net/hns3: skip VF register access when PF in FLR
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <errno.h>
6 #include <stdio.h>
7 #include <stdbool.h>
8 #include <string.h>
9 #include <inttypes.h>
10 #include <unistd.h>
11 #include <arpa/inet.h>
12 #include <linux/pci_regs.h>
13
14 #include <rte_alarm.h>
15 #include <rte_atomic.h>
16 #include <rte_bus_pci.h>
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_dev.h>
21 #include <rte_eal.h>
22 #include <rte_ether.h>
23 #include <rte_ethdev_driver.h>
24 #include <rte_ethdev_pci.h>
25 #include <rte_interrupts.h>
26 #include <rte_io.h>
27 #include <rte_log.h>
28 #include <rte_pci.h>
29 #include <rte_vfio.h>
30
31 #include "hns3_ethdev.h"
32 #include "hns3_logs.h"
33 #include "hns3_rxtx.h"
34 #include "hns3_regs.h"
35 #include "hns3_intr.h"
36 #include "hns3_dcb.h"
37 #include "hns3_mp.h"
38
39 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
40 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
41
42 #define HNS3VF_RESET_WAIT_MS    20
43 #define HNS3VF_RESET_WAIT_CNT   2000
44
45 /* Reset related Registers */
46 #define HNS3_GLOBAL_RESET_BIT           0
47 #define HNS3_CORE_RESET_BIT             1
48 #define HNS3_IMP_RESET_BIT              2
49 #define HNS3_FUN_RST_ING_B              0
50
51 enum hns3vf_evt_cause {
52         HNS3VF_VECTOR0_EVENT_RST,
53         HNS3VF_VECTOR0_EVENT_MBX,
54         HNS3VF_VECTOR0_EVENT_OTHER,
55 };
56
57 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
58                                                     uint64_t *levels);
59 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
60 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
61
62 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
63                                   struct rte_ether_addr *mac_addr);
64 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
65                                      struct rte_ether_addr *mac_addr);
66 /* set PCI bus mastering */
67 static void
68 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
69 {
70         uint16_t reg;
71
72         rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
73
74         if (op)
75                 /* set the master bit */
76                 reg |= PCI_COMMAND_MASTER;
77         else
78                 reg &= ~(PCI_COMMAND_MASTER);
79
80         rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
81 }
82
83 /**
84  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
85  * @cap: the capability
86  *
87  * Return the address of the given capability within the PCI capability list.
88  */
89 static int
90 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
91 {
92 #define MAX_PCIE_CAPABILITY 48
93         uint16_t status;
94         uint8_t pos;
95         uint8_t id;
96         int ttl;
97
98         rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
99         if (!(status & PCI_STATUS_CAP_LIST))
100                 return 0;
101
102         ttl = MAX_PCIE_CAPABILITY;
103         rte_pci_read_config(device, &pos, sizeof(pos), PCI_CAPABILITY_LIST);
104         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105                 rte_pci_read_config(device, &id, sizeof(id),
106                                     (pos + PCI_CAP_LIST_ID));
107
108                 if (id == 0xFF)
109                         break;
110
111                 if (id == cap)
112                         return (int)pos;
113
114                 rte_pci_read_config(device, &pos, sizeof(pos),
115                                     (pos + PCI_CAP_LIST_NEXT));
116         }
117         return 0;
118 }
119
120 static int
121 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
122 {
123         uint16_t control;
124         int pos;
125
126         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
127         if (pos) {
128                 rte_pci_read_config(device, &control, sizeof(control),
129                                     (pos + PCI_MSIX_FLAGS));
130                 if (op)
131                         control |= PCI_MSIX_FLAGS_ENABLE;
132                 else
133                         control &= ~PCI_MSIX_FLAGS_ENABLE;
134                 rte_pci_write_config(device, &control, sizeof(control),
135                                      (pos + PCI_MSIX_FLAGS));
136                 return 0;
137         }
138         return -ENXIO;
139 }
140
141 static int
142 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
143 {
144         /* mac address was checked by upper level interface */
145         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
146         int ret;
147
148         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
149                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
150                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
151         if (ret) {
152                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
153                                       mac_addr);
154                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
155                          mac_str, ret);
156         }
157         return ret;
158 }
159
160 static int
161 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
162 {
163         /* mac address was checked by upper level interface */
164         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
165         int ret;
166
167         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
168                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
169                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
170                                 false, NULL, 0);
171         if (ret) {
172                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
173                                       mac_addr);
174                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
175                          mac_str, ret);
176         }
177         return ret;
178 }
179
180 static int
181 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
182 {
183         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
184         struct rte_ether_addr *addr;
185         int ret;
186         int i;
187
188         for (i = 0; i < hw->mc_addrs_num; i++) {
189                 addr = &hw->mc_addrs[i];
190                 /* Check if there are duplicate addresses */
191                 if (rte_is_same_ether_addr(addr, mac_addr)) {
192                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
193                                               addr);
194                         hns3_err(hw, "failed to add mc mac addr, same addrs"
195                                  "(%s) is added by the set_mc_mac_addr_list "
196                                  "API", mac_str);
197                         return -EINVAL;
198                 }
199         }
200
201         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
202         if (ret) {
203                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
204                                       mac_addr);
205                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
206                          mac_str, ret);
207         }
208         return ret;
209 }
210
211 static int
212 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
213                     __rte_unused uint32_t idx,
214                     __rte_unused uint32_t pool)
215 {
216         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
217         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
218         int ret;
219
220         rte_spinlock_lock(&hw->lock);
221
222         /*
223          * In hns3 network engine adding UC and MC mac address with different
224          * commands with firmware. We need to determine whether the input
225          * address is a UC or a MC address to call different commands.
226          * By the way, it is recommended calling the API function named
227          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
228          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
229          * may affect the specifications of UC mac addresses.
230          */
231         if (rte_is_multicast_ether_addr(mac_addr))
232                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
233         else
234                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
235
236         rte_spinlock_unlock(&hw->lock);
237         if (ret) {
238                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
239                                       mac_addr);
240                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
241                          ret);
242         }
243
244         return ret;
245 }
246
247 static void
248 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
249 {
250         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
251         /* index will be checked by upper level rte interface */
252         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
253         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
254         int ret;
255
256         rte_spinlock_lock(&hw->lock);
257
258         if (rte_is_multicast_ether_addr(mac_addr))
259                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
260         else
261                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
262
263         rte_spinlock_unlock(&hw->lock);
264         if (ret) {
265                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
266                                       mac_addr);
267                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
268                          mac_str, ret);
269         }
270 }
271
272 static int
273 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
274                             struct rte_ether_addr *mac_addr)
275 {
276 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
277         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278         struct rte_ether_addr *old_addr;
279         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
280         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
281         int ret;
282
283         /*
284          * It has been guaranteed that input parameter named mac_addr is valid
285          * address in the rte layer of DPDK framework.
286          */
287         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
288         rte_spinlock_lock(&hw->lock);
289         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
290         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
291                RTE_ETHER_ADDR_LEN);
292
293         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
294                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
295                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
296         if (ret) {
297                 /*
298                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
299                  * driver. When user has configured a MAC address for VF device
300                  * by "ip link set ..." command based on the PF device, the hns3
301                  * PF kernel ethdev driver does not allow VF driver to request
302                  * reconfiguring a different default MAC address, and return
303                  * -EPREM to VF driver through mailbox.
