4 * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 #include <sys/queue.h>
44 #include <rte_string_fns.h>
45 #include <rte_memzone.h>
47 #include <rte_malloc.h>
48 #include <rte_ether.h>
49 #include <rte_ethdev.h>
54 #include "i40e_logs.h"
55 #include "base/i40e_prototype.h"
56 #include "base/i40e_type.h"
57 #include "i40e_ethdev.h"
58 #include "i40e_rxtx.h"
60 #define I40E_MIN_RING_DESC 64
61 #define I40E_MAX_RING_DESC 4096
62 #define I40E_ALIGN 128
63 #define DEFAULT_TX_RS_THRESH 32
64 #define DEFAULT_TX_FREE_THRESH 32
65 #define I40E_MAX_PKT_TYPE 256
67 #define I40E_TX_MAX_BURST 32
69 #define I40E_DMA_MEM_ALIGN 4096
71 #define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
72 ETH_TXQ_FLAGS_NOOFFLOADS)
74 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
76 #define I40E_TX_CKSUM_OFFLOAD_MASK ( \
79 PKT_TX_OUTER_IP_CKSUM)
81 #define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
82 (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
84 #define RTE_MBUF_DATA_DMA_ADDR(mb) \
85 ((uint64_t)((mb)->buf_physaddr + (mb)->data_off))
87 static const struct rte_memzone *
88 i40e_ring_dma_zone_reserve(struct rte_eth_dev *dev,
89 const char *ring_name,
93 static uint16_t i40e_xmit_pkts_simple(void *tx_queue,
94 struct rte_mbuf **tx_pkts,
98 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
100 if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
101 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
102 mb->ol_flags |= PKT_RX_VLAN_PKT;
104 rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
105 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
106 rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
110 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
111 if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
112 (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
113 mb->ol_flags |= PKT_RX_QINQ_PKT;
114 mb->vlan_tci_outer = mb->vlan_tci;
115 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
116 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
117 rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
118 rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
120 mb->vlan_tci_outer = 0;
123 PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
124 mb->vlan_tci, mb->vlan_tci_outer);
127 /* Translate the rx descriptor status to pkt flags */
128 static inline uint64_t
129 i40e_rxd_status_to_pkt_flags(uint64_t qword)
133 /* Check if RSS_HASH */
134 flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
135 I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
136 I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
138 /* Check if FDIR Match */
139 flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
145 static inline uint64_t
146 i40e_rxd_error_to_pkt_flags(uint64_t qword)
149 uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
151 #define I40E_RX_ERR_BITS 0x3f
152 if (likely((error_bits & I40E_RX_ERR_BITS) == 0))
154 /* If RXE bit set, all other status bits are meaningless */
155 if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
156 flags |= PKT_RX_MAC_ERR;
160 /* If RECIPE bit set, all other status indications should be ignored */
161 if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RECIPE_SHIFT))) {
162 flags |= PKT_RX_RECIP_ERR;
165 if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT)))
166 flags |= PKT_RX_HBUF_OVERFLOW;
167 if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
168 flags |= PKT_RX_IP_CKSUM_BAD;
169 if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
170 flags |= PKT_RX_L4_CKSUM_BAD;
171 if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
172 flags |= PKT_RX_EIP_CKSUM_BAD;
173 if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_OVERSIZE_SHIFT)))
174 flags |= PKT_RX_OVERSIZE;
180 /* For each value it means, datasheet of hardware can tell more details */
181 static inline uint32_t
182 i40e_rxd_pkt_type_mapping(uint8_t ptype)
184 static const uint32_t ptype_table[UINT8_MAX] __rte_cache_aligned = {
187 [1] = RTE_PTYPE_L2_ETHER,
188 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
189 /* [3] - [5] reserved */
190 [6] = RTE_PTYPE_L2_ETHER_LLDP,
191 /* [7] - [10] reserved */
192 [11] = RTE_PTYPE_L2_ETHER_ARP,
193 /* [12] - [21] reserved */
195 /* Non tunneled IPv4 */
196 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
198 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
199 RTE_PTYPE_L4_NONFRAG,
200 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
203 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
205 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
207 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
211 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
212 RTE_PTYPE_TUNNEL_IP |
213 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
214 RTE_PTYPE_INNER_L4_FRAG,
215 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
216 RTE_PTYPE_TUNNEL_IP |
217 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
218 RTE_PTYPE_INNER_L4_NONFRAG,
219 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
220 RTE_PTYPE_TUNNEL_IP |
221 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
222 RTE_PTYPE_INNER_L4_UDP,
224 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
225 RTE_PTYPE_TUNNEL_IP |
226 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
227 RTE_PTYPE_INNER_L4_TCP,
228 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
229 RTE_PTYPE_TUNNEL_IP |
230 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
231 RTE_PTYPE_INNER_L4_SCTP,
232 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
233 RTE_PTYPE_TUNNEL_IP |
234 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
235 RTE_PTYPE_INNER_L4_ICMP,
238 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
239 RTE_PTYPE_TUNNEL_IP |
240 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
241 RTE_PTYPE_INNER_L4_FRAG,
242 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
243 RTE_PTYPE_TUNNEL_IP |
244 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
245 RTE_PTYPE_INNER_L4_NONFRAG,
246 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
247 RTE_PTYPE_TUNNEL_IP |
248 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
249 RTE_PTYPE_INNER_L4_UDP,
251 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
252 RTE_PTYPE_TUNNEL_IP |
253 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
254 RTE_PTYPE_INNER_L4_TCP,
255 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
256 RTE_PTYPE_TUNNEL_IP |
257 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
258 RTE_PTYPE_INNER_L4_SCTP,
259 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
260 RTE_PTYPE_TUNNEL_IP |
261 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
262 RTE_PTYPE_INNER_L4_ICMP,
264 /* IPv4 --> GRE/Teredo/VXLAN */
265 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
266 RTE_PTYPE_TUNNEL_GRENAT,
268 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
269 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
270 RTE_PTYPE_TUNNEL_GRENAT |
271 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
272 RTE_PTYPE_INNER_L4_FRAG,
273 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
274 RTE_PTYPE_TUNNEL_GRENAT |
275 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
276 RTE_PTYPE_INNER_L4_NONFRAG,
277 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
278 RTE_PTYPE_TUNNEL_GRENAT |
279 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
280 RTE_PTYPE_INNER_L4_UDP,
282 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
283 RTE_PTYPE_TUNNEL_GRENAT |
284 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
285 RTE_PTYPE_INNER_L4_TCP,
286 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
287 RTE_PTYPE_TUNNEL_GRENAT |
288 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
289 RTE_PTYPE_INNER_L4_SCTP,
290 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
291 RTE_PTYPE_TUNNEL_GRENAT |
292 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
293 RTE_PTYPE_INNER_L4_ICMP,
295 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
296 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
297 RTE_PTYPE_TUNNEL_GRENAT |
298 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
299 RTE_PTYPE_INNER_L4_FRAG,
300 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
301 RTE_PTYPE_TUNNEL_GRENAT |
302 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
303 RTE_PTYPE_INNER_L4_NONFRAG,
304 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
305 RTE_PTYPE_TUNNEL_GRENAT |
306 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
307 RTE_PTYPE_INNER_L4_UDP,
309 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
310 RTE_PTYPE_TUNNEL_GRENAT |
311 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
312 RTE_PTYPE_INNER_L4_TCP,
313 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
314 RTE_PTYPE_TUNNEL_GRENAT |
315 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
316 RTE_PTYPE_INNER_L4_SCTP,
317 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
318 RTE_PTYPE_TUNNEL_GRENAT |
319 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
320 RTE_PTYPE_INNER_L4_ICMP,
322 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
323 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
324 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
326 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
327 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
328 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
329 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
330 RTE_PTYPE_INNER_L4_FRAG,
331 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
332 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
333 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
334 RTE_PTYPE_INNER_L4_NONFRAG,
335 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
336 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
337 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
338 RTE_PTYPE_INNER_L4_UDP,
340 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
341 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
342 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
343 RTE_PTYPE_INNER_L4_TCP,
344 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
345 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
346 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
347 RTE_PTYPE_INNER_L4_SCTP,
348 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
349 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
350 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
351 RTE_PTYPE_INNER_L4_ICMP,
353 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
354 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
355 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
356 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
357 RTE_PTYPE_INNER_L4_FRAG,
358 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
359 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
360 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
361 RTE_PTYPE_INNER_L4_NONFRAG,
362 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
363 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
364 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
365 RTE_PTYPE_INNER_L4_UDP,
367 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
368 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
369 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
370 RTE_PTYPE_INNER_L4_TCP,
371 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
372 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
373 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
374 RTE_PTYPE_INNER_L4_SCTP,
375 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
376 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
377 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
378 RTE_PTYPE_INNER_L4_ICMP,
380 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN */
381 [73] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
382 RTE_PTYPE_TUNNEL_GRENAT |
383 RTE_PTYPE_INNER_L2_ETHER_VLAN,
385 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
386 [74] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
387 RTE_PTYPE_TUNNEL_GRENAT |
388 RTE_PTYPE_INNER_L2_ETHER_VLAN |
389 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
390 RTE_PTYPE_INNER_L4_FRAG,
391 [75] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
392 RTE_PTYPE_TUNNEL_GRENAT |
393 RTE_PTYPE_INNER_L2_ETHER_VLAN |
394 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
395 RTE_PTYPE_INNER_L4_NONFRAG,
396 [76] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
397 RTE_PTYPE_TUNNEL_GRENAT |
398 RTE_PTYPE_INNER_L2_ETHER_VLAN |
399 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
400 RTE_PTYPE_INNER_L4_UDP,
402 [78] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
403 RTE_PTYPE_TUNNEL_GRENAT |
404 RTE_PTYPE_INNER_L2_ETHER_VLAN |
405 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
406 RTE_PTYPE_INNER_L4_TCP,
407 [79] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
408 RTE_PTYPE_TUNNEL_GRENAT |
409 RTE_PTYPE_INNER_L2_ETHER_VLAN |
410 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
