fb55d5822b352dc1502485dc9be51ca10d9750e8
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <rte_ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19
20 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
22
23 #define HNS3VF_RESET_WAIT_MS    20
24 #define HNS3VF_RESET_WAIT_CNT   2000
25
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT           0
28 #define HNS3_CORE_RESET_BIT             1
29 #define HNS3_IMP_RESET_BIT              2
30 #define HNS3_FUN_RST_ING_B              0
31
32 enum hns3vf_evt_cause {
33         HNS3VF_VECTOR0_EVENT_RST,
34         HNS3VF_VECTOR0_EVENT_MBX,
35         HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39                                                     uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44                                   struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46                                      struct rte_ether_addr *mac_addr);
47 /* set PCI bus mastering */
48 static int
49 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
50 {
51         uint16_t reg;
52         int ret;
53
54         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
55         if (ret < 0) {
56                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
57                              PCI_COMMAND);
58                 return ret;
59         }
60
61         if (op)
62                 /* set the master bit */
63                 reg |= PCI_COMMAND_MASTER;
64         else
65                 reg &= ~(PCI_COMMAND_MASTER);
66
67         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
68 }
69
70 /**
71  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
72  * @cap: the capability
73  *
74  * Return the address of the given capability within the PCI capability list.
75  */
76 static int
77 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
78 {
79 #define MAX_PCIE_CAPABILITY 48
80         uint16_t status;
81         uint8_t pos;
82         uint8_t id;
83         int ttl;
84         int ret;
85
86         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
87         if (ret < 0) {
88                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
89                 return 0;
90         }
91
92         if (!(status & PCI_STATUS_CAP_LIST))
93                 return 0;
94
95         ttl = MAX_PCIE_CAPABILITY;
96         ret = rte_pci_read_config(device, &pos, sizeof(pos),
97                                   PCI_CAPABILITY_LIST);
98         if (ret < 0) {
99                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
100                              PCI_CAPABILITY_LIST);
101                 return 0;
102         }
103
104         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105                 ret = rte_pci_read_config(device, &id, sizeof(id),
106                                           (pos + PCI_CAP_LIST_ID));
107                 if (ret < 0) {
108                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
109                                      (pos + PCI_CAP_LIST_ID));
110                         break;
111                 }
112
113                 if (id == 0xFF)
114                         break;
115
116                 if (id == cap)
117                         return (int)pos;
118
119                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
120                                           (pos + PCI_CAP_LIST_NEXT));
121                 if (ret < 0) {
122                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
123                                      (pos + PCI_CAP_LIST_NEXT));
124                         break;
125                 }
126         }
127         return 0;
128 }
129
130 static int
131 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
132 {
133         uint16_t control;
134         int pos;
135         int ret;
136
137         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
138         if (pos) {
139                 ret = rte_pci_read_config(device, &control, sizeof(control),
140                                     (pos + PCI_MSIX_FLAGS));
141                 if (ret < 0) {
142                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
143                                      (pos + PCI_MSIX_FLAGS));
144                         return -ENXIO;
145                 }
146
147                 if (op)
148                         control |= PCI_MSIX_FLAGS_ENABLE;
149                 else
150                         control &= ~PCI_MSIX_FLAGS_ENABLE;
151                 rte_pci_write_config(device, &control, sizeof(control),
152                                      (pos + PCI_MSIX_FLAGS));
153                 return 0;
154         }
155         return -ENXIO;
156 }
157
158 static int
159 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
160 {
161         /* mac address was checked by upper level interface */
162         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
163         int ret;
164
165         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
166                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
167                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
168         if (ret) {
169                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
170                                       mac_addr);
171                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
172                          mac_str, ret);
173         }
174         return ret;
175 }
176
177 static int
178 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
179 {
180         /* mac address was checked by upper level interface */
181         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
182         int ret;
183
184         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
185                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
186                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
187                                 false, NULL, 0);
188         if (ret) {
189                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
190                                       mac_addr);
191                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
192                          mac_str, ret);
193         }
194         return ret;
195 }
196
197 static int
198 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
199 {
200         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
201         struct rte_ether_addr *addr;
202         int ret;
203         int i;
204
205         for (i = 0; i < hw->mc_addrs_num; i++) {
206                 addr = &hw->mc_addrs[i];
207                 /* Check if there are duplicate addresses */
208                 if (rte_is_same_ether_addr(addr, mac_addr)) {
209                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
210                                               addr);
211                         hns3_err(hw, "failed to add mc mac addr, same addrs"
212                                  "(%s) is added by the set_mc_mac_addr_list "
213                                  "API", mac_str);
214                         return -EINVAL;
215                 }
216         }
217
218         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
219         if (ret) {
220                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
221                                       mac_addr);
222                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
223                          mac_str, ret);
224         }
225         return ret;
226 }
227
228 static int
229 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
230                     __rte_unused uint32_t idx,
231                     __rte_unused uint32_t pool)
232 {
233         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
234         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
235         int ret;
236
237         rte_spinlock_lock(&hw->lock);
238
239         /*
240          * In hns3 network engine adding UC and MC mac address with different
241          * commands with firmware. We need to determine whether the input
242          * address is a UC or a MC address to call different commands.
243          * By the way, it is recommended calling the API function named
244          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
245          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
246          * may affect the specifications of UC mac addresses.
247          */
248         if (rte_is_multicast_ether_addr(mac_addr))
249                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
250         else
251                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
252
253         rte_spinlock_unlock(&hw->lock);
254         if (ret) {
255                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
256                                       mac_addr);
257                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
258                          ret);
259         }
260
261         return ret;
262 }
263
264 static void
265 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
266 {
267         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
268         /* index will be checked by upper level rte interface */
269         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
270         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
271         int ret;
272
273         rte_spinlock_lock(&hw->lock);
274
275         if (rte_is_multicast_ether_addr(mac_addr))
276                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
277         else
278                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
279
280         rte_spinlock_unlock(&hw->lock);
281         if (ret) {
282                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
283                                       mac_addr);
284                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
285                          mac_str, ret);
286         }
287 }
288
289 static int
290 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
291                             struct rte_ether_addr *mac_addr)
292 {
293 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
294         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
295         struct rte_ether_addr *old_addr;
296         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
297         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
298         int ret;
299
300         /*
301          * It has been guaranteed that input parameter named mac_addr is valid
302          * address in the rte layer of DPDK framework.
303          */
304         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
305         rte_spinlock_lock(&hw->lock);
306         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
307         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
308                RTE_ETHER_ADDR_LEN);
309
310         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
311                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
312                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
313         if (ret) {
314                 /*
315                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
316                  * driver. When user has configured a MAC address for VF device
317                  * by "ip link set ..." command based on the PF device, the hns3
318                  * PF kernel ethdev driver does not allow VF driver to request
319                  * reconfiguring a different default MAC address, and return
320                  * -EPREM to VF driver through mailbox.
321                  */
322                 if (ret == -EPERM) {
323                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
324                                               old_addr);
325                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
326                                   mac_str);
327                 } else {
328                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
329                                               mac_addr);
330                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
331                                  mac_str, ret);
332                 }
333         }
334
335         rte_ether_addr_copy(mac_addr,
336                             (struct rte_ether_addr *)hw->mac.mac_addr);
337         rte_spinlock_unlock(&hw->lock);
338
339         return ret;
340 }
341
342 static int
343 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
344 {
345         struct hns3_hw *hw = &hns->hw;
346         struct rte_ether_addr *addr;
347         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
348         int err = 0;
349         int ret;
350         int i;
351
352         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
353                 addr = &hw->data->mac_addrs[i];
354                 if (rte_is_zero_ether_addr(addr))
355                         continue;
356                 if (rte_is_multicast_ether_addr(addr))
357                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
358                               hns3vf_add_mc_mac_addr(hw, addr);
359                 else
360                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
361                               hns3vf_add_uc_mac_addr(hw, addr);
362
363                 if (ret) {
364                         err = ret;
365                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
366                                               addr);
367                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
368                                  "ret = %d.", del ? "remove" : "restore",
369                                  mac_str, i, ret);
370                 }
371         }
372         return err;
373 }
374
375 static int
376 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
377                        struct rte_ether_addr *mac_addr)
378 {
379         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
380         int ret;
381
382         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
383                                 HNS3_MBX_MAC_VLAN_MC_ADD,
384                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
385                                 NULL, 0);
386         if (ret) {
387                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
388                                       mac_addr);
389                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
390                          mac_str, ret);
391         }
392
393         return ret;
394 }
395
396 static int
397 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
398                           struct rte_ether_addr *mac_addr)
399 {
400         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
401         int ret;
402
403         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
404                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
405                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
406                                 NULL, 0);
407         if (ret) {
408                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
409                                       mac_addr);
410                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
411                          mac_str, ret);
412         }
413
414         return ret;
415 }
416
417 static int
418 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
419                              struct rte_ether_addr *mc_addr_set,
420                              uint32_t nb_mc_addr)
421 {
422         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
423         struct rte_ether_addr *addr;
424         uint32_t i;
425         uint32_t j;
426
427         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
428                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
429                          "invalid. valid range: 0~%d",
430                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
431                 return -EINVAL;
432         }
433
434         /* Check if input mac addresses are valid */
435         for (i = 0; i < nb_mc_addr; i++) {
436                 addr = &mc_addr_set[i];
