapter_state = HNS3_NIC_INITIALIZED;
868
869         return ret;
870 }
871
872 static int
873 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
874 {
875         int ret;
876
877         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
878                                 sizeof(mtu), true, NULL, 0);
879         if (ret)
880                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
881
882         return ret;
883 }
884
885 static int
886 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
887 {
888         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
889         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
890         int ret;
891
892         /*
893          * The hns3 PF/VF devices on the same port share the hardware MTU
894          * configuration. Currently, we send mailbox to inform hns3 PF kernel
895          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
896          * driver, there is no need to stop the port for hns3 VF device, and the
897          * MTU value issued by hns3 VF PMD driver must be less than or equal to
898          * PF's MTU.
899          */
900         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
901                 hns3_err(hw, "Failed to set mtu during resetting");
902                 return -EIO;
903         }
904
905         /*
906          * when Rx of scattered packets is off, we have some possibility of
907          * using vector Rx process function or simple Rx functions in hns3 PMD
908          * driver. If the input MTU is increased and the maximum length of
909          * received packets is greater than the length of a buffer for Rx
910          * packet, the hardware network engine needs to use multiple BDs and
911          * buffers to store these packets. This will cause problems when still
912          * using vector Rx process function or simple Rx function to receiving
913          * packets. So, when Rx of scattered packets is off and device is
914          * started, it is not permitted to increase MTU so that the maximum
915          * length of Rx packets is greater than Rx buffer length.
916          */
917         if (dev->data->dev_started && !dev->data->scattered_rx &&
918             frame_size > hw->rx_buf_len) {
919                 hns3_err(hw, "failed to set mtu because current is "
920                         "not scattered rx mode");
921                 return -EOPNOTSUPP;
922         }
923
924         rte_spinlock_lock(&hw->lock);
925         ret = hns3vf_config_mtu(hw, mtu);
926         if (ret) {
927                 rte_spinlock_unlock(&hw->lock);
928                 return ret;
929         }
930         if (mtu > RTE_ETHER_MTU)
931                 dev->data->dev_conf.rxmode.offloads |=
932                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
933         else
934                 dev->data->dev_conf.rxmode.offloads &=
935                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
936         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
937         rte_spinlock_unlock(&hw->lock);
938
939         return 0;
940 }
941
942 static int
943 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
944 {
945         struct hns3_adapter *hns = eth_dev->data->dev_private;
946         struct hns3_hw *hw = &hns->hw;
947         uint16_t q_num = hw->tqps_num;
948
949         /*
950          * In interrupt mode, 'max_rx_queues' is set based on the number of
951          * MSI-X interrupt resources of the hardware.
952          */
953         if (hw->data->dev_conf.intr_conf.rxq == 1)
954                 q_num = hw->intr_tqps_num;
955
956         info->max_rx_queues = q_num;
957         info->max_tx_queues = hw->tqps_num;
958         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
959         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
960         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
961         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
962         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
963
964         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
965                                  DEV_RX_OFFLOAD_UDP_CKSUM |
966                                  DEV_RX_OFFLOAD_TCP_CKSUM |
967                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
968                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
969                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
970                                  DEV_RX_OFFLOAD_SCATTER |
971                                  DEV_RX_OFFLOAD_VLAN_STRIP |
972                                  DEV_RX_OFFLOAD_VLAN_FILTER |
973                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
974                                  DEV_RX_OFFLOAD_RSS_HASH |
975                                  DEV_RX_OFFLOAD_TCP_LRO);
976         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
977                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
978                                  DEV_TX_OFFLOAD_TCP_CKSUM |
979                                  DEV_TX_OFFLOAD_UDP_CKSUM |
980                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
981                                  DEV_TX_OFFLOAD_MULTI_SEGS |
982                                  DEV_TX_OFFLOAD_TCP_TSO |
983                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
984                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
985                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
986                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
987                                  hns3_txvlan_cap_get(hw));
988
989         if (hns3_dev_outer_udp_cksum_supported(hw))
990                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
991
992         if (hns3_dev_indep_txrx_supported(hw))
993                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
994                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
995
996         info->rx_desc_lim = (struct rte_eth_desc_lim) {
997                 .nb_max = HNS3_MAX_RING_DESC,
998                 .nb_min = HNS3_MIN_RING_DESC,
999                 .nb_align = HNS3_ALIGN_RING_DESC,
1000         };
1001
1002         info->tx_desc_lim = (struct rte_eth_desc_lim) {
1003                 .nb_max = HNS3_MAX_RING_DESC,
1004                 .nb_min = HNS3_MIN_RING_DESC,
1005                 .nb_align = HNS3_ALIGN_RING_DESC,
1006                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1007                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1008         };
1009
1010         info->default_rxconf = (struct rte_eth_rxconf) {
1011                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1012                 /*
1013                  * If there are no available Rx buffer descriptors, incoming
1014                  * packets are always dropped by hardware based on hns3 network
1015                  * engine.
1016                  */
1017                 .rx_drop_en = 1,
1018                 .offloads = 0,
1019         };
1020         info->default_txconf = (struct rte_eth_txconf) {
1021                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1022                 .offloads = 0,
1023         };
1024
1025         info->reta_size = hw->rss_ind_tbl_size;
1026         info->hash_key_size = HNS3_RSS_KEY_SIZE;
1027         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1028
1029         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1030         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1031         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1032         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1033         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1034         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1035
1036         return 0;
1037 }
1038
1039 static void
1040 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1041 {
1042         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1043 }
1044
1045 static void
1046 hns3vf_disable_irq0(struct hns3_hw *hw)
1047 {
1048         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1049 }
1050
1051 static void
1052 hns3vf_enable_irq0(struct hns3_hw *hw)
1053 {
1054         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1055 }
1056
1057 static enum hns3vf_evt_cause
1058 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1059 {
1060         struct hns3_hw *hw = &hns->hw;
1061         enum hns3vf_evt_cause ret;
1062         uint32_t cmdq_stat_reg;
1063         uint32_t rst_ing_reg;
1064         uint32_t val;
1065
1066         /* Fetch the events from their corresponding regs */
1067         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1068         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1069                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1070                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1071                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1072                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1073                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1074                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1075                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1076                 if (clearval) {
1077                         hw->reset.stats.global_cnt++;
1078                         hns3_warn(hw, "Global reset detected, clear reset status");
1079                 } else {
1080                         hns3_schedule_delayed_reset(hns);
1081                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1082                 }
1083
1084                 ret = HNS3VF_VECTOR0_EVENT_RST;
1085                 goto out;
1086         }
1087
1088         /* Check for vector0 mailbox(=CMDQ RX) event source */
1089         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1090                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1091                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1092                 goto out;
1093         }
1094
1095         val = 0;
1096         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1097 out:
1098         if (clearval)
1099                 *clearval = val;
1100         return ret;
1101 }
1102
1103 static void
1104 hns3vf_interrupt_handler(void *param)
1105 {
1106         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1107         struct hns3_adapter *hns = dev->data->dev_private;
1108         struct hns3_hw *hw = &hns->hw;
1109         enum hns3vf_evt_cause event_cause;
1110         uint32_t clearval;
1111
1112         /* Disable interrupt */
1113         hns3vf_disable_irq0(hw);
1114
1115         /* Read out interrupt causes */
1116         event_cause = hns3vf_check_event_cause(hns, &clearval);
1117
1118         switch (event_cause) {
1119         case HNS3VF_VECTOR0_EVENT_RST:
1120                 hns3_schedule_reset(hns);
1121                 break;
1122         case HNS3VF_VECTOR0_EVENT_MBX:
1123                 hns3_dev_handle_mbx_msg(hw);
1124                 break;
1125         default:
1126                 break;
1127         }
1128
1129         /* Clear interrupt causes */
1130         hns3vf_clear_event_cause(hw, clearval);
1131
1132         /* Enable interrupt */
1133         hns3vf_enable_irq0(hw);
1134 }
1135
1136 static void
1137 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1138 {
1139         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1140         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1141         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1142         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1143 }
1144
1145 static void
1146 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1147 {
1148         struct hns3_dev_specs_0_cmd *req0;
1149
1150         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1151
1152         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1153         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1154         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1155         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1156 }
1157
1158 static int
1159 hns3vf_check_dev_specifications(struct hns3_hw *hw)
1160 {
1161         if (hw->rss_ind_tbl_size == 0 ||
1162             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
1163                 hns3_warn(hw, "the size of hash lookup table configured (%u)"
1164                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
1165                               HNS3_RSS_IND_TBL_SIZE_MAX);
1166                 return -EINVAL;
1167         }
1168
1169         return 0;
1170 }
1171
1172 static int
1173 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1174 {
1175         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1176         int ret;
1177         int i;
1178
1179         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1180                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1181                                           true);
1182                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1183         }
1184         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1185
1186         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1187         if (ret)
1188                 return ret;
1189
1190         hns3vf_parse_dev_specifications(hw, desc);
1191
1192         return hns3vf_check_dev_specifications(hw);
1193 }
1194
1195 void
1196 hns3vf_update_push_lsc_cap(struct hns3_hw *hw, bool supported)
1197 {
1198         uint16_t val = supported ? HNS3_PF_PUSH_LSC_CAP_SUPPORTED :
1199                                    HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1200         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1201         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1202
1203         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1204                 __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1205                                           __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1206 }
1207
1208 static void
1209 hns3vf_get_push_lsc_cap(struct hns3_hw *hw)
1210 {
1211 #define HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS      500
1212
1213         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1214         int32_t remain_ms = HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS;
1215         uint16_t val = HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1216         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1217         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1218
1219         __atomic_store_n(&vf->pf_push_lsc_cap, HNS3_PF_PUSH_LSC_CAP_UNKNOWN,
1220                          __ATOMIC_RELEASE);
1221
1222         (void)hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1223                                 NULL, 0);
1224
1225         while (remain_ms > 0) {
1226                 rte_delay_ms(HNS3_POLL_RESPONE_MS);
1227                 if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) !=
1228                         HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1229                         break;
1230                 remain_ms--;
1231         }
1232
1233         /*
1234          * When exit above loop, the pf_push_lsc_cap could be one of the three
1235          * state: unknown (means pf not ack), not_supported, supported.