411 RTE_PTYPE_INNER_L4_SCTP,
412 [80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
413 RTE_PTYPE_TUNNEL_GRENAT |
414 RTE_PTYPE_INNER_L2_ETHER_VLAN |
415 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
416 RTE_PTYPE_INNER_L4_ICMP,
418 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
419 [81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
420 RTE_PTYPE_TUNNEL_GRENAT |
421 RTE_PTYPE_INNER_L2_ETHER_VLAN |
422 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
423 RTE_PTYPE_INNER_L4_FRAG,
424 [82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
425 RTE_PTYPE_TUNNEL_GRENAT |
426 RTE_PTYPE_INNER_L2_ETHER_VLAN |
427 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
428 RTE_PTYPE_INNER_L4_NONFRAG,
429 [83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
430 RTE_PTYPE_TUNNEL_GRENAT |
431 RTE_PTYPE_INNER_L2_ETHER_VLAN |
432 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
433 RTE_PTYPE_INNER_L4_UDP,
435 [85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
436 RTE_PTYPE_TUNNEL_GRENAT |
437 RTE_PTYPE_INNER_L2_ETHER_VLAN |
438 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
439 RTE_PTYPE_INNER_L4_TCP,
440 [86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
441 RTE_PTYPE_TUNNEL_GRENAT |
442 RTE_PTYPE_INNER_L2_ETHER_VLAN |
443 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
444 RTE_PTYPE_INNER_L4_SCTP,
445 [87] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
446 RTE_PTYPE_TUNNEL_GRENAT |
447 RTE_PTYPE_INNER_L2_ETHER_VLAN |
448 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
449 RTE_PTYPE_INNER_L4_ICMP,
451 /* Non tunneled IPv6 */
452 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
454 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
455 RTE_PTYPE_L4_NONFRAG,
456 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
459 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
461 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
463 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
467 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
468 RTE_PTYPE_TUNNEL_IP |
469 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
470 RTE_PTYPE_INNER_L4_FRAG,
471 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
472 RTE_PTYPE_TUNNEL_IP |
473 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
474 RTE_PTYPE_INNER_L4_NONFRAG,
475 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
476 RTE_PTYPE_TUNNEL_IP |
477 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
478 RTE_PTYPE_INNER_L4_UDP,
480 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
481 RTE_PTYPE_TUNNEL_IP |
482 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
483 RTE_PTYPE_INNER_L4_TCP,
484 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
485 RTE_PTYPE_TUNNEL_IP |
486 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
487 RTE_PTYPE_INNER_L4_SCTP,
488 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
489 RTE_PTYPE_TUNNEL_IP |
490 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
491 RTE_PTYPE_INNER_L4_ICMP,
494 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
495 RTE_PTYPE_TUNNEL_IP |
496 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
497 RTE_PTYPE_INNER_L4_FRAG,
498 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
499 RTE_PTYPE_TUNNEL_IP |
500 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
501 RTE_PTYPE_INNER_L4_NONFRAG,
502 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
503 RTE_PTYPE_TUNNEL_IP |
504 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
505 RTE_PTYPE_INNER_L4_UDP,
507 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
508 RTE_PTYPE_TUNNEL_IP |
509 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
510 RTE_PTYPE_INNER_L4_TCP,
511 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
512 RTE_PTYPE_TUNNEL_IP |
513 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
514 RTE_PTYPE_INNER_L4_SCTP,
515 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
516 RTE_PTYPE_TUNNEL_IP |
517 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
518 RTE_PTYPE_INNER_L4_ICMP,
520 /* IPv6 --> GRE/Teredo/VXLAN */
521 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
522 RTE_PTYPE_TUNNEL_GRENAT,
524 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
525 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
526 RTE_PTYPE_TUNNEL_GRENAT |
527 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
528 RTE_PTYPE_INNER_L4_FRAG,
529 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
530 RTE_PTYPE_TUNNEL_GRENAT |
531 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
532 RTE_PTYPE_INNER_L4_NONFRAG,
533 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
534 RTE_PTYPE_TUNNEL_GRENAT |
535 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
536 RTE_PTYPE_INNER_L4_UDP,
538 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
539 RTE_PTYPE_TUNNEL_GRENAT |
540 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
541 RTE_PTYPE_INNER_L4_TCP,
542 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
543 RTE_PTYPE_TUNNEL_GRENAT |
544 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
545 RTE_PTYPE_INNER_L4_SCTP,
546 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
547 RTE_PTYPE_TUNNEL_GRENAT |
548 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
549 RTE_PTYPE_INNER_L4_ICMP,
551 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
552 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
553 RTE_PTYPE_TUNNEL_GRENAT |
554 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
555 RTE_PTYPE_INNER_L4_FRAG,
556 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
557 RTE_PTYPE_TUNNEL_GRENAT |
558 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
559 RTE_PTYPE_INNER_L4_NONFRAG,
560 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
561 RTE_PTYPE_TUNNEL_GRENAT |
562 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
563 RTE_PTYPE_INNER_L4_UDP,
565 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
566 RTE_PTYPE_TUNNEL_GRENAT |
567 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
568 RTE_PTYPE_INNER_L4_TCP,
569 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
570 RTE_PTYPE_TUNNEL_GRENAT |
571 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
572 RTE_PTYPE_INNER_L4_SCTP,
573 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
574 RTE_PTYPE_TUNNEL_GRENAT |
575 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
576 RTE_PTYPE_INNER_L4_ICMP,
578 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
579 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
580 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
582 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
583 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
584 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
585 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
586 RTE_PTYPE_INNER_L4_FRAG,
587 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
588 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
589 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
590 RTE_PTYPE_INNER_L4_NONFRAG,
591 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
592 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
593 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
594 RTE_PTYPE_INNER_L4_UDP,
596 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
597 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
598 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
599 RTE_PTYPE_INNER_L4_TCP,
600 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
601 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
602 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
603 RTE_PTYPE_INNER_L4_SCTP,
604 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
605 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
606 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
607 RTE_PTYPE_INNER_L4_ICMP,
609 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
610 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
611 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
612 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
613 RTE_PTYPE_INNER_L4_FRAG,
614 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
615 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
616 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
617 RTE_PTYPE_INNER_L4_NONFRAG,
618 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
619 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
620 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
621 RTE_PTYPE_INNER_L4_UDP,
623 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
624 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
625 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
626 RTE_PTYPE_INNER_L4_TCP,
627 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
628 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
629 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
630 RTE_PTYPE_INNER_L4_SCTP,
631 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
632 RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
633 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
634 RTE_PTYPE_INNER_L4_ICMP,
636 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN */
637 [139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
638 RTE_PTYPE_TUNNEL_GRENAT |
639 RTE_PTYPE_INNER_L2_ETHER_VLAN,
641 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
642 [140] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
643 RTE_PTYPE_TUNNEL_GRENAT |
644 RTE_PTYPE_INNER_L2_ETHER_VLAN |
645 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
646 RTE_PTYPE_INNER_L4_FRAG,
647 [141] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
648 RTE_PTYPE_TUNNEL_GRENAT |
649 RTE_PTYPE_INNER_L2_ETHER_VLAN |
650 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
651 RTE_PTYPE_INNER_L4_NONFRAG,
652 [142] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
653 RTE_PTYPE_TUNNEL_GRENAT |
654 RTE_PTYPE_INNER_L2_ETHER_VLAN |
655 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
656 RTE_PTYPE_INNER_L4_UDP,
658 [144] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
659 RTE_PTYPE_TUNNEL_GRENAT |
660 RTE_PTYPE_INNER_L2_ETHER_VLAN |
661 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
662 RTE_PTYPE_INNER_L4_TCP,
663 [145] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
664 RTE_PTYPE_TUNNEL_GRENAT |
665 RTE_PTYPE_INNER_L2_ETHER_VLAN |
666 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
667 RTE_PTYPE_INNER_L4_SCTP,
668 [146] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
669 RTE_PTYPE_TUNNEL_GRENAT |
670 RTE_PTYPE_INNER_L2_ETHER_VLAN |
671 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
672 RTE_PTYPE_INNER_L4_ICMP,
674 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
675 [147] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
676 RTE_PTYPE_TUNNEL_GRENAT |
677 RTE_PTYPE_INNER_L2_ETHER_VLAN |
678 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
679 RTE_PTYPE_INNER_L4_FRAG,
680 [148] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
681 RTE_PTYPE_TUNNEL_GRENAT |
682 RTE_PTYPE_INNER_L2_ETHER_VLAN |
683 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
684 RTE_PTYPE_INNER_L4_NONFRAG,
685 [149] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
686 RTE_PTYPE_TUNNEL_GRENAT |
687 RTE_PTYPE_INNER_L2_ETHER_VLAN |
688 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
689 RTE_PTYPE_INNER_L4_UDP,
691 [151] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
692 RTE_PTYPE_TUNNEL_GRENAT |
693 RTE_PTYPE_INNER_L2_ETHER_VLAN |
694 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
695 RTE_PTYPE_INNER_L4_TCP,
696 [152] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
697 RTE_PTYPE_TUNNEL_GRENAT |
698 RTE_PTYPE_INNER_L2_ETHER_VLAN |
699 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
700 RTE_PTYPE_INNER_L4_SCTP,
701 [153] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
702 RTE_PTYPE_TUNNEL_GRENAT |
703 RTE_PTYPE_INNER_L2_ETHER_VLAN |
704 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
705 RTE_PTYPE_INNER_L4_ICMP,
707 /* All others reserved */
710 return ptype_table[ptype];
712 #else /* RTE_NEXT_ABI */
713 /* Translate pkt types to pkt flags */
714 static inline uint64_t
715 i40e_rxd_ptype_to_pkt_flags(uint64_t qword)
717 uint8_t ptype = (uint8_t)((qword & I40E_RXD_QW1_PTYPE_MASK) >>
718 I40E_RXD_QW1_PTYPE_SHIFT);
719 static const uint64_t ip_ptype_map[I40E_MAX_PKT_TYPE] = {
722 PKT_RX_IEEE1588_PTP, /* PTYPE 2 */
742 PKT_RX_IPV4_HDR, /* PTYPE 22 */
743 PKT_RX_IPV4_HDR, /* PTYPE 23 */
744 PKT_RX_IPV4_HDR, /* PTYPE 24 */
746 PKT_RX_IPV4_HDR, /* PTYPE 26 */
747 PKT_RX_IPV4_HDR, /* PTYPE 27 */
748 PKT_RX_IPV4_HDR, /* PTYPE 28 */
749 PKT_RX_IPV4_HDR_EXT, /* PTYPE 29 */
750 PKT_RX_IPV4_HDR_EXT, /* PTYPE 30 */
751 PKT_RX_IPV4_HDR_EXT, /* PTYPE 31 */
753 PKT_RX_IPV4_HDR_EXT, /* PTYPE 33 */
754 PKT_RX_IPV4_HDR_EXT, /* PTYPE 34 */
755 PKT_RX_IPV4_HDR_EXT, /* PTYPE 35 */
756 PKT_RX_IPV4_HDR_EXT, /* PTYPE 36 */
757 PKT_RX_IPV4_HDR_EXT, /* PTYPE 37 */
758 PKT_RX_IPV4_HDR_EXT, /* PTYPE 38 */
760 PKT_RX_IPV4_HDR_EXT, /* PTYPE 40 */
