7e016917769bd98ed7077237877a06e6ccb7524e
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19
20 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
22
23 #define HNS3VF_RESET_WAIT_MS    20
24 #define HNS3VF_RESET_WAIT_CNT   2000
25
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT           0
28 #define HNS3_CORE_RESET_BIT             1
29 #define HNS3_IMP_RESET_BIT              2
30 #define HNS3_FUN_RST_ING_B              0
31
32 enum hns3vf_evt_cause {
33         HNS3VF_VECTOR0_EVENT_RST,
34         HNS3VF_VECTOR0_EVENT_MBX,
35         HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39                                                     uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44                                   struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46                                      struct rte_ether_addr *mac_addr);
47 static int hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
48                                    __rte_unused int wait_to_complete);
49
50 /* set PCI bus mastering */
51 static int
52 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
53 {
54         uint16_t reg;
55         int ret;
56
57         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
58         if (ret < 0) {
59                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
60                              PCI_COMMAND);
61                 return ret;
62         }
63
64         if (op)
65                 /* set the master bit */
66                 reg |= PCI_COMMAND_MASTER;
67         else
68                 reg &= ~(PCI_COMMAND_MASTER);
69
70         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
71 }
72
73 /**
74  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
75  * @cap: the capability
76  *
77  * Return the address of the given capability within the PCI capability list.
78  */
79 static int
80 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
81 {
82 #define MAX_PCIE_CAPABILITY 48
83         uint16_t status;
84         uint8_t pos;
85         uint8_t id;
86         int ttl;
87         int ret;
88
89         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
90         if (ret < 0) {
91                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
92                 return 0;
93         }
94
95         if (!(status & PCI_STATUS_CAP_LIST))
96                 return 0;
97
98         ttl = MAX_PCIE_CAPABILITY;
99         ret = rte_pci_read_config(device, &pos, sizeof(pos),
100                                   PCI_CAPABILITY_LIST);
101         if (ret < 0) {
102                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
103                              PCI_CAPABILITY_LIST);
104                 return 0;
105         }
106
107         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
108                 ret = rte_pci_read_config(device, &id, sizeof(id),
109                                           (pos + PCI_CAP_LIST_ID));
110                 if (ret < 0) {
111                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
112                                      (pos + PCI_CAP_LIST_ID));
113                         break;
114                 }
115
116                 if (id == 0xFF)
117                         break;
118
119                 if (id == cap)
120                         return (int)pos;
121
122                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
123                                           (pos + PCI_CAP_LIST_NEXT));
124                 if (ret < 0) {
125                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
126                                      (pos + PCI_CAP_LIST_NEXT));
127                         break;
128                 }
129         }
130         return 0;
131 }
132
133 static int
134 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
135 {
136         uint16_t control;
137         int pos;
138         int ret;
139
140         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
141         if (pos) {
142                 ret = rte_pci_read_config(device, &control, sizeof(control),
143                                     (pos + PCI_MSIX_FLAGS));
144                 if (ret < 0) {
145                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
146                                      (pos + PCI_MSIX_FLAGS));
147                         return -ENXIO;
148                 }
149
150                 if (op)
151                         control |= PCI_MSIX_FLAGS_ENABLE;
152                 else
153                         control &= ~PCI_MSIX_FLAGS_ENABLE;
154                 ret = rte_pci_write_config(device, &control, sizeof(control),
155                                           (pos + PCI_MSIX_FLAGS));
156                 if (ret < 0) {
157                         PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
158                                     (pos + PCI_MSIX_FLAGS));
159                         return -ENXIO;
160                 }
161
162                 return 0;
163         }
164
165         return -ENXIO;
166 }
167
168 static int
169 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
170 {
171         /* mac address was checked by upper level interface */
172         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
173         int ret;
174
175         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
176                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
177                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
178         if (ret) {
179                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
180                                       mac_addr);
181                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
182                          mac_str, ret);
183         }
184         return ret;
185 }
186
187 static int
188 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
189 {
190         /* mac address was checked by upper level interface */
191         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
192         int ret;
193
194         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
195                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
196                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
197                                 false, NULL, 0);
198         if (ret) {
199                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
200                                       mac_addr);
201                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
202                          mac_str, ret);
203         }
204         return ret;
205 }
206
207 static int
208 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
209 {
210         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
211         struct rte_ether_addr *addr;
212         int ret;
213         int i;
214
215         for (i = 0; i < hw->mc_addrs_num; i++) {
216                 addr = &hw->mc_addrs[i];
217                 /* Check if there are duplicate addresses */
218                 if (rte_is_same_ether_addr(addr, mac_addr)) {
219                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
220                                               addr);
221                         hns3_err(hw, "failed to add mc mac addr, same addrs"
222                                  "(%s) is added by the set_mc_mac_addr_list "
223                                  "API", mac_str);
224                         return -EINVAL;
225                 }
226         }
227
228         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
229         if (ret) {
230                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
231                                       mac_addr);
232                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
233                          mac_str, ret);
234         }
235         return ret;
236 }
237
238 static int
239 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
240                     __rte_unused uint32_t idx,
241                     __rte_unused uint32_t pool)
242 {
243         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
244         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
245         int ret;
246
247         rte_spinlock_lock(&hw->lock);
248
249         /*
250          * In hns3 network engine adding UC and MC mac address with different
251          * commands with firmware. We need to determine whether the input
252          * address is a UC or a MC address to call different commands.
253          * By the way, it is recommended calling the API function named
254          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
255          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
256          * may affect the specifications of UC mac addresses.
257          */
258         if (rte_is_multicast_ether_addr(mac_addr))
259                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
260         else
261                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
262
263         rte_spinlock_unlock(&hw->lock);
264         if (ret) {
265                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
266                                       mac_addr);
267                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
268                          ret);
269         }
270
271         return ret;
272 }
273
274 static void
275 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
276 {
277         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278         /* index will be checked by upper level rte interface */
279         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
280         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
281         int ret;
282
283         rte_spinlock_lock(&hw->lock);
284
285         if (rte_is_multicast_ether_addr(mac_addr))
286                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
287         else
288                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
289
290         rte_spinlock_unlock(&hw->lock);
291         if (ret) {
292                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
293                                       mac_addr);
294                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
295                          mac_str, ret);
296         }
297 }
298
299 static int
300 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
301                             struct rte_ether_addr *mac_addr)
302 {
303 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
304         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
305         struct rte_ether_addr *old_addr;
306         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
307         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
308         int ret;
309
310         /*
311          * It has been guaranteed that input parameter named mac_addr is valid
312          * address in the rte layer of DPDK framework.
313          */
314         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
315         rte_spinlock_lock(&hw->lock);
316         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
317         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
318                RTE_ETHER_ADDR_LEN);
319
320         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
321                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
322                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
323         if (ret) {
324                 /*
325                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
326                  * driver. When user has configured a MAC address for VF device
327                  * by "ip link set ..." command based on the PF device, the hns3
328                  * PF kernel ethdev driver does not allow VF driver to request
329                  * reconfiguring a different default MAC address, and return
330                  * -EPREM to VF driver through mailbox.
331                  */
332                 if (ret == -EPERM) {
333                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
334                                               old_addr);
335                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
336                                   mac_str);
337                 } else {
338                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
339                                               mac_addr);
340                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
341                                  mac_str, ret);
342                 }
343         }
344
345         rte_ether_addr_copy(mac_addr,
346                             (struct rte_ether_addr *)hw->mac.mac_addr);
347         rte_spinlock_unlock(&hw->lock);
348
349         return ret;
350 }
351
352 static int
353 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
354 {
355         struct hns3_hw *hw = &hns->hw;
356         struct rte_ether_addr *addr;
357         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
358         int err = 0;
359         int ret;
360         int i;
361
362         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
363                 addr = &hw->data->mac_addrs[i];
364                 if (rte_is_zero_ether_addr(addr))
365                         continue;
366                 if (rte_is_multicast_ether_addr(addr))
367                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
368                               hns3vf_add_mc_mac_addr(hw, addr);
369                 else
370                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
371                               hns3vf_add_uc_mac_addr(hw, addr);
372
373                 if (ret) {
374                         err = ret;
375                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
376                                               addr);
377                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
378                                  "ret = %d.", del ? "remove" : "restore",
379                                  mac_str, i, ret);
380                 }
381         }
382         return err;
383 }
384
385 static int
386 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
387                        struct rte_ether_addr *mac_addr)
388 {
389         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
390         int ret;
391
392         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
393                                 HNS3_MBX_MAC_VLAN_MC_ADD,
394                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
395                                 NULL, 0);
396         if (ret) {
397                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
398                                       mac_addr);
399                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
400                          mac_str, ret);
401         }
402
403         return ret;
404 }
405
406 static int
407 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
408                           struct rte_ether_addr *mac_addr)
409 {
410         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
411         int ret;
412
413         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
414                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
415                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
416                                 NULL, 0);
417         if (ret) {
418                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
419                                       mac_addr);
420                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
421                          mac_str, ret);
422         }
423
424         return ret;
425 }
426
427 static int
428 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
429                              struct rte_ether_addr *mc_addr_set,
430                              uint32_t nb_mc_addr)
431 {
432         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
433         struct rte_ether_addr *addr;
434         uint32_t i;
435         uint32_t j;
436
437         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
438                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
439                          "invalid. valid range: 0~%d",
440                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
441                 return -EINVAL;
442         }
443
444         /* Check if input mac addresses are valid */
445         for (i = 0; i < nb_mc_addr; i++) {
446                 addr = &mc_addr_set[i];
447                 if (!rte_is_multicast_ether_addr(addr)) {
448                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
449                                               addr);
450                         hns3_err(hw,
451                                  "failed to set mc mac addr, addr(%s) invalid.",
452                                  mac_str);
453                         return -EINVAL;
454                 }
455
456                 /* Check if there are duplicate addresses */
457                 for (j = i + 1; j < nb_mc_addr; j++) {
458                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
459                                 hns3_ether_format_addr(mac_str,
460                                                       RTE_ETHER_ADDR_FMT_SIZE,
461                                                       addr);
462                                 hns3_err(hw, "failed to set mc mac addr, "
463                                          "addrs invalid. two same addrs(%s).",
464                                          mac_str);
465                                 return -EINVAL;
466                         }
467                 }
468
469                 /*
470                  * Check if there are duplicate addresses between mac_addrs
471                  * and mc_addr_set
472                  */
473                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
474                         if (rte_is_same_ether_addr(addr,
475                                                    &hw->data->mac_addrs[j])) {
476                                 hns3_ether_format_addr(mac_str,
477                                                       RTE_ETHER_ADDR_FMT_SIZE,
478                                                       addr);
479                                 hns3_err(hw, "failed to set mc mac addr, "
480                                          "addrs invalid. addrs(%s) has already "
481                                          "configured in mac_addr add API",
482                                          mac_str);
483                                 return -EINVAL;
484                         }
485                 }
486         }
487
488         return 0;
489 }
490
491 static int
492 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
493                             struct rte_ether_addr *mc_addr_set,
494                             uint32_t nb_mc_addr)
495 {
496         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
497         struct rte_ether_addr *addr;
498         int cur_addr_num;
499         int set_addr_num;
500         int num;
501         int ret;
502         int i;
503
504         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
505         if (ret)
506                 return ret;
507
508         rte_spinlock_lock(&hw->lock);
509         cur_addr_num = hw->mc_addrs_num;
510         for (i = 0; i < cur_addr_num; i++) {
511                 num = cur_addr_num - i - 1;
512                 addr = &hw->mc_addrs[num];
513                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
514                 if (ret) {
515                         rte_spinlock_unlock(&hw->lock);
516                         return ret;
517                 }
518
519                 hw->mc_addrs_num--;
520         }
521
522         set_addr_num = (int)nb_mc_addr;
523         for (i = 0; i < set_addr_num; i++) {
524                 addr = &mc_addr_set[i];
525                 ret = hns3vf_add_mc_mac_addr(hw, addr);
526                 if (ret) {
527                         rte_spinlock_unlock(&hw->lock);
528                         return ret;
529                 }
530
531                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
532                 hw->mc_addrs_num++;
533         }
534         rte_spinlock_unlock(&hw->lock);
535
536         return 0;
537 }
538
539 static int
540 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
541 {
542         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
543         struct hns3_hw *hw = &hns->hw;
544         struct rte_ether_addr *addr;
545         int err = 0;
546         int ret;
547         int i;
548
549         for (i = 0; i < hw->mc_addrs_num; i++) {
550                 addr = &hw->mc_addrs[i];
551                 if (!rte_is_multicast_ether_addr(addr))
552                         continue;
553                 if (del)
554                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
555                 else
556                         ret = hns3vf_add_mc_mac_addr(hw, addr);
557                 if (ret) {
558                         err = ret;
559                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
560                                               addr);
561                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
562                                  del ? "Remove" : "Restore", mac_str, ret);
563                 }
564         }
565         return err;
566 }
567
568 static int
569 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
570                         bool en_uc_pmc, bool en_mc_pmc)
571 {
572         struct hns3_mbx_vf_to_pf_cmd *req;
573         struct hns3_cmd_desc desc;
574         int ret;
575
576         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
577
578         /*
579          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
580          * so there are some features for promiscuous/allmulticast mode in hns3
581          * VF PMD driver as below:
582          * 1. The promiscuous/allmulticast mode can be configured successfully
583          *    only based on the trusted VF device. If based on the non trusted
584          *    VF device, configuring promiscuous/allmulticast mode will fail.
