net/hns3: add Rx interrupts compatibility
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <errno.h>
6 #include <stdio.h>
7 #include <stdbool.h>
8 #include <string.h>
9 #include <inttypes.h>
10 #include <unistd.h>
11 #include <arpa/inet.h>
12 #include <linux/pci_regs.h>
13
14 #include <rte_alarm.h>
15 #include <rte_atomic.h>
16 #include <rte_bus_pci.h>
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_dev.h>
21 #include <rte_eal.h>
22 #include <rte_ether.h>
23 #include <rte_ethdev_driver.h>
24 #include <rte_ethdev_pci.h>
25 #include <rte_interrupts.h>
26 #include <rte_io.h>
27 #include <rte_log.h>
28 #include <rte_pci.h>
29 #include <rte_vfio.h>
30
31 #include "hns3_ethdev.h"
32 #include "hns3_logs.h"
33 #include "hns3_rxtx.h"
34 #include "hns3_regs.h"
35 #include "hns3_intr.h"
36 #include "hns3_dcb.h"
37 #include "hns3_mp.h"
38
39 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
40 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
41
42 #define HNS3VF_RESET_WAIT_MS    20
43 #define HNS3VF_RESET_WAIT_CNT   2000
44
45 /* Reset related Registers */
46 #define HNS3_GLOBAL_RESET_BIT           0
47 #define HNS3_CORE_RESET_BIT             1
48 #define HNS3_IMP_RESET_BIT              2
49 #define HNS3_FUN_RST_ING_B              0
50
51 enum hns3vf_evt_cause {
52         HNS3VF_VECTOR0_EVENT_RST,
53         HNS3VF_VECTOR0_EVENT_MBX,
54         HNS3VF_VECTOR0_EVENT_OTHER,
55 };
56
57 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
58                                                     uint64_t *levels);
59 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
60 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
61
62 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
63                                   struct rte_ether_addr *mac_addr);
64 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
65                                      struct rte_ether_addr *mac_addr);
66 /* set PCI bus mastering */
67 static void
68 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
69 {
70         uint16_t reg;
71
72         rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
73
74         if (op)
75                 /* set the master bit */
76                 reg |= PCI_COMMAND_MASTER;
77         else
78                 reg &= ~(PCI_COMMAND_MASTER);
79
80         rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
81 }
82
83 /**
84  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
85  * @cap: the capability
86  *
87  * Return the address of the given capability within the PCI capability list.
88  */
89 static int
90 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
91 {
92 #define MAX_PCIE_CAPABILITY 48
93         uint16_t status;
94         uint8_t pos;
95         uint8_t id;
96         int ttl;
97
98         rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
99         if (!(status & PCI_STATUS_CAP_LIST))
100                 return 0;
101
102         ttl = MAX_PCIE_CAPABILITY;
103         rte_pci_read_config(device, &pos, sizeof(pos), PCI_CAPABILITY_LIST);
104         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105                 rte_pci_read_config(device, &id, sizeof(id),
106                                     (pos + PCI_CAP_LIST_ID));
107
108                 if (id == 0xFF)
109                         break;
110
111                 if (id == cap)
112                         return (int)pos;
113
114                 rte_pci_read_config(device, &pos, sizeof(pos),
115                                     (pos + PCI_CAP_LIST_NEXT));
116         }
117         return 0;
118 }
119
120 static int
121 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
122 {
123         uint16_t control;
124         int pos;
125
126         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
127         if (pos) {
128                 rte_pci_read_config(device, &control, sizeof(control),
129                                     (pos + PCI_MSIX_FLAGS));
130                 if (op)
131                         control |= PCI_MSIX_FLAGS_ENABLE;
132                 else
133                         control &= ~PCI_MSIX_FLAGS_ENABLE;
134                 rte_pci_write_config(device, &control, sizeof(control),
135                                      (pos + PCI_MSIX_FLAGS));
136                 return 0;
137         }
138         return -ENXIO;
139 }
140
141 static int
142 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
143 {
144         /* mac address was checked by upper level interface */
145         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
146         int ret;
147
148         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
149                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
150                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
151         if (ret) {
152                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
153                                       mac_addr);
154                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
155                          mac_str, ret);
156         }
157         return ret;
158 }
159
160 static int
161 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
162 {
163         /* mac address was checked by upper level interface */
164         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
165         int ret;
166
167         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
168                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
169                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
170                                 false, NULL, 0);
171         if (ret) {
172                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
173                                       mac_addr);
174                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
175                          mac_str, ret);
176         }
177         return ret;
178 }
179
180 static int
181 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
182 {
183         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
184         struct rte_ether_addr *addr;
185         int ret;
186         int i;
187
188         for (i = 0; i < hw->mc_addrs_num; i++) {
189                 addr = &hw->mc_addrs[i];
190                 /* Check if there are duplicate addresses */
191                 if (rte_is_same_ether_addr(addr, mac_addr)) {
192                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
193                                               addr);
194                         hns3_err(hw, "failed to add mc mac addr, same addrs"
195                                  "(%s) is added by the set_mc_mac_addr_list "
196                                  "API", mac_str);
197                         return -EINVAL;
198                 }
199         }
200
201         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
202         if (ret) {
203                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
204                                       mac_addr);
205                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
206                          mac_str, ret);
207         }
208         return ret;
209 }
210
211 static int
212 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
213                     __rte_unused uint32_t idx,
214                     __rte_unused uint32_t pool)
215 {
216         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
217         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
218         int ret;
219
220         rte_spinlock_lock(&hw->lock);
221
222         /*
223          * In hns3 network engine adding UC and MC mac address with different
224          * commands with firmware. We need to determine whether the input
225          * address is a UC or a MC address to call different commands.
226          * By the way, it is recommended calling the API function named
227          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
228          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
229          * may affect the specifications of UC mac addresses.
230          */
231         if (rte_is_multicast_ether_addr(mac_addr))
232                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
233         else
234                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
235
236         rte_spinlock_unlock(&hw->lock);
237         if (ret) {
238                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
239                                       mac_addr);
240                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
241                          ret);
242         }
243
244         return ret;
245 }
246
247 static void
248 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
249 {
250         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
251         /* index will be checked by upper level rte interface */
252         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
253         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
254         int ret;
255
256         rte_spinlock_lock(&hw->lock);
257
258         if (rte_is_multicast_ether_addr(mac_addr))
259                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
260         else
261                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
262
263         rte_spinlock_unlock(&hw->lock);
264         if (ret) {
265                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
266                                       mac_addr);
267                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
268                          mac_str, ret);
269         }
270 }
271
272 static int
273 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
274                             struct rte_ether_addr *mac_addr)
275 {
276 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
277         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278         struct rte_ether_addr *old_addr;
279         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
280         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
281         int ret;
282
283         /*
284          * It has been guaranteed that input parameter named mac_addr is valid
285          * address in the rte layer of DPDK framework.
286          */
287         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
288         rte_spinlock_lock(&hw->lock);
289         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
290         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
291                RTE_ETHER_ADDR_LEN);
292
293         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
294                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
295                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
296         if (ret) {
297                 /*
298                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
299                  * driver. When user has configured a MAC address for VF device
300                  * by "ip link set ..." command based on the PF device, the hns3
301                  * PF kernel ethdev driver does not allow VF driver to request
302                  * reconfiguring a different default MAC address, and return
303                  * -EPREM to VF driver through mailbox.