1236          * Here config it as 'not_supported' when it's 'unknown' state.
1237          */
1238         __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1239                                   __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1240
1241         if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) ==
1242                 HNS3_PF_PUSH_LSC_CAP_SUPPORTED) {
1243                 hns3_info(hw, "detect PF support push link status change!");
1244         } else {
1245                 /*
1246                  * Framework already set RTE_ETH_DEV_INTR_LSC bit because driver
1247                  * declared RTE_PCI_DRV_INTR_LSC in drv_flags. So here cleared
1248                  * the RTE_ETH_DEV_INTR_LSC capability.
1249                  */
1250                 dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
1251         }
1252 }
1253
1254 static int
1255 hns3vf_get_capability(struct hns3_hw *hw)
1256 {
1257         struct rte_pci_device *pci_dev;
1258         struct rte_eth_dev *eth_dev;
1259         uint8_t revision;
1260         int ret;
1261
1262         eth_dev = &rte_eth_devices[hw->data->port_id];
1263         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1264
1265         /* Get PCI revision id */
1266         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1267                                   HNS3_PCI_REVISION_ID);
1268         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1269                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1270                              ret);
1271                 return -EIO;
1272         }
1273         hw->revision = revision;
1274
1275         if (revision < PCI_REVISION_ID_HIP09_A) {
1276                 hns3vf_set_default_dev_specifications(hw);
1277                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1278                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1279                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1280                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
1281                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1282                 hw->rss_info.ipv6_sctp_offload_supported = false;
1283                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1284                 return 0;
1285         }
1286
1287         ret = hns3vf_query_dev_specifications(hw);
1288         if (ret) {
1289                 PMD_INIT_LOG(ERR,
1290                              "failed to query dev specifications, ret = %d",
1291                              ret);
1292                 return ret;
1293         }
1294
1295         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1296         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1297         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1298         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
1299         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1300         hw->rss_info.ipv6_sctp_offload_supported = true;
1301         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1302
1303         return 0;
1304 }
1305
1306 static int
1307 hns3vf_check_tqp_info(struct hns3_hw *hw)
1308 {
1309         if (hw->tqps_num == 0) {
1310                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1311                 return -EINVAL;
1312         }
1313
1314         if (hw->rss_size_max == 0) {
1315                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1316                 return -EINVAL;
1317         }
1318
1319         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1320
1321         return 0;
1322 }
1323
1324 static int
1325 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1326 {
1327         uint8_t resp_msg;
1328         int ret;
1329
1330         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1331                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1332                                 true, &resp_msg, sizeof(resp_msg));
1333         if (ret) {
1334                 if (ret == -ETIME) {
1335                         /*
1336                          * Getting current port based VLAN state from PF driver
1337                          * will not affect VF driver's basic function. Because
1338                          * the VF driver relies on hns3 PF kernel ether driver,
1339                          * to avoid introducing compatibility issues with older
1340                          * version of PF driver, no failure will be returned
1341                          * when the return value is ETIME. This return value has
1342                          * the following scenarios:
1343                          * 1) Firmware didn't return the results in time
1344                          * 2) the result return by firmware is timeout
1345                          * 3) the older version of kernel side PF driver does
1346                          *    not support this mailbox message.
1347                          * For scenarios 1 and 2, it is most likely that a
1348                          * hardware error has occurred, or a hardware reset has
1349                          * occurred. In this case, these errors will be caught
1350                          * by other functions.
1351                          */
1352                         PMD_INIT_LOG(WARNING,
1353                                 "failed to get PVID state for timeout, maybe "
1354                                 "kernel side PF driver doesn't support this "
1355                                 "mailbox message, or firmware didn't respond.");
1356                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1357                 } else {
1358                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1359                                 " ret = %d", ret);
1360                         return ret;
1361                 }
1362         }
1363         hw->port_base_vlan_cfg.state = resp_msg ?
1364                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1365         return 0;
1366 }
1367
1368 static int
1369 hns3vf_get_queue_info(struct hns3_hw *hw)
1370 {
1371 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1372         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1373         int ret;
1374
1375         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1376                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1377         if (ret) {
1378                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1379                 return ret;
1380         }
1381
1382         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1383         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1384
1385         return hns3vf_check_tqp_info(hw);
1386 }
1387
1388 static int
1389 hns3vf_get_queue_depth(struct hns3_hw *hw)
1390 {
1391 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1392         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1393         int ret;
1394
1395         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1396                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1397         if (ret) {
1398                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1399                              ret);
1400                 return ret;
1401         }
1402
1403         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1404         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1405
1406         return 0;
1407 }
1408
1409 static int
1410 hns3vf_get_tc_info(struct hns3_hw *hw)
1411 {
1412         uint8_t resp_msg;
1413         int ret;
1414         uint32_t i;
1415
1416         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1417                                 true, &resp_msg, sizeof(resp_msg));
1418         if (ret) {
1419                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1420                          ret);
1421                 return ret;
1422         }
1423
1424         hw->hw_tc_map = resp_msg;
1425
1426         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1427                 if (hw->hw_tc_map & BIT(i))
1428                         hw->num_tc++;
1429         }
1430
1431         return 0;
1432 }
1433
1434 static int
1435 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1436 {
1437         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1438         int ret;
1439
1440         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1441                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1442         if (ret) {
1443                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1444                 return ret;
1445         }
1446
1447         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1448
1449         return 0;
1450 }
1451
1452 static int
1453 hns3vf_get_configuration(struct hns3_hw *hw)
1454 {
1455         int ret;
1456
1457         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1458         hw->rss_dis_flag = false;
1459
1460         /* Get device capability */
1461         ret = hns3vf_get_capability(hw);
1462         if (ret) {
1463                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1464                 return ret;
1465         }
1466
1467         hns3vf_get_push_lsc_cap(hw);
1468
1469         /* Get queue configuration from PF */
1470         ret = hns3vf_get_queue_info(hw);
1471         if (ret)
1472                 return ret;
1473
1474         /* Get queue depth info from PF */
1475         ret = hns3vf_get_queue_depth(hw);
1476         if (ret)
1477                 return ret;
1478
1479         /* Get user defined VF MAC addr from PF */
1480         ret = hns3vf_get_host_mac_addr(hw);
1481         if (ret)
1482                 return ret;
1483
1484         ret = hns3vf_get_port_base_vlan_filter_state(hw);
1485         if (ret)
1486                 return ret;
1487
1488         /* Get tc configuration from PF */
1489         return hns3vf_get_tc_info(hw);
1490 }
1491
1492 static int
1493 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1494                             uint16_t nb_tx_q)
1495 {
1496         struct hns3_hw *hw = &hns->hw;
1497
1498         if (nb_rx_q < hw->num_tc) {
1499                 hns3_err(hw, "number of Rx queues(%u) is less than tcs(%u).",
1500                          nb_rx_q, hw->num_tc);
1501                 return -EINVAL;
1502         }
1503
1504         if (nb_tx_q < hw->num_tc) {
1505                 hns3_err(hw, "number of Tx queues(%u) is less than tcs(%u).",
1506                          nb_tx_q, hw->num_tc);
1507                 return -EINVAL;
1508         }
1509
1510         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1511 }
1512
1513 static void
1514 hns3vf_request_link_info(struct hns3_hw *hw)
1515 {
1516         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1517         bool send_req;
1518         int ret;
1519
1520         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1521                 return;
1522
1523         send_req = vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED ||
1524                    vf->req_link_info_cnt > 0;
1525         if (!send_req)
1526                 return;
1527
1528         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1529                                 NULL, 0);
1530         if (ret) {
1531                 hns3_err(hw, "failed to fetch link status, ret = %d", ret);
1532                 return;
1533         }
1534
1535         if (vf->req_link_info_cnt > 0)
1536                 vf->req_link_info_cnt--;
1537 }
1538
1539 void
1540 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1541                           uint32_t link_speed, uint8_t link_duplex)
1542 {
1543         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1544         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1545         struct hns3_mac *mac = &hw->mac;
1546         int ret;
1547
1548         /*
1549          * PF kernel driver may push link status when VF driver is in resetting,
1550          * driver will stop polling job in this case, after resetting done
1551          * driver will start polling job again.