761 PKT_RX_IPV4_HDR_EXT, /* PTYPE 41 */
762 PKT_RX_IPV4_HDR_EXT, /* PTYPE 42 */
763 PKT_RX_IPV4_HDR_EXT, /* PTYPE 43 */
764 PKT_RX_IPV4_HDR_EXT, /* PTYPE 44 */
765 PKT_RX_IPV4_HDR_EXT, /* PTYPE 45 */
766 PKT_RX_IPV4_HDR_EXT, /* PTYPE 46 */
768 PKT_RX_IPV4_HDR_EXT, /* PTYPE 48 */
769 PKT_RX_IPV4_HDR_EXT, /* PTYPE 49 */
770 PKT_RX_IPV4_HDR_EXT, /* PTYPE 50 */
771 PKT_RX_IPV4_HDR_EXT, /* PTYPE 51 */
772 PKT_RX_IPV4_HDR_EXT, /* PTYPE 52 */
773 PKT_RX_IPV4_HDR_EXT, /* PTYPE 53 */
775 PKT_RX_IPV4_HDR_EXT, /* PTYPE 55 */
776 PKT_RX_IPV4_HDR_EXT, /* PTYPE 56 */
777 PKT_RX_IPV4_HDR_EXT, /* PTYPE 57 */
778 PKT_RX_IPV4_HDR_EXT, /* PTYPE 58 */
779 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 59 */
780 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 60 */
781 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 61 */
783 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 63 */
784 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 64 */
785 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 65 */
786 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 66 */
787 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 67 */
788 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 68 */
790 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 70 */
791 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 71 */
792 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 72 */
793 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 73 */
794 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 74 */
795 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 75 */
796 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 76 */
798 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 78 */
799 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 79 */
800 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 80 */
801 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 81 */
802 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 82 */
803 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 83 */
805 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 85 */
806 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 86 */
807 PKT_RX_IPV4_HDR_EXT, /* PTYPE 87 */
808 PKT_RX_IPV6_HDR, /* PTYPE 88 */
809 PKT_RX_IPV6_HDR, /* PTYPE 89 */
810 PKT_RX_IPV6_HDR, /* PTYPE 90 */
812 PKT_RX_IPV6_HDR, /* PTYPE 92 */
813 PKT_RX_IPV6_HDR, /* PTYPE 93 */
814 PKT_RX_IPV6_HDR, /* PTYPE 94 */
815 PKT_RX_IPV6_HDR_EXT, /* PTYPE 95 */
816 PKT_RX_IPV6_HDR_EXT, /* PTYPE 96 */
817 PKT_RX_IPV6_HDR_EXT, /* PTYPE 97 */
819 PKT_RX_IPV6_HDR_EXT, /* PTYPE 99 */
820 PKT_RX_IPV6_HDR_EXT, /* PTYPE 100 */
821 PKT_RX_IPV6_HDR_EXT, /* PTYPE 101 */
822 PKT_RX_IPV6_HDR_EXT, /* PTYPE 102 */
823 PKT_RX_IPV6_HDR_EXT, /* PTYPE 103 */
824 PKT_RX_IPV6_HDR_EXT, /* PTYPE 104 */
826 PKT_RX_IPV6_HDR_EXT, /* PTYPE 106 */
827 PKT_RX_IPV6_HDR_EXT, /* PTYPE 107 */
828 PKT_RX_IPV6_HDR_EXT, /* PTYPE 108 */
829 PKT_RX_IPV6_HDR_EXT, /* PTYPE 109 */
830 PKT_RX_IPV6_HDR_EXT, /* PTYPE 110 */
831 PKT_RX_IPV6_HDR_EXT, /* PTYPE 111 */
832 PKT_RX_IPV6_HDR_EXT, /* PTYPE 112 */
834 PKT_RX_IPV6_HDR_EXT, /* PTYPE 114 */
835 PKT_RX_IPV6_HDR_EXT, /* PTYPE 115 */
836 PKT_RX_IPV6_HDR_EXT, /* PTYPE 116 */
837 PKT_RX_IPV6_HDR_EXT, /* PTYPE 117 */
838 PKT_RX_IPV6_HDR_EXT, /* PTYPE 118 */
839 PKT_RX_IPV6_HDR_EXT, /* PTYPE 119 */
841 PKT_RX_IPV6_HDR_EXT, /* PTYPE 121 */
842 PKT_RX_IPV6_HDR_EXT, /* PTYPE 122 */
843 PKT_RX_IPV6_HDR_EXT, /* PTYPE 123 */
844 PKT_RX_IPV6_HDR_EXT, /* PTYPE 124 */
845 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 125 */
846 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 126 */
847 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 127 */
849 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 129 */
850 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 130 */
851 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 131 */
852 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 132 */
853 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 133 */
854 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 134 */
856 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 136 */
857 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 137 */
858 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 138 */
859 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 139 */
860 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 140 */
861 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 141 */
862 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 142 */
864 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 144 */
865 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 145 */
866 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 146 */
867 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 147 */
868 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 148 */
869 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 149 */
871 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 151 */
872 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 152 */
873 PKT_RX_IPV6_HDR_EXT, /* PTYPE 153 */
978 return ip_ptype_map[ptype];
980 #endif /* RTE_NEXT_ABI */
982 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK 0x03
983 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID 0x01
984 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX 0x02
985 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK 0x03
986 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX 0x01
988 static inline uint64_t
989 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
992 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
993 uint16_t flexbh, flexbl;
995 flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
996 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
997 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
998 flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
999 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
1000 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
1003 if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
1005 rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
1006 flags |= PKT_RX_FDIR_ID;
1007 } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
1009 rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
1010 flags |= PKT_RX_FDIR_FLX;
1012 if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
1014 rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
1015 flags |= PKT_RX_FDIR_FLX;
1019 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
1020 flags |= PKT_RX_FDIR_ID;
1025 i40e_txd_enable_checksum(uint64_t ol_flags,
1027 uint32_t *td_offset,
1028 union i40e_tx_offload tx_offload,
1029 uint32_t *cd_tunneling)
1031 /* UDP tunneling packet TX checksum offload */
1032 if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
1034 *td_offset |= (tx_offload.outer_l2_len >> 1)
1035 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1037 if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
1038 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1039 else if (ol_flags & PKT_TX_OUTER_IPV4)
1040 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1041 else if (ol_flags & PKT_TX_OUTER_IPV6)
1042 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1044 /* Now set the ctx descriptor fields */
1045 *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
1046 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1047 (tx_offload.l2_len >> 1) <<
1048 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1051 *td_offset |= (tx_offload.l2_len >> 1)
1052 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1054 /* Enable L3 checksum offloads */
1055 if (ol_flags & PKT_TX_IP_CKSUM) {
1056 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1057 *td_offset |= (tx_offload.l3_len >> 2)
1058 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1059 } else if (ol_flags & PKT_TX_IPV4) {
1060 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1061 *td_offset |= (tx_offload.l3_len >> 2)
1062 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1063 } else if (ol_flags & PKT_TX_IPV6) {
1064 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1065 *td_offset |= (tx_offload.l3_len >> 2)
1066 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1069 if (ol_flags & PKT_TX_TCP_SEG) {
1070 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1071 *td_offset |= (tx_offload.l4_len >> 2)
1072 << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1076 /* Enable L4 checksum offloads */
1077 switch (ol_flags & PKT_TX_L4_MASK) {
1078 case PKT_TX_TCP_CKSUM:
1079 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1080 *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
1081 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1083 case PKT_TX_SCTP_CKSUM:
1084 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1085 *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
1086 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1088 case PKT_TX_UDP_CKSUM:
1089 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1090 *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
1091 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1098 static inline struct rte_mbuf *
1099 rte_rxmbuf_alloc(struct rte_mempool *mp)
1103 m = __rte_mbuf_raw_alloc(mp);
1104 __rte_mbuf_sanity_check_raw(m, 0);
1109 /* Construct the tx flags */
1110 static inline uint64_t
1111 i40e_build_ctob(uint32_t td_cmd,
1116 return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
1117 ((uint64_t)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
1118 ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
1119 ((uint64_t)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
1120 ((uint64_t)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
1124 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
1126 struct i40e_tx_entry *sw_ring = txq->sw_ring;
1127 volatile struct i40e_tx_desc *txd = txq->tx_ring;
1128 uint16_t last_desc_cleaned = txq->last_desc_cleaned;
1129 uint16_t nb_tx_desc = txq->nb_tx_desc;
1130 uint16_t desc_to_clean_to;
1131 uint16_t nb_tx_to_clean;
1133 desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
1134 if (desc_to_clean_to >= nb_tx_desc)
1135 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
1137 desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
1138 if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
1139 rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1140 rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
1141 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
1142 "(port=%d queue=%d)", desc_to_clean_to,
1143 txq->port_id, txq->queue_id);
1147 if (last_desc_cleaned > desc_to_clean_to)
1148 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
1151 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
1154 txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
1156 txq->last_desc_cleaned = desc_to_clean_to;
1157 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
1163 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1164 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
1166 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
1171 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1172 if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
1173 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
1174 "rxq->rx_free_thresh=%d, "
1175 "RTE_PMD_I40E_RX_MAX_BURST=%d",
1176 rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
1178 } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
1179 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
1180 "rxq->rx_free_thresh=%d, "
1181 "rxq->nb_rx_desc=%d",
1182 rxq->rx_free_thresh, rxq->nb_rx_desc);
1184 } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
1185 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
1186 "rxq->nb_rx_desc=%d, "
1187 "rxq->rx_free_thresh=%d",
1188 rxq->nb_rx_desc, rxq->rx_free_thresh);
1190 } else if (!(rxq->nb_rx_desc < (I40E_MAX_RING_DESC -
1191 RTE_PMD_I40E_RX_MAX_BURST))) {
1192 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
1193 "rxq->nb_rx_desc=%d, "
1194 "I40E_MAX_RING_DESC=%d, "
1195 "RTE_PMD_I40E_RX_MAX_BURST=%d",
1196 rxq->nb_rx_desc, I40E_MAX_RING_DESC,
1197 RTE_PMD_I40E_RX_MAX_BURST);
1207 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1208 #define I40E_LOOK_AHEAD 8
1209 #if (I40E_LOOK_AHEAD != 8)
1210 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
1213 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
1215 volatile union i40e_rx_desc *rxdp;
1216 struct i40e_rx_entry *rxep;
1217 struct rte_mbuf *mb;
1221 int32_t s[I40E_LOOK_AHEAD], nb_dd;
1222 int32_t i, j, nb_rx = 0;
1225 rxdp = &rxq->rx_ring[rxq->rx_tail];
1226 rxep = &rxq->sw_ring[rxq->rx_tail];
1228 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1229 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
1230 I40E_RXD_QW1_STATUS_SHIFT;
1232 /* Make sure there is at least 1 packet to receive */
1233 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1237 * Scan LOOK_AHEAD descriptors at a time to determine which
1238 * descriptors reference packets that are ready to be received.