437                 if (!rte_is_multicast_ether_addr(addr)) {
438                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
439                                               addr);
440                         hns3_err(hw,
441                                  "failed to set mc mac addr, addr(%s) invalid.",
442                                  mac_str);
443                         return -EINVAL;
444                 }
445
446                 /* Check if there are duplicate addresses */
447                 for (j = i + 1; j < nb_mc_addr; j++) {
448                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
449                                 rte_ether_format_addr(mac_str,
450                                                       RTE_ETHER_ADDR_FMT_SIZE,
451                                                       addr);
452                                 hns3_err(hw, "failed to set mc mac addr, "
453                                          "addrs invalid. two same addrs(%s).",
454                                          mac_str);
455                                 return -EINVAL;
456                         }
457                 }
458
459                 /*
460                  * Check if there are duplicate addresses between mac_addrs
461                  * and mc_addr_set
462                  */
463                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
464                         if (rte_is_same_ether_addr(addr,
465                                                    &hw->data->mac_addrs[j])) {
466                                 rte_ether_format_addr(mac_str,
467                                                       RTE_ETHER_ADDR_FMT_SIZE,
468                                                       addr);
469                                 hns3_err(hw, "failed to set mc mac addr, "
470                                          "addrs invalid. addrs(%s) has already "
471                                          "configured in mac_addr add API",
472                                          mac_str);
473                                 return -EINVAL;
474                         }
475                 }
476         }
477
478         return 0;
479 }
480
481 static int
482 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
483                             struct rte_ether_addr *mc_addr_set,
484                             uint32_t nb_mc_addr)
485 {
486         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
487         struct rte_ether_addr *addr;
488         int cur_addr_num;
489         int set_addr_num;
490         int num;
491         int ret;
492         int i;
493
494         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
495         if (ret)
496                 return ret;
497
498         rte_spinlock_lock(&hw->lock);
499         cur_addr_num = hw->mc_addrs_num;
500         for (i = 0; i < cur_addr_num; i++) {
501                 num = cur_addr_num - i - 1;
502                 addr = &hw->mc_addrs[num];
503                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
504                 if (ret) {
505                         rte_spinlock_unlock(&hw->lock);
506                         return ret;
507                 }
508
509                 hw->mc_addrs_num--;
510         }
511
512         set_addr_num = (int)nb_mc_addr;
513         for (i = 0; i < set_addr_num; i++) {
514                 addr = &mc_addr_set[i];
515                 ret = hns3vf_add_mc_mac_addr(hw, addr);
516                 if (ret) {
517                         rte_spinlock_unlock(&hw->lock);
518                         return ret;
519                 }
520
521                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
522                 hw->mc_addrs_num++;
523         }
524         rte_spinlock_unlock(&hw->lock);
525
526         return 0;
527 }
528
529 static int
530 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
531 {
532         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
533         struct hns3_hw *hw = &hns->hw;
534         struct rte_ether_addr *addr;
535         int err = 0;
536         int ret;
537         int i;
538
539         for (i = 0; i < hw->mc_addrs_num; i++) {
540                 addr = &hw->mc_addrs[i];
541                 if (!rte_is_multicast_ether_addr(addr))
542                         continue;
543                 if (del)
544                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
545                 else
546                         ret = hns3vf_add_mc_mac_addr(hw, addr);
547                 if (ret) {
548                         err = ret;
549                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
550                                               addr);
551                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
552                                  del ? "Remove" : "Restore", mac_str, ret);
553                 }
554         }
555         return err;
556 }
557
558 static int
559 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
560                         bool en_uc_pmc, bool en_mc_pmc)
561 {
562         struct hns3_mbx_vf_to_pf_cmd *req;
563         struct hns3_cmd_desc desc;
564         int ret;
565
566         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
567
568         /*
569          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
570          * so there are some features for promiscuous/allmulticast mode in hns3
571          * VF PMD driver as below:
572          * 1. The promiscuous/allmulticast mode can be configured successfully
573          *    only based on the trusted VF device. If based on the non trusted
574          *    VF device, configuring promiscuous/allmulticast mode will fail.
575          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
576          *    kernel ethdev driver on the host by the following command:
577          *      "ip link set <eth num> vf <vf id> turst on"
578          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
579          *    driver can receive the ingress and outgoing traffic. In the words,
580          *    all the ingress packets, all the packets sent from the PF and
581          *    other VFs on the same physical port.
582          * 3. Note: Because of the hardware constraints, By default vlan filter
583          *    is enabled and couldn't be turned off based on VF device, so vlan
584          *    filter is still effective even in promiscuous mode. If upper
585          *    applications don't call rte_eth_dev_vlan_filter API function to
586          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
587          *    the packets with vlan tag in promiscuoue mode.
588          */
589         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
590         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
591         req->msg[1] = en_bc_pmc ? 1 : 0;
592         req->msg[2] = en_uc_pmc ? 1 : 0;
593         req->msg[3] = en_mc_pmc ? 1 : 0;
594         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
595
596         ret = hns3_cmd_send(hw, &desc, 1);
597         if (ret)
598                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
599
600         return ret;
601 }
602
603 static int
604 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
605 {
606         struct hns3_adapter *hns = dev->data->dev_private;
607         struct hns3_hw *hw = &hns->hw;
608         int ret;
609
610         ret = hns3vf_set_promisc_mode(hw, true, true, true);
611         if (ret)
612                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
613                         ret);
614         return ret;
615 }
616
617 static int
618 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
619 {
620         bool allmulti = dev->data->all_multicast ? true : false;
621         struct hns3_adapter *hns = dev->data->dev_private;
622         struct hns3_hw *hw = &hns->hw;
623         int ret;
624
625         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
626         if (ret)
627                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
628                         ret);
629         return ret;
630 }
631
632 static int
633 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
634 {
635         struct hns3_adapter *hns = dev->data->dev_private;
636         struct hns3_hw *hw = &hns->hw;
637         int ret;
638
639         if (dev->data->promiscuous)
640                 return 0;
641
642         ret = hns3vf_set_promisc_mode(hw, true, false, true);
643         if (ret)
644                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
645                         ret);
646         return ret;
647 }
648
649 static int
650 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
651 {
652         struct hns3_adapter *hns = dev->data->dev_private;
653         struct hns3_hw *hw = &hns->hw;
654         int ret;
655
656         if (dev->data->promiscuous)
657                 return 0;
658
659         ret = hns3vf_set_promisc_mode(hw, true, false, false);
660         if (ret)
661                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
662                         ret);
663         return ret;
664 }
665
666 static int
667 hns3vf_restore_promisc(struct hns3_adapter *hns)
668 {
669         struct hns3_hw *hw = &hns->hw;
670         bool allmulti = hw->data->all_multicast ? true : false;
671
672         if (hw->data->promiscuous)
673                 return hns3vf_set_promisc_mode(hw, true, true, true);
674
675         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
676 }
677
678 static int
679 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
680                              bool mmap, enum hns3_ring_type queue_type,
681                              uint16_t queue_id)
682 {
683         struct hns3_vf_bind_vector_msg bind_msg;
684         const char *op_str;
685         uint16_t code;
686         int ret;
687
688         memset(&bind_msg, 0, sizeof(bind_msg));
689         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
690                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
691         bind_msg.vector_id = vector_id;
692
693         if (queue_type == HNS3_RING_TYPE_RX)
694                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
695         else
696                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
697
698         bind_msg.param[0].ring_type = queue_type;
699         bind_msg.ring_num = 1;
700         bind_msg.param[0].tqp_index = queue_id;
701         op_str = mmap ? "Map" : "Unmap";
702         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
703                                 sizeof(bind_msg), false, NULL, 0);
704         if (ret)
705                 hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
706                          op_str, queue_id, bind_msg.vector_id, ret);
707
708         return ret;
709 }
710
711 static int
712 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
713 {
714         uint16_t vec;
715         int ret;
716         int i;
717
718         /*
719          * In hns3 network engine, vector 0 is always the misc interrupt of this
720          * function, vector 1~N can be used respectively for the queues of the
721          * function. Tx and Rx queues with the same number share the interrupt
722          * vector. In the initialization clearing the all hardware mapping
723          * relationship configurations between queues and interrupt vectors is
724          * needed, so some error caused by the residual configurations, such as
725          * the unexpected Tx interrupt, can be avoid.
726          */
727         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
728         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
729                 vec = vec - 1; /* the last interrupt is reserved */
730         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
731         for (i = 0; i < hw->intr_tqps_num; i++) {
732                 /*
733                  * Set gap limiter/rate limiter/quanity limiter algorithm
734                  * configuration for interrupt coalesce of queue's interrupt.
735                  */
736                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
737                                        HNS3_TQP_INTR_GL_DEFAULT);
738                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
739                                        HNS3_TQP_INTR_GL_DEFAULT);
740                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
741                 /*
742                  * QL(quantity limiter) is not used currently, just set 0 to
743                  * close it.
744                  */
745                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
746
747                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
748                                                    HNS3_RING_TYPE_TX, i);
749                 if (ret) {
750                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
751                                           "vector: %d, ret=%d", i, vec, ret);
752                         return ret;
753                 }
754
755                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
756                                                    HNS3_RING_TYPE_RX, i);
757                 if (ret) {
758                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
759                                           "vector: %d, ret=%d", i, vec, ret);
760                         return ret;
761                 }
762         }
763
764         return 0;
765 }
766
767 static int
768 hns3vf_dev_configure(struct rte_eth_dev *dev)
769 {
770         struct hns3_adapter *hns = dev->data->dev_private;
771         struct hns3_hw *hw = &hns->hw;
772         struct hns3_rss_conf *rss_cfg = &hw->rss_info;
773         struct rte_eth_conf *conf = &dev->data->dev_conf;
774         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
775         uint16_t nb_rx_q = dev->data->nb_rx_queues;
776         uint16_t nb_tx_q = dev->data->nb_tx_queues;
777         struct rte_eth_rss_conf rss_conf;
778         uint16_t mtu;
779         bool gro_en;
780         int ret;
781
782         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
783
784         /*
785          * Some versions of hardware network engine does not support
786          * individually enable/disable/reset the Tx or Rx queue. These devices
787          * must enable/disable/reset Tx and Rx queues at the same time. When the
788          * numbers of Tx queues allocated by upper applications are not equal to
789          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
790          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
791          * work as usual. But these fake queues are imperceptible, and can not
792          * be used by upper applications.
793          */
794         if (!hns3_dev_indep_txrx_supported(hw)) {
795                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
796                 if (ret) {
797                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
798                                  ret);
799                         return ret;
800                 }
801         }
802
803         hw->adapter_state = HNS3_NIC_CONFIGURING;
804         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
805                 hns3_err(hw, "setting link speed/duplex not supported");
806                 ret = -EINVAL;
807                 goto cfg_err;
808         }
809
810         /* When RSS is not configured, redirect the packet queue 0 */
811         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
812                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
813                 hw->rss_dis_flag = false;
814                 rss_conf = conf->rx_adv_conf.rss_conf;
815                 if (rss_conf.rss_key == NULL) {
816                         rss_conf.rss_key = rss_cfg->key;
817                         rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
818                 }
819
820                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
821                 if (ret)
822                         goto cfg_err;
823         }
824
825         /*
826          * If jumbo frames are enabled, MTU needs to be refreshed
827          * according to the maximum RX packet length.
