dc95e719307cf2d69e98814f486cb730bb240c06
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19
20 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
22
23 #define HNS3VF_RESET_WAIT_MS    20
24 #define HNS3VF_RESET_WAIT_CNT   2000
25
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT           0
28 #define HNS3_CORE_RESET_BIT             1
29 #define HNS3_IMP_RESET_BIT              2
30 #define HNS3_FUN_RST_ING_B              0
31
32 enum hns3vf_evt_cause {
33         HNS3VF_VECTOR0_EVENT_RST,
34         HNS3VF_VECTOR0_EVENT_MBX,
35         HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39                                                     uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44                                   struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46                                      struct rte_ether_addr *mac_addr);
47 static int hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
48                                    __rte_unused int wait_to_complete);
49
50 /* set PCI bus mastering */
51 static int
52 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
53 {
54         uint16_t reg;
55         int ret;
56
57         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
58         if (ret < 0) {
59                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
60                              PCI_COMMAND);
61                 return ret;
62         }
63
64         if (op)
65                 /* set the master bit */
66                 reg |= PCI_COMMAND_MASTER;
67         else
68                 reg &= ~(PCI_COMMAND_MASTER);
69
70         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
71 }
72
73 /**
74  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
75  * @cap: the capability
76  *
77  * Return the address of the given capability within the PCI capability list.
78  */
79 static int
80 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
81 {
82 #define MAX_PCIE_CAPABILITY 48
83         uint16_t status;
84         uint8_t pos;
85         uint8_t id;
86         int ttl;
87         int ret;
88
89         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
90         if (ret < 0) {
91                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
92                 return 0;
93         }
94
95         if (!(status & PCI_STATUS_CAP_LIST))
96                 return 0;
97
98         ttl = MAX_PCIE_CAPABILITY;
99         ret = rte_pci_read_config(device, &pos, sizeof(pos),
100                                   PCI_CAPABILITY_LIST);
101         if (ret < 0) {
102                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
103                              PCI_CAPABILITY_LIST);
104                 return 0;
105         }
106
107         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
108                 ret = rte_pci_read_config(device, &id, sizeof(id),
109                                           (pos + PCI_CAP_LIST_ID));
110                 if (ret < 0) {
111                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
112                                      (pos + PCI_CAP_LIST_ID));
113                         break;
114                 }
115
116                 if (id == 0xFF)
117                         break;
118
119                 if (id == cap)
120                         return (int)pos;
121
122                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
123                                           (pos + PCI_CAP_LIST_NEXT));
124                 if (ret < 0) {
125                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
126                                      (pos + PCI_CAP_LIST_NEXT));
127                         break;
128                 }
129         }
130         return 0;
131 }
132
133 static int
134 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
135 {
136         uint16_t control;
137         int pos;
138         int ret;
139
140         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
141         if (pos) {
142                 ret = rte_pci_read_config(device, &control, sizeof(control),
143                                     (pos + PCI_MSIX_FLAGS));
144                 if (ret < 0) {
145                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
146                                      (pos + PCI_MSIX_FLAGS));
147                         return -ENXIO;
148                 }
149
150                 if (op)
151                         control |= PCI_MSIX_FLAGS_ENABLE;
152                 else
153                         control &= ~PCI_MSIX_FLAGS_ENABLE;
154                 ret = rte_pci_write_config(device, &control, sizeof(control),
155                                           (pos + PCI_MSIX_FLAGS));
156                 if (ret < 0) {
157                         PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
158                                     (pos + PCI_MSIX_FLAGS));
159                         return -ENXIO;
160                 }
161
162                 return 0;
163         }
164
165         return -ENXIO;
166 }
167
168 static int
169 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
170 {
171         /* mac address was checked by upper level interface */
172         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
173         int ret;
174
175         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
176                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
177                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
178         if (ret) {
179                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
180                                       mac_addr);
181                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
182                          mac_str, ret);
183         }
184         return ret;
185 }
186
187 static int
188 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
189 {
190         /* mac address was checked by upper level interface */
191         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
192         int ret;
193
194         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
195                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
196                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
197                                 false, NULL, 0);
198         if (ret) {
199                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
200                                       mac_addr);
201                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
202                          mac_str, ret);
203         }
204         return ret;
205 }
206
207 static int
208 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
209 {
210         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
211         struct rte_ether_addr *addr;
212         int ret;
213         int i;
214
215         for (i = 0; i < hw->mc_addrs_num; i++) {
216                 addr = &hw->mc_addrs[i];
217                 /* Check if there are duplicate addresses */
218                 if (rte_is_same_ether_addr(addr, mac_addr)) {
219                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
220                                               addr);
221                         hns3_err(hw, "failed to add mc mac addr, same addrs"
222                                  "(%s) is added by the set_mc_mac_addr_list "
223                                  "API", mac_str);
224                         return -EINVAL;
225                 }
226         }
227
228         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
229         if (ret) {
230                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
231                                       mac_addr);
232                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
233                          mac_str, ret);
234         }
235         return ret;
236 }
237
238 static int
239 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
240                     __rte_unused uint32_t idx,
241                     __rte_unused uint32_t pool)
242 {
243         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
244         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
245         int ret;
246
247         rte_spinlock_lock(&hw->lock);
248
249         /*
250          * In hns3 network engine adding UC and MC mac address with different
251          * commands with firmware. We need to determine whether the input
252          * address is a UC or a MC address to call different commands.
253          * By the way, it is recommended calling the API function named
254          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
255          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
256          * may affect the specifications of UC mac addresses.
257          */
258         if (rte_is_multicast_ether_addr(mac_addr))
259                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
260         else
261                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
262
263         rte_spinlock_unlock(&hw->lock);
264         if (ret) {
265                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
266                                       mac_addr);
267                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
268                          ret);
269         }
270
271         return ret;
272 }
273
274 static void
275 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
276 {
277         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278         /* index will be checked by upper level rte interface */
279         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
280         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
281         int ret;
282
283         rte_spinlock_lock(&hw->lock);
284
285         if (rte_is_multicast_ether_addr(mac_addr))
286                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
287         else
288                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
289
290         rte_spinlock_unlock(&hw->lock);
291         if (ret) {
292                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
293                                       mac_addr);
294                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
295                          mac_str, ret);
296         }
297 }
298
299 static int
300 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
301                             struct rte_ether_addr *mac_addr)
302 {
303 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
304         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
305         struct rte_ether_addr *old_addr;
306         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
307         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
308         int ret;
309
310         /*
311          * It has been guaranteed that input parameter named mac_addr is valid
312          * address in the rte layer of DPDK framework.
313          */
314         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
315         rte_spinlock_lock(&hw->lock);
316         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
317         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
318                RTE_ETHER_ADDR_LEN);
319
320         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
321                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
322                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
323         if (ret) {
324                 /*
325                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
326                  * driver. When user has configured a MAC address for VF device
327                  * by "ip link set ..." command based on the PF device, the hns3
328                  * PF kernel ethdev driver does not allow VF driver to request
329                  * reconfiguring a different default MAC address, and return
330                  * -EPREM to VF driver through mailbox.
331                  */
332                 if (ret == -EPERM) {
333                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
334                                               old_addr);
335                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
336                                   mac_str);
337                 } else {
338                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
339                                               mac_addr);
340                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
341                                  mac_str, ret);
342                 }
343         }
344
345         rte_ether_addr_copy(mac_addr,
346                             (struct rte_ether_addr *)hw->mac.mac_addr);
347         rte_spinlock_unlock(&hw->lock);
348
349         return ret;
350 }
351
352 static int
353 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
354 {
355         struct hns3_hw *hw = &hns->hw;
356         struct rte_ether_addr *addr;
357         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
358         int err = 0;
359         int ret;
360         int i;
361
362         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
363                 addr = &hw->data->mac_addrs[i];
364                 if (rte_is_zero_ether_addr(addr))
365                         continue;
366                 if (rte_is_multicast_ether_addr(addr))
367                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
368                               hns3vf_add_mc_mac_addr(hw, addr);
369                 else
370                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
371                               hns3vf_add_uc_mac_addr(hw, addr);
372
373                 if (ret) {
374                         err = ret;
375                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
376                                               addr);
377                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
378                                  "ret = %d.", del ? "remove" : "restore",
379                                  mac_str, i, ret);
380                 }
381         }
382         return err;
383 }
384
385 static int
386 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
387                        struct rte_ether_addr *mac_addr)
388 {
389         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
390         int ret;
391
392         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
393                                 HNS3_MBX_MAC_VLAN_MC_ADD,
394                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
395                                 NULL, 0);
396         if (ret) {
397                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
398                                       mac_addr);
399                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
400                          mac_str, ret);
401         }
402
403         return ret;
404 }
405
406 static int
407 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
408                           struct rte_ether_addr *mac_addr)
409 {
410         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
411         int ret;
412
413         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
414                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
415                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
416                                 NULL, 0);
417         if (ret) {
418                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
419                                       mac_addr);
420                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
421                          mac_str, ret);
422         }
423
424         return ret;
425 }
426
427 static int
428 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
429                              struct rte_ether_addr *mc_addr_set,
430                              uint32_t nb_mc_addr)
431 {
432         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
433         struct rte_ether_addr *addr;
434         uint32_t i;
435         uint32_t j;
436
437         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
438                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
439                          "invalid. valid range: 0~%d",
440                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
441                 return -EINVAL;
442         }
443
444         /* Check if input mac addresses are valid */
445         for (i = 0; i < nb_mc_addr; i++) {
446                 addr = &mc_addr_set[i];
447                 if (!rte_is_multicast_ether_addr(addr)) {
448                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
449                                               addr);
450                         hns3_err(hw,
451                                  "failed to set mc mac addr, addr(%s) invalid.",
452                                  mac_str);
453                         return -EINVAL;
454                 }
455
456                 /* Check if there are duplicate addresses */
457                 for (j = i + 1; j < nb_mc_addr; j++) {
458                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
459                                 hns3_ether_format_addr(mac_str,
460                                                       RTE_ETHER_ADDR_FMT_SIZE,
461                                                       addr);
462                                 hns3_err(hw, "failed to set mc mac addr, "
463                                          "addrs invalid. two same addrs(%s).",
464                                          mac_str);
465                                 return -EINVAL;
466                         }
467                 }
468
469                 /*
470                  * Check if there are duplicate addresses between mac_addrs
471                  * and mc_addr_set
472                  */
473                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
474                         if (rte_is_same_ether_addr(addr,
475                                                    &hw->data->mac_addrs[j])) {
476                                 hns3_ether_format_addr(mac_str,
477                                                       RTE_ETHER_ADDR_FMT_SIZE,
478                                                       addr);
479                                 hns3_err(hw, "failed to set mc mac addr, "
480                                          "addrs invalid. addrs(%s) has already "
481                                          "configured in mac_addr add API",
482                                          mac_str);
483                                 return -EINVAL;
484                         }
485                 }
486         }
487
488         return 0;
489 }
490
491 static int
492 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
493                             struct rte_ether_addr *mc_addr_set,
494                             uint32_t nb_mc_addr)
495 {
496         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
497         struct rte_ether_addr *addr;
498         int cur_addr_num;
499         int set_addr_num;
500         int num;
501         int ret;
502         int i;
503
504         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
505         if (ret)
506                 return ret;
507
508         rte_spinlock_lock(&hw->lock);
509         cur_addr_num = hw->mc_addrs_num;
510         for (i = 0; i < cur_addr_num; i++) {
511                 num = cur_addr_num - i - 1;
512                 addr = &hw->mc_addrs[num];
513                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
514                 if (ret) {
515                         rte_spinlock_unlock(&hw->lock);
516                         return ret;
517                 }
518
519                 hw->mc_addrs_num--;
520         }
521
522         set_addr_num = (int)nb_mc_addr;
523         for (i = 0; i < set_addr_num; i++) {
524                 addr = &mc_addr_set[i];
525                 ret = hns3vf_add_mc_mac_addr(hw, addr);
526                 if (ret) {
527                         rte_spinlock_unlock(&hw->lock);
528                         return ret;
529                 }
530
531                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
532                 hw->mc_addrs_num++;
533         }
534         rte_spinlock_unlock(&hw->lock);
535
536         return 0;
537 }
538
539 static int
540 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
541 {
542         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
543         struct hns3_hw *hw = &hns->hw;
544         struct rte_ether_addr *addr;
545         int err = 0;
546         int ret;
547         int i;
548
549         for (i = 0; i < hw->mc_addrs_num; i++) {
550                 addr = &hw->mc_addrs[i];
551                 if (!rte_is_multicast_ether_addr(addr))
552                         continue;
553                 if (del)
554                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
555                 else
556                         ret = hns3vf_add_mc_mac_addr(hw, addr);
557                 if (ret) {
558                         err = ret;
559                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
560                                               addr);
561                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
562                                  del ? "Remove" : "Restore", mac_str, ret);
563                 }
564         }
565         return err;
566 }
567
568 static int
569 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
570                         bool en_uc_pmc, bool en_mc_pmc)
571 {
572         struct hns3_mbx_vf_to_pf_cmd *req;
573         struct hns3_cmd_desc desc;
574         int ret;
575
576         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
577
578         /*
579          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
580          * so there are some features for promiscuous/allmulticast mode in hns3
581          * VF PMD driver as below:
582          * 1. The promiscuous/allmulticast mode can be configured successfully
583          *    only based on the trusted VF device. If based on the non trusted
584          *    VF device, configuring promiscuous/allmulticast mode will fail.