304                  */
305                 if (ret == -EPERM) {
306                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
307                                               old_addr);
308                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
309                                   mac_str);
310                 } else {
311                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
312                                               mac_addr);
313                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
314                                  mac_str, ret);
315                 }
316         }
317
318         rte_ether_addr_copy(mac_addr,
319                             (struct rte_ether_addr *)hw->mac.mac_addr);
320         rte_spinlock_unlock(&hw->lock);
321
322         return ret;
323 }
324
325 static int
326 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
327 {
328         struct hns3_hw *hw = &hns->hw;
329         struct rte_ether_addr *addr;
330         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
331         int err = 0;
332         int ret;
333         int i;
334
335         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
336                 addr = &hw->data->mac_addrs[i];
337                 if (rte_is_zero_ether_addr(addr))
338                         continue;
339                 if (rte_is_multicast_ether_addr(addr))
340                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
341                               hns3vf_add_mc_mac_addr(hw, addr);
342                 else
343                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
344                               hns3vf_add_uc_mac_addr(hw, addr);
345
346                 if (ret) {
347                         err = ret;
348                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
349                                               addr);
350                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
351                                  "ret = %d.", del ? "remove" : "restore",
352                                  mac_str, i, ret);
353                 }
354         }
355         return err;
356 }
357
358 static int
359 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
360                        struct rte_ether_addr *mac_addr)
361 {
362         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
363         int ret;
364
365         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
366                                 HNS3_MBX_MAC_VLAN_MC_ADD,
367                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
368                                 NULL, 0);
369         if (ret) {
370                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
371                                       mac_addr);
372                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
373                          mac_str, ret);
374         }
375
376         return ret;
377 }
378
379 static int
380 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
381                           struct rte_ether_addr *mac_addr)
382 {
383         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
384         int ret;
385
386         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
388                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
389                                 NULL, 0);
390         if (ret) {
391                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
392                                       mac_addr);
393                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
394                          mac_str, ret);
395         }
396
397         return ret;
398 }
399
400 static int
401 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
402                              struct rte_ether_addr *mc_addr_set,
403                              uint32_t nb_mc_addr)
404 {
405         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
406         struct rte_ether_addr *addr;
407         uint32_t i;
408         uint32_t j;
409
410         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
411                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
412                          "invalid. valid range: 0~%d",
413                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
414                 return -EINVAL;
415         }
416
417         /* Check if input mac addresses are valid */
418         for (i = 0; i < nb_mc_addr; i++) {
419                 addr = &mc_addr_set[i];
420                 if (!rte_is_multicast_ether_addr(addr)) {
421                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
422                                               addr);
423                         hns3_err(hw,
424                                  "failed to set mc mac addr, addr(%s) invalid.",
425                                  mac_str);
426                         return -EINVAL;
427                 }
428
429                 /* Check if there are duplicate addresses */
430                 for (j = i + 1; j < nb_mc_addr; j++) {
431                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
432                                 rte_ether_format_addr(mac_str,
433                                                       RTE_ETHER_ADDR_FMT_SIZE,
434                                                       addr);
435                                 hns3_err(hw, "failed to set mc mac addr, "
436                                          "addrs invalid. two same addrs(%s).",
437                                          mac_str);
438                                 return -EINVAL;
439                         }
440                 }
441
442                 /*
443                  * Check if there are duplicate addresses between mac_addrs
444                  * and mc_addr_set
445                  */
446                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
447                         if (rte_is_same_ether_addr(addr,
448                                                    &hw->data->mac_addrs[j])) {
449                                 rte_ether_format_addr(mac_str,
450                                                       RTE_ETHER_ADDR_FMT_SIZE,
451                                                       addr);
452                                 hns3_err(hw, "failed to set mc mac addr, "
453                                          "addrs invalid. addrs(%s) has already "
454                                          "configured in mac_addr add API",
455                                          mac_str);
456                                 return -EINVAL;
457                         }
458                 }
459         }
460
461         return 0;
462 }
463
464 static int
465 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
466                             struct rte_ether_addr *mc_addr_set,
467                             uint32_t nb_mc_addr)
468 {
469         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
470         struct rte_ether_addr *addr;
471         int cur_addr_num;
472         int set_addr_num;
473         int num;
474         int ret;
475         int i;
476
477         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
478         if (ret)
479                 return ret;
480
481         rte_spinlock_lock(&hw->lock);
482         cur_addr_num = hw->mc_addrs_num;
483         for (i = 0; i < cur_addr_num; i++) {
484                 num = cur_addr_num - i - 1;
485                 addr = &hw->mc_addrs[num];
486                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
487                 if (ret) {
488                         rte_spinlock_unlock(&hw->lock);
489                         return ret;
490                 }
491
492                 hw->mc_addrs_num--;
493         }
494
495         set_addr_num = (int)nb_mc_addr;
496         for (i = 0; i < set_addr_num; i++) {
497                 addr = &mc_addr_set[i];
498                 ret = hns3vf_add_mc_mac_addr(hw, addr);
499                 if (ret) {
500                         rte_spinlock_unlock(&hw->lock);
501                         return ret;
502                 }
503
504                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
505                 hw->mc_addrs_num++;
506         }
507         rte_spinlock_unlock(&hw->lock);
508
509         return 0;
510 }
511
512 static int
513 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
514 {
515         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
516         struct hns3_hw *hw = &hns->hw;
517         struct rte_ether_addr *addr;
518         int err = 0;
519         int ret;
520         int i;
521
522         for (i = 0; i < hw->mc_addrs_num; i++) {
523                 addr = &hw->mc_addrs[i];
524                 if (!rte_is_multicast_ether_addr(addr))
525                         continue;
526                 if (del)
527                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
528                 else
529                         ret = hns3vf_add_mc_mac_addr(hw, addr);
530                 if (ret) {
531                         err = ret;
532                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
533                                               addr);
534                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
535                                  del ? "Remove" : "Restore", mac_str, ret);
536                 }
537         }
538         return err;
539 }
540
541 static int
542 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
543                         bool en_uc_pmc, bool en_mc_pmc)
544 {
545         struct hns3_mbx_vf_to_pf_cmd *req;
546         struct hns3_cmd_desc desc;
547         int ret;
548
549         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
550
551         /*
552          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
553          * so there are some features for promiscuous/allmulticast mode in hns3
554          * VF PMD driver as below:
555          * 1. The promiscuous/allmulticast mode can be configured successfully
556          *    only based on the trusted VF device. If based on the non trusted
557          *    VF device, configuring promiscuous/allmulticast mode will fail.
558          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
559          *    kernel ethdev driver on the host by the following command:
560          *      "ip link set <eth num> vf <vf id> turst on"
561          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
562          *    driver can receive the ingress and outgoing traffic. In the words,
563          *    all the ingress packets, all the packets sent from the PF and
564          *    other VFs on the same physical port.
565          * 3. Note: Because of the hardware constraints, By default vlan filter
566          *    is enabled and couldn't be turned off based on VF device, so vlan
567          *    filter is still effective even in promiscuous mode. If upper
568          *    applications don't call rte_eth_dev_vlan_filter API function to
569          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
570          *    the packets with vlan tag in promiscuoue mode.
571          */
572         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
573         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
574         req->msg[1] = en_bc_pmc ? 1 : 0;
575         req->msg[2] = en_uc_pmc ? 1 : 0;
576         req->msg[3] = en_mc_pmc ? 1 : 0;
577
578         ret = hns3_cmd_send(hw, &desc, 1);
579         if (ret)
580                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
581
582         return ret;
583 }
584
585 static int
586 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
587 {
588         struct hns3_adapter *hns = dev->data->dev_private;
589         struct hns3_hw *hw = &hns->hw;
590         int ret;
591
592         ret = hns3vf_set_promisc_mode(hw, true, true, true);
593         if (ret)
594                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
595                         ret);
596         return ret;
597 }
598
599 static int
600 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
601 {
602         bool allmulti = dev->data->all_multicast ? true : false;
603         struct hns3_adapter *hns = dev->data->dev_private;
604         struct hns3_hw *hw = &hns->hw;
605         int ret;
606
607         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
608         if (ret)
609                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
610                         ret);
611         return ret;
612 }
613
614 static int
615 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
616 {
617         struct hns3_adapter *hns = dev->data->dev_private;
618         struct hns3_hw *hw = &hns->hw;
619         int ret;
620
621         if (dev->data->promiscuous)
622                 return 0;
623
624         ret = hns3vf_set_promisc_mode(hw, true, false, true);
625         if (ret)
626                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
627                         ret);
628         return ret;
629 }
630
631 static int
632 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
633 {
634         struct hns3_adapter *hns = dev->data->dev_private;
635         struct hns3_hw *hw = &hns->hw;
636         int ret;
637
638         if (dev->data->promiscuous)
639                 return 0;
640
641         ret = hns3vf_set_promisc_mode(hw, true, false, false);
642         if (ret)
643                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
644                         ret);
645         return ret;
646 }
647
648 static int
649 hns3vf_restore_promisc(struct hns3_adapter *hns)
650 {
651         struct hns3_hw *hw = &hns->hw;
652         bool allmulti = hw->data->all_multicast ? true : false;
653
654         if (hw->data->promiscuous)
655                 return hns3vf_set_promisc_mode(hw, true, true, true);
656
657         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
658 }
659
660 static int
661 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
662                              bool mmap, enum hns3_ring_type queue_type,
663                              uint16_t queue_id)
664 {
665         struct hns3_vf_bind_vector_msg bind_msg;
666         const char *op_str;
667         uint16_t code;
668         int ret;
669
670         memset(&bind_msg, 0, sizeof(bind_msg));
671         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
672                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
673         bind_msg.vector_id = vector_id;
674
675         if (queue_type == HNS3_RING_TYPE_RX)
676                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
677         else
678                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
679
680         bind_msg.param[0].ring_type = queue_type;
681         bind_msg.ring_num = 1;
682         bind_msg.param[0].tqp_index = queue_id;
683         op_str = mmap ? "Map" : "Unmap";
684         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
685                                 sizeof(bind_msg), false, NULL, 0);
686         if (ret)
687                 hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
688                          op_str, queue_id, bind_msg.vector_id, ret);
689
690         return ret;
691 }
692
693 static int
694 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
695 {
696         uint16_t vec;
697         int ret;
698         int i;
699
700         /*
701          * In hns3 network engine, vector 0 is always the misc interrupt of this
702          * function, vector 1~N can be used respectively for the queues of the
703          * function. Tx and Rx queues with the same number share the interrupt
704          * vector. In the initialization clearing the all hardware mapping
705          * relationship configurations between queues and interrupt vectors is
706          * needed, so some error caused by the residual configurations, such as
707          * the unexpected Tx interrupt, can be avoid.
708          */
709         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
710         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
711                 vec = vec - 1; /* the last interrupt is reserved */
712         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
713         for (i = 0; i < hw->intr_tqps_num; i++) {
714                 /*
715                  * Set gap limiter/rate limiter/quanity limiter algorithm
716                  * configuration for interrupt coalesce of queue's interrupt.
717                  */
718                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
719                                        HNS3_TQP_INTR_GL_DEFAULT);
720                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
721                                        HNS3_TQP_INTR_GL_DEFAULT);
722                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
723                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
724
725                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
726                                                    HNS3_RING_TYPE_TX, i);
727                 if (ret) {
728                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
729                                           "vector: %d, ret=%d", i, vec, ret);
730                         return ret;
731                 }
732
733                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
734                                                    HNS3_RING_TYPE_RX, i);
735                 if (ret) {
736                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
737                                           "vector: %d, ret=%d", i, vec, ret);
738                         return ret;
739                 }
740         }
741
742         return 0;
743 }
744
745 static int
746 hns3vf_dev_configure(struct rte_eth_dev *dev)
747 {
748         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
749         struct hns3_rss_conf *rss_cfg = &hw->rss_info;
750         struct rte_eth_conf *conf = &dev->data->dev_conf;
751         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
752         uint16_t nb_rx_q = dev->data->nb_rx_queues;
753         uint16_t nb_tx_q = dev->data->nb_tx_queues;
754         struct rte_eth_rss_conf rss_conf;
755         uint16_t mtu;
756         bool gro_en;
757         int ret;
758
759         /*
760          * Hardware does not support individually enable/disable/reset the Tx or
761          * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
762          * and Rx queues at the same time. When the numbers of Tx queues
763          * allocated by upper applications are not equal to the numbers of Rx
764          * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
765          * of Tx/Rx queues. otherwise, network engine can not work as usual. But
766          * these fake queues are imperceptible, and can not be used by upper
767          * applications.
