net/hns3: remove unnecessary RSS switch
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_vfio.h>
10
11 #include "hns3_ethdev.h"
12 #include "hns3_common.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19 #include "hns3_flow.h"
20
21 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
22 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
23
24 #define HNS3VF_RESET_WAIT_MS    20
25 #define HNS3VF_RESET_WAIT_CNT   2000
26
27 /* Reset related Registers */
28 #define HNS3_GLOBAL_RESET_BIT           0
29 #define HNS3_CORE_RESET_BIT             1
30 #define HNS3_IMP_RESET_BIT              2
31 #define HNS3_FUN_RST_ING_B              0
32
33 enum hns3vf_evt_cause {
34         HNS3VF_VECTOR0_EVENT_RST,
35         HNS3VF_VECTOR0_EVENT_MBX,
36         HNS3VF_VECTOR0_EVENT_OTHER,
37 };
38
39 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
40                                                     uint64_t *levels);
41 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
42 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
43
44 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
45                                   struct rte_ether_addr *mac_addr);
46 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
47                                      struct rte_ether_addr *mac_addr);
48 static int hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
49                                    __rte_unused int wait_to_complete);
50
51 /* set PCI bus mastering */
52 static int
53 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
54 {
55         uint16_t reg;
56         int ret;
57
58         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
59         if (ret < 0) {
60                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
61                              PCI_COMMAND);
62                 return ret;
63         }
64
65         if (op)
66                 /* set the master bit */
67                 reg |= PCI_COMMAND_MASTER;
68         else
69                 reg &= ~(PCI_COMMAND_MASTER);
70
71         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
72 }
73
74 /**
75  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
76  * @cap: the capability
77  *
78  * Return the address of the given capability within the PCI capability list.
79  */
80 static int
81 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
82 {
83 #define MAX_PCIE_CAPABILITY 48
84         uint16_t status;
85         uint8_t pos;
86         uint8_t id;
87         int ttl;
88         int ret;
89
90         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
91         if (ret < 0) {
92                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
93                 return 0;
94         }
95
96         if (!(status & PCI_STATUS_CAP_LIST))
97                 return 0;
98
99         ttl = MAX_PCIE_CAPABILITY;
100         ret = rte_pci_read_config(device, &pos, sizeof(pos),
101                                   PCI_CAPABILITY_LIST);
102         if (ret < 0) {
103                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
104                              PCI_CAPABILITY_LIST);
105                 return 0;
106         }
107
108         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
109                 ret = rte_pci_read_config(device, &id, sizeof(id),
110                                           (pos + PCI_CAP_LIST_ID));
111                 if (ret < 0) {
112                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
113                                      (pos + PCI_CAP_LIST_ID));
114                         break;
115                 }
116
117                 if (id == 0xFF)
118                         break;
119
120                 if (id == cap)
121                         return (int)pos;
122
123                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
124                                           (pos + PCI_CAP_LIST_NEXT));
125                 if (ret < 0) {
126                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
127                                      (pos + PCI_CAP_LIST_NEXT));
128                         break;
129                 }
130         }
131         return 0;
132 }
133
134 static int
135 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
136 {
137         uint16_t control;
138         int pos;
139         int ret;
140
141         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
142         if (pos) {
143                 ret = rte_pci_read_config(device, &control, sizeof(control),
144                                     (pos + PCI_MSIX_FLAGS));
145                 if (ret < 0) {
146                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
147                                      (pos + PCI_MSIX_FLAGS));
148                         return -ENXIO;
149                 }
150
151                 if (op)
152                         control |= PCI_MSIX_FLAGS_ENABLE;
153                 else
154                         control &= ~PCI_MSIX_FLAGS_ENABLE;
155                 ret = rte_pci_write_config(device, &control, sizeof(control),
156                                           (pos + PCI_MSIX_FLAGS));
157                 if (ret < 0) {
158                         PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
159                                     (pos + PCI_MSIX_FLAGS));
160                         return -ENXIO;
161                 }
162
163                 return 0;
164         }
165
166         return -ENXIO;
167 }
168
169 static int
170 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
171 {
172         /* mac address was checked by upper level interface */
173         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
174         int ret;
175
176         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
177                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
178                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
179         if (ret) {
180                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
181                                       mac_addr);
182                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
183                          mac_str, ret);
184         }
185         return ret;
186 }
187
188 static int
189 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
190 {
191         /* mac address was checked by upper level interface */
192         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
193         int ret;
194
195         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
196                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
197                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
198                                 false, NULL, 0);
199         if (ret) {
200                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
201                                       mac_addr);
202                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
203                          mac_str, ret);
204         }
205         return ret;
206 }
207
208 static int
209 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
210                             struct rte_ether_addr *mac_addr)
211 {
212 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
213         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
214         struct rte_ether_addr *old_addr;
215         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
216         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
217         int ret;
218
219         /*
220          * It has been guaranteed that input parameter named mac_addr is valid
221          * address in the rte layer of DPDK framework.
222          */
223         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
224         rte_spinlock_lock(&hw->lock);
225         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
226         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
227                RTE_ETHER_ADDR_LEN);
228
229         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
230                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
231                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
232         if (ret) {
233                 /*
234                  * The hns3 VF PMD depends on the hns3 PF kernel ethdev
235                  * driver. When user has configured a MAC address for VF device
236                  * by "ip link set ..." command based on the PF device, the hns3
237                  * PF kernel ethdev driver does not allow VF driver to request
238                  * reconfiguring a different default MAC address, and return
239                  * -EPREM to VF driver through mailbox.
240                  */
241                 if (ret == -EPERM) {
242                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
243                                               old_addr);
244                         hns3_warn(hw, "Has permanent mac addr(%s) for vf",
245                                   mac_str);
246                 } else {
247                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
248                                               mac_addr);
249                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
250                                  mac_str, ret);
251                 }
252         }
253
254         rte_ether_addr_copy(mac_addr,
255                             (struct rte_ether_addr *)hw->mac.mac_addr);
256         rte_spinlock_unlock(&hw->lock);
257
258         return ret;
259 }
260
261 static int
262 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
263                        struct rte_ether_addr *mac_addr)
264 {
265         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
266         int ret;
267
268         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
269                                 HNS3_MBX_MAC_VLAN_MC_ADD,
270                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
271                                 NULL, 0);
272         if (ret) {
273                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
274                                       mac_addr);
275                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
276                          mac_str, ret);
277         }
278
279         return ret;
280 }
281
282 static int
283 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
284                           struct rte_ether_addr *mac_addr)
285 {
286         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
287         int ret;
288
289         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
290                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
291                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
292                                 NULL, 0);
293         if (ret) {
294                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
295                                       mac_addr);
296                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
297                          mac_str, ret);
298         }
299
300         return ret;
301 }
302
303 static int
304 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
305                         bool en_uc_pmc, bool en_mc_pmc)
306 {
307         struct hns3_mbx_vf_to_pf_cmd *req;
308         struct hns3_cmd_desc desc;
309         int ret;
310
311         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
312
313         /*
314          * The hns3 VF PMD depends on the hns3 PF kernel ethdev driver,
315          * so there are some features for promiscuous/allmulticast mode in hns3
316          * VF PMD as below:
317          * 1. The promiscuous/allmulticast mode can be configured successfully
318          *    only based on the trusted VF device. If based on the non trusted
319          *    VF device, configuring promiscuous/allmulticast mode will fail.
320          *    The hns3 VF device can be configured as trusted device by hns3 PF
321          *    kernel ethdev driver on the host by the following command:
322          *      "ip link set <eth num> vf <vf id> turst on"
323          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
324          *    can receive the ingress and outgoing traffic. This includes
325          *    all the ingress packets, all the packets sent from the PF and
326          *    other VFs on the same physical port.
327          * 3. Note: Because of the hardware constraints, By default vlan filter
328          *    is enabled and couldn't be turned off based on VF device, so vlan
329          *    filter is still effective even in promiscuous mode. If upper
330          *    applications don't call rte_eth_dev_vlan_filter API function to
331          *    set vlan based on VF device, hns3 VF PMD will can't receive
332          *    the packets with vlan tag in promiscuous mode.