828          */
829         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
830                 /*
831                  * Security of max_rx_pkt_len is guaranteed in dpdk frame.
832                  * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
833                  * can safely assign to "uint16_t" type variable.
834                  */
835                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
836                 ret = hns3vf_dev_mtu_set(dev, mtu);
837                 if (ret)
838                         goto cfg_err;
839                 dev->data->mtu = mtu;
840         }
841
842         ret = hns3vf_dev_configure_vlan(dev);
843         if (ret)
844                 goto cfg_err;
845
846         /* config hardware GRO */
847         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
848         ret = hns3_config_gro(hw, gro_en);
849         if (ret)
850                 goto cfg_err;
851
852         hns->rx_simple_allowed = true;
853         hns->rx_vec_allowed = true;
854         hns->tx_simple_allowed = true;
855         hns->tx_vec_allowed = true;
856
857         hns3_init_rx_ptype_tble(dev);
858
859         hw->adapter_state = HNS3_NIC_CONFIGURED;
860         return 0;
861
862 cfg_err:
863         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
864         hw->adapter_state = HNS3_NIC_INITIALIZED;
865
866         return ret;
867 }
868
869 static int
870 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
871 {
872         int ret;
873
874         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
875                                 sizeof(mtu), true, NULL, 0);
876         if (ret)
877                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
878
879         return ret;
880 }
881
882 static int
883 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
884 {
885         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
886         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
887         int ret;
888
889         /*
890          * The hns3 PF/VF devices on the same port share the hardware MTU
891          * configuration. Currently, we send mailbox to inform hns3 PF kernel
892          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
893          * driver, there is no need to stop the port for hns3 VF device, and the
894          * MTU value issued by hns3 VF PMD driver must be less than or equal to
895          * PF's MTU.
896          */
897         if (rte_atomic16_read(&hw->reset.resetting)) {
898                 hns3_err(hw, "Failed to set mtu during resetting");
899                 return -EIO;
900         }
901
902         /*
903          * when Rx of scattered packets is off, we have some possibility of
904          * using vector Rx process function or simple Rx functions in hns3 PMD
905          * driver. If the input MTU is increased and the maximum length of
906          * received packets is greater than the length of a buffer for Rx
907          * packet, the hardware network engine needs to use multiple BDs and
908          * buffers to store these packets. This will cause problems when still
909          * using vector Rx process function or simple Rx function to receiving
910          * packets. So, when Rx of scattered packets is off and device is
911          * started, it is not permitted to increase MTU so that the maximum
912          * length of Rx packets is greater than Rx buffer length.
913          */
914         if (dev->data->dev_started && !dev->data->scattered_rx &&
915             frame_size > hw->rx_buf_len) {
916                 hns3_err(hw, "failed to set mtu because current is "
917                         "not scattered rx mode");
918                 return -EOPNOTSUPP;
919         }
920
921         rte_spinlock_lock(&hw->lock);
922         ret = hns3vf_config_mtu(hw, mtu);
923         if (ret) {
924                 rte_spinlock_unlock(&hw->lock);
925                 return ret;
926         }
927         if (frame_size > RTE_ETHER_MAX_LEN)
928                 dev->data->dev_conf.rxmode.offloads |=
929                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
930         else
931                 dev->data->dev_conf.rxmode.offloads &=
932                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
933         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
934         rte_spinlock_unlock(&hw->lock);
935
936         return 0;
937 }
938
939 static int
940 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
941 {
942         struct hns3_adapter *hns = eth_dev->data->dev_private;
943         struct hns3_hw *hw = &hns->hw;
944         uint16_t q_num = hw->tqps_num;
945
946         /*
947          * In interrupt mode, 'max_rx_queues' is set based on the number of
948          * MSI-X interrupt resources of the hardware.
949          */
950         if (hw->data->dev_conf.intr_conf.rxq == 1)
951                 q_num = hw->intr_tqps_num;
952
953         info->max_rx_queues = q_num;
954         info->max_tx_queues = hw->tqps_num;
955         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
956         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
957         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
958         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
959         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
960
961         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
962                                  DEV_RX_OFFLOAD_UDP_CKSUM |
963                                  DEV_RX_OFFLOAD_TCP_CKSUM |
964                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
965                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
966                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
967                                  DEV_RX_OFFLOAD_SCATTER |
968                                  DEV_RX_OFFLOAD_VLAN_STRIP |
969                                  DEV_RX_OFFLOAD_VLAN_FILTER |
970                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
971                                  DEV_RX_OFFLOAD_RSS_HASH |
972                                  DEV_RX_OFFLOAD_TCP_LRO);
973         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
974                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
975                                  DEV_TX_OFFLOAD_TCP_CKSUM |
976                                  DEV_TX_OFFLOAD_UDP_CKSUM |
977                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
978                                  DEV_TX_OFFLOAD_MULTI_SEGS |
979                                  DEV_TX_OFFLOAD_TCP_TSO |
980                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
981                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
982                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
983                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
984                                  hns3_txvlan_cap_get(hw));
985
986         if (hns3_dev_indep_txrx_supported(hw))
987                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
988                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
989
990         info->rx_desc_lim = (struct rte_eth_desc_lim) {
991                 .nb_max = HNS3_MAX_RING_DESC,
992                 .nb_min = HNS3_MIN_RING_DESC,
993                 .nb_align = HNS3_ALIGN_RING_DESC,
994         };
995
996         info->tx_desc_lim = (struct rte_eth_desc_lim) {
997                 .nb_max = HNS3_MAX_RING_DESC,
998                 .nb_min = HNS3_MIN_RING_DESC,
999                 .nb_align = HNS3_ALIGN_RING_DESC,
1000                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1001                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1002         };
1003
1004         info->default_rxconf = (struct rte_eth_rxconf) {
1005                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1006                 /*
1007                  * If there are no available Rx buffer descriptors, incoming
1008                  * packets are always dropped by hardware based on hns3 network
1009                  * engine.
1010                  */
1011                 .rx_drop_en = 1,
1012                 .offloads = 0,
1013         };
1014         info->default_txconf = (struct rte_eth_txconf) {
1015                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1016                 .offloads = 0,
1017         };
1018
1019         info->vmdq_queue_num = 0;
1020
1021         info->reta_size = HNS3_RSS_IND_TBL_SIZE;
1022         info->hash_key_size = HNS3_RSS_KEY_SIZE;
1023         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1024         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1025         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1026
1027         return 0;
1028 }
1029
1030 static void
1031 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1032 {
1033         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1034 }
1035
1036 static void
1037 hns3vf_disable_irq0(struct hns3_hw *hw)
1038 {
1039         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1040 }
1041
1042 static void
1043 hns3vf_enable_irq0(struct hns3_hw *hw)
1044 {
1045         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1046 }
1047
1048 static enum hns3vf_evt_cause
1049 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1050 {
1051         struct hns3_hw *hw = &hns->hw;
1052         enum hns3vf_evt_cause ret;
1053         uint32_t cmdq_stat_reg;
1054         uint32_t rst_ing_reg;
1055         uint32_t val;
1056
1057         /* Fetch the events from their corresponding regs */
1058         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1059
1060         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1061                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1062                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1063                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1064                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
1065                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1066                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1067                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1068                 if (clearval) {
1069                         hw->reset.stats.global_cnt++;
1070                         hns3_warn(hw, "Global reset detected, clear reset status");
1071                 } else {
1072                         hns3_schedule_delayed_reset(hns);
1073                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1074                 }
1075
1076                 ret = HNS3VF_VECTOR0_EVENT_RST;
1077                 goto out;
1078         }
1079
1080         /* Check for vector0 mailbox(=CMDQ RX) event source */
1081         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1082                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1083                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1084                 goto out;
1085         }
1086
1087         val = 0;
1088         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1089 out:
1090         if (clearval)
1091                 *clearval = val;
1092         return ret;
1093 }
1094
1095 static void
1096 hns3vf_interrupt_handler(void *param)
1097 {
1098         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1099         struct hns3_adapter *hns = dev->data->dev_private;
1100         struct hns3_hw *hw = &hns->hw;
1101         enum hns3vf_evt_cause event_cause;
1102         uint32_t clearval;
1103
1104         if (hw->irq_thread_id == 0)
1105                 hw->irq_thread_id = pthread_self();
1106
1107         /* Disable interrupt */
1108         hns3vf_disable_irq0(hw);
1109
1110         /* Read out interrupt causes */
1111         event_cause = hns3vf_check_event_cause(hns, &clearval);
1112
1113         switch (event_cause) {
1114         case HNS3VF_VECTOR0_EVENT_RST:
1115                 hns3_schedule_reset(hns);
1116                 break;
1117         case HNS3VF_VECTOR0_EVENT_MBX:
1118                 hns3_dev_handle_mbx_msg(hw);
1119                 break;
1120         default:
1121                 break;
1122         }
1123
1124         /* Clear interrupt causes */
1125         hns3vf_clear_event_cause(hw, clearval);
1126
1127         /* Enable interrupt */
1128         hns3vf_enable_irq0(hw);
1129 }
1130
1131 static void
1132 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1133 {
1134         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1135         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1136         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1137         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1138 }
1139
1140 static void
1141 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1142 {
1143         struct hns3_dev_specs_0_cmd *req0;
1144
1145         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1146
1147         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1148         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1149         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1150         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1151 }
1152
1153 static int
1154 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1155 {
1156         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1157         int ret;
1158         int i;
1159
1160         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1161                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1162                                           true);
1163                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1164         }
1165         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1166
1167         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1168         if (ret)
1169                 return ret;
1170
1171         hns3vf_parse_dev_specifications(hw, desc);
1172
1173         return 0;
1174 }
1175
1176 static int
1177 hns3vf_get_capability(struct hns3_hw *hw)
1178 {
1179         struct rte_pci_device *pci_dev;
1180         struct rte_eth_dev *eth_dev;
1181         uint8_t revision;
1182         int ret;
1183
1184         eth_dev = &rte_eth_devices[hw->data->port_id];
1185         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1186
1187         /* Get PCI revision id */
1188         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1189                                   HNS3_PCI_REVISION_ID);
1190         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1191                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1192                              ret);
1193                 return -EIO;
1194         }
1195         hw->revision = revision;
1196
1197         if (revision < PCI_REVISION_ID_HIP09_A) {
1198                 hns3vf_set_default_dev_specifications(hw);
1199                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1200                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1201                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1202                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1203                 hw->rss_info.ipv6_sctp_offload_supported = false;
1204                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1205                 return 0;
1206         }
1207
1208         ret = hns3vf_query_dev_specifications(hw);
1209         if (ret) {
1210                 PMD_INIT_LOG(ERR,
1211                              "failed to query dev specifications, ret = %d",
1212                              ret);
1213                 return ret;
1214         }
1215
1216         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1217         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1218         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1219         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1220         hw->rss_info.ipv6_sctp_offload_supported = true;
1221         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1222
1223         return 0;
1224 }
1225
1226 static int
1227 hns3vf_check_tqp_info(struct hns3_hw *hw)
1228 {
1229         if (hw->tqps_num == 0) {
1230                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1231                 return -EINVAL;
1232         }
1233
1234         if (hw->rss_size_max == 0) {
1235                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1236                 return -EINVAL;
1237         }
1238
1239         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1240
1241         return 0;
1242 }
1243
1244 static int
1245 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1246 {
1247         uint8_t resp_msg;
1248         int ret;
1249
1250         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1251                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1252                                 true, &resp_msg, sizeof(resp_msg));
1253         if (ret) {
1254                 if (ret == -ETIME) {
1255                         /*
1256                          * Getting current port based VLAN state from PF driver
1257                          * will not affect VF driver's basic function. Because
1258                          * the VF driver relies on hns3 PF kernel ether driver,
1259                          * to avoid introducing compatibility issues with older
1260                          * version of PF driver, no failure will be returned
1261                          * when the return value is ETIME. This return value has
1262                          * the following scenarios:
1263                          * 1) Firmware didn't return the results in time
1264                          * 2) the result return by firmware is timeout
1265                          * 3) the older version of kernel side PF driver does
1266                          *    not support this mailbox message.