768          */
769         ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
770         if (ret) {
771                 hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
772                 return ret;
773         }
774
775         hw->adapter_state = HNS3_NIC_CONFIGURING;
776         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
777                 hns3_err(hw, "setting link speed/duplex not supported");
778                 ret = -EINVAL;
779                 goto cfg_err;
780         }
781
782         /* When RSS is not configured, redirect the packet queue 0 */
783         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
784                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
785                 rss_conf = conf->rx_adv_conf.rss_conf;
786                 if (rss_conf.rss_key == NULL) {
787                         rss_conf.rss_key = rss_cfg->key;
788                         rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
789                 }
790
791                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
792                 if (ret)
793                         goto cfg_err;
794         }
795
796         /*
797          * If jumbo frames are enabled, MTU needs to be refreshed
798          * according to the maximum RX packet length.
799          */
800         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
801                 /*
802                  * Security of max_rx_pkt_len is guaranteed in dpdk frame.
803                  * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
804                  * can safely assign to "uint16_t" type variable.
805                  */
806                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
807                 ret = hns3vf_dev_mtu_set(dev, mtu);
808                 if (ret)
809                         goto cfg_err;
810                 dev->data->mtu = mtu;
811         }
812
813         ret = hns3vf_dev_configure_vlan(dev);
814         if (ret)
815                 goto cfg_err;
816
817         /* config hardware GRO */
818         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
819         ret = hns3_config_gro(hw, gro_en);
820         if (ret)
821                 goto cfg_err;
822
823         hw->adapter_state = HNS3_NIC_CONFIGURED;
824         return 0;
825
826 cfg_err:
827         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
828         hw->adapter_state = HNS3_NIC_INITIALIZED;
829
830         return ret;
831 }
832
833 static int
834 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
835 {
836         int ret;
837
838         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
839                                 sizeof(mtu), true, NULL, 0);
840         if (ret)
841                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
842
843         return ret;
844 }
845
846 static int
847 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
848 {
849         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
850         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
851         int ret;
852
853         /*
854          * The hns3 PF/VF devices on the same port share the hardware MTU
855          * configuration. Currently, we send mailbox to inform hns3 PF kernel
856          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
857          * driver, there is no need to stop the port for hns3 VF device, and the
858          * MTU value issued by hns3 VF PMD driver must be less than or equal to
859          * PF's MTU.
860          */
861         if (rte_atomic16_read(&hw->reset.resetting)) {
862                 hns3_err(hw, "Failed to set mtu during resetting");
863                 return -EIO;
864         }
865
866         rte_spinlock_lock(&hw->lock);
867         ret = hns3vf_config_mtu(hw, mtu);
868         if (ret) {
869                 rte_spinlock_unlock(&hw->lock);
870                 return ret;
871         }
872         if (frame_size > RTE_ETHER_MAX_LEN)
873                 dev->data->dev_conf.rxmode.offloads |=
874                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
875         else
876                 dev->data->dev_conf.rxmode.offloads &=
877                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
878         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
879         rte_spinlock_unlock(&hw->lock);
880
881         return 0;
882 }
883
884 static int
885 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
886 {
887         struct hns3_adapter *hns = eth_dev->data->dev_private;
888         struct hns3_hw *hw = &hns->hw;
889         uint16_t q_num = hw->tqps_num;
890
891         /*
892          * In interrupt mode, 'max_rx_queues' is set based on the number of
893          * MSI-X interrupt resources of the hardware.
894          */
895         if (hw->data->dev_conf.intr_conf.rxq == 1)
896                 q_num = hw->intr_tqps_num;
897
898         info->max_rx_queues = q_num;
899         info->max_tx_queues = hw->tqps_num;
900         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
901         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
902         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
903         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
904         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
905
906         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
907                                  DEV_RX_OFFLOAD_UDP_CKSUM |
908                                  DEV_RX_OFFLOAD_TCP_CKSUM |
909                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
910                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
911                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
912                                  DEV_RX_OFFLOAD_SCATTER |
913                                  DEV_RX_OFFLOAD_VLAN_STRIP |
914                                  DEV_RX_OFFLOAD_VLAN_FILTER |
915                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
916                                  DEV_RX_OFFLOAD_RSS_HASH |
917                                  DEV_RX_OFFLOAD_TCP_LRO);
918         info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
919         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
920                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
921                                  DEV_TX_OFFLOAD_TCP_CKSUM |
922                                  DEV_TX_OFFLOAD_UDP_CKSUM |
923                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
924                                  DEV_TX_OFFLOAD_MULTI_SEGS |
925                                  DEV_TX_OFFLOAD_TCP_TSO |
926                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
927                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
928                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
929                                  info->tx_queue_offload_capa |
930                                  hns3_txvlan_cap_get(hw));
931
932         info->rx_desc_lim = (struct rte_eth_desc_lim) {
933                 .nb_max = HNS3_MAX_RING_DESC,
934                 .nb_min = HNS3_MIN_RING_DESC,
935                 .nb_align = HNS3_ALIGN_RING_DESC,
936         };
937
938         info->tx_desc_lim = (struct rte_eth_desc_lim) {
939                 .nb_max = HNS3_MAX_RING_DESC,
940                 .nb_min = HNS3_MIN_RING_DESC,
941                 .nb_align = HNS3_ALIGN_RING_DESC,
942                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
943                 .nb_mtu_seg_max = HNS3_MAX_NON_TSO_BD_PER_PKT,
944         };
945
946         info->default_rxconf = (struct rte_eth_rxconf) {
947                 /*
948                  * If there are no available Rx buffer descriptors, incoming
949                  * packets are always dropped by hardware based on hns3 network
950                  * engine.
951                  */
952                 .rx_drop_en = 1,
953         };
954
955         info->vmdq_queue_num = 0;
956
957         info->reta_size = HNS3_RSS_IND_TBL_SIZE;
958         info->hash_key_size = HNS3_RSS_KEY_SIZE;
959         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
960         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
961         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
962
963         return 0;
964 }
965
966 static void
967 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
968 {
969         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
970 }
971
972 static void
973 hns3vf_disable_irq0(struct hns3_hw *hw)
974 {
975         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
976 }
977
978 static void
979 hns3vf_enable_irq0(struct hns3_hw *hw)
980 {
981         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
982 }
983
984 static enum hns3vf_evt_cause
985 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
986 {
987         struct hns3_hw *hw = &hns->hw;
988         enum hns3vf_evt_cause ret;
989         uint32_t cmdq_stat_reg;
990         uint32_t rst_ing_reg;
991         uint32_t val;
992
993         /* Fetch the events from their corresponding regs */
994         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
995
996         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
997                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
998                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
999                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1000                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
1001                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1002                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1003                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1004                 if (clearval) {
1005                         hw->reset.stats.global_cnt++;
1006                         hns3_warn(hw, "Global reset detected, clear reset status");
1007                 } else {
1008                         hns3_schedule_delayed_reset(hns);
1009                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1010                 }
1011
1012                 ret = HNS3VF_VECTOR0_EVENT_RST;
1013                 goto out;
1014         }
1015
1016         /* Check for vector0 mailbox(=CMDQ RX) event source */
1017         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1018                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1019                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1020                 goto out;
1021         }
1022
1023         val = 0;
1024         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1025 out:
1026         if (clearval)
1027                 *clearval = val;
1028         return ret;
1029 }
1030
1031 static void
1032 hns3vf_interrupt_handler(void *param)
1033 {
1034         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1035         struct hns3_adapter *hns = dev->data->dev_private;
1036         struct hns3_hw *hw = &hns->hw;
1037         enum hns3vf_evt_cause event_cause;
1038         uint32_t clearval;
1039
1040         if (hw->irq_thread_id == 0)
1041                 hw->irq_thread_id = pthread_self();
1042
1043         /* Disable interrupt */
1044         hns3vf_disable_irq0(hw);
1045
1046         /* Read out interrupt causes */
1047         event_cause = hns3vf_check_event_cause(hns, &clearval);
1048
1049         switch (event_cause) {
1050         case HNS3VF_VECTOR0_EVENT_RST:
1051                 hns3_schedule_reset(hns);
1052                 break;
1053         case HNS3VF_VECTOR0_EVENT_MBX:
1054                 hns3_dev_handle_mbx_msg(hw);
1055                 break;
1056         default:
1057                 break;
1058         }
1059
1060         /* Clear interrupt causes */
1061         hns3vf_clear_event_cause(hw, clearval);
1062
1063         /* Enable interrupt */
1064         hns3vf_enable_irq0(hw);
1065 }
1066
1067 static void
1068 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1069 {
1070         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1071         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1072         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1073 }
1074
1075 static void
1076 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1077 {
1078         struct hns3_dev_specs_0_cmd *req0;
1079
1080         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1081
1082         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1083         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1084         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1085 }
1086
1087 static int
1088 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1089 {
1090         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1091         int ret;
1092         int i;
1093
1094         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1095                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1096                                           true);
1097                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1098         }
1099         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1100
1101         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1102         if (ret)
1103                 return ret;
1104
1105         hns3vf_parse_dev_specifications(hw, desc);
1106
1107         return 0;
1108 }
1109
1110 static int
1111 hns3vf_get_capability(struct hns3_hw *hw)
1112 {
1113         struct rte_pci_device *pci_dev;
1114         struct rte_eth_dev *eth_dev;
1115         uint8_t revision;
1116         int ret;
1117
1118         eth_dev = &rte_eth_devices[hw->data->port_id];
1119         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1120
1121         /* Get PCI revision id */
1122         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1123                                   HNS3_PCI_REVISION_ID);
1124         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1125                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1126                              ret);
1127                 return -EIO;
1128         }
1129         hw->revision = revision;
1130
1131         if (revision < PCI_REVISION_ID_HIP09_A) {
1132                 hns3vf_set_default_dev_specifications(hw);
1133                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1134                 hw->intr.coalesce_mode = HNS3_INTR_COALESCE_NON_QL;
1135                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1136                 return 0;
1137         }
1138
1139         ret = hns3vf_query_dev_specifications(hw);
1140         if (ret) {
1141                 PMD_INIT_LOG(ERR,
1142                              "failed to query dev specifications, ret = %d",
1143                              ret);
1144                 return ret;
1145         }
1146
1147         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1148         hw->intr.coalesce_mode = HNS3_INTR_COALESCE_QL;
1149         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1150
1151         return 0;
1152 }
1153
1154 static int
1155 hns3vf_check_tqp_info(struct hns3_hw *hw)
1156 {
1157         uint16_t tqps_num;
1158
1159         tqps_num = hw->tqps_num;
1160         if (tqps_num > HNS3_MAX_TQP_NUM_PER_FUNC || tqps_num == 0) {
1161                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(%u) from PF. valid "
1162                                   "range: 1~%d",
1163                              tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
1164                 return -EINVAL;
1165         }
1166
1167         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1168
1169         return 0;
1170 }
1171 static int
1172 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1173 {
1174         uint8_t resp_msg;
1175         int ret;
1176
1177         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1178                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1179                                 true, &resp_msg, sizeof(resp_msg));
1180         if (ret) {
1181                 if (ret == -ETIME) {
1182                         /*
1183                          * Getting current port based VLAN state from PF driver
1184                          * will not affect VF driver's basic function. Because
1185                          * the VF driver relies on hns3 PF kernel ether driver,
1186                          * to avoid introducing compatibility issues with older
1187                          * version of PF driver, no failure will be returned
1188                          * when the return value is ETIME. This return value has
1189                          * the following scenarios:
1190                          * 1) Firmware didn't return the results in time
1191                          * 2) the result return by firmware is timeout
1192                          * 3) the older version of kernel side PF driver does
1193                          *    not support this mailbox message.