585          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
586          *    kernel ethdev driver on the host by the following command:
587          *      "ip link set <eth num> vf <vf id> turst on"
588          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
589          *    driver can receive the ingress and outgoing traffic. In the words,
590          *    all the ingress packets, all the packets sent from the PF and
591          *    other VFs on the same physical port.
592          * 3. Note: Because of the hardware constraints, By default vlan filter
593          *    is enabled and couldn't be turned off based on VF device, so vlan
594          *    filter is still effective even in promiscuous mode. If upper
595          *    applications don't call rte_eth_dev_vlan_filter API function to
596          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
597          *    the packets with vlan tag in promiscuoue mode.
598          */
599         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
600         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
601         req->msg[1] = en_bc_pmc ? 1 : 0;
602         req->msg[2] = en_uc_pmc ? 1 : 0;
603         req->msg[3] = en_mc_pmc ? 1 : 0;
604         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
605
606         ret = hns3_cmd_send(hw, &desc, 1);
607         if (ret)
608                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
609
610         return ret;
611 }
612
613 static int
614 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
615 {
616         struct hns3_adapter *hns = dev->data->dev_private;
617         struct hns3_hw *hw = &hns->hw;
618         int ret;
619
620         ret = hns3vf_set_promisc_mode(hw, true, true, true);
621         if (ret)
622                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
623                         ret);
624         return ret;
625 }
626
627 static int
628 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
629 {
630         bool allmulti = dev->data->all_multicast ? true : false;
631         struct hns3_adapter *hns = dev->data->dev_private;
632         struct hns3_hw *hw = &hns->hw;
633         int ret;
634
635         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
636         if (ret)
637                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
638                         ret);
639         return ret;
640 }
641
642 static int
643 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
644 {
645         struct hns3_adapter *hns = dev->data->dev_private;
646         struct hns3_hw *hw = &hns->hw;
647         int ret;
648
649         if (dev->data->promiscuous)
650                 return 0;
651
652         ret = hns3vf_set_promisc_mode(hw, true, false, true);
653         if (ret)
654                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
655                         ret);
656         return ret;
657 }
658
659 static int
660 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
661 {
662         struct hns3_adapter *hns = dev->data->dev_private;
663         struct hns3_hw *hw = &hns->hw;
664         int ret;
665
666         if (dev->data->promiscuous)
667                 return 0;
668
669         ret = hns3vf_set_promisc_mode(hw, true, false, false);
670         if (ret)
671                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
672                         ret);
673         return ret;
674 }
675
676 static int
677 hns3vf_restore_promisc(struct hns3_adapter *hns)
678 {
679         struct hns3_hw *hw = &hns->hw;
680         bool allmulti = hw->data->all_multicast ? true : false;
681
682         if (hw->data->promiscuous)
683                 return hns3vf_set_promisc_mode(hw, true, true, true);
684
685         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
686 }
687
688 static int
689 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
690                              bool mmap, enum hns3_ring_type queue_type,
691                              uint16_t queue_id)
692 {
693         struct hns3_vf_bind_vector_msg bind_msg;
694         const char *op_str;
695         uint16_t code;
696         int ret;
697
698         memset(&bind_msg, 0, sizeof(bind_msg));
699         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
700                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
701         bind_msg.vector_id = vector_id;
702
703         if (queue_type == HNS3_RING_TYPE_RX)
704                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
705         else
706                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
707
708         bind_msg.param[0].ring_type = queue_type;
709         bind_msg.ring_num = 1;
710         bind_msg.param[0].tqp_index = queue_id;
711         op_str = mmap ? "Map" : "Unmap";
712         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
713                                 sizeof(bind_msg), false, NULL, 0);
714         if (ret)
715                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
716                          op_str, queue_id, bind_msg.vector_id, ret);
717
718         return ret;
719 }
720
721 static int
722 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
723 {
724         uint16_t vec;
725         int ret;
726         int i;
727
728         /*
729          * In hns3 network engine, vector 0 is always the misc interrupt of this
730          * function, vector 1~N can be used respectively for the queues of the
731          * function. Tx and Rx queues with the same number share the interrupt
732          * vector. In the initialization clearing the all hardware mapping
733          * relationship configurations between queues and interrupt vectors is
734          * needed, so some error caused by the residual configurations, such as
735          * the unexpected Tx interrupt, can be avoid.
736          */
737         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
738         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
739                 vec = vec - 1; /* the last interrupt is reserved */
740         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
741         for (i = 0; i < hw->intr_tqps_num; i++) {
742                 /*
743                  * Set gap limiter/rate limiter/quanity limiter algorithm
744                  * configuration for interrupt coalesce of queue's interrupt.
745                  */
746                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
747                                        HNS3_TQP_INTR_GL_DEFAULT);
748                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
749                                        HNS3_TQP_INTR_GL_DEFAULT);
750                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
751                 /*
752                  * QL(quantity limiter) is not used currently, just set 0 to
753                  * close it.
754                  */
755                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
756
757                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
758                                                    HNS3_RING_TYPE_TX, i);
759                 if (ret) {
760                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
761                                           "vector: %u, ret=%d", i, vec, ret);
762                         return ret;
763                 }
764
765                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
766                                                    HNS3_RING_TYPE_RX, i);
767                 if (ret) {
768                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
769                                           "vector: %u, ret=%d", i, vec, ret);
770                         return ret;
771                 }
772         }
773
774         return 0;
775 }
776
777 static int
778 hns3vf_dev_configure(struct rte_eth_dev *dev)
779 {
780         struct hns3_adapter *hns = dev->data->dev_private;
781         struct hns3_hw *hw = &hns->hw;
782         struct rte_eth_conf *conf = &dev->data->dev_conf;
783         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
784         uint16_t nb_rx_q = dev->data->nb_rx_queues;
785         uint16_t nb_tx_q = dev->data->nb_tx_queues;
786         struct rte_eth_rss_conf rss_conf;
787         uint32_t max_rx_pkt_len;
788         uint16_t mtu;
789         bool gro_en;
790         int ret;
791
792         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
793
794         /*
795          * Some versions of hardware network engine does not support
796          * individually enable/disable/reset the Tx or Rx queue. These devices
797          * must enable/disable/reset Tx and Rx queues at the same time. When the
798          * numbers of Tx queues allocated by upper applications are not equal to
799          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
800          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
801          * work as usual. But these fake queues are imperceptible, and can not
802          * be used by upper applications.
803          */
804         ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
805         if (ret) {
806                 hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
807                 hw->cfg_max_queues = 0;
808                 return ret;
809         }
810
811         hw->adapter_state = HNS3_NIC_CONFIGURING;
812         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
813                 hns3_err(hw, "setting link speed/duplex not supported");
814                 ret = -EINVAL;
815                 goto cfg_err;
816         }
817
818         /* When RSS is not configured, redirect the packet queue 0 */
819         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
820                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
821                 hw->rss_dis_flag = false;
822                 rss_conf = conf->rx_adv_conf.rss_conf;
823                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
824                 if (ret)
825                         goto cfg_err;
826         }
827
828         /*
829          * If jumbo frames are enabled, MTU needs to be refreshed
830          * according to the maximum RX packet length.
831          */
832         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
833                 max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
834                 if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
835                     max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
836                         hns3_err(hw, "maximum Rx packet length must be greater "
837                                  "than %u and less than %u when jumbo frame enabled.",
838                                  (uint16_t)HNS3_DEFAULT_FRAME_LEN,
839                                  (uint16_t)HNS3_MAX_FRAME_LEN);
840                         ret = -EINVAL;
841                         goto cfg_err;
842                 }
843
844                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
845                 ret = hns3vf_dev_mtu_set(dev, mtu);
846                 if (ret)
847                         goto cfg_err;
848                 dev->data->mtu = mtu;
849         }
850
851         ret = hns3vf_dev_configure_vlan(dev);
852         if (ret)
853                 goto cfg_err;
854
855         /* config hardware GRO */
856         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
857         ret = hns3_config_gro(hw, gro_en);
858         if (ret)
859                 goto cfg_err;
860
861         hns3_init_rx_ptype_tble(dev);
862
863         hw->adapter_state = HNS3_NIC_CONFIGURED;
864         return 0;
865
866 cfg_err:
867         hw->cfg_max_queues = 0;
868         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
869         hw->adapter_state = HNS3_NIC_INITIALIZED;
870
871         return ret;
872 }
873
874 static int
875 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
876 {
877         int ret;
878
879         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
880                                 sizeof(mtu), true, NULL, 0);
881         if (ret)
882                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
883
884         return ret;
885 }
886
887 static int
888 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
889 {
890         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
891         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
892         int ret;
893
894         /*
895          * The hns3 PF/VF devices on the same port share the hardware MTU
896          * configuration. Currently, we send mailbox to inform hns3 PF kernel
897          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
898          * driver, there is no need to stop the port for hns3 VF device, and the
899          * MTU value issued by hns3 VF PMD driver must be less than or equal to
900          * PF's MTU.
