net/hns3: extract common function to obtain revision ID
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_vfio.h>
10
11 #include "hns3_ethdev.h"
12 #include "hns3_common.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19 #include "hns3_flow.h"
20
21 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
22 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
23
24 #define HNS3VF_RESET_WAIT_MS    20
25 #define HNS3VF_RESET_WAIT_CNT   2000
26
27 /* Reset related Registers */
28 #define HNS3_GLOBAL_RESET_BIT           0
29 #define HNS3_CORE_RESET_BIT             1
30 #define HNS3_IMP_RESET_BIT              2
31 #define HNS3_FUN_RST_ING_B              0
32
33 enum hns3vf_evt_cause {
34         HNS3VF_VECTOR0_EVENT_RST,
35         HNS3VF_VECTOR0_EVENT_MBX,
36         HNS3VF_VECTOR0_EVENT_OTHER,
37 };
38
39 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
40                                                     uint64_t *levels);
41 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
42 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
43
44 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
45                                   struct rte_ether_addr *mac_addr);
46 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
47                                      struct rte_ether_addr *mac_addr);
48 static int hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
49                                    __rte_unused int wait_to_complete);
50
51 /* set PCI bus mastering */
52 static int
53 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
54 {
55         uint16_t reg;
56         int ret;
57
58         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
59         if (ret < 0) {
60                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
61                              PCI_COMMAND);
62                 return ret;
63         }
64
65         if (op)
66                 /* set the master bit */
67                 reg |= PCI_COMMAND_MASTER;
68         else
69                 reg &= ~(PCI_COMMAND_MASTER);
70
71         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
72 }
73
74 /**
75  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
76  * @cap: the capability
77  *
78  * Return the address of the given capability within the PCI capability list.
79  */
80 static int
81 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
82 {
83 #define MAX_PCIE_CAPABILITY 48
84         uint16_t status;
85         uint8_t pos;
86         uint8_t id;
87         int ttl;
88         int ret;
89
90         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
91         if (ret < 0) {
92                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
93                 return 0;
94         }
95
96         if (!(status & PCI_STATUS_CAP_LIST))
97                 return 0;
98
99         ttl = MAX_PCIE_CAPABILITY;
100         ret = rte_pci_read_config(device, &pos, sizeof(pos),
101                                   PCI_CAPABILITY_LIST);
102         if (ret < 0) {
103                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
104                              PCI_CAPABILITY_LIST);
105                 return 0;
106         }
107
108         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
109                 ret = rte_pci_read_config(device, &id, sizeof(id),
110                                           (pos + PCI_CAP_LIST_ID));
111                 if (ret < 0) {
112                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
113                                      (pos + PCI_CAP_LIST_ID));
114                         break;
115                 }
116
117                 if (id == 0xFF)
118                         break;
119
120                 if (id == cap)
121                         return (int)pos;
122
123                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
124                                           (pos + PCI_CAP_LIST_NEXT));
125                 if (ret < 0) {
126                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
127                                      (pos + PCI_CAP_LIST_NEXT));
128                         break;
129                 }
130         }
131         return 0;
132 }
133
134 static int
135 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
136 {
137         uint16_t control;
138         int pos;
139         int ret;
140
141         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
142         if (pos) {
143                 ret = rte_pci_read_config(device, &control, sizeof(control),
144                                     (pos + PCI_MSIX_FLAGS));
145                 if (ret < 0) {
146                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
147                                      (pos + PCI_MSIX_FLAGS));
148                         return -ENXIO;
149                 }
150
151                 if (op)
152                         control |= PCI_MSIX_FLAGS_ENABLE;
153                 else
154                         control &= ~PCI_MSIX_FLAGS_ENABLE;
155                 ret = rte_pci_write_config(device, &control, sizeof(control),
156                                           (pos + PCI_MSIX_FLAGS));
157                 if (ret < 0) {
158                         PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
159                                     (pos + PCI_MSIX_FLAGS));
160                         return -ENXIO;
161                 }
162
163                 return 0;
164         }
165
166         return -ENXIO;
167 }
168
169 static int
170 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
171 {
172         /* mac address was checked by upper level interface */
173         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
174         int ret;
175
176         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
177                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
178                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
179         if (ret) {
180                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
181                                       mac_addr);
182                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
183                          mac_str, ret);
184         }
185         return ret;
186 }
187
188 static int
189 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
190 {
191         /* mac address was checked by upper level interface */
192         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
193         int ret;
194
195         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
196                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
197                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
198                                 false, NULL, 0);
199         if (ret) {
200                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
201                                       mac_addr);
202                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
203                          mac_str, ret);
204         }
205         return ret;
206 }
207
208 static int
209 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
210                             struct rte_ether_addr *mac_addr)
211 {
212 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
213         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
214         struct rte_ether_addr *old_addr;
215         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
216         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
217         int ret;
218
219         /*
220          * It has been guaranteed that input parameter named mac_addr is valid
221          * address in the rte layer of DPDK framework.
222          */
223         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
224         rte_spinlock_lock(&hw->lock);
225         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
226         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
227                RTE_ETHER_ADDR_LEN);
228
229         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
230                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
231                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
232         if (ret) {
233                 /*
234                  * The hns3 VF PMD depends on the hns3 PF kernel ethdev
235                  * driver. When user has configured a MAC address for VF device
236                  * by "ip link set ..." command based on the PF device, the hns3
237                  * PF kernel ethdev driver does not allow VF driver to request
238                  * reconfiguring a different default MAC address, and return
239                  * -EPREM to VF driver through mailbox.
240                  */
241                 if (ret == -EPERM) {
242                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
243                                               old_addr);
244                         hns3_warn(hw, "Has permanent mac addr(%s) for vf",
245                                   mac_str);
246                 } else {
247                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
248                                               mac_addr);
249                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
250                                  mac_str, ret);
251                 }
252         }
253
254         rte_ether_addr_copy(mac_addr,
255                             (struct rte_ether_addr *)hw->mac.mac_addr);
256         rte_spinlock_unlock(&hw->lock);
257
258         return ret;
259 }
260
261 static int
262 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
263                        struct rte_ether_addr *mac_addr)
264 {
265         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
266         int ret;
267
268         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
269                                 HNS3_MBX_MAC_VLAN_MC_ADD,
270                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
271                                 NULL, 0);
272         if (ret) {
273                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
274                                       mac_addr);
275                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
276                          mac_str, ret);
277         }
278
279         return ret;
280 }
281
282 static int
283 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
284                           struct rte_ether_addr *mac_addr)
285 {
286         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
287         int ret;
288
289         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
290                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
291                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
292                                 NULL, 0);
293         if (ret) {
294                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
295                                       mac_addr);
296                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
297                          mac_str, ret);
298         }
299
300         return ret;
301 }
302
303 static int
304 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
305                         bool en_uc_pmc, bool en_mc_pmc)
306 {
307         struct hns3_mbx_vf_to_pf_cmd *req;
308         struct hns3_cmd_desc desc;
309         int ret;
310
311         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
312
313         /*
314          * The hns3 VF PMD depends on the hns3 PF kernel ethdev driver,
315          * so there are some features for promiscuous/allmulticast mode in hns3
316          * VF PMD as below:
317          * 1. The promiscuous/allmulticast mode can be configured successfully
318          *    only based on the trusted VF device. If based on the non trusted
319          *    VF device, configuring promiscuous/allmulticast mode will fail.
320          *    The hns3 VF device can be configured as trusted device by hns3 PF
321          *    kernel ethdev driver on the host by the following command:
322          *      "ip link set <eth num> vf <vf id> turst on"
323          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
324          *    can receive the ingress and outgoing traffic. This includes
325          *    all the ingress packets, all the packets sent from the PF and
326          *    other VFs on the same physical port.
327          * 3. Note: Because of the hardware constraints, By default vlan filter
328          *    is enabled and couldn't be turned off based on VF device, so vlan
329          *    filter is still effective even in promiscuous mode. If upper
330          *    applications don't call rte_eth_dev_vlan_filter API function to
331          *    set vlan based on VF device, hns3 VF PMD will can't receive
332          *    the packets with vlan tag in promiscuous mode.