585          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
586          *    kernel ethdev driver on the host by the following command:
587          *      "ip link set <eth num> vf <vf id> turst on"
588          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
589          *    driver can receive the ingress and outgoing traffic. In the words,
590          *    all the ingress packets, all the packets sent from the PF and
591          *    other VFs on the same physical port.
592          * 3. Note: Because of the hardware constraints, By default vlan filter
593          *    is enabled and couldn't be turned off based on VF device, so vlan
594          *    filter is still effective even in promiscuous mode. If upper
595          *    applications don't call rte_eth_dev_vlan_filter API function to
596          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
597          *    the packets with vlan tag in promiscuoue mode.
598          */
599         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
600         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
601         req->msg[1] = en_bc_pmc ? 1 : 0;
602         req->msg[2] = en_uc_pmc ? 1 : 0;
603         req->msg[3] = en_mc_pmc ? 1 : 0;
604         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
605
606         ret = hns3_cmd_send(hw, &desc, 1);
607         if (ret)
608                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
609
610         return ret;
611 }
612
613 static int
614 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
615 {
616         struct hns3_adapter *hns = dev->data->dev_private;
617         struct hns3_hw *hw = &hns->hw;
618         int ret;
619
620         ret = hns3vf_set_promisc_mode(hw, true, true, true);
621         if (ret)
622                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
623                         ret);
624         return ret;
625 }
626
627 static int
628 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
629 {
630         bool allmulti = dev->data->all_multicast ? true : false;
631         struct hns3_adapter *hns = dev->data->dev_private;
632         struct hns3_hw *hw = &hns->hw;
633         int ret;
634
635         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
636         if (ret)
637                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
638                         ret);
639         return ret;
640 }
641
642 static int
643 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
644 {
645         struct hns3_adapter *hns = dev->data->dev_private;
646         struct hns3_hw *hw = &hns->hw;
647         int ret;
648
649         if (dev->data->promiscuous)
650                 return 0;
651
652         ret = hns3vf_set_promisc_mode(hw, true, false, true);
653         if (ret)
654                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
655                         ret);
656         return ret;
657 }
658
659 static int
660 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
661 {
662         struct hns3_adapter *hns = dev->data->dev_private;
663         struct hns3_hw *hw = &hns->hw;
664         int ret;
665
666         if (dev->data->promiscuous)
667                 return 0;
668
669         ret = hns3vf_set_promisc_mode(hw, true, false, false);
670         if (ret)
671                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
672                         ret);
673         return ret;
674 }
675
676 static int
677 hns3vf_restore_promisc(struct hns3_adapter *hns)
678 {
679         struct hns3_hw *hw = &hns->hw;
680         bool allmulti = hw->data->all_multicast ? true : false;
681
682         if (hw->data->promiscuous)
683                 return hns3vf_set_promisc_mode(hw, true, true, true);
684
685         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
686 }
687
688 static int
689 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
690                              bool mmap, enum hns3_ring_type queue_type,
691                              uint16_t queue_id)
692 {
693         struct hns3_vf_bind_vector_msg bind_msg;
694         const char *op_str;
695         uint16_t code;
696         int ret;
697
698         memset(&bind_msg, 0, sizeof(bind_msg));
699         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
700                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
701         bind_msg.vector_id = vector_id;
702
703         if (queue_type == HNS3_RING_TYPE_RX)
704                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
705         else
706                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
707
708         bind_msg.param[0].ring_type = queue_type;
709         bind_msg.ring_num = 1;
710         bind_msg.param[0].tqp_index = queue_id;
711         op_str = mmap ? "Map" : "Unmap";
712         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
713                                 sizeof(bind_msg), false, NULL, 0);
714         if (ret)
715                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
716                          op_str, queue_id, bind_msg.vector_id, ret);
717
718         return ret;
719 }
720
721 static int
722 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
723 {
724         uint16_t vec;
725         int ret;
726         int i;
727
728         /*
729          * In hns3 network engine, vector 0 is always the misc interrupt of this
730          * function, vector 1~N can be used respectively for the queues of the
731          * function. Tx and Rx queues with the same number share the interrupt
732          * vector. In the initialization clearing the all hardware mapping
733          * relationship configurations between queues and interrupt vectors is
734          * needed, so some error caused by the residual configurations, such as
735          * the unexpected Tx interrupt, can be avoid.
736          */
737         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
738         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
739                 vec = vec - 1; /* the last interrupt is reserved */
740         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
741         for (i = 0; i < hw->intr_tqps_num; i++) {
742                 /*
743                  * Set gap limiter/rate limiter/quanity limiter algorithm
744                  * configuration for interrupt coalesce of queue's interrupt.
745                  */
746                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
747                                        HNS3_TQP_INTR_GL_DEFAULT);
748                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
749                                        HNS3_TQP_INTR_GL_DEFAULT);
750                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
751                 /*
752                  * QL(quantity limiter) is not used currently, just set 0 to
753                  * close it.
754                  */
755                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
756
757                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
758                                                    HNS3_RING_TYPE_TX, i);
759                 if (ret) {
760                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
761                                           "vector: %u, ret=%d", i, vec, ret);
762                         return ret;
763                 }
764
765                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
766                                                    HNS3_RING_TYPE_RX, i);
767                 if (ret) {
768                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
769                                           "vector: %u, ret=%d", i, vec, ret);
770                         return ret;
771                 }
772         }
773
774         return 0;
775 }
776
777 static int
778 hns3vf_dev_configure(struct rte_eth_dev *dev)
779 {
780         struct hns3_adapter *hns = dev->data->dev_private;
781         struct hns3_hw *hw = &hns->hw;
782         struct rte_eth_conf *conf = &dev->data->dev_conf;
783         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
784         uint16_t nb_rx_q = dev->data->nb_rx_queues;
785         uint16_t nb_tx_q = dev->data->nb_tx_queues;
786         struct rte_eth_rss_conf rss_conf;
787         bool gro_en;
788         int ret;
789
790         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
791
792         /*
793          * Some versions of hardware network engine does not support
794          * individually enable/disable/reset the Tx or Rx queue. These devices
795          * must enable/disable/reset Tx and Rx queues at the same time. When the
796          * numbers of Tx queues allocated by upper applications are not equal to
797          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
798          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
799          * work as usual. But these fake queues are imperceptible, and can not
800          * be used by upper applications.
801          */
802         ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
803         if (ret) {
804                 hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
805                 hw->cfg_max_queues = 0;
806                 return ret;
807         }
808
809         hw->adapter_state = HNS3_NIC_CONFIGURING;
810         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
811                 hns3_err(hw, "setting link speed/duplex not supported");
812                 ret = -EINVAL;
813                 goto cfg_err;
814         }
815
816         /* When RSS is not configured, redirect the packet queue 0 */
817         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
818                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
819                 hw->rss_dis_flag = false;
820                 rss_conf = conf->rx_adv_conf.rss_conf;
821                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
822                 if (ret)
823                         goto cfg_err;
824         }
825
826         ret = hns3vf_dev_mtu_set(dev, conf->rxmode.mtu);
827         if (ret != 0)
828                 goto cfg_err;
829
830         ret = hns3vf_dev_configure_vlan(dev);
831         if (ret)
832                 goto cfg_err;
833
834         /* config hardware GRO */
835         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
836         ret = hns3_config_gro(hw, gro_en);
837         if (ret)
838                 goto cfg_err;
839
840         hns3_init_rx_ptype_tble(dev);
841
842         hw->adapter_state = HNS3_NIC_CONFIGURED;
843         return 0;
844
845 cfg_err:
846         hw->cfg_max_queues = 0;
847         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
848         hw->adapter_state = HNS3_NIC_INITIALIZED;
849
850         return ret;
851 }
852
853 static int
854 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
855 {
856         int ret;
857
858         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
859                                 sizeof(mtu), true, NULL, 0);
860         if (ret)
861                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
862
863         return ret;
864 }
865
866 static int
867 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
868 {
869         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
870         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
871         int ret;
872
873         /*
874          * The hns3 PF/VF devices on the same port share the hardware MTU
875          * configuration. Currently, we send mailbox to inform hns3 PF kernel
876          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
877          * driver, there is no need to stop the port for hns3 VF device, and the
878          * MTU value issued by hns3 VF PMD driver must be less than or equal to
879          * PF's MTU.
880          */
881         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
882                 hns3_err(hw, "Failed to set mtu during resetting");
883                 return -EIO;
884         }
885
886         /*
887          * when Rx of scattered packets is off, we have some possibility of
888          * using vector Rx process function or simple Rx functions in hns3 PMD
889          * driver. If the input MTU is increased and the maximum length of
890          * received packets is greater than the length of a buffer for Rx
891          * packet, the hardware network engine needs to use multiple BDs and
892          * buffers to store these packets. This will cause problems when still
893          * using vector Rx process function or simple Rx function to receiving
894          * packets. So, when Rx of scattered packets is off and device is
895          * started, it is not permitted to increase MTU so that the maximum
896          * length of Rx packets is greater than Rx buffer length.