304                  */
305                 if (ret == -EPERM) {
306                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
307                                               old_addr);
308                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
309                                   mac_str);
310                 } else {
311                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
312                                               mac_addr);
313                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
314                                  mac_str, ret);
315                 }
316         }
317
318         rte_ether_addr_copy(mac_addr,
319                             (struct rte_ether_addr *)hw->mac.mac_addr);
320         rte_spinlock_unlock(&hw->lock);
321
322         return ret;
323 }
324
325 static int
326 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
327 {
328         struct hns3_hw *hw = &hns->hw;
329         struct rte_ether_addr *addr;
330         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
331         int err = 0;
332         int ret;
333         int i;
334
335         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
336                 addr = &hw->data->mac_addrs[i];
337                 if (rte_is_zero_ether_addr(addr))
338                         continue;
339                 if (rte_is_multicast_ether_addr(addr))
340                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
341                               hns3vf_add_mc_mac_addr(hw, addr);
342                 else
343                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
344                               hns3vf_add_uc_mac_addr(hw, addr);
345
346                 if (ret) {
347                         err = ret;
348                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
349                                               addr);
350                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
351                                  "ret = %d.", del ? "remove" : "restore",
352                                  mac_str, i, ret);
353                 }
354         }
355         return err;
356 }
357
358 static int
359 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
360                        struct rte_ether_addr *mac_addr)
361 {
362         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
363         int ret;
364
365         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
366                                 HNS3_MBX_MAC_VLAN_MC_ADD,
367                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
368                                 NULL, 0);
369         if (ret) {
370                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
371                                       mac_addr);
372                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
373                          mac_str, ret);
374         }
375
376         return ret;
377 }
378
379 static int
380 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
381                           struct rte_ether_addr *mac_addr)
382 {
383         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
384         int ret;
385
386         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
388                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
389                                 NULL, 0);
390         if (ret) {
391                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
392                                       mac_addr);
393                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
394                          mac_str, ret);
395         }
396
397         return ret;
398 }
399
400 static int
401 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
402                              struct rte_ether_addr *mc_addr_set,
403                              uint32_t nb_mc_addr)
404 {
405         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
406         struct rte_ether_addr *addr;
407         uint32_t i;
408         uint32_t j;
409
410         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
411                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
412                          "invalid. valid range: 0~%d",
413                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
414                 return -EINVAL;
415         }
416
417         /* Check if input mac addresses are valid */
418         for (i = 0; i < nb_mc_addr; i++) {
419                 addr = &mc_addr_set[i];
420                 if (!rte_is_multicast_ether_addr(addr)) {
421                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
422                                               addr);
423                         hns3_err(hw,
424                                  "failed to set mc mac addr, addr(%s) invalid.",
425                                  mac_str);
426                         return -EINVAL;
427                 }
428
429                 /* Check if there are duplicate addresses */
430                 for (j = i + 1; j < nb_mc_addr; j++) {
431                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
432                                 rte_ether_format_addr(mac_str,
433                                                       RTE_ETHER_ADDR_FMT_SIZE,
434                                                       addr);
435                                 hns3_err(hw, "failed to set mc mac addr, "
436                                          "addrs invalid. two same addrs(%s).",
437                                          mac_str);
438                                 return -EINVAL;
439                         }
440                 }
441
442                 /*
443                  * Check if there are duplicate addresses between mac_addrs
444                  * and mc_addr_set
445                  */
446                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
447                         if (rte_is_same_ether_addr(addr,
448                                                    &hw->data->mac_addrs[j])) {
449                                 rte_ether_format_addr(mac_str,
450                                                       RTE_ETHER_ADDR_FMT_SIZE,
451                                                       addr);
452                                 hns3_err(hw, "failed to set mc mac addr, "
453                                          "addrs invalid. addrs(%s) has already "
454                                          "configured in mac_addr add API",
455                                          mac_str);
456                                 return -EINVAL;
457                         }
458                 }
459         }
460
461         return 0;
462 }
463
464 static int
465 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
466                             struct rte_ether_addr *mc_addr_set,
467                             uint32_t nb_mc_addr)
468 {
469         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
470         struct rte_ether_addr *addr;
471         int cur_addr_num;
472         int set_addr_num;
473         int num;
474         int ret;
475         int i;
476
477         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
478         if (ret)
479                 return ret;
480
481         rte_spinlock_lock(&hw->lock);
482         cur_addr_num = hw->mc_addrs_num;
483         for (i = 0; i < cur_addr_num; i++) {
484                 num = cur_addr_num - i - 1;
485                 addr = &hw->mc_addrs[num];
486                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
487                 if (ret) {
488                         rte_spinlock_unlock(&hw->lock);
489                         return ret;
490                 }
491
492                 hw->mc_addrs_num--;
493         }
494
495         set_addr_num = (int)nb_mc_addr;
496         for (i = 0; i < set_addr_num; i++) {
497                 addr = &mc_addr_set[i];
498                 ret = hns3vf_add_mc_mac_addr(hw, addr);
499                 if (ret) {
500                         rte_spinlock_unlock(&hw->lock);
501                         return ret;
502                 }
503
504                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
505                 hw->mc_addrs_num++;
506         }
507         rte_spinlock_unlock(&hw->lock);
508
509         return 0;
510 }
511
512 static int
513 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
514 {
515         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
516         struct hns3_hw *hw = &hns->hw;
517         struct rte_ether_addr *addr;
518         int err = 0;
519         int ret;
520         int i;
521
522         for (i = 0; i < hw->mc_addrs_num; i++) {
523                 addr = &hw->mc_addrs[i];
524                 if (!rte_is_multicast_ether_addr(addr))
525                         continue;
526                 if (del)
527                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
528                 else
529                         ret = hns3vf_add_mc_mac_addr(hw, addr);
530                 if (ret) {
531                         err = ret;
532                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
533                                               addr);
534                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
535                                  del ? "Remove" : "Restore", mac_str, ret);
536                 }
537         }
538         return err;
539 }
540
541 static int
542 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
543                         bool en_uc_pmc, bool en_mc_pmc)
544 {
545         struct hns3_mbx_vf_to_pf_cmd *req;
546         struct hns3_cmd_desc desc;
547         int ret;
548
549         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
550
551         /*
552          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
553          * so there are some features for promiscuous/allmulticast mode in hns3
554          * VF PMD driver as below:
555          * 1. The promiscuous/allmulticast mode can be configured successfully
556          *    only based on the trusted VF device. If based on the non trusted
557          *    VF device, configuring promiscuous/allmulticast mode will fail.
558          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
559          *    kernel ethdev driver on the host by the following command:
560          *      "ip link set <eth num> vf <vf id> turst on"
561          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
562          *    driver can receive the ingress and outgoing traffic. In the words,
563          *    all the ingress packets, all the packets sent from the PF and
564          *    other VFs on the same physical port.
565          * 3. Note: Because of the hardware constraints, By default vlan filter
566          *    is enabled and couldn't be turned off based on VF device, so vlan
567          *    filter is still effective even in promiscuous mode. If upper
568          *    applications don't call rte_eth_dev_vlan_filter API function to
569          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
570          *    the packets with vlan tag in promiscuoue mode.
571          */
572         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
573         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
574         req->msg[1] = en_bc_pmc ? 1 : 0;
575         req->msg[2] = en_uc_pmc ? 1 : 0;
576         req->msg[3] = en_mc_pmc ? 1 : 0;
577
578         ret = hns3_cmd_send(hw, &desc, 1);
579         if (ret)
580                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
581
582         return ret;
583 }
584
585 static int
586 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
587 {
588         struct hns3_adapter *hns = dev->data->dev_private;
589         struct hns3_hw *hw = &hns->hw;
590         int ret;
591
592         ret = hns3vf_set_promisc_mode(hw, true, true, true);
593         if (ret)
594                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
595                         ret);
596         return ret;
597 }
598
599 static int
600 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
601 {
602         bool allmulti = dev->data->all_multicast ? true : false;
603         struct hns3_adapter *hns = dev->data->dev_private;
604         struct hns3_hw *hw = &hns->hw;
605         int ret;
606
607         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
608         if (ret)
609                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
610                         ret);
611         return ret;
612 }
613
614 static int
615 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
616 {
617         struct hns3_adapter *hns = dev->data->dev_private;
618         struct hns3_hw *hw = &hns->hw;
619         int ret;
620
621         if (dev->data->promiscuous)
622                 return 0;
623
624         ret = hns3vf_set_promisc_mode(hw, true, false, true);
625         if (ret)
626                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
627                         ret);
628         return ret;
629 }
630
631 static int
632 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
633 {
634         struct hns3_adapter *hns = dev->data->dev_private;
635         struct hns3_hw *hw = &hns->hw;
636         int ret;
637
638         if (dev->data->promiscuous)
639                 return 0;
640
641         ret = hns3vf_set_promisc_mode(hw, true, false, false);
642         if (ret)
643                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
644                         ret);
645         return ret;
646 }
647
648 static int
649 hns3vf_restore_promisc(struct hns3_adapter *hns)
650 {
651         struct hns3_hw *hw = &hns->hw;
652         bool allmulti = hw->data->all_multicast ? true : false;
653
654         if (hw->data->promiscuous)
655                 return hns3vf_set_promisc_mode(hw, true, true, true);
656
657         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
658 }
659
660 static int
661 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
662                              bool mmap, enum hns3_ring_type queue_type,
663                              uint16_t queue_id)
664 {
665         struct hns3_vf_bind_vector_msg bind_msg;
666         const char *op_str;
667         uint16_t code;
668         int ret;
669
670         memset(&bind_msg, 0, sizeof(bind_msg));
671         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
672                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
673         bind_msg.vector_id = vector_id;
674
675         if (queue_type == HNS3_RING_TYPE_RX)
676                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
677         else
678                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
679
680         bind_msg.param[0].ring_type = queue_type;
681         bind_msg.ring_num = 1;
682         bind_msg.param[0].tqp_index = queue_id;
683         op_str = mmap ? "Map" : "Unmap";
684         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
685                                 sizeof(bind_msg), false, NULL, 0);
686         if (ret)
687                 hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
688                          op_str, queue_id, bind_msg.vector_id, ret);
689
690         return ret;
691 }
692
693 static int
694 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
695 {
696         uint16_t vec;
697         int ret;
698         int i;
699
700         /*
701          * In hns3 network engine, vector 0 is always the misc interrupt of this
702          * function, vector 1~N can be used respectively for the queues of the
703          * function. Tx and Rx queues with the same number share the interrupt
704          * vector. In the initialization clearing the all hardware mapping
705          * relationship configurations between queues and interrupt vectors is
706          * needed, so some error caused by the residual configurations, such as
707          * the unexpected Tx interrupt, can be avoid.
708          */
709         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
710         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
711                 vec = vec - 1; /* the last interrupt is reserved */
712         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
713         for (i = 0; i < hw->intr_tqps_num; i++) {
714                 /*
715                  * Set gap limiter/rate limiter/quanity limiter algorithm
716                  * configuration for interrupt coalesce of queue's interrupt.
717                  */
718                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
719                                        HNS3_TQP_INTR_GL_DEFAULT);
720                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
721                                        HNS3_TQP_INTR_GL_DEFAULT);
722                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
723                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
724
725                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
726                                                    HNS3_RING_TYPE_TX, i);
727                 if (ret) {
728                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
729                                           "vector: %d, ret=%d", i, vec, ret);
730                         return ret;
731                 }
732
733                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
734                                                    HNS3_RING_TYPE_RX, i);
735                 if (ret) {
736                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
737                                           "vector: %d, ret=%d", i, vec, ret);
738                         return ret;
739                 }
740         }
741
742         return 0;
743 }
744
745 static int
746 hns3vf_dev_configure(struct rte_eth_dev *dev)
747 {
748         struct hns3_adapter *hns = dev->data->dev_private;
749         struct hns3_hw *hw = &hns->hw;
750         struct hns3_rss_conf *rss_cfg = &hw->rss_info;
751         struct rte_eth_conf *conf = &dev->data->dev_conf;
752         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
753         uint16_t nb_rx_q = dev->data->nb_rx_queues;
754         uint16_t nb_tx_q = dev->data->nb_tx_queues;
755         struct rte_eth_rss_conf rss_conf;
756         uint16_t mtu;
757         bool gro_en;
758         int ret;
759
760         /*
761          * Hardware does not support individually enable/disable/reset the Tx or
762          * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
763          * and Rx queues at the same time. When the numbers of Tx queues
764          * allocated by upper applications are not equal to the numbers of Rx
765          * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
766          * of Tx/Rx queues. otherwise, network engine can not work as usual. But
767          * these fake queues are imperceptible, and can not be used by upper
768          * applications.