333          */
334         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
335         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
336         req->msg[1] = en_bc_pmc ? 1 : 0;
337         req->msg[2] = en_uc_pmc ? 1 : 0;
338         req->msg[3] = en_mc_pmc ? 1 : 0;
339         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
340
341         ret = hns3_cmd_send(hw, &desc, 1);
342         if (ret)
343                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
344
345         return ret;
346 }
347
348 static int
349 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
350 {
351         struct hns3_adapter *hns = dev->data->dev_private;
352         struct hns3_hw *hw = &hns->hw;
353         int ret;
354
355         ret = hns3vf_set_promisc_mode(hw, true, true, true);
356         if (ret)
357                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
358                         ret);
359         return ret;
360 }
361
362 static int
363 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
364 {
365         bool allmulti = dev->data->all_multicast ? true : false;
366         struct hns3_adapter *hns = dev->data->dev_private;
367         struct hns3_hw *hw = &hns->hw;
368         int ret;
369
370         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
371         if (ret)
372                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
373                         ret);
374         return ret;
375 }
376
377 static int
378 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
379 {
380         struct hns3_adapter *hns = dev->data->dev_private;
381         struct hns3_hw *hw = &hns->hw;
382         int ret;
383
384         if (dev->data->promiscuous)
385                 return 0;
386
387         ret = hns3vf_set_promisc_mode(hw, true, false, true);
388         if (ret)
389                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
390                         ret);
391         return ret;
392 }
393
394 static int
395 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
396 {
397         struct hns3_adapter *hns = dev->data->dev_private;
398         struct hns3_hw *hw = &hns->hw;
399         int ret;
400
401         if (dev->data->promiscuous)
402                 return 0;
403
404         ret = hns3vf_set_promisc_mode(hw, true, false, false);
405         if (ret)
406                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
407                         ret);
408         return ret;
409 }
410
411 static int
412 hns3vf_restore_promisc(struct hns3_adapter *hns)
413 {
414         struct hns3_hw *hw = &hns->hw;
415         bool allmulti = hw->data->all_multicast ? true : false;
416
417         if (hw->data->promiscuous)
418                 return hns3vf_set_promisc_mode(hw, true, true, true);
419
420         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
421 }
422
423 static int
424 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id,
425                              bool mmap, enum hns3_ring_type queue_type,
426                              uint16_t queue_id)
427 {
428         struct hns3_vf_bind_vector_msg bind_msg;
429         const char *op_str;
430         uint16_t code;
431         int ret;
432
433         memset(&bind_msg, 0, sizeof(bind_msg));
434         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
435                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
436         bind_msg.vector_id = (uint8_t)vector_id;
437
438         if (queue_type == HNS3_RING_TYPE_RX)
439                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
440         else
441                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
442
443         bind_msg.param[0].ring_type = queue_type;
444         bind_msg.ring_num = 1;
445         bind_msg.param[0].tqp_index = queue_id;
446         op_str = mmap ? "Map" : "Unmap";
447         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
448                                 sizeof(bind_msg), false, NULL, 0);
449         if (ret)
450                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
451                          op_str, queue_id, bind_msg.vector_id, ret);
452
453         return ret;
454 }
455
456 static int
457 hns3vf_dev_configure(struct rte_eth_dev *dev)
458 {
459         struct hns3_adapter *hns = dev->data->dev_private;
460         struct hns3_hw *hw = &hns->hw;
461         struct rte_eth_conf *conf = &dev->data->dev_conf;
462         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
463         uint16_t nb_rx_q = dev->data->nb_rx_queues;
464         uint16_t nb_tx_q = dev->data->nb_tx_queues;
465         struct rte_eth_rss_conf rss_conf;
466         bool gro_en;
467         int ret;
468
469         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
470
471         /*
472          * Some versions of hardware network engine does not support
473          * individually enable/disable/reset the Tx or Rx queue. These devices
474          * must enable/disable/reset Tx and Rx queues at the same time. When the
475          * numbers of Tx queues allocated by upper applications are not equal to
476          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
477          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
478          * work as usual. But these fake queues are imperceptible, and can not
479          * be used by upper applications.
480          */
481         ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
482         if (ret) {
483                 hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
484                 hw->cfg_max_queues = 0;
485                 return ret;
486         }
487
488         hw->adapter_state = HNS3_NIC_CONFIGURING;
489         if (conf->link_speeds & RTE_ETH_LINK_SPEED_FIXED) {
490                 hns3_err(hw, "setting link speed/duplex not supported");
491                 ret = -EINVAL;
492                 goto cfg_err;
493         }
494
495         /* When RSS is not configured, redirect the packet queue 0 */
496         if ((uint32_t)mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
497                 conf->rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
498                 hw->rss_dis_flag = false;
499                 rss_conf = conf->rx_adv_conf.rss_conf;
500                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
501                 if (ret)
502                         goto cfg_err;
503         }
504
505         ret = hns3vf_dev_mtu_set(dev, conf->rxmode.mtu);
506         if (ret != 0)
507                 goto cfg_err;
508
509         ret = hns3vf_dev_configure_vlan(dev);
510         if (ret)
511                 goto cfg_err;
512
513         /* config hardware GRO */
514         gro_en = conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_TCP_LRO ? true : false;
515         ret = hns3_config_gro(hw, gro_en);
516         if (ret)
517                 goto cfg_err;
518
519         hns3_init_rx_ptype_tble(dev);
520
521         hw->adapter_state = HNS3_NIC_CONFIGURED;
522         return 0;
523
524 cfg_err:
525         hw->cfg_max_queues = 0;
526         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
527         hw->adapter_state = HNS3_NIC_INITIALIZED;
528
529         return ret;
530 }
531
532 static int
533 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
534 {
535         int ret;
536
537         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
538                                 sizeof(mtu), true, NULL, 0);
539         if (ret)
540                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
541
542         return ret;
543 }
544
545 static int
546 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
547 {
548         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
549         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
550         int ret;
551
552         /*
553          * The hns3 PF/VF devices on the same port share the hardware MTU
554          * configuration. Currently, we send mailbox to inform hns3 PF kernel
555          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD,
556          * there is no need to stop the port for hns3 VF device, and the
557          * MTU value issued by hns3 VF PMD must be less than or equal to
558          * PF's MTU.
559          */
560         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
561                 hns3_err(hw, "Failed to set mtu during resetting");
562                 return -EIO;
563         }
564
565         /*
566          * when Rx of scattered packets is off, we have some possibility of
567          * using vector Rx process function or simple Rx functions in hns3 PMD.
568          * If the input MTU is increased and the maximum length of
569          * received packets is greater than the length of a buffer for Rx
570          * packet, the hardware network engine needs to use multiple BDs and
571          * buffers to store these packets. This will cause problems when still
572          * using vector Rx process function or simple Rx function to receiving
573          * packets. So, when Rx of scattered packets is off and device is
574          * started, it is not permitted to increase MTU so that the maximum
575          * length of Rx packets is greater than Rx buffer length.
576          */
577         if (dev->data->dev_started && !dev->data->scattered_rx &&
578             frame_size > hw->rx_buf_len) {
579                 hns3_err(hw, "failed to set mtu because current is "
580                         "not scattered rx mode");
581                 return -EOPNOTSUPP;
582         }
583
584         rte_spinlock_lock(&hw->lock);
585         ret = hns3vf_config_mtu(hw, mtu);
586         if (ret) {
587                 rte_spinlock_unlock(&hw->lock);
588                 return ret;
589         }
590         rte_spinlock_unlock(&hw->lock);
591
592         return 0;
593 }
594
595 static void
596 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
597 {
598         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
599 }
600
601 static void
602 hns3vf_disable_irq0(struct hns3_hw *hw)
603 {
604         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
605 }
606
607 static void
608 hns3vf_enable_irq0(struct hns3_hw *hw)
609 {
610         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
611 }
612
613 static enum hns3vf_evt_cause
614 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
615 {
616         struct hns3_hw *hw = &hns->hw;
617         enum hns3vf_evt_cause ret;
618         uint32_t cmdq_stat_reg;
619         uint32_t rst_ing_reg;
620         uint32_t val;
621
622         /* Fetch the events from their corresponding regs */
623         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
624         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
625                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
626                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
627                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
628                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
629                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
630                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
631                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
632                 if (clearval) {
633                         hw->reset.stats.global_cnt++;
634                         hns3_warn(hw, "Global reset detected, clear reset status");
635                 } else {
636                         hns3_schedule_delayed_reset(hns);
637                         hns3_warn(hw, "Global reset detected, don't clear reset status");
638                 }
639
640                 ret = HNS3VF_VECTOR0_EVENT_RST;
641                 goto out;
642         }
643
644         /* Check for vector0 mailbox(=CMDQ RX) event source */
645         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
646                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
647                 ret = HNS3VF_VECTOR0_EVENT_MBX;
648                 goto out;
649         }
650
651         val = 0;
652         ret = HNS3VF_VECTOR0_EVENT_OTHER;
653 out:
654         if (clearval)
655                 *clearval = val;
656         return ret;
657 }
658
659 static void
660 hns3vf_interrupt_handler(void *param)
661 {
662         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
663         struct hns3_adapter *hns = dev->data->dev_private;
664         struct hns3_hw *hw = &hns->hw;
665         enum hns3vf_evt_cause event_cause;
666         uint32_t clearval;
667
668         /* Disable interrupt */
669         hns3vf_disable_irq0(hw);
670
671         /* Read out interrupt causes */
672         event_cause = hns3vf_check_event_cause(hns, &clearval);
673         /* Clear interrupt causes */
674         hns3vf_clear_event_cause(hw, clearval);
675
676         switch (event_cause) {
677         case HNS3VF_VECTOR0_EVENT_RST:
678                 hns3_schedule_reset(hns);
679                 break;
680         case HNS3VF_VECTOR0_EVENT_MBX:
681                 hns3_dev_handle_mbx_msg(hw);
682                 break;
683         default:
684                 break;
685         }
686
687         /* Enable interrupt */
688         hns3vf_enable_irq0(hw);
689 }
690
691 static void
692 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
693 {
694         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
695         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
696         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
697         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
698 }
699
700 static void
701 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
702 {
703         struct hns3_dev_specs_0_cmd *req0;
704
705         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
706
707         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
708         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
709         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
710         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
711 }
712
713 static int
714 hns3vf_check_dev_specifications(struct hns3_hw *hw)
715 {
716         if (hw->rss_ind_tbl_size == 0 ||
717             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
718                 hns3_warn(hw, "the size of hash lookup table configured (%u)"
719                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
720                               HNS3_RSS_IND_TBL_SIZE_MAX);
721                 return -EINVAL;
722         }
723
724         return 0;
725 }
726
727 static int
728 hns3vf_query_dev_specifications(struct hns3_hw *hw)
729 {
730         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
731         int ret;
732         int i;
733
734         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
735                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
736                                           true);
737                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
738         }
739         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
740
741         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
742         if (ret)
743                 return ret;
744
745         hns3vf_parse_dev_specifications(hw, desc);
746
747         return hns3vf_check_dev_specifications(hw);
748 }
749
750 void
751 hns3vf_update_push_lsc_cap(struct hns3_hw *hw, bool supported)
752 {
753         uint16_t val = supported ? HNS3_PF_PUSH_LSC_CAP_SUPPORTED :
754                                    HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
755         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
756         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
757
758         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
759                 __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
760                                           __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
761 }
762
763 static void
764 hns3vf_get_push_lsc_cap(struct hns3_hw *hw)
765 {
766 #define HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS      500
767
768         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
769         int32_t remain_ms = HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS;
770         uint16_t val = HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
771         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
772         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
773
774         __atomic_store_n(&vf->pf_push_lsc_cap, HNS3_PF_PUSH_LSC_CAP_UNKNOWN,
775                          __ATOMIC_RELEASE);
776
777         (void)hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
778                                 NULL, 0);
779
780         while (remain_ms > 0) {
781                 rte_delay_ms(HNS3_POLL_RESPONE_MS);
782                 if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) !=
783                         HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
784                         break;
785                 remain_ms--;
786         }
787
788         /*
789          * When exit above loop, the pf_push_lsc_cap could be one of the three
790          * state: unknown (means pf not ack), not_supported, supported.