897          */
898         if (dev->data->dev_started && !dev->data->scattered_rx &&
899             frame_size > hw->rx_buf_len) {
900                 hns3_err(hw, "failed to set mtu because current is "
901                         "not scattered rx mode");
902                 return -EOPNOTSUPP;
903         }
904
905         rte_spinlock_lock(&hw->lock);
906         ret = hns3vf_config_mtu(hw, mtu);
907         if (ret) {
908                 rte_spinlock_unlock(&hw->lock);
909                 return ret;
910         }
911         rte_spinlock_unlock(&hw->lock);
912
913         return 0;
914 }
915
916 static int
917 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
918 {
919         struct hns3_adapter *hns = eth_dev->data->dev_private;
920         struct hns3_hw *hw = &hns->hw;
921         uint16_t q_num = hw->tqps_num;
922
923         /*
924          * In interrupt mode, 'max_rx_queues' is set based on the number of
925          * MSI-X interrupt resources of the hardware.
926          */
927         if (hw->data->dev_conf.intr_conf.rxq == 1)
928                 q_num = hw->intr_tqps_num;
929
930         info->max_rx_queues = q_num;
931         info->max_tx_queues = hw->tqps_num;
932         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
933         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
934         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
935         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
936         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
937
938         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
939                                  DEV_RX_OFFLOAD_UDP_CKSUM |
940                                  DEV_RX_OFFLOAD_TCP_CKSUM |
941                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
942                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
943                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
944                                  DEV_RX_OFFLOAD_SCATTER |
945                                  DEV_RX_OFFLOAD_VLAN_STRIP |
946                                  DEV_RX_OFFLOAD_VLAN_FILTER |
947                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
948                                  DEV_RX_OFFLOAD_RSS_HASH |
949                                  DEV_RX_OFFLOAD_TCP_LRO);
950         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
951                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
952                                  DEV_TX_OFFLOAD_TCP_CKSUM |
953                                  DEV_TX_OFFLOAD_UDP_CKSUM |
954                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
955                                  DEV_TX_OFFLOAD_MULTI_SEGS |
956                                  DEV_TX_OFFLOAD_TCP_TSO |
957                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
958                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
959                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
960                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
961                                  hns3_txvlan_cap_get(hw));
962
963         if (hns3_dev_get_support(hw, OUTER_UDP_CKSUM))
964                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
965
966         if (hns3_dev_get_support(hw, INDEP_TXRX))
967                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
968                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
969
970         info->rx_desc_lim = (struct rte_eth_desc_lim) {
971                 .nb_max = HNS3_MAX_RING_DESC,
972                 .nb_min = HNS3_MIN_RING_DESC,
973                 .nb_align = HNS3_ALIGN_RING_DESC,
974         };
975
976         info->tx_desc_lim = (struct rte_eth_desc_lim) {
977                 .nb_max = HNS3_MAX_RING_DESC,
978                 .nb_min = HNS3_MIN_RING_DESC,
979                 .nb_align = HNS3_ALIGN_RING_DESC,
980                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
981                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
982         };
983
984         info->default_rxconf = (struct rte_eth_rxconf) {
985                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
986                 /*
987                  * If there are no available Rx buffer descriptors, incoming
988                  * packets are always dropped by hardware based on hns3 network
989                  * engine.
990                  */
991                 .rx_drop_en = 1,
992                 .offloads = 0,
993         };
994         info->default_txconf = (struct rte_eth_txconf) {
995                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
996                 .offloads = 0,
997         };
998
999         info->reta_size = hw->rss_ind_tbl_size;
1000         info->hash_key_size = HNS3_RSS_KEY_SIZE;
1001         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1002
1003         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1004         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1005         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1006         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1007         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1008         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1009
1010         return 0;
1011 }
1012
1013 static void
1014 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1015 {
1016         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1017 }
1018
1019 static void
1020 hns3vf_disable_irq0(struct hns3_hw *hw)
1021 {
1022         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1023 }
1024
1025 static void
1026 hns3vf_enable_irq0(struct hns3_hw *hw)
1027 {
1028         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1029 }
1030
1031 static enum hns3vf_evt_cause
1032 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1033 {
1034         struct hns3_hw *hw = &hns->hw;
1035         enum hns3vf_evt_cause ret;
1036         uint32_t cmdq_stat_reg;
1037         uint32_t rst_ing_reg;
1038         uint32_t val;
1039
1040         /* Fetch the events from their corresponding regs */
1041         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1042         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1043                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1044                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1045                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1046                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1047                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1048                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1049                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1050                 if (clearval) {
1051                         hw->reset.stats.global_cnt++;
1052                         hns3_warn(hw, "Global reset detected, clear reset status");
1053                 } else {
1054                         hns3_schedule_delayed_reset(hns);
1055                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1056                 }
1057
1058                 ret = HNS3VF_VECTOR0_EVENT_RST;
1059                 goto out;
1060         }
1061
1062         /* Check for vector0 mailbox(=CMDQ RX) event source */
1063         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1064                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1065                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1066                 goto out;
1067         }
1068
1069         val = 0;
1070         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1071 out:
1072         if (clearval)
1073                 *clearval = val;
1074         return ret;
1075 }
1076
1077 static void
1078 hns3vf_interrupt_handler(void *param)
1079 {
1080         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1081         struct hns3_adapter *hns = dev->data->dev_private;
1082         struct hns3_hw *hw = &hns->hw;
1083         enum hns3vf_evt_cause event_cause;
1084         uint32_t clearval;
1085
1086         /* Disable interrupt */
1087         hns3vf_disable_irq0(hw);
1088
1089         /* Read out interrupt causes */
1090         event_cause = hns3vf_check_event_cause(hns, &clearval);
1091         /* Clear interrupt causes */
1092         hns3vf_clear_event_cause(hw, clearval);
1093
1094         switch (event_cause) {
1095         case HNS3VF_VECTOR0_EVENT_RST:
1096                 hns3_schedule_reset(hns);
1097                 break;
1098         case HNS3VF_VECTOR0_EVENT_MBX:
1099                 hns3_dev_handle_mbx_msg(hw);
1100                 break;
1101         default:
1102                 break;
1103         }
1104
1105         /* Enable interrupt */
1106         hns3vf_enable_irq0(hw);
1107 }
1108
1109 static void
1110 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1111 {
1112         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1113         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1114         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1115         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1116 }
1117
1118 static void
1119 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1120 {
1121         struct hns3_dev_specs_0_cmd *req0;
1122
1123         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1124
1125         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1126         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1127         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1128         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1129 }
1130
1131 static int
1132 hns3vf_check_dev_specifications(struct hns3_hw *hw)
1133 {
1134         if (hw->rss_ind_tbl_size == 0 ||
1135             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
1136                 hns3_warn(hw, "the size of hash lookup table configured (%u)"
1137                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
1138                               HNS3_RSS_IND_TBL_SIZE_MAX);
1139                 return -EINVAL;
1140         }
1141
1142         return 0;
1143 }
1144
1145 static int
1146 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1147 {
1148         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1149         int ret;
1150         int i;
1151
1152         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1153                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1154                                           true);
1155                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1156         }
1157         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1158
1159         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1160         if (ret)
1161                 return ret;
1162
1163         hns3vf_parse_dev_specifications(hw, desc);
1164
1165         return hns3vf_check_dev_specifications(hw);
1166 }
1167
1168 void
1169 hns3vf_update_push_lsc_cap(struct hns3_hw *hw, bool supported)
1170 {
1171         uint16_t val = supported ? HNS3_PF_PUSH_LSC_CAP_SUPPORTED :
1172                                    HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1173         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1174         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1175
1176         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1177                 __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1178                                           __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1179 }
1180
1181 static void
1182 hns3vf_get_push_lsc_cap(struct hns3_hw *hw)
1183 {
1184 #define HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS      500
1185
1186         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1187         int32_t remain_ms = HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS;
1188         uint16_t val = HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1189         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1190         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1191
1192         __atomic_store_n(&vf->pf_push_lsc_cap, HNS3_PF_PUSH_LSC_CAP_UNKNOWN,
1193                          __ATOMIC_RELEASE);
1194
1195         (void)hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1196                                 NULL, 0);
1197
1198         while (remain_ms > 0) {
1199                 rte_delay_ms(HNS3_POLL_RESPONE_MS);
1200                 if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) !=
1201                         HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1202                         break;
1203                 remain_ms--;
1204         }
1205
1206         /*
1207          * When exit above loop, the pf_push_lsc_cap could be one of the three
1208          * state: unknown (means pf not ack), not_supported, supported.
1209          * Here config it as 'not_supported' when it's 'unknown' state.
1210          */
1211         __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1212                                   __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1213
1214         if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) ==
1215                 HNS3_PF_PUSH_LSC_CAP_SUPPORTED) {
1216                 hns3_info(hw, "detect PF support push link status change!");
1217         } else {
1218                 /*
1219                  * Framework already set RTE_ETH_DEV_INTR_LSC bit because driver
1220                  * declared RTE_PCI_DRV_INTR_LSC in drv_flags. So here cleared
1221                  * the RTE_ETH_DEV_INTR_LSC capability.
1222                  */
1223                 dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
1224         }
1225 }
1226
1227 static int
1228 hns3vf_get_capability(struct hns3_hw *hw)
1229 {
1230         struct rte_pci_device *pci_dev;
1231         struct rte_eth_dev *eth_dev;
1232         uint8_t revision;
1233         int ret;
1234
1235         eth_dev = &rte_eth_devices[hw->data->port_id];
1236         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1237
1238         /* Get PCI revision id */
1239         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1240                                   HNS3_PCI_REVISION_ID);
1241         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1242                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1243                              ret);
1244                 return -EIO;
1245         }
1246         hw->revision = revision;
1247
1248         if (revision < PCI_REVISION_ID_HIP09_A) {
1249                 hns3vf_set_default_dev_specifications(hw);
1250                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1251                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1252                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1253                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
1254                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1255                 hw->rss_info.ipv6_sctp_offload_supported = false;
1256                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1257                 return 0;
1258         }
1259
1260         ret = hns3vf_query_dev_specifications(hw);
1261         if (ret) {
1262                 PMD_INIT_LOG(ERR,
1263                              "failed to query dev specifications, ret = %d",
1264                              ret);
1265                 return ret;
1266         }
1267
1268         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1269         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1270         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1271         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
1272         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1273         hw->rss_info.ipv6_sctp_offload_supported = true;
1274         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1275
1276         return 0;
1277 }
1278
1279 static int
1280 hns3vf_check_tqp_info(struct hns3_hw *hw)
1281 {
1282         if (hw->tqps_num == 0) {
1283                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1284                 return -EINVAL;
1285         }
1286
1287         if (hw->rss_size_max == 0) {
1288                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1289                 return -EINVAL;
1290         }
1291
1292         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1293
1294         return 0;
1295 }
1296
1297 static int
1298 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1299 {
1300         uint8_t resp_msg;
1301         int ret;
1302
1303         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1304                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1305                                 true, &resp_msg, sizeof(resp_msg));
1306         if (ret) {
1307                 if (ret == -ETIME) {
1308                         /*
1309                          * Getting current port based VLAN state from PF driver
1310                          * will not affect VF driver's basic function. Because
1311                          * the VF driver relies on hns3 PF kernel ether driver,
1312                          * to avoid introducing compatibility issues with older
1313                          * version of PF driver, no failure will be returned
1314                          * when the return value is ETIME. This return value has
1315                          * the following scenarios:
1316                          * 1) Firmware didn't return the results in time
1317                          * 2) the result return by firmware is timeout
1318                          * 3) the older version of kernel side PF driver does
1319                          *    not support this mailbox message.