901          */
902         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
903                 hns3_err(hw, "Failed to set mtu during resetting");
904                 return -EIO;
905         }
906
907         /*
908          * when Rx of scattered packets is off, we have some possibility of
909          * using vector Rx process function or simple Rx functions in hns3 PMD
910          * driver. If the input MTU is increased and the maximum length of
911          * received packets is greater than the length of a buffer for Rx
912          * packet, the hardware network engine needs to use multiple BDs and
913          * buffers to store these packets. This will cause problems when still
914          * using vector Rx process function or simple Rx function to receiving
915          * packets. So, when Rx of scattered packets is off and device is
916          * started, it is not permitted to increase MTU so that the maximum
917          * length of Rx packets is greater than Rx buffer length.
918          */
919         if (dev->data->dev_started && !dev->data->scattered_rx &&
920             frame_size > hw->rx_buf_len) {
921                 hns3_err(hw, "failed to set mtu because current is "
922                         "not scattered rx mode");
923                 return -EOPNOTSUPP;
924         }
925
926         rte_spinlock_lock(&hw->lock);
927         ret = hns3vf_config_mtu(hw, mtu);
928         if (ret) {
929                 rte_spinlock_unlock(&hw->lock);
930                 return ret;
931         }
932         if (mtu > RTE_ETHER_MTU)
933                 dev->data->dev_conf.rxmode.offloads |=
934                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
935         else
936                 dev->data->dev_conf.rxmode.offloads &=
937                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
938         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
939         rte_spinlock_unlock(&hw->lock);
940
941         return 0;
942 }
943
944 static int
945 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
946 {
947         struct hns3_adapter *hns = eth_dev->data->dev_private;
948         struct hns3_hw *hw = &hns->hw;
949         uint16_t q_num = hw->tqps_num;
950
951         /*
952          * In interrupt mode, 'max_rx_queues' is set based on the number of
953          * MSI-X interrupt resources of the hardware.
954          */
955         if (hw->data->dev_conf.intr_conf.rxq == 1)
956                 q_num = hw->intr_tqps_num;
957
958         info->max_rx_queues = q_num;
959         info->max_tx_queues = hw->tqps_num;
960         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
961         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
962         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
963         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
964         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
965
966         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
967                                  DEV_RX_OFFLOAD_UDP_CKSUM |
968                                  DEV_RX_OFFLOAD_TCP_CKSUM |
969                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
970                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
971                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
972                                  DEV_RX_OFFLOAD_SCATTER |
973                                  DEV_RX_OFFLOAD_VLAN_STRIP |
974                                  DEV_RX_OFFLOAD_VLAN_FILTER |
975                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
976                                  DEV_RX_OFFLOAD_RSS_HASH |
977                                  DEV_RX_OFFLOAD_TCP_LRO);
978         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
979                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
980                                  DEV_TX_OFFLOAD_TCP_CKSUM |
981                                  DEV_TX_OFFLOAD_UDP_CKSUM |
982                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
983                                  DEV_TX_OFFLOAD_MULTI_SEGS |
984                                  DEV_TX_OFFLOAD_TCP_TSO |
985                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
986                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
987                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
988                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
989                                  hns3_txvlan_cap_get(hw));
990
991         if (hns3_dev_outer_udp_cksum_supported(hw))
992                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
993
994         if (hns3_dev_indep_txrx_supported(hw))
995                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
996                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
997
998         info->rx_desc_lim = (struct rte_eth_desc_lim) {
999                 .nb_max = HNS3_MAX_RING_DESC,
1000                 .nb_min = HNS3_MIN_RING_DESC,
1001                 .nb_align = HNS3_ALIGN_RING_DESC,
1002         };
1003
1004         info->tx_desc_lim = (struct rte_eth_desc_lim) {
1005                 .nb_max = HNS3_MAX_RING_DESC,
1006                 .nb_min = HNS3_MIN_RING_DESC,
1007                 .nb_align = HNS3_ALIGN_RING_DESC,
1008                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1009                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1010         };
1011
1012         info->default_rxconf = (struct rte_eth_rxconf) {
1013                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1014                 /*
1015                  * If there are no available Rx buffer descriptors, incoming
1016                  * packets are always dropped by hardware based on hns3 network
1017                  * engine.
1018                  */
1019                 .rx_drop_en = 1,
1020                 .offloads = 0,
1021         };
1022         info->default_txconf = (struct rte_eth_txconf) {
1023                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1024                 .offloads = 0,
1025         };
1026
1027         info->reta_size = hw->rss_ind_tbl_size;
1028         info->hash_key_size = HNS3_RSS_KEY_SIZE;
1029         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1030
1031         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1032         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1033         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1034         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1035         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1036         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1037
1038         return 0;
1039 }
1040
1041 static void
1042 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1043 {
1044         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1045 }
1046
1047 static void
1048 hns3vf_disable_irq0(struct hns3_hw *hw)
1049 {
1050         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1051 }
1052
1053 static void
1054 hns3vf_enable_irq0(struct hns3_hw *hw)
1055 {
1056         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1057 }
1058
1059 static enum hns3vf_evt_cause
1060 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1061 {
1062         struct hns3_hw *hw = &hns->hw;
1063         enum hns3vf_evt_cause ret;
1064         uint32_t cmdq_stat_reg;
1065         uint32_t rst_ing_reg;
1066         uint32_t val;
1067
1068         /* Fetch the events from their corresponding regs */
1069         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1070         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1071                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1072                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1073                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1074                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1075                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1076                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1077                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1078                 if (clearval) {
1079                         hw->reset.stats.global_cnt++;
1080                         hns3_warn(hw, "Global reset detected, clear reset status");
1081                 } else {
1082                         hns3_schedule_delayed_reset(hns);
1083                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1084                 }
1085
1086                 ret = HNS3VF_VECTOR0_EVENT_RST;
1087                 goto out;
1088         }
1089
1090         /* Check for vector0 mailbox(=CMDQ RX) event source */
1091         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1092                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1093                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1094                 goto out;
1095         }
1096
1097         val = 0;
1098         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1099 out:
1100         if (clearval)
1101                 *clearval = val;
1102         return ret;
1103 }
1104
1105 static void
1106 hns3vf_interrupt_handler(void *param)
1107 {
1108         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1109         struct hns3_adapter *hns = dev->data->dev_private;
1110         struct hns3_hw *hw = &hns->hw;
1111         enum hns3vf_evt_cause event_cause;
1112         uint32_t clearval;
1113
1114         /* Disable interrupt */
1115         hns3vf_disable_irq0(hw);
1116
1117         /* Read out interrupt causes */
1118         event_cause = hns3vf_check_event_cause(hns, &clearval);
1119
1120         switch (event_cause) {
1121         case HNS3VF_VECTOR0_EVENT_RST:
1122                 hns3_schedule_reset(hns);
1123                 break;
1124         case HNS3VF_VECTOR0_EVENT_MBX:
1125                 hns3_dev_handle_mbx_msg(hw);
1126                 break;
1127         default:
1128                 break;
1129         }
1130
1131         /* Clear interrupt causes */
1132         hns3vf_clear_event_cause(hw, clearval);
1133
1134         /* Enable interrupt */
1135         hns3vf_enable_irq0(hw);
1136 }
1137
1138 static void
1139 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1140 {
1141         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1142         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1143         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1144         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1145 }
1146
1147 static void
1148 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1149 {
1150         struct hns3_dev_specs_0_cmd *req0;
1151
1152         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1153
1154         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1155         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1156         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1157         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1158 }
1159
1160 static int
1161 hns3vf_check_dev_specifications(struct hns3_hw *hw)
1162 {
1163         if (hw->rss_ind_tbl_size == 0 ||
1164             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
1165                 hns3_warn(hw, "the size of hash lookup table configured (%u)"
1166                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
1167                               HNS3_RSS_IND_TBL_SIZE_MAX);
1168                 return -EINVAL;
1169         }
1170
1171         return 0;
1172 }
1173
1174 static int
1175 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1176 {
1177         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1178         int ret;
1179         int i;
1180
1181         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1182                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1183                                           true);
1184                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1185         }
1186         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1187
1188         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1189         if (ret)
1190                 return ret;
1191
1192         hns3vf_parse_dev_specifications(hw, desc);
1193
1194         return hns3vf_check_dev_specifications(hw);
1195 }
1196
1197 void
1198 hns3vf_update_push_lsc_cap(struct hns3_hw *hw, bool supported)
1199 {
1200         uint16_t val = supported ? HNS3_PF_PUSH_LSC_CAP_SUPPORTED :
1201                                    HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1202         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1203         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1204
1205         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1206                 __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1207                                           __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1208 }
1209
1210 static void
1211 hns3vf_get_push_lsc_cap(struct hns3_hw *hw)
1212 {
1213 #define HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS      500
1214
1215         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1216         int32_t remain_ms = HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS;
1217         uint16_t val = HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1218         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1219         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1220
1221         __atomic_store_n(&vf->pf_push_lsc_cap, HNS3_PF_PUSH_LSC_CAP_UNKNOWN,
1222                          __ATOMIC_RELEASE);
1223
1224         (void)hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1225                                 NULL, 0);
1226
1227         while (remain_ms > 0) {
1228                 rte_delay_ms(HNS3_POLL_RESPONE_MS);
1229                 if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) !=
1230                         HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1231                         break;
1232                 remain_ms--;
1233         }
1234
1235         /*
1236          * When exit above loop, the pf_push_lsc_cap could be one of the three
1237          * state: unknown (means pf not ack), not_supported, supported.
1238          * Here config it as 'not_supported' when it's 'unknown' state.
1239          */
1240         __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1241                                   __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1242
1243         if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) ==
1244                 HNS3_PF_PUSH_LSC_CAP_SUPPORTED) {
1245                 hns3_info(hw, "detect PF support push link status change!");
1246         } else {
1247                 /*
1248                  * Framework already set RTE_ETH_DEV_INTR_LSC bit because driver
1249                  * declared RTE_PCI_DRV_INTR_LSC in drv_flags. So here cleared
1250                  * the RTE_ETH_DEV_INTR_LSC capability.