333          */
334         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
335         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
336         req->msg[1] = en_bc_pmc ? 1 : 0;
337         req->msg[2] = en_uc_pmc ? 1 : 0;
338         req->msg[3] = en_mc_pmc ? 1 : 0;
339         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
340
341         ret = hns3_cmd_send(hw, &desc, 1);
342         if (ret)
343                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
344
345         return ret;
346 }
347
348 static int
349 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
350 {
351         struct hns3_adapter *hns = dev->data->dev_private;
352         struct hns3_hw *hw = &hns->hw;
353         int ret;
354
355         ret = hns3vf_set_promisc_mode(hw, true, true, true);
356         if (ret)
357                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
358                         ret);
359         return ret;
360 }
361
362 static int
363 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
364 {
365         bool allmulti = dev->data->all_multicast ? true : false;
366         struct hns3_adapter *hns = dev->data->dev_private;
367         struct hns3_hw *hw = &hns->hw;
368         int ret;
369
370         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
371         if (ret)
372                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
373                         ret);
374         return ret;
375 }
376
377 static int
378 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
379 {
380         struct hns3_adapter *hns = dev->data->dev_private;
381         struct hns3_hw *hw = &hns->hw;
382         int ret;
383
384         if (dev->data->promiscuous)
385                 return 0;
386
387         ret = hns3vf_set_promisc_mode(hw, true, false, true);
388         if (ret)
389                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
390                         ret);
391         return ret;
392 }
393
394 static int
395 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
396 {
397         struct hns3_adapter *hns = dev->data->dev_private;
398         struct hns3_hw *hw = &hns->hw;
399         int ret;
400
401         if (dev->data->promiscuous)
402                 return 0;
403
404         ret = hns3vf_set_promisc_mode(hw, true, false, false);
405         if (ret)
406                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
407                         ret);
408         return ret;
409 }
410
411 static int
412 hns3vf_restore_promisc(struct hns3_adapter *hns)
413 {
414         struct hns3_hw *hw = &hns->hw;
415         bool allmulti = hw->data->all_multicast ? true : false;
416
417         if (hw->data->promiscuous)
418                 return hns3vf_set_promisc_mode(hw, true, true, true);
419
420         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
421 }
422
423 static int
424 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id,
425                              bool mmap, enum hns3_ring_type queue_type,
426                              uint16_t queue_id)
427 {
428         struct hns3_vf_bind_vector_msg bind_msg;
429         const char *op_str;
430         uint16_t code;
431         int ret;
432
433         memset(&bind_msg, 0, sizeof(bind_msg));
434         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
435                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
436         bind_msg.vector_id = (uint8_t)vector_id;
437
438         if (queue_type == HNS3_RING_TYPE_RX)
439                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
440         else
441                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
442
443         bind_msg.param[0].ring_type = queue_type;
444         bind_msg.ring_num = 1;
445         bind_msg.param[0].tqp_index = queue_id;
446         op_str = mmap ? "Map" : "Unmap";
447         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
448                                 sizeof(bind_msg), false, NULL, 0);
449         if (ret)
450                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
451                          op_str, queue_id, bind_msg.vector_id, ret);
452
453         return ret;
454 }
455
456 static int
457 hns3vf_dev_configure(struct rte_eth_dev *dev)
458 {
459         struct hns3_adapter *hns = dev->data->dev_private;
460         struct hns3_hw *hw = &hns->hw;
461         struct rte_eth_conf *conf = &dev->data->dev_conf;
462         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
463         uint16_t nb_rx_q = dev->data->nb_rx_queues;
464         uint16_t nb_tx_q = dev->data->nb_tx_queues;
465         struct rte_eth_rss_conf rss_conf;
466         bool gro_en;
467         int ret;
468
469         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
470
471         /*
472          * Some versions of hardware network engine does not support
473          * individually enable/disable/reset the Tx or Rx queue. These devices
474          * must enable/disable/reset Tx and Rx queues at the same time. When the
475          * numbers of Tx queues allocated by upper applications are not equal to
476          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
477          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
478          * work as usual. But these fake queues are imperceptible, and can not
479          * be used by upper applications.
480          */
481         ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
482         if (ret) {
483                 hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
484                 hw->cfg_max_queues = 0;
485                 return ret;
486         }
487
488         hw->adapter_state = HNS3_NIC_CONFIGURING;
489         if (conf->link_speeds & RTE_ETH_LINK_SPEED_FIXED) {
490                 hns3_err(hw, "setting link speed/duplex not supported");
491                 ret = -EINVAL;
492                 goto cfg_err;
493         }
494
495         /* When RSS is not configured, redirect the packet queue 0 */
496         if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
497                 conf->rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
498                 rss_conf = conf->rx_adv_conf.rss_conf;
499                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
500                 if (ret)
501                         goto cfg_err;
502         }
503
504         ret = hns3vf_dev_mtu_set(dev, conf->rxmode.mtu);
505         if (ret != 0)
506                 goto cfg_err;
507
508         ret = hns3vf_dev_configure_vlan(dev);
509         if (ret)
510                 goto cfg_err;
511
512         /* config hardware GRO */
513         gro_en = conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO ? true : false;
514         ret = hns3_config_gro(hw, gro_en);
515         if (ret)
516                 goto cfg_err;
517
518         hns3_init_rx_ptype_tble(dev);
519
520         hw->adapter_state = HNS3_NIC_CONFIGURED;
521         return 0;
522
523 cfg_err:
524         hw->cfg_max_queues = 0;
525         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
526         hw->adapter_state = HNS3_NIC_INITIALIZED;
527
528         return ret;
529 }
530
531 static int
532 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
533 {
534         int ret;
535
536         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
537                                 sizeof(mtu), true, NULL, 0);
538         if (ret)
539                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
540
541         return ret;
542 }
543
544 static int
545 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
546 {
547         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
548         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
549         int ret;
550
551         /*
552          * The hns3 PF/VF devices on the same port share the hardware MTU
553          * configuration. Currently, we send mailbox to inform hns3 PF kernel
554          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD,
555          * there is no need to stop the port for hns3 VF device, and the
556          * MTU value issued by hns3 VF PMD must be less than or equal to
557          * PF's MTU.
558          */
559         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
560                 hns3_err(hw, "Failed to set mtu during resetting");
561                 return -EIO;
562         }
563
564         /*
565          * when Rx of scattered packets is off, we have some possibility of
566          * using vector Rx process function or simple Rx functions in hns3 PMD.
567          * If the input MTU is increased and the maximum length of
568          * received packets is greater than the length of a buffer for Rx
569          * packet, the hardware network engine needs to use multiple BDs and
570          * buffers to store these packets. This will cause problems when still
571          * using vector Rx process function or simple Rx function to receiving
572          * packets. So, when Rx of scattered packets is off and device is
573          * started, it is not permitted to increase MTU so that the maximum
574          * length of Rx packets is greater than Rx buffer length.
575          */
576         if (dev->data->dev_started && !dev->data->scattered_rx &&
577             frame_size > hw->rx_buf_len) {
578                 hns3_err(hw, "failed to set mtu because current is "
579                         "not scattered rx mode");
580                 return -EOPNOTSUPP;
581         }
582
583         rte_spinlock_lock(&hw->lock);
584         ret = hns3vf_config_mtu(hw, mtu);
585         if (ret) {
586                 rte_spinlock_unlock(&hw->lock);
587                 return ret;
588         }
589         rte_spinlock_unlock(&hw->lock);
590
591         return 0;
592 }
593
594 static void
595 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
596 {
597         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
598 }
599
600 static void
601 hns3vf_disable_irq0(struct hns3_hw *hw)
602 {
603         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
604 }
605
606 static void
607 hns3vf_enable_irq0(struct hns3_hw *hw)
608 {
609         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
610 }
611
612 static enum hns3vf_evt_cause
613 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
614 {
615         struct hns3_hw *hw = &hns->hw;
616         enum hns3vf_evt_cause ret;
617         uint32_t cmdq_stat_reg;
618         uint32_t rst_ing_reg;
619         uint32_t val;
620
621         /* Fetch the events from their corresponding regs */
622         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
623         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
624                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
625                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
626                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
627                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
628                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
629                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
630                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
631                 if (clearval) {
632                         hw->reset.stats.global_cnt++;
633                         hns3_warn(hw, "Global reset detected, clear reset status");
634                 } else {
635                         hns3_schedule_delayed_reset(hns);
636                         hns3_warn(hw, "Global reset detected, don't clear reset status");
637                 }
638
639                 ret = HNS3VF_VECTOR0_EVENT_RST;
640                 goto out;
641         }
642
643         /* Check for vector0 mailbox(=CMDQ RX) event source */
644         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
645                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
646                 ret = HNS3VF_VECTOR0_EVENT_MBX;
647                 goto out;
648         }
649
650         val = 0;
651         ret = HNS3VF_VECTOR0_EVENT_OTHER;
652 out:
653         if (clearval)
654                 *clearval = val;
655         return ret;
656 }
657
658 static void
659 hns3vf_interrupt_handler(void *param)
660 {
661         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
662         struct hns3_adapter *hns = dev->data->dev_private;
663         struct hns3_hw *hw = &hns->hw;
664         enum hns3vf_evt_cause event_cause;
665         uint32_t clearval;
666
667         /* Disable interrupt */
668         hns3vf_disable_irq0(hw);
669
670         /* Read out interrupt causes */
671         event_cause = hns3vf_check_event_cause(hns, &clearval);
672         /* Clear interrupt causes */
673         hns3vf_clear_event_cause(hw, clearval);
674
675         switch (event_cause) {
676         case HNS3VF_VECTOR0_EVENT_RST:
677                 hns3_schedule_reset(hns);
678                 break;
679         case HNS3VF_VECTOR0_EVENT_MBX:
680                 hns3_dev_handle_mbx_msg(hw);
681                 break;
682         default:
683                 break;
684         }
685
686         /* Enable interrupt */
687         hns3vf_enable_irq0(hw);
688 }
689
690 static void
691 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
692 {
693         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
694         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
695         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
696         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
697 }
698
699 static void
700 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
701 {
702         struct hns3_dev_specs_0_cmd *req0;
703
704         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
705
706         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
707         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
708         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
709         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
710 }
711
712 static int
713 hns3vf_check_dev_specifications(struct hns3_hw *hw)
714 {
715         if (hw->rss_ind_tbl_size == 0 ||
716             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
717                 hns3_warn(hw, "the size of hash lookup table configured (%u)"
718                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
719                               HNS3_RSS_IND_TBL_SIZE_MAX);
720                 return -EINVAL;
721         }
722
723         return 0;
724 }
725
726 static int
727 hns3vf_query_dev_specifications(struct hns3_hw *hw)
728 {
729         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
730         int ret;
731         int i;
732
733         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
734                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
735                                           true);
736                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
737         }
738         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
739
740         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
741         if (ret)
742                 return ret;
743
744         hns3vf_parse_dev_specifications(hw, desc);
745
746         return hns3vf_check_dev_specifications(hw);
747 }
748
749 void
750 hns3vf_update_push_lsc_cap(struct hns3_hw *hw, bool supported)
751 {
752         uint16_t val = supported ? HNS3_PF_PUSH_LSC_CAP_SUPPORTED :
753                                    HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
754         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
755         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
756
757         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
758                 __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
759                                           __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
760 }
761
762 static void
763 hns3vf_get_push_lsc_cap(struct hns3_hw *hw)
764 {
765 #define HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS      500
766
767         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
768         int32_t remain_ms = HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS;
769         uint16_t val = HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
770         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
771         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
772
773         __atomic_store_n(&vf->pf_push_lsc_cap, HNS3_PF_PUSH_LSC_CAP_UNKNOWN,
774                          __ATOMIC_RELEASE);
775
776         (void)hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
777                                 NULL, 0);
778
779         while (remain_ms > 0) {
780                 rte_delay_ms(HNS3_POLL_RESPONE_MS);
781                 if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) !=
782                         HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
783                         break;
784                 remain_ms--;
785         }
786
787         /*
788          * When exit above loop, the pf_push_lsc_cap could be one of the three
789          * state: unknown (means pf not ack), not_supported, supported.