791          * Here config it as 'not_supported' when it's 'unknown' state.
792          */
793         __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
794                                   __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
795
796         if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) ==
797                 HNS3_PF_PUSH_LSC_CAP_SUPPORTED) {
798                 hns3_info(hw, "detect PF support push link status change!");
799         } else {
800                 /*
801                  * Framework already set RTE_ETH_DEV_INTR_LSC bit because driver
802                  * declared RTE_PCI_DRV_INTR_LSC in drv_flags. So here cleared
803                  * the RTE_ETH_DEV_INTR_LSC capability.
804                  */
805                 dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
806         }
807 }
808
809 static int
810 hns3vf_get_capability(struct hns3_hw *hw)
811 {
812         int ret;
813
814         ret = hns3_get_pci_revision_id(hw, &hw->revision);
815         if (ret)
816                 return ret;
817
818         if (hw->revision < PCI_REVISION_ID_HIP09_A) {
819                 hns3vf_set_default_dev_specifications(hw);
820                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
821                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
822                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
823                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
824                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
825                 hw->rss_info.ipv6_sctp_offload_supported = false;
826                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
827                 return 0;
828         }
829
830         ret = hns3vf_query_dev_specifications(hw);
831         if (ret) {
832                 PMD_INIT_LOG(ERR,
833                              "failed to query dev specifications, ret = %d",
834                              ret);
835                 return ret;
836         }
837
838         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
839         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
840         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
841         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
842         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
843         hw->rss_info.ipv6_sctp_offload_supported = true;
844         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
845
846         return 0;
847 }
848
849 static int
850 hns3vf_check_tqp_info(struct hns3_hw *hw)
851 {
852         if (hw->tqps_num == 0) {
853                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
854                 return -EINVAL;
855         }
856
857         if (hw->rss_size_max == 0) {
858                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
859                 return -EINVAL;
860         }
861
862         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
863
864         return 0;
865 }
866
867 static int
868 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
869 {
870         uint8_t resp_msg;
871         int ret;
872
873         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
874                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
875                                 true, &resp_msg, sizeof(resp_msg));
876         if (ret) {
877                 if (ret == -ETIME) {
878                         /*
879                          * Getting current port based VLAN state from PF driver
880                          * will not affect VF driver's basic function. Because
881                          * the VF driver relies on hns3 PF kernel ether driver,
882                          * to avoid introducing compatibility issues with older
883                          * version of PF driver, no failure will be returned
884                          * when the return value is ETIME. This return value has
885                          * the following scenarios:
886                          * 1) Firmware didn't return the results in time
887                          * 2) the result return by firmware is timeout
888                          * 3) the older version of kernel side PF driver does
889                          *    not support this mailbox message.
890                          * For scenarios 1 and 2, it is most likely that a
891                          * hardware error has occurred, or a hardware reset has
892                          * occurred. In this case, these errors will be caught
893                          * by other functions.
894                          */
895                         PMD_INIT_LOG(WARNING,
896                                 "failed to get PVID state for timeout, maybe "
897                                 "kernel side PF driver doesn't support this "
898                                 "mailbox message, or firmware didn't respond.");
899                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
900                 } else {
901                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
902                                 " ret = %d", ret);
903                         return ret;
904                 }
905         }
906         hw->port_base_vlan_cfg.state = resp_msg ?
907                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
908         return 0;
909 }
910
911 static int
912 hns3vf_get_queue_info(struct hns3_hw *hw)
913 {
914 #define HNS3VF_TQPS_RSS_INFO_LEN        6
915         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
916         int ret;
917
918         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
919                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
920         if (ret) {
921                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
922                 return ret;
923         }
924
925         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
926         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
927
928         return hns3vf_check_tqp_info(hw);
929 }
930
931 static void
932 hns3vf_update_caps(struct hns3_hw *hw, uint32_t caps)
933 {
934         if (hns3_get_bit(caps, HNS3VF_CAPS_VLAN_FLT_MOD_B))
935                 hns3_set_bit(hw->capability,
936                                 HNS3_DEV_SUPPORT_VF_VLAN_FLT_MOD_B, 1);
937 }
938
939 static int
940 hns3vf_get_num_tc(struct hns3_hw *hw)
941 {
942         uint8_t num_tc = 0;
943         uint32_t i;
944
945         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
946                 if (hw->hw_tc_map & BIT(i))
947                         num_tc++;
948         }
949         return num_tc;
950 }
951
952 static int
953 hns3vf_get_basic_info(struct hns3_hw *hw)
954 {
955         uint8_t resp_msg[HNS3_MBX_MAX_RESP_DATA_SIZE];
956         struct hns3_basic_info *basic_info;
957         int ret;
958
959         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_BASIC_INFO, 0, NULL, 0,
960                                 true, resp_msg, sizeof(resp_msg));
961         if (ret) {
962                 hns3_err(hw, "failed to get basic info from PF, ret = %d.",
963                                 ret);
964                 return ret;
965         }
966
967         basic_info = (struct hns3_basic_info *)resp_msg;
968         hw->hw_tc_map = basic_info->hw_tc_map;
969         hw->num_tc = hns3vf_get_num_tc(hw);
970         hw->pf_vf_if_version = basic_info->pf_vf_if_version;
971         hns3vf_update_caps(hw, basic_info->caps);
972
973         return 0;
974 }
975
976 static int
977 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
978 {
979         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
980         int ret;
981
982         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
983                                 true, host_mac, RTE_ETHER_ADDR_LEN);
984         if (ret) {
985                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
986                 return ret;
987         }
988
989         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
990
991         return 0;
992 }
993
994 static int
995 hns3vf_get_configuration(struct hns3_hw *hw)
996 {
997         int ret;
998
999         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1000         hw->rss_dis_flag = false;
1001
1002         /* Get device capability */
1003         ret = hns3vf_get_capability(hw);
1004         if (ret) {
1005                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1006                 return ret;
1007         }
1008
1009         hns3vf_get_push_lsc_cap(hw);
1010
1011         /* Get basic info from PF */
1012         ret = hns3vf_get_basic_info(hw);
1013         if (ret)
1014                 return ret;
1015
1016         /* Get queue configuration from PF */
1017         ret = hns3vf_get_queue_info(hw);
1018         if (ret)
1019                 return ret;
1020
1021         /* Get user defined VF MAC addr from PF */
1022         ret = hns3vf_get_host_mac_addr(hw);
1023         if (ret)
1024                 return ret;
1025
1026         return hns3vf_get_port_base_vlan_filter_state(hw);
1027 }
1028
1029 static int
1030 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1031                             uint16_t nb_tx_q)
1032 {
1033         struct hns3_hw *hw = &hns->hw;
1034
1035         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1036 }
1037
1038 static void
1039 hns3vf_request_link_info(struct hns3_hw *hw)
1040 {
1041         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1042         bool send_req;
1043         int ret;
1044
1045         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1046                 return;
1047
1048         send_req = vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED ||
1049                    vf->req_link_info_cnt > 0;
1050         if (!send_req)
1051                 return;
1052
1053         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1054                                 NULL, 0);
1055         if (ret) {
1056                 hns3_err(hw, "failed to fetch link status, ret = %d", ret);
1057                 return;
1058         }
1059
1060         if (vf->req_link_info_cnt > 0)
1061                 vf->req_link_info_cnt--;
1062 }
1063
1064 void
1065 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1066                           uint32_t link_speed, uint8_t link_duplex)
1067 {
1068         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1069         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1070         struct hns3_mac *mac = &hw->mac;
1071         int ret;
1072
1073         /*
1074          * PF kernel driver may push link status when VF driver is in resetting,
1075          * driver will stop polling job in this case, after resetting done
1076          * driver will start polling job again.