1267                          * For scenarios 1 and 2, it is most likely that a
1268                          * hardware error has occurred, or a hardware reset has
1269                          * occurred. In this case, these errors will be caught
1270                          * by other functions.
1271                          */
1272                         PMD_INIT_LOG(WARNING,
1273                                 "failed to get PVID state for timeout, maybe "
1274                                 "kernel side PF driver doesn't support this "
1275                                 "mailbox message, or firmware didn't respond.");
1276                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1277                 } else {
1278                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1279                                 " ret = %d", ret);
1280                         return ret;
1281                 }
1282         }
1283         hw->port_base_vlan_cfg.state = resp_msg ?
1284                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1285         return 0;
1286 }
1287
1288 static int
1289 hns3vf_get_queue_info(struct hns3_hw *hw)
1290 {
1291 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1292         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1293         int ret;
1294
1295         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1296                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1297         if (ret) {
1298                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1299                 return ret;
1300         }
1301
1302         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1303         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1304
1305         return hns3vf_check_tqp_info(hw);
1306 }
1307
1308 static int
1309 hns3vf_get_queue_depth(struct hns3_hw *hw)
1310 {
1311 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1312         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1313         int ret;
1314
1315         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1316                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1317         if (ret) {
1318                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1319                              ret);
1320                 return ret;
1321         }
1322
1323         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1324         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1325
1326         return 0;
1327 }
1328
1329 static int
1330 hns3vf_get_tc_info(struct hns3_hw *hw)
1331 {
1332         uint8_t resp_msg;
1333         int ret;
1334         int i;
1335
1336         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1337                                 true, &resp_msg, sizeof(resp_msg));
1338         if (ret) {
1339                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1340                          ret);
1341                 return ret;
1342         }
1343
1344         hw->hw_tc_map = resp_msg;
1345
1346         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1347                 if (hw->hw_tc_map & BIT(i))
1348                         hw->num_tc++;
1349         }
1350
1351         return 0;
1352 }
1353
1354 static int
1355 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1356 {
1357         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1358         int ret;
1359
1360         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1361                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1362         if (ret) {
1363                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1364                 return ret;
1365         }
1366
1367         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1368
1369         return 0;
1370 }
1371
1372 static int
1373 hns3vf_get_configuration(struct hns3_hw *hw)
1374 {
1375         int ret;
1376
1377         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1378         hw->rss_dis_flag = false;
1379
1380         /* Get device capability */
1381         ret = hns3vf_get_capability(hw);
1382         if (ret) {
1383                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1384                 return ret;
1385         }
1386
1387         /* Get queue configuration from PF */
1388         ret = hns3vf_get_queue_info(hw);
1389         if (ret)
1390                 return ret;
1391
1392         /* Get queue depth info from PF */
1393         ret = hns3vf_get_queue_depth(hw);
1394         if (ret)
1395                 return ret;
1396
1397         /* Get user defined VF MAC addr from PF */
1398         ret = hns3vf_get_host_mac_addr(hw);
1399         if (ret)
1400                 return ret;
1401
1402         ret = hns3vf_get_port_base_vlan_filter_state(hw);
1403         if (ret)
1404                 return ret;
1405
1406         /* Get tc configuration from PF */
1407         return hns3vf_get_tc_info(hw);
1408 }
1409
1410 static int
1411 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1412                             uint16_t nb_tx_q)
1413 {
1414         struct hns3_hw *hw = &hns->hw;
1415
1416         if (nb_rx_q < hw->num_tc) {
1417                 hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
1418                          nb_rx_q, hw->num_tc);
1419                 return -EINVAL;
1420         }
1421
1422         if (nb_tx_q < hw->num_tc) {
1423                 hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
1424                          nb_tx_q, hw->num_tc);
1425                 return -EINVAL;
1426         }
1427
1428         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1429 }
1430
1431 static void
1432 hns3vf_request_link_info(struct hns3_hw *hw)
1433 {
1434         uint8_t resp_msg;
1435         int ret;
1436
1437         if (rte_atomic16_read(&hw->reset.resetting))
1438                 return;
1439         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1440                                 &resp_msg, sizeof(resp_msg));
1441         if (ret)
1442                 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1443 }
1444
1445 static int
1446 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1447 {
1448 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1449         struct hns3_hw *hw = &hns->hw;
1450         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1451         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1452         uint8_t is_kill = on ? 0 : 1;
1453
1454         msg_data[0] = is_kill;
1455         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1456         memcpy(&msg_data[3], &proto, sizeof(proto));
1457
1458         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1459                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1460                                  0);
1461 }
1462
1463 static int
1464 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1465 {
1466         struct hns3_adapter *hns = dev->data->dev_private;
1467         struct hns3_hw *hw = &hns->hw;
1468         int ret;
1469
1470         if (rte_atomic16_read(&hw->reset.resetting)) {
1471                 hns3_err(hw,
1472                          "vf set vlan id failed during resetting, vlan_id =%u",
1473                          vlan_id);
1474                 return -EIO;
1475         }
1476         rte_spinlock_lock(&hw->lock);
1477         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1478         rte_spinlock_unlock(&hw->lock);
1479         if (ret)
1480                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1481                          vlan_id, ret);
1482
1483         return ret;
1484 }
1485
1486 static int
1487 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1488 {
1489         uint8_t msg_data;
1490         int ret;
1491
1492         msg_data = enable ? 1 : 0;
1493         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1494                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1495         if (ret)
1496                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1497
1498         return ret;
1499 }
1500
1501 static int
1502 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1503 {
1504         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1505         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1506         unsigned int tmp_mask;
1507         int ret = 0;
1508
1509         if (rte_atomic16_read(&hw->reset.resetting)) {
1510                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1511                              "mask = 0x%x", mask);
1512                 return -EIO;
1513         }
1514
1515         tmp_mask = (unsigned int)mask;
1516         /* Vlan stripping setting */
1517         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1518                 rte_spinlock_lock(&hw->lock);
1519                 /* Enable or disable VLAN stripping */
1520                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1521                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1522                 else
1523                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1524                 rte_spinlock_unlock(&hw->lock);
1525         }
1526
1527         return ret;
1528 }
1529
1530 static int
1531 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1532 {
1533         struct rte_vlan_filter_conf *vfc;
1534         struct hns3_hw *hw = &hns->hw;
1535         uint16_t vlan_id;
1536         uint64_t vbit;
1537         uint64_t ids;
1538         int ret = 0;
1539         uint32_t i;
1540
1541         vfc = &hw->data->vlan_filter_conf;
1542         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1543                 if (vfc->ids[i] == 0)
1544                         continue;
1545                 ids = vfc->ids[i];
1546                 while (ids) {
1547                         /*
1548                          * 64 means the num bits of ids, one bit corresponds to
1549                          * one vlan id
1550                          */
1551                         vlan_id = 64 * i;
1552                         /* count trailing zeroes */
1553                         vbit = ~ids & (ids - 1);
1554                         /* clear least significant bit set */
1555                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1556                         for (; vbit;) {
1557                                 vbit >>= 1;
1558                                 vlan_id++;
1559                         }
1560                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1561                         if (ret) {
1562                                 hns3_err(hw,
1563                                          "VF handle vlan table failed, ret =%d, on = %d",
1564                                          ret, on);
1565                                 return ret;
1566                         }
1567                 }
1568         }
1569
1570         return ret;
1571 }
1572
1573 static int
1574 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1575 {
1576         return hns3vf_handle_all_vlan_table(hns, 0);
1577 }
1578
1579 static int
1580 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1581 {
1582         struct hns3_hw *hw = &hns->hw;
1583         struct rte_eth_conf *dev_conf;
1584         bool en;
1585         int ret;
1586
1587         dev_conf = &hw->data->dev_conf;
1588         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1589                                                                    : false;
1590         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1591         if (ret)
1592                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1593                          ret);
1594         return ret;
1595 }
1596
1597 static int
1598 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1599 {
1600         struct hns3_adapter *hns = dev->data->dev_private;
1601         struct rte_eth_dev_data *data = dev->data;
1602         struct hns3_hw *hw = &hns->hw;
1603         int ret;
1604
1605         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1606             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1607             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1608                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1609                               "or hw_vlan_insert_pvid is not support!");
1610         }
1611
1612         /* Apply vlan offload setting */
1613         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1614         if (ret)
1615                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1616
1617         return ret;
1618 }
1619
1620 static int
1621 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1622 {
1623         uint8_t msg_data;
1624
1625         msg_data = alive ? 1 : 0;
1626         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1627                                  sizeof(msg_data), false, NULL, 0);
1628 }
1629
1630 static void
1631 hns3vf_keep_alive_handler(void *param)
1632 {
1633         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1634         struct hns3_adapter *hns = eth_dev->data->dev_private;
1635         struct hns3_hw *hw = &hns->hw;
1636         uint8_t respmsg;
1637         int ret;
1638
1639         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1640                                 false, &respmsg, sizeof(uint8_t));
1641         if (ret)
1642                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1643                          ret);
1644
1645         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1646                           eth_dev);
1647 }
1648
1649 static void
1650 hns3vf_service_handler(void *param)
1651 {
1652         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1653         struct hns3_adapter *hns = eth_dev->data->dev_private;
1654         struct hns3_hw *hw = &hns->hw;
1655
1656         /*
1657          * The query link status and reset processing are executed in the
1658          * interrupt thread.When the IMP reset occurs, IMP will not respond,
1659          * and the query operation will time out after 30ms. In the case of
1660          * multiple PF/VFs, each query failure timeout causes the IMP reset
1661          * interrupt to fail to respond within 100ms.