1320                          * For scenarios 1 and 2, it is most likely that a
1321                          * hardware error has occurred, or a hardware reset has
1322                          * occurred. In this case, these errors will be caught
1323                          * by other functions.
1324                          */
1325                         PMD_INIT_LOG(WARNING,
1326                                 "failed to get PVID state for timeout, maybe "
1327                                 "kernel side PF driver doesn't support this "
1328                                 "mailbox message, or firmware didn't respond.");
1329                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1330                 } else {
1331                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1332                                 " ret = %d", ret);
1333                         return ret;
1334                 }
1335         }
1336         hw->port_base_vlan_cfg.state = resp_msg ?
1337                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1338         return 0;
1339 }
1340
1341 static int
1342 hns3vf_get_queue_info(struct hns3_hw *hw)
1343 {
1344 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1345         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1346         int ret;
1347
1348         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1349                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1350         if (ret) {
1351                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1352                 return ret;
1353         }
1354
1355         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1356         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1357
1358         return hns3vf_check_tqp_info(hw);
1359 }
1360
1361 static int
1362 hns3vf_get_queue_depth(struct hns3_hw *hw)
1363 {
1364 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1365         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1366         int ret;
1367
1368         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1369                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1370         if (ret) {
1371                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1372                              ret);
1373                 return ret;
1374         }
1375
1376         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1377         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1378
1379         return 0;
1380 }
1381
1382 static void
1383 hns3vf_update_caps(struct hns3_hw *hw, uint32_t caps)
1384 {
1385         if (hns3_get_bit(caps, HNS3VF_CAPS_VLAN_FLT_MOD_B))
1386                 hns3_set_bit(hw->capability,
1387                                 HNS3_DEV_SUPPORT_VF_VLAN_FLT_MOD_B, 1);
1388 }
1389
1390 static int
1391 hns3vf_get_num_tc(struct hns3_hw *hw)
1392 {
1393         uint8_t num_tc = 0;
1394         uint32_t i;
1395
1396         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1397                 if (hw->hw_tc_map & BIT(i))
1398                         num_tc++;
1399         }
1400         return num_tc;
1401 }
1402
1403 static int
1404 hns3vf_get_basic_info(struct hns3_hw *hw)
1405 {
1406         uint8_t resp_msg[HNS3_MBX_MAX_RESP_DATA_SIZE];
1407         struct hns3_basic_info *basic_info;
1408         int ret;
1409
1410         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_BASIC_INFO, 0, NULL, 0,
1411                                 true, resp_msg, sizeof(resp_msg));
1412         if (ret) {
1413                 hns3_err(hw, "failed to get basic info from PF, ret = %d.",
1414                                 ret);
1415                 return ret;
1416         }
1417
1418         basic_info = (struct hns3_basic_info *)resp_msg;
1419         hw->hw_tc_map = basic_info->hw_tc_map;
1420         hw->num_tc = hns3vf_get_num_tc(hw);
1421         hw->pf_vf_if_version = basic_info->pf_vf_if_version;
1422         hns3vf_update_caps(hw, basic_info->caps);
1423
1424         return 0;
1425 }
1426
1427 static int
1428 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1429 {
1430         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1431         int ret;
1432
1433         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1434                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1435         if (ret) {
1436                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1437                 return ret;
1438         }
1439
1440         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1441
1442         return 0;
1443 }
1444
1445 static int
1446 hns3vf_get_configuration(struct hns3_hw *hw)
1447 {
1448         int ret;
1449
1450         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1451         hw->rss_dis_flag = false;
1452
1453         /* Get device capability */
1454         ret = hns3vf_get_capability(hw);
1455         if (ret) {
1456                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1457                 return ret;
1458         }
1459
1460         hns3vf_get_push_lsc_cap(hw);
1461
1462         /* Get basic info from PF */
1463         ret = hns3vf_get_basic_info(hw);
1464         if (ret)
1465                 return ret;
1466
1467         /* Get queue configuration from PF */
1468         ret = hns3vf_get_queue_info(hw);
1469         if (ret)
1470                 return ret;
1471
1472         /* Get queue depth info from PF */
1473         ret = hns3vf_get_queue_depth(hw);
1474         if (ret)
1475                 return ret;
1476
1477         /* Get user defined VF MAC addr from PF */
1478         ret = hns3vf_get_host_mac_addr(hw);
1479         if (ret)
1480                 return ret;
1481
1482         return hns3vf_get_port_base_vlan_filter_state(hw);
1483 }
1484
1485 static int
1486 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1487                             uint16_t nb_tx_q)
1488 {
1489         struct hns3_hw *hw = &hns->hw;
1490
1491         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1492 }
1493
1494 static void
1495 hns3vf_request_link_info(struct hns3_hw *hw)
1496 {
1497         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1498         bool send_req;
1499         int ret;
1500
1501         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1502                 return;
1503
1504         send_req = vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED ||
1505                    vf->req_link_info_cnt > 0;
1506         if (!send_req)
1507                 return;
1508
1509         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1510                                 NULL, 0);
1511         if (ret) {
1512                 hns3_err(hw, "failed to fetch link status, ret = %d", ret);
1513                 return;
1514         }
1515
1516         if (vf->req_link_info_cnt > 0)
1517                 vf->req_link_info_cnt--;
1518 }
1519
1520 void
1521 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1522                           uint32_t link_speed, uint8_t link_duplex)
1523 {
1524         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1525         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1526         struct hns3_mac *mac = &hw->mac;
1527         int ret;
1528
1529         /*
1530          * PF kernel driver may push link status when VF driver is in resetting,
1531          * driver will stop polling job in this case, after resetting done
1532          * driver will start polling job again.
1533          * When polling job started, driver will get initial link status by
1534          * sending request to PF kernel driver, then could update link status by
1535          * process PF kernel driver's link status mailbox message.
1536          */
1537         if (!__atomic_load_n(&vf->poll_job_started, __ATOMIC_RELAXED))
1538                 return;
1539
1540         if (hw->adapter_state != HNS3_NIC_STARTED)
1541                 return;
1542
1543         mac->link_status = link_status;
1544         mac->link_speed = link_speed;
1545         mac->link_duplex = link_duplex;
1546         ret = hns3vf_dev_link_update(dev, 0);
1547         if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
1548                 hns3_start_report_lse(dev);
1549 }
1550
1551 static int
1552 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1553 {
1554 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1555         struct hns3_hw *hw = &hns->hw;
1556         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1557         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1558         uint8_t is_kill = on ? 0 : 1;
1559
1560         msg_data[0] = is_kill;
1561         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1562         memcpy(&msg_data[3], &proto, sizeof(proto));
1563
1564         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1565                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1566                                  0);
1567 }
1568
1569 static int
1570 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1571 {
1572         struct hns3_adapter *hns = dev->data->dev_private;
1573         struct hns3_hw *hw = &hns->hw;
1574         int ret;
1575
1576         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1577                 hns3_err(hw,
1578                          "vf set vlan id failed during resetting, vlan_id =%u",
1579                          vlan_id);
1580                 return -EIO;
1581         }
1582         rte_spinlock_lock(&hw->lock);
1583         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1584         rte_spinlock_unlock(&hw->lock);
1585         if (ret)
1586                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1587                          vlan_id, ret);
1588
1589         return ret;
1590 }
1591
1592 static int
1593 hns3vf_en_vlan_filter(struct hns3_hw *hw, bool enable)
1594 {
1595         uint8_t msg_data;
1596         int ret;
1597
1598         if (!hns3_dev_get_support(hw, VF_VLAN_FLT_MOD))
1599                 return 0;
1600
1601         msg_data = enable ? 1 : 0;
1602         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1603                         HNS3_MBX_ENABLE_VLAN_FILTER, &msg_data,
1604                         sizeof(msg_data), true, NULL, 0);
1605         if (ret)
1606                 hns3_err(hw, "%s vlan filter failed, ret = %d.",
1607                                 enable ? "enable" : "disable", ret);
1608
1609         return ret;
1610 }
1611
1612 static int
1613 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1614 {
1615         uint8_t msg_data;
1616         int ret;
1617
1618         msg_data = enable ? 1 : 0;
1619         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1620                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1621         if (ret)
1622                 hns3_err(hw, "vf %s strip failed, ret = %d.",
1623                                 enable ? "enable" : "disable", ret);
1624
1625         return ret;
1626 }
1627
1628 static int
1629 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1630 {
1631         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1632         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1633         unsigned int tmp_mask;
1634         int ret = 0;
1635
1636         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1637                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1638                              "mask = 0x%x", mask);
1639                 return -EIO;
1640         }
1641
1642         tmp_mask = (unsigned int)mask;
1643
1644         if (tmp_mask & ETH_VLAN_FILTER_MASK) {
1645                 rte_spinlock_lock(&hw->lock);
1646                 /* Enable or disable VLAN filter */
1647                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1648                         ret = hns3vf_en_vlan_filter(hw, true);
1649                 else
1650                         ret = hns3vf_en_vlan_filter(hw, false);
1651                 rte_spinlock_unlock(&hw->lock);
1652                 if (ret)
1653                         return ret;
1654         }
1655
1656         /* Vlan stripping setting */
1657         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1658                 rte_spinlock_lock(&hw->lock);
1659                 /* Enable or disable VLAN stripping */
1660                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1661                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1662                 else
1663                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1664                 rte_spinlock_unlock(&hw->lock);
1665         }
1666
1667         return ret;
1668 }
1669
1670 static int
1671 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1672 {
1673         struct rte_vlan_filter_conf *vfc;
1674         struct hns3_hw *hw = &hns->hw;
1675         uint16_t vlan_id;
1676         uint64_t vbit;
1677         uint64_t ids;
1678         int ret = 0;
1679         uint32_t i;
1680
1681         vfc = &hw->data->vlan_filter_conf;
1682         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1683                 if (vfc->ids[i] == 0)
1684                         continue;
1685                 ids = vfc->ids[i];
1686                 while (ids) {
1687                         /*
1688                          * 64 means the num bits of ids, one bit corresponds to
1689                          * one vlan id
1690                          */
1691                         vlan_id = 64 * i;
1692                         /* count trailing zeroes */
1693                         vbit = ~ids & (ids - 1);
1694                         /* clear least significant bit set */
1695                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1696                         for (; vbit;) {
1697                                 vbit >>= 1;
1698                                 vlan_id++;
1699                         }
1700                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1701                         if (ret) {
1702                                 hns3_err(hw,
1703                                          "VF handle vlan table failed, ret =%d, on = %d",
1704                                          ret, on);
1705                                 return ret;
1706                         }
1707                 }
1708         }
1709
1710         return ret;
1711 }
1712
1713 static int
1714 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1715 {
1716         return hns3vf_handle_all_vlan_table(hns, 0);
1717 }
1718
1719 static int
1720 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1721 {
1722         struct hns3_hw *hw = &hns->hw;
1723         struct rte_eth_conf *dev_conf;
1724         bool en;
1725         int ret;
1726
1727         dev_conf = &hw->data->dev_conf;
1728         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1729                                                                    : false;
1730         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1731         if (ret)
1732                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1733                          ret);
1734         return ret;
1735 }
1736
1737 static int
1738 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1739 {
1740         struct hns3_adapter *hns = dev->data->dev_private;
1741         struct rte_eth_dev_data *data = dev->data;
1742         struct hns3_hw *hw = &hns->hw;
1743         int ret;
1744
1745         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1746             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1747             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1748                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1749                               "or hw_vlan_insert_pvid is not support!");
1750         }
1751
1752         /* Apply vlan offload setting */
1753         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK |
1754                                         ETH_VLAN_FILTER_MASK);
1755         if (ret)
1756                 hns3_err(hw, "dev config vlan offload failed, ret = %d.", ret);
1757
1758         return ret;
1759 }
1760
1761 static int
1762 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1763 {
1764         uint8_t msg_data;
1765
1766         msg_data = alive ? 1 : 0;
1767         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1768                                  sizeof(msg_data), false, NULL, 0);
1769 }
1770
1771 static void
1772 hns3vf_keep_alive_handler(void *param)
1773 {
1774         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1775         struct hns3_adapter *hns = eth_dev->data->dev_private;
1776         struct hns3_hw *hw = &hns->hw;
1777         int ret;
1778
1779         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1780                                 false, NULL, 0);
1781         if (ret)
1782                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1783                          ret);
1784
1785         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1786                           eth_dev);
1787 }
1788
1789 static void
1790 hns3vf_service_handler(void *param)
1791 {
1792         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1793         struct hns3_adapter *hns = eth_dev->data->dev_private;
1794         struct hns3_hw *hw = &hns->hw;
1795
1796         /*
1797          * The query link status and reset processing are executed in the
1798          * interrupt thread. When the IMP reset occurs, IMP will not respond,
1799          * and the query operation will timeout after 30ms. In the case of
1800          * multiple PF/VFs, each query failure timeout causes the IMP reset
1801          * interrupt to fail to respond within 100ms.