1077          * When polling job started, driver will get initial link status by
1078          * sending request to PF kernel driver, then could update link status by
1079          * process PF kernel driver's link status mailbox message.
1080          */
1081         if (!__atomic_load_n(&vf->poll_job_started, __ATOMIC_RELAXED))
1082                 return;
1083
1084         if (hw->adapter_state != HNS3_NIC_STARTED)
1085                 return;
1086
1087         mac->link_status = link_status;
1088         mac->link_speed = link_speed;
1089         mac->link_duplex = link_duplex;
1090         ret = hns3vf_dev_link_update(dev, 0);
1091         if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
1092                 hns3_start_report_lse(dev);
1093 }
1094
1095 static int
1096 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1097 {
1098 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1099         struct hns3_hw *hw = &hns->hw;
1100         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1101         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1102         uint8_t is_kill = on ? 0 : 1;
1103
1104         msg_data[0] = is_kill;
1105         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1106         memcpy(&msg_data[3], &proto, sizeof(proto));
1107
1108         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1109                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1110                                  0);
1111 }
1112
1113 static int
1114 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1115 {
1116         struct hns3_adapter *hns = dev->data->dev_private;
1117         struct hns3_hw *hw = &hns->hw;
1118         int ret;
1119
1120         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1121                 hns3_err(hw,
1122                          "vf set vlan id failed during resetting, vlan_id =%u",
1123                          vlan_id);
1124                 return -EIO;
1125         }
1126         rte_spinlock_lock(&hw->lock);
1127         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1128         rte_spinlock_unlock(&hw->lock);
1129         if (ret)
1130                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1131                          vlan_id, ret);
1132
1133         return ret;
1134 }
1135
1136 static int
1137 hns3vf_en_vlan_filter(struct hns3_hw *hw, bool enable)
1138 {
1139         uint8_t msg_data;
1140         int ret;
1141
1142         if (!hns3_dev_get_support(hw, VF_VLAN_FLT_MOD))
1143                 return 0;
1144
1145         msg_data = enable ? 1 : 0;
1146         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1147                         HNS3_MBX_ENABLE_VLAN_FILTER, &msg_data,
1148                         sizeof(msg_data), true, NULL, 0);
1149         if (ret)
1150                 hns3_err(hw, "%s vlan filter failed, ret = %d.",
1151                                 enable ? "enable" : "disable", ret);
1152
1153         return ret;
1154 }
1155
1156 static int
1157 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1158 {
1159         uint8_t msg_data;
1160         int ret;
1161
1162         msg_data = enable ? 1 : 0;
1163         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1164                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1165         if (ret)
1166                 hns3_err(hw, "vf %s strip failed, ret = %d.",
1167                                 enable ? "enable" : "disable", ret);
1168
1169         return ret;
1170 }
1171
1172 static int
1173 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1174 {
1175         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1176         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1177         unsigned int tmp_mask;
1178         int ret = 0;
1179
1180         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1181                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1182                              "mask = 0x%x", mask);
1183                 return -EIO;
1184         }
1185
1186         tmp_mask = (unsigned int)mask;
1187
1188         if (tmp_mask & RTE_ETH_VLAN_FILTER_MASK) {
1189                 rte_spinlock_lock(&hw->lock);
1190                 /* Enable or disable VLAN filter */
1191                 if (dev_conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER)
1192                         ret = hns3vf_en_vlan_filter(hw, true);
1193                 else
1194                         ret = hns3vf_en_vlan_filter(hw, false);
1195                 rte_spinlock_unlock(&hw->lock);
1196                 if (ret)
1197                         return ret;
1198         }
1199
1200         /* Vlan stripping setting */
1201         if (tmp_mask & RTE_ETH_VLAN_STRIP_MASK) {
1202                 rte_spinlock_lock(&hw->lock);
1203                 /* Enable or disable VLAN stripping */
1204                 if (dev_conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
1205                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1206                 else
1207                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1208                 rte_spinlock_unlock(&hw->lock);
1209         }
1210
1211         return ret;
1212 }
1213
1214 static int
1215 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1216 {
1217         struct rte_vlan_filter_conf *vfc;
1218         struct hns3_hw *hw = &hns->hw;
1219         uint16_t vlan_id;
1220         uint64_t vbit;
1221         uint64_t ids;
1222         int ret = 0;
1223         uint32_t i;
1224
1225         vfc = &hw->data->vlan_filter_conf;
1226         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1227                 if (vfc->ids[i] == 0)
1228                         continue;
1229                 ids = vfc->ids[i];
1230                 while (ids) {
1231                         /*
1232                          * 64 means the num bits of ids, one bit corresponds to
1233                          * one vlan id
1234                          */
1235                         vlan_id = 64 * i;
1236                         /* count trailing zeroes */
1237                         vbit = ~ids & (ids - 1);
1238                         /* clear least significant bit set */
1239                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1240                         for (; vbit;) {
1241                                 vbit >>= 1;
1242                                 vlan_id++;
1243                         }
1244                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1245                         if (ret) {
1246                                 hns3_err(hw,
1247                                          "VF handle vlan table failed, ret =%d, on = %d",
1248                                          ret, on);
1249                                 return ret;
1250                         }
1251                 }
1252         }
1253
1254         return ret;
1255 }
1256
1257 static int
1258 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1259 {
1260         return hns3vf_handle_all_vlan_table(hns, 0);
1261 }
1262
1263 static int
1264 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1265 {
1266         struct hns3_hw *hw = &hns->hw;
1267         struct rte_eth_conf *dev_conf;
1268         bool en;
1269         int ret;
1270
1271         dev_conf = &hw->data->dev_conf;
1272         en = dev_conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP ? true
1273                                                                    : false;
1274         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1275         if (ret)
1276                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1277                          ret);
1278         return ret;
1279 }
1280
1281 static int
1282 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1283 {
1284         struct hns3_adapter *hns = dev->data->dev_private;
1285         struct rte_eth_dev_data *data = dev->data;
1286         struct hns3_hw *hw = &hns->hw;
1287         int ret;
1288
1289         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1290             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1291             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1292                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1293                               "or hw_vlan_insert_pvid is not support!");
1294         }
1295
1296         /* Apply vlan offload setting */
1297         ret = hns3vf_vlan_offload_set(dev, RTE_ETH_VLAN_STRIP_MASK |
1298                                         RTE_ETH_VLAN_FILTER_MASK);
1299         if (ret)
1300                 hns3_err(hw, "dev config vlan offload failed, ret = %d.", ret);
1301
1302         return ret;
1303 }
1304
1305 static int
1306 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1307 {
1308         uint8_t msg_data;
1309
1310         msg_data = alive ? 1 : 0;
1311         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1312                                  sizeof(msg_data), false, NULL, 0);
1313 }
1314
1315 static void
1316 hns3vf_keep_alive_handler(void *param)
1317 {
1318         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1319         struct hns3_adapter *hns = eth_dev->data->dev_private;
1320         struct hns3_hw *hw = &hns->hw;
1321         int ret;
1322
1323         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1324                                 false, NULL, 0);
1325         if (ret)
1326                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1327                          ret);
1328
1329         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1330                           eth_dev);
1331 }
1332
1333 static void
1334 hns3vf_service_handler(void *param)
1335 {
1336         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1337         struct hns3_adapter *hns = eth_dev->data->dev_private;
1338         struct hns3_hw *hw = &hns->hw;
1339
1340         /*
1341          * The query link status and reset processing are executed in the
1342          * interrupt thread. When the IMP reset occurs, IMP will not respond,
1343          * and the query operation will timeout after 30ms. In the case of
1344          * multiple PF/VFs, each query failure timeout causes the IMP reset
1345          * interrupt to fail to respond within 100ms.
1346          * Before querying the link status, check whether there is a reset
1347          * pending, and if so, abandon the query.