1240 for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
1241 rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
1242 /* Read desc statuses backwards to avoid race condition */
1243 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
1244 qword1 = rte_le_to_cpu_64(\
1245 rxdp[j].wb.qword1.status_error_len);
1246 s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
1247 I40E_RXD_QW1_STATUS_SHIFT;
1250 /* Compute how many status bits were set */
1251 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
1252 nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
1256 /* Translate descriptor info to mbuf parameters */
1257 for (j = 0; j < nb_dd; j++) {
1259 qword1 = rte_le_to_cpu_64(\
1260 rxdp[j].wb.qword1.status_error_len);
1261 pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1262 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1263 mb->data_len = pkt_len;
1264 mb->pkt_len = pkt_len;
1266 i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
1267 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
1268 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
1271 i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
1272 I40E_RXD_QW1_PTYPE_MASK) >>
1273 I40E_RXD_QW1_PTYPE_SHIFT));
1275 pkt_flags |= i40e_rxd_ptype_to_pkt_flags(qword1);
1277 mb->packet_type = (uint16_t)((qword1 &
1278 I40E_RXD_QW1_PTYPE_MASK) >>
1279 I40E_RXD_QW1_PTYPE_SHIFT);
1280 #endif /* RTE_NEXT_ABI */
1281 if (pkt_flags & PKT_RX_RSS_HASH)
1282 mb->hash.rss = rte_le_to_cpu_32(\
1283 rxdp[j].wb.qword0.hi_dword.rss);
1284 if (pkt_flags & PKT_RX_FDIR)
1285 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
1287 #ifdef RTE_LIBRTE_IEEE1588
1288 uint16_t tsyn = (qword1
1289 & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
1290 | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
1291 >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
1294 pkt_flags |= PKT_RX_IEEE1588_TMST;
1296 mb->timesync = tsyn & 0x03;
1298 mb->ol_flags |= pkt_flags;
1302 for (j = 0; j < I40E_LOOK_AHEAD; j++)
1303 rxq->rx_stage[i + j] = rxep[j].mbuf;
1305 if (nb_dd != I40E_LOOK_AHEAD)
1309 /* Clear software ring entries */
1310 for (i = 0; i < nb_rx; i++)
1311 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1316 static inline uint16_t
1317 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
1318 struct rte_mbuf **rx_pkts,
1322 struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1324 nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1326 for (i = 0; i < nb_pkts; i++)
1327 rx_pkts[i] = stage[i];
1329 rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1330 rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1336 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
1338 volatile union i40e_rx_desc *rxdp;
1339 struct i40e_rx_entry *rxep;
1340 struct rte_mbuf *mb;
1341 uint16_t alloc_idx, i;
1345 /* Allocate buffers in bulk */
1346 alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1347 (rxq->rx_free_thresh - 1));
1348 rxep = &(rxq->sw_ring[alloc_idx]);
1349 diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1350 rxq->rx_free_thresh);
1351 if (unlikely(diag != 0)) {
1352 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
1356 rxdp = &rxq->rx_ring[alloc_idx];
1357 for (i = 0; i < rxq->rx_free_thresh; i++) {
1358 if (likely(i < (rxq->rx_free_thresh - 1)))
1359 /* Prefetch next mbuf */
1360 rte_prefetch0(rxep[i + 1].mbuf);
1363 rte_mbuf_refcnt_set(mb, 1);
1365 mb->data_off = RTE_PKTMBUF_HEADROOM;
1367 mb->port = rxq->port_id;
1368 dma_addr = rte_cpu_to_le_64(\
1369 RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb));
1370 rxdp[i].read.hdr_addr = dma_addr;
1371 rxdp[i].read.pkt_addr = dma_addr;
1374 /* Update rx tail regsiter */
1376 I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1378 rxq->rx_free_trigger =
1379 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1380 if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1381 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1386 static inline uint16_t
1387 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1389 struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
1395 if (rxq->rx_nb_avail)
1396 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1398 nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
1399 rxq->rx_next_avail = 0;
1400 rxq->rx_nb_avail = nb_rx;
1401 rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1403 if (rxq->rx_tail > rxq->rx_free_trigger) {
1404 if (i40e_rx_alloc_bufs(rxq) != 0) {
1407 PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1408 "port_id=%u, queue_id=%u",
1409 rxq->port_id, rxq->queue_id);
1410 rxq->rx_nb_avail = 0;
1411 rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1412 for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1413 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1419 if (rxq->rx_tail >= rxq->nb_rx_desc)
1422 if (rxq->rx_nb_avail)
1423 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1429 i40e_recv_pkts_bulk_alloc(void *rx_queue,
1430 struct rte_mbuf **rx_pkts,
1433 uint16_t nb_rx = 0, n, count;
1435 if (unlikely(nb_pkts == 0))
1438 if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
1439 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1442 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
1443 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1444 nb_rx = (uint16_t)(nb_rx + count);
1445 nb_pkts = (uint16_t)(nb_pkts - count);
1452 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
1455 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1457 struct i40e_rx_queue *rxq;
1458 volatile union i40e_rx_desc *rx_ring;
1459 volatile union i40e_rx_desc *rxdp;
1460 union i40e_rx_desc rxd;
1461 struct i40e_rx_entry *sw_ring;
1462 struct i40e_rx_entry *rxe;
1463 struct rte_mbuf *rxm;
1464 struct rte_mbuf *nmb;
1468 uint16_t rx_packet_len;
1469 uint16_t rx_id, nb_hold;
1476 rx_id = rxq->rx_tail;
1477 rx_ring = rxq->rx_ring;
1478 sw_ring = rxq->sw_ring;
1480 while (nb_rx < nb_pkts) {
1481 rxdp = &rx_ring[rx_id];
1482 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1483 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
1484 >> I40E_RXD_QW1_STATUS_SHIFT;
1486 /* Check the DD bit first */
1487 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1490 nmb = rte_rxmbuf_alloc(rxq->mp);
1496 rxe = &sw_ring[rx_id];
1498 if (unlikely(rx_id == rxq->nb_rx_desc))
1501 /* Prefetch next mbuf */
1502 rte_prefetch0(sw_ring[rx_id].mbuf);
1505 * When next RX descriptor is on a cache line boundary,
1506 * prefetch the next 4 RX descriptors and next 8 pointers
1509 if ((rx_id & 0x3) == 0) {
1510 rte_prefetch0(&rx_ring[rx_id]);
1511 rte_prefetch0(&sw_ring[rx_id]);
1516 rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
1517 rxdp->read.hdr_addr = dma_addr;
1518 rxdp->read.pkt_addr = dma_addr;
1520 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1521 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1523 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1524 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1527 rxm->pkt_len = rx_packet_len;
1528 rxm->data_len = rx_packet_len;
1529 rxm->port = rxq->port_id;
1531 i40e_rxd_to_vlan_tci(rxm, &rxd);
1532 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
1533 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
1536 i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
1537 I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
1539 pkt_flags |= i40e_rxd_ptype_to_pkt_flags(qword1);
1540 rxm->packet_type = (uint16_t)((qword1 & I40E_RXD_QW1_PTYPE_MASK) >>
1541 I40E_RXD_QW1_PTYPE_SHIFT);
1542 #endif /* RTE_NEXT_ABI */
1543 if (pkt_flags & PKT_RX_RSS_HASH)
1545 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1546 if (pkt_flags & PKT_RX_FDIR)
1547 pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
1549 #ifdef RTE_LIBRTE_IEEE1588
1550 uint16_t tsyn = (qword1 & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
1551 | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
1552 >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
1555 pkt_flags |= PKT_RX_IEEE1588_TMST;
1557 rxm->timesync = tsyn & 0x03;
1559 rxm->ol_flags |= pkt_flags;
1561 rx_pkts[nb_rx++] = rxm;
1563 rxq->rx_tail = rx_id;
1566 * If the number of free RX descriptors is greater than the RX free
1567 * threshold of the queue, advance the receive tail register of queue.
1568 * Update that register with the value of the last processed RX
1569 * descriptor minus 1.
1571 nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1572 if (nb_hold > rxq->rx_free_thresh) {
1573 rx_id = (uint16_t) ((rx_id == 0) ?
1574 (rxq->nb_rx_desc - 1) : (rx_id - 1));
1575 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1578 rxq->nb_rx_hold = nb_hold;
1584 i40e_recv_scattered_pkts(void *rx_queue,
1585 struct rte_mbuf **rx_pkts,
1588 struct i40e_rx_queue *rxq = rx_queue;
1589 volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
1590 volatile union i40e_rx_desc *rxdp;
1591 union i40e_rx_desc rxd;
1592 struct i40e_rx_entry *sw_ring = rxq->sw_ring;
1593 struct i40e_rx_entry *rxe;
1594 struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1595 struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1596 struct rte_mbuf *nmb, *rxm;
1597 uint16_t rx_id = rxq->rx_tail;
1598 uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1604 while (nb_rx < nb_pkts) {
1605 rxdp = &rx_ring[rx_id];
1606 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1607 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
1608 I40E_RXD_QW1_STATUS_SHIFT;
1610 /* Check the DD bit */
1611 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1614 nmb = rte_rxmbuf_alloc(rxq->mp);
1619 rxe = &sw_ring[rx_id];
1621 if (rx_id == rxq->nb_rx_desc)
1624 /* Prefetch next mbuf */
1625 rte_prefetch0(sw_ring[rx_id].mbuf);
1628 * When next RX descriptor is on a cache line boundary,
1629 * prefetch the next 4 RX descriptors and next 8 pointers
1632 if ((rx_id & 0x3) == 0) {
1633 rte_prefetch0(&rx_ring[rx_id]);
1634 rte_prefetch0(&sw_ring[rx_id]);
1640 rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
1642 /* Set data buffer address and data length of the mbuf */
1643 rxdp->read.hdr_addr = dma_addr;
1644 rxdp->read.pkt_addr = dma_addr;
1645 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1646 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1647 rxm->data_len = rx_packet_len;
1648 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1651 * If this is the first buffer of the received packet, set the
1652 * pointer to the first mbuf of the packet and initialize its
1653 * context. Otherwise, update the total length and the number
1654 * of segments of the current scattered packet, and update the
1655 * pointer to the last mbuf of the current packet.