790          * Here config it as 'not_supported' when it's 'unknown' state.
791          */
792         __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
793                                   __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
794
795         if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) ==
796                 HNS3_PF_PUSH_LSC_CAP_SUPPORTED) {
797                 hns3_info(hw, "detect PF support push link status change!");
798         } else {
799                 /*
800                  * Framework already set RTE_ETH_DEV_INTR_LSC bit because driver
801                  * declared RTE_PCI_DRV_INTR_LSC in drv_flags. So here cleared
802                  * the RTE_ETH_DEV_INTR_LSC capability.
803                  */
804                 dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
805         }
806 }
807
808 static int
809 hns3vf_get_capability(struct hns3_hw *hw)
810 {
811         int ret;
812
813         ret = hns3_get_pci_revision_id(hw, &hw->revision);
814         if (ret)
815                 return ret;
816
817         if (hw->revision < PCI_REVISION_ID_HIP09_A) {
818                 hns3vf_set_default_dev_specifications(hw);
819                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
820                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
821                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
822                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
823                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
824                 hw->rss_info.ipv6_sctp_offload_supported = false;
825                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
826                 return 0;
827         }
828
829         ret = hns3vf_query_dev_specifications(hw);
830         if (ret) {
831                 PMD_INIT_LOG(ERR,
832                              "failed to query dev specifications, ret = %d",
833                              ret);
834                 return ret;
835         }
836
837         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
838         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
839         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
840         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
841         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
842         hw->rss_info.ipv6_sctp_offload_supported = true;
843         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
844
845         return 0;
846 }
847
848 static int
849 hns3vf_check_tqp_info(struct hns3_hw *hw)
850 {
851         if (hw->tqps_num == 0) {
852                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
853                 return -EINVAL;
854         }
855
856         if (hw->rss_size_max == 0) {
857                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
858                 return -EINVAL;
859         }
860
861         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
862
863         return 0;
864 }
865
866 static int
867 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
868 {
869         uint8_t resp_msg;
870         int ret;
871
872         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
873                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
874                                 true, &resp_msg, sizeof(resp_msg));
875         if (ret) {
876                 if (ret == -ETIME) {
877                         /*
878                          * Getting current port based VLAN state from PF driver
879                          * will not affect VF driver's basic function. Because
880                          * the VF driver relies on hns3 PF kernel ether driver,
881                          * to avoid introducing compatibility issues with older
882                          * version of PF driver, no failure will be returned
883                          * when the return value is ETIME. This return value has
884                          * the following scenarios:
885                          * 1) Firmware didn't return the results in time
886                          * 2) the result return by firmware is timeout
887                          * 3) the older version of kernel side PF driver does
888                          *    not support this mailbox message.
889                          * For scenarios 1 and 2, it is most likely that a
890                          * hardware error has occurred, or a hardware reset has
891                          * occurred. In this case, these errors will be caught
892                          * by other functions.
893                          */
894                         PMD_INIT_LOG(WARNING,
895                                 "failed to get PVID state for timeout, maybe "
896                                 "kernel side PF driver doesn't support this "
897                                 "mailbox message, or firmware didn't respond.");
898                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
899                 } else {
900                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
901                                 " ret = %d", ret);
902                         return ret;
903                 }
904         }
905         hw->port_base_vlan_cfg.state = resp_msg ?
906                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
907         return 0;
908 }
909
910 static int
911 hns3vf_get_queue_info(struct hns3_hw *hw)
912 {
913 #define HNS3VF_TQPS_RSS_INFO_LEN        6
914         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
915         int ret;
916
917         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
918                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
919         if (ret) {
920                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
921                 return ret;
922         }
923
924         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
925         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
926
927         return hns3vf_check_tqp_info(hw);
928 }
929
930 static void
931 hns3vf_update_caps(struct hns3_hw *hw, uint32_t caps)
932 {
933         if (hns3_get_bit(caps, HNS3VF_CAPS_VLAN_FLT_MOD_B))
934                 hns3_set_bit(hw->capability,
935                                 HNS3_DEV_SUPPORT_VF_VLAN_FLT_MOD_B, 1);
936 }
937
938 static int
939 hns3vf_get_num_tc(struct hns3_hw *hw)
940 {
941         uint8_t num_tc = 0;
942         uint32_t i;
943
944         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
945                 if (hw->hw_tc_map & BIT(i))
946                         num_tc++;
947         }
948         return num_tc;
949 }
950
951 static int
952 hns3vf_get_basic_info(struct hns3_hw *hw)
953 {
954         uint8_t resp_msg[HNS3_MBX_MAX_RESP_DATA_SIZE];
955         struct hns3_basic_info *basic_info;
956         int ret;
957
958         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_BASIC_INFO, 0, NULL, 0,
959                                 true, resp_msg, sizeof(resp_msg));
960         if (ret) {
961                 hns3_err(hw, "failed to get basic info from PF, ret = %d.",
962                                 ret);
963                 return ret;
964         }
965
966         basic_info = (struct hns3_basic_info *)resp_msg;
967         hw->hw_tc_map = basic_info->hw_tc_map;
968         hw->num_tc = hns3vf_get_num_tc(hw);
969         hw->pf_vf_if_version = basic_info->pf_vf_if_version;
970         hns3vf_update_caps(hw, basic_info->caps);
971
972         return 0;
973 }
974
975 static int
976 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
977 {
978         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
979         int ret;
980
981         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
982                                 true, host_mac, RTE_ETHER_ADDR_LEN);
983         if (ret) {
984                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
985                 return ret;
986         }
987
988         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
989
990         return 0;
991 }
992
993 static int
994 hns3vf_get_configuration(struct hns3_hw *hw)
995 {
996         int ret;
997
998         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
999
1000         /* Get device capability */
1001         ret = hns3vf_get_capability(hw);
1002         if (ret) {
1003                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1004                 return ret;
1005         }
1006
1007         hns3vf_get_push_lsc_cap(hw);
1008
1009         /* Get basic info from PF */
1010         ret = hns3vf_get_basic_info(hw);
1011         if (ret)
1012                 return ret;
1013
1014         /* Get queue configuration from PF */
1015         ret = hns3vf_get_queue_info(hw);
1016         if (ret)
1017                 return ret;
1018
1019         /* Get user defined VF MAC addr from PF */
1020         ret = hns3vf_get_host_mac_addr(hw);
1021         if (ret)
1022                 return ret;
1023
1024         return hns3vf_get_port_base_vlan_filter_state(hw);
1025 }
1026
1027 static void
1028 hns3vf_request_link_info(struct hns3_hw *hw)
1029 {
1030         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1031         bool send_req;
1032         int ret;
1033
1034         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1035                 return;
1036
1037         send_req = vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED ||
1038                    vf->req_link_info_cnt > 0;
1039         if (!send_req)
1040                 return;
1041
1042         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1043                                 NULL, 0);
1044         if (ret) {
1045                 hns3_err(hw, "failed to fetch link status, ret = %d", ret);
1046                 return;
1047         }
1048
1049         if (vf->req_link_info_cnt > 0)
1050                 vf->req_link_info_cnt--;
1051 }
1052
1053 void
1054 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1055                           uint32_t link_speed, uint8_t link_duplex)
1056 {
1057         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1058         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1059         struct hns3_mac *mac = &hw->mac;
1060         int ret;
1061
1062         /*
1063          * PF kernel driver may push link status when VF driver is in resetting,
1064          * driver will stop polling job in this case, after resetting done
1065          * driver will start polling job again.