1552          * When polling job started, driver will get initial link status by
1553          * sending request to PF kernel driver, then could update link status by
1554          * process PF kernel driver's link status mailbox message.
1555          */
1556         if (!__atomic_load_n(&vf->poll_job_started, __ATOMIC_RELAXED))
1557                 return;
1558
1559         if (hw->adapter_state != HNS3_NIC_STARTED)
1560                 return;
1561
1562         mac->link_status = link_status;
1563         mac->link_speed = link_speed;
1564         mac->link_duplex = link_duplex;
1565         ret = hns3vf_dev_link_update(dev, 0);
1566         if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
1567                 hns3_start_report_lse(dev);
1568 }
1569
1570 static int
1571 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1572 {
1573 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1574         struct hns3_hw *hw = &hns->hw;
1575         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1576         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1577         uint8_t is_kill = on ? 0 : 1;
1578
1579         msg_data[0] = is_kill;
1580         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1581         memcpy(&msg_data[3], &proto, sizeof(proto));
1582
1583         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1584                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1585                                  0);
1586 }
1587
1588 static int
1589 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1590 {
1591         struct hns3_adapter *hns = dev->data->dev_private;
1592         struct hns3_hw *hw = &hns->hw;
1593         int ret;
1594
1595         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1596                 hns3_err(hw,
1597                          "vf set vlan id failed during resetting, vlan_id =%u",
1598                          vlan_id);
1599                 return -EIO;
1600         }
1601         rte_spinlock_lock(&hw->lock);
1602         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1603         rte_spinlock_unlock(&hw->lock);
1604         if (ret)
1605                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1606                          vlan_id, ret);
1607
1608         return ret;
1609 }
1610
1611 static int
1612 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1613 {
1614         uint8_t msg_data;
1615         int ret;
1616
1617         msg_data = enable ? 1 : 0;
1618         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1619                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1620         if (ret)
1621                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1622
1623         return ret;
1624 }
1625
1626 static int
1627 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1628 {
1629         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1630         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1631         unsigned int tmp_mask;
1632         int ret = 0;
1633
1634         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1635                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1636                              "mask = 0x%x", mask);
1637                 return -EIO;
1638         }
1639
1640         tmp_mask = (unsigned int)mask;
1641         /* Vlan stripping setting */
1642         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1643                 rte_spinlock_lock(&hw->lock);
1644                 /* Enable or disable VLAN stripping */
1645                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1646                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1647                 else
1648                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1649                 rte_spinlock_unlock(&hw->lock);
1650         }
1651
1652         return ret;
1653 }
1654
1655 static int
1656 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1657 {
1658         struct rte_vlan_filter_conf *vfc;
1659         struct hns3_hw *hw = &hns->hw;
1660         uint16_t vlan_id;
1661         uint64_t vbit;
1662         uint64_t ids;
1663         int ret = 0;
1664         uint32_t i;
1665
1666         vfc = &hw->data->vlan_filter_conf;
1667         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1668                 if (vfc->ids[i] == 0)
1669                         continue;
1670                 ids = vfc->ids[i];
1671                 while (ids) {
1672                         /*
1673                          * 64 means the num bits of ids, one bit corresponds to
1674                          * one vlan id
1675                          */
1676                         vlan_id = 64 * i;
1677                         /* count trailing zeroes */
1678                         vbit = ~ids & (ids - 1);
1679                         /* clear least significant bit set */
1680                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1681                         for (; vbit;) {
1682                                 vbit >>= 1;
1683                                 vlan_id++;
1684                         }
1685                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1686                         if (ret) {
1687                                 hns3_err(hw,
1688                                          "VF handle vlan table failed, ret =%d, on = %d",
1689                                          ret, on);
1690                                 return ret;
1691                         }
1692                 }
1693         }
1694
1695         return ret;
1696 }
1697
1698 static int
1699 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1700 {
1701         return hns3vf_handle_all_vlan_table(hns, 0);
1702 }
1703
1704 static int
1705 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1706 {
1707         struct hns3_hw *hw = &hns->hw;
1708         struct rte_eth_conf *dev_conf;
1709         bool en;
1710         int ret;
1711
1712         dev_conf = &hw->data->dev_conf;
1713         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1714                                                                    : false;
1715         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1716         if (ret)
1717                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1718                          ret);
1719         return ret;
1720 }
1721
1722 static int
1723 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1724 {
1725         struct hns3_adapter *hns = dev->data->dev_private;
1726         struct rte_eth_dev_data *data = dev->data;
1727         struct hns3_hw *hw = &hns->hw;
1728         int ret;
1729
1730         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1731             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1732             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1733                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1734                               "or hw_vlan_insert_pvid is not support!");
1735         }
1736
1737         /* Apply vlan offload setting */
1738         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1739         if (ret)
1740                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1741
1742         return ret;
1743 }
1744
1745 static int
1746 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1747 {
1748         uint8_t msg_data;
1749
1750         msg_data = alive ? 1 : 0;
1751         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1752                                  sizeof(msg_data), false, NULL, 0);
1753 }
1754
1755 static void
1756 hns3vf_keep_alive_handler(void *param)
1757 {
1758         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1759         struct hns3_adapter *hns = eth_dev->data->dev_private;
1760         struct hns3_hw *hw = &hns->hw;
1761         int ret;
1762
1763         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1764                                 false, NULL, 0);
1765         if (ret)
1766                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1767                          ret);
1768
1769         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1770                           eth_dev);
1771 }
1772
1773 static void
1774 hns3vf_service_handler(void *param)
1775 {
1776         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1777         struct hns3_adapter *hns = eth_dev->data->dev_private;
1778         struct hns3_hw *hw = &hns->hw;
1779
1780         /*
1781          * The query link status and reset processing are executed in the
1782          * interrupt thread. When the IMP reset occurs, IMP will not respond,
1783          * and the query operation will timeout after 30ms. In the case of
1784          * multiple PF/VFs, each query failure timeout causes the IMP reset
1785          * interrupt to fail to respond within 100ms.
1786          * Before querying the link status, check whether there is a reset
1787          * pending, and if so, abandon the query.