1251                  */
1252                 dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
1253         }
1254 }
1255
1256 static int
1257 hns3vf_get_capability(struct hns3_hw *hw)
1258 {
1259         struct rte_pci_device *pci_dev;
1260         struct rte_eth_dev *eth_dev;
1261         uint8_t revision;
1262         int ret;
1263
1264         eth_dev = &rte_eth_devices[hw->data->port_id];
1265         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1266
1267         /* Get PCI revision id */
1268         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1269                                   HNS3_PCI_REVISION_ID);
1270         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1271                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1272                              ret);
1273                 return -EIO;
1274         }
1275         hw->revision = revision;
1276
1277         if (revision < PCI_REVISION_ID_HIP09_A) {
1278                 hns3vf_set_default_dev_specifications(hw);
1279                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1280                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1281                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1282                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
1283                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1284                 hw->rss_info.ipv6_sctp_offload_supported = false;
1285                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1286                 return 0;
1287         }
1288
1289         ret = hns3vf_query_dev_specifications(hw);
1290         if (ret) {
1291                 PMD_INIT_LOG(ERR,
1292                              "failed to query dev specifications, ret = %d",
1293                              ret);
1294                 return ret;
1295         }
1296
1297         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1298         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1299         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1300         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
1301         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1302         hw->rss_info.ipv6_sctp_offload_supported = true;
1303         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1304
1305         return 0;
1306 }
1307
1308 static int
1309 hns3vf_check_tqp_info(struct hns3_hw *hw)
1310 {
1311         if (hw->tqps_num == 0) {
1312                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1313                 return -EINVAL;
1314         }
1315
1316         if (hw->rss_size_max == 0) {
1317                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1318                 return -EINVAL;
1319         }
1320
1321         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1322
1323         return 0;
1324 }
1325
1326 static int
1327 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1328 {
1329         uint8_t resp_msg;
1330         int ret;
1331
1332         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1333                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1334                                 true, &resp_msg, sizeof(resp_msg));
1335         if (ret) {
1336                 if (ret == -ETIME) {
1337                         /*
1338                          * Getting current port based VLAN state from PF driver
1339                          * will not affect VF driver's basic function. Because
1340                          * the VF driver relies on hns3 PF kernel ether driver,
1341                          * to avoid introducing compatibility issues with older
1342                          * version of PF driver, no failure will be returned
1343                          * when the return value is ETIME. This return value has
1344                          * the following scenarios:
1345                          * 1) Firmware didn't return the results in time
1346                          * 2) the result return by firmware is timeout
1347                          * 3) the older version of kernel side PF driver does
1348                          *    not support this mailbox message.
1349                          * For scenarios 1 and 2, it is most likely that a
1350                          * hardware error has occurred, or a hardware reset has
1351                          * occurred. In this case, these errors will be caught
1352                          * by other functions.
1353                          */
1354                         PMD_INIT_LOG(WARNING,
1355                                 "failed to get PVID state for timeout, maybe "
1356                                 "kernel side PF driver doesn't support this "
1357                                 "mailbox message, or firmware didn't respond.");
1358                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1359                 } else {
1360                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1361                                 " ret = %d", ret);
1362                         return ret;
1363                 }
1364         }
1365         hw->port_base_vlan_cfg.state = resp_msg ?
1366                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1367         return 0;
1368 }
1369
1370 static int
1371 hns3vf_get_queue_info(struct hns3_hw *hw)
1372 {
1373 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1374         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1375         int ret;
1376
1377         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1378                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1379         if (ret) {
1380                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1381                 return ret;
1382         }
1383
1384         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1385         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1386
1387         return hns3vf_check_tqp_info(hw);
1388 }
1389
1390 static int
1391 hns3vf_get_queue_depth(struct hns3_hw *hw)
1392 {
1393 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1394         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1395         int ret;
1396
1397         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1398                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1399         if (ret) {
1400                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1401                              ret);
1402                 return ret;
1403         }
1404
1405         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1406         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1407
1408         return 0;
1409 }
1410
1411 static int
1412 hns3vf_get_num_tc(struct hns3_hw *hw)
1413 {
1414         uint8_t num_tc = 0;
1415         uint32_t i;
1416
1417         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1418                 if (hw->hw_tc_map & BIT(i))
1419                         num_tc++;
1420         }
1421         return num_tc;
1422 }
1423
1424 static int
1425 hns3vf_get_basic_info(struct hns3_hw *hw)
1426 {
1427         uint8_t resp_msg[HNS3_MBX_MAX_RESP_DATA_SIZE];
1428         struct hns3_basic_info *basic_info;
1429         int ret;
1430
1431         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_BASIC_INFO, 0, NULL, 0,
1432                                 true, resp_msg, sizeof(resp_msg));
1433         if (ret) {
1434                 hns3_err(hw, "failed to get basic info from PF, ret = %d.",
1435                                 ret);
1436                 return ret;
1437         }
1438
1439         basic_info = (struct hns3_basic_info *)resp_msg;
1440         hw->hw_tc_map = basic_info->hw_tc_map;
1441         hw->num_tc = hns3vf_get_num_tc(hw);
1442         hw->pf_vf_if_version = basic_info->pf_vf_if_version;
1443
1444
1445         return 0;
1446 }
1447
1448 static int
1449 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1450 {
1451         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1452         int ret;
1453
1454         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1455                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1456         if (ret) {
1457                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1458                 return ret;
1459         }
1460
1461         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1462
1463         return 0;
1464 }
1465
1466 static int
1467 hns3vf_get_configuration(struct hns3_hw *hw)
1468 {
1469         int ret;
1470
1471         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1472         hw->rss_dis_flag = false;
1473
1474         /* Get device capability */
1475         ret = hns3vf_get_capability(hw);
1476         if (ret) {
1477                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1478                 return ret;
1479         }
1480
1481         hns3vf_get_push_lsc_cap(hw);
1482
1483         /* Get basic info from PF */
1484         ret = hns3vf_get_basic_info(hw);
1485         if (ret)
1486                 return ret;
1487
1488         /* Get queue configuration from PF */
1489         ret = hns3vf_get_queue_info(hw);
1490         if (ret)
1491                 return ret;
1492
1493         /* Get queue depth info from PF */
1494         ret = hns3vf_get_queue_depth(hw);
1495         if (ret)
1496                 return ret;
1497
1498         /* Get user defined VF MAC addr from PF */
1499         ret = hns3vf_get_host_mac_addr(hw);
1500         if (ret)
1501                 return ret;
1502
1503         return hns3vf_get_port_base_vlan_filter_state(hw);
1504 }
1505
1506 static int
1507 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1508                             uint16_t nb_tx_q)
1509 {
1510         struct hns3_hw *hw = &hns->hw;
1511
1512         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1513 }
1514
1515 static void
1516 hns3vf_request_link_info(struct hns3_hw *hw)
1517 {
1518         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1519         bool send_req;
1520         int ret;
1521
1522         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1523                 return;
1524
1525         send_req = vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED ||
1526                    vf->req_link_info_cnt > 0;
1527         if (!send_req)
1528                 return;
1529
1530         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1531                                 NULL, 0);
1532         if (ret) {
1533                 hns3_err(hw, "failed to fetch link status, ret = %d", ret);
1534                 return;
1535         }
1536
1537         if (vf->req_link_info_cnt > 0)
1538                 vf->req_link_info_cnt--;
1539 }
1540
1541 void
1542 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1543                           uint32_t link_speed, uint8_t link_duplex)
1544 {
1545         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1546         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1547         struct hns3_mac *mac = &hw->mac;
1548         int ret;
1549
1550         /*
1551          * PF kernel driver may push link status when VF driver is in resetting,
1552          * driver will stop polling job in this case, after resetting done
1553          * driver will start polling job again.
1554          * When polling job started, driver will get initial link status by
1555          * sending request to PF kernel driver, then could update link status by
1556          * process PF kernel driver's link status mailbox message.
1557          */
1558         if (!__atomic_load_n(&vf->poll_job_started, __ATOMIC_RELAXED))
1559                 return;
1560
1561         if (hw->adapter_state != HNS3_NIC_STARTED)
1562                 return;
1563
1564         mac->link_status = link_status;
1565         mac->link_speed = link_speed;
1566         mac->link_duplex = link_duplex;
1567         ret = hns3vf_dev_link_update(dev, 0);
1568         if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
1569                 hns3_start_report_lse(dev);
1570 }
1571
1572 static int
1573 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1574 {
1575 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1576         struct hns3_hw *hw = &hns->hw;
1577         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1578         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1579         uint8_t is_kill = on ? 0 : 1;
1580
1581         msg_data[0] = is_kill;
1582         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1583         memcpy(&msg_data[3], &proto, sizeof(proto));
1584
1585         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1586                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1587                                  0);
1588 }
1589
1590 static int
1591 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1592 {
1593         struct hns3_adapter *hns = dev->data->dev_private;
1594         struct hns3_hw *hw = &hns->hw;
1595         int ret;
1596
1597         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1598                 hns3_err(hw,
1599                          "vf set vlan id failed during resetting, vlan_id =%u",
1600                          vlan_id);
1601                 return -EIO;
1602         }
1603         rte_spinlock_lock(&hw->lock);
1604         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1605         rte_spinlock_unlock(&hw->lock);
1606         if (ret)
1607                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1608                          vlan_id, ret);
1609
1610         return ret;
1611 }
1612
1613 static int
1614 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1615 {
1616         uint8_t msg_data;
1617         int ret;
1618
1619         msg_data = enable ? 1 : 0;
1620         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1621                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1622         if (ret)
1623                 hns3_err(hw, "vf %s strip failed, ret = %d.",
1624                                 enable ? "enable" : "disable", ret);
1625
1626         return ret;
1627 }
1628
1629 static int
1630 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1631 {
1632         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1633         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1634         unsigned int tmp_mask;
1635         int ret = 0;
1636
1637         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1638                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1639                              "mask = 0x%x", mask);
1640                 return -EIO;
1641         }
1642
1643         tmp_mask = (unsigned int)mask;
1644         /* Vlan stripping setting */
1645         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1646                 rte_spinlock_lock(&hw->lock);
1647                 /* Enable or disable VLAN stripping */
1648                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1649                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1650                 else
1651                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1652                 rte_spinlock_unlock(&hw->lock);
1653         }
1654
1655         return ret;
1656 }
1657
1658 static int
1659 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1660 {
1661         struct rte_vlan_filter_conf *vfc;
1662         struct hns3_hw *hw = &hns->hw;
1663         uint16_t vlan_id;
1664         uint64_t vbit;
1665         uint64_t ids;
1666         int ret = 0;
1667         uint32_t i;
1668
1669         vfc = &hw->data->vlan_filter_conf;
1670         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1671                 if (vfc->ids[i] == 0)
1672                         continue;
1673                 ids = vfc->ids[i];
1674                 while (ids) {
1675                         /*
1676                          * 64 means the num bits of ids, one bit corresponds to
1677                          * one vlan id
1678                          */
1679                         vlan_id = 64 * i;
1680                         /* count trailing zeroes */
1681                         vbit = ~ids & (ids - 1);
1682                         /* clear least significant bit set */
1683                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1684                         for (; vbit;) {
1685                                 vbit >>= 1;
1686                                 vlan_id++;
1687                         }
1688                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1689                         if (ret) {
1690                                 hns3_err(hw,
1691                                          "VF handle vlan table failed, ret =%d, on = %d",
1692                                          ret, on);
1693                                 return ret;
1694                         }
1695                 }
1696         }
1697
1698         return ret;
1699 }
1700
1701 static int
1702 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1703 {
1704         return hns3vf_handle_all_vlan_table(hns, 0);
1705 }
1706
1707 static int
1708 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1709 {
1710         struct hns3_hw *hw = &hns->hw;
1711         struct rte_eth_conf *dev_conf;
1712         bool en;
1713         int ret;
1714
1715         dev_conf = &hw->data->dev_conf;
1716         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1717                                                                    : false;
1718         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1719         if (ret)
1720                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1721                          ret);
1722         return ret;
1723 }
1724
1725 static int
1726 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1727 {
1728         struct hns3_adapter *hns = dev->data->dev_private;
1729         struct rte_eth_dev_data *data = dev->data;
1730         struct hns3_hw *hw = &hns->hw;
1731         int ret;
1732
1733         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1734             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1735             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1736                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1737                               "or hw_vlan_insert_pvid is not support!");
1738         }
1739
1740         /* Apply vlan offload setting */
1741         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1742         if (ret)
1743                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1744
1745         return ret;
1746 }
1747
1748 static int
1749 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1750 {
1751         uint8_t msg_data;
1752
1753         msg_data = alive ? 1 : 0;
1754         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1755                                  sizeof(msg_data), false, NULL, 0);
1756 }
1757
1758 static void
1759 hns3vf_keep_alive_handler(void *param)
1760 {
1761         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1762         struct hns3_adapter *hns = eth_dev->data->dev_private;
1763         struct hns3_hw *hw = &hns->hw;
1764         int ret;
1765
1766         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1767                                 false, NULL, 0);
1768         if (ret)
1769                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1770                          ret);
1771
1772         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1773                           eth_dev);
1774 }
1775
1776 static void
1777 hns3vf_service_handler(void *param)
1778 {
1779         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1780         struct hns3_adapter *hns = eth_dev->data->dev_private;
1781         struct hns3_hw *hw = &hns->hw;
1782
1783         /*
1784          * The query link status and reset processing are executed in the
1785          * interrupt thread. When the IMP reset occurs, IMP will not respond,
1786          * and the query operation will timeout after 30ms. In the case of
1787          * multiple PF/VFs, each query failure timeout causes the IMP reset
1788          * interrupt to fail to respond within 100ms.