1066          * When polling job started, driver will get initial link status by
1067          * sending request to PF kernel driver, then could update link status by
1068          * process PF kernel driver's link status mailbox message.
1069          */
1070         if (!__atomic_load_n(&vf->poll_job_started, __ATOMIC_RELAXED))
1071                 return;
1072
1073         if (hw->adapter_state != HNS3_NIC_STARTED)
1074                 return;
1075
1076         mac->link_status = link_status;
1077         mac->link_speed = link_speed;
1078         mac->link_duplex = link_duplex;
1079         ret = hns3vf_dev_link_update(dev, 0);
1080         if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
1081                 hns3_start_report_lse(dev);
1082 }
1083
1084 static int
1085 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1086 {
1087 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1088         struct hns3_hw *hw = &hns->hw;
1089         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1090         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1091         uint8_t is_kill = on ? 0 : 1;
1092
1093         msg_data[0] = is_kill;
1094         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1095         memcpy(&msg_data[3], &proto, sizeof(proto));
1096
1097         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1098                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1099                                  0);
1100 }
1101
1102 static int
1103 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1104 {
1105         struct hns3_adapter *hns = dev->data->dev_private;
1106         struct hns3_hw *hw = &hns->hw;
1107         int ret;
1108
1109         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1110                 hns3_err(hw,
1111                          "vf set vlan id failed during resetting, vlan_id =%u",
1112                          vlan_id);
1113                 return -EIO;
1114         }
1115         rte_spinlock_lock(&hw->lock);
1116         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1117         rte_spinlock_unlock(&hw->lock);
1118         if (ret)
1119                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1120                          vlan_id, ret);
1121
1122         return ret;
1123 }
1124
1125 static int
1126 hns3vf_en_vlan_filter(struct hns3_hw *hw, bool enable)
1127 {
1128         uint8_t msg_data;
1129         int ret;
1130
1131         if (!hns3_dev_get_support(hw, VF_VLAN_FLT_MOD))
1132                 return 0;
1133
1134         msg_data = enable ? 1 : 0;
1135         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1136                         HNS3_MBX_ENABLE_VLAN_FILTER, &msg_data,
1137                         sizeof(msg_data), true, NULL, 0);
1138         if (ret)
1139                 hns3_err(hw, "%s vlan filter failed, ret = %d.",
1140                                 enable ? "enable" : "disable", ret);
1141
1142         return ret;
1143 }
1144
1145 static int
1146 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1147 {
1148         uint8_t msg_data;
1149         int ret;
1150
1151         msg_data = enable ? 1 : 0;
1152         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1153                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1154         if (ret)
1155                 hns3_err(hw, "vf %s strip failed, ret = %d.",
1156                                 enable ? "enable" : "disable", ret);
1157
1158         return ret;
1159 }
1160
1161 static int
1162 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1163 {
1164         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1165         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1166         unsigned int tmp_mask;
1167         int ret = 0;
1168
1169         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1170                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1171                              "mask = 0x%x", mask);
1172                 return -EIO;
1173         }
1174
1175         tmp_mask = (unsigned int)mask;
1176
1177         if (tmp_mask & RTE_ETH_VLAN_FILTER_MASK) {
1178                 rte_spinlock_lock(&hw->lock);
1179                 /* Enable or disable VLAN filter */
1180                 if (dev_conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER)
1181                         ret = hns3vf_en_vlan_filter(hw, true);
1182                 else
1183                         ret = hns3vf_en_vlan_filter(hw, false);
1184                 rte_spinlock_unlock(&hw->lock);
1185                 if (ret)
1186                         return ret;
1187         }
1188
1189         /* Vlan stripping setting */
1190         if (tmp_mask & RTE_ETH_VLAN_STRIP_MASK) {
1191                 rte_spinlock_lock(&hw->lock);
1192                 /* Enable or disable VLAN stripping */
1193                 if (dev_conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
1194                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1195                 else
1196                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1197                 rte_spinlock_unlock(&hw->lock);
1198         }
1199
1200         return ret;
1201 }
1202
1203 static int
1204 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1205 {
1206         struct rte_vlan_filter_conf *vfc;
1207         struct hns3_hw *hw = &hns->hw;
1208         uint16_t vlan_id;
1209         uint64_t vbit;
1210         uint64_t ids;
1211         int ret = 0;
1212         uint32_t i;
1213
1214         vfc = &hw->data->vlan_filter_conf;
1215         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1216                 if (vfc->ids[i] == 0)
1217                         continue;
1218                 ids = vfc->ids[i];
1219                 while (ids) {
1220                         /*
1221                          * 64 means the num bits of ids, one bit corresponds to
1222                          * one vlan id
1223                          */
1224                         vlan_id = 64 * i;
1225                         /* count trailing zeroes */
1226                         vbit = ~ids & (ids - 1);
1227                         /* clear least significant bit set */
1228                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1229                         for (; vbit;) {
1230                                 vbit >>= 1;
1231                                 vlan_id++;
1232                         }
1233                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1234                         if (ret) {
1235                                 hns3_err(hw,
1236                                          "VF handle vlan table failed, ret =%d, on = %d",
1237                                          ret, on);
1238                                 return ret;
1239                         }
1240                 }
1241         }
1242
1243         return ret;
1244 }
1245
1246 static int
1247 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1248 {
1249         return hns3vf_handle_all_vlan_table(hns, 0);
1250 }
1251
1252 static int
1253 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1254 {
1255         struct hns3_hw *hw = &hns->hw;
1256         struct rte_eth_conf *dev_conf;
1257         bool en;
1258         int ret;
1259
1260         dev_conf = &hw->data->dev_conf;
1261         en = dev_conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP ? true
1262                                                                    : false;
1263         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1264         if (ret)
1265                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1266                          ret);
1267         return ret;
1268 }
1269
1270 static int
1271 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1272 {
1273         struct hns3_adapter *hns = dev->data->dev_private;
1274         struct rte_eth_dev_data *data = dev->data;
1275         struct hns3_hw *hw = &hns->hw;
1276         int ret;
1277
1278         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1279             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1280             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1281                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1282                               "or hw_vlan_insert_pvid is not support!");
1283         }
1284
1285         /* Apply vlan offload setting */
1286         ret = hns3vf_vlan_offload_set(dev, RTE_ETH_VLAN_STRIP_MASK |
1287                                         RTE_ETH_VLAN_FILTER_MASK);
1288         if (ret)
1289                 hns3_err(hw, "dev config vlan offload failed, ret = %d.", ret);
1290
1291         return ret;
1292 }
1293
1294 static int
1295 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1296 {
1297         uint8_t msg_data;
1298
1299         msg_data = alive ? 1 : 0;
1300         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1301                                  sizeof(msg_data), false, NULL, 0);
1302 }
1303
1304 static void
1305 hns3vf_keep_alive_handler(void *param)
1306 {
1307         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1308         struct hns3_adapter *hns = eth_dev->data->dev_private;
1309         struct hns3_hw *hw = &hns->hw;
1310         int ret;
1311
1312         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1313                                 false, NULL, 0);
1314         if (ret)
1315                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1316                          ret);
1317
1318         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1319                           eth_dev);
1320 }
1321
1322 static void
1323 hns3vf_service_handler(void *param)
1324 {
1325         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1326         struct hns3_adapter *hns = eth_dev->data->dev_private;
1327         struct hns3_hw *hw = &hns->hw;
1328
1329         /*
1330          * The query link status and reset processing are executed in the
1331          * interrupt thread. When the IMP reset occurs, IMP will not respond,
1332          * and the query operation will timeout after 30ms. In the case of
1333          * multiple PF/VFs, each query failure timeout causes the IMP reset
1334          * interrupt to fail to respond within 100ms.
1335          * Before querying the link status, check whether there is a reset
1336          * pending, and if so, abandon the query.