1194                          * For scenarios 1 and 2, it is most likely that a
1195                          * hardware error has occurred, or a hardware reset has
1196                          * occurred. In this case, these errors will be caught
1197                          * by other functions.
1198                          */
1199                         PMD_INIT_LOG(WARNING,
1200                                 "failed to get PVID state for timeout, maybe "
1201                                 "kernel side PF driver doesn't support this "
1202                                 "mailbox message, or firmware didn't respond.");
1203                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1204                 } else {
1205                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1206                                 " ret = %d", ret);
1207                         return ret;
1208                 }
1209         }
1210         hw->port_base_vlan_cfg.state = resp_msg ?
1211                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1212         return 0;
1213 }
1214
1215 static int
1216 hns3vf_get_queue_info(struct hns3_hw *hw)
1217 {
1218 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1219         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1220         int ret;
1221
1222         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1223                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1224         if (ret) {
1225                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1226                 return ret;
1227         }
1228
1229         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1230         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1231
1232         return hns3vf_check_tqp_info(hw);
1233 }
1234
1235 static int
1236 hns3vf_get_queue_depth(struct hns3_hw *hw)
1237 {
1238 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1239         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1240         int ret;
1241
1242         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1243                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1244         if (ret) {
1245                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1246                              ret);
1247                 return ret;
1248         }
1249
1250         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1251         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1252
1253         return 0;
1254 }
1255
1256 static int
1257 hns3vf_get_tc_info(struct hns3_hw *hw)
1258 {
1259         uint8_t resp_msg;
1260         int ret;
1261
1262         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1263                                 true, &resp_msg, sizeof(resp_msg));
1264         if (ret) {
1265                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1266                          ret);
1267                 return ret;
1268         }
1269
1270         hw->hw_tc_map = resp_msg;
1271
1272         return 0;
1273 }
1274
1275 static int
1276 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1277 {
1278         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1279         int ret;
1280
1281         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1282                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1283         if (ret) {
1284                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1285                 return ret;
1286         }
1287
1288         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1289
1290         return 0;
1291 }
1292
1293 static int
1294 hns3vf_get_configuration(struct hns3_hw *hw)
1295 {
1296         int ret;
1297
1298         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1299         hw->rss_dis_flag = false;
1300
1301         /* Get device capability */
1302         ret = hns3vf_get_capability(hw);
1303         if (ret) {
1304                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1305                 return ret;
1306         }
1307
1308         /* Get queue configuration from PF */
1309         ret = hns3vf_get_queue_info(hw);
1310         if (ret)
1311                 return ret;
1312
1313         /* Get queue depth info from PF */
1314         ret = hns3vf_get_queue_depth(hw);
1315         if (ret)
1316                 return ret;
1317
1318         /* Get user defined VF MAC addr from PF */
1319         ret = hns3vf_get_host_mac_addr(hw);
1320         if (ret)
1321                 return ret;
1322
1323         ret = hns3vf_get_port_base_vlan_filter_state(hw);
1324         if (ret)
1325                 return ret;
1326
1327         /* Get tc configuration from PF */
1328         return hns3vf_get_tc_info(hw);
1329 }
1330
1331 static int
1332 hns3vf_set_tc_info(struct hns3_adapter *hns)
1333 {
1334         struct hns3_hw *hw = &hns->hw;
1335         uint16_t nb_rx_q = hw->data->nb_rx_queues;
1336         uint16_t nb_tx_q = hw->data->nb_tx_queues;
1337         uint8_t i;
1338
1339         hw->num_tc = 0;
1340         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
1341                 if (hw->hw_tc_map & BIT(i))
1342                         hw->num_tc++;
1343
1344         if (nb_rx_q < hw->num_tc) {
1345                 hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
1346                          nb_rx_q, hw->num_tc);
1347                 return -EINVAL;
1348         }
1349
1350         if (nb_tx_q < hw->num_tc) {
1351                 hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
1352                          nb_tx_q, hw->num_tc);
1353                 return -EINVAL;
1354         }
1355
1356         hns3_set_rss_size(hw, nb_rx_q);
1357         hns3_tc_queue_mapping_cfg(hw, nb_tx_q);
1358
1359         return 0;
1360 }
1361
1362 static void
1363 hns3vf_request_link_info(struct hns3_hw *hw)
1364 {
1365         uint8_t resp_msg;
1366         int ret;
1367
1368         if (rte_atomic16_read(&hw->reset.resetting))
1369                 return;
1370         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1371                                 &resp_msg, sizeof(resp_msg));
1372         if (ret)
1373                 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1374 }
1375
1376 static int
1377 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1378 {
1379 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1380         struct hns3_hw *hw = &hns->hw;
1381         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1382         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1383         uint8_t is_kill = on ? 0 : 1;
1384
1385         msg_data[0] = is_kill;
1386         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1387         memcpy(&msg_data[3], &proto, sizeof(proto));
1388
1389         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1390                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1391                                  0);
1392 }
1393
1394 static int
1395 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1396 {
1397         struct hns3_adapter *hns = dev->data->dev_private;
1398         struct hns3_hw *hw = &hns->hw;
1399         int ret;
1400
1401         if (rte_atomic16_read(&hw->reset.resetting)) {
1402                 hns3_err(hw,
1403                          "vf set vlan id failed during resetting, vlan_id =%u",
1404                          vlan_id);
1405                 return -EIO;
1406         }
1407         rte_spinlock_lock(&hw->lock);
1408         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1409         rte_spinlock_unlock(&hw->lock);
1410         if (ret)
1411                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1412                          vlan_id, ret);
1413
1414         return ret;
1415 }
1416
1417 static int
1418 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1419 {
1420         uint8_t msg_data;
1421         int ret;
1422
1423         msg_data = enable ? 1 : 0;
1424         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1425                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1426         if (ret)
1427                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1428
1429         return ret;
1430 }
1431
1432 static int
1433 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1434 {
1435         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1436         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1437         unsigned int tmp_mask;
1438         int ret = 0;
1439
1440         if (rte_atomic16_read(&hw->reset.resetting)) {
1441                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1442                              "mask = 0x%x", mask);
1443                 return -EIO;
1444         }
1445
1446         tmp_mask = (unsigned int)mask;
1447         /* Vlan stripping setting */
1448         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1449                 rte_spinlock_lock(&hw->lock);
1450                 /* Enable or disable VLAN stripping */
1451                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1452                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1453                 else
1454                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1455                 rte_spinlock_unlock(&hw->lock);
1456         }
1457
1458         return ret;
1459 }
1460
1461 static int
1462 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1463 {
1464         struct rte_vlan_filter_conf *vfc;
1465         struct hns3_hw *hw = &hns->hw;
1466         uint16_t vlan_id;
1467         uint64_t vbit;
1468         uint64_t ids;
1469         int ret = 0;
1470         uint32_t i;
1471
1472         vfc = &hw->data->vlan_filter_conf;
1473         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1474                 if (vfc->ids[i] == 0)
1475                         continue;
1476                 ids = vfc->ids[i];
1477                 while (ids) {
1478                         /*
1479                          * 64 means the num bits of ids, one bit corresponds to
1480                          * one vlan id
1481                          */
1482                         vlan_id = 64 * i;
1483                         /* count trailing zeroes */
1484                         vbit = ~ids & (ids - 1);
1485                         /* clear least significant bit set */
1486                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1487                         for (; vbit;) {
1488                                 vbit >>= 1;
1489                                 vlan_id++;
1490                         }
1491                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1492                         if (ret) {
1493                                 hns3_err(hw,
1494                                          "VF handle vlan table failed, ret =%d, on = %d",
1495                                          ret, on);
1496                                 return ret;
1497                         }
1498                 }
1499         }
1500
1501         return ret;
1502 }
1503
1504 static int
1505 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1506 {
1507         return hns3vf_handle_all_vlan_table(hns, 0);
1508 }
1509
1510 static int
1511 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1512 {
1513         struct hns3_hw *hw = &hns->hw;
1514         struct rte_eth_conf *dev_conf;
1515         bool en;
1516         int ret;
1517
1518         dev_conf = &hw->data->dev_conf;
1519         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1520                                                                    : false;
1521         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1522         if (ret)
1523                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1524                          ret);
1525         return ret;
1526 }
1527
1528 static int
1529 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1530 {
1531         struct hns3_adapter *hns = dev->data->dev_private;
1532         struct rte_eth_dev_data *data = dev->data;
1533         struct hns3_hw *hw = &hns->hw;
1534         int ret;
1535
1536         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1537             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1538             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1539                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1540                               "or hw_vlan_insert_pvid is not support!");
1541         }
1542
1543         /* Apply vlan offload setting */
1544         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1545         if (ret)
1546                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1547
1548         return ret;
1549 }
1550
1551 static int
1552 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1553 {
1554         uint8_t msg_data;
1555
1556         msg_data = alive ? 1 : 0;
1557         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1558                                  sizeof(msg_data), false, NULL, 0);
1559 }
1560
1561 static void
1562 hns3vf_keep_alive_handler(void *param)
1563 {
1564         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1565         struct hns3_adapter *hns = eth_dev->data->dev_private;
1566         struct hns3_hw *hw = &hns->hw;
1567         uint8_t respmsg;
1568         int ret;
1569
1570         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1571                                 false, &respmsg, sizeof(uint8_t));
1572         if (ret)
1573                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1574                          ret);
1575
1576         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1577                           eth_dev);
1578 }
1579
1580 static void
1581 hns3vf_service_handler(void *param)
1582 {
1583         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1584         struct hns3_adapter *hns = eth_dev->data->dev_private;
1585         struct hns3_hw *hw = &hns->hw;
1586
1587         /*
1588          * The query link status and reset processing are executed in the
1589          * interrupt thread.When the IMP reset occurs, IMP will not respond,
1590          * and the query operation will time out after 30ms. In the case of
1591          * multiple PF/VFs, each query failure timeout causes the IMP reset
1592          * interrupt to fail to respond within 100ms.