769          */
770         ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
771         if (ret) {
772                 hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
773                 return ret;
774         }
775
776         hw->adapter_state = HNS3_NIC_CONFIGURING;
777         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
778                 hns3_err(hw, "setting link speed/duplex not supported");
779                 ret = -EINVAL;
780                 goto cfg_err;
781         }
782
783         /* When RSS is not configured, redirect the packet queue 0 */
784         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
785                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
786                 rss_conf = conf->rx_adv_conf.rss_conf;
787                 if (rss_conf.rss_key == NULL) {
788                         rss_conf.rss_key = rss_cfg->key;
789                         rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
790                 }
791
792                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
793                 if (ret)
794                         goto cfg_err;
795         }
796
797         /*
798          * If jumbo frames are enabled, MTU needs to be refreshed
799          * according to the maximum RX packet length.
800          */
801         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
802                 /*
803                  * Security of max_rx_pkt_len is guaranteed in dpdk frame.
804                  * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
805                  * can safely assign to "uint16_t" type variable.
806                  */
807                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
808                 ret = hns3vf_dev_mtu_set(dev, mtu);
809                 if (ret)
810                         goto cfg_err;
811                 dev->data->mtu = mtu;
812         }
813
814         ret = hns3vf_dev_configure_vlan(dev);
815         if (ret)
816                 goto cfg_err;
817
818         /* config hardware GRO */
819         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
820         ret = hns3_config_gro(hw, gro_en);
821         if (ret)
822                 goto cfg_err;
823
824         hns->rx_simple_allowed = true;
825         hns->rx_vec_allowed = true;
826         hns->tx_simple_allowed = true;
827         hns->tx_vec_allowed = true;
828
829         hns3_init_rx_ptype_tble(dev);
830
831         hw->adapter_state = HNS3_NIC_CONFIGURED;
832         return 0;
833
834 cfg_err:
835         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
836         hw->adapter_state = HNS3_NIC_INITIALIZED;
837
838         return ret;
839 }
840
841 static int
842 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
843 {
844         int ret;
845
846         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
847                                 sizeof(mtu), true, NULL, 0);
848         if (ret)
849                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
850
851         return ret;
852 }
853
854 static int
855 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
856 {
857         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
858         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
859         int ret;
860
861         /*
862          * The hns3 PF/VF devices on the same port share the hardware MTU
863          * configuration. Currently, we send mailbox to inform hns3 PF kernel
864          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
865          * driver, there is no need to stop the port for hns3 VF device, and the
866          * MTU value issued by hns3 VF PMD driver must be less than or equal to
867          * PF's MTU.
868          */
869         if (rte_atomic16_read(&hw->reset.resetting)) {
870                 hns3_err(hw, "Failed to set mtu during resetting");
871                 return -EIO;
872         }
873
874         /*
875          * when Rx of scattered packets is off, we have some possibility of
876          * using vector Rx process function or simple Rx functions in hns3 PMD
877          * driver. If the input MTU is increased and the maximum length of
878          * received packets is greater than the length of a buffer for Rx
879          * packet, the hardware network engine needs to use multiple BDs and
880          * buffers to store these packets. This will cause problems when still
881          * using vector Rx process function or simple Rx function to receiving
882          * packets. So, when Rx of scattered packets is off and device is
883          * started, it is not permitted to increase MTU so that the maximum
884          * length of Rx packets is greater than Rx buffer length.
885          */
886         if (dev->data->dev_started && !dev->data->scattered_rx &&
887             frame_size > hw->rx_buf_len) {
888                 hns3_err(hw, "failed to set mtu because current is "
889                         "not scattered rx mode");
890                 return -EOPNOTSUPP;
891         }
892
893         rte_spinlock_lock(&hw->lock);
894         ret = hns3vf_config_mtu(hw, mtu);
895         if (ret) {
896                 rte_spinlock_unlock(&hw->lock);
897                 return ret;
898         }
899         if (frame_size > RTE_ETHER_MAX_LEN)
900                 dev->data->dev_conf.rxmode.offloads |=
901                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
902         else
903                 dev->data->dev_conf.rxmode.offloads &=
904                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
905         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
906         rte_spinlock_unlock(&hw->lock);
907
908         return 0;
909 }
910
911 static int
912 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
913 {
914         struct hns3_adapter *hns = eth_dev->data->dev_private;
915         struct hns3_hw *hw = &hns->hw;
916         uint16_t q_num = hw->tqps_num;
917
918         /*
919          * In interrupt mode, 'max_rx_queues' is set based on the number of
920          * MSI-X interrupt resources of the hardware.
921          */
922         if (hw->data->dev_conf.intr_conf.rxq == 1)
923                 q_num = hw->intr_tqps_num;
924
925         info->max_rx_queues = q_num;
926         info->max_tx_queues = hw->tqps_num;
927         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
928         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
929         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
930         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
931         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
932
933         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
934                                  DEV_RX_OFFLOAD_UDP_CKSUM |
935                                  DEV_RX_OFFLOAD_TCP_CKSUM |
936                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
937                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
938                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
939                                  DEV_RX_OFFLOAD_SCATTER |
940                                  DEV_RX_OFFLOAD_VLAN_STRIP |
941                                  DEV_RX_OFFLOAD_VLAN_FILTER |
942                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
943                                  DEV_RX_OFFLOAD_RSS_HASH |
944                                  DEV_RX_OFFLOAD_TCP_LRO);
945         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
946                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
947                                  DEV_TX_OFFLOAD_TCP_CKSUM |
948                                  DEV_TX_OFFLOAD_UDP_CKSUM |
949                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
950                                  DEV_TX_OFFLOAD_MULTI_SEGS |
951                                  DEV_TX_OFFLOAD_TCP_TSO |
952                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
953                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
954                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
955                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
956                                  hns3_txvlan_cap_get(hw));
957
958         info->rx_desc_lim = (struct rte_eth_desc_lim) {
959                 .nb_max = HNS3_MAX_RING_DESC,
960                 .nb_min = HNS3_MIN_RING_DESC,
961                 .nb_align = HNS3_ALIGN_RING_DESC,
962         };
963
964         info->tx_desc_lim = (struct rte_eth_desc_lim) {
965                 .nb_max = HNS3_MAX_RING_DESC,
966                 .nb_min = HNS3_MIN_RING_DESC,
967                 .nb_align = HNS3_ALIGN_RING_DESC,
968                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
969                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
970         };
971
972         info->default_rxconf = (struct rte_eth_rxconf) {
973                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
974                 /*
975                  * If there are no available Rx buffer descriptors, incoming
976                  * packets are always dropped by hardware based on hns3 network
977                  * engine.
978                  */
979                 .rx_drop_en = 1,
980                 .offloads = 0,
981         };
982         info->default_txconf = (struct rte_eth_txconf) {
983                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
984                 .offloads = 0,
985         };
986
987         info->vmdq_queue_num = 0;
988
989         info->reta_size = HNS3_RSS_IND_TBL_SIZE;
990         info->hash_key_size = HNS3_RSS_KEY_SIZE;
991         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
992         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
993         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
994
995         return 0;
996 }
997
998 static void
999 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1000 {
1001         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1002 }
1003
1004 static void
1005 hns3vf_disable_irq0(struct hns3_hw *hw)
1006 {
1007         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1008 }
1009
1010 static void
1011 hns3vf_enable_irq0(struct hns3_hw *hw)
1012 {
1013         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1014 }
1015
1016 static enum hns3vf_evt_cause
1017 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1018 {
1019         struct hns3_hw *hw = &hns->hw;
1020         enum hns3vf_evt_cause ret;
1021         uint32_t cmdq_stat_reg;
1022         uint32_t rst_ing_reg;
1023         uint32_t val;
1024
1025         /* Fetch the events from their corresponding regs */
1026         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1027
1028         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1029                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1030                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1031                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1032                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
1033                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1034                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1035                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1036                 if (clearval) {
1037                         hw->reset.stats.global_cnt++;
1038                         hns3_warn(hw, "Global reset detected, clear reset status");
1039                 } else {
1040                         hns3_schedule_delayed_reset(hns);
1041                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1042                 }
1043
1044                 ret = HNS3VF_VECTOR0_EVENT_RST;
1045                 goto out;
1046         }
1047
1048         /* Check for vector0 mailbox(=CMDQ RX) event source */
1049         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1050                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1051                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1052                 goto out;
1053         }
1054
1055         val = 0;
1056         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1057 out:
1058         if (clearval)
1059                 *clearval = val;
1060         return ret;
1061 }
1062
1063 static void
1064 hns3vf_interrupt_handler(void *param)
1065 {
1066         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1067         struct hns3_adapter *hns = dev->data->dev_private;
1068         struct hns3_hw *hw = &hns->hw;
1069         enum hns3vf_evt_cause event_cause;
1070         uint32_t clearval;
1071
1072         if (hw->irq_thread_id == 0)
1073                 hw->irq_thread_id = pthread_self();
1074
1075         /* Disable interrupt */
1076         hns3vf_disable_irq0(hw);
1077
1078         /* Read out interrupt causes */
1079         event_cause = hns3vf_check_event_cause(hns, &clearval);
1080
1081         switch (event_cause) {
1082         case HNS3VF_VECTOR0_EVENT_RST:
1083                 hns3_schedule_reset(hns);
1084                 break;
1085         case HNS3VF_VECTOR0_EVENT_MBX:
1086                 hns3_dev_handle_mbx_msg(hw);
1087                 break;
1088         default:
1089                 break;
1090         }
1091
1092         /* Clear interrupt causes */
1093         hns3vf_clear_event_cause(hw, clearval);
1094
1095         /* Enable interrupt */
1096         hns3vf_enable_irq0(hw);
1097 }
1098
1099 static void
1100 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1101 {
1102         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1103         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1104         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1105 }
1106
1107 static void
1108 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1109 {
1110         struct hns3_dev_specs_0_cmd *req0;
1111
1112         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1113
1114         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1115         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1116         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1117 }
1118
1119 static int
1120 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1121 {
1122         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1123         int ret;
1124         int i;
1125
1126         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1127                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1128                                           true);
1129                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1130         }
1131         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1132
1133         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1134         if (ret)
1135                 return ret;
1136
1137         hns3vf_parse_dev_specifications(hw, desc);
1138
1139         return 0;
1140 }
1141
1142 static int
1143 hns3vf_get_capability(struct hns3_hw *hw)
1144 {
1145         struct rte_pci_device *pci_dev;
1146         struct rte_eth_dev *eth_dev;
1147         uint8_t revision;
1148         int ret;
1149
1150         eth_dev = &rte_eth_devices[hw->data->port_id];
1151         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1152
1153         /* Get PCI revision id */
1154         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1155                                   HNS3_PCI_REVISION_ID);
1156         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1157                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1158                              ret);
1159                 return -EIO;
1160         }
1161         hw->revision = revision;
1162
1163         if (revision < PCI_REVISION_ID_HIP09_A) {
1164                 hns3vf_set_default_dev_specifications(hw);
1165                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1166                 hw->intr.coalesce_mode = HNS3_INTR_COALESCE_NON_QL;
1167                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1168                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1169                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1170                 return 0;
1171         }
1172
1173         ret = hns3vf_query_dev_specifications(hw);
1174         if (ret) {
1175                 PMD_INIT_LOG(ERR,
1176                              "failed to query dev specifications, ret = %d",
1177                              ret);
1178                 return ret;
1179         }
1180