1337          */
1338         if (!hns3vf_is_reset_pending(hns)) {
1339                 hns3vf_request_link_info(hw);
1340                 hns3_update_hw_stats(hw);
1341         } else {
1342                 hns3_warn(hw, "Cancel the query when reset is pending");
1343         }
1344
1345         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1346                           eth_dev);
1347 }
1348
1349 static void
1350 hns3vf_start_poll_job(struct rte_eth_dev *dev)
1351 {
1352 #define HNS3_REQUEST_LINK_INFO_REMAINS_CNT      3
1353
1354         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1355
1356         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_SUPPORTED)
1357                 vf->req_link_info_cnt = HNS3_REQUEST_LINK_INFO_REMAINS_CNT;
1358
1359         __atomic_store_n(&vf->poll_job_started, 1, __ATOMIC_RELAXED);
1360
1361         hns3vf_service_handler(dev);
1362 }
1363
1364 static void
1365 hns3vf_stop_poll_job(struct rte_eth_dev *dev)
1366 {
1367         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1368
1369         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1370
1371         __atomic_store_n(&vf->poll_job_started, 0, __ATOMIC_RELAXED);
1372 }
1373
1374 static int
1375 hns3_query_vf_resource(struct hns3_hw *hw)
1376 {
1377         struct hns3_vf_res_cmd *req;
1378         struct hns3_cmd_desc desc;
1379         uint16_t num_msi;
1380         int ret;
1381
1382         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1383         ret = hns3_cmd_send(hw, &desc, 1);
1384         if (ret) {
1385                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1386                 return ret;
1387         }
1388
1389         req = (struct hns3_vf_res_cmd *)desc.data;
1390         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1391                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1392         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1393                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1394                          num_msi, HNS3_MIN_VECTOR_NUM);
1395                 return -EINVAL;
1396         }
1397
1398         hw->num_msi = num_msi;
1399
1400         return 0;
1401 }
1402
1403 static int
1404 hns3vf_init_hardware(struct hns3_adapter *hns)
1405 {
1406         struct hns3_hw *hw = &hns->hw;
1407         uint16_t mtu = hw->data->mtu;
1408         int ret;
1409
1410         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1411         if (ret)
1412                 return ret;
1413
1414         ret = hns3vf_config_mtu(hw, mtu);
1415         if (ret)
1416                 goto err_init_hardware;
1417
1418         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1419         if (ret) {
1420                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1421                 goto err_init_hardware;
1422         }
1423
1424         ret = hns3_config_gro(hw, false);
1425         if (ret) {
1426                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1427                 goto err_init_hardware;
1428         }
1429
1430         /*
1431          * In the initialization clearing the all hardware mapping relationship
1432          * configurations between queues and interrupt vectors is needed, so
1433          * some error caused by the residual configurations, such as the
1434          * unexpected interrupt, can be avoid.
1435          */
1436         ret = hns3_init_ring_with_vector(hw);
1437         if (ret) {
1438                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1439                 goto err_init_hardware;
1440         }
1441
1442         return 0;
1443
1444 err_init_hardware:
1445         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1446         return ret;
1447 }
1448
1449 static int
1450 hns3vf_clear_vport_list(struct hns3_hw *hw)
1451 {
1452         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1453                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1454                                  NULL, 0);
1455 }
1456
1457 static int
1458 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1459 {
1460         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1461         struct hns3_adapter *hns = eth_dev->data->dev_private;
1462         struct hns3_hw *hw = &hns->hw;
1463         int ret;
1464
1465         PMD_INIT_FUNC_TRACE();
1466
1467         /* Get hardware io base address from pcie BAR2 IO space */
1468         hw->io_base = pci_dev->mem_resource[2].addr;
1469
1470         /* Firmware command queue initialize */
1471         ret = hns3_cmd_init_queue(hw);
1472         if (ret) {
1473                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1474                 goto err_cmd_init_queue;
1475         }
1476
1477         /* Firmware command initialize */
1478         ret = hns3_cmd_init(hw);
1479         if (ret) {
1480                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1481                 goto err_cmd_init;
1482         }
1483
1484         hns3_tx_push_init(eth_dev);
1485
1486         /* Get VF resource */
1487         ret = hns3_query_vf_resource(hw);
1488         if (ret)
1489                 goto err_cmd_init;
1490
1491         rte_spinlock_init(&hw->mbx_resp.lock);
1492
1493         hns3vf_clear_event_cause(hw, 0);
1494
1495         ret = rte_intr_callback_register(pci_dev->intr_handle,
1496                                          hns3vf_interrupt_handler, eth_dev);
1497         if (ret) {
1498                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1499                 goto err_intr_callback_register;
1500         }
1501
1502         /* Enable interrupt */
1503         rte_intr_enable(pci_dev->intr_handle);
1504         hns3vf_enable_irq0(hw);
1505
1506         /* Get configuration from PF */
1507         ret = hns3vf_get_configuration(hw);
1508         if (ret) {
1509                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1510                 goto err_get_config;
1511         }
1512
1513         ret = hns3_stats_init(hw);
1514         if (ret)
1515                 goto err_get_config;
1516
1517         ret = hns3_queue_to_tc_mapping(hw, hw->tqps_num, hw->tqps_num);
1518         if (ret) {
1519                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1520                 goto err_set_tc_queue;
1521         }
1522
1523         ret = hns3vf_clear_vport_list(hw);
1524         if (ret) {
1525                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1526                 goto err_set_tc_queue;
1527         }
1528
1529         ret = hns3vf_init_hardware(hns);
1530         if (ret)
1531                 goto err_set_tc_queue;
1532
1533         hns3_rss_set_default_args(hw);
1534
1535         ret = hns3vf_set_alive(hw, true);
1536         if (ret) {
1537                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1538                 goto err_set_tc_queue;
1539         }
1540
1541         return 0;
1542
1543 err_set_tc_queue:
1544         hns3_stats_uninit(hw);
1545
1546 err_get_config:
1547         hns3vf_disable_irq0(hw);
1548         rte_intr_disable(pci_dev->intr_handle);
1549         hns3_intr_unregister(pci_dev->intr_handle, hns3vf_interrupt_handler,
1550                              eth_dev);
1551 err_intr_callback_register:
1552 err_cmd_init:
1553         hns3_cmd_uninit(hw);
1554         hns3_cmd_destroy_queue(hw);
1555 err_cmd_init_queue:
1556         hw->io_base = NULL;
1557
1558         return ret;
1559 }
1560
1561 static void
1562 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1563 {
1564         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1565         struct hns3_adapter *hns = eth_dev->data->dev_private;
1566         struct hns3_hw *hw = &hns->hw;
1567
1568         PMD_INIT_FUNC_TRACE();
1569
1570         hns3_rss_uninit(hns);
1571         (void)hns3_config_gro(hw, false);
1572         (void)hns3vf_set_alive(hw, false);
1573         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1574         hns3_flow_uninit(eth_dev);
1575         hns3_stats_uninit(hw);
1576         hns3vf_disable_irq0(hw);
1577         rte_intr_disable(pci_dev->intr_handle);
1578         hns3_intr_unregister(pci_dev->intr_handle, hns3vf_interrupt_handler,
1579                              eth_dev);
1580         hns3_cmd_uninit(hw);
1581         hns3_cmd_destroy_queue(hw);
1582         hw->io_base = NULL;
1583 }
1584
1585 static int
1586 hns3vf_do_stop(struct hns3_adapter *hns)
1587 {
1588         struct hns3_hw *hw = &hns->hw;
1589         int ret;
1590
1591         hw->mac.link_status = RTE_ETH_LINK_DOWN;
1592
1593         /*
1594          * The "hns3vf_do_stop" function will also be called by .stop_service to
1595          * prepare reset. At the time of global or IMP reset, the command cannot
1596          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
1597          * accessed during the reset process. So the mbuf can not be released
1598          * during reset and is required to be released after the reset is
1599          * completed.