1593          * Before querying the link status, check whether there is a reset
1594          * pending, and if so, abandon the query.
1595          */
1596         if (!hns3vf_is_reset_pending(hns))
1597                 hns3vf_request_link_info(hw);
1598         else
1599                 hns3_warn(hw, "Cancel the query when reset is pending");
1600
1601         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1602                           eth_dev);
1603 }
1604
1605 static int
1606 hns3_query_vf_resource(struct hns3_hw *hw)
1607 {
1608         struct hns3_vf_res_cmd *req;
1609         struct hns3_cmd_desc desc;
1610         uint16_t num_msi;
1611         int ret;
1612
1613         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1614         ret = hns3_cmd_send(hw, &desc, 1);
1615         if (ret) {
1616                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1617                 return ret;
1618         }
1619
1620         req = (struct hns3_vf_res_cmd *)desc.data;
1621         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1622                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1623         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1624                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1625                          num_msi, HNS3_MIN_VECTOR_NUM);
1626                 return -EINVAL;
1627         }
1628
1629         hw->num_msi = num_msi;
1630
1631         return 0;
1632 }
1633
1634 static int
1635 hns3vf_init_hardware(struct hns3_adapter *hns)
1636 {
1637         struct hns3_hw *hw = &hns->hw;
1638         uint16_t mtu = hw->data->mtu;
1639         int ret;
1640
1641         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1642         if (ret)
1643                 return ret;
1644
1645         ret = hns3vf_config_mtu(hw, mtu);
1646         if (ret)
1647                 goto err_init_hardware;
1648
1649         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1650         if (ret) {
1651                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1652                 goto err_init_hardware;
1653         }
1654
1655         ret = hns3_config_gro(hw, false);
1656         if (ret) {
1657                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1658                 goto err_init_hardware;
1659         }
1660
1661         /*
1662          * In the initialization clearing the all hardware mapping relationship
1663          * configurations between queues and interrupt vectors is needed, so
1664          * some error caused by the residual configurations, such as the
1665          * unexpected interrupt, can be avoid.
1666          */
1667         ret = hns3vf_init_ring_with_vector(hw);
1668         if (ret) {
1669                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1670                 goto err_init_hardware;
1671         }
1672
1673         ret = hns3vf_set_alive(hw, true);
1674         if (ret) {
1675                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1676                 goto err_init_hardware;
1677         }
1678
1679         hns3vf_request_link_info(hw);
1680         return 0;
1681
1682 err_init_hardware:
1683         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1684         return ret;
1685 }
1686
1687 static int
1688 hns3vf_clear_vport_list(struct hns3_hw *hw)
1689 {
1690         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1691                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1692                                  NULL, 0);
1693 }
1694
1695 static int
1696 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1697 {
1698         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1699         struct hns3_adapter *hns = eth_dev->data->dev_private;
1700         struct hns3_hw *hw = &hns->hw;
1701         int ret;
1702
1703         PMD_INIT_FUNC_TRACE();
1704
1705         /* Get hardware io base address from pcie BAR2 IO space */
1706         hw->io_base = pci_dev->mem_resource[2].addr;
1707
1708         /* Firmware command queue initialize */
1709         ret = hns3_cmd_init_queue(hw);
1710         if (ret) {
1711                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1712                 goto err_cmd_init_queue;
1713         }
1714
1715         /* Firmware command initialize */
1716         ret = hns3_cmd_init(hw);
1717         if (ret) {
1718                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1719                 goto err_cmd_init;
1720         }
1721
1722         /* Get VF resource */
1723         ret = hns3_query_vf_resource(hw);
1724         if (ret)
1725                 goto err_cmd_init;
1726
1727         rte_spinlock_init(&hw->mbx_resp.lock);
1728
1729         hns3vf_clear_event_cause(hw, 0);
1730
1731         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1732                                          hns3vf_interrupt_handler, eth_dev);
1733         if (ret) {
1734                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1735                 goto err_intr_callback_register;
1736         }
1737
1738         /* Enable interrupt */
1739         rte_intr_enable(&pci_dev->intr_handle);
1740         hns3vf_enable_irq0(hw);
1741
1742         /* Get configuration from PF */
1743         ret = hns3vf_get_configuration(hw);
1744         if (ret) {
1745                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1746                 goto err_get_config;
1747         }
1748
1749         /*
1750          * The hns3 PF ethdev driver in kernel support setting VF MAC address
1751          * on the host by "ip link set ..." command. To avoid some incorrect
1752          * scenes, for example, hns3 VF PMD driver fails to receive and send
1753          * packets after user configure the MAC address by using the
1754          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
1755          * address strategy as the hns3 kernel ethdev driver in the
1756          * initialization. If user configure a MAC address by the ip command
1757          * for VF device, then hns3 VF PMD driver will start with it, otherwise
1758          * start with a random MAC address in the initialization.