1662          * Before querying the link status, check whether there is a reset
1663          * pending, and if so, abandon the query.
1664          */
1665         if (!hns3vf_is_reset_pending(hns))
1666                 hns3vf_request_link_info(hw);
1667         else
1668                 hns3_warn(hw, "Cancel the query when reset is pending");
1669
1670         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1671                           eth_dev);
1672 }
1673
1674 static int
1675 hns3_query_vf_resource(struct hns3_hw *hw)
1676 {
1677         struct hns3_vf_res_cmd *req;
1678         struct hns3_cmd_desc desc;
1679         uint16_t num_msi;
1680         int ret;
1681
1682         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1683         ret = hns3_cmd_send(hw, &desc, 1);
1684         if (ret) {
1685                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1686                 return ret;
1687         }
1688
1689         req = (struct hns3_vf_res_cmd *)desc.data;
1690         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1691                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1692         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1693                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1694                          num_msi, HNS3_MIN_VECTOR_NUM);
1695                 return -EINVAL;
1696         }
1697
1698         hw->num_msi = num_msi;
1699
1700         return 0;
1701 }
1702
1703 static int
1704 hns3vf_init_hardware(struct hns3_adapter *hns)
1705 {
1706         struct hns3_hw *hw = &hns->hw;
1707         uint16_t mtu = hw->data->mtu;
1708         int ret;
1709
1710         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1711         if (ret)
1712                 return ret;
1713
1714         ret = hns3vf_config_mtu(hw, mtu);
1715         if (ret)
1716                 goto err_init_hardware;
1717
1718         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1719         if (ret) {
1720                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1721                 goto err_init_hardware;
1722         }
1723
1724         ret = hns3_config_gro(hw, false);
1725         if (ret) {
1726                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1727                 goto err_init_hardware;
1728         }
1729
1730         /*
1731          * In the initialization clearing the all hardware mapping relationship
1732          * configurations between queues and interrupt vectors is needed, so
1733          * some error caused by the residual configurations, such as the
1734          * unexpected interrupt, can be avoid.
1735          */
1736         ret = hns3vf_init_ring_with_vector(hw);
1737         if (ret) {
1738                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1739                 goto err_init_hardware;
1740         }
1741
1742         ret = hns3vf_set_alive(hw, true);
1743         if (ret) {
1744                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1745                 goto err_init_hardware;
1746         }
1747
1748         hns3vf_request_link_info(hw);
1749         return 0;
1750
1751 err_init_hardware:
1752         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1753         return ret;
1754 }
1755
1756 static int
1757 hns3vf_clear_vport_list(struct hns3_hw *hw)
1758 {
1759         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1760                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1761                                  NULL, 0);
1762 }
1763
1764 static int
1765 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1766 {
1767         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1768         struct hns3_adapter *hns = eth_dev->data->dev_private;
1769         struct hns3_hw *hw = &hns->hw;
1770         int ret;
1771
1772         PMD_INIT_FUNC_TRACE();
1773
1774         /* Get hardware io base address from pcie BAR2 IO space */
1775         hw->io_base = pci_dev->mem_resource[2].addr;
1776
1777         /* Firmware command queue initialize */
1778         ret = hns3_cmd_init_queue(hw);
1779         if (ret) {
1780                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1781                 goto err_cmd_init_queue;
1782         }
1783
1784         /* Firmware command initialize */
1785         ret = hns3_cmd_init(hw);
1786         if (ret) {
1787                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1788                 goto err_cmd_init;
1789         }
1790
1791         /* Get VF resource */
1792         ret = hns3_query_vf_resource(hw);
1793         if (ret)
1794                 goto err_cmd_init;
1795
1796         rte_spinlock_init(&hw->mbx_resp.lock);
1797
1798         hns3vf_clear_event_cause(hw, 0);
1799
1800         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1801                                          hns3vf_interrupt_handler, eth_dev);
1802         if (ret) {
1803                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1804                 goto err_intr_callback_register;
1805         }
1806
1807         /* Enable interrupt */
1808         rte_intr_enable(&pci_dev->intr_handle);
1809         hns3vf_enable_irq0(hw);
1810
1811         /* Get configuration from PF */
1812         ret = hns3vf_get_configuration(hw);
1813         if (ret) {
1814                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1815                 goto err_get_config;
1816         }
1817
1818         ret = hns3_tqp_stats_init(hw);
1819         if (ret)
1820                 goto err_get_config;
1821
1822         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1823         if (ret) {
1824                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1825                 goto err_set_tc_queue;
1826         }
1827
1828         ret = hns3vf_clear_vport_list(hw);
1829         if (ret) {
1830                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1831                 goto err_set_tc_queue;
1832         }
1833
1834         ret = hns3vf_init_hardware(hns);
1835         if (ret)
1836                 goto err_set_tc_queue;
1837
1838         hns3_set_default_rss_args(hw);
1839
1840         return 0;
1841
1842 err_set_tc_queue:
1843         hns3_tqp_stats_uninit(hw);
1844
1845 err_get_config:
1846         hns3vf_disable_irq0(hw);
1847         rte_intr_disable(&pci_dev->intr_handle);
1848         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1849                              eth_dev);
1850 err_intr_callback_register:
1851 err_cmd_init:
1852         hns3_cmd_uninit(hw);
1853         hns3_cmd_destroy_queue(hw);
1854 err_cmd_init_queue:
1855         hw->io_base = NULL;
1856
1857         return ret;
1858 }
1859
1860 static void
1861 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1862 {
1863         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1864         struct hns3_adapter *hns = eth_dev->data->dev_private;
1865         struct hns3_hw *hw = &hns->hw;
1866
1867         PMD_INIT_FUNC_TRACE();
1868
1869         hns3_rss_uninit(hns);
1870         (void)hns3_config_gro(hw, false);
1871         (void)hns3vf_set_alive(hw, false);
1872         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1873         hns3_tqp_stats_uninit(hw);
1874         hns3vf_disable_irq0(hw);
1875         rte_intr_disable(&pci_dev->intr_handle);
1876         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1877                              eth_dev);
1878         hns3_cmd_uninit(hw);
1879         hns3_cmd_destroy_queue(hw);
1880         hw->io_base = NULL;
1881 }
1882
1883 static int
1884 hns3vf_do_stop(struct hns3_adapter *hns)
1885 {
1886         struct hns3_hw *hw = &hns->hw;
1887         int ret;
1888
1889         hw->mac.link_status = ETH_LINK_DOWN;
1890
1891         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1892                 hns3vf_configure_mac_addr(hns, true);
1893                 ret = hns3_reset_all_tqps(hns);
1894                 if (ret) {
1895                         hns3_err(hw, "failed to reset all queues ret = %d",
1896                                  ret);
1897                         return ret;
1898                 }
1899         }
1900         return 0;
1901 }
1902
1903 static void
1904 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1905 {
1906         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1907         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1908         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1909         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1910         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1911         uint16_t q_id;
1912
1913         if (dev->data->dev_conf.intr_conf.rxq == 0)
1914                 return;
1915
1916         /* unmap the ring with vector */
1917         if (rte_intr_allow_others(intr_handle)) {
1918                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1919                 base = RTE_INTR_VEC_RXTX_OFFSET;
1920         }
1921         if (rte_intr_dp_is_en(intr_handle)) {
1922                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1923                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1924                                                            HNS3_RING_TYPE_RX,
1925                                                            q_id);
1926                         if (vec < base + intr_handle->nb_efd - 1)
1927                                 vec++;
1928                 }
1929         }
1930         /* Clean datapath event and queue/vec mapping */
1931         rte_intr_efd_disable(intr_handle);
1932         if (intr_handle->intr_vec) {
1933                 rte_free(intr_handle->intr_vec);
1934                 intr_handle->intr_vec = NULL;
1935         }
1936 }
1937
1938 static int
1939 hns3vf_dev_stop(struct rte_eth_dev *dev)
1940 {
1941         struct hns3_adapter *hns = dev->data->dev_private;
1942         struct hns3_hw *hw = &hns->hw;
1943
1944         PMD_INIT_FUNC_TRACE();
1945         dev->data->dev_started = 0;
1946
1947         hw->adapter_state = HNS3_NIC_STOPPING;
1948         hns3_set_rxtx_function(dev);
1949         rte_wmb();
1950         /* Disable datapath on secondary process. */
1951         hns3_mp_req_stop_rxtx(dev);
1952         /* Prevent crashes when queues are still in use. */
1953         rte_delay_ms(hw->tqps_num);
1954
1955         rte_spinlock_lock(&hw->lock);
1956         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1957                 hns3_stop_tqps(hw);
1958                 hns3vf_do_stop(hns);
1959                 hns3vf_unmap_rx_interrupt(dev);
1960                 hns3_dev_release_mbufs(hns);
1961                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1962         }
1963         hns3_rx_scattered_reset(dev);
1964         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1965         rte_spinlock_unlock(&hw->lock);
1966
1967         return 0;
1968 }
1969
1970 static int
1971 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1972 {