1600          */
1601         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
1602                 hns3_dev_release_mbufs(hns);
1603
1604         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
1605                 hns3_configure_all_mac_addr(hns, true);
1606                 ret = hns3_reset_all_tqps(hns);
1607                 if (ret) {
1608                         hns3_err(hw, "failed to reset all queues ret = %d",
1609                                  ret);
1610                         return ret;
1611                 }
1612         }
1613         return 0;
1614 }
1615
1616 static int
1617 hns3vf_dev_stop(struct rte_eth_dev *dev)
1618 {
1619         struct hns3_adapter *hns = dev->data->dev_private;
1620         struct hns3_hw *hw = &hns->hw;
1621
1622         PMD_INIT_FUNC_TRACE();
1623         dev->data->dev_started = 0;
1624
1625         hw->adapter_state = HNS3_NIC_STOPPING;
1626         hns3_set_rxtx_function(dev);
1627         rte_wmb();
1628         /* Disable datapath on secondary process. */
1629         hns3_mp_req_stop_rxtx(dev);
1630         /* Prevent crashes when queues are still in use. */
1631         rte_delay_ms(hw->cfg_max_queues);
1632
1633         rte_spinlock_lock(&hw->lock);
1634         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1635                 hns3_stop_tqps(hw);
1636                 hns3vf_do_stop(hns);
1637                 hns3_unmap_rx_interrupt(dev);
1638                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1639         }
1640         hns3_rx_scattered_reset(dev);
1641         hns3vf_stop_poll_job(dev);
1642         hns3_stop_report_lse(dev);
1643         rte_spinlock_unlock(&hw->lock);
1644
1645         return 0;
1646 }
1647
1648 static int
1649 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1650 {
1651         struct hns3_adapter *hns = eth_dev->data->dev_private;
1652         struct hns3_hw *hw = &hns->hw;
1653         int ret = 0;
1654
1655         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1656                 hns3_mp_uninit(eth_dev);
1657                 return 0;
1658         }
1659
1660         if (hw->adapter_state == HNS3_NIC_STARTED)
1661                 ret = hns3vf_dev_stop(eth_dev);
1662
1663         hw->adapter_state = HNS3_NIC_CLOSING;
1664         hns3_reset_abort(hns);
1665         hw->adapter_state = HNS3_NIC_CLOSED;
1666         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1667         hns3_configure_all_mc_mac_addr(hns, true);
1668         hns3vf_remove_all_vlan_table(hns);
1669         hns3vf_uninit_vf(eth_dev);
1670         hns3_free_all_queues(eth_dev);
1671         rte_free(hw->reset.wait_data);
1672         hns3_mp_uninit(eth_dev);
1673         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
1674
1675         return ret;
1676 }
1677
1678 static int
1679 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1680                        __rte_unused int wait_to_complete)
1681 {
1682         struct hns3_adapter *hns = eth_dev->data->dev_private;
1683         struct hns3_hw *hw = &hns->hw;
1684         struct hns3_mac *mac = &hw->mac;
1685         struct rte_eth_link new_link;
1686
1687         memset(&new_link, 0, sizeof(new_link));
1688         switch (mac->link_speed) {
1689         case RTE_ETH_SPEED_NUM_10M:
1690         case RTE_ETH_SPEED_NUM_100M:
1691         case RTE_ETH_SPEED_NUM_1G:
1692         case RTE_ETH_SPEED_NUM_10G:
1693         case RTE_ETH_SPEED_NUM_25G:
1694         case RTE_ETH_SPEED_NUM_40G:
1695         case RTE_ETH_SPEED_NUM_50G:
1696         case RTE_ETH_SPEED_NUM_100G:
1697         case RTE_ETH_SPEED_NUM_200G:
1698                 if (mac->link_status)
1699                         new_link.link_speed = mac->link_speed;
1700                 break;
1701         default:
1702                 if (mac->link_status)
1703                         new_link.link_speed = RTE_ETH_SPEED_NUM_UNKNOWN;
1704                 break;
1705         }
1706
1707         if (!mac->link_status)
1708                 new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
1709
1710         new_link.link_duplex = mac->link_duplex;
1711         new_link.link_status = mac->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
1712         new_link.link_autoneg =
1713             !(eth_dev->data->dev_conf.link_speeds & RTE_ETH_LINK_SPEED_FIXED);
1714
1715         return rte_eth_linkstatus_set(eth_dev, &new_link);
1716 }
1717
1718 static int
1719 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
1720 {
1721         struct hns3_hw *hw = &hns->hw;
1722         uint16_t nb_rx_q = hw->data->nb_rx_queues;
1723         uint16_t nb_tx_q = hw->data->nb_tx_queues;
1724         int ret;
1725
1726         ret = hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1727         if (ret)
1728                 return ret;
1729
1730         hns3_enable_rxd_adv_layout(hw);
1731
1732         ret = hns3_init_queues(hns, reset_queue);
1733         if (ret)
1734                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
1735
1736         return ret;
1737 }
1738
1739 static void
1740 hns3vf_restore_filter(struct rte_eth_dev *dev)
1741 {
1742         hns3_restore_rss_filter(dev);
1743 }
1744
1745 static int
1746 hns3vf_dev_start(struct rte_eth_dev *dev)
1747 {
1748         struct hns3_adapter *hns = dev->data->dev_private;
1749         struct hns3_hw *hw = &hns->hw;
1750         int ret;
1751
1752         PMD_INIT_FUNC_TRACE();
1753         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1754                 return -EBUSY;
1755
1756         rte_spinlock_lock(&hw->lock);
1757         hw->adapter_state = HNS3_NIC_STARTING;
1758         ret = hns3vf_do_start(hns, true);
1759         if (ret) {
1760                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1761                 rte_spinlock_unlock(&hw->lock);
1762                 return ret;
1763         }
1764         ret = hns3_map_rx_interrupt(dev);
1765         if (ret)
1766                 goto map_rx_inter_err;
1767
1768         /*
1769          * There are three register used to control the status of a TQP
1770          * (contains a pair of Tx queue and Rx queue) in the new version network
1771          * engine. One is used to control the enabling of Tx queue, the other is
1772          * used to control the enabling of Rx queue, and the last is the master
1773          * switch used to control the enabling of the tqp. The Tx register and
1774          * TQP register must be enabled at the same time to enable a Tx queue.
1775          * The same applies to the Rx queue. For the older network enginem, this
1776          * function only refresh the enabled flag, and it is used to update the
1777          * status of queue in the dpdk framework.
1778          */
1779         ret = hns3_start_all_txqs(dev);
1780         if (ret)
1781                 goto map_rx_inter_err;
1782
1783         ret = hns3_start_all_rxqs(dev);
1784         if (ret)
1785                 goto start_all_rxqs_fail;
1786
1787         hw->adapter_state = HNS3_NIC_STARTED;
1788         rte_spinlock_unlock(&hw->lock);
1789
1790         hns3_rx_scattered_calc(dev);
1791         hns3_set_rxtx_function(dev);
1792         hns3_mp_req_start_rxtx(dev);
1793
1794         hns3vf_restore_filter(dev);
1795
1796         /* Enable interrupt of all rx queues before enabling queues */
1797         hns3_dev_all_rx_queue_intr_enable(hw, true);
1798         hns3_start_tqps(hw);
1799
1800         if (dev->data->dev_conf.intr_conf.lsc != 0)
1801                 hns3vf_dev_link_update(dev, 0);
1802         hns3vf_start_poll_job(dev);
1803
1804         return ret;
1805
1806 start_all_rxqs_fail:
1807         hns3_stop_all_txqs(dev);
1808 map_rx_inter_err:
1809         (void)hns3vf_do_stop(hns);
1810         hw->adapter_state = HNS3_NIC_CONFIGURED;
1811         rte_spinlock_unlock(&hw->lock);
1812
1813         return ret;
1814 }
1815
1816 static bool
1817 is_vf_reset_done(struct hns3_hw *hw)
1818 {
1819 #define HNS3_FUN_RST_ING_BITS \
1820         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
1821          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
1822          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
1823          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
1824
1825         uint32_t val;
1826
1827         if (hw->reset.level == HNS3_VF_RESET) {
1828                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1829                 if (val & HNS3_VF_RST_ING_BIT)
1830                         return false;
1831         } else {
1832                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1833                 if (val & HNS3_FUN_RST_ING_BITS)
1834                         return false;
1835         }
1836         return true;
1837 }
1838
1839 bool
1840 hns3vf_is_reset_pending(struct hns3_adapter *hns)
1841 {
1842         struct hns3_hw *hw = &hns->hw;
1843         enum hns3_reset_level reset;
1844
1845         /*
1846          * According to the protocol of PCIe, FLR to a PF device resets the PF
1847          * state as well as the SR-IOV extended capability including VF Enable
1848          * which means that VFs no longer exist.
1849          *
1850          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
1851          * is in FLR stage, the register state of VF device is not reliable,
1852          * so register states detection can not be carried out. In this case,
1853          * we just ignore the register states and return false to indicate that
1854          * there are no other reset states that need to be processed by driver.
1855          */
1856         if (hw->reset.level == HNS3_VF_FULL_RESET)
1857                 return false;
1858
1859         /* Check the registers to confirm whether there is reset pending */
1860         hns3vf_check_event_cause(hns, NULL);
1861         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
1862         if (hw->reset.level != HNS3_NONE_RESET && reset != HNS3_NONE_RESET &&
1863             hw->reset.level < reset) {
1864                 hns3_warn(hw, "High level reset %d is pending", reset);
1865                 return true;
1866         }
1867         return false;
1868 }
1869
1870 static int
1871 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
1872 {
1873 #define HNS3_WAIT_PF_RESET_READY_TIME 5
1874         struct hns3_hw *hw = &hns->hw;
1875         struct hns3_wait_data *wait_data = hw->reset.wait_data;
1876         struct timeval tv;
1877
1878         if (wait_data->result == HNS3_WAIT_SUCCESS) {
1879                 /*
1880                  * After vf reset is ready, the PF may not have completed
1881                  * the reset processing. The vf sending mbox to PF may fail
1882                  * during the pf reset, so it is better to add extra delay.