1788          */
1789         if (!hns3vf_is_reset_pending(hns))
1790                 hns3vf_request_link_info(hw);
1791         else
1792                 hns3_warn(hw, "Cancel the query when reset is pending");
1793
1794         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1795                           eth_dev);
1796 }
1797
1798 static void
1799 hns3vf_start_poll_job(struct rte_eth_dev *dev)
1800 {
1801 #define HNS3_REQUEST_LINK_INFO_REMAINS_CNT      3
1802
1803         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1804
1805         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_SUPPORTED)
1806                 vf->req_link_info_cnt = HNS3_REQUEST_LINK_INFO_REMAINS_CNT;
1807
1808         __atomic_store_n(&vf->poll_job_started, 1, __ATOMIC_RELAXED);
1809
1810         hns3vf_service_handler(dev);
1811 }
1812
1813 static void
1814 hns3vf_stop_poll_job(struct rte_eth_dev *dev)
1815 {
1816         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1817
1818         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1819
1820         __atomic_store_n(&vf->poll_job_started, 0, __ATOMIC_RELAXED);
1821 }
1822
1823 static int
1824 hns3_query_vf_resource(struct hns3_hw *hw)
1825 {
1826         struct hns3_vf_res_cmd *req;
1827         struct hns3_cmd_desc desc;
1828         uint16_t num_msi;
1829         int ret;
1830
1831         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1832         ret = hns3_cmd_send(hw, &desc, 1);
1833         if (ret) {
1834                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1835                 return ret;
1836         }
1837
1838         req = (struct hns3_vf_res_cmd *)desc.data;
1839         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1840                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1841         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1842                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1843                          num_msi, HNS3_MIN_VECTOR_NUM);
1844                 return -EINVAL;
1845         }
1846
1847         hw->num_msi = num_msi;
1848
1849         return 0;
1850 }
1851
1852 static int
1853 hns3vf_init_hardware(struct hns3_adapter *hns)
1854 {
1855         struct hns3_hw *hw = &hns->hw;
1856         uint16_t mtu = hw->data->mtu;
1857         int ret;
1858
1859         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1860         if (ret)
1861                 return ret;
1862
1863         ret = hns3vf_config_mtu(hw, mtu);
1864         if (ret)
1865                 goto err_init_hardware;
1866
1867         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1868         if (ret) {
1869                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1870                 goto err_init_hardware;
1871         }
1872
1873         ret = hns3_config_gro(hw, false);
1874         if (ret) {
1875                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1876                 goto err_init_hardware;
1877         }
1878
1879         /*
1880          * In the initialization clearing the all hardware mapping relationship
1881          * configurations between queues and interrupt vectors is needed, so
1882          * some error caused by the residual configurations, such as the
1883          * unexpected interrupt, can be avoid.
1884          */
1885         ret = hns3vf_init_ring_with_vector(hw);
1886         if (ret) {
1887                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1888                 goto err_init_hardware;
1889         }
1890
1891         ret = hns3vf_set_alive(hw, true);
1892         if (ret) {
1893                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1894                 goto err_init_hardware;
1895         }
1896
1897         return 0;
1898
1899 err_init_hardware:
1900         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1901         return ret;
1902 }
1903
1904 static int
1905 hns3vf_clear_vport_list(struct hns3_hw *hw)
1906 {
1907         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1908                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1909                                  NULL, 0);
1910 }
1911
1912 static int
1913 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1914 {
1915         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1916         struct hns3_adapter *hns = eth_dev->data->dev_private;
1917         struct hns3_hw *hw = &hns->hw;
1918         int ret;
1919
1920         PMD_INIT_FUNC_TRACE();
1921
1922         /* Get hardware io base address from pcie BAR2 IO space */
1923         hw->io_base = pci_dev->mem_resource[2].addr;
1924
1925         /* Firmware command queue initialize */
1926         ret = hns3_cmd_init_queue(hw);
1927         if (ret) {
1928                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1929                 goto err_cmd_init_queue;
1930         }
1931
1932         /* Firmware command initialize */
1933         ret = hns3_cmd_init(hw);
1934         if (ret) {
1935                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1936                 goto err_cmd_init;
1937         }
1938
1939         /* Get VF resource */
1940         ret = hns3_query_vf_resource(hw);
1941         if (ret)
1942                 goto err_cmd_init;
1943
1944         rte_spinlock_init(&hw->mbx_resp.lock);
1945
1946         hns3vf_clear_event_cause(hw, 0);
1947
1948         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1949                                          hns3vf_interrupt_handler, eth_dev);
1950         if (ret) {
1951                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1952                 goto err_intr_callback_register;
1953         }
1954
1955         /* Enable interrupt */
1956         rte_intr_enable(&pci_dev->intr_handle);
1957         hns3vf_enable_irq0(hw);
1958
1959         /* Get configuration from PF */
1960         ret = hns3vf_get_configuration(hw);
1961         if (ret) {
1962                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1963                 goto err_get_config;
1964         }
1965
1966         ret = hns3_tqp_stats_init(hw);
1967         if (ret)
1968                 goto err_get_config;
1969
1970         /* Hardware statistics of imissed registers cleared. */
1971         ret = hns3_update_imissed_stats(hw, true);
1972         if (ret) {
1973                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
1974                 goto err_set_tc_queue;
1975         }
1976
1977         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1978         if (ret) {
1979                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1980                 goto err_set_tc_queue;
1981         }
1982
1983         ret = hns3vf_clear_vport_list(hw);
1984         if (ret) {
1985                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1986                 goto err_set_tc_queue;
1987         }
1988
1989         ret = hns3vf_init_hardware(hns);
1990         if (ret)
1991                 goto err_set_tc_queue;
1992
1993         hns3_rss_set_default_args(hw);
1994
1995         return 0;
1996
1997 err_set_tc_queue:
1998         hns3_tqp_stats_uninit(hw);
1999
2000 err_get_config:
2001         hns3vf_disable_irq0(hw);
2002         rte_intr_disable(&pci_dev->intr_handle);
2003         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2004                              eth_dev);
2005 err_intr_callback_register:
2006 err_cmd_init:
2007         hns3_cmd_uninit(hw);
2008         hns3_cmd_destroy_queue(hw);
2009 err_cmd_init_queue:
2010         hw->io_base = NULL;
2011
2012         return ret;
2013 }
2014
2015 static void
2016 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
2017 {
2018         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2019         struct hns3_adapter *hns = eth_dev->data->dev_private;
2020         struct hns3_hw *hw = &hns->hw;
2021
2022         PMD_INIT_FUNC_TRACE();
2023
2024         hns3_rss_uninit(hns);
2025         (void)hns3_config_gro(hw, false);
2026         (void)hns3vf_set_alive(hw, false);
2027         (void)hns3vf_set_promisc_mode(hw, false, false, false);
2028         hns3_tqp_stats_uninit(hw);
2029         hns3vf_disable_irq0(hw);
2030         rte_intr_disable(&pci_dev->intr_handle);
2031         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2032                              eth_dev);
2033         hns3_cmd_uninit(hw);
2034         hns3_cmd_destroy_queue(hw);
2035         hw->io_base = NULL;
2036 }
2037
2038 static int
2039 hns3vf_do_stop(struct hns3_adapter *hns)
2040 {
2041         struct hns3_hw *hw = &hns->hw;
2042         int ret;
2043
2044         hw->mac.link_status = ETH_LINK_DOWN;
2045
2046         /*
2047          * The "hns3vf_do_stop" function will also be called by .stop_service to
2048          * prepare reset. At the time of global or IMP reset, the command cannot
2049          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
2050          * accessed during the reset process. So the mbuf can not be released
2051          * during reset and is required to be released after the reset is
2052          * completed.