1973         struct hns3_adapter *hns = eth_dev->data->dev_private;
1974         struct hns3_hw *hw = &hns->hw;
1975         int ret = 0;
1976
1977         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1978                 return 0;
1979
1980         if (hw->adapter_state == HNS3_NIC_STARTED)
1981                 ret = hns3vf_dev_stop(eth_dev);
1982
1983         hw->adapter_state = HNS3_NIC_CLOSING;
1984         hns3_reset_abort(hns);
1985         hw->adapter_state = HNS3_NIC_CLOSED;
1986         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1987         hns3vf_configure_all_mc_mac_addr(hns, true);
1988         hns3vf_remove_all_vlan_table(hns);
1989         hns3vf_uninit_vf(eth_dev);
1990         hns3_free_all_queues(eth_dev);
1991         rte_free(hw->reset.wait_data);
1992         rte_free(eth_dev->process_private);
1993         eth_dev->process_private = NULL;
1994         hns3_mp_uninit_primary();
1995         hns3_warn(hw, "Close port %d finished", hw->data->port_id);
1996
1997         return ret;
1998 }
1999
2000 static int
2001 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2002                       size_t fw_size)
2003 {
2004         struct hns3_adapter *hns = eth_dev->data->dev_private;
2005         struct hns3_hw *hw = &hns->hw;
2006         uint32_t version = hw->fw_version;
2007         int ret;
2008
2009         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2010                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2011                                       HNS3_FW_VERSION_BYTE3_S),
2012                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2013                                       HNS3_FW_VERSION_BYTE2_S),
2014                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2015                                       HNS3_FW_VERSION_BYTE1_S),
2016                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2017                                       HNS3_FW_VERSION_BYTE0_S));
2018         ret += 1; /* add the size of '\0' */
2019         if (fw_size < (uint32_t)ret)
2020                 return ret;
2021         else
2022                 return 0;
2023 }
2024
2025 static int
2026 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2027                        __rte_unused int wait_to_complete)
2028 {
2029         struct hns3_adapter *hns = eth_dev->data->dev_private;
2030         struct hns3_hw *hw = &hns->hw;
2031         struct hns3_mac *mac = &hw->mac;
2032         struct rte_eth_link new_link;
2033
2034         memset(&new_link, 0, sizeof(new_link));
2035         switch (mac->link_speed) {
2036         case ETH_SPEED_NUM_10M:
2037         case ETH_SPEED_NUM_100M:
2038         case ETH_SPEED_NUM_1G:
2039         case ETH_SPEED_NUM_10G:
2040         case ETH_SPEED_NUM_25G:
2041         case ETH_SPEED_NUM_40G:
2042         case ETH_SPEED_NUM_50G:
2043         case ETH_SPEED_NUM_100G:
2044         case ETH_SPEED_NUM_200G:
2045                 new_link.link_speed = mac->link_speed;
2046                 break;
2047         default:
2048                 new_link.link_speed = ETH_SPEED_NUM_100M;
2049                 break;
2050         }
2051
2052         new_link.link_duplex = mac->link_duplex;
2053         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2054         new_link.link_autoneg =
2055             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2056
2057         return rte_eth_linkstatus_set(eth_dev, &new_link);
2058 }
2059
2060 static int
2061 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2062 {
2063         struct hns3_hw *hw = &hns->hw;
2064         uint16_t nb_rx_q = hw->data->nb_rx_queues;
2065         uint16_t nb_tx_q = hw->data->nb_tx_queues;
2066         int ret;
2067
2068         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2069         if (ret)
2070                 return ret;
2071
2072         ret = hns3_init_queues(hns, reset_queue);
2073         if (ret)
2074                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2075
2076         return ret;
2077 }
2078
2079 static int
2080 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2081 {
2082         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2083         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2084         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2085         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2086         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2087         uint32_t intr_vector;
2088         uint16_t q_id;
2089         int ret;
2090
2091         if (dev->data->dev_conf.intr_conf.rxq == 0)
2092                 return 0;
2093
2094         /* disable uio/vfio intr/eventfd mapping */
2095         rte_intr_disable(intr_handle);
2096
2097         /* check and configure queue intr-vector mapping */
2098         if (rte_intr_cap_multiple(intr_handle) ||
2099             !RTE_ETH_DEV_SRIOV(dev).active) {
2100                 intr_vector = hw->used_rx_queues;
2101                 /* It creates event fd for each intr vector when MSIX is used */
2102                 if (rte_intr_efd_enable(intr_handle, intr_vector))
2103                         return -EINVAL;
2104         }
2105         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
2106                 intr_handle->intr_vec =
2107                         rte_zmalloc("intr_vec",
2108                                     hw->used_rx_queues * sizeof(int), 0);
2109                 if (intr_handle->intr_vec == NULL) {
2110                         hns3_err(hw, "Failed to allocate %d rx_queues"
2111                                      " intr_vec", hw->used_rx_queues);
2112                         ret = -ENOMEM;
2113                         goto vf_alloc_intr_vec_error;
2114                 }
2115         }
2116
2117         if (rte_intr_allow_others(intr_handle)) {
2118                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2119                 base = RTE_INTR_VEC_RXTX_OFFSET;
2120         }
2121         if (rte_intr_dp_is_en(intr_handle)) {
2122                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2123                         ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2124                                                            HNS3_RING_TYPE_RX,
2125                                                            q_id);
2126                         if (ret)
2127                                 goto vf_bind_vector_error;
2128                         intr_handle->intr_vec[q_id] = vec;
2129                         if (vec < base + intr_handle->nb_efd - 1)
2130                                 vec++;
2131                 }
2132         }
2133         rte_intr_enable(intr_handle);
2134         return 0;
2135
2136 vf_bind_vector_error:
2137         rte_intr_efd_disable(intr_handle);
2138         if (intr_handle->intr_vec) {
2139                 free(intr_handle->intr_vec);
2140                 intr_handle->intr_vec = NULL;
2141         }
2142         return ret;
2143 vf_alloc_intr_vec_error:
2144         rte_intr_efd_disable(intr_handle);
2145         return ret;
2146 }
2147
2148 static int
2149 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2150 {
2151         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2152         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2153         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2154         uint16_t q_id;
2155         int ret;
2156
2157         if (dev->data->dev_conf.intr_conf.rxq == 0)
2158                 return 0;
2159
2160         if (rte_intr_dp_is_en(intr_handle)) {
2161                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2162                         ret = hns3vf_bind_ring_with_vector(hw,
2163                                         intr_handle->intr_vec[q_id], true,
2164                                         HNS3_RING_TYPE_RX, q_id);
2165                         if (ret)
2166                                 return ret;
2167                 }
2168         }
2169
2170         return 0;
2171 }
2172
2173 static void
2174 hns3vf_restore_filter(struct rte_eth_dev *dev)
2175 {
2176         hns3_restore_rss_filter(dev);
2177 }
2178
2179 static int
2180 hns3vf_dev_start(struct rte_eth_dev *dev)
2181 {
2182         struct hns3_adapter *hns = dev->data->dev_private;
2183         struct hns3_hw *hw = &hns->hw;
2184         int ret;
2185
2186         PMD_INIT_FUNC_TRACE();
2187         if (rte_atomic16_read(&hw->reset.resetting))
2188                 return -EBUSY;
2189
2190         rte_spinlock_lock(&hw->lock);
2191         hw->adapter_state = HNS3_NIC_STARTING;
2192         ret = hns3vf_do_start(hns, true);
2193         if (ret) {
2194                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2195                 rte_spinlock_unlock(&hw->lock);
2196                 return ret;
2197         }
2198         ret = hns3vf_map_rx_interrupt(dev);
2199         if (ret) {
2200                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2201                 rte_spinlock_unlock(&hw->lock);
2202                 return ret;
2203         }
2204
2205         /*
2206          * There are three register used to control the status of a TQP
2207          * (contains a pair of Tx queue and Rx queue) in the new version network
2208          * engine. One is used to control the enabling of Tx queue, the other is
2209          * used to control the enabling of Rx queue, and the last is the master
2210          * switch used to control the enabling of the tqp. The Tx register and
2211          * TQP register must be enabled at the same time to enable a Tx queue.
2212          * The same applies to the Rx queue. For the older network enginem, this
2213          * function only refresh the enabled flag, and it is used to update the
2214          * status of queue in the dpdk framework.
2215          */
2216         ret = hns3_start_all_txqs(dev);
2217         if (ret) {
2218                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2219                 rte_spinlock_unlock(&hw->lock);
2220                 return ret;
2221         }
2222
2223         ret = hns3_start_all_rxqs(dev);
2224         if (ret) {
2225                 hns3_stop_all_txqs(dev);
2226                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2227                 rte_spinlock_unlock(&hw->lock);
2228                 return ret;
2229         }
2230
2231         hw->adapter_state = HNS3_NIC_STARTED;
2232         rte_spinlock_unlock(&hw->lock);
2233
2234         hns3_rx_scattered_calc(dev);
2235         hns3_set_rxtx_function(dev);
2236         hns3_mp_req_start_rxtx(dev);
2237         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
2238
2239         hns3vf_restore_filter(dev);
2240
2241         /* Enable interrupt of all rx queues before enabling queues */
2242         hns3_dev_all_rx_queue_intr_enable(hw, true);
2243
2244         /*
2245          * After finished the initialization, start all tqps to receive/transmit
2246          * packets and refresh all queue status.