1348          */
1349         if (!hns3vf_is_reset_pending(hns))
1350                 hns3vf_request_link_info(hw);
1351         else
1352                 hns3_warn(hw, "Cancel the query when reset is pending");
1353
1354         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1355                           eth_dev);
1356 }
1357
1358 static void
1359 hns3vf_start_poll_job(struct rte_eth_dev *dev)
1360 {
1361 #define HNS3_REQUEST_LINK_INFO_REMAINS_CNT      3
1362
1363         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1364
1365         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_SUPPORTED)
1366                 vf->req_link_info_cnt = HNS3_REQUEST_LINK_INFO_REMAINS_CNT;
1367
1368         __atomic_store_n(&vf->poll_job_started, 1, __ATOMIC_RELAXED);
1369
1370         hns3vf_service_handler(dev);
1371 }
1372
1373 static void
1374 hns3vf_stop_poll_job(struct rte_eth_dev *dev)
1375 {
1376         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1377
1378         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1379
1380         __atomic_store_n(&vf->poll_job_started, 0, __ATOMIC_RELAXED);
1381 }
1382
1383 static int
1384 hns3_query_vf_resource(struct hns3_hw *hw)
1385 {
1386         struct hns3_vf_res_cmd *req;
1387         struct hns3_cmd_desc desc;
1388         uint16_t num_msi;
1389         int ret;
1390
1391         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1392         ret = hns3_cmd_send(hw, &desc, 1);
1393         if (ret) {
1394                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1395                 return ret;
1396         }
1397
1398         req = (struct hns3_vf_res_cmd *)desc.data;
1399         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1400                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1401         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1402                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1403                          num_msi, HNS3_MIN_VECTOR_NUM);
1404                 return -EINVAL;
1405         }
1406
1407         hw->num_msi = num_msi;
1408
1409         return 0;
1410 }
1411
1412 static int
1413 hns3vf_init_hardware(struct hns3_adapter *hns)
1414 {
1415         struct hns3_hw *hw = &hns->hw;
1416         uint16_t mtu = hw->data->mtu;
1417         int ret;
1418
1419         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1420         if (ret)
1421                 return ret;
1422
1423         ret = hns3vf_config_mtu(hw, mtu);
1424         if (ret)
1425                 goto err_init_hardware;
1426
1427         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1428         if (ret) {
1429                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1430                 goto err_init_hardware;
1431         }
1432
1433         ret = hns3_config_gro(hw, false);
1434         if (ret) {
1435                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1436                 goto err_init_hardware;
1437         }
1438
1439         /*
1440          * In the initialization clearing the all hardware mapping relationship
1441          * configurations between queues and interrupt vectors is needed, so
1442          * some error caused by the residual configurations, such as the
1443          * unexpected interrupt, can be avoid.
1444          */
1445         ret = hns3_init_ring_with_vector(hw);
1446         if (ret) {
1447                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1448                 goto err_init_hardware;
1449         }
1450
1451         return 0;
1452
1453 err_init_hardware:
1454         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1455         return ret;
1456 }
1457
1458 static int
1459 hns3vf_clear_vport_list(struct hns3_hw *hw)
1460 {
1461         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1462                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1463                                  NULL, 0);
1464 }
1465
1466 static int
1467 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1468 {
1469         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1470         struct hns3_adapter *hns = eth_dev->data->dev_private;
1471         struct hns3_hw *hw = &hns->hw;
1472         int ret;
1473
1474         PMD_INIT_FUNC_TRACE();
1475
1476         /* Get hardware io base address from pcie BAR2 IO space */
1477         hw->io_base = pci_dev->mem_resource[2].addr;
1478
1479         /* Firmware command queue initialize */
1480         ret = hns3_cmd_init_queue(hw);
1481         if (ret) {
1482                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1483                 goto err_cmd_init_queue;
1484         }
1485
1486         /* Firmware command initialize */
1487         ret = hns3_cmd_init(hw);
1488         if (ret) {
1489                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1490                 goto err_cmd_init;
1491         }
1492
1493         hns3_tx_push_init(eth_dev);
1494
1495         /* Get VF resource */
1496         ret = hns3_query_vf_resource(hw);
1497         if (ret)
1498                 goto err_cmd_init;
1499
1500         rte_spinlock_init(&hw->mbx_resp.lock);
1501
1502         hns3vf_clear_event_cause(hw, 0);
1503
1504         ret = rte_intr_callback_register(pci_dev->intr_handle,
1505                                          hns3vf_interrupt_handler, eth_dev);
1506         if (ret) {
1507                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1508                 goto err_intr_callback_register;
1509         }
1510
1511         /* Enable interrupt */
1512         rte_intr_enable(pci_dev->intr_handle);
1513         hns3vf_enable_irq0(hw);
1514
1515         /* Get configuration from PF */
1516         ret = hns3vf_get_configuration(hw);
1517         if (ret) {
1518                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1519                 goto err_get_config;
1520         }
1521
1522         ret = hns3_tqp_stats_init(hw);
1523         if (ret)
1524                 goto err_get_config;
1525
1526         /* Hardware statistics of imissed registers cleared. */
1527         ret = hns3_update_imissed_stats(hw, true);
1528         if (ret) {
1529                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
1530                 goto err_set_tc_queue;
1531         }
1532
1533         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1534         if (ret) {
1535                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1536                 goto err_set_tc_queue;
1537         }
1538
1539         ret = hns3vf_clear_vport_list(hw);
1540         if (ret) {
1541                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1542                 goto err_set_tc_queue;
1543         }
1544
1545         ret = hns3vf_init_hardware(hns);
1546         if (ret)
1547                 goto err_set_tc_queue;
1548
1549         hns3_rss_set_default_args(hw);
1550
1551         ret = hns3vf_set_alive(hw, true);
1552         if (ret) {
1553                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1554                 goto err_set_tc_queue;
1555         }
1556
1557         return 0;
1558
1559 err_set_tc_queue:
1560         hns3_tqp_stats_uninit(hw);
1561
1562 err_get_config:
1563         hns3vf_disable_irq0(hw);
1564         rte_intr_disable(pci_dev->intr_handle);
1565         hns3_intr_unregister(pci_dev->intr_handle, hns3vf_interrupt_handler,
1566                              eth_dev);
1567 err_intr_callback_register:
1568 err_cmd_init:
1569         hns3_cmd_uninit(hw);
1570         hns3_cmd_destroy_queue(hw);
1571 err_cmd_init_queue:
1572         hw->io_base = NULL;
1573
1574         return ret;
1575 }
1576
1577 static void
1578 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1579 {
1580         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1581         struct hns3_adapter *hns = eth_dev->data->dev_private;
1582         struct hns3_hw *hw = &hns->hw;
1583
1584         PMD_INIT_FUNC_TRACE();
1585
1586         hns3_rss_uninit(hns);
1587         (void)hns3_config_gro(hw, false);
1588         (void)hns3vf_set_alive(hw, false);
1589         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1590         hns3_flow_uninit(eth_dev);
1591         hns3_tqp_stats_uninit(hw);
1592         hns3vf_disable_irq0(hw);
1593         rte_intr_disable(pci_dev->intr_handle);
1594         hns3_intr_unregister(pci_dev->intr_handle, hns3vf_interrupt_handler,
1595                              eth_dev);
1596         hns3_cmd_uninit(hw);
1597         hns3_cmd_destroy_queue(hw);
1598         hw->io_base = NULL;
1599 }
1600
1601 static int
1602 hns3vf_do_stop(struct hns3_adapter *hns)
1603 {
1604         struct hns3_hw *hw = &hns->hw;
1605         int ret;
1606
1607         hw->mac.link_status = RTE_ETH_LINK_DOWN;
1608
1609         /*
1610          * The "hns3vf_do_stop" function will also be called by .stop_service to
1611          * prepare reset. At the time of global or IMP reset, the command cannot
1612          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
1613          * accessed during the reset process. So the mbuf can not be released
1614          * during reset and is required to be released after the reset is
1615          * completed.