1802          * Before querying the link status, check whether there is a reset
1803          * pending, and if so, abandon the query.
1804          */
1805         if (!hns3vf_is_reset_pending(hns))
1806                 hns3vf_request_link_info(hw);
1807         else
1808                 hns3_warn(hw, "Cancel the query when reset is pending");
1809
1810         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1811                           eth_dev);
1812 }
1813
1814 static void
1815 hns3vf_start_poll_job(struct rte_eth_dev *dev)
1816 {
1817 #define HNS3_REQUEST_LINK_INFO_REMAINS_CNT      3
1818
1819         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1820
1821         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_SUPPORTED)
1822                 vf->req_link_info_cnt = HNS3_REQUEST_LINK_INFO_REMAINS_CNT;
1823
1824         __atomic_store_n(&vf->poll_job_started, 1, __ATOMIC_RELAXED);
1825
1826         hns3vf_service_handler(dev);
1827 }
1828
1829 static void
1830 hns3vf_stop_poll_job(struct rte_eth_dev *dev)
1831 {
1832         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1833
1834         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1835
1836         __atomic_store_n(&vf->poll_job_started, 0, __ATOMIC_RELAXED);
1837 }
1838
1839 static int
1840 hns3_query_vf_resource(struct hns3_hw *hw)
1841 {
1842         struct hns3_vf_res_cmd *req;
1843         struct hns3_cmd_desc desc;
1844         uint16_t num_msi;
1845         int ret;
1846
1847         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1848         ret = hns3_cmd_send(hw, &desc, 1);
1849         if (ret) {
1850                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1851                 return ret;
1852         }
1853
1854         req = (struct hns3_vf_res_cmd *)desc.data;
1855         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1856                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1857         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1858                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1859                          num_msi, HNS3_MIN_VECTOR_NUM);
1860                 return -EINVAL;
1861         }
1862
1863         hw->num_msi = num_msi;
1864
1865         return 0;
1866 }
1867
1868 static int
1869 hns3vf_init_hardware(struct hns3_adapter *hns)
1870 {
1871         struct hns3_hw *hw = &hns->hw;
1872         uint16_t mtu = hw->data->mtu;
1873         int ret;
1874
1875         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1876         if (ret)
1877                 return ret;
1878
1879         ret = hns3vf_config_mtu(hw, mtu);
1880         if (ret)
1881                 goto err_init_hardware;
1882
1883         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1884         if (ret) {
1885                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1886                 goto err_init_hardware;
1887         }
1888
1889         ret = hns3_config_gro(hw, false);
1890         if (ret) {
1891                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1892                 goto err_init_hardware;
1893         }
1894
1895         /*
1896          * In the initialization clearing the all hardware mapping relationship
1897          * configurations between queues and interrupt vectors is needed, so
1898          * some error caused by the residual configurations, such as the
1899          * unexpected interrupt, can be avoid.
1900          */
1901         ret = hns3vf_init_ring_with_vector(hw);
1902         if (ret) {
1903                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1904                 goto err_init_hardware;
1905         }
1906
1907         return 0;
1908
1909 err_init_hardware:
1910         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1911         return ret;
1912 }
1913
1914 static int
1915 hns3vf_clear_vport_list(struct hns3_hw *hw)
1916 {
1917         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1918                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1919                                  NULL, 0);
1920 }
1921
1922 static int
1923 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1924 {
1925         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1926         struct hns3_adapter *hns = eth_dev->data->dev_private;
1927         struct hns3_hw *hw = &hns->hw;
1928         int ret;
1929
1930         PMD_INIT_FUNC_TRACE();
1931
1932         /* Get hardware io base address from pcie BAR2 IO space */
1933         hw->io_base = pci_dev->mem_resource[2].addr;
1934
1935         /* Firmware command queue initialize */
1936         ret = hns3_cmd_init_queue(hw);
1937         if (ret) {
1938                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1939                 goto err_cmd_init_queue;
1940         }
1941
1942         /* Firmware command initialize */
1943         ret = hns3_cmd_init(hw);
1944         if (ret) {
1945                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1946                 goto err_cmd_init;
1947         }
1948
1949         hns3_tx_push_init(eth_dev);
1950
1951         /* Get VF resource */
1952         ret = hns3_query_vf_resource(hw);
1953         if (ret)
1954                 goto err_cmd_init;
1955
1956         rte_spinlock_init(&hw->mbx_resp.lock);
1957
1958         hns3vf_clear_event_cause(hw, 0);
1959
1960         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1961                                          hns3vf_interrupt_handler, eth_dev);
1962         if (ret) {
1963                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1964                 goto err_intr_callback_register;
1965         }
1966
1967         /* Enable interrupt */
1968         rte_intr_enable(&pci_dev->intr_handle);
1969         hns3vf_enable_irq0(hw);
1970
1971         /* Get configuration from PF */
1972         ret = hns3vf_get_configuration(hw);
1973         if (ret) {
1974                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1975                 goto err_get_config;
1976         }
1977
1978         ret = hns3_tqp_stats_init(hw);
1979         if (ret)
1980                 goto err_get_config;
1981
1982         /* Hardware statistics of imissed registers cleared. */
1983         ret = hns3_update_imissed_stats(hw, true);
1984         if (ret) {
1985                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
1986                 goto err_set_tc_queue;
1987         }
1988
1989         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1990         if (ret) {
1991                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1992                 goto err_set_tc_queue;
1993         }
1994
1995         ret = hns3vf_clear_vport_list(hw);
1996         if (ret) {
1997                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1998                 goto err_set_tc_queue;
1999         }
2000
2001         ret = hns3vf_init_hardware(hns);
2002         if (ret)
2003                 goto err_set_tc_queue;
2004
2005         hns3_rss_set_default_args(hw);
2006
2007         ret = hns3vf_set_alive(hw, true);
2008         if (ret) {
2009                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
2010                 goto err_set_tc_queue;
2011         }
2012
2013         return 0;
2014
2015 err_set_tc_queue:
2016         hns3_tqp_stats_uninit(hw);
2017
2018 err_get_config:
2019         hns3vf_disable_irq0(hw);
2020         rte_intr_disable(&pci_dev->intr_handle);
2021         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2022                              eth_dev);
2023 err_intr_callback_register:
2024 err_cmd_init:
2025         hns3_cmd_uninit(hw);
2026         hns3_cmd_destroy_queue(hw);
2027 err_cmd_init_queue:
2028         hw->io_base = NULL;
2029
2030         return ret;
2031 }
2032
2033 static void
2034 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
2035 {
2036         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2037         struct hns3_adapter *hns = eth_dev->data->dev_private;
2038         struct hns3_hw *hw = &hns->hw;
2039
2040         PMD_INIT_FUNC_TRACE();
2041
2042         hns3_rss_uninit(hns);
2043         (void)hns3_config_gro(hw, false);
2044         (void)hns3vf_set_alive(hw, false);
2045         (void)hns3vf_set_promisc_mode(hw, false, false, false);
2046         hns3_flow_uninit(eth_dev);
2047         hns3_tqp_stats_uninit(hw);
2048         hns3vf_disable_irq0(hw);
2049         rte_intr_disable(&pci_dev->intr_handle);
2050         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2051                              eth_dev);
2052         hns3_cmd_uninit(hw);
2053         hns3_cmd_destroy_queue(hw);
2054         hw->io_base = NULL;
2055 }
2056
2057 static int
2058 hns3vf_do_stop(struct hns3_adapter *hns)
2059 {
2060         struct hns3_hw *hw = &hns->hw;
2061         int ret;
2062
2063         hw->mac.link_status = ETH_LINK_DOWN;
2064
2065         /*
2066          * The "hns3vf_do_stop" function will also be called by .stop_service to
2067          * prepare reset. At the time of global or IMP reset, the command cannot
2068          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
2069          * accessed during the reset process. So the mbuf can not be released
2070          * during reset and is required to be released after the reset is
2071          * completed.