2247          */
2248         hns3_start_tqps(hw);
2249
2250         return ret;
2251 }
2252
2253 static bool
2254 is_vf_reset_done(struct hns3_hw *hw)
2255 {
2256 #define HNS3_FUN_RST_ING_BITS \
2257         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2258          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2259          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2260          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2261
2262         uint32_t val;
2263
2264         if (hw->reset.level == HNS3_VF_RESET) {
2265                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2266                 if (val & HNS3_VF_RST_ING_BIT)
2267                         return false;
2268         } else {
2269                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2270                 if (val & HNS3_FUN_RST_ING_BITS)
2271                         return false;
2272         }
2273         return true;
2274 }
2275
2276 bool
2277 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2278 {
2279         struct hns3_hw *hw = &hns->hw;
2280         enum hns3_reset_level reset;
2281
2282         /*
2283          * According to the protocol of PCIe, FLR to a PF device resets the PF
2284          * state as well as the SR-IOV extended capability including VF Enable
2285          * which means that VFs no longer exist.
2286          *
2287          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2288          * is in FLR stage, the register state of VF device is not reliable,
2289          * so register states detection can not be carried out. In this case,
2290          * we just ignore the register states and return false to indicate that
2291          * there are no other reset states that need to be processed by driver.
2292          */
2293         if (hw->reset.level == HNS3_VF_FULL_RESET)
2294                 return false;
2295
2296         /* Check the registers to confirm whether there is reset pending */
2297         hns3vf_check_event_cause(hns, NULL);
2298         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2299         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2300                 hns3_warn(hw, "High level reset %d is pending", reset);
2301                 return true;
2302         }
2303         return false;
2304 }
2305
2306 static int
2307 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2308 {
2309         struct hns3_hw *hw = &hns->hw;
2310         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2311         struct timeval tv;
2312
2313         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2314                 /*
2315                  * After vf reset is ready, the PF may not have completed
2316                  * the reset processing. The vf sending mbox to PF may fail
2317                  * during the pf reset, so it is better to add extra delay.
2318                  */
2319                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2320                     hw->reset.level == HNS3_FLR_RESET)
2321                         return 0;
2322                 /* Reset retry process, no need to add extra delay. */
2323                 if (hw->reset.attempts)
2324                         return 0;
2325                 if (wait_data->check_completion == NULL)
2326                         return 0;
2327
2328                 wait_data->check_completion = NULL;
2329                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2330                 wait_data->count = 1;
2331                 wait_data->result = HNS3_WAIT_REQUEST;
2332                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2333                                   wait_data);
2334                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2335                 return -EAGAIN;
2336         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2337                 gettimeofday(&tv, NULL);
2338                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2339                           tv.tv_sec, tv.tv_usec);
2340                 return -ETIME;
2341         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2342                 return -EAGAIN;
2343
2344         wait_data->hns = hns;
2345         wait_data->check_completion = is_vf_reset_done;
2346         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2347                                       HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2348         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2349         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2350         wait_data->result = HNS3_WAIT_REQUEST;
2351         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2352         return -EAGAIN;
2353 }
2354
2355 static int
2356 hns3vf_prepare_reset(struct hns3_adapter *hns)
2357 {
2358         struct hns3_hw *hw = &hns->hw;
2359         int ret = 0;
2360
2361         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2362                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2363                                         0, true, NULL, 0);
2364         }
2365         rte_atomic16_set(&hw->reset.disable_cmd, 1);
2366
2367         return ret;
2368 }
2369
2370 static int
2371 hns3vf_stop_service(struct hns3_adapter *hns)
2372 {
2373         struct hns3_hw *hw = &hns->hw;
2374         struct rte_eth_dev *eth_dev;
2375
2376         eth_dev = &rte_eth_devices[hw->data->port_id];
2377         if (hw->adapter_state == HNS3_NIC_STARTED)
2378                 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2379         hw->mac.link_status = ETH_LINK_DOWN;
2380
2381         hns3_set_rxtx_function(eth_dev);
2382         rte_wmb();
2383         /* Disable datapath on secondary process. */
2384         hns3_mp_req_stop_rxtx(eth_dev);
2385         rte_delay_ms(hw->tqps_num);
2386
2387         rte_spinlock_lock(&hw->lock);
2388         if (hw->adapter_state == HNS3_NIC_STARTED ||
2389             hw->adapter_state == HNS3_NIC_STOPPING) {
2390                 hns3_enable_all_queues(hw, false);
2391                 hns3vf_do_stop(hns);
2392                 hw->reset.mbuf_deferred_free = true;
2393         } else
2394                 hw->reset.mbuf_deferred_free = false;
2395
2396         /*
2397          * It is cumbersome for hardware to pick-and-choose entries for deletion
2398          * from table space. Hence, for function reset software intervention is
2399          * required to delete the entries.
2400          */
2401         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2402                 hns3vf_configure_all_mc_mac_addr(hns, true);
2403         rte_spinlock_unlock(&hw->lock);
2404
2405         return 0;
2406 }
2407
2408 static int
2409 hns3vf_start_service(struct hns3_adapter *hns)
2410 {
2411         struct hns3_hw *hw = &hns->hw;
2412         struct rte_eth_dev *eth_dev;
2413
2414         eth_dev = &rte_eth_devices[hw->data->port_id];
2415         hns3_set_rxtx_function(eth_dev);
2416         hns3_mp_req_start_rxtx(eth_dev);
2417         if (hw->adapter_state == HNS3_NIC_STARTED) {
2418                 hns3vf_service_handler(eth_dev);
2419
2420                 /* Enable interrupt of all rx queues before enabling queues */
2421                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2422                 /*
2423                  * When finished the initialization, enable queues to receive
2424                  * and transmit packets.
2425                  */
2426                 hns3_enable_all_queues(hw, true);
2427         }
2428
2429         return 0;
2430 }
2431
2432 static int
2433 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2434 {
2435         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2436         struct rte_ether_addr *hw_mac;
2437         int ret;
2438
2439         /*
2440          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2441          * on the host by "ip link set ..." command. If the hns3 PF kernel
2442          * ethdev driver sets the MAC address for VF device after the
2443          * initialization of the related VF device, the PF driver will notify
2444          * VF driver to reset VF device to make the new MAC address effective
2445          * immediately. The hns3 VF PMD driver should check whether the MAC
2446          * address has been changed by the PF kernel ethdev driver, if changed
2447          * VF driver should configure hardware using the new MAC address in the
2448          * recovering hardware configuration stage of the reset process.
2449          */
2450         ret = hns3vf_get_host_mac_addr(hw);
2451         if (ret)
2452                 return ret;
2453
2454         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2455         ret = rte_is_zero_ether_addr(hw_mac);
2456         if (ret) {
2457                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2458         } else {
2459                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2460                 if (!ret) {
2461                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2462                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2463                                               &hw->data->mac_addrs[0]);
2464                         hns3_warn(hw, "Default MAC address has been changed to:"
2465                                   " %s by the host PF kernel ethdev driver",
2466                                   mac_str);
2467                 }
2468         }
2469
2470         return 0;
2471 }
2472
2473 static int
2474 hns3vf_restore_conf(struct hns3_adapter *hns)
2475 {
2476         struct hns3_hw *hw = &hns->hw;
2477         int ret;
2478
2479         ret = hns3vf_check_default_mac_change(hw);
2480         if (ret)
2481                 return ret;
2482
2483         ret = hns3vf_configure_mac_addr(hns, false);
2484         if (ret)
2485                 return ret;
2486
2487         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2488         if (ret)
2489                 goto err_mc_mac;
2490
2491         ret = hns3vf_restore_promisc(hns);
2492         if (ret)
2493                 goto err_vlan_table;
2494
2495         ret = hns3vf_restore_vlan_conf(hns);
2496         if (ret)
2497                 goto err_vlan_table;
2498
2499         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2500         if (ret)
2501                 goto err_vlan_table;
2502
2503         ret = hns3vf_restore_rx_interrupt(hw);
2504         if (ret)
2505                 goto err_vlan_table;
2506
2507         ret = hns3_restore_gro_conf(hw);
2508         if (ret)
2509                 goto err_vlan_table;
2510
2511         if (hw->adapter_state == HNS3_NIC_STARTED) {
2512                 ret = hns3vf_do_start(hns, false);
2513                 if (ret)
2514                         goto err_vlan_table;
2515                 hns3_info(hw, "hns3vf dev restart successful!");
2516         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2517                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2518         return 0;
2519
2520 err_vlan_table:
2521         hns3vf_configure_all_mc_mac_addr(hns, true);
2522 err_mc_mac:
2523         hns3vf_configure_mac_addr(hns, true);
2524         return ret;
2525 }
2526
2527 static enum hns3_reset_level
2528 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2529 {
2530         enum hns3_reset_level reset_level;
2531
2532         /* return the highest priority reset level amongst all */
2533         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2534                 reset_level = HNS3_VF_RESET;
2535         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2536                 reset_level = HNS3_VF_FULL_RESET;
2537         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2538                 reset_level = HNS3_VF_PF_FUNC_RESET;
2539         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2540                 reset_level = HNS3_VF_FUNC_RESET;
2541         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2542                 reset_level = HNS3_FLR_RESET;
2543         else
2544                 reset_level = HNS3_NONE_RESET;
2545
2546         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2547                 return HNS3_NONE_RESET;
2548
2549         return reset_level;
2550 }
2551
2552 static void
2553 hns3vf_reset_service(void *param)
2554 {
2555         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2556         struct hns3_hw *hw = &hns->hw;
2557         enum hns3_reset_level reset_level;
2558         struct timeval tv_delta;
2559         struct timeval tv_start;
2560         struct timeval tv;
2561         uint64_t msec;
2562
2563         /*
2564          * The interrupt is not triggered within the delay time.
2565          * The interrupt may have been lost. It is necessary to handle
2566          * the interrupt to recover from the error.
2567          */
2568         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2569                 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2570                 hns3_err(hw, "Handling interrupts in delayed tasks");
2571                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2572                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2573                 if (reset_level == HNS3_NONE_RESET) {
2574                         hns3_err(hw, "No reset level is set, try global reset");
2575                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2576                 }
2577         }
2578         rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2579
2580         /*
2581          * Hardware reset has been notified, we now have to poll & check if
2582          * hardware has actually completed the reset sequence.