1616          */
1617         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
1618                 hns3_dev_release_mbufs(hns);
1619
1620         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
1621                 hns3_configure_all_mac_addr(hns, true);
1622                 ret = hns3_reset_all_tqps(hns);
1623                 if (ret) {
1624                         hns3_err(hw, "failed to reset all queues ret = %d",
1625                                  ret);
1626                         return ret;
1627                 }
1628         }
1629         return 0;
1630 }
1631
1632 static int
1633 hns3vf_dev_stop(struct rte_eth_dev *dev)
1634 {
1635         struct hns3_adapter *hns = dev->data->dev_private;
1636         struct hns3_hw *hw = &hns->hw;
1637
1638         PMD_INIT_FUNC_TRACE();
1639         dev->data->dev_started = 0;
1640
1641         hw->adapter_state = HNS3_NIC_STOPPING;
1642         hns3_set_rxtx_function(dev);
1643         rte_wmb();
1644         /* Disable datapath on secondary process. */
1645         hns3_mp_req_stop_rxtx(dev);
1646         /* Prevent crashes when queues are still in use. */
1647         rte_delay_ms(hw->cfg_max_queues);
1648
1649         rte_spinlock_lock(&hw->lock);
1650         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1651                 hns3_stop_tqps(hw);
1652                 hns3vf_do_stop(hns);
1653                 hns3_unmap_rx_interrupt(dev);
1654                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1655         }
1656         hns3_rx_scattered_reset(dev);
1657         hns3vf_stop_poll_job(dev);
1658         hns3_stop_report_lse(dev);
1659         rte_spinlock_unlock(&hw->lock);
1660
1661         return 0;
1662 }
1663
1664 static int
1665 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1666 {
1667         struct hns3_adapter *hns = eth_dev->data->dev_private;
1668         struct hns3_hw *hw = &hns->hw;
1669         int ret = 0;
1670
1671         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1672                 hns3_mp_uninit(eth_dev);
1673                 return 0;
1674         }
1675
1676         if (hw->adapter_state == HNS3_NIC_STARTED)
1677                 ret = hns3vf_dev_stop(eth_dev);
1678
1679         hw->adapter_state = HNS3_NIC_CLOSING;
1680         hns3_reset_abort(hns);
1681         hw->adapter_state = HNS3_NIC_CLOSED;
1682         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1683         hns3_configure_all_mc_mac_addr(hns, true);
1684         hns3vf_remove_all_vlan_table(hns);
1685         hns3vf_uninit_vf(eth_dev);
1686         hns3_free_all_queues(eth_dev);
1687         rte_free(hw->reset.wait_data);
1688         hns3_mp_uninit(eth_dev);
1689         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
1690
1691         return ret;
1692 }
1693
1694 static int
1695 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1696                        __rte_unused int wait_to_complete)
1697 {
1698         struct hns3_adapter *hns = eth_dev->data->dev_private;
1699         struct hns3_hw *hw = &hns->hw;
1700         struct hns3_mac *mac = &hw->mac;
1701         struct rte_eth_link new_link;
1702
1703         memset(&new_link, 0, sizeof(new_link));
1704         switch (mac->link_speed) {
1705         case RTE_ETH_SPEED_NUM_10M:
1706         case RTE_ETH_SPEED_NUM_100M:
1707         case RTE_ETH_SPEED_NUM_1G:
1708         case RTE_ETH_SPEED_NUM_10G:
1709         case RTE_ETH_SPEED_NUM_25G:
1710         case RTE_ETH_SPEED_NUM_40G:
1711         case RTE_ETH_SPEED_NUM_50G:
1712         case RTE_ETH_SPEED_NUM_100G:
1713         case RTE_ETH_SPEED_NUM_200G:
1714                 if (mac->link_status)
1715                         new_link.link_speed = mac->link_speed;
1716                 break;
1717         default:
1718                 if (mac->link_status)
1719                         new_link.link_speed = RTE_ETH_SPEED_NUM_UNKNOWN;
1720                 break;
1721         }
1722
1723         if (!mac->link_status)
1724                 new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
1725
1726         new_link.link_duplex = mac->link_duplex;
1727         new_link.link_status = mac->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
1728         new_link.link_autoneg =
1729             !(eth_dev->data->dev_conf.link_speeds & RTE_ETH_LINK_SPEED_FIXED);
1730
1731         return rte_eth_linkstatus_set(eth_dev, &new_link);
1732 }
1733
1734 static int
1735 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
1736 {
1737         struct hns3_hw *hw = &hns->hw;
1738         uint16_t nb_rx_q = hw->data->nb_rx_queues;
1739         uint16_t nb_tx_q = hw->data->nb_tx_queues;
1740         int ret;
1741
1742         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
1743         if (ret)
1744                 return ret;
1745
1746         hns3_enable_rxd_adv_layout(hw);
1747
1748         ret = hns3_init_queues(hns, reset_queue);
1749         if (ret)
1750                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
1751
1752         return ret;
1753 }
1754
1755 static void
1756 hns3vf_restore_filter(struct rte_eth_dev *dev)
1757 {
1758         hns3_restore_rss_filter(dev);
1759 }
1760
1761 static int
1762 hns3vf_dev_start(struct rte_eth_dev *dev)
1763 {
1764         struct hns3_adapter *hns = dev->data->dev_private;
1765         struct hns3_hw *hw = &hns->hw;
1766         int ret;
1767
1768         PMD_INIT_FUNC_TRACE();
1769         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1770                 return -EBUSY;
1771
1772         rte_spinlock_lock(&hw->lock);
1773         hw->adapter_state = HNS3_NIC_STARTING;
1774         ret = hns3vf_do_start(hns, true);
1775         if (ret) {
1776                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1777                 rte_spinlock_unlock(&hw->lock);
1778                 return ret;
1779         }
1780         ret = hns3_map_rx_interrupt(dev);
1781         if (ret)
1782                 goto map_rx_inter_err;
1783
1784         /*
1785          * There are three register used to control the status of a TQP
1786          * (contains a pair of Tx queue and Rx queue) in the new version network
1787          * engine. One is used to control the enabling of Tx queue, the other is
1788          * used to control the enabling of Rx queue, and the last is the master
1789          * switch used to control the enabling of the tqp. The Tx register and
1790          * TQP register must be enabled at the same time to enable a Tx queue.
1791          * The same applies to the Rx queue. For the older network enginem, this
1792          * function only refresh the enabled flag, and it is used to update the
1793          * status of queue in the dpdk framework.
1794          */
1795         ret = hns3_start_all_txqs(dev);
1796         if (ret)
1797                 goto map_rx_inter_err;
1798
1799         ret = hns3_start_all_rxqs(dev);
1800         if (ret)
1801                 goto start_all_rxqs_fail;
1802
1803         hw->adapter_state = HNS3_NIC_STARTED;
1804         rte_spinlock_unlock(&hw->lock);
1805
1806         hns3_rx_scattered_calc(dev);
1807         hns3_set_rxtx_function(dev);
1808         hns3_mp_req_start_rxtx(dev);
1809
1810         hns3vf_restore_filter(dev);
1811
1812         /* Enable interrupt of all rx queues before enabling queues */
1813         hns3_dev_all_rx_queue_intr_enable(hw, true);
1814         hns3_start_tqps(hw);
1815
1816         if (dev->data->dev_conf.intr_conf.lsc != 0)
1817                 hns3vf_dev_link_update(dev, 0);
1818         hns3vf_start_poll_job(dev);
1819
1820         return ret;
1821
1822 start_all_rxqs_fail:
1823         hns3_stop_all_txqs(dev);
1824 map_rx_inter_err:
1825         (void)hns3vf_do_stop(hns);
1826         hw->adapter_state = HNS3_NIC_CONFIGURED;
1827         rte_spinlock_unlock(&hw->lock);
1828
1829         return ret;
1830 }
1831
1832 static bool
1833 is_vf_reset_done(struct hns3_hw *hw)
1834 {
1835 #define HNS3_FUN_RST_ING_BITS \
1836         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
1837          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
1838          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
1839          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
1840
1841         uint32_t val;
1842
1843         if (hw->reset.level == HNS3_VF_RESET) {
1844                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1845                 if (val & HNS3_VF_RST_ING_BIT)
1846                         return false;
1847         } else {
1848                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1849                 if (val & HNS3_FUN_RST_ING_BITS)
1850                         return false;
1851         }
1852         return true;
1853 }
1854
1855 bool
1856 hns3vf_is_reset_pending(struct hns3_adapter *hns)
1857 {
1858         struct hns3_hw *hw = &hns->hw;
1859         enum hns3_reset_level reset;
1860
1861         /*
1862          * According to the protocol of PCIe, FLR to a PF device resets the PF
1863          * state as well as the SR-IOV extended capability including VF Enable
1864          * which means that VFs no longer exist.
1865          *
1866          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
1867          * is in FLR stage, the register state of VF device is not reliable,
1868          * so register states detection can not be carried out. In this case,
1869          * we just ignore the register states and return false to indicate that
1870          * there are no other reset states that need to be processed by driver.
1871          */
1872         if (hw->reset.level == HNS3_VF_FULL_RESET)
1873                 return false;
1874
1875         /* Check the registers to confirm whether there is reset pending */
1876         hns3vf_check_event_cause(hns, NULL);
1877         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
1878         if (hw->reset.level != HNS3_NONE_RESET && reset != HNS3_NONE_RESET &&
1879             hw->reset.level < reset) {
1880                 hns3_warn(hw, "High level reset %d is pending", reset);
1881                 return true;
1882         }
1883         return false;
1884 }
1885
1886 static int
1887 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
1888 {
1889         struct hns3_hw *hw = &hns->hw;
1890         struct hns3_wait_data *wait_data = hw->reset.wait_data;
1891         struct timeval tv;
1892
1893         if (wait_data->result == HNS3_WAIT_SUCCESS) {
1894                 /*
1895                  * After vf reset is ready, the PF may not have completed
1896                  * the reset processing. The vf sending mbox to PF may fail
1897                  * during the pf reset, so it is better to add extra delay.