1181         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1182         hw->intr.coalesce_mode = HNS3_INTR_COALESCE_QL;
1183         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1184         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1185         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1186
1187         return 0;
1188 }
1189
1190 static int
1191 hns3vf_check_tqp_info(struct hns3_hw *hw)
1192 {
1193         uint16_t tqps_num;
1194
1195         tqps_num = hw->tqps_num;
1196         if (tqps_num > HNS3_MAX_TQP_NUM_PER_FUNC || tqps_num == 0) {
1197                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(%u) from PF. valid "
1198                                   "range: 1~%d",
1199                              tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
1200                 return -EINVAL;
1201         }
1202
1203         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1204
1205         return 0;
1206 }
1207 static int
1208 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1209 {
1210         uint8_t resp_msg;
1211         int ret;
1212
1213         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1214                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1215                                 true, &resp_msg, sizeof(resp_msg));
1216         if (ret) {
1217                 if (ret == -ETIME) {
1218                         /*
1219                          * Getting current port based VLAN state from PF driver
1220                          * will not affect VF driver's basic function. Because
1221                          * the VF driver relies on hns3 PF kernel ether driver,
1222                          * to avoid introducing compatibility issues with older
1223                          * version of PF driver, no failure will be returned
1224                          * when the return value is ETIME. This return value has
1225                          * the following scenarios:
1226                          * 1) Firmware didn't return the results in time
1227                          * 2) the result return by firmware is timeout
1228                          * 3) the older version of kernel side PF driver does
1229                          *    not support this mailbox message.
1230                          * For scenarios 1 and 2, it is most likely that a
1231                          * hardware error has occurred, or a hardware reset has
1232                          * occurred. In this case, these errors will be caught
1233                          * by other functions.
1234                          */
1235                         PMD_INIT_LOG(WARNING,
1236                                 "failed to get PVID state for timeout, maybe "
1237                                 "kernel side PF driver doesn't support this "
1238                                 "mailbox message, or firmware didn't respond.");
1239                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1240                 } else {
1241                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1242                                 " ret = %d", ret);
1243                         return ret;
1244                 }
1245         }
1246         hw->port_base_vlan_cfg.state = resp_msg ?
1247                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1248         return 0;
1249 }
1250
1251 static int
1252 hns3vf_get_queue_info(struct hns3_hw *hw)
1253 {
1254 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1255         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1256         int ret;
1257
1258         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1259                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1260         if (ret) {
1261                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1262                 return ret;
1263         }
1264
1265         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1266         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1267
1268         return hns3vf_check_tqp_info(hw);
1269 }
1270
1271 static int
1272 hns3vf_get_queue_depth(struct hns3_hw *hw)
1273 {
1274 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1275         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1276         int ret;
1277
1278         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1279                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1280         if (ret) {
1281                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1282                              ret);
1283                 return ret;
1284         }
1285
1286         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1287         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1288
1289         return 0;
1290 }
1291
1292 static int
1293 hns3vf_get_tc_info(struct hns3_hw *hw)
1294 {
1295         uint8_t resp_msg;
1296         int ret;
1297
1298         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1299                                 true, &resp_msg, sizeof(resp_msg));
1300         if (ret) {
1301                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1302                          ret);
1303                 return ret;
1304         }
1305
1306         hw->hw_tc_map = resp_msg;
1307
1308         return 0;
1309 }
1310
1311 static int
1312 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1313 {
1314         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1315         int ret;
1316
1317         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1318                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1319         if (ret) {
1320                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1321                 return ret;
1322         }
1323
1324         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1325
1326         return 0;
1327 }
1328
1329 static int
1330 hns3vf_get_configuration(struct hns3_hw *hw)
1331 {
1332         int ret;
1333
1334         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1335         hw->rss_dis_flag = false;
1336
1337         /* Get device capability */
1338         ret = hns3vf_get_capability(hw);
1339         if (ret) {
1340                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1341                 return ret;
1342         }
1343
1344         /* Get queue configuration from PF */
1345         ret = hns3vf_get_queue_info(hw);
1346         if (ret)
1347                 return ret;
1348
1349         /* Get queue depth info from PF */
1350         ret = hns3vf_get_queue_depth(hw);
1351         if (ret)
1352                 return ret;
1353
1354         /* Get user defined VF MAC addr from PF */
1355         ret = hns3vf_get_host_mac_addr(hw);
1356         if (ret)
1357                 return ret;
1358
1359         ret = hns3vf_get_port_base_vlan_filter_state(hw);
1360         if (ret)
1361                 return ret;
1362
1363         /* Get tc configuration from PF */
1364         return hns3vf_get_tc_info(hw);
1365 }
1366
1367 static int
1368 hns3vf_set_tc_info(struct hns3_adapter *hns)
1369 {
1370         struct hns3_hw *hw = &hns->hw;
1371         uint16_t nb_rx_q = hw->data->nb_rx_queues;
1372         uint16_t nb_tx_q = hw->data->nb_tx_queues;
1373         uint8_t i;
1374
1375         hw->num_tc = 0;
1376         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
1377                 if (hw->hw_tc_map & BIT(i))
1378                         hw->num_tc++;
1379
1380         if (nb_rx_q < hw->num_tc) {
1381                 hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
1382                          nb_rx_q, hw->num_tc);
1383                 return -EINVAL;
1384         }
1385
1386         if (nb_tx_q < hw->num_tc) {
1387                 hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
1388                          nb_tx_q, hw->num_tc);
1389                 return -EINVAL;
1390         }
1391
1392         hns3_set_rss_size(hw, nb_rx_q);
1393         hns3_tc_queue_mapping_cfg(hw, nb_tx_q);
1394
1395         return 0;
1396 }
1397
1398 static void
1399 hns3vf_request_link_info(struct hns3_hw *hw)
1400 {
1401         uint8_t resp_msg;
1402         int ret;
1403
1404         if (rte_atomic16_read(&hw->reset.resetting))
1405                 return;
1406         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1407                                 &resp_msg, sizeof(resp_msg));
1408         if (ret)
1409                 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1410 }
1411
1412 static int
1413 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1414 {
1415 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1416         struct hns3_hw *hw = &hns->hw;
1417         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1418         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1419         uint8_t is_kill = on ? 0 : 1;
1420
1421         msg_data[0] = is_kill;
1422         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1423         memcpy(&msg_data[3], &proto, sizeof(proto));
1424
1425         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1426                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1427                                  0);
1428 }
1429
1430 static int
1431 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1432 {
1433         struct hns3_adapter *hns = dev->data->dev_private;
1434         struct hns3_hw *hw = &hns->hw;
1435         int ret;
1436
1437         if (rte_atomic16_read(&hw->reset.resetting)) {
1438                 hns3_err(hw,
1439                          "vf set vlan id failed during resetting, vlan_id =%u",
1440                          vlan_id);
1441                 return -EIO;
1442         }
1443         rte_spinlock_lock(&hw->lock);
1444         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1445         rte_spinlock_unlock(&hw->lock);
1446         if (ret)
1447                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1448                          vlan_id, ret);
1449
1450         return ret;
1451 }
1452
1453 static int
1454 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1455 {
1456         uint8_t msg_data;
1457         int ret;
1458
1459         msg_data = enable ? 1 : 0;
1460         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1461                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1462         if (ret)
1463                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1464
1465         return ret;
1466 }
1467
1468 static int
1469 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1470 {
1471         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1472         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1473         unsigned int tmp_mask;
1474         int ret = 0;
1475
1476         if (rte_atomic16_read(&hw->reset.resetting)) {
1477                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1478                              "mask = 0x%x", mask);
1479                 return -EIO;
1480         }
1481
1482         tmp_mask = (unsigned int)mask;
1483         /* Vlan stripping setting */
1484         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1485                 rte_spinlock_lock(&hw->lock);
1486                 /* Enable or disable VLAN stripping */
1487                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1488                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1489                 else
1490                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1491                 rte_spinlock_unlock(&hw->lock);
1492         }
1493
1494         return ret;
1495 }
1496
1497 static int
1498 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1499 {
1500         struct rte_vlan_filter_conf *vfc;
1501         struct hns3_hw *hw = &hns->hw;
1502         uint16_t vlan_id;
1503         uint64_t vbit;
1504         uint64_t ids;
1505         int ret = 0;
1506         uint32_t i;
1507
1508         vfc = &hw->data->vlan_filter_conf;
1509         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1510                 if (vfc->ids[i] == 0)
1511                         continue;
1512                 ids = vfc->ids[i];
1513                 while (ids) {
1514                         /*
1515                          * 64 means the num bits of ids, one bit corresponds to
1516                          * one vlan id
1517                          */
1518                         vlan_id = 64 * i;
1519                         /* count trailing zeroes */
1520                         vbit = ~ids & (ids - 1);
1521                         /* clear least significant bit set */
1522                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1523                         for (; vbit;) {
1524                                 vbit >>= 1;
1525                                 vlan_id++;
1526                         }
1527                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1528                         if (ret) {
1529                                 hns3_err(hw,
1530                                          "VF handle vlan table failed, ret =%d, on = %d",
1531                                          ret, on);
1532                                 return ret;
1533                         }
1534                 }
1535         }
1536
1537         return ret;
1538 }
1539
1540 static int
1541 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1542 {
1543         return hns3vf_handle_all_vlan_table(hns, 0);
1544 }
1545
1546 static int
1547 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1548 {
1549         struct hns3_hw *hw = &hns->hw;
1550         struct rte_eth_conf *dev_conf;
1551         bool en;
1552         int ret;
1553
1554         dev_conf = &hw->data->dev_conf;
1555         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1556                                                                    : false;
1557         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1558         if (ret)
1559                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1560                          ret);
1561         return ret;
1562 }
1563
1564 static int
1565 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1566 {
1567         struct hns3_adapter *hns = dev->data->dev_private;
1568         struct rte_eth_dev_data *data = dev->data;
1569         struct hns3_hw *hw = &hns->hw;
1570         int ret;
1571
1572         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1573             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1574             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1575                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1576                               "or hw_vlan_insert_pvid is not support!");
1577         }
1578
1579         /* Apply vlan offload setting */
1580         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1581         if (ret)
1582                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1583
1584         return ret;
1585 }
1586
1587 static int
1588 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1589 {
1590         uint8_t msg_data;
1591
1592         msg_data = alive ? 1 : 0;
1593         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1594                                  sizeof(msg_data), false, NULL, 0);
1595 }
1596
1597 static void
1598 hns3vf_keep_alive_handler(void *param)
1599 {
1600         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1601         struct hns3_adapter *hns = eth_dev->data->dev_private;
1602         struct hns3_hw *hw = &hns->hw;
1603         uint8_t respmsg;
1604         int ret;
1605
1606         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1607                                 false, &respmsg, sizeof(uint8_t));
1608         if (ret)
1609                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1610                          ret);
1611
1612         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1613                           eth_dev);
1614 }
1615
1616 static void
1617 hns3vf_service_handler(void *param)
1618 {
1619         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1620         struct hns3_adapter *hns = eth_dev->data->dev_private;
1621         struct hns3_hw *hw = &hns->hw;
1622
1623         /*
1624          * The query link status and reset processing are executed in the
1625          * interrupt thread.When the IMP reset occurs, IMP will not respond,
1626          * and the query operation will time out after 30ms. In the case of
1627          * multiple PF/VFs, each query failure timeout causes the IMP reset
1628          * interrupt to fail to respond within 100ms.