1789          * Before querying the link status, check whether there is a reset
1790          * pending, and if so, abandon the query.
1791          */
1792         if (!hns3vf_is_reset_pending(hns))
1793                 hns3vf_request_link_info(hw);
1794         else
1795                 hns3_warn(hw, "Cancel the query when reset is pending");
1796
1797         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1798                           eth_dev);
1799 }
1800
1801 static void
1802 hns3vf_start_poll_job(struct rte_eth_dev *dev)
1803 {
1804 #define HNS3_REQUEST_LINK_INFO_REMAINS_CNT      3
1805
1806         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1807
1808         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_SUPPORTED)
1809                 vf->req_link_info_cnt = HNS3_REQUEST_LINK_INFO_REMAINS_CNT;
1810
1811         __atomic_store_n(&vf->poll_job_started, 1, __ATOMIC_RELAXED);
1812
1813         hns3vf_service_handler(dev);
1814 }
1815
1816 static void
1817 hns3vf_stop_poll_job(struct rte_eth_dev *dev)
1818 {
1819         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1820
1821         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1822
1823         __atomic_store_n(&vf->poll_job_started, 0, __ATOMIC_RELAXED);
1824 }
1825
1826 static int
1827 hns3_query_vf_resource(struct hns3_hw *hw)
1828 {
1829         struct hns3_vf_res_cmd *req;
1830         struct hns3_cmd_desc desc;
1831         uint16_t num_msi;
1832         int ret;
1833
1834         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1835         ret = hns3_cmd_send(hw, &desc, 1);
1836         if (ret) {
1837                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1838                 return ret;
1839         }
1840
1841         req = (struct hns3_vf_res_cmd *)desc.data;
1842         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1843                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1844         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1845                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1846                          num_msi, HNS3_MIN_VECTOR_NUM);
1847                 return -EINVAL;
1848         }
1849
1850         hw->num_msi = num_msi;
1851
1852         return 0;
1853 }
1854
1855 static int
1856 hns3vf_init_hardware(struct hns3_adapter *hns)
1857 {
1858         struct hns3_hw *hw = &hns->hw;
1859         uint16_t mtu = hw->data->mtu;
1860         int ret;
1861
1862         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1863         if (ret)
1864                 return ret;
1865
1866         ret = hns3vf_config_mtu(hw, mtu);
1867         if (ret)
1868                 goto err_init_hardware;
1869
1870         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1871         if (ret) {
1872                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1873                 goto err_init_hardware;
1874         }
1875
1876         ret = hns3_config_gro(hw, false);
1877         if (ret) {
1878                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1879                 goto err_init_hardware;
1880         }
1881
1882         /*
1883          * In the initialization clearing the all hardware mapping relationship
1884          * configurations between queues and interrupt vectors is needed, so
1885          * some error caused by the residual configurations, such as the
1886          * unexpected interrupt, can be avoid.
1887          */
1888         ret = hns3vf_init_ring_with_vector(hw);
1889         if (ret) {
1890                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1891                 goto err_init_hardware;
1892         }
1893
1894         return 0;
1895
1896 err_init_hardware:
1897         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1898         return ret;
1899 }
1900
1901 static int
1902 hns3vf_clear_vport_list(struct hns3_hw *hw)
1903 {
1904         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1905                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1906                                  NULL, 0);
1907 }
1908
1909 static int
1910 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1911 {
1912         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1913         struct hns3_adapter *hns = eth_dev->data->dev_private;
1914         struct hns3_hw *hw = &hns->hw;
1915         int ret;
1916
1917         PMD_INIT_FUNC_TRACE();
1918
1919         /* Get hardware io base address from pcie BAR2 IO space */
1920         hw->io_base = pci_dev->mem_resource[2].addr;
1921
1922         /* Firmware command queue initialize */
1923         ret = hns3_cmd_init_queue(hw);
1924         if (ret) {
1925                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1926                 goto err_cmd_init_queue;
1927         }
1928
1929         /* Firmware command initialize */
1930         ret = hns3_cmd_init(hw);
1931         if (ret) {
1932                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1933                 goto err_cmd_init;
1934         }
1935
1936         hns3_tx_push_init(eth_dev);
1937
1938         /* Get VF resource */
1939         ret = hns3_query_vf_resource(hw);
1940         if (ret)
1941                 goto err_cmd_init;
1942
1943         rte_spinlock_init(&hw->mbx_resp.lock);
1944
1945         hns3vf_clear_event_cause(hw, 0);
1946
1947         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1948                                          hns3vf_interrupt_handler, eth_dev);
1949         if (ret) {
1950                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1951                 goto err_intr_callback_register;
1952         }
1953
1954         /* Enable interrupt */
1955         rte_intr_enable(&pci_dev->intr_handle);
1956         hns3vf_enable_irq0(hw);
1957
1958         /* Get configuration from PF */
1959         ret = hns3vf_get_configuration(hw);
1960         if (ret) {
1961                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1962                 goto err_get_config;
1963         }
1964
1965         ret = hns3_tqp_stats_init(hw);
1966         if (ret)
1967                 goto err_get_config;
1968
1969         /* Hardware statistics of imissed registers cleared. */
1970         ret = hns3_update_imissed_stats(hw, true);
1971         if (ret) {
1972                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
1973                 goto err_set_tc_queue;
1974         }
1975
1976         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1977         if (ret) {
1978                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1979                 goto err_set_tc_queue;
1980         }
1981
1982         ret = hns3vf_clear_vport_list(hw);
1983         if (ret) {
1984                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1985                 goto err_set_tc_queue;
1986         }
1987
1988         ret = hns3vf_init_hardware(hns);
1989         if (ret)
1990                 goto err_set_tc_queue;
1991
1992         hns3_rss_set_default_args(hw);
1993
1994         ret = hns3vf_set_alive(hw, true);
1995         if (ret) {
1996                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1997                 goto err_set_tc_queue;
1998         }
1999
2000         return 0;
2001
2002 err_set_tc_queue:
2003         hns3_tqp_stats_uninit(hw);
2004
2005 err_get_config:
2006         hns3vf_disable_irq0(hw);
2007         rte_intr_disable(&pci_dev->intr_handle);
2008         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2009                              eth_dev);
2010 err_intr_callback_register:
2011 err_cmd_init:
2012         hns3_cmd_uninit(hw);
2013         hns3_cmd_destroy_queue(hw);
2014 err_cmd_init_queue:
2015         hw->io_base = NULL;
2016
2017         return ret;
2018 }
2019
2020 static void
2021 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
2022 {
2023         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2024         struct hns3_adapter *hns = eth_dev->data->dev_private;
2025         struct hns3_hw *hw = &hns->hw;
2026
2027         PMD_INIT_FUNC_TRACE();
2028
2029         hns3_rss_uninit(hns);
2030         (void)hns3_config_gro(hw, false);
2031         (void)hns3vf_set_alive(hw, false);
2032         (void)hns3vf_set_promisc_mode(hw, false, false, false);
2033         hns3_tqp_stats_uninit(hw);
2034         hns3vf_disable_irq0(hw);
2035         rte_intr_disable(&pci_dev->intr_handle);
2036         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2037                              eth_dev);
2038         hns3_cmd_uninit(hw);
2039         hns3_cmd_destroy_queue(hw);
2040         hw->io_base = NULL;
2041 }
2042
2043 static int
2044 hns3vf_do_stop(struct hns3_adapter *hns)
2045 {
2046         struct hns3_hw *hw = &hns->hw;
2047         int ret;
2048
2049         hw->mac.link_status = ETH_LINK_DOWN;
2050
2051         /*
2052          * The "hns3vf_do_stop" function will also be called by .stop_service to
2053          * prepare reset. At the time of global or IMP reset, the command cannot
2054          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
2055          * accessed during the reset process. So the mbuf can not be released
2056          * during reset and is required to be released after the reset is
2057          * completed.