1898                  */
1899                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
1900                     hw->reset.level == HNS3_FLR_RESET)
1901                         return 0;
1902                 /* Reset retry process, no need to add extra delay. */
1903                 if (hw->reset.attempts)
1904                         return 0;
1905                 if (wait_data->check_completion == NULL)
1906                         return 0;
1907
1908                 wait_data->check_completion = NULL;
1909                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
1910                 wait_data->count = 1;
1911                 wait_data->result = HNS3_WAIT_REQUEST;
1912                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
1913                                   wait_data);
1914                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
1915                 return -EAGAIN;
1916         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
1917                 hns3_clock_gettime(&tv);
1918                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
1919                           tv.tv_sec, tv.tv_usec);
1920                 return -ETIME;
1921         } else if (wait_data->result == HNS3_WAIT_REQUEST)
1922                 return -EAGAIN;
1923
1924         wait_data->hns = hns;
1925         wait_data->check_completion = is_vf_reset_done;
1926         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
1927                                 HNS3VF_RESET_WAIT_MS + hns3_clock_gettime_ms();
1928         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
1929         wait_data->count = HNS3VF_RESET_WAIT_CNT;
1930         wait_data->result = HNS3_WAIT_REQUEST;
1931         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
1932         return -EAGAIN;
1933 }
1934
1935 static int
1936 hns3vf_prepare_reset(struct hns3_adapter *hns)
1937 {
1938         struct hns3_hw *hw = &hns->hw;
1939         int ret;
1940
1941         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
1942                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
1943                                         0, true, NULL, 0);
1944                 if (ret)
1945                         return ret;
1946         }
1947         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1948
1949         return 0;
1950 }
1951
1952 static int
1953 hns3vf_stop_service(struct hns3_adapter *hns)
1954 {
1955         struct hns3_hw *hw = &hns->hw;
1956         struct rte_eth_dev *eth_dev;
1957
1958         eth_dev = &rte_eth_devices[hw->data->port_id];
1959         if (hw->adapter_state == HNS3_NIC_STARTED) {
1960                 /*
1961                  * Make sure call update link status before hns3vf_stop_poll_job
1962                  * because update link status depend on polling job exist.
1963                  */
1964                 hns3vf_update_link_status(hw, RTE_ETH_LINK_DOWN, hw->mac.link_speed,
1965                                           hw->mac.link_duplex);
1966                 hns3vf_stop_poll_job(eth_dev);
1967         }
1968         hw->mac.link_status = RTE_ETH_LINK_DOWN;
1969
1970         hns3_set_rxtx_function(eth_dev);
1971         rte_wmb();
1972         /* Disable datapath on secondary process. */
1973         hns3_mp_req_stop_rxtx(eth_dev);
1974         rte_delay_ms(hw->cfg_max_queues);
1975
1976         rte_spinlock_lock(&hw->lock);
1977         if (hw->adapter_state == HNS3_NIC_STARTED ||
1978             hw->adapter_state == HNS3_NIC_STOPPING) {
1979                 hns3_enable_all_queues(hw, false);
1980                 hns3vf_do_stop(hns);
1981                 hw->reset.mbuf_deferred_free = true;
1982         } else
1983                 hw->reset.mbuf_deferred_free = false;
1984
1985         /*
1986          * It is cumbersome for hardware to pick-and-choose entries for deletion
1987          * from table space. Hence, for function reset software intervention is
1988          * required to delete the entries.
1989          */
1990         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
1991                 hns3_configure_all_mc_mac_addr(hns, true);
1992         rte_spinlock_unlock(&hw->lock);
1993
1994         return 0;
1995 }
1996
1997 static int
1998 hns3vf_start_service(struct hns3_adapter *hns)
1999 {
2000         struct hns3_hw *hw = &hns->hw;
2001         struct rte_eth_dev *eth_dev;
2002
2003         eth_dev = &rte_eth_devices[hw->data->port_id];
2004         hns3_set_rxtx_function(eth_dev);
2005         hns3_mp_req_start_rxtx(eth_dev);
2006         if (hw->adapter_state == HNS3_NIC_STARTED) {
2007                 hns3vf_start_poll_job(eth_dev);
2008
2009                 /* Enable interrupt of all rx queues before enabling queues */
2010                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2011                 /*
2012                  * Enable state of each rxq and txq will be recovered after
2013                  * reset, so we need to restore them before enable all tqps;
2014                  */
2015                 hns3_restore_tqp_enable_state(hw);
2016                 /*
2017                  * When finished the initialization, enable queues to receive
2018                  * and transmit packets.
2019                  */
2020                 hns3_enable_all_queues(hw, true);
2021         }
2022
2023         return 0;
2024 }
2025
2026 static int
2027 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2028 {
2029         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2030         struct rte_ether_addr *hw_mac;
2031         int ret;
2032
2033         /*
2034          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2035          * on the host by "ip link set ..." command. If the hns3 PF kernel
2036          * ethdev driver sets the MAC address for VF device after the
2037          * initialization of the related VF device, the PF driver will notify
2038          * VF driver to reset VF device to make the new MAC address effective
2039          * immediately. The hns3 VF PMD should check whether the MAC
2040          * address has been changed by the PF kernel ethdev driver, if changed
2041          * VF driver should configure hardware using the new MAC address in the
2042          * recovering hardware configuration stage of the reset process.
2043          */
2044         ret = hns3vf_get_host_mac_addr(hw);
2045         if (ret)
2046                 return ret;
2047
2048         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2049         ret = rte_is_zero_ether_addr(hw_mac);
2050         if (ret) {
2051                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2052         } else {
2053                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2054                 if (!ret) {
2055                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2056                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2057                                               &hw->data->mac_addrs[0]);
2058                         hns3_warn(hw, "Default MAC address has been changed to:"
2059                                   " %s by the host PF kernel ethdev driver",
2060                                   mac_str);
2061                 }
2062         }
2063
2064         return 0;
2065 }
2066
2067 static int
2068 hns3vf_restore_conf(struct hns3_adapter *hns)
2069 {
2070         struct hns3_hw *hw = &hns->hw;
2071         int ret;
2072
2073         ret = hns3vf_check_default_mac_change(hw);
2074         if (ret)
2075                 return ret;
2076
2077         ret = hns3_configure_all_mac_addr(hns, false);
2078         if (ret)
2079                 return ret;
2080
2081         ret = hns3_configure_all_mc_mac_addr(hns, false);
2082         if (ret)
2083                 goto err_mc_mac;
2084
2085         ret = hns3vf_restore_promisc(hns);
2086         if (ret)
2087                 goto err_vlan_table;
2088
2089         ret = hns3vf_restore_vlan_conf(hns);
2090         if (ret)
2091                 goto err_vlan_table;
2092
2093         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2094         if (ret)
2095                 goto err_vlan_table;
2096
2097         ret = hns3_restore_rx_interrupt(hw);
2098         if (ret)
2099                 goto err_vlan_table;
2100
2101         ret = hns3_restore_gro_conf(hw);
2102         if (ret)
2103                 goto err_vlan_table;
2104
2105         if (hw->adapter_state == HNS3_NIC_STARTED) {
2106                 ret = hns3vf_do_start(hns, false);
2107                 if (ret)
2108                         goto err_vlan_table;
2109                 hns3_info(hw, "hns3vf dev restart successful!");
2110         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2111                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2112
2113         ret = hns3vf_set_alive(hw, true);
2114         if (ret) {
2115                 hns3_err(hw, "failed to VF send alive to PF: %d", ret);
2116                 goto err_vlan_table;
2117         }
2118
2119         return 0;
2120
2121 err_vlan_table:
2122         hns3_configure_all_mc_mac_addr(hns, true);
2123 err_mc_mac:
2124         hns3_configure_all_mac_addr(hns, true);
2125         return ret;
2126 }
2127
2128 static enum hns3_reset_level
2129 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2130 {
2131         enum hns3_reset_level reset_level;
2132
2133         /* return the highest priority reset level amongst all */
2134         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2135                 reset_level = HNS3_VF_RESET;
2136         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2137                 reset_level = HNS3_VF_FULL_RESET;
2138         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2139                 reset_level = HNS3_VF_PF_FUNC_RESET;
2140         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2141                 reset_level = HNS3_VF_FUNC_RESET;
2142         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2143                 reset_level = HNS3_FLR_RESET;
2144         else
2145                 reset_level = HNS3_NONE_RESET;
2146
2147         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2148                 return HNS3_NONE_RESET;
2149
2150         return reset_level;
2151 }
2152
2153 static void
2154 hns3vf_reset_service(void *param)
2155 {
2156         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2157         struct hns3_hw *hw = &hns->hw;
2158         enum hns3_reset_level reset_level;
2159         struct timeval tv_delta;
2160         struct timeval tv_start;
2161         struct timeval tv;
2162         uint64_t msec;
2163
2164         /*
2165          * The interrupt is not triggered within the delay time.
2166          * The interrupt may have been lost. It is necessary to handle
2167          * the interrupt to recover from the error.
2168          */
2169         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2170                             SCHEDULE_DEFERRED) {
2171                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2172                                  __ATOMIC_RELAXED);
2173                 hns3_err(hw, "Handling interrupts in delayed tasks");
2174                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2175                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2176                 if (reset_level == HNS3_NONE_RESET) {
2177                         hns3_err(hw, "No reset level is set, try global reset");
2178                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2179                 }
2180         }
2181         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2182
2183         /*
2184          * Hardware reset has been notified, we now have to poll & check if
2185          * hardware has actually completed the reset sequence.