1629          * Before querying the link status, check whether there is a reset
1630          * pending, and if so, abandon the query.
1631          */
1632         if (!hns3vf_is_reset_pending(hns))
1633                 hns3vf_request_link_info(hw);
1634         else
1635                 hns3_warn(hw, "Cancel the query when reset is pending");
1636
1637         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1638                           eth_dev);
1639 }
1640
1641 static int
1642 hns3_query_vf_resource(struct hns3_hw *hw)
1643 {
1644         struct hns3_vf_res_cmd *req;
1645         struct hns3_cmd_desc desc;
1646         uint16_t num_msi;
1647         int ret;
1648
1649         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1650         ret = hns3_cmd_send(hw, &desc, 1);
1651         if (ret) {
1652                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1653                 return ret;
1654         }
1655
1656         req = (struct hns3_vf_res_cmd *)desc.data;
1657         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1658                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1659         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1660                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1661                          num_msi, HNS3_MIN_VECTOR_NUM);
1662                 return -EINVAL;
1663         }
1664
1665         hw->num_msi = num_msi;
1666
1667         return 0;
1668 }
1669
1670 static int
1671 hns3vf_init_hardware(struct hns3_adapter *hns)
1672 {
1673         struct hns3_hw *hw = &hns->hw;
1674         uint16_t mtu = hw->data->mtu;
1675         int ret;
1676
1677         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1678         if (ret)
1679                 return ret;
1680
1681         ret = hns3vf_config_mtu(hw, mtu);
1682         if (ret)
1683                 goto err_init_hardware;
1684
1685         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1686         if (ret) {
1687                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1688                 goto err_init_hardware;
1689         }
1690
1691         ret = hns3_config_gro(hw, false);
1692         if (ret) {
1693                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1694                 goto err_init_hardware;
1695         }
1696
1697         /*
1698          * In the initialization clearing the all hardware mapping relationship
1699          * configurations between queues and interrupt vectors is needed, so
1700          * some error caused by the residual configurations, such as the
1701          * unexpected interrupt, can be avoid.
1702          */
1703         ret = hns3vf_init_ring_with_vector(hw);
1704         if (ret) {
1705                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1706                 goto err_init_hardware;
1707         }
1708
1709         ret = hns3vf_set_alive(hw, true);
1710         if (ret) {
1711                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1712                 goto err_init_hardware;
1713         }
1714
1715         hns3vf_request_link_info(hw);
1716         return 0;
1717
1718 err_init_hardware:
1719         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1720         return ret;
1721 }
1722
1723 static int
1724 hns3vf_clear_vport_list(struct hns3_hw *hw)
1725 {
1726         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1727                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1728                                  NULL, 0);
1729 }
1730
1731 static int
1732 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1733 {
1734         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1735         struct hns3_adapter *hns = eth_dev->data->dev_private;
1736         struct hns3_hw *hw = &hns->hw;
1737         int ret;
1738
1739         PMD_INIT_FUNC_TRACE();
1740
1741         /* Get hardware io base address from pcie BAR2 IO space */
1742         hw->io_base = pci_dev->mem_resource[2].addr;
1743
1744         /* Firmware command queue initialize */
1745         ret = hns3_cmd_init_queue(hw);
1746         if (ret) {
1747                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1748                 goto err_cmd_init_queue;
1749         }
1750
1751         /* Firmware command initialize */
1752         ret = hns3_cmd_init(hw);
1753         if (ret) {
1754                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1755                 goto err_cmd_init;
1756         }
1757
1758         /* Get VF resource */
1759         ret = hns3_query_vf_resource(hw);
1760         if (ret)
1761                 goto err_cmd_init;
1762
1763         rte_spinlock_init(&hw->mbx_resp.lock);
1764
1765         hns3vf_clear_event_cause(hw, 0);
1766
1767         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1768                                          hns3vf_interrupt_handler, eth_dev);
1769         if (ret) {
1770                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1771                 goto err_intr_callback_register;
1772         }
1773
1774         /* Enable interrupt */
1775         rte_intr_enable(&pci_dev->intr_handle);
1776         hns3vf_enable_irq0(hw);
1777
1778         /* Get configuration from PF */
1779         ret = hns3vf_get_configuration(hw);
1780         if (ret) {
1781                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1782                 goto err_get_config;
1783         }
1784
1785         ret = hns3vf_clear_vport_list(hw);
1786         if (ret) {
1787                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1788                 goto err_get_config;
1789         }
1790
1791         ret = hns3vf_init_hardware(hns);
1792         if (ret)
1793                 goto err_get_config;
1794
1795         hns3_set_default_rss_args(hw);
1796
1797         return 0;
1798
1799 err_get_config:
1800         hns3vf_disable_irq0(hw);
1801         rte_intr_disable(&pci_dev->intr_handle);
1802         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1803                              eth_dev);
1804 err_intr_callback_register:
1805 err_cmd_init:
1806         hns3_cmd_uninit(hw);
1807         hns3_cmd_destroy_queue(hw);
1808 err_cmd_init_queue:
1809         hw->io_base = NULL;
1810
1811         return ret;
1812 }
1813
1814 static void
1815 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1816 {
1817         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1818         struct hns3_adapter *hns = eth_dev->data->dev_private;
1819         struct hns3_hw *hw = &hns->hw;
1820
1821         PMD_INIT_FUNC_TRACE();
1822
1823         hns3_rss_uninit(hns);
1824         (void)hns3_config_gro(hw, false);
1825         (void)hns3vf_set_alive(hw, false);
1826         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1827         hns3vf_disable_irq0(hw);
1828         rte_intr_disable(&pci_dev->intr_handle);
1829         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1830                              eth_dev);
1831         hns3_cmd_uninit(hw);
1832         hns3_cmd_destroy_queue(hw);
1833         hw->io_base = NULL;
1834 }
1835
1836 static int
1837 hns3vf_do_stop(struct hns3_adapter *hns)
1838 {
1839         struct hns3_hw *hw = &hns->hw;
1840         bool reset_queue;
1841
1842         hw->mac.link_status = ETH_LINK_DOWN;
1843
1844         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1845                 hns3vf_configure_mac_addr(hns, true);
1846                 reset_queue = true;
1847         } else
1848                 reset_queue = false;
1849         return hns3_stop_queues(hns, reset_queue);
1850 }
1851
1852 static void
1853 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1854 {
1855         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1856         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1857         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1858         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1859         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1860         uint16_t q_id;
1861
1862         if (dev->data->dev_conf.intr_conf.rxq == 0)
1863                 return;
1864
1865         /* unmap the ring with vector */
1866         if (rte_intr_allow_others(intr_handle)) {
1867                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1868                 base = RTE_INTR_VEC_RXTX_OFFSET;
1869         }
1870         if (rte_intr_dp_is_en(intr_handle)) {
1871                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1872                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1873                                                            HNS3_RING_TYPE_RX,
1874                                                            q_id);
1875                         if (vec < base + intr_handle->nb_efd - 1)
1876                                 vec++;
1877                 }
1878         }
1879         /* Clean datapath event and queue/vec mapping */
1880         rte_intr_efd_disable(intr_handle);
1881         if (intr_handle->intr_vec) {
1882                 rte_free(intr_handle->intr_vec);
1883                 intr_handle->intr_vec = NULL;
1884         }
1885 }
1886
1887 static void
1888 hns3vf_dev_stop(struct rte_eth_dev *dev)
1889 {
1890         struct hns3_adapter *hns = dev->data->dev_private;
1891         struct hns3_hw *hw = &hns->hw;
1892
1893         PMD_INIT_FUNC_TRACE();
1894
1895         hw->adapter_state = HNS3_NIC_STOPPING;
1896         hns3_set_rxtx_function(dev);
1897         rte_wmb();
1898         /* Disable datapath on secondary process. */
1899         hns3_mp_req_stop_rxtx(dev);
1900         /* Prevent crashes when queues are still in use. */
1901         rte_delay_ms(hw->tqps_num);
1902
1903         rte_spinlock_lock(&hw->lock);
1904         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1905                 hns3vf_do_stop(hns);