1883                  */
1884                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
1885                     hw->reset.level == HNS3_FLR_RESET)
1886                         return 0;
1887                 /* Reset retry process, no need to add extra delay. */
1888                 if (hw->reset.attempts)
1889                         return 0;
1890                 if (wait_data->check_completion == NULL)
1891                         return 0;
1892
1893                 wait_data->check_completion = NULL;
1894                 wait_data->interval = HNS3_WAIT_PF_RESET_READY_TIME *
1895                         MSEC_PER_SEC * USEC_PER_MSEC;
1896                 wait_data->count = 1;
1897                 wait_data->result = HNS3_WAIT_REQUEST;
1898                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
1899                                   wait_data);
1900                 hns3_warn(hw, "hardware is ready, delay %d sec for PF reset complete",
1901                                 HNS3_WAIT_PF_RESET_READY_TIME);
1902                 return -EAGAIN;
1903         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
1904                 hns3_clock_gettime(&tv);
1905                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
1906                           tv.tv_sec, tv.tv_usec);
1907                 return -ETIME;
1908         } else if (wait_data->result == HNS3_WAIT_REQUEST)
1909                 return -EAGAIN;
1910
1911         wait_data->hns = hns;
1912         wait_data->check_completion = is_vf_reset_done;
1913         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
1914                                 HNS3VF_RESET_WAIT_MS + hns3_clock_gettime_ms();
1915         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
1916         wait_data->count = HNS3VF_RESET_WAIT_CNT;
1917         wait_data->result = HNS3_WAIT_REQUEST;
1918         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
1919         return -EAGAIN;
1920 }
1921
1922 static int
1923 hns3vf_prepare_reset(struct hns3_adapter *hns)
1924 {
1925         struct hns3_hw *hw = &hns->hw;
1926         int ret;
1927
1928         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
1929                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
1930                                         0, true, NULL, 0);
1931                 if (ret)
1932                         return ret;
1933         }
1934         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1935
1936         return 0;
1937 }
1938
1939 static int
1940 hns3vf_stop_service(struct hns3_adapter *hns)
1941 {
1942         struct hns3_hw *hw = &hns->hw;
1943         struct rte_eth_dev *eth_dev;
1944
1945         eth_dev = &rte_eth_devices[hw->data->port_id];
1946         if (hw->adapter_state == HNS3_NIC_STARTED) {
1947                 /*
1948                  * Make sure call update link status before hns3vf_stop_poll_job
1949                  * because update link status depend on polling job exist.
1950                  */
1951                 hns3vf_update_link_status(hw, RTE_ETH_LINK_DOWN, hw->mac.link_speed,
1952                                           hw->mac.link_duplex);
1953                 hns3vf_stop_poll_job(eth_dev);
1954         }
1955         hw->mac.link_status = RTE_ETH_LINK_DOWN;
1956
1957         hns3_set_rxtx_function(eth_dev);
1958         rte_wmb();
1959         /* Disable datapath on secondary process. */
1960         hns3_mp_req_stop_rxtx(eth_dev);
1961         rte_delay_ms(hw->cfg_max_queues);
1962
1963         rte_spinlock_lock(&hw->lock);
1964         if (hw->adapter_state == HNS3_NIC_STARTED ||
1965             hw->adapter_state == HNS3_NIC_STOPPING) {
1966                 hns3_enable_all_queues(hw, false);
1967                 hns3vf_do_stop(hns);
1968                 hw->reset.mbuf_deferred_free = true;
1969         } else
1970                 hw->reset.mbuf_deferred_free = false;
1971
1972         /*
1973          * It is cumbersome for hardware to pick-and-choose entries for deletion
1974          * from table space. Hence, for function reset software intervention is
1975          * required to delete the entries.
1976          */
1977         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
1978                 hns3_configure_all_mc_mac_addr(hns, true);
1979         rte_spinlock_unlock(&hw->lock);
1980
1981         return 0;
1982 }
1983
1984 static int
1985 hns3vf_start_service(struct hns3_adapter *hns)
1986 {
1987         struct hns3_hw *hw = &hns->hw;
1988         struct rte_eth_dev *eth_dev;
1989
1990         eth_dev = &rte_eth_devices[hw->data->port_id];
1991         hns3_set_rxtx_function(eth_dev);
1992         hns3_mp_req_start_rxtx(eth_dev);
1993         if (hw->adapter_state == HNS3_NIC_STARTED) {
1994                 hns3vf_start_poll_job(eth_dev);
1995
1996                 /* Enable interrupt of all rx queues before enabling queues */
1997                 hns3_dev_all_rx_queue_intr_enable(hw, true);
1998                 /*
1999                  * Enable state of each rxq and txq will be recovered after
2000                  * reset, so we need to restore them before enable all tqps;
2001                  */
2002                 hns3_restore_tqp_enable_state(hw);
2003                 /*
2004                  * When finished the initialization, enable queues to receive
2005                  * and transmit packets.
2006                  */
2007                 hns3_enable_all_queues(hw, true);
2008         }
2009
2010         return 0;
2011 }
2012
2013 static int
2014 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2015 {
2016         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2017         struct rte_ether_addr *hw_mac;
2018         int ret;
2019
2020         /*
2021          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2022          * on the host by "ip link set ..." command. If the hns3 PF kernel
2023          * ethdev driver sets the MAC address for VF device after the
2024          * initialization of the related VF device, the PF driver will notify
2025          * VF driver to reset VF device to make the new MAC address effective
2026          * immediately. The hns3 VF PMD should check whether the MAC
2027          * address has been changed by the PF kernel ethdev driver, if changed
2028          * VF driver should configure hardware using the new MAC address in the
2029          * recovering hardware configuration stage of the reset process.
2030          */
2031         ret = hns3vf_get_host_mac_addr(hw);
2032         if (ret)
2033                 return ret;
2034
2035         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2036         ret = rte_is_zero_ether_addr(hw_mac);
2037         if (ret) {
2038                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2039         } else {
2040                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2041                 if (!ret) {
2042                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2043                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2044                                               &hw->data->mac_addrs[0]);
2045                         hns3_warn(hw, "Default MAC address has been changed to:"
2046                                   " %s by the host PF kernel ethdev driver",
2047                                   mac_str);
2048                 }
2049         }
2050
2051         return 0;
2052 }
2053
2054 static int
2055 hns3vf_restore_conf(struct hns3_adapter *hns)
2056 {
2057         struct hns3_hw *hw = &hns->hw;
2058         int ret;
2059
2060         ret = hns3vf_check_default_mac_change(hw);
2061         if (ret)
2062                 return ret;
2063
2064         ret = hns3_configure_all_mac_addr(hns, false);
2065         if (ret)
2066                 return ret;
2067
2068         ret = hns3_configure_all_mc_mac_addr(hns, false);
2069         if (ret)
2070                 goto err_mc_mac;
2071
2072         ret = hns3vf_restore_promisc(hns);
2073         if (ret)
2074                 goto err_vlan_table;
2075
2076         ret = hns3vf_restore_vlan_conf(hns);
2077         if (ret)
2078                 goto err_vlan_table;
2079
2080         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2081         if (ret)
2082                 goto err_vlan_table;
2083
2084         ret = hns3_restore_rx_interrupt(hw);
2085         if (ret)
2086                 goto err_vlan_table;
2087
2088         ret = hns3_restore_gro_conf(hw);
2089         if (ret)
2090                 goto err_vlan_table;
2091
2092         if (hw->adapter_state == HNS3_NIC_STARTED) {
2093                 ret = hns3vf_do_start(hns, false);
2094                 if (ret)
2095                         goto err_vlan_table;
2096                 hns3_info(hw, "hns3vf dev restart successful!");
2097         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2098                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2099
2100         ret = hns3vf_set_alive(hw, true);
2101         if (ret) {
2102                 hns3_err(hw, "failed to VF send alive to PF: %d", ret);
2103                 goto err_vlan_table;
2104         }
2105
2106         return 0;
2107
2108 err_vlan_table:
2109         hns3_configure_all_mc_mac_addr(hns, true);
2110 err_mc_mac:
2111         hns3_configure_all_mac_addr(hns, true);
2112         return ret;
2113 }
2114
2115 static enum hns3_reset_level
2116 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2117 {
2118         enum hns3_reset_level reset_level;
2119
2120         /* return the highest priority reset level amongst all */
2121         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2122                 reset_level = HNS3_VF_RESET;
2123         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2124                 reset_level = HNS3_VF_FULL_RESET;
2125         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2126                 reset_level = HNS3_VF_PF_FUNC_RESET;
2127         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2128                 reset_level = HNS3_VF_FUNC_RESET;
2129         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2130                 reset_level = HNS3_FLR_RESET;
2131         else
2132                 reset_level = HNS3_NONE_RESET;
2133
2134         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2135                 return HNS3_NONE_RESET;
2136
2137         return reset_level;
2138 }
2139
2140 static void
2141 hns3vf_reset_service(void *param)
2142 {
2143         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2144         struct hns3_hw *hw = &hns->hw;
2145         enum hns3_reset_level reset_level;
2146         struct timeval tv_delta;
2147         struct timeval tv_start;
2148         struct timeval tv;
2149         uint64_t msec;
2150
2151         /*
2152          * The interrupt is not triggered within the delay time.
2153          * The interrupt may have been lost. It is necessary to handle
2154          * the interrupt to recover from the error.
2155          */
2156         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2157                             SCHEDULE_DEFERRED) {
2158                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2159                                  __ATOMIC_RELAXED);
2160                 hns3_err(hw, "Handling interrupts in delayed tasks");
2161                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2162                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2163                 if (reset_level == HNS3_NONE_RESET) {
2164                         hns3_err(hw, "No reset level is set, try global reset");
2165                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2166                 }
2167         }
2168         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2169
2170         /*
2171          * Hardware reset has been notified, we now have to poll & check if
2172          * hardware has actually completed the reset sequence.