2186          */
2187         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2188         if (reset_level != HNS3_NONE_RESET) {
2189                 hns3_clock_gettime(&tv_start);
2190                 hns3_reset_process(hns, reset_level);
2191                 hns3_clock_gettime(&tv);
2192                 timersub(&tv, &tv_start, &tv_delta);
2193                 msec = hns3_clock_calctime_ms(&tv_delta);
2194                 if (msec > HNS3_RESET_PROCESS_MS)
2195                         hns3_err(hw, "%d handle long time delta %" PRIu64
2196                                  " ms time=%ld.%.6ld",
2197                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2198         }
2199 }
2200
2201 static int
2202 hns3vf_reinit_dev(struct hns3_adapter *hns)
2203 {
2204         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2205         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2206         struct hns3_hw *hw = &hns->hw;
2207         int ret;
2208
2209         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2210                 rte_intr_disable(pci_dev->intr_handle);
2211                 ret = hns3vf_set_bus_master(pci_dev, true);
2212                 if (ret < 0) {
2213                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2214                         return ret;
2215                 }
2216         }
2217
2218         /* Firmware command initialize */
2219         ret = hns3_cmd_init(hw);
2220         if (ret) {
2221                 hns3_err(hw, "Failed to init cmd: %d", ret);
2222                 return ret;
2223         }
2224
2225         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2226                 /*
2227                  * UIO enables msix by writing the pcie configuration space
2228                  * vfio_pci enables msix in rte_intr_enable.
2229                  */
2230                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2231                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2232                         if (hns3vf_enable_msix(pci_dev, true))
2233                                 hns3_err(hw, "Failed to enable msix");
2234                 }
2235
2236                 rte_intr_enable(pci_dev->intr_handle);
2237         }
2238
2239         ret = hns3_reset_all_tqps(hns);
2240         if (ret) {
2241                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2242                 return ret;
2243         }
2244
2245         ret = hns3vf_init_hardware(hns);
2246         if (ret) {
2247                 hns3_err(hw, "Failed to init hardware: %d", ret);
2248                 return ret;
2249         }
2250
2251         return 0;
2252 }
2253
2254 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2255         .dev_configure      = hns3vf_dev_configure,
2256         .dev_start          = hns3vf_dev_start,
2257         .dev_stop           = hns3vf_dev_stop,
2258         .dev_close          = hns3vf_dev_close,
2259         .mtu_set            = hns3vf_dev_mtu_set,
2260         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2261         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2262         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2263         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2264         .stats_get          = hns3_stats_get,
2265         .stats_reset        = hns3_stats_reset,
2266         .xstats_get         = hns3_dev_xstats_get,
2267         .xstats_get_names   = hns3_dev_xstats_get_names,
2268         .xstats_reset       = hns3_dev_xstats_reset,
2269         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2270         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2271         .dev_infos_get      = hns3_dev_infos_get,
2272         .fw_version_get     = hns3_fw_version_get,
2273         .rx_queue_setup     = hns3_rx_queue_setup,
2274         .tx_queue_setup     = hns3_tx_queue_setup,
2275         .rx_queue_release   = hns3_dev_rx_queue_release,
2276         .tx_queue_release   = hns3_dev_tx_queue_release,
2277         .rx_queue_start     = hns3_dev_rx_queue_start,
2278         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2279         .tx_queue_start     = hns3_dev_tx_queue_start,
2280         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2281         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2282         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2283         .rxq_info_get       = hns3_rxq_info_get,
2284         .txq_info_get       = hns3_txq_info_get,
2285         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2286         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2287         .mac_addr_add       = hns3_add_mac_addr,
2288         .mac_addr_remove    = hns3_remove_mac_addr,
2289         .mac_addr_set       = hns3vf_set_default_mac_addr,
2290         .set_mc_addr_list   = hns3_set_mc_mac_addr_list,
2291         .link_update        = hns3vf_dev_link_update,
2292         .rss_hash_update    = hns3_dev_rss_hash_update,
2293         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2294         .reta_update        = hns3_dev_rss_reta_update,
2295         .reta_query         = hns3_dev_rss_reta_query,
2296         .flow_ops_get       = hns3_dev_flow_ops_get,
2297         .vlan_filter_set    = hns3vf_vlan_filter_set,
2298         .vlan_offload_set   = hns3vf_vlan_offload_set,
2299         .get_reg            = hns3_get_regs,
2300         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2301         .tx_done_cleanup    = hns3_tx_done_cleanup,
2302 };
2303
2304 static const struct hns3_reset_ops hns3vf_reset_ops = {
2305         .reset_service       = hns3vf_reset_service,
2306         .stop_service        = hns3vf_stop_service,
2307         .prepare_reset       = hns3vf_prepare_reset,
2308         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2309         .reinit_dev          = hns3vf_reinit_dev,
2310         .restore_conf        = hns3vf_restore_conf,
2311         .start_service       = hns3vf_start_service,
2312 };
2313
2314 static void
2315 hns3vf_init_hw_ops(struct hns3_hw *hw)
2316 {
2317         hw->ops.add_mc_mac_addr = hns3vf_add_mc_mac_addr;
2318         hw->ops.del_mc_mac_addr = hns3vf_remove_mc_mac_addr;
2319         hw->ops.add_uc_mac_addr = hns3vf_add_uc_mac_addr;
2320         hw->ops.del_uc_mac_addr = hns3vf_remove_uc_mac_addr;
2321         hw->ops.bind_ring_with_vector = hns3vf_bind_ring_with_vector;
2322 }
2323
2324 static int
2325 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2326 {
2327         struct hns3_adapter *hns = eth_dev->data->dev_private;
2328         struct hns3_hw *hw = &hns->hw;
2329         int ret;
2330
2331         PMD_INIT_FUNC_TRACE();
2332
2333         hns3_flow_init(eth_dev);
2334
2335         hns3_set_rxtx_function(eth_dev);
2336         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2337         eth_dev->rx_queue_count = hns3_rx_queue_count;
2338         ret = hns3_mp_init(eth_dev);
2339         if (ret)
2340                 goto err_mp_init;
2341
2342         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2343                 hns3_tx_push_init(eth_dev);
2344                 return 0;
2345         }
2346
2347         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2348         hns->is_vf = true;
2349         hw->data = eth_dev->data;
2350         hns3_parse_devargs(eth_dev);
2351
2352         ret = hns3_reset_init(hw);
2353         if (ret)
2354                 goto err_init_reset;
2355         hw->reset.ops = &hns3vf_reset_ops;
2356
2357         hns3vf_init_hw_ops(hw);
2358         ret = hns3vf_init_vf(eth_dev);
2359         if (ret) {
2360                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2361                 goto err_init_vf;
2362         }
2363
2364         ret = hns3_init_mac_addrs(eth_dev);
2365         if (ret != 0)
2366                 goto err_init_mac_addrs;
2367
2368         hw->adapter_state = HNS3_NIC_INITIALIZED;
2369
2370         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2371                             SCHEDULE_PENDING) {
2372                 hns3_err(hw, "Reschedule reset service after dev_init");
2373                 hns3_schedule_reset(hns);
2374         } else {
2375                 /* IMP will wait ready flag before reset */
2376                 hns3_notify_reset_ready(hw, false);
2377         }
2378         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2379                           eth_dev);
2380         return 0;
2381
2382 err_init_mac_addrs:
2383         hns3vf_uninit_vf(eth_dev);
2384
2385 err_init_vf:
2386         rte_free(hw->reset.wait_data);
2387
2388 err_init_reset:
2389         hns3_mp_uninit(eth_dev);
2390
2391 err_mp_init:
2392         eth_dev->dev_ops = NULL;
2393         eth_dev->rx_pkt_burst = NULL;
2394         eth_dev->rx_descriptor_status = NULL;
2395         eth_dev->tx_pkt_burst = NULL;
2396         eth_dev->tx_pkt_prepare = NULL;
2397         eth_dev->tx_descriptor_status = NULL;
2398
2399         return ret;
2400 }
2401
2402 static int
2403 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2404 {
2405         struct hns3_adapter *hns = eth_dev->data->dev_private;
2406         struct hns3_hw *hw = &hns->hw;
2407
2408         PMD_INIT_FUNC_TRACE();
2409
2410         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2411                 __atomic_fetch_sub(&hw->secondary_cnt, 1, __ATOMIC_RELAXED);
2412                 hns3_mp_uninit(eth_dev);
2413                 return 0;
2414         }
2415
2416         if (hw->adapter_state < HNS3_NIC_CLOSING)
2417                 hns3vf_dev_close(eth_dev);
2418
2419         hw->adapter_state = HNS3_NIC_REMOVED;
2420         return 0;
2421 }
2422
2423 static int
2424 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2425                      struct rte_pci_device *pci_dev)
2426 {
2427         return rte_eth_dev_pci_generic_probe(pci_dev,
2428                                              sizeof(struct hns3_adapter),
2429                                              hns3vf_dev_init);
2430 }
2431
2432 static int
2433 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2434 {
2435         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2436 }
2437
2438 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2439         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2440         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2441         { .vendor_id = 0, }, /* sentinel */
2442 };
2443
2444 static struct rte_pci_driver rte_hns3vf_pmd = {
2445         .id_table = pci_id_hns3vf_map,
2446         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
2447         .probe = eth_hns3vf_pci_probe,
2448         .remove = eth_hns3vf_pci_remove,
2449 };
2450
2451 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2452 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2453 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
2454 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
2455                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
2456                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
2457                 HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> "
2458                 HNS3_DEVARG_MBX_TIME_LIMIT_MS "=<uint16_t> ");