1906                 hns3vf_unmap_rx_interrupt(dev);
1907                 hns3_dev_release_mbufs(hns);
1908                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1909         }
1910         hns3_rx_scattered_reset(dev);
1911         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1912         rte_spinlock_unlock(&hw->lock);
1913 }
1914
1915 static void
1916 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1917 {
1918         struct hns3_adapter *hns = eth_dev->data->dev_private;
1919         struct hns3_hw *hw = &hns->hw;
1920
1921         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1922                 return;
1923
1924         if (hw->adapter_state == HNS3_NIC_STARTED)
1925                 hns3vf_dev_stop(eth_dev);
1926
1927         hw->adapter_state = HNS3_NIC_CLOSING;
1928         hns3_reset_abort(hns);
1929         hw->adapter_state = HNS3_NIC_CLOSED;
1930         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1931         hns3vf_configure_all_mc_mac_addr(hns, true);
1932         hns3vf_remove_all_vlan_table(hns);
1933         hns3vf_uninit_vf(eth_dev);
1934         hns3_free_all_queues(eth_dev);
1935         rte_free(hw->reset.wait_data);
1936         rte_free(eth_dev->process_private);
1937         eth_dev->process_private = NULL;
1938         hns3_mp_uninit_primary();
1939         hns3_warn(hw, "Close port %d finished", hw->data->port_id);
1940 }
1941
1942 static int
1943 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
1944                       size_t fw_size)
1945 {
1946         struct hns3_adapter *hns = eth_dev->data->dev_private;
1947         struct hns3_hw *hw = &hns->hw;
1948         uint32_t version = hw->fw_version;
1949         int ret;
1950
1951         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
1952                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
1953                                       HNS3_FW_VERSION_BYTE3_S),
1954                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
1955                                       HNS3_FW_VERSION_BYTE2_S),
1956                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
1957                                       HNS3_FW_VERSION_BYTE1_S),
1958                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
1959                                       HNS3_FW_VERSION_BYTE0_S));
1960         ret += 1; /* add the size of '\0' */
1961         if (fw_size < (uint32_t)ret)
1962                 return ret;
1963         else
1964                 return 0;
1965 }
1966
1967 static int
1968 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1969                        __rte_unused int wait_to_complete)
1970 {
1971         struct hns3_adapter *hns = eth_dev->data->dev_private;
1972         struct hns3_hw *hw = &hns->hw;
1973         struct hns3_mac *mac = &hw->mac;
1974         struct rte_eth_link new_link;
1975
1976         memset(&new_link, 0, sizeof(new_link));
1977         switch (mac->link_speed) {
1978         case ETH_SPEED_NUM_10M:
1979         case ETH_SPEED_NUM_100M:
1980         case ETH_SPEED_NUM_1G:
1981         case ETH_SPEED_NUM_10G:
1982         case ETH_SPEED_NUM_25G:
1983         case ETH_SPEED_NUM_40G:
1984         case ETH_SPEED_NUM_50G:
1985         case ETH_SPEED_NUM_100G:
1986         case ETH_SPEED_NUM_200G:
1987                 new_link.link_speed = mac->link_speed;
1988                 break;
1989         default:
1990                 new_link.link_speed = ETH_SPEED_NUM_100M;
1991                 break;
1992         }
1993
1994         new_link.link_duplex = mac->link_duplex;
1995         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
1996         new_link.link_autoneg =
1997             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
1998
1999         return rte_eth_linkstatus_set(eth_dev, &new_link);
2000 }
2001
2002 static int
2003 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2004 {
2005         struct hns3_hw *hw = &hns->hw;
2006         int ret;
2007
2008         ret = hns3vf_set_tc_info(hns);
2009         if (ret)
2010                 return ret;
2011
2012         ret = hns3_start_queues(hns, reset_queue);
2013         if (ret)
2014                 hns3_err(hw, "Failed to start queues: %d", ret);
2015
2016         return ret;
2017 }
2018
2019 static int
2020 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2021 {
2022         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2023         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2024         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2025         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2026         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2027         uint32_t intr_vector;
2028         uint16_t q_id;
2029         int ret;
2030
2031         if (dev->data->dev_conf.intr_conf.rxq == 0)
2032                 return 0;
2033
2034         /* disable uio/vfio intr/eventfd mapping */
2035         rte_intr_disable(intr_handle);
2036
2037         /* check and configure queue intr-vector mapping */
2038         if (rte_intr_cap_multiple(intr_handle) ||
2039             !RTE_ETH_DEV_SRIOV(dev).active) {
2040                 intr_vector = hw->used_rx_queues;
2041                 /* It creates event fd for each intr vector when MSIX is used */
2042                 if (rte_intr_efd_enable(intr_handle, intr_vector))
2043                         return -EINVAL;
2044         }
2045         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
2046                 intr_handle->intr_vec =
2047                         rte_zmalloc("intr_vec",
2048                                     hw->used_rx_queues * sizeof(int), 0);
2049                 if (intr_handle->intr_vec == NULL) {
2050                         hns3_err(hw, "Failed to allocate %d rx_queues"
2051                                      " intr_vec", hw->used_rx_queues);
2052                         ret = -ENOMEM;
2053                         goto vf_alloc_intr_vec_error;
2054                 }
2055         }
2056
2057         if (rte_intr_allow_others(intr_handle)) {
2058                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2059                 base = RTE_INTR_VEC_RXTX_OFFSET;
2060         }
2061         if (rte_intr_dp_is_en(intr_handle)) {
2062                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2063                         ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2064                                                            HNS3_RING_TYPE_RX,
2065                                                            q_id);
2066                         if (ret)
2067                                 goto vf_bind_vector_error;
2068                         intr_handle->intr_vec[q_id] = vec;
2069                         if (vec < base + intr_handle->nb_efd - 1)
2070                                 vec++;
2071                 }
2072         }
2073         rte_intr_enable(intr_handle);
2074         return 0;
2075
2076 vf_bind_vector_error:
2077         rte_intr_efd_disable(intr_handle);
2078         if (intr_handle->intr_vec) {
2079                 free(intr_handle->intr_vec);
2080                 intr_handle->intr_vec = NULL;
2081         }
2082         return ret;
2083 vf_alloc_intr_vec_error:
2084         rte_intr_efd_disable(intr_handle);
2085         return ret;
2086 }
2087
2088 static int
2089 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2090 {
2091         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2092         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2093         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2094         uint16_t q_id;
2095         int ret;
2096
2097         if (dev->data->dev_conf.intr_conf.rxq == 0)
2098                 return 0;
2099
2100         if (rte_intr_dp_is_en(intr_handle)) {
2101                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2102                         ret = hns3vf_bind_ring_with_vector(hw,
2103                                         intr_handle->intr_vec[q_id], true,
2104                                         HNS3_RING_TYPE_RX, q_id);
2105                         if (ret)
2106                                 return ret;
2107                 }
2108         }
2109
2110         return 0;
2111 }
2112
2113 static void
2114 hns3vf_restore_filter(struct rte_eth_dev *dev)
2115 {
2116         hns3_restore_rss_filter(dev);
2117 }
2118
2119 static int
2120 hns3vf_dev_start(struct rte_eth_dev *dev)
2121 {
2122         struct hns3_adapter *hns = dev->data->dev_private;
2123         struct hns3_hw *hw = &hns->hw;
2124         int ret;
2125
2126         PMD_INIT_FUNC_TRACE();
2127         if (rte_atomic16_read(&hw->reset.resetting))
2128                 return -EBUSY;
2129
2130         rte_spinlock_lock(&hw->lock);
2131         hw->adapter_state = HNS3_NIC_STARTING;
2132         ret = hns3vf_do_start(hns, true);
2133         if (ret) {
2134                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2135                 rte_spinlock_unlock(&hw->lock);
2136                 return ret;
2137         }
2138         ret = hns3vf_map_rx_interrupt(dev);
2139         if (ret) {
2140                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2141                 rte_spinlock_unlock(&hw->lock);
2142                 return ret;
2143         }
2144         hw->adapter_state = HNS3_NIC_STARTED;
2145         rte_spinlock_unlock(&hw->lock);
2146
2147         hns3_rx_scattered_calc(dev);
2148         hns3_set_rxtx_function(dev);
2149         hns3_mp_req_start_rxtx(dev);
2150         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
2151
2152         hns3vf_restore_filter(dev);
2153
2154         /* Enable interrupt of all rx queues before enabling queues */
2155         hns3_dev_all_rx_queue_intr_enable(hw, true);
2156         /*
2157          * When finished the initialization, enable queues to receive/transmit
2158          * packets.