1659 first_seg->nb_segs = 1;
1660 first_seg->pkt_len = rx_packet_len;
1662 first_seg->pkt_len =
1663 (uint16_t)(first_seg->pkt_len +
1665 first_seg->nb_segs++;
1666 last_seg->next = rxm;
1670 * If this is not the last buffer of the received packet,
1671 * update the pointer to the last mbuf of the current scattered
1672 * packet and continue to parse the RX ring.
1674 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
1680 * This is the last buffer of the received packet. If the CRC
1681 * is not stripped by the hardware:
1682 * - Subtract the CRC length from the total packet length.
1683 * - If the last buffer only contains the whole CRC or a part
1684 * of it, free the mbuf associated to the last buffer. If part
1685 * of the CRC is also contained in the previous mbuf, subtract
1686 * the length of that CRC part from the data length of the
1690 if (unlikely(rxq->crc_len > 0)) {
1691 first_seg->pkt_len -= ETHER_CRC_LEN;
1692 if (rx_packet_len <= ETHER_CRC_LEN) {
1693 rte_pktmbuf_free_seg(rxm);
1694 first_seg->nb_segs--;
1695 last_seg->data_len =
1696 (uint16_t)(last_seg->data_len -
1697 (ETHER_CRC_LEN - rx_packet_len));
1698 last_seg->next = NULL;
1700 rxm->data_len = (uint16_t)(rx_packet_len -
1704 first_seg->port = rxq->port_id;
1705 first_seg->ol_flags = 0;
1706 i40e_rxd_to_vlan_tci(first_seg, &rxd);
1707 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
1708 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
1710 first_seg->packet_type =
1711 i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
1712 I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
1714 pkt_flags |= i40e_rxd_ptype_to_pkt_flags(qword1);
1715 first_seg->packet_type = (uint16_t)((qword1 &
1716 I40E_RXD_QW1_PTYPE_MASK) >>
1717 I40E_RXD_QW1_PTYPE_SHIFT);
1718 #endif /* RTE_NEXT_ABI */
1719 if (pkt_flags & PKT_RX_RSS_HASH)
1721 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1722 if (pkt_flags & PKT_RX_FDIR)
1723 pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
1725 #ifdef RTE_LIBRTE_IEEE1588
1726 uint16_t tsyn = (qword1 & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
1727 | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
1728 >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
1731 pkt_flags |= PKT_RX_IEEE1588_TMST;
1733 first_seg->timesync = tsyn & 0x03;
1735 first_seg->ol_flags |= pkt_flags;
1737 /* Prefetch data of first segment, if configured to do so. */
1738 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1739 first_seg->data_off));
1740 rx_pkts[nb_rx++] = first_seg;
1744 /* Record index of the next RX descriptor to probe. */
1745 rxq->rx_tail = rx_id;
1746 rxq->pkt_first_seg = first_seg;
1747 rxq->pkt_last_seg = last_seg;
1750 * If the number of free RX descriptors is greater than the RX free
1751 * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1752 * register. Update the RDT with the value of the last processed RX
1753 * descriptor minus 1, to guarantee that the RDT register is never
1754 * equal to the RDH register, which creates a "full" ring situtation
1755 * from the hardware point of view.
1757 nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1758 if (nb_hold > rxq->rx_free_thresh) {
1759 rx_id = (uint16_t)(rx_id == 0 ?
1760 (rxq->nb_rx_desc - 1) : (rx_id - 1));
1761 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1764 rxq->nb_rx_hold = nb_hold;
1769 /* Check if the context descriptor is needed for TX offloading */
1770 static inline uint16_t
1771 i40e_calc_context_desc(uint64_t flags)
1773 static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
1777 #ifdef RTE_LIBRTE_IEEE1588
1778 mask |= PKT_TX_IEEE1588_TMST;
1781 return ((flags & mask) ? 1 : 0);
1784 /* set i40e TSO context descriptor */
1785 static inline uint64_t
1786 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
1788 uint64_t ctx_desc = 0;
1789 uint32_t cd_cmd, hdr_len, cd_tso_len;
1791 if (!tx_offload.l4_len) {
1792 PMD_DRV_LOG(DEBUG, "L4 length set to 0");
1797 * in case of tunneling packet, the outer_l2_len and
1798 * outer_l3_len must be 0.
1800 hdr_len = tx_offload.outer_l2_len +
1801 tx_offload.outer_l3_len +
1806 cd_cmd = I40E_TX_CTX_DESC_TSO;
1807 cd_tso_len = mbuf->pkt_len - hdr_len;
1808 ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1809 ((uint64_t)cd_tso_len <<
1810 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1811 ((uint64_t)mbuf->tso_segsz <<
1812 I40E_TXD_CTX_QW1_MSS_SHIFT);
1818 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1820 struct i40e_tx_queue *txq;
1821 struct i40e_tx_entry *sw_ring;
1822 struct i40e_tx_entry *txe, *txn;
1823 volatile struct i40e_tx_desc *txd;
1824 volatile struct i40e_tx_desc *txr;
1825 struct rte_mbuf *tx_pkt;
1826 struct rte_mbuf *m_seg;
1827 uint32_t cd_tunneling_params;
1839 uint64_t buf_dma_addr;
1840 union i40e_tx_offload tx_offload = {0};
1843 sw_ring = txq->sw_ring;
1845 tx_id = txq->tx_tail;
1846 txe = &sw_ring[tx_id];
1848 /* Check if the descriptor ring needs to be cleaned. */
1849 if (txq->nb_tx_free < txq->tx_free_thresh)
1850 i40e_xmit_cleanup(txq);
1852 for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1858 tx_pkt = *tx_pkts++;
1859 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1861 ol_flags = tx_pkt->ol_flags;
1862 tx_offload.l2_len = tx_pkt->l2_len;
1863 tx_offload.l3_len = tx_pkt->l3_len;
1864 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1865 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1866 tx_offload.l4_len = tx_pkt->l4_len;
1867 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1869 /* Calculate the number of context descriptors needed. */
1870 nb_ctx = i40e_calc_context_desc(ol_flags);
1873 * The number of descriptors that must be allocated for
1874 * a packet equals to the number of the segments of that
1875 * packet plus 1 context descriptor if needed.
1877 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1878 tx_last = (uint16_t)(tx_id + nb_used - 1);
1881 if (tx_last >= txq->nb_tx_desc)
1882 tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1884 if (nb_used > txq->nb_tx_free) {
1885 if (i40e_xmit_cleanup(txq) != 0) {
1890 if (unlikely(nb_used > txq->tx_rs_thresh)) {
1891 while (nb_used > txq->nb_tx_free) {
1892 if (i40e_xmit_cleanup(txq) != 0) {
1901 /* Descriptor based VLAN insertion */
1902 if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1903 tx_flags |= tx_pkt->vlan_tci <<
1904 I40E_TX_FLAG_L2TAG1_SHIFT;
1905 tx_flags |= I40E_TX_FLAG_INSERT_VLAN;
1906 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1907 td_tag = (tx_flags & I40E_TX_FLAG_L2TAG1_MASK) >>
1908 I40E_TX_FLAG_L2TAG1_SHIFT;
1911 /* Always enable CRC offload insertion */
1912 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1914 /* Enable checksum offloading */
1915 cd_tunneling_params = 0;
1916 if (unlikely(ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)) {
1917 i40e_txd_enable_checksum(ol_flags, &td_cmd, &td_offset,
1918 tx_offload, &cd_tunneling_params);
1921 if (unlikely(nb_ctx)) {
1922 /* Setup TX context descriptor if required */
1923 volatile struct i40e_tx_context_desc *ctx_txd =
1924 (volatile struct i40e_tx_context_desc *)\
1926 uint16_t cd_l2tag2 = 0;
1927 uint64_t cd_type_cmd_tso_mss =
1928 I40E_TX_DESC_DTYPE_CONTEXT;
1930 txn = &sw_ring[txe->next_id];
1931 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1932 if (txe->mbuf != NULL) {
1933 rte_pktmbuf_free_seg(txe->mbuf);
1937 /* TSO enabled means no timestamp */
1938 if (ol_flags & PKT_TX_TCP_SEG)
1939 cd_type_cmd_tso_mss |=
1940 i40e_set_tso_ctx(tx_pkt, tx_offload);
1942 #ifdef RTE_LIBRTE_IEEE1588
1943 if (ol_flags & PKT_TX_IEEE1588_TMST)
1944 cd_type_cmd_tso_mss |=
1945 ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1946 I40E_TXD_CTX_QW1_CMD_SHIFT);
1950 ctx_txd->tunneling_params =
1951 rte_cpu_to_le_32(cd_tunneling_params);
1952 if (ol_flags & PKT_TX_QINQ_PKT) {
1953 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1954 cd_type_cmd_tso_mss |=
1955 ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1956 I40E_TXD_CTX_QW1_CMD_SHIFT);
1958 ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1959 ctx_txd->type_cmd_tso_mss =
1960 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1962 PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1963 "tunneling_params: %#x;\n"
1966 "type_cmd_tso_mss: %#"PRIx64";\n",
1968 ctx_txd->tunneling_params,
1971 ctx_txd->type_cmd_tso_mss);
1973 txe->last_id = tx_last;
1974 tx_id = txe->next_id;
1981 txn = &sw_ring[txe->next_id];
1984 rte_pktmbuf_free_seg(txe->mbuf);
1987 /* Setup TX Descriptor */
1988 slen = m_seg->data_len;
1989 buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
1991 PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1992 "buf_dma_addr: %#"PRIx64";\n"
1997 tx_pkt, tx_id, buf_dma_addr,
1998 td_cmd, td_offset, slen, td_tag);
2000 txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
2001 txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
2002 td_offset, slen, td_tag);
2003 txe->last_id = tx_last;
2004 tx_id = txe->next_id;
2006 m_seg = m_seg->next;
2007 } while (m_seg != NULL);
2009 /* The last packet data descriptor needs End Of Packet (EOP) */