2053          */
2054         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
2055                 hns3_dev_release_mbufs(hns);
2056
2057         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
2058                 hns3vf_configure_mac_addr(hns, true);
2059                 ret = hns3_reset_all_tqps(hns);
2060                 if (ret) {
2061                         hns3_err(hw, "failed to reset all queues ret = %d",
2062                                  ret);
2063                         return ret;
2064                 }
2065         }
2066         return 0;
2067 }
2068
2069 static void
2070 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
2071 {
2072         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2073         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2074         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2075         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2076         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2077         uint16_t q_id;
2078
2079         if (dev->data->dev_conf.intr_conf.rxq == 0)
2080                 return;
2081
2082         /* unmap the ring with vector */
2083         if (rte_intr_allow_others(intr_handle)) {
2084                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2085                 base = RTE_INTR_VEC_RXTX_OFFSET;
2086         }
2087         if (rte_intr_dp_is_en(intr_handle)) {
2088                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2089                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
2090                                                            HNS3_RING_TYPE_RX,
2091                                                            q_id);
2092                         if (vec < base + intr_handle->nb_efd - 1)
2093                                 vec++;
2094                 }
2095         }
2096         /* Clean datapath event and queue/vec mapping */
2097         rte_intr_efd_disable(intr_handle);
2098         if (intr_handle->intr_vec) {
2099                 rte_free(intr_handle->intr_vec);
2100                 intr_handle->intr_vec = NULL;
2101         }
2102 }
2103
2104 static int
2105 hns3vf_dev_stop(struct rte_eth_dev *dev)
2106 {
2107         struct hns3_adapter *hns = dev->data->dev_private;
2108         struct hns3_hw *hw = &hns->hw;
2109
2110         PMD_INIT_FUNC_TRACE();
2111         dev->data->dev_started = 0;
2112
2113         hw->adapter_state = HNS3_NIC_STOPPING;
2114         hns3_set_rxtx_function(dev);
2115         rte_wmb();
2116         /* Disable datapath on secondary process. */
2117         hns3_mp_req_stop_rxtx(dev);
2118         /* Prevent crashes when queues are still in use. */
2119         rte_delay_ms(hw->tqps_num);
2120
2121         rte_spinlock_lock(&hw->lock);
2122         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
2123                 hns3_stop_tqps(hw);
2124                 hns3vf_do_stop(hns);
2125                 hns3vf_unmap_rx_interrupt(dev);
2126                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2127         }
2128         hns3_rx_scattered_reset(dev);
2129         hns3vf_stop_poll_job(dev);
2130         hns3_stop_report_lse(dev);
2131         rte_spinlock_unlock(&hw->lock);
2132
2133         return 0;
2134 }
2135
2136 static int
2137 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
2138 {
2139         struct hns3_adapter *hns = eth_dev->data->dev_private;
2140         struct hns3_hw *hw = &hns->hw;
2141         int ret = 0;
2142
2143         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2144                 rte_free(eth_dev->process_private);
2145                 eth_dev->process_private = NULL;
2146                 return 0;
2147         }
2148
2149         if (hw->adapter_state == HNS3_NIC_STARTED)
2150                 ret = hns3vf_dev_stop(eth_dev);
2151
2152         hw->adapter_state = HNS3_NIC_CLOSING;
2153         hns3_reset_abort(hns);
2154         hw->adapter_state = HNS3_NIC_CLOSED;
2155         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
2156         hns3vf_configure_all_mc_mac_addr(hns, true);
2157         hns3vf_remove_all_vlan_table(hns);
2158         hns3vf_uninit_vf(eth_dev);
2159         hns3_free_all_queues(eth_dev);
2160         rte_free(hw->reset.wait_data);
2161         rte_free(eth_dev->process_private);
2162         eth_dev->process_private = NULL;
2163         hns3_mp_uninit_primary();
2164         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2165
2166         return ret;
2167 }
2168
2169 static int
2170 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2171                       size_t fw_size)
2172 {
2173         struct hns3_adapter *hns = eth_dev->data->dev_private;
2174         struct hns3_hw *hw = &hns->hw;
2175         uint32_t version = hw->fw_version;
2176         int ret;
2177
2178         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2179                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2180                                       HNS3_FW_VERSION_BYTE3_S),
2181                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2182                                       HNS3_FW_VERSION_BYTE2_S),
2183                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2184                                       HNS3_FW_VERSION_BYTE1_S),
2185                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2186                                       HNS3_FW_VERSION_BYTE0_S));
2187         if (ret < 0)
2188                 return -EINVAL;
2189
2190         ret += 1; /* add the size of '\0' */
2191         if (fw_size < (size_t)ret)
2192                 return ret;
2193         else
2194                 return 0;
2195 }
2196
2197 static int
2198 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2199                        __rte_unused int wait_to_complete)
2200 {
2201         struct hns3_adapter *hns = eth_dev->data->dev_private;
2202         struct hns3_hw *hw = &hns->hw;
2203         struct hns3_mac *mac = &hw->mac;
2204         struct rte_eth_link new_link;
2205
2206         memset(&new_link, 0, sizeof(new_link));
2207         switch (mac->link_speed) {
2208         case ETH_SPEED_NUM_10M:
2209         case ETH_SPEED_NUM_100M:
2210         case ETH_SPEED_NUM_1G:
2211         case ETH_SPEED_NUM_10G:
2212         case ETH_SPEED_NUM_25G:
2213         case ETH_SPEED_NUM_40G:
2214         case ETH_SPEED_NUM_50G:
2215         case ETH_SPEED_NUM_100G:
2216         case ETH_SPEED_NUM_200G:
2217                 new_link.link_speed = mac->link_speed;
2218                 break;
2219         default:
2220                 if (mac->link_status)
2221                         new_link.link_speed = ETH_SPEED_NUM_UNKNOWN;
2222                 else
2223                         new_link.link_speed = ETH_SPEED_NUM_NONE;
2224                 break;
2225         }
2226
2227         new_link.link_duplex = mac->link_duplex;
2228         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2229         new_link.link_autoneg =
2230             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2231
2232         return rte_eth_linkstatus_set(eth_dev, &new_link);
2233 }
2234
2235 static int
2236 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2237 {
2238         struct hns3_hw *hw = &hns->hw;
2239         uint16_t nb_rx_q = hw->data->nb_rx_queues;
2240         uint16_t nb_tx_q = hw->data->nb_tx_queues;
2241         int ret;
2242
2243         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2244         if (ret)
2245                 return ret;
2246
2247         hns3_enable_rxd_adv_layout(hw);
2248
2249         ret = hns3_init_queues(hns, reset_queue);
2250         if (ret)
2251                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2252
2253         return ret;
2254 }
2255
2256 static int
2257 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2258 {
2259         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2260         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2261         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2262         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2263         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2264         uint32_t intr_vector;
2265         uint16_t q_id;
2266         int ret;
2267
2268         /*
2269          * hns3 needs a separate interrupt to be used as event interrupt which
2270          * could not be shared with task queue pair, so KERNEL drivers need
2271          * support multiple interrupt vectors.
2272          */
2273         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
2274             !rte_intr_cap_multiple(intr_handle))
2275                 return 0;
2276
2277         rte_intr_disable(intr_handle);
2278         intr_vector = hw->used_rx_queues;
2279         /* It creates event fd for each intr vector when MSIX is used */
2280         if (rte_intr_efd_enable(intr_handle, intr_vector))
2281                 return -EINVAL;
2282
2283         if (intr_handle->intr_vec == NULL) {
2284                 intr_handle->intr_vec =
2285                         rte_zmalloc("intr_vec",
2286                                     hw->used_rx_queues * sizeof(int), 0);
2287                 if (intr_handle->intr_vec == NULL) {
2288                         hns3_err(hw, "Failed to allocate %u rx_queues"
2289                                      " intr_vec", hw->used_rx_queues);
2290                         ret = -ENOMEM;
2291                         goto vf_alloc_intr_vec_error;
2292                 }
2293         }
2294
2295         if (rte_intr_allow_others(intr_handle)) {
2296                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2297                 base = RTE_INTR_VEC_RXTX_OFFSET;
2298         }
2299
2300         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2301                 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2302                                                    HNS3_RING_TYPE_RX, q_id);
2303                 if (ret)
2304                         goto vf_bind_vector_error;
2305                 intr_handle->intr_vec[q_id] = vec;
2306                 /*
2307                  * If there are not enough efds (e.g. not enough interrupt),
2308                  * remaining queues will be bond to the last interrupt.