2159          */
2160         hns3_enable_all_queues(hw, true);
2161
2162         return ret;
2163 }
2164
2165 static bool
2166 is_vf_reset_done(struct hns3_hw *hw)
2167 {
2168 #define HNS3_FUN_RST_ING_BITS \
2169         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2170          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2171          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2172          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2173
2174         uint32_t val;
2175
2176         if (hw->reset.level == HNS3_VF_RESET) {
2177                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2178                 if (val & HNS3_VF_RST_ING_BIT)
2179                         return false;
2180         } else {
2181                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2182                 if (val & HNS3_FUN_RST_ING_BITS)
2183                         return false;
2184         }
2185         return true;
2186 }
2187
2188 bool
2189 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2190 {
2191         struct hns3_hw *hw = &hns->hw;
2192         enum hns3_reset_level reset;
2193
2194         /*
2195          * According to the protocol of PCIe, FLR to a PF device resets the PF
2196          * state as well as the SR-IOV extended capability including VF Enable
2197          * which means that VFs no longer exist.
2198          *
2199          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2200          * is in FLR stage, the register state of VF device is not reliable,
2201          * so register states detection can not be carried out. In this case,
2202          * we just ignore the register states and return false to indicate that
2203          * there are no other reset states that need to be processed by driver.
2204          */
2205         if (hw->reset.level == HNS3_VF_FULL_RESET)
2206                 return false;
2207
2208         /* Check the registers to confirm whether there is reset pending */
2209         hns3vf_check_event_cause(hns, NULL);
2210         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2211         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2212                 hns3_warn(hw, "High level reset %d is pending", reset);
2213                 return true;
2214         }
2215         return false;
2216 }
2217
2218 static int
2219 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2220 {
2221         struct hns3_hw *hw = &hns->hw;
2222         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2223         struct timeval tv;
2224
2225         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2226                 /*
2227                  * After vf reset is ready, the PF may not have completed
2228                  * the reset processing. The vf sending mbox to PF may fail
2229                  * during the pf reset, so it is better to add extra delay.
2230                  */
2231                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2232                     hw->reset.level == HNS3_FLR_RESET)
2233                         return 0;
2234                 /* Reset retry process, no need to add extra delay. */
2235                 if (hw->reset.attempts)
2236                         return 0;
2237                 if (wait_data->check_completion == NULL)
2238                         return 0;
2239
2240                 wait_data->check_completion = NULL;
2241                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2242                 wait_data->count = 1;
2243                 wait_data->result = HNS3_WAIT_REQUEST;
2244                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2245                                   wait_data);
2246                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2247                 return -EAGAIN;
2248         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2249                 gettimeofday(&tv, NULL);
2250                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2251                           tv.tv_sec, tv.tv_usec);
2252                 return -ETIME;
2253         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2254                 return -EAGAIN;
2255
2256         wait_data->hns = hns;
2257         wait_data->check_completion = is_vf_reset_done;
2258         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2259                                       HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2260         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2261         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2262         wait_data->result = HNS3_WAIT_REQUEST;
2263         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2264         return -EAGAIN;
2265 }
2266
2267 static int
2268 hns3vf_prepare_reset(struct hns3_adapter *hns)
2269 {
2270         struct hns3_hw *hw = &hns->hw;
2271         int ret = 0;
2272
2273         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2274                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2275                                         0, true, NULL, 0);
2276         }
2277         rte_atomic16_set(&hw->reset.disable_cmd, 1);
2278
2279         return ret;
2280 }
2281
2282 static int
2283 hns3vf_stop_service(struct hns3_adapter *hns)
2284 {
2285         struct hns3_hw *hw = &hns->hw;
2286         struct rte_eth_dev *eth_dev;
2287
2288         eth_dev = &rte_eth_devices[hw->data->port_id];
2289         if (hw->adapter_state == HNS3_NIC_STARTED)
2290                 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2291         hw->mac.link_status = ETH_LINK_DOWN;
2292
2293         hns3_set_rxtx_function(eth_dev);
2294         rte_wmb();
2295         /* Disable datapath on secondary process. */
2296         hns3_mp_req_stop_rxtx(eth_dev);
2297         rte_delay_ms(hw->tqps_num);
2298
2299         rte_spinlock_lock(&hw->lock);
2300         if (hw->adapter_state == HNS3_NIC_STARTED ||
2301             hw->adapter_state == HNS3_NIC_STOPPING) {
2302                 hns3vf_do_stop(hns);
2303                 hw->reset.mbuf_deferred_free = true;
2304         } else
2305                 hw->reset.mbuf_deferred_free = false;
2306
2307         /*
2308          * It is cumbersome for hardware to pick-and-choose entries for deletion
2309          * from table space. Hence, for function reset software intervention is
2310          * required to delete the entries.
2311          */
2312         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2313                 hns3vf_configure_all_mc_mac_addr(hns, true);
2314         rte_spinlock_unlock(&hw->lock);
2315
2316         return 0;
2317 }
2318
2319 static int
2320 hns3vf_start_service(struct hns3_adapter *hns)
2321 {
2322         struct hns3_hw *hw = &hns->hw;
2323         struct rte_eth_dev *eth_dev;
2324
2325         eth_dev = &rte_eth_devices[hw->data->port_id];
2326         hns3_set_rxtx_function(eth_dev);
2327         hns3_mp_req_start_rxtx(eth_dev);
2328         if (hw->adapter_state == HNS3_NIC_STARTED) {
2329                 hns3vf_service_handler(eth_dev);
2330
2331                 /* Enable interrupt of all rx queues before enabling queues */
2332                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2333                 /*
2334                  * When finished the initialization, enable queues to receive
2335                  * and transmit packets.
2336                  */
2337                 hns3_enable_all_queues(hw, true);
2338         }
2339
2340         return 0;
2341 }
2342
2343 static int
2344 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2345 {
2346         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2347         struct rte_ether_addr *hw_mac;
2348         int ret;
2349
2350         /*
2351          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2352          * on the host by "ip link set ..." command. If the hns3 PF kernel
2353          * ethdev driver sets the MAC address for VF device after the
2354          * initialization of the related VF device, the PF driver will notify
2355          * VF driver to reset VF device to make the new MAC address effective
2356          * immediately. The hns3 VF PMD driver should check whether the MAC
2357          * address has been changed by the PF kernel ethdev driver, if changed
2358          * VF driver should configure hardware using the new MAC address in the
2359          * recovering hardware configuration stage of the reset process.
2360          */
2361         ret = hns3vf_get_host_mac_addr(hw);
2362         if (ret)
2363                 return ret;
2364
2365         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2366         ret = rte_is_zero_ether_addr(hw_mac);
2367         if (ret) {
2368                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2369         } else {
2370                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2371                 if (!ret) {
2372                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2373                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2374                                               &hw->data->mac_addrs[0]);
2375                         hns3_warn(hw, "Default MAC address has been changed to:"
2376                                   " %s by the host PF kernel ethdev driver",
2377                                   mac_str);
2378                 }
2379         }
2380
2381         return 0;
2382 }
2383
2384 static int
2385 hns3vf_restore_conf(struct hns3_adapter *hns)
2386 {
2387         struct hns3_hw *hw = &hns->hw;
2388         int ret;
2389
2390         ret = hns3vf_check_default_mac_change(hw);
2391         if (ret)
2392                 return ret;
2393
2394         ret = hns3vf_configure_mac_addr(hns, false);
2395         if (ret)
2396                 return ret;
2397
2398         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2399         if (ret)
2400                 goto err_mc_mac;
2401
2402         ret = hns3vf_restore_promisc(hns);
2403         if (ret)
2404                 goto err_vlan_table;
2405
2406         ret = hns3vf_restore_vlan_conf(hns);
2407         if (ret)
2408                 goto err_vlan_table;
2409
2410         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2411         if (ret)
2412                 goto err_vlan_table;
2413
2414         ret = hns3vf_restore_rx_interrupt(hw);
2415         if (ret)
2416                 goto err_vlan_table;
2417
2418         ret = hns3_restore_gro_conf(hw);
2419         if (ret)
2420                 goto err_vlan_table;
2421
2422         if (hw->adapter_state == HNS3_NIC_STARTED) {
2423                 ret = hns3vf_do_start(hns, false);
2424                 if (ret)
2425                         goto err_vlan_table;
2426                 hns3_info(hw, "hns3vf dev restart successful!");
2427         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2428                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2429         return 0;
2430
2431 err_vlan_table:
2432         hns3vf_configure_all_mc_mac_addr(hns, true);
2433 err_mc_mac:
2434         hns3vf_configure_mac_addr(hns, true);
2435         return ret;
2436 }
2437
2438 static enum hns3_reset_level
2439 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2440 {
2441         enum hns3_reset_level reset_level;
2442
2443         /* return the highest priority reset level amongst all */
2444         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2445                 reset_level = HNS3_VF_RESET;
2446         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2447                 reset_level = HNS3_VF_FULL_RESET;
2448         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2449                 reset_level = HNS3_VF_PF_FUNC_RESET;
2450         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2451                 reset_level = HNS3_VF_FUNC_RESET;
2452         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2453                 reset_level = HNS3_FLR_RESET;
2454         else
2455                 reset_level = HNS3_NONE_RESET;
2456
2457         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2458                 return HNS3_NONE_RESET;
2459
2460         return reset_level;
2461 }
2462
2463 static void
2464 hns3vf_reset_service(void *param)
2465 {
2466         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2467         struct hns3_hw *hw = &hns->hw;
2468         enum hns3_reset_level reset_level;
2469         struct timeval tv_delta;
2470         struct timeval tv_start;
2471         struct timeval tv;
2472         uint64_t msec;
2473
2474         /*
2475          * The interrupt is not triggered within the delay time.
2476          * The interrupt may have been lost. It is necessary to handle
2477          * the interrupt to recover from the error.
2478          */
2479         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2480                 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2481                 hns3_err(hw, "Handling interrupts in delayed tasks");
2482                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2483                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2484                 if (reset_level == HNS3_NONE_RESET) {
2485                         hns3_err(hw, "No reset level is set, try global reset");
2486                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2487                 }
2488         }
2489         rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2490
2491         /*
2492          * Hardware reset has been notified, we now have to poll & check if
2493          * hardware has actually completed the reset sequence.