2010 td_cmd |= I40E_TX_DESC_CMD_EOP;
2011 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
2012 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
2014 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
2015 PMD_TX_FREE_LOG(DEBUG,
2016 "Setting RS bit on TXD id="
2017 "%4u (port=%d queue=%d)",
2018 tx_last, txq->port_id, txq->queue_id);
2020 td_cmd |= I40E_TX_DESC_CMD_RS;
2022 /* Update txq RS bit counters */
2023 txq->nb_tx_used = 0;
2026 txd->cmd_type_offset_bsz |=
2027 rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2028 I40E_TXD_QW1_CMD_SHIFT);
2034 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2035 (unsigned) txq->port_id, (unsigned) txq->queue_id,
2036 (unsigned) tx_id, (unsigned) nb_tx);
2038 I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id);
2039 txq->tx_tail = tx_id;
2044 static inline int __attribute__((always_inline))
2045 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
2047 struct i40e_tx_entry *txep;
2050 if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
2051 rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
2052 rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
2055 txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
2057 for (i = 0; i < txq->tx_rs_thresh; i++)
2058 rte_prefetch0((txep + i)->mbuf);
2060 if (!(txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT)) {
2061 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2062 rte_mempool_put(txep->mbuf->pool, txep->mbuf);
2066 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2067 rte_pktmbuf_free_seg(txep->mbuf);
2072 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
2073 txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
2074 if (txq->tx_next_dd >= txq->nb_tx_desc)
2075 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2077 return txq->tx_rs_thresh;
2080 #define I40E_TD_CMD (I40E_TX_DESC_CMD_ICRC |\
2081 I40E_TX_DESC_CMD_EOP)
2083 /* Populate 4 descriptors with data from 4 mbufs */
2085 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
2090 for (i = 0; i < 4; i++, txdp++, pkts++) {
2091 dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
2092 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
2093 txdp->cmd_type_offset_bsz =
2094 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
2095 (*pkts)->data_len, 0);
2099 /* Populate 1 descriptor with data from 1 mbuf */
2101 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
2105 dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
2106 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
2107 txdp->cmd_type_offset_bsz =
2108 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
2109 (*pkts)->data_len, 0);
2112 /* Fill hardware descriptor ring with mbuf data */
2114 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
2115 struct rte_mbuf **pkts,
2118 volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
2119 struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
2120 const int N_PER_LOOP = 4;
2121 const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
2122 int mainpart, leftover;
2125 mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
2126 leftover = (nb_pkts & ((uint32_t) N_PER_LOOP_MASK));
2127 for (i = 0; i < mainpart; i += N_PER_LOOP) {
2128 for (j = 0; j < N_PER_LOOP; ++j) {
2129 (txep + i + j)->mbuf = *(pkts + i + j);
2131 tx4(txdp + i, pkts + i);
2133 if (unlikely(leftover > 0)) {
2134 for (i = 0; i < leftover; ++i) {
2135 (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
2136 tx1(txdp + mainpart + i, pkts + mainpart + i);
2141 static inline uint16_t
2142 tx_xmit_pkts(struct i40e_tx_queue *txq,
2143 struct rte_mbuf **tx_pkts,
2146 volatile struct i40e_tx_desc *txr = txq->tx_ring;
2150 * Begin scanning the H/W ring for done descriptors when the number
2151 * of available descriptors drops below tx_free_thresh. For each done
2152 * descriptor, free the associated buffer.
2154 if (txq->nb_tx_free < txq->tx_free_thresh)
2155 i40e_tx_free_bufs(txq);
2157 /* Use available descriptor only */
2158 nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
2159 if (unlikely(!nb_pkts))
2162 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
2163 if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
2164 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
2165 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
2166 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
2167 rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
2168 I40E_TXD_QW1_CMD_SHIFT);
2169 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2173 /* Fill hardware descriptor ring with mbuf data */
2174 i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
2175 txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
2177 /* Determin if RS bit needs to be set */
2178 if (txq->tx_tail > txq->tx_next_rs) {
2179 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
2180 rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
2181 I40E_TXD_QW1_CMD_SHIFT);
2183 (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
2184 if (txq->tx_next_rs >= txq->nb_tx_desc)
2185 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2188 if (txq->tx_tail >= txq->nb_tx_desc)
2191 /* Update the tx tail register */
2193 I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
2199 i40e_xmit_pkts_simple(void *tx_queue,
2200 struct rte_mbuf **tx_pkts,
2205 if (likely(nb_pkts <= I40E_TX_MAX_BURST))
2206 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
2210 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
2213 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
2214 &tx_pkts[nb_tx], num);
2215 nb_tx = (uint16_t)(nb_tx + ret);
2216 nb_pkts = (uint16_t)(nb_pkts - ret);
2225 * Find the VSI the queue belongs to. 'queue_idx' is the queue index
2226 * application used, which assume having sequential ones. But from driver's
2227 * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
2228 * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
2229 * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
2230 * use queue_idx from 0 to 95 to access queues, while real queue would be
2231 * different. This function will do a queue mapping to find VSI the queue
2234 static struct i40e_vsi*
2235 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
2237 /* the queue in MAIN VSI range */
2238 if (queue_idx < pf->main_vsi->nb_qps)
2239 return pf->main_vsi;
2241 queue_idx -= pf->main_vsi->nb_qps;
2243 /* queue_idx is greater than VMDQ VSIs range */
2244 if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
2245 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
2249 return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
2253 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
2255 /* the queue in MAIN VSI range */
2256 if (queue_idx < pf->main_vsi->nb_qps)
2259 /* It's VMDQ queues */
2260 queue_idx -= pf->main_vsi->nb_qps;
2262 if (pf->nb_cfg_vmdq_vsi)
2263 return queue_idx % pf->vmdq_nb_qps;
2265 PMD_INIT_LOG(ERR, "Fail to get queue offset");
2266 return (uint16_t)(-1);
2271 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2273 struct i40e_rx_queue *rxq;
2275 struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2277 PMD_INIT_FUNC_TRACE();
2279 if (rx_queue_id < dev->data->nb_rx_queues) {
2280 rxq = dev->data->rx_queues[rx_queue_id];
2282 err = i40e_alloc_rx_queue_mbufs(rxq);
2284 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
2290 /* Init the RX tail regieter. */
2291 I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2293 err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
2296 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
2299 i40e_rx_queue_release_mbufs(rxq);
2300 i40e_reset_rx_queue(rxq);
2308 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2310 struct i40e_rx_queue *rxq;
2312 struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2314 if (rx_queue_id < dev->data->nb_rx_queues) {
2315 rxq = dev->data->rx_queues[rx_queue_id];
2318 * rx_queue_id is queue id aplication refers to, while
2319 * rxq->reg_idx is the real queue index.
2321 err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
2324 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
2328 i40e_rx_queue_release_mbufs(rxq);
2329 i40e_reset_rx_queue(rxq);
2336 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
2339 struct i40e_tx_queue *txq;
2340 struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2342 PMD_INIT_FUNC_TRACE();
2344 if (tx_queue_id < dev->data->nb_tx_queues) {
2345 txq = dev->data->tx_queues[tx_queue_id];
2348 * tx_queue_id is queue id aplication refers to, while
2349 * rxq->reg_idx is the real queue index.
2351 err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
2353 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
2361 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
2363 struct i40e_tx_queue *txq;
2365 struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2367 if (tx_queue_id < dev->data->nb_tx_queues) {
2368 txq = dev->data->tx_queues[tx_queue_id];
2371 * tx_queue_id is queue id aplication refers to, while
2372 * txq->reg_idx is the real queue index.