2309                  */
2310                 if (vec < base + intr_handle->nb_efd - 1)
2311                         vec++;
2312         }
2313         rte_intr_enable(intr_handle);
2314         return 0;
2315
2316 vf_bind_vector_error:
2317         free(intr_handle->intr_vec);
2318         intr_handle->intr_vec = NULL;
2319 vf_alloc_intr_vec_error:
2320         rte_intr_efd_disable(intr_handle);
2321         return ret;
2322 }
2323
2324 static int
2325 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2326 {
2327         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2328         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2329         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2330         uint16_t q_id;
2331         int ret;
2332
2333         if (dev->data->dev_conf.intr_conf.rxq == 0)
2334                 return 0;
2335
2336         if (rte_intr_dp_is_en(intr_handle)) {
2337                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2338                         ret = hns3vf_bind_ring_with_vector(hw,
2339                                         intr_handle->intr_vec[q_id], true,
2340                                         HNS3_RING_TYPE_RX, q_id);
2341                         if (ret)
2342                                 return ret;
2343                 }
2344         }
2345
2346         return 0;
2347 }
2348
2349 static void
2350 hns3vf_restore_filter(struct rte_eth_dev *dev)
2351 {
2352         hns3_restore_rss_filter(dev);
2353 }
2354
2355 static int
2356 hns3vf_dev_start(struct rte_eth_dev *dev)
2357 {
2358         struct hns3_adapter *hns = dev->data->dev_private;
2359         struct hns3_hw *hw = &hns->hw;
2360         int ret;
2361
2362         PMD_INIT_FUNC_TRACE();
2363         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
2364                 return -EBUSY;
2365
2366         rte_spinlock_lock(&hw->lock);
2367         hw->adapter_state = HNS3_NIC_STARTING;
2368         ret = hns3vf_do_start(hns, true);
2369         if (ret) {
2370                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2371                 rte_spinlock_unlock(&hw->lock);
2372                 return ret;
2373         }
2374         ret = hns3vf_map_rx_interrupt(dev);
2375         if (ret)
2376                 goto map_rx_inter_err;
2377
2378         /*
2379          * There are three register used to control the status of a TQP
2380          * (contains a pair of Tx queue and Rx queue) in the new version network
2381          * engine. One is used to control the enabling of Tx queue, the other is
2382          * used to control the enabling of Rx queue, and the last is the master
2383          * switch used to control the enabling of the tqp. The Tx register and
2384          * TQP register must be enabled at the same time to enable a Tx queue.
2385          * The same applies to the Rx queue. For the older network enginem, this
2386          * function only refresh the enabled flag, and it is used to update the
2387          * status of queue in the dpdk framework.
2388          */
2389         ret = hns3_start_all_txqs(dev);
2390         if (ret)
2391                 goto map_rx_inter_err;
2392
2393         ret = hns3_start_all_rxqs(dev);
2394         if (ret)
2395                 goto start_all_rxqs_fail;
2396
2397         hw->adapter_state = HNS3_NIC_STARTED;
2398         rte_spinlock_unlock(&hw->lock);
2399
2400         hns3_rx_scattered_calc(dev);
2401         hns3_set_rxtx_function(dev);
2402         hns3_mp_req_start_rxtx(dev);
2403
2404         hns3vf_restore_filter(dev);
2405
2406         /* Enable interrupt of all rx queues before enabling queues */
2407         hns3_dev_all_rx_queue_intr_enable(hw, true);
2408         hns3_start_tqps(hw);
2409
2410         if (dev->data->dev_conf.intr_conf.lsc != 0)
2411                 hns3vf_dev_link_update(dev, 0);
2412         hns3vf_start_poll_job(dev);
2413
2414         return ret;
2415
2416 start_all_rxqs_fail:
2417         hns3_stop_all_txqs(dev);
2418 map_rx_inter_err:
2419         (void)hns3vf_do_stop(hns);
2420         hw->adapter_state = HNS3_NIC_CONFIGURED;
2421         rte_spinlock_unlock(&hw->lock);
2422
2423         return ret;
2424 }
2425
2426 static bool
2427 is_vf_reset_done(struct hns3_hw *hw)
2428 {
2429 #define HNS3_FUN_RST_ING_BITS \
2430         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2431          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2432          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2433          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2434
2435         uint32_t val;
2436
2437         if (hw->reset.level == HNS3_VF_RESET) {
2438                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2439                 if (val & HNS3_VF_RST_ING_BIT)
2440                         return false;
2441         } else {
2442                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2443                 if (val & HNS3_FUN_RST_ING_BITS)
2444                         return false;
2445         }
2446         return true;
2447 }
2448
2449 bool
2450 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2451 {
2452         struct hns3_hw *hw = &hns->hw;
2453         enum hns3_reset_level reset;
2454
2455         /*
2456          * According to the protocol of PCIe, FLR to a PF device resets the PF
2457          * state as well as the SR-IOV extended capability including VF Enable
2458          * which means that VFs no longer exist.
2459          *
2460          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2461          * is in FLR stage, the register state of VF device is not reliable,
2462          * so register states detection can not be carried out. In this case,
2463          * we just ignore the register states and return false to indicate that
2464          * there are no other reset states that need to be processed by driver.
2465          */
2466         if (hw->reset.level == HNS3_VF_FULL_RESET)
2467                 return false;
2468
2469         /* Check the registers to confirm whether there is reset pending */
2470         hns3vf_check_event_cause(hns, NULL);
2471         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2472         if (hw->reset.level != HNS3_NONE_RESET && reset != HNS3_NONE_RESET &&
2473             hw->reset.level < reset) {
2474                 hns3_warn(hw, "High level reset %d is pending", reset);
2475                 return true;
2476         }
2477         return false;
2478 }
2479
2480 static int
2481 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2482 {
2483         struct hns3_hw *hw = &hns->hw;
2484         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2485         struct timeval tv;
2486
2487         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2488                 /*
2489                  * After vf reset is ready, the PF may not have completed
2490                  * the reset processing. The vf sending mbox to PF may fail
2491                  * during the pf reset, so it is better to add extra delay.
2492                  */
2493                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2494                     hw->reset.level == HNS3_FLR_RESET)
2495                         return 0;
2496                 /* Reset retry process, no need to add extra delay. */
2497                 if (hw->reset.attempts)
2498                         return 0;
2499                 if (wait_data->check_completion == NULL)
2500                         return 0;
2501
2502                 wait_data->check_completion = NULL;
2503                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2504                 wait_data->count = 1;
2505                 wait_data->result = HNS3_WAIT_REQUEST;
2506                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2507                                   wait_data);
2508                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2509                 return -EAGAIN;
2510         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2511                 hns3_clock_gettime(&tv);
2512                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2513                           tv.tv_sec, tv.tv_usec);
2514                 return -ETIME;
2515         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2516                 return -EAGAIN;
2517
2518         wait_data->hns = hns;
2519         wait_data->check_completion = is_vf_reset_done;
2520         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2521                                 HNS3VF_RESET_WAIT_MS + hns3_clock_gettime_ms();
2522         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2523         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2524         wait_data->result = HNS3_WAIT_REQUEST;
2525         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2526         return -EAGAIN;
2527 }
2528
2529 static int
2530 hns3vf_prepare_reset(struct hns3_adapter *hns)
2531 {
2532         struct hns3_hw *hw = &hns->hw;
2533         int ret;
2534
2535         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2536                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2537                                         0, true, NULL, 0);
2538                 if (ret)
2539                         return ret;
2540         }
2541         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
2542
2543         return 0;
2544 }
2545
2546 static int
2547 hns3vf_stop_service(struct hns3_adapter *hns)
2548 {
2549         struct hns3_hw *hw = &hns->hw;
2550         struct rte_eth_dev *eth_dev;
2551
2552         eth_dev = &rte_eth_devices[hw->data->port_id];
2553         if (hw->adapter_state == HNS3_NIC_STARTED) {
2554                 /*
2555                  * Make sure call update link status before hns3vf_stop_poll_job
2556                  * because update link status depend on polling job exist.
2557                  */
2558                 hns3vf_update_link_status(hw, ETH_LINK_DOWN, hw->mac.link_speed,
2559                                           hw->mac.link_duplex);
2560                 hns3vf_stop_poll_job(eth_dev);
2561         }
2562         hw->mac.link_status = ETH_LINK_DOWN;
2563
2564         hns3_set_rxtx_function(eth_dev);
2565         rte_wmb();
2566         /* Disable datapath on secondary process. */
2567         hns3_mp_req_stop_rxtx(eth_dev);
2568         rte_delay_ms(hw->tqps_num);
2569
2570         rte_spinlock_lock(&hw->lock);
2571         if (hw->adapter_state == HNS3_NIC_STARTED ||
2572             hw->adapter_state == HNS3_NIC_STOPPING) {
2573                 hns3_enable_all_queues(hw, false);
2574                 hns3vf_do_stop(hns);
2575                 hw->reset.mbuf_deferred_free = true;
2576         } else
2577                 hw->reset.mbuf_deferred_free = false;
2578
2579         /*
2580          * It is cumbersome for hardware to pick-and-choose entries for deletion
2581          * from table space. Hence, for function reset software intervention is
2582          * required to delete the entries.