2072          */
2073         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
2074                 hns3_dev_release_mbufs(hns);
2075
2076         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
2077                 hns3vf_configure_mac_addr(hns, true);
2078                 ret = hns3_reset_all_tqps(hns);
2079                 if (ret) {
2080                         hns3_err(hw, "failed to reset all queues ret = %d",
2081                                  ret);
2082                         return ret;
2083                 }
2084         }
2085         return 0;
2086 }
2087
2088 static void
2089 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
2090 {
2091         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2092         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2093         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2094         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2095         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2096         uint16_t q_id;
2097
2098         if (dev->data->dev_conf.intr_conf.rxq == 0)
2099                 return;
2100
2101         /* unmap the ring with vector */
2102         if (rte_intr_allow_others(intr_handle)) {
2103                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2104                 base = RTE_INTR_VEC_RXTX_OFFSET;
2105         }
2106         if (rte_intr_dp_is_en(intr_handle)) {
2107                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2108                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
2109                                                            HNS3_RING_TYPE_RX,
2110                                                            q_id);
2111                         if (vec < base + intr_handle->nb_efd - 1)
2112                                 vec++;
2113                 }
2114         }
2115         /* Clean datapath event and queue/vec mapping */
2116         rte_intr_efd_disable(intr_handle);
2117         if (intr_handle->intr_vec) {
2118                 rte_free(intr_handle->intr_vec);
2119                 intr_handle->intr_vec = NULL;
2120         }
2121 }
2122
2123 static int
2124 hns3vf_dev_stop(struct rte_eth_dev *dev)
2125 {
2126         struct hns3_adapter *hns = dev->data->dev_private;
2127         struct hns3_hw *hw = &hns->hw;
2128
2129         PMD_INIT_FUNC_TRACE();
2130         dev->data->dev_started = 0;
2131
2132         hw->adapter_state = HNS3_NIC_STOPPING;
2133         hns3_set_rxtx_function(dev);
2134         rte_wmb();
2135         /* Disable datapath on secondary process. */
2136         hns3_mp_req_stop_rxtx(dev);
2137         /* Prevent crashes when queues are still in use. */
2138         rte_delay_ms(hw->cfg_max_queues);
2139
2140         rte_spinlock_lock(&hw->lock);
2141         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
2142                 hns3_stop_tqps(hw);
2143                 hns3vf_do_stop(hns);
2144                 hns3vf_unmap_rx_interrupt(dev);
2145                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2146         }
2147         hns3_rx_scattered_reset(dev);
2148         hns3vf_stop_poll_job(dev);
2149         hns3_stop_report_lse(dev);
2150         rte_spinlock_unlock(&hw->lock);
2151
2152         return 0;
2153 }
2154
2155 static int
2156 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
2157 {
2158         struct hns3_adapter *hns = eth_dev->data->dev_private;
2159         struct hns3_hw *hw = &hns->hw;
2160         int ret = 0;
2161
2162         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2163                 return 0;
2164
2165         if (hw->adapter_state == HNS3_NIC_STARTED)
2166                 ret = hns3vf_dev_stop(eth_dev);
2167
2168         hw->adapter_state = HNS3_NIC_CLOSING;
2169         hns3_reset_abort(hns);
2170         hw->adapter_state = HNS3_NIC_CLOSED;
2171         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
2172         hns3vf_configure_all_mc_mac_addr(hns, true);
2173         hns3vf_remove_all_vlan_table(hns);
2174         hns3vf_uninit_vf(eth_dev);
2175         hns3_free_all_queues(eth_dev);
2176         rte_free(hw->reset.wait_data);
2177         hns3_mp_uninit_primary();
2178         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2179
2180         return ret;
2181 }
2182
2183 static int
2184 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2185                       size_t fw_size)
2186 {
2187         struct hns3_adapter *hns = eth_dev->data->dev_private;
2188         struct hns3_hw *hw = &hns->hw;
2189         uint32_t version = hw->fw_version;
2190         int ret;
2191
2192         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2193                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2194                                       HNS3_FW_VERSION_BYTE3_S),
2195                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2196                                       HNS3_FW_VERSION_BYTE2_S),
2197                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2198                                       HNS3_FW_VERSION_BYTE1_S),
2199                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2200                                       HNS3_FW_VERSION_BYTE0_S));
2201         if (ret < 0)
2202                 return -EINVAL;
2203
2204         ret += 1; /* add the size of '\0' */
2205         if (fw_size < (size_t)ret)
2206                 return ret;
2207         else
2208                 return 0;
2209 }
2210
2211 static int
2212 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2213                        __rte_unused int wait_to_complete)
2214 {
2215         struct hns3_adapter *hns = eth_dev->data->dev_private;
2216         struct hns3_hw *hw = &hns->hw;
2217         struct hns3_mac *mac = &hw->mac;
2218         struct rte_eth_link new_link;
2219
2220         memset(&new_link, 0, sizeof(new_link));
2221         switch (mac->link_speed) {
2222         case ETH_SPEED_NUM_10M:
2223         case ETH_SPEED_NUM_100M:
2224         case ETH_SPEED_NUM_1G:
2225         case ETH_SPEED_NUM_10G:
2226         case ETH_SPEED_NUM_25G:
2227         case ETH_SPEED_NUM_40G:
2228         case ETH_SPEED_NUM_50G:
2229         case ETH_SPEED_NUM_100G:
2230         case ETH_SPEED_NUM_200G:
2231                 if (mac->link_status)
2232                         new_link.link_speed = mac->link_speed;
2233                 break;
2234         default:
2235                 if (mac->link_status)
2236                         new_link.link_speed = ETH_SPEED_NUM_UNKNOWN;
2237                 break;
2238         }
2239
2240         if (!mac->link_status)
2241                 new_link.link_speed = ETH_SPEED_NUM_NONE;
2242
2243         new_link.link_duplex = mac->link_duplex;
2244         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2245         new_link.link_autoneg =
2246             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2247
2248         return rte_eth_linkstatus_set(eth_dev, &new_link);
2249 }
2250
2251 static int
2252 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2253 {
2254         struct hns3_hw *hw = &hns->hw;
2255         uint16_t nb_rx_q = hw->data->nb_rx_queues;
2256         uint16_t nb_tx_q = hw->data->nb_tx_queues;
2257         int ret;
2258
2259         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2260         if (ret)
2261                 return ret;
2262
2263         hns3_enable_rxd_adv_layout(hw);
2264
2265         ret = hns3_init_queues(hns, reset_queue);
2266         if (ret)
2267                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2268
2269         return ret;
2270 }
2271
2272 static int
2273 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2274 {
2275         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2276         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2277         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2278         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2279         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2280         uint32_t intr_vector;
2281         uint16_t q_id;
2282         int ret;
2283
2284         /*
2285          * hns3 needs a separate interrupt to be used as event interrupt which
2286          * could not be shared with task queue pair, so KERNEL drivers need
2287          * support multiple interrupt vectors.
2288          */
2289         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
2290             !rte_intr_cap_multiple(intr_handle))
2291                 return 0;
2292
2293         rte_intr_disable(intr_handle);
2294         intr_vector = hw->used_rx_queues;
2295         /* It creates event fd for each intr vector when MSIX is used */
2296         if (rte_intr_efd_enable(intr_handle, intr_vector))
2297                 return -EINVAL;
2298
2299         if (intr_handle->intr_vec == NULL) {
2300                 intr_handle->intr_vec =
2301                         rte_zmalloc("intr_vec",
2302                                     hw->used_rx_queues * sizeof(int), 0);
2303                 if (intr_handle->intr_vec == NULL) {
2304                         hns3_err(hw, "Failed to allocate %u rx_queues"
2305                                      " intr_vec", hw->used_rx_queues);
2306                         ret = -ENOMEM;
2307                         goto vf_alloc_intr_vec_error;
2308                 }
2309         }
2310
2311         if (rte_intr_allow_others(intr_handle)) {
2312                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2313                 base = RTE_INTR_VEC_RXTX_OFFSET;
2314         }
2315
2316         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2317                 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2318                                                    HNS3_RING_TYPE_RX, q_id);
2319                 if (ret)
2320                         goto vf_bind_vector_error;
2321                 intr_handle->intr_vec[q_id] = vec;
2322                 /*
2323                  * If there are not enough efds (e.g. not enough interrupt),
2324                  * remaining queues will be bond to the last interrupt.
2325                  */
2326                 if (vec < base + intr_handle->nb_efd - 1)
2327                         vec++;
2328         }
2329         rte_intr_enable(intr_handle);
2330         return 0;
2331
2332 vf_bind_vector_error:
2333         rte_free(intr_handle->intr_vec);
2334         intr_handle->intr_vec = NULL;
2335 vf_alloc_intr_vec_error:
2336         rte_intr_efd_disable(intr_handle);
2337         return ret;
2338 }
2339
2340 static int
2341 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2342 {
2343         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2344         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2345         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2346         uint16_t q_id;
2347         int ret;
2348
2349         if (dev->data->dev_conf.intr_conf.rxq == 0)
2350                 return 0;
2351
2352         if (rte_intr_dp_is_en(intr_handle)) {
2353                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2354                         ret = hns3vf_bind_ring_with_vector(hw,
2355                                         intr_handle->intr_vec[q_id], true,
2356                                         HNS3_RING_TYPE_RX, q_id);
2357                         if (ret)
2358                                 return ret;
2359                 }
2360         }
2361
2362         return 0;
2363 }
2364
2365 static void
2366 hns3vf_restore_filter(struct rte_eth_dev *dev)
2367 {
2368         hns3_restore_rss_filter(dev);
2369 }
2370
2371 static int
2372 hns3vf_dev_start(struct rte_eth_dev *dev)
2373 {
2374         struct hns3_adapter *hns = dev->data->dev_private;
2375         struct hns3_hw *hw = &hns->hw;
2376         int ret;
2377
2378         PMD_INIT_FUNC_TRACE();
2379         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
2380                 return -EBUSY;
2381
2382         rte_spinlock_lock(&hw->lock);
2383         hw->adapter_state = HNS3_NIC_STARTING;
2384         ret = hns3vf_do_start(hns, true);
2385         if (ret) {
2386                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2387                 rte_spinlock_unlock(&hw->lock);
2388                 return ret;
2389         }
2390         ret = hns3vf_map_rx_interrupt(dev);
2391         if (ret)
2392                 goto map_rx_inter_err;
2393
2394         /*
2395          * There are three register used to control the status of a TQP
2396          * (contains a pair of Tx queue and Rx queue) in the new version network
2397          * engine. One is used to control the enabling of Tx queue, the other is
2398          * used to control the enabling of Rx queue, and the last is the master
2399          * switch used to control the enabling of the tqp. The Tx register and
2400          * TQP register must be enabled at the same time to enable a Tx queue.
2401          * The same applies to the Rx queue. For the older network enginem, this
2402          * function only refresh the enabled flag, and it is used to update the
2403          * status of queue in the dpdk framework.