2374 err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
2377 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
2382 i40e_tx_queue_release_mbufs(txq);
2383 i40e_reset_tx_queue(txq);
2390 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
2393 unsigned int socket_id,
2394 const struct rte_eth_rxconf *rx_conf,
2395 struct rte_mempool *mp)
2397 struct i40e_vsi *vsi;
2398 struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2399 struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2400 struct i40e_rx_queue *rxq;
2401 const struct rte_memzone *rz;
2404 int use_def_burst_func = 1;
2406 if (hw->mac.type == I40E_MAC_VF) {
2407 struct i40e_vf *vf =
2408 I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2411 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2414 PMD_DRV_LOG(ERR, "VSI not available or queue "
2415 "index exceeds the maximum");
2416 return I40E_ERR_PARAM;
2418 if (((nb_desc * sizeof(union i40e_rx_desc)) % I40E_ALIGN) != 0 ||
2419 (nb_desc > I40E_MAX_RING_DESC) ||
2420 (nb_desc < I40E_MIN_RING_DESC)) {
2421 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
2422 "invalid", nb_desc);
2423 return I40E_ERR_PARAM;
2426 /* Free memory if needed */
2427 if (dev->data->rx_queues[queue_idx]) {
2428 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
2429 dev->data->rx_queues[queue_idx] = NULL;
2432 /* Allocate the rx queue data structure */
2433 rxq = rte_zmalloc_socket("i40e rx queue",
2434 sizeof(struct i40e_rx_queue),
2435 RTE_CACHE_LINE_SIZE,
2438 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2439 "rx queue data structure");
2443 rxq->nb_rx_desc = nb_desc;
2444 rxq->rx_free_thresh = rx_conf->rx_free_thresh;
2445 rxq->queue_id = queue_idx;
2446 if (hw->mac.type == I40E_MAC_VF)
2447 rxq->reg_idx = queue_idx;
2448 else /* PF device */
2449 rxq->reg_idx = vsi->base_queue +
2450 i40e_get_queue_offset_by_qindex(pf, queue_idx);
2452 rxq->port_id = dev->data->port_id;
2453 rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
2455 rxq->drop_en = rx_conf->rx_drop_en;
2457 rxq->rx_deferred_start = rx_conf->rx_deferred_start;
2459 /* Allocate the maximun number of RX ring hardware descriptor. */
2460 ring_size = sizeof(union i40e_rx_desc) * I40E_MAX_RING_DESC;
2461 ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2462 rz = i40e_ring_dma_zone_reserve(dev,
2468 i40e_dev_rx_queue_release(rxq);
2469 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
2473 /* Zero all the descriptors in the ring. */
2474 memset(rz->addr, 0, ring_size);
2476 #ifdef RTE_LIBRTE_XEN_DOM0
2477 rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
2479 rxq->rx_ring_phys_addr = (uint64_t)rz->phys_addr;
2482 rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2484 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2485 len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
2490 /* Allocate the software ring. */
2492 rte_zmalloc_socket("i40e rx sw ring",
2493 sizeof(struct i40e_rx_entry) * len,
2494 RTE_CACHE_LINE_SIZE,
2496 if (!rxq->sw_ring) {
2497 i40e_dev_rx_queue_release(rxq);
2498 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
2502 i40e_reset_rx_queue(rxq);
2504 dev->data->rx_queues[queue_idx] = rxq;
2506 use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
2508 if (!use_def_burst_func && !dev->data->scattered_rx) {
2509 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2510 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
2511 "satisfied. Rx Burst Bulk Alloc function will be "
2512 "used on port=%d, queue=%d.",
2513 rxq->port_id, rxq->queue_id);
2514 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
2515 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2517 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
2518 "not satisfied, Scattered Rx is requested, "
2519 "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
2520 "not enabled on port=%d, queue=%d.",
2521 rxq->port_id, rxq->queue_id);
2528 i40e_dev_rx_queue_release(void *rxq)
2530 struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
2533 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2537 i40e_rx_queue_release_mbufs(q);
2538 rte_free(q->sw_ring);
2543 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2545 #define I40E_RXQ_SCAN_INTERVAL 4
2546 volatile union i40e_rx_desc *rxdp;
2547 struct i40e_rx_queue *rxq;
2550 if (unlikely(rx_queue_id >= dev->data->nb_rx_queues)) {
2551 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", rx_queue_id);
2555 rxq = dev->data->rx_queues[rx_queue_id];
2556 rxdp = &(rxq->rx_ring[rxq->rx_tail]);
2557 while ((desc < rxq->nb_rx_desc) &&
2558 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2559 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2560 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
2562 * Check the DD bit of a rx descriptor of each 4 in a group,
2563 * to avoid checking too frequently and downgrading performance
2566 desc += I40E_RXQ_SCAN_INTERVAL;
2567 rxdp += I40E_RXQ_SCAN_INTERVAL;
2568 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2569 rxdp = &(rxq->rx_ring[rxq->rx_tail +
2570 desc - rxq->nb_rx_desc]);
2577 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
2579 volatile union i40e_rx_desc *rxdp;
2580 struct i40e_rx_queue *rxq = rx_queue;
2584 if (unlikely(offset >= rxq->nb_rx_desc)) {
2585 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", offset);
2589 desc = rxq->rx_tail + offset;
2590 if (desc >= rxq->nb_rx_desc)
2591 desc -= rxq->nb_rx_desc;
2593 rxdp = &(rxq->rx_ring[desc]);
2595 ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2596 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2597 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
2603 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
2606 unsigned int socket_id,
2607 const struct rte_eth_txconf *tx_conf)
2609 struct i40e_vsi *vsi;
2610 struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2611 struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2612 struct i40e_tx_queue *txq;
2613 const struct rte_memzone *tz;
2615 uint16_t tx_rs_thresh, tx_free_thresh;
2617 if (hw->mac.type == I40E_MAC_VF) {
2618 struct i40e_vf *vf =
2619 I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2622 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2625 PMD_DRV_LOG(ERR, "VSI is NULL, or queue index (%u) "
2626 "exceeds the maximum", queue_idx);
2627 return I40E_ERR_PARAM;
2630 if (((nb_desc * sizeof(struct i40e_tx_desc)) % I40E_ALIGN) != 0 ||
2631 (nb_desc > I40E_MAX_RING_DESC) ||
2632 (nb_desc < I40E_MIN_RING_DESC)) {
2633 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
2634 "invalid", nb_desc);
2635 return I40E_ERR_PARAM;
2639 * The following two parameters control the setting of the RS bit on
2640 * transmit descriptors. TX descriptors will have their RS bit set
2641 * after txq->tx_rs_thresh descriptors have been used. The TX
2642 * descriptor ring will be cleaned after txq->tx_free_thresh
2643 * descriptors are used or if the number of descriptors required to
2644 * transmit a packet is greater than the number of free TX descriptors.
2646 * The following constraints must be satisfied:
2647 * - tx_rs_thresh must be greater than 0.
2648 * - tx_rs_thresh must be less than the size of the ring minus 2.
2649 * - tx_rs_thresh must be less than or equal to tx_free_thresh.
2650 * - tx_rs_thresh must be a divisor of the ring size.
2651 * - tx_free_thresh must be greater than 0.
2652 * - tx_free_thresh must be less than the size of the ring minus 3.
2654 * One descriptor in the TX ring is used as a sentinel to avoid a H/W
2655 * race condition, hence the maximum threshold constraints. When set
2656 * to zero use default values.
2658 tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
2659 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
2660 tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2661 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2662 if (tx_rs_thresh >= (nb_desc - 2)) {
2663 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2664 "number of TX descriptors minus 2. "
2665 "(tx_rs_thresh=%u port=%d queue=%d)",
2666 (unsigned int)tx_rs_thresh,
2667 (int)dev->data->port_id,
2669 return I40E_ERR_PARAM;
2671 if (tx_free_thresh >= (nb_desc - 3)) {
2672 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2673 "tx_free_thresh must be less than the "
2674 "number of TX descriptors minus 3. "
2675 "(tx_free_thresh=%u port=%d queue=%d)",
2676 (unsigned int)tx_free_thresh,
2677 (int)dev->data->port_id,
2679 return I40E_ERR_PARAM;
2681 if (tx_rs_thresh > tx_free_thresh) {
2682 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2683 "equal to tx_free_thresh. (tx_free_thresh=%u"
2684 " tx_rs_thresh=%u port=%d queue=%d)",
2685 (unsigned int)tx_free_thresh,
2686 (unsigned int)tx_rs_thresh,
2687 (int)dev->data->port_id,
2689 return I40E_ERR_PARAM;
2691 if ((nb_desc % tx_rs_thresh) != 0) {
2692 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2693 "number of TX descriptors. (tx_rs_thresh=%u"
2694 " port=%d queue=%d)",
2695 (unsigned int)tx_rs_thresh,
2696 (int)dev->data->port_id,
2698 return I40E_ERR_PARAM;
2700 if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2701 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2702 "tx_rs_thresh is greater than 1. "
2703 "(tx_rs_thresh=%u port=%d queue=%d)",
2704 (unsigned int)tx_rs_thresh,
2705 (int)dev->data->port_id,
2707 return I40E_ERR_PARAM;
2710 /* Free memory if needed. */
2711 if (dev->data->tx_queues[queue_idx]) {
2712 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
2713 dev->data->tx_queues[queue_idx] = NULL;
2716 /* Allocate the TX queue data structure. */
2717 txq = rte_zmalloc_socket("i40e tx queue",
2718 sizeof(struct i40e_tx_queue),
2719 RTE_CACHE_LINE_SIZE,
2722 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2723 "tx queue structure");
2727 /* Allocate TX hardware ring descriptors. */
2728 ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2729 ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2730 tz = i40e_ring_dma_zone_reserve(dev,
2736 i40e_dev_tx_queue_release(txq);
2737 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2741 txq->nb_tx_desc = nb_desc;
2742 txq->tx_rs_thresh = tx_rs_thresh;
2743 txq->tx_free_thresh = tx_free_thresh;
2744 txq->pthresh = tx_conf->tx_thresh.pthresh;
2745 txq->hthresh = tx_conf->tx_thresh.hthresh;
2746 txq->wthresh = tx_conf->tx_thresh.wthresh;
2747 txq->queue_id = queue_idx;
2748 if (hw->mac.type == I40E_MAC_VF)
2749 txq->reg_idx = queue_idx;
2750 else /* PF device */
2751 txq->reg_idx = vsi->base_queue +
2752 i40e_get_queue_offset_by_qindex(pf, queue_idx);
2754 txq->port_id = dev->data->port_id;
2755 txq->txq_flags = tx_conf->txq_flags;
2757 txq->tx_deferred_start = tx_conf->tx_deferred_start;
2759 #ifdef RTE_LIBRTE_XEN_DOM0
2760 txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
2762 txq->tx_ring_phys_addr = (uint64_t)tz->phys_addr;
2764 txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2766 /* Allocate software ring */
2768 rte_zmalloc_socket("i40e tx sw ring",
2769 sizeof(struct i40e_tx_entry) * nb_desc,
2770 RTE_CACHE_LINE_SIZE,
2772 if (!txq->sw_ring) {
2773 i40e_dev_tx_queue_release(txq);
2774 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2778 i40e_reset_tx_queue(txq);
2780 dev->data->tx_queues[queue_idx] = txq;
2782 /* Use a simple TX queue without offloads or multi segs if possible */
2783 if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS) &&
2784 (txq->tx_rs_thresh >= I40E_TX_MAX_BURST)) {
2785 PMD_INIT_LOG(INFO, "Using simple tx path");
2786 dev->tx_pkt_burst = i40e_xmit_pkts_simple;
2788 PMD_INIT_LOG(INFO, "Using full-featured tx path");
2789 dev->tx_pkt_burst = i40e_xmit_pkts;
2796 i40e_dev_tx_queue_release(void *txq)
2798 struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2801 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2805 i40e_tx_queue_release_mbufs(q);
2806 rte_free(q->sw_ring);
2810 static const struct rte_memzone *
2811 i40e_ring_dma_zone_reserve(struct rte_eth_dev *dev,
2812 const char *ring_name,