2583          */
2584         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
2585                 hns3vf_configure_all_mc_mac_addr(hns, true);
2586         rte_spinlock_unlock(&hw->lock);
2587
2588         return 0;
2589 }
2590
2591 static int
2592 hns3vf_start_service(struct hns3_adapter *hns)
2593 {
2594         struct hns3_hw *hw = &hns->hw;
2595         struct rte_eth_dev *eth_dev;
2596
2597         eth_dev = &rte_eth_devices[hw->data->port_id];
2598         hns3_set_rxtx_function(eth_dev);
2599         hns3_mp_req_start_rxtx(eth_dev);
2600         if (hw->adapter_state == HNS3_NIC_STARTED) {
2601                 hns3vf_start_poll_job(eth_dev);
2602
2603                 /* Enable interrupt of all rx queues before enabling queues */
2604                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2605                 /*
2606                  * Enable state of each rxq and txq will be recovered after
2607                  * reset, so we need to restore them before enable all tqps;
2608                  */
2609                 hns3_restore_tqp_enable_state(hw);
2610                 /*
2611                  * When finished the initialization, enable queues to receive
2612                  * and transmit packets.
2613                  */
2614                 hns3_enable_all_queues(hw, true);
2615         }
2616
2617         return 0;
2618 }
2619
2620 static int
2621 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2622 {
2623         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2624         struct rte_ether_addr *hw_mac;
2625         int ret;
2626
2627         /*
2628          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2629          * on the host by "ip link set ..." command. If the hns3 PF kernel
2630          * ethdev driver sets the MAC address for VF device after the
2631          * initialization of the related VF device, the PF driver will notify
2632          * VF driver to reset VF device to make the new MAC address effective
2633          * immediately. The hns3 VF PMD driver should check whether the MAC
2634          * address has been changed by the PF kernel ethdev driver, if changed
2635          * VF driver should configure hardware using the new MAC address in the
2636          * recovering hardware configuration stage of the reset process.
2637          */
2638         ret = hns3vf_get_host_mac_addr(hw);
2639         if (ret)
2640                 return ret;
2641
2642         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2643         ret = rte_is_zero_ether_addr(hw_mac);
2644         if (ret) {
2645                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2646         } else {
2647                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2648                 if (!ret) {
2649                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2650                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2651                                               &hw->data->mac_addrs[0]);
2652                         hns3_warn(hw, "Default MAC address has been changed to:"
2653                                   " %s by the host PF kernel ethdev driver",
2654                                   mac_str);
2655                 }
2656         }
2657
2658         return 0;
2659 }
2660
2661 static int
2662 hns3vf_restore_conf(struct hns3_adapter *hns)
2663 {
2664         struct hns3_hw *hw = &hns->hw;
2665         int ret;
2666
2667         ret = hns3vf_check_default_mac_change(hw);
2668         if (ret)
2669                 return ret;
2670
2671         ret = hns3vf_configure_mac_addr(hns, false);
2672         if (ret)
2673                 return ret;
2674
2675         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2676         if (ret)
2677                 goto err_mc_mac;
2678
2679         ret = hns3vf_restore_promisc(hns);
2680         if (ret)
2681                 goto err_vlan_table;
2682
2683         ret = hns3vf_restore_vlan_conf(hns);
2684         if (ret)
2685                 goto err_vlan_table;
2686
2687         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2688         if (ret)
2689                 goto err_vlan_table;
2690
2691         ret = hns3vf_restore_rx_interrupt(hw);
2692         if (ret)
2693                 goto err_vlan_table;
2694
2695         ret = hns3_restore_gro_conf(hw);
2696         if (ret)
2697                 goto err_vlan_table;
2698
2699         if (hw->adapter_state == HNS3_NIC_STARTED) {
2700                 ret = hns3vf_do_start(hns, false);
2701                 if (ret)
2702                         goto err_vlan_table;
2703                 hns3_info(hw, "hns3vf dev restart successful!");
2704         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2705                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2706         return 0;
2707
2708 err_vlan_table:
2709         hns3vf_configure_all_mc_mac_addr(hns, true);
2710 err_mc_mac:
2711         hns3vf_configure_mac_addr(hns, true);
2712         return ret;
2713 }
2714
2715 static enum hns3_reset_level
2716 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2717 {
2718         enum hns3_reset_level reset_level;
2719
2720         /* return the highest priority reset level amongst all */
2721         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2722                 reset_level = HNS3_VF_RESET;
2723         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2724                 reset_level = HNS3_VF_FULL_RESET;
2725         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2726                 reset_level = HNS3_VF_PF_FUNC_RESET;
2727         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2728                 reset_level = HNS3_VF_FUNC_RESET;
2729         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2730                 reset_level = HNS3_FLR_RESET;
2731         else
2732                 reset_level = HNS3_NONE_RESET;
2733
2734         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2735                 return HNS3_NONE_RESET;
2736
2737         return reset_level;
2738 }
2739
2740 static void
2741 hns3vf_reset_service(void *param)
2742 {
2743         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2744         struct hns3_hw *hw = &hns->hw;
2745         enum hns3_reset_level reset_level;
2746         struct timeval tv_delta;
2747         struct timeval tv_start;
2748         struct timeval tv;
2749         uint64_t msec;
2750
2751         /*
2752          * The interrupt is not triggered within the delay time.
2753          * The interrupt may have been lost. It is necessary to handle
2754          * the interrupt to recover from the error.
2755          */
2756         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2757                             SCHEDULE_DEFERRED) {
2758                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2759                                  __ATOMIC_RELAXED);
2760                 hns3_err(hw, "Handling interrupts in delayed tasks");
2761                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2762                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2763                 if (reset_level == HNS3_NONE_RESET) {
2764                         hns3_err(hw, "No reset level is set, try global reset");
2765                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2766                 }
2767         }
2768         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2769
2770         /*
2771          * Hardware reset has been notified, we now have to poll & check if
2772          * hardware has actually completed the reset sequence.
2773          */
2774         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2775         if (reset_level != HNS3_NONE_RESET) {
2776                 hns3_clock_gettime(&tv_start);
2777                 hns3_reset_process(hns, reset_level);
2778                 hns3_clock_gettime(&tv);
2779                 timersub(&tv, &tv_start, &tv_delta);
2780                 msec = hns3_clock_calctime_ms(&tv_delta);
2781                 if (msec > HNS3_RESET_PROCESS_MS)
2782                         hns3_err(hw, "%d handle long time delta %" PRIu64
2783                                  " ms time=%ld.%.6ld",
2784                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2785         }
2786 }
2787
2788 static int
2789 hns3vf_reinit_dev(struct hns3_adapter *hns)
2790 {
2791         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2792         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2793         struct hns3_hw *hw = &hns->hw;
2794         int ret;
2795
2796         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2797                 rte_intr_disable(&pci_dev->intr_handle);
2798                 ret = hns3vf_set_bus_master(pci_dev, true);
2799                 if (ret < 0) {
2800                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2801                         return ret;
2802                 }
2803         }
2804
2805         /* Firmware command initialize */
2806         ret = hns3_cmd_init(hw);
2807         if (ret) {
2808                 hns3_err(hw, "Failed to init cmd: %d", ret);
2809                 return ret;
2810         }
2811
2812         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2813                 /*
2814                  * UIO enables msix by writing the pcie configuration space
2815                  * vfio_pci enables msix in rte_intr_enable.