1759          */
1760         ret = rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr);
1761         if (ret)
1762                 rte_eth_random_addr(hw->mac.mac_addr);
1763
1764         ret = hns3vf_clear_vport_list(hw);
1765         if (ret) {
1766                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1767                 goto err_get_config;
1768         }
1769
1770         ret = hns3vf_init_hardware(hns);
1771         if (ret)
1772                 goto err_get_config;
1773
1774         hns3_set_default_rss_args(hw);
1775
1776         return 0;
1777
1778 err_get_config:
1779         hns3vf_disable_irq0(hw);
1780         rte_intr_disable(&pci_dev->intr_handle);
1781         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1782                              eth_dev);
1783 err_intr_callback_register:
1784 err_cmd_init:
1785         hns3_cmd_uninit(hw);
1786         hns3_cmd_destroy_queue(hw);
1787 err_cmd_init_queue:
1788         hw->io_base = NULL;
1789
1790         return ret;
1791 }
1792
1793 static void
1794 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1795 {
1796         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1797         struct hns3_adapter *hns = eth_dev->data->dev_private;
1798         struct hns3_hw *hw = &hns->hw;
1799
1800         PMD_INIT_FUNC_TRACE();
1801
1802         hns3_rss_uninit(hns);
1803         (void)hns3_config_gro(hw, false);
1804         (void)hns3vf_set_alive(hw, false);
1805         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1806         hns3vf_disable_irq0(hw);
1807         rte_intr_disable(&pci_dev->intr_handle);
1808         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1809                              eth_dev);
1810         hns3_cmd_uninit(hw);
1811         hns3_cmd_destroy_queue(hw);
1812         hw->io_base = NULL;
1813 }
1814
1815 static int
1816 hns3vf_do_stop(struct hns3_adapter *hns)
1817 {
1818         struct hns3_hw *hw = &hns->hw;
1819         bool reset_queue;
1820
1821         hw->mac.link_status = ETH_LINK_DOWN;
1822
1823         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1824                 hns3vf_configure_mac_addr(hns, true);
1825                 reset_queue = true;
1826         } else
1827                 reset_queue = false;
1828         return hns3_stop_queues(hns, reset_queue);
1829 }
1830
1831 static void
1832 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1833 {
1834         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1835         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1836         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1837         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1838         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1839         uint16_t q_id;
1840
1841         if (dev->data->dev_conf.intr_conf.rxq == 0)
1842                 return;
1843
1844         /* unmap the ring with vector */
1845         if (rte_intr_allow_others(intr_handle)) {
1846                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1847                 base = RTE_INTR_VEC_RXTX_OFFSET;
1848         }
1849         if (rte_intr_dp_is_en(intr_handle)) {
1850                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1851                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1852                                                            HNS3_RING_TYPE_RX,
1853                                                            q_id);
1854                         if (vec < base + intr_handle->nb_efd - 1)
1855                                 vec++;
1856                 }
1857         }
1858         /* Clean datapath event and queue/vec mapping */
1859         rte_intr_efd_disable(intr_handle);
1860         if (intr_handle->intr_vec) {
1861                 rte_free(intr_handle->intr_vec);
1862                 intr_handle->intr_vec = NULL;
1863         }
1864 }
1865
1866 static void
1867 hns3vf_dev_stop(struct rte_eth_dev *dev)
1868 {
1869         struct hns3_adapter *hns = dev->data->dev_private;
1870         struct hns3_hw *hw = &hns->hw;
1871
1872         PMD_INIT_FUNC_TRACE();
1873
1874         hw->adapter_state = HNS3_NIC_STOPPING;
1875         hns3_set_rxtx_function(dev);
1876         rte_wmb();
1877         /* Disable datapath on secondary process. */
1878         hns3_mp_req_stop_rxtx(dev);
1879         /* Prevent crashes when queues are still in use. */
1880         rte_delay_ms(hw->tqps_num);
1881
1882         rte_spinlock_lock(&hw->lock);
1883         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1884                 hns3vf_do_stop(hns);
1885                 hns3vf_unmap_rx_interrupt(dev);
1886                 hns3_dev_release_mbufs(hns);
1887                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1888         }
1889         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1890         rte_spinlock_unlock(&hw->lock);
1891 }
1892
1893 static void
1894 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1895 {
1896         struct hns3_adapter *hns = eth_dev->data->dev_private;
1897         struct hns3_hw *hw = &hns->hw;
1898
1899         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1900                 return;
1901
1902         if (hw->adapter_state == HNS3_NIC_STARTED)
1903                 hns3vf_dev_stop(eth_dev);
1904
1905         hw->adapter_state = HNS3_NIC_CLOSING;
1906         hns3_reset_abort(hns);
1907         hw->adapter_state = HNS3_NIC_CLOSED;
1908         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1909         hns3vf_configure_all_mc_mac_addr(hns, true);
1910         hns3vf_remove_all_vlan_table(hns);
1911         hns3vf_uninit_vf(eth_dev);
1912         hns3_free_all_queues(eth_dev);
1913         rte_free(hw->reset.wait_data);
1914         rte_free(eth_dev->process_private);
1915         eth_dev->process_private = NULL;
1916         hns3_mp_uninit_primary();
1917         hns3_warn(hw, "Close port %d finished", hw->data->port_id);
1918 }
1919
1920 static int
1921 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
1922                       size_t fw_size)
1923 {
1924         struct hns3_adapter *hns = eth_dev->data->dev_private;
1925         struct hns3_hw *hw = &hns->hw;
1926         uint32_t version = hw->fw_version;
1927         int ret;
1928
1929         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
1930                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
1931                                       HNS3_FW_VERSION_BYTE3_S),
1932                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
1933                                       HNS3_FW_VERSION_BYTE2_S),
1934                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
1935                                       HNS3_FW_VERSION_BYTE1_S),
1936                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
1937                                       HNS3_FW_VERSION_BYTE0_S));
1938         ret += 1; /* add the size of '\0' */
1939         if (fw_size < (uint32_t)ret)
1940                 return ret;
1941         else
1942                 return 0;
1943 }
1944
1945 static int
1946 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1947                        __rte_unused int wait_to_complete)
1948 {
1949         struct hns3_adapter *hns = eth_dev->data->dev_private;
1950         struct hns3_hw *hw = &hns->hw;
1951         struct hns3_mac *mac = &hw->mac;
1952         struct rte_eth_link new_link;
1953
1954         memset(&new_link, 0, sizeof(new_link));
1955         switch (mac->link_speed) {
1956         case ETH_SPEED_NUM_10M:
1957         case ETH_SPEED_NUM_100M:
1958         case ETH_SPEED_NUM_1G:
1959         case ETH_SPEED_NUM_10G:
1960         case ETH_SPEED_NUM_25G:
1961         case ETH_SPEED_NUM_40G:
1962         case ETH_SPEED_NUM_50G:
1963         case ETH_SPEED_NUM_100G:
1964         case ETH_SPEED_NUM_200G:
1965                 new_link.link_speed = mac->link_speed;
1966                 break;
1967         default:
1968                 new_link.link_speed = ETH_SPEED_NUM_100M;
1969                 break;
1970         }
1971
1972         new_link.link_duplex = mac->link_duplex;
1973         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
1974         new_link.link_autoneg =
1975             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
1976
1977         return rte_eth_linkstatus_set(eth_dev, &new_link);
1978 }
1979
1980 static int
1981 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
1982 {
1983         struct hns3_hw *hw = &hns->hw;
1984         int ret;
1985
1986         ret = hns3vf_set_tc_info(hns);
1987         if (ret)
1988                 return ret;
1989
1990         ret = hns3_start_queues(hns, reset_queue);
1991         if (ret)
1992                 hns3_err(hw, "Failed to start queues: %d", ret);
1993
1994         return ret;
1995 }
1996
1997 static int
1998 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
1999 {
2000         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2001         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2002         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2003         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2004         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2005         uint32_t intr_vector;
2006         uint16_t q_id;
2007         int ret;
2008
2009         if (dev->data->dev_conf.intr_conf.rxq == 0)
2010                 return 0;
2011
2012         /* disable uio/vfio intr/eventfd mapping */
2013         rte_intr_disable(intr_handle);
2014
2015         /* check and configure queue intr-vector mapping */
2016         if (rte_intr_cap_multiple(intr_handle) ||
2017             !RTE_ETH_DEV_SRIOV(dev).active) {
2018                 intr_vector = hw->used_rx_queues;
2019                 /* It creates event fd for each intr vector when MSIX is used */
2020                 if (rte_intr_efd_enable(intr_handle, intr_vector))
2021                         return -EINVAL;
2022         }
2023         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
2024                 intr_handle->intr_vec =
2025                         rte_zmalloc("intr_vec",
2026                                     hw->used_rx_queues * sizeof(int), 0);
2027                 if (intr_handle->intr_vec == NULL) {
2028                         hns3_err(hw, "Failed to allocate %d rx_queues"
2029                                      " intr_vec", hw->used_rx_queues);
2030                         ret = -ENOMEM;
2031                         goto vf_alloc_intr_vec_error;
2032                 }
2033         }
2034
2035         if (rte_intr_allow_others(intr_handle)) {
2036                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2037                 base = RTE_INTR_VEC_RXTX_OFFSET;
2038         }
2039         if (rte_intr_dp_is_en(intr_handle)) {
2040                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2041                         ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2042                                                            HNS3_RING_TYPE_RX,
2043                                                            q_id);
2044                         if (ret)
2045                                 goto vf_bind_vector_error;
2046                         intr_handle->intr_vec[q_id] = vec;
2047                         if (vec < base + intr_handle->nb_efd - 1)
2048                                 vec++;
2049                 }
2050         }
2051         rte_intr_enable(intr_handle);
2052         return 0;
2053
2054 vf_bind_vector_error:
2055         rte_intr_efd_disable(intr_handle);
2056         if (intr_handle->intr_vec) {
2057                 free(intr_handle->intr_vec);
2058                 intr_handle->intr_vec = NULL;
2059         }
2060         return ret;
2061 vf_alloc_intr_vec_error:
2062         rte_intr_efd_disable(intr_handle);
2063         return ret;
2064 }
2065
2066 static int
2067 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2068 {
2069         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2070         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2071         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2072         uint16_t q_id;
2073         int ret;
2074
2075         if (dev->data->dev_conf.intr_conf.rxq == 0)
2076                 return 0;
2077
2078         if (rte_intr_dp_is_en(intr_handle)) {
2079                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2080                         ret = hns3vf_bind_ring_with_vector(hw,
2081                                         intr_handle->intr_vec[q_id], true,
2082                                         HNS3_RING_TYPE_RX, q_id);
2083                         if (ret)
2084                                 return ret;
2085                 }
2086         }
2087
2088         return 0;
2089 }
2090
2091 static void
2092 hns3vf_restore_filter(struct rte_eth_dev *dev)
2093 {
2094         hns3_restore_rss_filter(dev);
2095 }
2096
2097 static int
2098 hns3vf_dev_start(struct rte_eth_dev *dev)
2099 {
2100         struct hns3_adapter *hns = dev->data->dev_private;
2101         struct hns3_hw *hw = &hns->hw;
2102         int ret;
2103
2104         PMD_INIT_FUNC_TRACE();
2105         if (rte_atomic16_read(&hw->reset.resetting))
2106                 return -EBUSY;
2107
2108         rte_spinlock_lock(&hw->lock);
2109         hw->adapter_state = HNS3_NIC_STARTING;
2110         ret = hns3vf_do_start(hns, true);
2111         if (ret) {
2112                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2113                 rte_spinlock_unlock(&hw->lock);
2114                 return ret;
2115         }
2116         ret = hns3vf_map_rx_interrupt(dev);
2117         if (ret) {
2118                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2119                 rte_spinlock_unlock(&hw->lock);
2120                 return ret;
2121         }
2122         hw->adapter_state = HNS3_NIC_STARTED;
2123         rte_spinlock_unlock(&hw->lock);
2124
2125         hns3_set_rxtx_function(dev);
2126         hns3_mp_req_start_rxtx(dev);
2127         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
2128
2129         hns3vf_restore_filter(dev);
2130
2131         /* Enable interrupt of all rx queues before enabling queues */
2132         hns3_dev_all_rx_queue_intr_enable(hw, true);
2133         /*
2134          * When finished the initialization, enable queues to receive/transmit
2135          * packets.