2404          */
2405         ret = hns3_start_all_txqs(dev);
2406         if (ret)
2407                 goto map_rx_inter_err;
2408
2409         ret = hns3_start_all_rxqs(dev);
2410         if (ret)
2411                 goto start_all_rxqs_fail;
2412
2413         hw->adapter_state = HNS3_NIC_STARTED;
2414         rte_spinlock_unlock(&hw->lock);
2415
2416         hns3_rx_scattered_calc(dev);
2417         hns3_set_rxtx_function(dev);
2418         hns3_mp_req_start_rxtx(dev);
2419
2420         hns3vf_restore_filter(dev);
2421
2422         /* Enable interrupt of all rx queues before enabling queues */
2423         hns3_dev_all_rx_queue_intr_enable(hw, true);
2424         hns3_start_tqps(hw);
2425
2426         if (dev->data->dev_conf.intr_conf.lsc != 0)
2427                 hns3vf_dev_link_update(dev, 0);
2428         hns3vf_start_poll_job(dev);
2429
2430         return ret;
2431
2432 start_all_rxqs_fail:
2433         hns3_stop_all_txqs(dev);
2434 map_rx_inter_err:
2435         (void)hns3vf_do_stop(hns);
2436         hw->adapter_state = HNS3_NIC_CONFIGURED;
2437         rte_spinlock_unlock(&hw->lock);
2438
2439         return ret;
2440 }
2441
2442 static bool
2443 is_vf_reset_done(struct hns3_hw *hw)
2444 {
2445 #define HNS3_FUN_RST_ING_BITS \
2446         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2447          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2448          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2449          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2450
2451         uint32_t val;
2452
2453         if (hw->reset.level == HNS3_VF_RESET) {
2454                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2455                 if (val & HNS3_VF_RST_ING_BIT)
2456                         return false;
2457         } else {
2458                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2459                 if (val & HNS3_FUN_RST_ING_BITS)
2460                         return false;
2461         }
2462         return true;
2463 }
2464
2465 bool
2466 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2467 {
2468         struct hns3_hw *hw = &hns->hw;
2469         enum hns3_reset_level reset;
2470
2471         /*
2472          * According to the protocol of PCIe, FLR to a PF device resets the PF
2473          * state as well as the SR-IOV extended capability including VF Enable
2474          * which means that VFs no longer exist.
2475          *
2476          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2477          * is in FLR stage, the register state of VF device is not reliable,
2478          * so register states detection can not be carried out. In this case,
2479          * we just ignore the register states and return false to indicate that
2480          * there are no other reset states that need to be processed by driver.
2481          */
2482         if (hw->reset.level == HNS3_VF_FULL_RESET)
2483                 return false;
2484
2485         /* Check the registers to confirm whether there is reset pending */
2486         hns3vf_check_event_cause(hns, NULL);
2487         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2488         if (hw->reset.level != HNS3_NONE_RESET && reset != HNS3_NONE_RESET &&
2489             hw->reset.level < reset) {
2490                 hns3_warn(hw, "High level reset %d is pending", reset);
2491                 return true;
2492         }
2493         return false;
2494 }
2495
2496 static int
2497 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2498 {
2499         struct hns3_hw *hw = &hns->hw;
2500         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2501         struct timeval tv;
2502
2503         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2504                 /*
2505                  * After vf reset is ready, the PF may not have completed
2506                  * the reset processing. The vf sending mbox to PF may fail
2507                  * during the pf reset, so it is better to add extra delay.
2508                  */
2509                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2510                     hw->reset.level == HNS3_FLR_RESET)
2511                         return 0;
2512                 /* Reset retry process, no need to add extra delay. */
2513                 if (hw->reset.attempts)
2514                         return 0;
2515                 if (wait_data->check_completion == NULL)
2516                         return 0;
2517
2518                 wait_data->check_completion = NULL;
2519                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2520                 wait_data->count = 1;
2521                 wait_data->result = HNS3_WAIT_REQUEST;
2522                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2523                                   wait_data);
2524                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2525                 return -EAGAIN;
2526         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2527                 hns3_clock_gettime(&tv);
2528                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2529                           tv.tv_sec, tv.tv_usec);
2530                 return -ETIME;
2531         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2532                 return -EAGAIN;
2533
2534         wait_data->hns = hns;
2535         wait_data->check_completion = is_vf_reset_done;
2536         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2537                                 HNS3VF_RESET_WAIT_MS + hns3_clock_gettime_ms();
2538         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2539         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2540         wait_data->result = HNS3_WAIT_REQUEST;
2541         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2542         return -EAGAIN;
2543 }
2544
2545 static int
2546 hns3vf_prepare_reset(struct hns3_adapter *hns)
2547 {
2548         struct hns3_hw *hw = &hns->hw;
2549         int ret;
2550
2551         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2552                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2553                                         0, true, NULL, 0);
2554                 if (ret)
2555                         return ret;
2556         }
2557         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
2558
2559         return 0;
2560 }
2561
2562 static int
2563 hns3vf_stop_service(struct hns3_adapter *hns)
2564 {
2565         struct hns3_hw *hw = &hns->hw;
2566         struct rte_eth_dev *eth_dev;
2567
2568         eth_dev = &rte_eth_devices[hw->data->port_id];
2569         if (hw->adapter_state == HNS3_NIC_STARTED) {
2570                 /*
2571                  * Make sure call update link status before hns3vf_stop_poll_job
2572                  * because update link status depend on polling job exist.
2573                  */
2574                 hns3vf_update_link_status(hw, ETH_LINK_DOWN, hw->mac.link_speed,
2575                                           hw->mac.link_duplex);
2576                 hns3vf_stop_poll_job(eth_dev);
2577         }
2578         hw->mac.link_status = ETH_LINK_DOWN;
2579
2580         hns3_set_rxtx_function(eth_dev);
2581         rte_wmb();
2582         /* Disable datapath on secondary process. */
2583         hns3_mp_req_stop_rxtx(eth_dev);
2584         rte_delay_ms(hw->cfg_max_queues);
2585
2586         rte_spinlock_lock(&hw->lock);
2587         if (hw->adapter_state == HNS3_NIC_STARTED ||
2588             hw->adapter_state == HNS3_NIC_STOPPING) {
2589                 hns3_enable_all_queues(hw, false);
2590                 hns3vf_do_stop(hns);
2591                 hw->reset.mbuf_deferred_free = true;
2592         } else
2593                 hw->reset.mbuf_deferred_free = false;
2594
2595         /*
2596          * It is cumbersome for hardware to pick-and-choose entries for deletion
2597          * from table space. Hence, for function reset software intervention is
2598          * required to delete the entries.
2599          */
2600         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
2601                 hns3vf_configure_all_mc_mac_addr(hns, true);
2602         rte_spinlock_unlock(&hw->lock);
2603
2604         return 0;
2605 }
2606
2607 static int
2608 hns3vf_start_service(struct hns3_adapter *hns)
2609 {
2610         struct hns3_hw *hw = &hns->hw;
2611         struct rte_eth_dev *eth_dev;
2612
2613         eth_dev = &rte_eth_devices[hw->data->port_id];
2614         hns3_set_rxtx_function(eth_dev);
2615         hns3_mp_req_start_rxtx(eth_dev);
2616         if (hw->adapter_state == HNS3_NIC_STARTED) {
2617                 hns3vf_start_poll_job(eth_dev);
2618
2619                 /* Enable interrupt of all rx queues before enabling queues */
2620                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2621                 /*
2622                  * Enable state of each rxq and txq will be recovered after
2623                  * reset, so we need to restore them before enable all tqps;
2624                  */
2625                 hns3_restore_tqp_enable_state(hw);
2626                 /*
2627                  * When finished the initialization, enable queues to receive
2628                  * and transmit packets.
2629                  */
2630                 hns3_enable_all_queues(hw, true);
2631         }
2632
2633         return 0;
2634 }
2635
2636 static int
2637 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2638 {
2639         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2640         struct rte_ether_addr *hw_mac;
2641         int ret;
2642
2643         /*
2644          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2645          * on the host by "ip link set ..." command. If the hns3 PF kernel
2646          * ethdev driver sets the MAC address for VF device after the
2647          * initialization of the related VF device, the PF driver will notify
2648          * VF driver to reset VF device to make the new MAC address effective
2649          * immediately. The hns3 VF PMD driver should check whether the MAC
2650          * address has been changed by the PF kernel ethdev driver, if changed
2651          * VF driver should configure hardware using the new MAC address in the
2652          * recovering hardware configuration stage of the reset process.
2653          */
2654         ret = hns3vf_get_host_mac_addr(hw);
2655         if (ret)
2656                 return ret;
2657
2658         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2659         ret = rte_is_zero_ether_addr(hw_mac);
2660         if (ret) {
2661                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2662         } else {
2663                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2664                 if (!ret) {
2665                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2666                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2667                                               &hw->data->mac_addrs[0]);
2668                         hns3_warn(hw, "Default MAC address has been changed to:"
2669                                   " %s by the host PF kernel ethdev driver",
2670                                   mac_str);
2671                 }
2672         }
2673
2674         return 0;
2675 }
2676
2677 static int
2678 hns3vf_restore_conf(struct hns3_adapter *hns)
2679 {
2680         struct hns3_hw *hw = &hns->hw;
2681         int ret;
2682
2683         ret = hns3vf_check_default_mac_change(hw);
2684         if (ret)
2685                 return ret;
2686
2687         ret = hns3vf_configure_mac_addr(hns, false);
2688         if (ret)
2689                 return ret;
2690
2691         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2692         if (ret)
2693                 goto err_mc_mac;
2694
2695         ret = hns3vf_restore_promisc(hns);
2696         if (ret)
2697                 goto err_vlan_table;
2698
2699         ret = hns3vf_restore_vlan_conf(hns);
2700         if (ret)
2701                 goto err_vlan_table;
2702
2703         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2704         if (ret)
2705                 goto err_vlan_table;
2706
2707         ret = hns3vf_restore_rx_interrupt(hw);
2708         if (ret)
2709                 goto err_vlan_table;
2710
2711         ret = hns3_restore_gro_conf(hw);
2712         if (ret)
2713                 goto err_vlan_table;
2714
2715         if (hw->adapter_state == HNS3_NIC_STARTED) {
2716                 ret = hns3vf_do_start(hns, false);
2717                 if (ret)
2718                         goto err_vlan_table;
2719                 hns3_info(hw, "hns3vf dev restart successful!");
2720         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2721                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2722
2723         ret = hns3vf_set_alive(hw, true);
2724         if (ret) {
2725                 hns3_err(hw, "failed to VF send alive to PF: %d", ret);
2726                 goto err_vlan_table;
2727         }
2728
2729         return 0;
2730
2731 err_vlan_table:
2732         hns3vf_configure_all_mc_mac_addr(hns, true);
2733 err_mc_mac:
2734         hns3vf_configure_mac_addr(hns, true);
2735         return ret;
2736 }
2737
2738 static enum hns3_reset_level
2739 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2740 {
2741         enum hns3_reset_level reset_level;
2742
2743         /* return the highest priority reset level amongst all */
2744         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2745                 reset_level = HNS3_VF_RESET;
2746         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2747                 reset_level = HNS3_VF_FULL_RESET;
2748         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2749                 reset_level = HNS3_VF_PF_FUNC_RESET;
2750         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2751                 reset_level = HNS3_VF_FUNC_RESET;
2752         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2753                 reset_level = HNS3_FLR_RESET;
2754         else
2755                 reset_level = HNS3_NONE_RESET;
2756
2757         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2758                 return HNS3_NONE_RESET;
2759
2760         return reset_level;
2761 }
2762
2763 static void
2764 hns3vf_reset_service(void *param)
2765 {
2766         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2767         struct hns3_hw *hw = &hns->hw;
2768         enum hns3_reset_level reset_level;
2769         struct timeval tv_delta;
2770         struct timeval tv_start;
2771         struct timeval tv;
2772         uint64_t msec;
2773
2774         /*
2775          * The interrupt is not triggered within the delay time.