2058          */
2059         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
2060                 hns3_dev_release_mbufs(hns);
2061
2062         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
2063                 hns3vf_configure_mac_addr(hns, true);
2064                 ret = hns3_reset_all_tqps(hns);
2065                 if (ret) {
2066                         hns3_err(hw, "failed to reset all queues ret = %d",
2067                                  ret);
2068                         return ret;
2069                 }
2070         }
2071         return 0;
2072 }
2073
2074 static void
2075 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
2076 {
2077         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2078         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2079         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2080         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2081         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2082         uint16_t q_id;
2083
2084         if (dev->data->dev_conf.intr_conf.rxq == 0)
2085                 return;
2086
2087         /* unmap the ring with vector */
2088         if (rte_intr_allow_others(intr_handle)) {
2089                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2090                 base = RTE_INTR_VEC_RXTX_OFFSET;
2091         }
2092         if (rte_intr_dp_is_en(intr_handle)) {
2093                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2094                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
2095                                                            HNS3_RING_TYPE_RX,
2096                                                            q_id);
2097                         if (vec < base + intr_handle->nb_efd - 1)
2098                                 vec++;
2099                 }
2100         }
2101         /* Clean datapath event and queue/vec mapping */
2102         rte_intr_efd_disable(intr_handle);
2103         if (intr_handle->intr_vec) {
2104                 rte_free(intr_handle->intr_vec);
2105                 intr_handle->intr_vec = NULL;
2106         }
2107 }
2108
2109 static int
2110 hns3vf_dev_stop(struct rte_eth_dev *dev)
2111 {
2112         struct hns3_adapter *hns = dev->data->dev_private;
2113         struct hns3_hw *hw = &hns->hw;
2114
2115         PMD_INIT_FUNC_TRACE();
2116         dev->data->dev_started = 0;
2117
2118         hw->adapter_state = HNS3_NIC_STOPPING;
2119         hns3_set_rxtx_function(dev);
2120         rte_wmb();
2121         /* Disable datapath on secondary process. */
2122         hns3_mp_req_stop_rxtx(dev);
2123         /* Prevent crashes when queues are still in use. */
2124         rte_delay_ms(hw->cfg_max_queues);
2125
2126         rte_spinlock_lock(&hw->lock);
2127         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
2128                 hns3_stop_tqps(hw);
2129                 hns3vf_do_stop(hns);
2130                 hns3vf_unmap_rx_interrupt(dev);
2131                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2132         }
2133         hns3_rx_scattered_reset(dev);
2134         hns3vf_stop_poll_job(dev);
2135         hns3_stop_report_lse(dev);
2136         rte_spinlock_unlock(&hw->lock);
2137
2138         return 0;
2139 }
2140
2141 static int
2142 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
2143 {
2144         struct hns3_adapter *hns = eth_dev->data->dev_private;
2145         struct hns3_hw *hw = &hns->hw;
2146         int ret = 0;
2147
2148         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2149                 rte_free(eth_dev->process_private);
2150                 eth_dev->process_private = NULL;
2151                 return 0;
2152         }
2153
2154         if (hw->adapter_state == HNS3_NIC_STARTED)
2155                 ret = hns3vf_dev_stop(eth_dev);
2156
2157         hw->adapter_state = HNS3_NIC_CLOSING;
2158         hns3_reset_abort(hns);
2159         hw->adapter_state = HNS3_NIC_CLOSED;
2160         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
2161         hns3vf_configure_all_mc_mac_addr(hns, true);
2162         hns3vf_remove_all_vlan_table(hns);
2163         hns3vf_uninit_vf(eth_dev);
2164         hns3_free_all_queues(eth_dev);
2165         rte_free(hw->reset.wait_data);
2166         rte_free(eth_dev->process_private);
2167         eth_dev->process_private = NULL;
2168         hns3_mp_uninit_primary();
2169         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2170
2171         return ret;
2172 }
2173
2174 static int
2175 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2176                       size_t fw_size)
2177 {
2178         struct hns3_adapter *hns = eth_dev->data->dev_private;
2179         struct hns3_hw *hw = &hns->hw;
2180         uint32_t version = hw->fw_version;
2181         int ret;
2182
2183         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2184                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2185                                       HNS3_FW_VERSION_BYTE3_S),
2186                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2187                                       HNS3_FW_VERSION_BYTE2_S),
2188                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2189                                       HNS3_FW_VERSION_BYTE1_S),
2190                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2191                                       HNS3_FW_VERSION_BYTE0_S));
2192         if (ret < 0)
2193                 return -EINVAL;
2194
2195         ret += 1; /* add the size of '\0' */
2196         if (fw_size < (size_t)ret)
2197                 return ret;
2198         else
2199                 return 0;
2200 }
2201
2202 static int
2203 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2204                        __rte_unused int wait_to_complete)
2205 {
2206         struct hns3_adapter *hns = eth_dev->data->dev_private;
2207         struct hns3_hw *hw = &hns->hw;
2208         struct hns3_mac *mac = &hw->mac;
2209         struct rte_eth_link new_link;
2210
2211         memset(&new_link, 0, sizeof(new_link));
2212         switch (mac->link_speed) {
2213         case ETH_SPEED_NUM_10M:
2214         case ETH_SPEED_NUM_100M:
2215         case ETH_SPEED_NUM_1G:
2216         case ETH_SPEED_NUM_10G:
2217         case ETH_SPEED_NUM_25G:
2218         case ETH_SPEED_NUM_40G:
2219         case ETH_SPEED_NUM_50G:
2220         case ETH_SPEED_NUM_100G:
2221         case ETH_SPEED_NUM_200G:
2222                 if (mac->link_status)
2223                         new_link.link_speed = mac->link_speed;
2224                 break;
2225         default:
2226                 if (mac->link_status)
2227                         new_link.link_speed = ETH_SPEED_NUM_UNKNOWN;
2228                 break;
2229         }
2230
2231         if (!mac->link_status)
2232                 new_link.link_speed = ETH_SPEED_NUM_NONE;
2233
2234         new_link.link_duplex = mac->link_duplex;
2235         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2236         new_link.link_autoneg =
2237             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2238
2239         return rte_eth_linkstatus_set(eth_dev, &new_link);
2240 }
2241
2242 static int
2243 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2244 {
2245         struct hns3_hw *hw = &hns->hw;
2246         uint16_t nb_rx_q = hw->data->nb_rx_queues;
2247         uint16_t nb_tx_q = hw->data->nb_tx_queues;
2248         int ret;
2249
2250         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2251         if (ret)
2252                 return ret;
2253
2254         hns3_enable_rxd_adv_layout(hw);
2255
2256         ret = hns3_init_queues(hns, reset_queue);
2257         if (ret)
2258                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2259
2260         return ret;
2261 }
2262
2263 static int
2264 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2265 {
2266         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2267         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2268         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2269         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2270         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2271         uint32_t intr_vector;
2272         uint16_t q_id;
2273         int ret;
2274
2275         /*
2276          * hns3 needs a separate interrupt to be used as event interrupt which
2277          * could not be shared with task queue pair, so KERNEL drivers need
2278          * support multiple interrupt vectors.
2279          */
2280         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
2281             !rte_intr_cap_multiple(intr_handle))
2282                 return 0;
2283
2284         rte_intr_disable(intr_handle);
2285         intr_vector = hw->used_rx_queues;
2286         /* It creates event fd for each intr vector when MSIX is used */
2287         if (rte_intr_efd_enable(intr_handle, intr_vector))
2288                 return -EINVAL;
2289
2290         if (intr_handle->intr_vec == NULL) {
2291                 intr_handle->intr_vec =
2292                         rte_zmalloc("intr_vec",
2293                                     hw->used_rx_queues * sizeof(int), 0);
2294                 if (intr_handle->intr_vec == NULL) {
2295                         hns3_err(hw, "Failed to allocate %u rx_queues"
2296                                      " intr_vec", hw->used_rx_queues);
2297                         ret = -ENOMEM;
2298                         goto vf_alloc_intr_vec_error;
2299                 }
2300         }
2301
2302         if (rte_intr_allow_others(intr_handle)) {
2303                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2304                 base = RTE_INTR_VEC_RXTX_OFFSET;
2305         }
2306
2307         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2308                 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2309                                                    HNS3_RING_TYPE_RX, q_id);
2310                 if (ret)
2311                         goto vf_bind_vector_error;
2312                 intr_handle->intr_vec[q_id] = vec;
2313                 /*
2314                  * If there are not enough efds (e.g. not enough interrupt),
2315                  * remaining queues will be bond to the last interrupt.
2316                  */
2317                 if (vec < base + intr_handle->nb_efd - 1)
2318                         vec++;
2319         }
2320         rte_intr_enable(intr_handle);
2321         return 0;
2322
2323 vf_bind_vector_error:
2324         free(intr_handle->intr_vec);
2325         intr_handle->intr_vec = NULL;
2326 vf_alloc_intr_vec_error:
2327         rte_intr_efd_disable(intr_handle);
2328         return ret;
2329 }
2330
2331 static int
2332 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2333 {
2334         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2335         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2336         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2337         uint16_t q_id;
2338         int ret;
2339
2340         if (dev->data->dev_conf.intr_conf.rxq == 0)
2341                 return 0;
2342
2343         if (rte_intr_dp_is_en(intr_handle)) {
2344                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2345                         ret = hns3vf_bind_ring_with_vector(hw,
2346                                         intr_handle->intr_vec[q_id], true,
2347                                         HNS3_RING_TYPE_RX, q_id);
2348                         if (ret)
2349                                 return ret;
2350                 }
2351         }
2352
2353         return 0;
2354 }
2355
2356 static void
2357 hns3vf_restore_filter(struct rte_eth_dev *dev)
2358 {
2359         hns3_restore_rss_filter(dev);
2360 }
2361
2362 static int
2363 hns3vf_dev_start(struct rte_eth_dev *dev)
2364 {
2365         struct hns3_adapter *hns = dev->data->dev_private;
2366         struct hns3_hw *hw = &hns->hw;
2367         int ret;
2368
2369         PMD_INIT_FUNC_TRACE();
2370         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
2371                 return -EBUSY;
2372
2373         rte_spinlock_lock(&hw->lock);
2374         hw->adapter_state = HNS3_NIC_STARTING;
2375         ret = hns3vf_do_start(hns, true);
2376         if (ret) {
2377                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2378                 rte_spinlock_unlock(&hw->lock);
2379                 return ret;
2380         }
2381         ret = hns3vf_map_rx_interrupt(dev);
2382         if (ret)
2383                 goto map_rx_inter_err;
2384
2385         /*
2386          * There are three register used to control the status of a TQP
2387          * (contains a pair of Tx queue and Rx queue) in the new version network
2388          * engine. One is used to control the enabling of Tx queue, the other is
2389          * used to control the enabling of Rx queue, and the last is the master
2390          * switch used to control the enabling of the tqp. The Tx register and
2391          * TQP register must be enabled at the same time to enable a Tx queue.
2392          * The same applies to the Rx queue. For the older network enginem, this
2393          * function only refresh the enabled flag, and it is used to update the
2394          * status of queue in the dpdk framework.
2395          */
2396         ret = hns3_start_all_txqs(dev);
2397         if (ret)
2398                 goto map_rx_inter_err;
2399
2400         ret = hns3_start_all_rxqs(dev);
2401         if (ret)
2402                 goto start_all_rxqs_fail;
2403
2404         hw->adapter_state = HNS3_NIC_STARTED;
2405         rte_spinlock_unlock(&hw->lock);
2406
2407         hns3_rx_scattered_calc(dev);
2408         hns3_set_rxtx_function(dev);
2409         hns3_mp_req_start_rxtx(dev);
2410
2411         hns3vf_restore_filter(dev);
2412
2413         /* Enable interrupt of all rx queues before enabling queues */
2414         hns3_dev_all_rx_queue_intr_enable(hw, true);
2415         hns3_start_tqps(hw);
2416
2417         if (dev->data->dev_conf.intr_conf.lsc != 0)
2418                 hns3vf_dev_link_update(dev, 0);
2419         hns3vf_start_poll_job(dev);
2420
2421         return ret;
2422
2423 start_all_rxqs_fail:
2424         hns3_stop_all_txqs(dev);
2425 map_rx_inter_err:
2426         (void)hns3vf_do_stop(hns);
2427         hw->adapter_state = HNS3_NIC_CONFIGURED;
2428         rte_spinlock_unlock(&hw->lock);
2429
2430         return ret;
2431 }
2432
2433 static bool
2434 is_vf_reset_done(struct hns3_hw *hw)
2435 {
2436 #define HNS3_FUN_RST_ING_BITS \
2437         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2438          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2439          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2440          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2441
2442         uint32_t val;
2443
2444         if (hw->reset.level == HNS3_VF_RESET) {
2445                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2446                 if (val & HNS3_VF_RST_ING_BIT)
2447                         return false;
2448         } else {
2449                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2450                 if (val & HNS3_FUN_RST_ING_BITS)
2451                         return false;
2452         }
2453         return true;
2454 }
2455
2456 bool
2457 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2458 {
2459         struct hns3_hw *hw = &hns->hw;
2460         enum hns3_reset_level reset;
2461
2462         /*
2463          * According to the protocol of PCIe, FLR to a PF device resets the PF
2464          * state as well as the SR-IOV extended capability including VF Enable
2465          * which means that VFs no longer exist.