2494          */
2495         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2496         if (reset_level != HNS3_NONE_RESET) {
2497                 gettimeofday(&tv_start, NULL);
2498                 hns3_reset_process(hns, reset_level);
2499                 gettimeofday(&tv, NULL);
2500                 timersub(&tv, &tv_start, &tv_delta);
2501                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2502                        tv_delta.tv_usec / USEC_PER_MSEC;
2503                 if (msec > HNS3_RESET_PROCESS_MS)
2504                         hns3_err(hw, "%d handle long time delta %" PRIx64
2505                                  " ms time=%ld.%.6ld",
2506                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2507         }
2508 }
2509
2510 static int
2511 hns3vf_reinit_dev(struct hns3_adapter *hns)
2512 {
2513         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2514         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2515         struct hns3_hw *hw = &hns->hw;
2516         int ret;
2517
2518         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2519                 rte_intr_disable(&pci_dev->intr_handle);
2520                 hns3vf_set_bus_master(pci_dev, true);
2521         }
2522
2523         /* Firmware command initialize */
2524         ret = hns3_cmd_init(hw);
2525         if (ret) {
2526                 hns3_err(hw, "Failed to init cmd: %d", ret);
2527                 return ret;
2528         }
2529
2530         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2531                 /*
2532                  * UIO enables msix by writing the pcie configuration space
2533                  * vfio_pci enables msix in rte_intr_enable.
2534                  */
2535                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2536                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2537                         if (hns3vf_enable_msix(pci_dev, true))
2538                                 hns3_err(hw, "Failed to enable msix");
2539                 }
2540
2541                 rte_intr_enable(&pci_dev->intr_handle);
2542         }
2543
2544         ret = hns3_reset_all_queues(hns);
2545         if (ret) {
2546                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2547                 return ret;
2548         }
2549
2550         ret = hns3vf_init_hardware(hns);
2551         if (ret) {
2552                 hns3_err(hw, "Failed to init hardware: %d", ret);
2553                 return ret;
2554         }
2555
2556         return 0;
2557 }
2558
2559 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2560         .dev_configure      = hns3vf_dev_configure,
2561         .dev_start          = hns3vf_dev_start,
2562         .dev_stop           = hns3vf_dev_stop,
2563         .dev_close          = hns3vf_dev_close,
2564         .mtu_set            = hns3vf_dev_mtu_set,
2565         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2566         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2567         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2568         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2569         .stats_get          = hns3_stats_get,
2570         .stats_reset        = hns3_stats_reset,
2571         .xstats_get         = hns3_dev_xstats_get,
2572         .xstats_get_names   = hns3_dev_xstats_get_names,
2573         .xstats_reset       = hns3_dev_xstats_reset,
2574         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2575         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2576         .dev_infos_get      = hns3vf_dev_infos_get,
2577         .fw_version_get     = hns3vf_fw_version_get,
2578         .rx_queue_setup     = hns3_rx_queue_setup,
2579         .tx_queue_setup     = hns3_tx_queue_setup,
2580         .rx_queue_release   = hns3_dev_rx_queue_release,
2581         .tx_queue_release   = hns3_dev_tx_queue_release,
2582         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2583         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2584         .rxq_info_get       = hns3_rxq_info_get,
2585         .txq_info_get       = hns3_txq_info_get,
2586         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2587         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2588         .mac_addr_add       = hns3vf_add_mac_addr,
2589         .mac_addr_remove    = hns3vf_remove_mac_addr,
2590         .mac_addr_set       = hns3vf_set_default_mac_addr,
2591         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2592         .link_update        = hns3vf_dev_link_update,
2593         .rss_hash_update    = hns3_dev_rss_hash_update,
2594         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2595         .reta_update        = hns3_dev_rss_reta_update,
2596         .reta_query         = hns3_dev_rss_reta_query,
2597         .filter_ctrl        = hns3_dev_filter_ctrl,
2598         .vlan_filter_set    = hns3vf_vlan_filter_set,
2599         .vlan_offload_set   = hns3vf_vlan_offload_set,
2600         .get_reg            = hns3_get_regs,
2601         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2602 };
2603
2604 static const struct hns3_reset_ops hns3vf_reset_ops = {
2605         .reset_service       = hns3vf_reset_service,
2606         .stop_service        = hns3vf_stop_service,
2607         .prepare_reset       = hns3vf_prepare_reset,
2608         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2609         .reinit_dev          = hns3vf_reinit_dev,
2610         .restore_conf        = hns3vf_restore_conf,
2611         .start_service       = hns3vf_start_service,
2612 };
2613
2614 static int
2615 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2616 {
2617         struct hns3_adapter *hns = eth_dev->data->dev_private;
2618         struct hns3_hw *hw = &hns->hw;
2619         int ret;
2620
2621         PMD_INIT_FUNC_TRACE();
2622
2623         eth_dev->process_private = (struct hns3_process_private *)
2624             rte_zmalloc_socket("hns3_filter_list",
2625                                sizeof(struct hns3_process_private),
2626                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2627         if (eth_dev->process_private == NULL) {
2628                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2629                 return -ENOMEM;
2630         }
2631
2632         /* initialize flow filter lists */
2633         hns3_filterlist_init(eth_dev);
2634
2635         hns3_set_rxtx_function(eth_dev);
2636         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2637         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2638                 ret = hns3_mp_init_secondary();
2639                 if (ret) {
2640                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2641                                           "process, ret = %d", ret);
2642                         goto err_mp_init_secondary;
2643                 }
2644
2645                 hw->secondary_cnt++;
2646                 return 0;
2647         }
2648
2649         ret = hns3_mp_init_primary();
2650         if (ret) {
2651                 PMD_INIT_LOG(ERR,
2652                              "Failed to init for primary process, ret = %d",
2653                              ret);
2654                 goto err_mp_init_primary;
2655         }
2656
2657         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2658         hns->is_vf = true;
2659         hw->data = eth_dev->data;
2660
2661         ret = hns3_reset_init(hw);
2662         if (ret)
2663                 goto err_init_reset;
2664         hw->reset.ops = &hns3vf_reset_ops;
2665
2666         ret = hns3vf_init_vf(eth_dev);
2667         if (ret) {
2668                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2669                 goto err_init_vf;
2670         }
2671
2672         /* Allocate memory for storing MAC addresses */
2673         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2674                                                sizeof(struct rte_ether_addr) *
2675                                                HNS3_VF_UC_MACADDR_NUM, 0);
2676         if (eth_dev->data->mac_addrs == NULL) {
2677                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2678                              "to store MAC addresses",
2679                              sizeof(struct rte_ether_addr) *
2680                              HNS3_VF_UC_MACADDR_NUM);
2681                 ret = -ENOMEM;
2682                 goto err_rte_zmalloc;
2683         }
2684
2685         /*
2686          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2687          * on the host by "ip link set ..." command. To avoid some incorrect
2688          * scenes, for example, hns3 VF PMD driver fails to receive and send
2689          * packets after user configure the MAC address by using the
2690          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2691          * address strategy as the hns3 kernel ethdev driver in the
2692          * initialization. If user configure a MAC address by the ip command
2693          * for VF device, then hns3 VF PMD driver will start with it, otherwise
2694          * start with a random MAC address in the initialization.
2695          */
2696         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2697                 rte_eth_random_addr(hw->mac.mac_addr);
2698         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2699                             &eth_dev->data->mac_addrs[0]);
2700
2701         hw->adapter_state = HNS3_NIC_INITIALIZED;
2702         /*
2703          * Pass the information to the rte_eth_dev_close() that it should also
2704          * release the private port resources.
2705          */
2706         eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2707
2708         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2709                 hns3_err(hw, "Reschedule reset service after dev_init");
2710                 hns3_schedule_reset(hns);
2711         } else {
2712                 /* IMP will wait ready flag before reset */
2713                 hns3_notify_reset_ready(hw, false);
2714         }
2715         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2716                           eth_dev);
2717         return 0;
2718
2719 err_rte_zmalloc:
2720         hns3vf_uninit_vf(eth_dev);
2721
2722 err_init_vf:
2723         rte_free(hw->reset.wait_data);
2724
2725 err_init_reset:
2726         hns3_mp_uninit_primary();
2727
2728 err_mp_init_primary:
2729 err_mp_init_secondary:
2730         eth_dev->dev_ops = NULL;
2731         eth_dev->rx_pkt_burst = NULL;
2732         eth_dev->tx_pkt_burst = NULL;
2733         eth_dev->tx_pkt_prepare = NULL;
2734         rte_free(eth_dev->process_private);
2735         eth_dev->process_private = NULL;
2736
2737         return ret;
2738 }
2739
2740 static int
2741 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2742 {
2743         struct hns3_adapter *hns = eth_dev->data->dev_private;
2744         struct hns3_hw *hw = &hns->hw;
2745
2746         PMD_INIT_FUNC_TRACE();
2747
2748         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2749                 return -EPERM;
2750
2751         eth_dev->dev_ops = NULL;
2752         eth_dev->rx_pkt_burst = NULL;
2753         eth_dev->tx_pkt_burst = NULL;
2754         eth_dev->tx_pkt_prepare = NULL;
2755
2756         if (hw->adapter_state < HNS3_NIC_CLOSING)
2757                 hns3vf_dev_close(eth_dev);
2758
2759         hw->adapter_state = HNS3_NIC_REMOVED;
2760         return 0;
2761 }
2762
2763 static int
2764 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2765                      struct rte_pci_device *pci_dev)
2766 {
2767         return rte_eth_dev_pci_generic_probe(pci_dev,
2768                                              sizeof(struct hns3_adapter),
2769                                              hns3vf_dev_init);
2770 }
2771
2772 static int
2773 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2774 {
2775         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2776 }
2777
2778 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2779         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2780         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2781         { .vendor_id = 0, /* sentinel */ },
2782 };
2783
2784 static struct rte_pci_driver rte_hns3vf_pmd = {
2785         .id_table = pci_id_hns3vf_map,
2786         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2787         .probe = eth_hns3vf_pci_probe,
2788         .remove = eth_hns3vf_pci_remove,
2789 };
2790
2791 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2792 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2793 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");