2136          */
2137         hns3_enable_all_queues(hw, true);
2138
2139         return ret;
2140 }
2141
2142 static bool
2143 is_vf_reset_done(struct hns3_hw *hw)
2144 {
2145 #define HNS3_FUN_RST_ING_BITS \
2146         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2147          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2148          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2149          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2150
2151         uint32_t val;
2152
2153         if (hw->reset.level == HNS3_VF_RESET) {
2154                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2155                 if (val & HNS3_VF_RST_ING_BIT)
2156                         return false;
2157         } else {
2158                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2159                 if (val & HNS3_FUN_RST_ING_BITS)
2160                         return false;
2161         }
2162         return true;
2163 }
2164
2165 bool
2166 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2167 {
2168         struct hns3_hw *hw = &hns->hw;
2169         enum hns3_reset_level reset;
2170
2171         hns3vf_check_event_cause(hns, NULL);
2172         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2173         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2174                 hns3_warn(hw, "High level reset %d is pending", reset);
2175                 return true;
2176         }
2177         return false;
2178 }
2179
2180 static int
2181 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2182 {
2183         struct hns3_hw *hw = &hns->hw;
2184         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2185         struct timeval tv;
2186
2187         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2188                 /*
2189                  * After vf reset is ready, the PF may not have completed
2190                  * the reset processing. The vf sending mbox to PF may fail
2191                  * during the pf reset, so it is better to add extra delay.
2192                  */
2193                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2194                     hw->reset.level == HNS3_FLR_RESET)
2195                         return 0;
2196                 /* Reset retry process, no need to add extra delay. */
2197                 if (hw->reset.attempts)
2198                         return 0;
2199                 if (wait_data->check_completion == NULL)
2200                         return 0;
2201
2202                 wait_data->check_completion = NULL;
2203                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2204                 wait_data->count = 1;
2205                 wait_data->result = HNS3_WAIT_REQUEST;
2206                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2207                                   wait_data);
2208                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2209                 return -EAGAIN;
2210         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2211                 gettimeofday(&tv, NULL);
2212                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2213                           tv.tv_sec, tv.tv_usec);
2214                 return -ETIME;
2215         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2216                 return -EAGAIN;
2217
2218         wait_data->hns = hns;
2219         wait_data->check_completion = is_vf_reset_done;
2220         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2221                                       HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2222         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2223         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2224         wait_data->result = HNS3_WAIT_REQUEST;
2225         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2226         return -EAGAIN;
2227 }
2228
2229 static int
2230 hns3vf_prepare_reset(struct hns3_adapter *hns)
2231 {
2232         struct hns3_hw *hw = &hns->hw;
2233         int ret = 0;
2234
2235         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2236                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2237                                         0, true, NULL, 0);
2238         }
2239         rte_atomic16_set(&hw->reset.disable_cmd, 1);
2240
2241         return ret;
2242 }
2243
2244 static int
2245 hns3vf_stop_service(struct hns3_adapter *hns)
2246 {
2247         struct hns3_hw *hw = &hns->hw;
2248         struct rte_eth_dev *eth_dev;
2249
2250         eth_dev = &rte_eth_devices[hw->data->port_id];
2251         if (hw->adapter_state == HNS3_NIC_STARTED)
2252                 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2253         hw->mac.link_status = ETH_LINK_DOWN;
2254
2255         hns3_set_rxtx_function(eth_dev);
2256         rte_wmb();
2257         /* Disable datapath on secondary process. */
2258         hns3_mp_req_stop_rxtx(eth_dev);
2259         rte_delay_ms(hw->tqps_num);
2260
2261         rte_spinlock_lock(&hw->lock);
2262         if (hw->adapter_state == HNS3_NIC_STARTED ||
2263             hw->adapter_state == HNS3_NIC_STOPPING) {
2264                 hns3vf_do_stop(hns);
2265                 hw->reset.mbuf_deferred_free = true;
2266         } else
2267                 hw->reset.mbuf_deferred_free = false;
2268
2269         /*
2270          * It is cumbersome for hardware to pick-and-choose entries for deletion
2271          * from table space. Hence, for function reset software intervention is
2272          * required to delete the entries.
2273          */
2274         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2275                 hns3vf_configure_all_mc_mac_addr(hns, true);
2276         rte_spinlock_unlock(&hw->lock);
2277
2278         return 0;
2279 }
2280
2281 static int
2282 hns3vf_start_service(struct hns3_adapter *hns)
2283 {
2284         struct hns3_hw *hw = &hns->hw;
2285         struct rte_eth_dev *eth_dev;
2286
2287         eth_dev = &rte_eth_devices[hw->data->port_id];
2288         hns3_set_rxtx_function(eth_dev);
2289         hns3_mp_req_start_rxtx(eth_dev);
2290         if (hw->adapter_state == HNS3_NIC_STARTED) {
2291                 hns3vf_service_handler(eth_dev);
2292
2293                 /* Enable interrupt of all rx queues before enabling queues */
2294                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2295                 /*
2296                  * When finished the initialization, enable queues to receive
2297                  * and transmit packets.
2298                  */
2299                 hns3_enable_all_queues(hw, true);
2300         }
2301
2302         return 0;
2303 }
2304
2305 static int
2306 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2307 {
2308         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2309         struct rte_ether_addr *hw_mac;
2310         int ret;
2311
2312         /*
2313          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2314          * on the host by "ip link set ..." command. If the hns3 PF kernel
2315          * ethdev driver sets the MAC address for VF device after the
2316          * initialization of the related VF device, the PF driver will notify
2317          * VF driver to reset VF device to make the new MAC address effective
2318          * immediately. The hns3 VF PMD driver should check whether the MAC
2319          * address has been changed by the PF kernel ethdev driver, if changed
2320          * VF driver should configure hardware using the new MAC address in the
2321          * recovering hardware configuration stage of the reset process.
2322          */
2323         ret = hns3vf_get_host_mac_addr(hw);
2324         if (ret)
2325                 return ret;
2326
2327         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2328         ret = rte_is_zero_ether_addr(hw_mac);
2329         if (ret) {
2330                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2331         } else {
2332                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2333                 if (!ret) {
2334                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2335                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2336                                               &hw->data->mac_addrs[0]);
2337                         hns3_warn(hw, "Default MAC address has been changed to:"
2338                                   " %s by the host PF kernel ethdev driver",
2339                                   mac_str);
2340                 }
2341         }
2342
2343         return 0;
2344 }
2345
2346 static int
2347 hns3vf_restore_conf(struct hns3_adapter *hns)
2348 {
2349         struct hns3_hw *hw = &hns->hw;
2350         int ret;
2351
2352         ret = hns3vf_check_default_mac_change(hw);
2353         if (ret)
2354                 return ret;
2355
2356         ret = hns3vf_configure_mac_addr(hns, false);
2357         if (ret)
2358                 return ret;
2359
2360         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2361         if (ret)
2362                 goto err_mc_mac;
2363
2364         ret = hns3vf_restore_promisc(hns);
2365         if (ret)
2366                 goto err_vlan_table;
2367
2368         ret = hns3vf_restore_vlan_conf(hns);
2369         if (ret)
2370                 goto err_vlan_table;
2371
2372         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2373         if (ret)
2374                 goto err_vlan_table;
2375
2376         ret = hns3vf_restore_rx_interrupt(hw);
2377         if (ret)
2378                 goto err_vlan_table;
2379
2380         ret = hns3_restore_gro_conf(hw);
2381         if (ret)
2382                 goto err_vlan_table;
2383
2384         if (hw->adapter_state == HNS3_NIC_STARTED) {
2385                 ret = hns3vf_do_start(hns, false);
2386                 if (ret)
2387                         goto err_vlan_table;
2388                 hns3_info(hw, "hns3vf dev restart successful!");
2389         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2390                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2391         return 0;
2392
2393 err_vlan_table:
2394         hns3vf_configure_all_mc_mac_addr(hns, true);
2395 err_mc_mac:
2396         hns3vf_configure_mac_addr(hns, true);
2397         return ret;
2398 }
2399
2400 static enum hns3_reset_level
2401 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2402 {
2403         enum hns3_reset_level reset_level;
2404
2405         /* return the highest priority reset level amongst all */
2406         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2407                 reset_level = HNS3_VF_RESET;
2408         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2409                 reset_level = HNS3_VF_FULL_RESET;
2410         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2411                 reset_level = HNS3_VF_PF_FUNC_RESET;
2412         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2413                 reset_level = HNS3_VF_FUNC_RESET;
2414         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2415                 reset_level = HNS3_FLR_RESET;
2416         else
2417                 reset_level = HNS3_NONE_RESET;
2418
2419         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2420                 return HNS3_NONE_RESET;
2421
2422         return reset_level;
2423 }
2424
2425 static void
2426 hns3vf_reset_service(void *param)
2427 {
2428         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2429         struct hns3_hw *hw = &hns->hw;
2430         enum hns3_reset_level reset_level;
2431         struct timeval tv_delta;
2432         struct timeval tv_start;
2433         struct timeval tv;
2434         uint64_t msec;
2435
2436         /*
2437          * The interrupt is not triggered within the delay time.
2438          * The interrupt may have been lost. It is necessary to handle
2439          * the interrupt to recover from the error.
2440          */
2441         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2442                 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2443                 hns3_err(hw, "Handling interrupts in delayed tasks");
2444                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2445                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2446                 if (reset_level == HNS3_NONE_RESET) {
2447                         hns3_err(hw, "No reset level is set, try global reset");
2448                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2449                 }
2450         }
2451         rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2452
2453         /*
2454          * Hardware reset has been notified, we now have to poll & check if
2455          * hardware has actually completed the reset sequence.