2776          * The interrupt may have been lost. It is necessary to handle
2777          * the interrupt to recover from the error.
2778          */
2779         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2780                             SCHEDULE_DEFERRED) {
2781                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2782                                  __ATOMIC_RELAXED);
2783                 hns3_err(hw, "Handling interrupts in delayed tasks");
2784                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2785                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2786                 if (reset_level == HNS3_NONE_RESET) {
2787                         hns3_err(hw, "No reset level is set, try global reset");
2788                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2789                 }
2790         }
2791         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2792
2793         /*
2794          * Hardware reset has been notified, we now have to poll & check if
2795          * hardware has actually completed the reset sequence.
2796          */
2797         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2798         if (reset_level != HNS3_NONE_RESET) {
2799                 hns3_clock_gettime(&tv_start);
2800                 hns3_reset_process(hns, reset_level);
2801                 hns3_clock_gettime(&tv);
2802                 timersub(&tv, &tv_start, &tv_delta);
2803                 msec = hns3_clock_calctime_ms(&tv_delta);
2804                 if (msec > HNS3_RESET_PROCESS_MS)
2805                         hns3_err(hw, "%d handle long time delta %" PRIu64
2806                                  " ms time=%ld.%.6ld",
2807                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2808         }
2809 }
2810
2811 static int
2812 hns3vf_reinit_dev(struct hns3_adapter *hns)
2813 {
2814         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2815         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2816         struct hns3_hw *hw = &hns->hw;
2817         int ret;
2818
2819         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2820                 rte_intr_disable(&pci_dev->intr_handle);
2821                 ret = hns3vf_set_bus_master(pci_dev, true);
2822                 if (ret < 0) {
2823                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2824                         return ret;
2825                 }
2826         }
2827
2828         /* Firmware command initialize */
2829         ret = hns3_cmd_init(hw);
2830         if (ret) {
2831                 hns3_err(hw, "Failed to init cmd: %d", ret);
2832                 return ret;
2833         }
2834
2835         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2836                 /*
2837                  * UIO enables msix by writing the pcie configuration space
2838                  * vfio_pci enables msix in rte_intr_enable.
2839                  */
2840                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2841                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2842                         if (hns3vf_enable_msix(pci_dev, true))
2843                                 hns3_err(hw, "Failed to enable msix");
2844                 }
2845
2846                 rte_intr_enable(&pci_dev->intr_handle);
2847         }
2848
2849         ret = hns3_reset_all_tqps(hns);
2850         if (ret) {
2851                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2852                 return ret;
2853         }
2854
2855         ret = hns3vf_init_hardware(hns);
2856         if (ret) {
2857                 hns3_err(hw, "Failed to init hardware: %d", ret);
2858                 return ret;
2859         }
2860
2861         return 0;
2862 }
2863
2864 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2865         .dev_configure      = hns3vf_dev_configure,
2866         .dev_start          = hns3vf_dev_start,
2867         .dev_stop           = hns3vf_dev_stop,
2868         .dev_close          = hns3vf_dev_close,
2869         .mtu_set            = hns3vf_dev_mtu_set,
2870         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2871         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2872         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2873         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2874         .stats_get          = hns3_stats_get,
2875         .stats_reset        = hns3_stats_reset,
2876         .xstats_get         = hns3_dev_xstats_get,
2877         .xstats_get_names   = hns3_dev_xstats_get_names,
2878         .xstats_reset       = hns3_dev_xstats_reset,
2879         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2880         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2881         .dev_infos_get      = hns3vf_dev_infos_get,
2882         .fw_version_get     = hns3vf_fw_version_get,
2883         .rx_queue_setup     = hns3_rx_queue_setup,
2884         .tx_queue_setup     = hns3_tx_queue_setup,
2885         .rx_queue_release   = hns3_dev_rx_queue_release,
2886         .tx_queue_release   = hns3_dev_tx_queue_release,
2887         .rx_queue_start     = hns3_dev_rx_queue_start,
2888         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2889         .tx_queue_start     = hns3_dev_tx_queue_start,
2890         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2891         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2892         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2893         .rxq_info_get       = hns3_rxq_info_get,
2894         .txq_info_get       = hns3_txq_info_get,
2895         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2896         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2897         .mac_addr_add       = hns3vf_add_mac_addr,
2898         .mac_addr_remove    = hns3vf_remove_mac_addr,
2899         .mac_addr_set       = hns3vf_set_default_mac_addr,
2900         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2901         .link_update        = hns3vf_dev_link_update,
2902         .rss_hash_update    = hns3_dev_rss_hash_update,
2903         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2904         .reta_update        = hns3_dev_rss_reta_update,
2905         .reta_query         = hns3_dev_rss_reta_query,
2906         .flow_ops_get       = hns3_dev_flow_ops_get,
2907         .vlan_filter_set    = hns3vf_vlan_filter_set,
2908         .vlan_offload_set   = hns3vf_vlan_offload_set,
2909         .get_reg            = hns3_get_regs,
2910         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2911         .tx_done_cleanup    = hns3_tx_done_cleanup,
2912 };
2913
2914 static const struct hns3_reset_ops hns3vf_reset_ops = {
2915         .reset_service       = hns3vf_reset_service,
2916         .stop_service        = hns3vf_stop_service,
2917         .prepare_reset       = hns3vf_prepare_reset,
2918         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2919         .reinit_dev          = hns3vf_reinit_dev,
2920         .restore_conf        = hns3vf_restore_conf,
2921         .start_service       = hns3vf_start_service,
2922 };
2923
2924 static int
2925 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2926 {
2927         struct hns3_adapter *hns = eth_dev->data->dev_private;
2928         struct hns3_hw *hw = &hns->hw;
2929         int ret;
2930
2931         PMD_INIT_FUNC_TRACE();
2932
2933         hns3_flow_init(eth_dev);
2934
2935         hns3_set_rxtx_function(eth_dev);
2936         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2937         eth_dev->rx_queue_count = hns3_rx_queue_count;
2938         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2939                 ret = hns3_mp_init_secondary();
2940                 if (ret) {
2941                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2942                                           "process, ret = %d", ret);
2943                         goto err_mp_init_secondary;
2944                 }
2945                 hw->secondary_cnt++;
2946                 hns3_tx_push_init(eth_dev);
2947                 return 0;
2948         }
2949
2950         ret = hns3_mp_init_primary();
2951         if (ret) {
2952                 PMD_INIT_LOG(ERR,
2953                              "Failed to init for primary process, ret = %d",
2954                              ret);
2955                 goto err_mp_init_primary;
2956         }
2957
2958         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2959         hns->is_vf = true;
2960         hw->data = eth_dev->data;
2961         hns3_parse_devargs(eth_dev);
2962
2963         ret = hns3_reset_init(hw);
2964         if (ret)
2965                 goto err_init_reset;
2966         hw->reset.ops = &hns3vf_reset_ops;
2967
2968         ret = hns3vf_init_vf(eth_dev);
2969         if (ret) {
2970                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2971                 goto err_init_vf;
2972         }
2973
2974         /* Allocate memory for storing MAC addresses */
2975         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2976                                                sizeof(struct rte_ether_addr) *
2977                                                HNS3_VF_UC_MACADDR_NUM, 0);
2978         if (eth_dev->data->mac_addrs == NULL) {
2979                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2980                              "to store MAC addresses",
2981                              sizeof(struct rte_ether_addr) *
2982                              HNS3_VF_UC_MACADDR_NUM);
2983                 ret = -ENOMEM;
2984                 goto err_rte_zmalloc;
2985         }
2986
2987         /*
2988          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2989          * on the host by "ip link set ..." command. To avoid some incorrect
2990          * scenes, for example, hns3 VF PMD driver fails to receive and send
2991          * packets after user configure the MAC address by using the
2992          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2993          * address strategy as the hns3 kernel ethdev driver in the
2994          * initialization. If user configure a MAC address by the ip command
2995          * for VF device, then hns3 VF PMD driver will start with it, otherwise
2996          * start with a random MAC address in the initialization.
2997          */
2998         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2999                 rte_eth_random_addr(hw->mac.mac_addr);
3000         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
3001                             &eth_dev->data->mac_addrs[0]);
3002
3003         hw->adapter_state = HNS3_NIC_INITIALIZED;
3004
3005         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
3006                             SCHEDULE_PENDING) {
3007                 hns3_err(hw, "Reschedule reset service after dev_init");
3008                 hns3_schedule_reset(hns);
3009         } else {
3010                 /* IMP will wait ready flag before reset */
3011                 hns3_notify_reset_ready(hw, false);
3012         }
3013         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
3014                           eth_dev);
3015         return 0;
3016
3017 err_rte_zmalloc:
3018         hns3vf_uninit_vf(eth_dev);
3019
3020 err_init_vf:
3021         rte_free(hw->reset.wait_data);
3022
3023 err_init_reset:
3024         hns3_mp_uninit_primary();
3025
3026 err_mp_init_primary:
3027 err_mp_init_secondary:
3028         eth_dev->dev_ops = NULL;
3029         eth_dev->rx_pkt_burst = NULL;
3030         eth_dev->rx_descriptor_status = NULL;
3031         eth_dev->tx_pkt_burst = NULL;
3032         eth_dev->tx_pkt_prepare = NULL;
3033         eth_dev->tx_descriptor_status = NULL;
3034
3035         return ret;
3036 }
3037
3038 static int
3039 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
3040 {
3041         struct hns3_adapter *hns = eth_dev->data->dev_private;
3042         struct hns3_hw *hw = &hns->hw;
3043
3044         PMD_INIT_FUNC_TRACE();
3045
3046         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3047                 return 0;
3048
3049         if (hw->adapter_state < HNS3_NIC_CLOSING)
3050                 hns3vf_dev_close(eth_dev);
3051
3052         hw->adapter_state = HNS3_NIC_REMOVED;
3053         return 0;
3054 }
3055
3056 static int
3057 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3058                      struct rte_pci_device *pci_dev)
3059 {
3060         return rte_eth_dev_pci_generic_probe(pci_dev,
3061                                              sizeof(struct hns3_adapter),
3062                                              hns3vf_dev_init);
3063 }
3064
3065 static int
3066 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
3067 {
3068         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
3069 }
3070
3071 static const struct rte_pci_id pci_id_hns3vf_map[] = {
3072         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
3073         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
3074         { .vendor_id = 0, }, /* sentinel */
3075 };
3076
3077 static struct rte_pci_driver rte_hns3vf_pmd = {
3078         .id_table = pci_id_hns3vf_map,
3079         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
3080         .probe = eth_hns3vf_pci_probe,
3081         .remove = eth_hns3vf_pci_remove,
3082 };
3083
3084 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
3085 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
3086 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
3087 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
3088                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
3089                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
3090                 HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> ");