2173          */
2174         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2175         if (reset_level != HNS3_NONE_RESET) {
2176                 hns3_clock_gettime(&tv_start);
2177                 hns3_reset_process(hns, reset_level);
2178                 hns3_clock_gettime(&tv);
2179                 timersub(&tv, &tv_start, &tv_delta);
2180                 msec = hns3_clock_calctime_ms(&tv_delta);
2181                 if (msec > HNS3_RESET_PROCESS_MS)
2182                         hns3_err(hw, "%d handle long time delta %" PRIu64
2183                                  " ms time=%ld.%.6ld",
2184                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2185         }
2186 }
2187
2188 static int
2189 hns3vf_reinit_dev(struct hns3_adapter *hns)
2190 {
2191         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2192         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2193         struct hns3_hw *hw = &hns->hw;
2194         int ret;
2195
2196         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2197                 rte_intr_disable(pci_dev->intr_handle);
2198                 ret = hns3vf_set_bus_master(pci_dev, true);
2199                 if (ret < 0) {
2200                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2201                         return ret;
2202                 }
2203         }
2204
2205         /* Firmware command initialize */
2206         ret = hns3_cmd_init(hw);
2207         if (ret) {
2208                 hns3_err(hw, "Failed to init cmd: %d", ret);
2209                 return ret;
2210         }
2211
2212         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2213                 /*
2214                  * UIO enables msix by writing the pcie configuration space
2215                  * vfio_pci enables msix in rte_intr_enable.
2216                  */
2217                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2218                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2219                         if (hns3vf_enable_msix(pci_dev, true))
2220                                 hns3_err(hw, "Failed to enable msix");
2221                 }
2222
2223                 rte_intr_enable(pci_dev->intr_handle);
2224         }
2225
2226         ret = hns3_reset_all_tqps(hns);
2227         if (ret) {
2228                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2229                 return ret;
2230         }
2231
2232         ret = hns3vf_init_hardware(hns);
2233         if (ret) {
2234                 hns3_err(hw, "Failed to init hardware: %d", ret);
2235                 return ret;
2236         }
2237
2238         return 0;
2239 }
2240
2241 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2242         .dev_configure      = hns3vf_dev_configure,
2243         .dev_start          = hns3vf_dev_start,
2244         .dev_stop           = hns3vf_dev_stop,
2245         .dev_close          = hns3vf_dev_close,
2246         .mtu_set            = hns3vf_dev_mtu_set,
2247         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2248         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2249         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2250         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2251         .stats_get          = hns3_stats_get,
2252         .stats_reset        = hns3_stats_reset,
2253         .xstats_get         = hns3_dev_xstats_get,
2254         .xstats_get_names   = hns3_dev_xstats_get_names,
2255         .xstats_reset       = hns3_dev_xstats_reset,
2256         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2257         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2258         .dev_infos_get      = hns3_dev_infos_get,
2259         .fw_version_get     = hns3_fw_version_get,
2260         .rx_queue_setup     = hns3_rx_queue_setup,
2261         .tx_queue_setup     = hns3_tx_queue_setup,
2262         .rx_queue_release   = hns3_dev_rx_queue_release,
2263         .tx_queue_release   = hns3_dev_tx_queue_release,
2264         .rx_queue_start     = hns3_dev_rx_queue_start,
2265         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2266         .tx_queue_start     = hns3_dev_tx_queue_start,
2267         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2268         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2269         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2270         .rxq_info_get       = hns3_rxq_info_get,
2271         .txq_info_get       = hns3_txq_info_get,
2272         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2273         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2274         .mac_addr_add       = hns3_add_mac_addr,
2275         .mac_addr_remove    = hns3_remove_mac_addr,
2276         .mac_addr_set       = hns3vf_set_default_mac_addr,
2277         .set_mc_addr_list   = hns3_set_mc_mac_addr_list,
2278         .link_update        = hns3vf_dev_link_update,
2279         .rss_hash_update    = hns3_dev_rss_hash_update,
2280         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2281         .reta_update        = hns3_dev_rss_reta_update,
2282         .reta_query         = hns3_dev_rss_reta_query,
2283         .flow_ops_get       = hns3_dev_flow_ops_get,
2284         .vlan_filter_set    = hns3vf_vlan_filter_set,
2285         .vlan_offload_set   = hns3vf_vlan_offload_set,
2286         .get_reg            = hns3_get_regs,
2287         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2288         .tx_done_cleanup    = hns3_tx_done_cleanup,
2289         .eth_dev_priv_dump  = hns3_eth_dev_priv_dump,
2290 };
2291
2292 static const struct hns3_reset_ops hns3vf_reset_ops = {
2293         .reset_service       = hns3vf_reset_service,
2294         .stop_service        = hns3vf_stop_service,
2295         .prepare_reset       = hns3vf_prepare_reset,
2296         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2297         .reinit_dev          = hns3vf_reinit_dev,
2298         .restore_conf        = hns3vf_restore_conf,
2299         .start_service       = hns3vf_start_service,
2300 };
2301
2302 static void
2303 hns3vf_init_hw_ops(struct hns3_hw *hw)
2304 {
2305         hw->ops.add_mc_mac_addr = hns3vf_add_mc_mac_addr;
2306         hw->ops.del_mc_mac_addr = hns3vf_remove_mc_mac_addr;
2307         hw->ops.add_uc_mac_addr = hns3vf_add_uc_mac_addr;
2308         hw->ops.del_uc_mac_addr = hns3vf_remove_uc_mac_addr;
2309         hw->ops.bind_ring_with_vector = hns3vf_bind_ring_with_vector;
2310 }
2311
2312 static int
2313 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2314 {
2315         struct hns3_adapter *hns = eth_dev->data->dev_private;
2316         struct hns3_hw *hw = &hns->hw;
2317         int ret;
2318
2319         PMD_INIT_FUNC_TRACE();
2320
2321         hns3_flow_init(eth_dev);
2322
2323         hns3_set_rxtx_function(eth_dev);
2324         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2325         eth_dev->rx_queue_count = hns3_rx_queue_count;
2326         ret = hns3_mp_init(eth_dev);
2327         if (ret)
2328                 goto err_mp_init;
2329
2330         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2331                 hns3_tx_push_init(eth_dev);
2332                 return 0;
2333         }
2334
2335         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2336         hns->is_vf = true;
2337         hw->data = eth_dev->data;
2338         hns3_parse_devargs(eth_dev);
2339
2340         ret = hns3_reset_init(hw);
2341         if (ret)
2342                 goto err_init_reset;
2343         hw->reset.ops = &hns3vf_reset_ops;
2344
2345         hns3vf_init_hw_ops(hw);
2346         ret = hns3vf_init_vf(eth_dev);
2347         if (ret) {
2348                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2349                 goto err_init_vf;
2350         }
2351
2352         ret = hns3_init_mac_addrs(eth_dev);
2353         if (ret != 0)
2354                 goto err_init_mac_addrs;
2355
2356         hw->adapter_state = HNS3_NIC_INITIALIZED;
2357
2358         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2359                             SCHEDULE_PENDING) {
2360                 hns3_err(hw, "Reschedule reset service after dev_init");
2361                 hns3_schedule_reset(hns);
2362         } else {
2363                 /* IMP will wait ready flag before reset */
2364                 hns3_notify_reset_ready(hw, false);
2365         }
2366         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2367                           eth_dev);
2368         return 0;
2369
2370 err_init_mac_addrs:
2371         hns3vf_uninit_vf(eth_dev);
2372
2373 err_init_vf:
2374         rte_free(hw->reset.wait_data);
2375
2376 err_init_reset:
2377         hns3_mp_uninit(eth_dev);
2378
2379 err_mp_init:
2380         eth_dev->dev_ops = NULL;
2381         eth_dev->rx_pkt_burst = NULL;
2382         eth_dev->rx_descriptor_status = NULL;
2383         eth_dev->tx_pkt_burst = NULL;
2384         eth_dev->tx_pkt_prepare = NULL;
2385         eth_dev->tx_descriptor_status = NULL;
2386
2387         return ret;
2388 }
2389
2390 static int
2391 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2392 {
2393         struct hns3_adapter *hns = eth_dev->data->dev_private;
2394         struct hns3_hw *hw = &hns->hw;
2395
2396         PMD_INIT_FUNC_TRACE();
2397
2398         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2399                 hns3_mp_uninit(eth_dev);
2400                 return 0;
2401         }
2402
2403         if (hw->adapter_state < HNS3_NIC_CLOSING)
2404                 hns3vf_dev_close(eth_dev);
2405
2406         hw->adapter_state = HNS3_NIC_REMOVED;
2407         return 0;
2408 }
2409
2410 static int
2411 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2412                      struct rte_pci_device *pci_dev)
2413 {
2414         return rte_eth_dev_pci_generic_probe(pci_dev,
2415                                              sizeof(struct hns3_adapter),
2416                                              hns3vf_dev_init);
2417 }
2418
2419 static int
2420 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2421 {
2422         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2423 }
2424
2425 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2426         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2427         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2428         { .vendor_id = 0, }, /* sentinel */
2429 };
2430
2431 static struct rte_pci_driver rte_hns3vf_pmd = {
2432         .id_table = pci_id_hns3vf_map,
2433         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
2434         .probe = eth_hns3vf_pci_probe,
2435         .remove = eth_hns3vf_pci_remove,
2436 };
2437
2438 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2439 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2440 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
2441 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
2442                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
2443                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
2444                 HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> "
2445                 HNS3_DEVARG_MBX_TIME_LIMIT_MS "=<uint16_t> ");