2456          */
2457         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2458         if (reset_level != HNS3_NONE_RESET) {
2459                 gettimeofday(&tv_start, NULL);
2460                 hns3_reset_process(hns, reset_level);
2461                 gettimeofday(&tv, NULL);
2462                 timersub(&tv, &tv_start, &tv_delta);
2463                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2464                        tv_delta.tv_usec / USEC_PER_MSEC;
2465                 if (msec > HNS3_RESET_PROCESS_MS)
2466                         hns3_err(hw, "%d handle long time delta %" PRIx64
2467                                  " ms time=%ld.%.6ld",
2468                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2469         }
2470 }
2471
2472 static int
2473 hns3vf_reinit_dev(struct hns3_adapter *hns)
2474 {
2475         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2476         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2477         struct hns3_hw *hw = &hns->hw;
2478         int ret;
2479
2480         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2481                 rte_intr_disable(&pci_dev->intr_handle);
2482                 hns3vf_set_bus_master(pci_dev, true);
2483         }
2484
2485         /* Firmware command initialize */
2486         ret = hns3_cmd_init(hw);
2487         if (ret) {
2488                 hns3_err(hw, "Failed to init cmd: %d", ret);
2489                 return ret;
2490         }
2491
2492         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2493                 /*
2494                  * UIO enables msix by writing the pcie configuration space
2495                  * vfio_pci enables msix in rte_intr_enable.
2496                  */
2497                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2498                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2499                         if (hns3vf_enable_msix(pci_dev, true))
2500                                 hns3_err(hw, "Failed to enable msix");
2501                 }
2502
2503                 rte_intr_enable(&pci_dev->intr_handle);
2504         }
2505
2506         ret = hns3_reset_all_queues(hns);
2507         if (ret) {
2508                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2509                 return ret;
2510         }
2511
2512         ret = hns3vf_init_hardware(hns);
2513         if (ret) {
2514                 hns3_err(hw, "Failed to init hardware: %d", ret);
2515                 return ret;
2516         }
2517
2518         return 0;
2519 }
2520
2521 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2522         .dev_start          = hns3vf_dev_start,
2523         .dev_stop           = hns3vf_dev_stop,
2524         .dev_close          = hns3vf_dev_close,
2525         .mtu_set            = hns3vf_dev_mtu_set,
2526         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2527         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2528         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2529         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2530         .stats_get          = hns3_stats_get,
2531         .stats_reset        = hns3_stats_reset,
2532         .xstats_get         = hns3_dev_xstats_get,
2533         .xstats_get_names   = hns3_dev_xstats_get_names,
2534         .xstats_reset       = hns3_dev_xstats_reset,
2535         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2536         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2537         .dev_infos_get      = hns3vf_dev_infos_get,
2538         .fw_version_get     = hns3vf_fw_version_get,
2539         .rx_queue_setup     = hns3_rx_queue_setup,
2540         .tx_queue_setup     = hns3_tx_queue_setup,
2541         .rx_queue_release   = hns3_dev_rx_queue_release,
2542         .tx_queue_release   = hns3_dev_tx_queue_release,
2543         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2544         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2545         .rxq_info_get       = hns3_rxq_info_get,
2546         .txq_info_get       = hns3_txq_info_get,
2547         .dev_configure      = hns3vf_dev_configure,
2548         .mac_addr_add       = hns3vf_add_mac_addr,
2549         .mac_addr_remove    = hns3vf_remove_mac_addr,
2550         .mac_addr_set       = hns3vf_set_default_mac_addr,
2551         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2552         .link_update        = hns3vf_dev_link_update,
2553         .rss_hash_update    = hns3_dev_rss_hash_update,
2554         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2555         .reta_update        = hns3_dev_rss_reta_update,
2556         .reta_query         = hns3_dev_rss_reta_query,
2557         .filter_ctrl        = hns3_dev_filter_ctrl,
2558         .vlan_filter_set    = hns3vf_vlan_filter_set,
2559         .vlan_offload_set   = hns3vf_vlan_offload_set,
2560         .get_reg            = hns3_get_regs,
2561         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2562 };
2563
2564 static const struct hns3_reset_ops hns3vf_reset_ops = {
2565         .reset_service       = hns3vf_reset_service,
2566         .stop_service        = hns3vf_stop_service,
2567         .prepare_reset       = hns3vf_prepare_reset,
2568         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2569         .reinit_dev          = hns3vf_reinit_dev,
2570         .restore_conf        = hns3vf_restore_conf,
2571         .start_service       = hns3vf_start_service,
2572 };
2573
2574 static int
2575 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2576 {
2577         struct hns3_adapter *hns = eth_dev->data->dev_private;
2578         struct hns3_hw *hw = &hns->hw;
2579         int ret;
2580
2581         PMD_INIT_FUNC_TRACE();
2582
2583         eth_dev->process_private = (struct hns3_process_private *)
2584             rte_zmalloc_socket("hns3_filter_list",
2585                                sizeof(struct hns3_process_private),
2586                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2587         if (eth_dev->process_private == NULL) {
2588                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2589                 return -ENOMEM;
2590         }
2591
2592         /* initialize flow filter lists */
2593         hns3_filterlist_init(eth_dev);
2594
2595         hns3_set_rxtx_function(eth_dev);
2596         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2597         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2598                 ret = hns3_mp_init_secondary();
2599                 if (ret) {
2600                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2601                                           "process, ret = %d", ret);
2602                         goto err_mp_init_secondary;
2603                 }
2604
2605                 hw->secondary_cnt++;
2606                 return 0;
2607         }
2608
2609         ret = hns3_mp_init_primary();
2610         if (ret) {
2611                 PMD_INIT_LOG(ERR,
2612                              "Failed to init for primary process, ret = %d",
2613                              ret);
2614                 goto err_mp_init_primary;
2615         }
2616
2617         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2618         hns->is_vf = true;
2619         hw->data = eth_dev->data;
2620
2621         ret = hns3_reset_init(hw);
2622         if (ret)
2623                 goto err_init_reset;
2624         hw->reset.ops = &hns3vf_reset_ops;
2625
2626         ret = hns3vf_init_vf(eth_dev);
2627         if (ret) {
2628                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2629                 goto err_init_vf;
2630         }
2631
2632         /* Allocate memory for storing MAC addresses */
2633         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2634                                                sizeof(struct rte_ether_addr) *
2635                                                HNS3_VF_UC_MACADDR_NUM, 0);
2636         if (eth_dev->data->mac_addrs == NULL) {
2637                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2638                              "to store MAC addresses",
2639                              sizeof(struct rte_ether_addr) *
2640                              HNS3_VF_UC_MACADDR_NUM);
2641                 ret = -ENOMEM;
2642                 goto err_rte_zmalloc;
2643         }
2644
2645         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2646                             &eth_dev->data->mac_addrs[0]);
2647         hw->adapter_state = HNS3_NIC_INITIALIZED;
2648         /*
2649          * Pass the information to the rte_eth_dev_close() that it should also
2650          * release the private port resources.
2651          */
2652         eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2653
2654         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2655                 hns3_err(hw, "Reschedule reset service after dev_init");
2656                 hns3_schedule_reset(hns);
2657         } else {
2658                 /* IMP will wait ready flag before reset */
2659                 hns3_notify_reset_ready(hw, false);
2660         }
2661         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2662                           eth_dev);
2663         return 0;
2664
2665 err_rte_zmalloc:
2666         hns3vf_uninit_vf(eth_dev);
2667
2668 err_init_vf:
2669         rte_free(hw->reset.wait_data);
2670
2671 err_init_reset:
2672         hns3_mp_uninit_primary();
2673
2674 err_mp_init_primary:
2675 err_mp_init_secondary:
2676         eth_dev->dev_ops = NULL;
2677         eth_dev->rx_pkt_burst = NULL;
2678         eth_dev->tx_pkt_burst = NULL;
2679         eth_dev->tx_pkt_prepare = NULL;
2680         rte_free(eth_dev->process_private);
2681         eth_dev->process_private = NULL;
2682
2683         return ret;
2684 }
2685
2686 static int
2687 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2688 {
2689         struct hns3_adapter *hns = eth_dev->data->dev_private;
2690         struct hns3_hw *hw = &hns->hw;
2691
2692         PMD_INIT_FUNC_TRACE();
2693
2694         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2695                 return -EPERM;
2696
2697         eth_dev->dev_ops = NULL;
2698         eth_dev->rx_pkt_burst = NULL;
2699         eth_dev->tx_pkt_burst = NULL;
2700         eth_dev->tx_pkt_prepare = NULL;
2701
2702         if (hw->adapter_state < HNS3_NIC_CLOSING)
2703                 hns3vf_dev_close(eth_dev);
2704
2705         hw->adapter_state = HNS3_NIC_REMOVED;
2706         return 0;
2707 }
2708
2709 static int
2710 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2711                      struct rte_pci_device *pci_dev)
2712 {
2713         return rte_eth_dev_pci_generic_probe(pci_dev,
2714                                              sizeof(struct hns3_adapter),
2715                                              hns3vf_dev_init);
2716 }
2717
2718 static int
2719 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2720 {
2721         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2722 }
2723
2724 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2725         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2726         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2727         { .vendor_id = 0, /* sentinel */ },
2728 };
2729
2730 static struct rte_pci_driver rte_hns3vf_pmd = {
2731         .id_table = pci_id_hns3vf_map,
2732         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2733         .probe = eth_hns3vf_pci_probe,
2734         .remove = eth_hns3vf_pci_remove,
2735 };
2736
2737 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2738 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2739 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");