2466          *
2467          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2468          * is in FLR stage, the register state of VF device is not reliable,
2469          * so register states detection can not be carried out. In this case,
2470          * we just ignore the register states and return false to indicate that
2471          * there are no other reset states that need to be processed by driver.
2472          */
2473         if (hw->reset.level == HNS3_VF_FULL_RESET)
2474                 return false;
2475
2476         /* Check the registers to confirm whether there is reset pending */
2477         hns3vf_check_event_cause(hns, NULL);
2478         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2479         if (hw->reset.level != HNS3_NONE_RESET && reset != HNS3_NONE_RESET &&
2480             hw->reset.level < reset) {
2481                 hns3_warn(hw, "High level reset %d is pending", reset);
2482                 return true;
2483         }
2484         return false;
2485 }
2486
2487 static int
2488 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2489 {
2490         struct hns3_hw *hw = &hns->hw;
2491         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2492         struct timeval tv;
2493
2494         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2495                 /*
2496                  * After vf reset is ready, the PF may not have completed
2497                  * the reset processing. The vf sending mbox to PF may fail
2498                  * during the pf reset, so it is better to add extra delay.
2499                  */
2500                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2501                     hw->reset.level == HNS3_FLR_RESET)
2502                         return 0;
2503                 /* Reset retry process, no need to add extra delay. */
2504                 if (hw->reset.attempts)
2505                         return 0;
2506                 if (wait_data->check_completion == NULL)
2507                         return 0;
2508
2509                 wait_data->check_completion = NULL;
2510                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2511                 wait_data->count = 1;
2512                 wait_data->result = HNS3_WAIT_REQUEST;
2513                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2514                                   wait_data);
2515                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2516                 return -EAGAIN;
2517         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2518                 hns3_clock_gettime(&tv);
2519                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2520                           tv.tv_sec, tv.tv_usec);
2521                 return -ETIME;
2522         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2523                 return -EAGAIN;
2524
2525         wait_data->hns = hns;
2526         wait_data->check_completion = is_vf_reset_done;
2527         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2528                                 HNS3VF_RESET_WAIT_MS + hns3_clock_gettime_ms();
2529         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2530         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2531         wait_data->result = HNS3_WAIT_REQUEST;
2532         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2533         return -EAGAIN;
2534 }
2535
2536 static int
2537 hns3vf_prepare_reset(struct hns3_adapter *hns)
2538 {
2539         struct hns3_hw *hw = &hns->hw;
2540         int ret;
2541
2542         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2543                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2544                                         0, true, NULL, 0);
2545                 if (ret)
2546                         return ret;
2547         }
2548         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
2549
2550         return 0;
2551 }
2552
2553 static int
2554 hns3vf_stop_service(struct hns3_adapter *hns)
2555 {
2556         struct hns3_hw *hw = &hns->hw;
2557         struct rte_eth_dev *eth_dev;
2558
2559         eth_dev = &rte_eth_devices[hw->data->port_id];
2560         if (hw->adapter_state == HNS3_NIC_STARTED) {
2561                 /*
2562                  * Make sure call update link status before hns3vf_stop_poll_job
2563                  * because update link status depend on polling job exist.
2564                  */
2565                 hns3vf_update_link_status(hw, ETH_LINK_DOWN, hw->mac.link_speed,
2566                                           hw->mac.link_duplex);
2567                 hns3vf_stop_poll_job(eth_dev);
2568         }
2569         hw->mac.link_status = ETH_LINK_DOWN;
2570
2571         hns3_set_rxtx_function(eth_dev);
2572         rte_wmb();
2573         /* Disable datapath on secondary process. */
2574         hns3_mp_req_stop_rxtx(eth_dev);
2575         rte_delay_ms(hw->cfg_max_queues);
2576
2577         rte_spinlock_lock(&hw->lock);
2578         if (hw->adapter_state == HNS3_NIC_STARTED ||
2579             hw->adapter_state == HNS3_NIC_STOPPING) {
2580                 hns3_enable_all_queues(hw, false);
2581                 hns3vf_do_stop(hns);
2582                 hw->reset.mbuf_deferred_free = true;
2583         } else
2584                 hw->reset.mbuf_deferred_free = false;
2585
2586         /*
2587          * It is cumbersome for hardware to pick-and-choose entries for deletion
2588          * from table space. Hence, for function reset software intervention is
2589          * required to delete the entries.
2590          */
2591         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
2592                 hns3vf_configure_all_mc_mac_addr(hns, true);
2593         rte_spinlock_unlock(&hw->lock);
2594
2595         return 0;
2596 }
2597
2598 static int
2599 hns3vf_start_service(struct hns3_adapter *hns)
2600 {
2601         struct hns3_hw *hw = &hns->hw;
2602         struct rte_eth_dev *eth_dev;
2603
2604         eth_dev = &rte_eth_devices[hw->data->port_id];
2605         hns3_set_rxtx_function(eth_dev);
2606         hns3_mp_req_start_rxtx(eth_dev);
2607         if (hw->adapter_state == HNS3_NIC_STARTED) {
2608                 hns3vf_start_poll_job(eth_dev);
2609
2610                 /* Enable interrupt of all rx queues before enabling queues */
2611                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2612                 /*
2613                  * Enable state of each rxq and txq will be recovered after
2614                  * reset, so we need to restore them before enable all tqps;
2615                  */
2616                 hns3_restore_tqp_enable_state(hw);
2617                 /*
2618                  * When finished the initialization, enable queues to receive
2619                  * and transmit packets.
2620                  */
2621                 hns3_enable_all_queues(hw, true);
2622         }
2623
2624         return 0;
2625 }
2626
2627 static int
2628 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2629 {
2630         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2631         struct rte_ether_addr *hw_mac;
2632         int ret;
2633
2634         /*
2635          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2636          * on the host by "ip link set ..." command. If the hns3 PF kernel
2637          * ethdev driver sets the MAC address for VF device after the
2638          * initialization of the related VF device, the PF driver will notify
2639          * VF driver to reset VF device to make the new MAC address effective
2640          * immediately. The hns3 VF PMD driver should check whether the MAC
2641          * address has been changed by the PF kernel ethdev driver, if changed
2642          * VF driver should configure hardware using the new MAC address in the
2643          * recovering hardware configuration stage of the reset process.
2644          */
2645         ret = hns3vf_get_host_mac_addr(hw);
2646         if (ret)
2647                 return ret;
2648
2649         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2650         ret = rte_is_zero_ether_addr(hw_mac);
2651         if (ret) {
2652                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2653         } else {
2654                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2655                 if (!ret) {
2656                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2657                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2658                                               &hw->data->mac_addrs[0]);
2659                         hns3_warn(hw, "Default MAC address has been changed to:"
2660                                   " %s by the host PF kernel ethdev driver",
2661                                   mac_str);
2662                 }
2663         }
2664
2665         return 0;
2666 }
2667
2668 static int
2669 hns3vf_restore_conf(struct hns3_adapter *hns)
2670 {
2671         struct hns3_hw *hw = &hns->hw;
2672         int ret;
2673
2674         ret = hns3vf_check_default_mac_change(hw);
2675         if (ret)
2676                 return ret;
2677
2678         ret = hns3vf_configure_mac_addr(hns, false);
2679         if (ret)
2680                 return ret;
2681
2682         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2683         if (ret)
2684                 goto err_mc_mac;
2685
2686         ret = hns3vf_restore_promisc(hns);
2687         if (ret)
2688                 goto err_vlan_table;
2689
2690         ret = hns3vf_restore_vlan_conf(hns);
2691         if (ret)
2692                 goto err_vlan_table;
2693
2694         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2695         if (ret)
2696                 goto err_vlan_table;
2697
2698         ret = hns3vf_restore_rx_interrupt(hw);
2699         if (ret)
2700                 goto err_vlan_table;
2701
2702         ret = hns3_restore_gro_conf(hw);
2703         if (ret)
2704                 goto err_vlan_table;
2705
2706         if (hw->adapter_state == HNS3_NIC_STARTED) {
2707                 ret = hns3vf_do_start(hns, false);
2708                 if (ret)
2709                         goto err_vlan_table;
2710                 hns3_info(hw, "hns3vf dev restart successful!");
2711         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2712                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2713
2714         ret = hns3vf_set_alive(hw, true);
2715         if (ret) {
2716                 hns3_err(hw, "failed to VF send alive to PF: %d", ret);
2717                 goto err_vlan_table;
2718         }
2719
2720         return 0;
2721
2722 err_vlan_table:
2723         hns3vf_configure_all_mc_mac_addr(hns, true);
2724 err_mc_mac:
2725         hns3vf_configure_mac_addr(hns, true);
2726         return ret;
2727 }
2728
2729 static enum hns3_reset_level
2730 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2731 {
2732         enum hns3_reset_level reset_level;
2733
2734         /* return the highest priority reset level amongst all */
2735         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2736                 reset_level = HNS3_VF_RESET;
2737         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2738                 reset_level = HNS3_VF_FULL_RESET;
2739         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2740                 reset_level = HNS3_VF_PF_FUNC_RESET;
2741         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2742                 reset_level = HNS3_VF_FUNC_RESET;
2743         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2744                 reset_level = HNS3_FLR_RESET;
2745         else
2746                 reset_level = HNS3_NONE_RESET;
2747
2748         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2749                 return HNS3_NONE_RESET;
2750
2751         return reset_level;
2752 }
2753
2754 static void
2755 hns3vf_reset_service(void *param)
2756 {
2757         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2758         struct hns3_hw *hw = &hns->hw;
2759         enum hns3_reset_level reset_level;
2760         struct timeval tv_delta;
2761         struct timeval tv_start;
2762         struct timeval tv;
2763         uint64_t msec;
2764
2765         /*
2766          * The interrupt is not triggered within the delay time.
2767          * The interrupt may have been lost. It is necessary to handle
2768          * the interrupt to recover from the error.