2583          */
2584         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2585         if (reset_level != HNS3_NONE_RESET) {
2586                 gettimeofday(&tv_start, NULL);
2587                 hns3_reset_process(hns, reset_level);
2588                 gettimeofday(&tv, NULL);
2589                 timersub(&tv, &tv_start, &tv_delta);
2590                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2591                        tv_delta.tv_usec / USEC_PER_MSEC;
2592                 if (msec > HNS3_RESET_PROCESS_MS)
2593                         hns3_err(hw, "%d handle long time delta %" PRIx64
2594                                  " ms time=%ld.%.6ld",
2595                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2596         }
2597 }
2598
2599 static int
2600 hns3vf_reinit_dev(struct hns3_adapter *hns)
2601 {
2602         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2603         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2604         struct hns3_hw *hw = &hns->hw;
2605         int ret;
2606
2607         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2608                 rte_intr_disable(&pci_dev->intr_handle);
2609                 ret = hns3vf_set_bus_master(pci_dev, true);
2610                 if (ret < 0) {
2611                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2612                         return ret;
2613                 }
2614         }
2615
2616         /* Firmware command initialize */
2617         ret = hns3_cmd_init(hw);
2618         if (ret) {
2619                 hns3_err(hw, "Failed to init cmd: %d", ret);
2620                 return ret;
2621         }
2622
2623         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2624                 /*
2625                  * UIO enables msix by writing the pcie configuration space
2626                  * vfio_pci enables msix in rte_intr_enable.
2627                  */
2628                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2629                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2630                         if (hns3vf_enable_msix(pci_dev, true))
2631                                 hns3_err(hw, "Failed to enable msix");
2632                 }
2633
2634                 rte_intr_enable(&pci_dev->intr_handle);
2635         }
2636
2637         ret = hns3_reset_all_tqps(hns);
2638         if (ret) {
2639                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2640                 return ret;
2641         }
2642
2643         ret = hns3vf_init_hardware(hns);
2644         if (ret) {
2645                 hns3_err(hw, "Failed to init hardware: %d", ret);
2646                 return ret;
2647         }
2648
2649         return 0;
2650 }
2651
2652 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2653         .dev_configure      = hns3vf_dev_configure,
2654         .dev_start          = hns3vf_dev_start,
2655         .dev_stop           = hns3vf_dev_stop,
2656         .dev_close          = hns3vf_dev_close,
2657         .mtu_set            = hns3vf_dev_mtu_set,
2658         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2659         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2660         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2661         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2662         .stats_get          = hns3_stats_get,
2663         .stats_reset        = hns3_stats_reset,
2664         .xstats_get         = hns3_dev_xstats_get,
2665         .xstats_get_names   = hns3_dev_xstats_get_names,
2666         .xstats_reset       = hns3_dev_xstats_reset,
2667         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2668         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2669         .dev_infos_get      = hns3vf_dev_infos_get,
2670         .fw_version_get     = hns3vf_fw_version_get,
2671         .rx_queue_setup     = hns3_rx_queue_setup,
2672         .tx_queue_setup     = hns3_tx_queue_setup,
2673         .rx_queue_release   = hns3_dev_rx_queue_release,
2674         .tx_queue_release   = hns3_dev_tx_queue_release,
2675         .rx_queue_start     = hns3_dev_rx_queue_start,
2676         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2677         .tx_queue_start     = hns3_dev_tx_queue_start,
2678         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2679         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2680         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2681         .rxq_info_get       = hns3_rxq_info_get,
2682         .txq_info_get       = hns3_txq_info_get,
2683         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2684         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2685         .mac_addr_add       = hns3vf_add_mac_addr,
2686         .mac_addr_remove    = hns3vf_remove_mac_addr,
2687         .mac_addr_set       = hns3vf_set_default_mac_addr,
2688         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2689         .link_update        = hns3vf_dev_link_update,
2690         .rss_hash_update    = hns3_dev_rss_hash_update,
2691         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2692         .reta_update        = hns3_dev_rss_reta_update,
2693         .reta_query         = hns3_dev_rss_reta_query,
2694         .filter_ctrl        = hns3_dev_filter_ctrl,
2695         .vlan_filter_set    = hns3vf_vlan_filter_set,
2696         .vlan_offload_set   = hns3vf_vlan_offload_set,
2697         .get_reg            = hns3_get_regs,
2698         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2699 };
2700
2701 static const struct hns3_reset_ops hns3vf_reset_ops = {
2702         .reset_service       = hns3vf_reset_service,
2703         .stop_service        = hns3vf_stop_service,
2704         .prepare_reset       = hns3vf_prepare_reset,
2705         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2706         .reinit_dev          = hns3vf_reinit_dev,
2707         .restore_conf        = hns3vf_restore_conf,
2708         .start_service       = hns3vf_start_service,
2709 };
2710
2711 static int
2712 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2713 {
2714         struct hns3_adapter *hns = eth_dev->data->dev_private;
2715         struct hns3_hw *hw = &hns->hw;
2716         int ret;
2717
2718         PMD_INIT_FUNC_TRACE();
2719
2720         eth_dev->process_private = (struct hns3_process_private *)
2721             rte_zmalloc_socket("hns3_filter_list",
2722                                sizeof(struct hns3_process_private),
2723                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2724         if (eth_dev->process_private == NULL) {
2725                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2726                 return -ENOMEM;
2727         }
2728
2729         /* initialize flow filter lists */
2730         hns3_filterlist_init(eth_dev);
2731
2732         hns3_set_rxtx_function(eth_dev);
2733         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2734         eth_dev->rx_queue_count = hns3_rx_queue_count;
2735         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2736                 ret = hns3_mp_init_secondary();
2737                 if (ret) {
2738                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2739                                           "process, ret = %d", ret);
2740                         goto err_mp_init_secondary;
2741                 }
2742
2743                 hw->secondary_cnt++;
2744                 return 0;
2745         }
2746
2747         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2748
2749         ret = hns3_mp_init_primary();
2750         if (ret) {
2751                 PMD_INIT_LOG(ERR,
2752                              "Failed to init for primary process, ret = %d",
2753                              ret);
2754                 goto err_mp_init_primary;
2755         }
2756
2757         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2758         hns->is_vf = true;
2759         hw->data = eth_dev->data;
2760
2761         ret = hns3_reset_init(hw);
2762         if (ret)
2763                 goto err_init_reset;
2764         hw->reset.ops = &hns3vf_reset_ops;
2765
2766         ret = hns3vf_init_vf(eth_dev);
2767         if (ret) {
2768                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2769                 goto err_init_vf;
2770         }
2771
2772         /* Allocate memory for storing MAC addresses */
2773         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2774                                                sizeof(struct rte_ether_addr) *
2775                                                HNS3_VF_UC_MACADDR_NUM, 0);
2776         if (eth_dev->data->mac_addrs == NULL) {
2777                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2778                              "to store MAC addresses",
2779                              sizeof(struct rte_ether_addr) *
2780                              HNS3_VF_UC_MACADDR_NUM);
2781                 ret = -ENOMEM;
2782                 goto err_rte_zmalloc;
2783         }
2784
2785         /*
2786          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2787          * on the host by "ip link set ..." command. To avoid some incorrect
2788          * scenes, for example, hns3 VF PMD driver fails to receive and send
2789          * packets after user configure the MAC address by using the
2790          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2791          * address strategy as the hns3 kernel ethdev driver in the
2792          * initialization. If user configure a MAC address by the ip command
2793          * for VF device, then hns3 VF PMD driver will start with it, otherwise
2794          * start with a random MAC address in the initialization.
2795          */
2796         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2797                 rte_eth_random_addr(hw->mac.mac_addr);
2798         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2799                             &eth_dev->data->mac_addrs[0]);
2800
2801         hw->adapter_state = HNS3_NIC_INITIALIZED;
2802
2803         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2804                 hns3_err(hw, "Reschedule reset service after dev_init");
2805                 hns3_schedule_reset(hns);
2806         } else {
2807                 /* IMP will wait ready flag before reset */
2808                 hns3_notify_reset_ready(hw, false);
2809         }
2810         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2811                           eth_dev);
2812         return 0;
2813
2814 err_rte_zmalloc:
2815         hns3vf_uninit_vf(eth_dev);
2816
2817 err_init_vf:
2818         rte_free(hw->reset.wait_data);
2819
2820 err_init_reset:
2821         hns3_mp_uninit_primary();
2822
2823 err_mp_init_primary:
2824 err_mp_init_secondary:
2825         eth_dev->dev_ops = NULL;
2826         eth_dev->rx_pkt_burst = NULL;
2827         eth_dev->tx_pkt_burst = NULL;
2828         eth_dev->tx_pkt_prepare = NULL;
2829         rte_free(eth_dev->process_private);
2830         eth_dev->process_private = NULL;
2831
2832         return ret;
2833 }
2834
2835 static int
2836 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2837 {
2838         struct hns3_adapter *hns = eth_dev->data->dev_private;
2839         struct hns3_hw *hw = &hns->hw;
2840
2841         PMD_INIT_FUNC_TRACE();
2842
2843         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2844                 return -EPERM;
2845
2846         if (hw->adapter_state < HNS3_NIC_CLOSING)
2847                 hns3vf_dev_close(eth_dev);
2848
2849         hw->adapter_state = HNS3_NIC_REMOVED;
2850         return 0;
2851 }
2852
2853 static int
2854 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2855                      struct rte_pci_device *pci_dev)
2856 {
2857         return rte_eth_dev_pci_generic_probe(pci_dev,
2858                                              sizeof(struct hns3_adapter),
2859                                              hns3vf_dev_init);
2860 }
2861
2862 static int
2863 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2864 {
2865         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2866 }
2867
2868 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2869         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2870         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2871         { .vendor_id = 0, }, /* sentinel */
2872 };
2873
2874 static struct rte_pci_driver rte_hns3vf_pmd = {
2875         .id_table = pci_id_hns3vf_map,
2876         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2877         .probe = eth_hns3vf_pci_probe,
2878         .remove = eth_hns3vf_pci_remove,
2879 };
2880
2881 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2882 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2883 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");