2816                  */
2817                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2818                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2819                         if (hns3vf_enable_msix(pci_dev, true))
2820                                 hns3_err(hw, "Failed to enable msix");
2821                 }
2822
2823                 rte_intr_enable(&pci_dev->intr_handle);
2824         }
2825
2826         ret = hns3_reset_all_tqps(hns);
2827         if (ret) {
2828                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2829                 return ret;
2830         }
2831
2832         ret = hns3vf_init_hardware(hns);
2833         if (ret) {
2834                 hns3_err(hw, "Failed to init hardware: %d", ret);
2835                 return ret;
2836         }
2837
2838         return 0;
2839 }
2840
2841 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2842         .dev_configure      = hns3vf_dev_configure,
2843         .dev_start          = hns3vf_dev_start,
2844         .dev_stop           = hns3vf_dev_stop,
2845         .dev_close          = hns3vf_dev_close,
2846         .mtu_set            = hns3vf_dev_mtu_set,
2847         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2848         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2849         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2850         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2851         .stats_get          = hns3_stats_get,
2852         .stats_reset        = hns3_stats_reset,
2853         .xstats_get         = hns3_dev_xstats_get,
2854         .xstats_get_names   = hns3_dev_xstats_get_names,
2855         .xstats_reset       = hns3_dev_xstats_reset,
2856         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2857         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2858         .dev_infos_get      = hns3vf_dev_infos_get,
2859         .fw_version_get     = hns3vf_fw_version_get,
2860         .rx_queue_setup     = hns3_rx_queue_setup,
2861         .tx_queue_setup     = hns3_tx_queue_setup,
2862         .rx_queue_release   = hns3_dev_rx_queue_release,
2863         .tx_queue_release   = hns3_dev_tx_queue_release,
2864         .rx_queue_start     = hns3_dev_rx_queue_start,
2865         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2866         .tx_queue_start     = hns3_dev_tx_queue_start,
2867         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2868         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2869         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2870         .rxq_info_get       = hns3_rxq_info_get,
2871         .txq_info_get       = hns3_txq_info_get,
2872         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2873         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2874         .mac_addr_add       = hns3vf_add_mac_addr,
2875         .mac_addr_remove    = hns3vf_remove_mac_addr,
2876         .mac_addr_set       = hns3vf_set_default_mac_addr,
2877         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2878         .link_update        = hns3vf_dev_link_update,
2879         .rss_hash_update    = hns3_dev_rss_hash_update,
2880         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2881         .reta_update        = hns3_dev_rss_reta_update,
2882         .reta_query         = hns3_dev_rss_reta_query,
2883         .flow_ops_get       = hns3_dev_flow_ops_get,
2884         .vlan_filter_set    = hns3vf_vlan_filter_set,
2885         .vlan_offload_set   = hns3vf_vlan_offload_set,
2886         .get_reg            = hns3_get_regs,
2887         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2888         .tx_done_cleanup    = hns3_tx_done_cleanup,
2889 };
2890
2891 static const struct hns3_reset_ops hns3vf_reset_ops = {
2892         .reset_service       = hns3vf_reset_service,
2893         .stop_service        = hns3vf_stop_service,
2894         .prepare_reset       = hns3vf_prepare_reset,
2895         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2896         .reinit_dev          = hns3vf_reinit_dev,
2897         .restore_conf        = hns3vf_restore_conf,
2898         .start_service       = hns3vf_start_service,
2899 };
2900
2901 static int
2902 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2903 {
2904         struct hns3_adapter *hns = eth_dev->data->dev_private;
2905         struct hns3_hw *hw = &hns->hw;
2906         int ret;
2907
2908         PMD_INIT_FUNC_TRACE();
2909
2910         eth_dev->process_private = (struct hns3_process_private *)
2911             rte_zmalloc_socket("hns3_filter_list",
2912                                sizeof(struct hns3_process_private),
2913                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2914         if (eth_dev->process_private == NULL) {
2915                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2916                 return -ENOMEM;
2917         }
2918
2919         hns3_flow_init(eth_dev);
2920
2921         hns3_set_rxtx_function(eth_dev);
2922         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2923         eth_dev->rx_queue_count = hns3_rx_queue_count;
2924         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2925                 ret = hns3_mp_init_secondary();
2926                 if (ret) {
2927                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2928                                           "process, ret = %d", ret);
2929                         goto err_mp_init_secondary;
2930                 }
2931
2932                 hw->secondary_cnt++;
2933                 return 0;
2934         }
2935
2936         ret = hns3_mp_init_primary();
2937         if (ret) {
2938                 PMD_INIT_LOG(ERR,
2939                              "Failed to init for primary process, ret = %d",
2940                              ret);
2941                 goto err_mp_init_primary;
2942         }
2943
2944         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2945         hns->is_vf = true;
2946         hw->data = eth_dev->data;
2947         hns3_parse_devargs(eth_dev);
2948
2949         ret = hns3_reset_init(hw);
2950         if (ret)
2951                 goto err_init_reset;
2952         hw->reset.ops = &hns3vf_reset_ops;
2953
2954         ret = hns3vf_init_vf(eth_dev);
2955         if (ret) {
2956                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2957                 goto err_init_vf;
2958         }
2959
2960         /* Allocate memory for storing MAC addresses */
2961         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2962                                                sizeof(struct rte_ether_addr) *
2963                                                HNS3_VF_UC_MACADDR_NUM, 0);
2964         if (eth_dev->data->mac_addrs == NULL) {
2965                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2966                              "to store MAC addresses",
2967                              sizeof(struct rte_ether_addr) *
2968                              HNS3_VF_UC_MACADDR_NUM);
2969                 ret = -ENOMEM;
2970                 goto err_rte_zmalloc;
2971         }
2972
2973         /*
2974          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2975          * on the host by "ip link set ..." command. To avoid some incorrect
2976          * scenes, for example, hns3 VF PMD driver fails to receive and send
2977          * packets after user configure the MAC address by using the
2978          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2979          * address strategy as the hns3 kernel ethdev driver in the
2980          * initialization. If user configure a MAC address by the ip command
2981          * for VF device, then hns3 VF PMD driver will start with it, otherwise
2982          * start with a random MAC address in the initialization.
2983          */
2984         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2985                 rte_eth_random_addr(hw->mac.mac_addr);
2986         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2987                             &eth_dev->data->mac_addrs[0]);
2988
2989         hw->adapter_state = HNS3_NIC_INITIALIZED;
2990
2991         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2992                             SCHEDULE_PENDING) {
2993                 hns3_err(hw, "Reschedule reset service after dev_init");
2994                 hns3_schedule_reset(hns);
2995         } else {
2996                 /* IMP will wait ready flag before reset */
2997                 hns3_notify_reset_ready(hw, false);
2998         }
2999         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
3000                           eth_dev);
3001         return 0;
3002
3003 err_rte_zmalloc:
3004         hns3vf_uninit_vf(eth_dev);
3005
3006 err_init_vf:
3007         rte_free(hw->reset.wait_data);
3008
3009 err_init_reset:
3010         hns3_mp_uninit_primary();
3011
3012 err_mp_init_primary:
3013 err_mp_init_secondary:
3014         eth_dev->dev_ops = NULL;
3015         eth_dev->rx_pkt_burst = NULL;
3016         eth_dev->rx_descriptor_status = NULL;
3017         eth_dev->tx_pkt_burst = NULL;
3018         eth_dev->tx_pkt_prepare = NULL;
3019         eth_dev->tx_descriptor_status = NULL;
3020         rte_free(eth_dev->process_private);
3021         eth_dev->process_private = NULL;
3022
3023         return ret;
3024 }
3025
3026 static int
3027 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
3028 {
3029         struct hns3_adapter *hns = eth_dev->data->dev_private;
3030         struct hns3_hw *hw = &hns->hw;
3031
3032         PMD_INIT_FUNC_TRACE();
3033
3034         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
3035                 rte_free(eth_dev->process_private);
3036                 eth_dev->process_private = NULL;
3037                 return 0;
3038         }
3039
3040         if (hw->adapter_state < HNS3_NIC_CLOSING)
3041                 hns3vf_dev_close(eth_dev);
3042
3043         hw->adapter_state = HNS3_NIC_REMOVED;
3044         return 0;
3045 }
3046
3047 static int
3048 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3049                      struct rte_pci_device *pci_dev)
3050 {
3051         return rte_eth_dev_pci_generic_probe(pci_dev,
3052                                              sizeof(struct hns3_adapter),
3053                                              hns3vf_dev_init);
3054 }
3055
3056 static int
3057 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
3058 {
3059         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
3060 }
3061
3062 static const struct rte_pci_id pci_id_hns3vf_map[] = {
3063         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
3064         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
3065         { .vendor_id = 0, }, /* sentinel */
3066 };
3067
3068 static struct rte_pci_driver rte_hns3vf_pmd = {
3069         .id_table = pci_id_hns3vf_map,
3070         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
3071         .probe = eth_hns3vf_pci_probe,
3072         .remove = eth_hns3vf_pci_remove,
3073 };
3074
3075 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
3076 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
3077 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
3078 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
3079                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
3080                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
3081                 HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> ");