2769          */
2770         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2771                             SCHEDULE_DEFERRED) {
2772                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2773                                  __ATOMIC_RELAXED);
2774                 hns3_err(hw, "Handling interrupts in delayed tasks");
2775                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2776                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2777                 if (reset_level == HNS3_NONE_RESET) {
2778                         hns3_err(hw, "No reset level is set, try global reset");
2779                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2780                 }
2781         }
2782         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2783
2784         /*
2785          * Hardware reset has been notified, we now have to poll & check if
2786          * hardware has actually completed the reset sequence.
2787          */
2788         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2789         if (reset_level != HNS3_NONE_RESET) {
2790                 hns3_clock_gettime(&tv_start);
2791                 hns3_reset_process(hns, reset_level);
2792                 hns3_clock_gettime(&tv);
2793                 timersub(&tv, &tv_start, &tv_delta);
2794                 msec = hns3_clock_calctime_ms(&tv_delta);
2795                 if (msec > HNS3_RESET_PROCESS_MS)
2796                         hns3_err(hw, "%d handle long time delta %" PRIu64
2797                                  " ms time=%ld.%.6ld",
2798                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2799         }
2800 }
2801
2802 static int
2803 hns3vf_reinit_dev(struct hns3_adapter *hns)
2804 {
2805         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2806         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2807         struct hns3_hw *hw = &hns->hw;
2808         int ret;
2809
2810         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2811                 rte_intr_disable(&pci_dev->intr_handle);
2812                 ret = hns3vf_set_bus_master(pci_dev, true);
2813                 if (ret < 0) {
2814                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2815                         return ret;
2816                 }
2817         }
2818
2819         /* Firmware command initialize */
2820         ret = hns3_cmd_init(hw);
2821         if (ret) {
2822                 hns3_err(hw, "Failed to init cmd: %d", ret);
2823                 return ret;
2824         }
2825
2826         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2827                 /*
2828                  * UIO enables msix by writing the pcie configuration space
2829                  * vfio_pci enables msix in rte_intr_enable.
2830                  */
2831                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2832                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2833                         if (hns3vf_enable_msix(pci_dev, true))
2834                                 hns3_err(hw, "Failed to enable msix");
2835                 }
2836
2837                 rte_intr_enable(&pci_dev->intr_handle);
2838         }
2839
2840         ret = hns3_reset_all_tqps(hns);
2841         if (ret) {
2842                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2843                 return ret;
2844         }
2845
2846         ret = hns3vf_init_hardware(hns);
2847         if (ret) {
2848                 hns3_err(hw, "Failed to init hardware: %d", ret);
2849                 return ret;
2850         }
2851
2852         return 0;
2853 }
2854
2855 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2856         .dev_configure      = hns3vf_dev_configure,
2857         .dev_start          = hns3vf_dev_start,
2858         .dev_stop           = hns3vf_dev_stop,
2859         .dev_close          = hns3vf_dev_close,
2860         .mtu_set            = hns3vf_dev_mtu_set,
2861         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2862         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2863         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2864         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2865         .stats_get          = hns3_stats_get,
2866         .stats_reset        = hns3_stats_reset,
2867         .xstats_get         = hns3_dev_xstats_get,
2868         .xstats_get_names   = hns3_dev_xstats_get_names,
2869         .xstats_reset       = hns3_dev_xstats_reset,
2870         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2871         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2872         .dev_infos_get      = hns3vf_dev_infos_get,
2873         .fw_version_get     = hns3vf_fw_version_get,
2874         .rx_queue_setup     = hns3_rx_queue_setup,
2875         .tx_queue_setup     = hns3_tx_queue_setup,
2876         .rx_queue_release   = hns3_dev_rx_queue_release,
2877         .tx_queue_release   = hns3_dev_tx_queue_release,
2878         .rx_queue_start     = hns3_dev_rx_queue_start,
2879         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2880         .tx_queue_start     = hns3_dev_tx_queue_start,
2881         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2882         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2883         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2884         .rxq_info_get       = hns3_rxq_info_get,
2885         .txq_info_get       = hns3_txq_info_get,
2886         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2887         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2888         .mac_addr_add       = hns3vf_add_mac_addr,
2889         .mac_addr_remove    = hns3vf_remove_mac_addr,
2890         .mac_addr_set       = hns3vf_set_default_mac_addr,
2891         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2892         .link_update        = hns3vf_dev_link_update,
2893         .rss_hash_update    = hns3_dev_rss_hash_update,
2894         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2895         .reta_update        = hns3_dev_rss_reta_update,
2896         .reta_query         = hns3_dev_rss_reta_query,
2897         .flow_ops_get       = hns3_dev_flow_ops_get,
2898         .vlan_filter_set    = hns3vf_vlan_filter_set,
2899         .vlan_offload_set   = hns3vf_vlan_offload_set,
2900         .get_reg            = hns3_get_regs,
2901         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2902         .tx_done_cleanup    = hns3_tx_done_cleanup,
2903 };
2904
2905 static const struct hns3_reset_ops hns3vf_reset_ops = {
2906         .reset_service       = hns3vf_reset_service,
2907         .stop_service        = hns3vf_stop_service,
2908         .prepare_reset       = hns3vf_prepare_reset,
2909         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2910         .reinit_dev          = hns3vf_reinit_dev,
2911         .restore_conf        = hns3vf_restore_conf,
2912         .start_service       = hns3vf_start_service,
2913 };
2914
2915 static int
2916 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2917 {
2918         struct hns3_adapter *hns = eth_dev->data->dev_private;
2919         struct hns3_hw *hw = &hns->hw;
2920         int ret;
2921
2922         PMD_INIT_FUNC_TRACE();
2923
2924         eth_dev->process_private = (struct hns3_process_private *)
2925             rte_zmalloc_socket("hns3_filter_list",
2926                                sizeof(struct hns3_process_private),
2927                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2928         if (eth_dev->process_private == NULL) {
2929                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2930                 return -ENOMEM;
2931         }
2932
2933         hns3_flow_init(eth_dev);
2934
2935         hns3_set_rxtx_function(eth_dev);
2936         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2937         eth_dev->rx_queue_count = hns3_rx_queue_count;
2938         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2939                 ret = hns3_mp_init_secondary();
2940                 if (ret) {
2941                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2942                                           "process, ret = %d", ret);
2943                         goto err_mp_init_secondary;
2944                 }
2945                 hw->secondary_cnt++;
2946                 hns3_tx_push_init(eth_dev);
2947                 return 0;
2948         }
2949
2950         ret = hns3_mp_init_primary();
2951         if (ret) {
2952                 PMD_INIT_LOG(ERR,
2953                              "Failed to init for primary process, ret = %d",
2954                              ret);
2955                 goto err_mp_init_primary;
2956         }
2957
2958         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2959         hns->is_vf = true;
2960         hw->data = eth_dev->data;
2961         hns3_parse_devargs(eth_dev);
2962
2963         ret = hns3_reset_init(hw);
2964         if (ret)
2965                 goto err_init_reset;
2966         hw->reset.ops = &hns3vf_reset_ops;
2967
2968         ret = hns3vf_init_vf(eth_dev);
2969         if (ret) {
2970                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2971                 goto err_init_vf;
2972         }
2973
2974         /* Allocate memory for storing MAC addresses */
2975         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2976                                                sizeof(struct rte_ether_addr) *
2977                                                HNS3_VF_UC_MACADDR_NUM, 0);
2978         if (eth_dev->data->mac_addrs == NULL) {
2979                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2980                              "to store MAC addresses",
2981                              sizeof(struct rte_ether_addr) *
2982                              HNS3_VF_UC_MACADDR_NUM);
2983                 ret = -ENOMEM;
2984                 goto err_rte_zmalloc;
2985         }
2986
2987         /*
2988          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2989          * on the host by "ip link set ..." command. To avoid some incorrect
2990          * scenes, for example, hns3 VF PMD driver fails to receive and send
2991          * packets after user configure the MAC address by using the
2992          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2993          * address strategy as the hns3 kernel ethdev driver in the
2994          * initialization. If user configure a MAC address by the ip command
2995          * for VF device, then hns3 VF PMD driver will start with it, otherwise
2996          * start with a random MAC address in the initialization.
2997          */
2998         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2999                 rte_eth_random_addr(hw->mac.mac_addr);
3000         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
3001                             &eth_dev->data->mac_addrs[0]);
3002
3003         hw->adapter_state = HNS3_NIC_INITIALIZED;
3004
3005         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
3006                             SCHEDULE_PENDING) {
3007                 hns3_err(hw, "Reschedule reset service after dev_init");
3008                 hns3_schedule_reset(hns);
3009         } else {
3010                 /* IMP will wait ready flag before reset */
3011                 hns3_notify_reset_ready(hw, false);
3012         }
3013         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
3014                           eth_dev);
3015         return 0;
3016
3017 err_rte_zmalloc:
3018         hns3vf_uninit_vf(eth_dev);
3019
3020 err_init_vf:
3021         rte_free(hw->reset.wait_data);
3022
3023 err_init_reset:
3024         hns3_mp_uninit_primary();
3025
3026 err_mp_init_primary:
3027 err_mp_init_secondary:
3028         eth_dev->dev_ops = NULL;
3029         eth_dev->rx_pkt_burst = NULL;
3030         eth_dev->rx_descriptor_status = NULL;
3031         eth_dev->tx_pkt_burst = NULL;
3032         eth_dev->tx_pkt_prepare = NULL;
3033         eth_dev->tx_descriptor_status = NULL;
3034         rte_free(eth_dev->process_private);
3035         eth_dev->process_private = NULL;
3036
3037         return ret;
3038 }
3039
3040 static int
3041 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
3042 {
3043         struct hns3_adapter *hns = eth_dev->data->dev_private;
3044         struct hns3_hw *hw = &hns->hw;
3045
3046         PMD_INIT_FUNC_TRACE();
3047
3048         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
3049                 rte_free(eth_dev->process_private);
3050                 eth_dev->process_private = NULL;
3051                 return 0;
3052         }
3053
3054         if (hw->adapter_state < HNS3_NIC_CLOSING)
3055                 hns3vf_dev_close(eth_dev);
3056
3057         hw->adapter_state = HNS3_NIC_REMOVED;
3058         return 0;
3059 }
3060
3061 static int
3062 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3063                      struct rte_pci_device *pci_dev)
3064 {
3065         return rte_eth_dev_pci_generic_probe(pci_dev,
3066                                              sizeof(struct hns3_adapter),
3067                                              hns3vf_dev_init);
3068 }
3069
3070 static int
3071 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
3072 {
3073         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
3074 }
3075
3076 static const struct rte_pci_id pci_id_hns3vf_map[] = {
3077         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
3078         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
3079         { .vendor_id = 0, }, /* sentinel */
3080 };
3081
3082 static struct rte_pci_driver rte_hns3vf_pmd = {
3083         .id_table = pci_id_hns3vf_map,
3084         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
3085         .probe = eth_hns3vf_pci_probe,
3086         .remove = eth_hns3vf_pci_remove,
3087 };
3088
3089 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
3090 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
3091 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
3092 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
3093                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
3094                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
3095                 HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> ");