2817 char z_name[RTE_MEMZONE_NAMESIZE];
2818 const struct rte_memzone *mz;
2820 snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
2821 dev->driver->pci_drv.name, ring_name,
2822 dev->data->port_id, queue_id);
2823 mz = rte_memzone_lookup(z_name);
2827 #ifdef RTE_LIBRTE_XEN_DOM0
2828 return rte_memzone_reserve_bounded(z_name, ring_size,
2829 socket_id, 0, I40E_ALIGN, RTE_PGSIZE_2M);
2831 return rte_memzone_reserve_aligned(z_name, ring_size,
2832 socket_id, 0, I40E_ALIGN);
2836 const struct rte_memzone *
2837 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2839 const struct rte_memzone *mz = NULL;
2841 mz = rte_memzone_lookup(name);
2844 #ifdef RTE_LIBRTE_XEN_DOM0
2845 mz = rte_memzone_reserve_bounded(name, len,
2846 socket_id, 0, I40E_ALIGN, RTE_PGSIZE_2M);
2848 mz = rte_memzone_reserve_aligned(name, len,
2849 socket_id, 0, I40E_ALIGN);
2855 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2859 if (!rxq || !rxq->sw_ring) {
2860 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2864 for (i = 0; i < rxq->nb_rx_desc; i++) {
2865 if (rxq->sw_ring[i].mbuf) {
2866 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2867 rxq->sw_ring[i].mbuf = NULL;
2870 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2871 if (rxq->rx_nb_avail == 0)
2873 for (i = 0; i < rxq->rx_nb_avail; i++) {
2874 struct rte_mbuf *mbuf;
2876 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2877 rte_pktmbuf_free_seg(mbuf);
2879 rxq->rx_nb_avail = 0;
2880 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2884 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2890 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2894 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2895 if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2896 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2898 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2899 len = rxq->nb_rx_desc;
2901 for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2902 ((volatile char *)rxq->rx_ring)[i] = 0;
2904 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2905 memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2906 for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2907 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2909 rxq->rx_nb_avail = 0;
2910 rxq->rx_next_avail = 0;
2911 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2912 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2914 rxq->nb_rx_hold = 0;
2915 rxq->pkt_first_seg = NULL;
2916 rxq->pkt_last_seg = NULL;
2920 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2924 if (!txq || !txq->sw_ring) {
2925 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2929 for (i = 0; i < txq->nb_tx_desc; i++) {
2930 if (txq->sw_ring[i].mbuf) {
2931 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2932 txq->sw_ring[i].mbuf = NULL;
2938 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2940 struct i40e_tx_entry *txe;
2941 uint16_t i, prev, size;
2944 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2949 size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2950 for (i = 0; i < size; i++)
2951 ((volatile char *)txq->tx_ring)[i] = 0;
2953 prev = (uint16_t)(txq->nb_tx_desc - 1);
2954 for (i = 0; i < txq->nb_tx_desc; i++) {
2955 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2957 txd->cmd_type_offset_bsz =
2958 rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2961 txe[prev].next_id = i;
2965 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2966 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2969 txq->nb_tx_used = 0;
2971 txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2972 txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2975 /* Init the TX queue in hardware */
2977 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2979 enum i40e_status_code err = I40E_SUCCESS;
2980 struct i40e_vsi *vsi = txq->vsi;
2981 struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2982 uint16_t pf_q = txq->reg_idx;
2983 struct i40e_hmc_obj_txq tx_ctx;
2986 /* clear the context structure first */
2987 memset(&tx_ctx, 0, sizeof(tx_ctx));
2988 tx_ctx.new_context = 1;
2989 tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2990 tx_ctx.qlen = txq->nb_tx_desc;
2992 #ifdef RTE_LIBRTE_IEEE1588
2993 tx_ctx.timesync_ena = 1;
2995 tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[0]);
2996 if (vsi->type == I40E_VSI_FDIR)
2997 tx_ctx.fd_ena = TRUE;
2999 err = i40e_clear_lan_tx_queue_context(hw, pf_q);
3000 if (err != I40E_SUCCESS) {
3001 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
3005 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
3006 if (err != I40E_SUCCESS) {
3007 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
3011 /* Now associate this queue with this PCI function */
3012 qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
3013 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
3014 I40E_QTX_CTL_PF_INDX_MASK);
3015 I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
3016 I40E_WRITE_FLUSH(hw);
3018 txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
3024 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
3026 struct i40e_rx_entry *rxe = rxq->sw_ring;
3030 for (i = 0; i < rxq->nb_rx_desc; i++) {
3031 volatile union i40e_rx_desc *rxd;
3032 struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mp);
3034 if (unlikely(!mbuf)) {
3035 PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
3039 rte_mbuf_refcnt_set(mbuf, 1);
3041 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
3043 mbuf->port = rxq->port_id;
3046 rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
3048 rxd = &rxq->rx_ring[i];
3049 rxd->read.pkt_addr = dma_addr;
3050 rxd->read.hdr_addr = dma_addr;
3051 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
3052 rxd->read.rsvd1 = 0;
3053 rxd->read.rsvd2 = 0;
3054 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
3063 * Calculate the buffer length, and check the jumbo frame
3064 * and maximum packet length.
3067 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
3069 struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
3070 struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
3071 struct rte_eth_dev_data *data = pf->dev_data;
3072 uint16_t buf_size, len;
3074 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
3075 RTE_PKTMBUF_HEADROOM);
3077 switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
3078 I40E_FLAG_HEADER_SPLIT_ENABLED)) {
3079 case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
3080 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
3081 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
3082 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
3083 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
3084 rxq->hs_mode = i40e_header_split_enabled;
3086 case I40E_FLAG_HEADER_SPLIT_DISABLED:
3088 rxq->rx_hdr_len = 0;
3089 rxq->rx_buf_len = RTE_ALIGN(buf_size,
3090 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
3091 rxq->hs_mode = i40e_header_split_none;
3095 len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
3096 rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
3097 if (data->dev_conf.rxmode.jumbo_frame == 1) {
3098 if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
3099 rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
3100 PMD_DRV_LOG(ERR, "maximum packet length must "
3101 "be larger than %u and smaller than %u,"
3102 "as jumbo frame is enabled",
3103 (uint32_t)ETHER_MAX_LEN,
3104 (uint32_t)I40E_FRAME_SIZE_MAX);
3105 return I40E_ERR_CONFIG;
3108 if (rxq->max_pkt_len < ETHER_MIN_LEN ||
3109 rxq->max_pkt_len > ETHER_MAX_LEN) {
3110 PMD_DRV_LOG(ERR, "maximum packet length must be "
3111 "larger than %u and smaller than %u, "
3112 "as jumbo frame is disabled",
3113 (uint32_t)ETHER_MIN_LEN,
3114 (uint32_t)ETHER_MAX_LEN);
3115 return I40E_ERR_CONFIG;
3122 /* Init the RX queue in hardware */
3124 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
3126 int err = I40E_SUCCESS;
3127 struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
3128 struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
3129 struct rte_eth_dev *dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
3130 uint16_t pf_q = rxq->reg_idx;
3132 struct i40e_hmc_obj_rxq rx_ctx;
3134 err = i40e_rx_queue_config(rxq);
3136 PMD_DRV_LOG(ERR, "Failed to config RX queue");
3140 /* Clear the context structure first */
3141 memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
3142 rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
3143 rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
3145 rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
3146 rx_ctx.qlen = rxq->nb_rx_desc;
3147 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
3150 rx_ctx.dtype = rxq->hs_mode;
3152 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
3154 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
3155 rx_ctx.rxmax = rxq->max_pkt_len;
3156 rx_ctx.tphrdesc_ena = 1;
3157 rx_ctx.tphwdesc_ena = 1;
3158 rx_ctx.tphdata_ena = 1;
3159 rx_ctx.tphhead_ena = 1;
3160 rx_ctx.lrxqthresh = 2;
3161 rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
3166 err = i40e_clear_lan_rx_queue_context(hw, pf_q);
3167 if (err != I40E_SUCCESS) {
3168 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
3171 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
3172 if (err != I40E_SUCCESS) {
3173 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
3177 rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
3179 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
3180 RTE_PKTMBUF_HEADROOM);
3182 /* Check if scattered RX needs to be used. */
3183 if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
3184 dev_data->scattered_rx = 1;
3185 dev->rx_pkt_burst = i40e_recv_scattered_pkts;
3188 /* Init the RX tail regieter. */
3189 I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
3195 i40e_dev_clear_queues(struct rte_eth_dev *dev)
3199 PMD_INIT_FUNC_TRACE();
3201 for (i = 0; i < dev->data->nb_tx_queues; i++) {
3202 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
3203 i40e_reset_tx_queue(dev->data->tx_queues[i]);
3206 for (i = 0; i < dev->data->nb_rx_queues; i++) {
3207 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
3208 i40e_reset_rx_queue(dev->data->rx_queues[i]);
3213 i40e_dev_free_queues(struct rte_eth_dev *dev)
3217 PMD_INIT_FUNC_TRACE();
3219 for (i = 0; i < dev->data->nb_rx_queues; i++) {
3220 i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
3221 dev->data->rx_queues[i] = NULL;
3223 dev->data->nb_rx_queues = 0;
3225 for (i = 0; i < dev->data->nb_tx_queues; i++) {
3226 i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
3227 dev->data->tx_queues[i] = NULL;
3229 dev->data->nb_tx_queues = 0;
3232 #define I40E_FDIR_NUM_TX_DESC I40E_MIN_RING_DESC
3233 #define I40E_FDIR_NUM_RX_DESC I40E_MIN_RING_DESC
3235 enum i40e_status_code
3236 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
3238 struct i40e_tx_queue *txq;
3239 const struct rte_memzone *tz = NULL;
3241 struct rte_eth_dev *dev = pf->adapter->eth_dev;
3244 PMD_DRV_LOG(ERR, "PF is not available");
3245 return I40E_ERR_BAD_PTR;
3248 /* Allocate the TX queue data structure. */
3249 txq = rte_zmalloc_socket("i40e fdir tx queue",
3250 sizeof(struct i40e_tx_queue),
3251 RTE_CACHE_LINE_SIZE,
3254 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
3255 "tx queue structure.");
3256 return I40E_ERR_NO_MEMORY;
3259 /* Allocate TX hardware ring descriptors. */
3260 ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
3261 ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
3263 tz = i40e_ring_dma_zone_reserve(dev,
3269 i40e_dev_tx_queue_release(txq);
3270 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
3271 return I40E_ERR_NO_MEMORY;
3274 txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
3275 txq->queue_id = I40E_FDIR_QUEUE_ID;
3276 txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3277 txq->vsi = pf->fdir.fdir_vsi;
3279 #ifdef RTE_LIBRTE_XEN_DOM0
3280 txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
3282 txq->tx_ring_phys_addr = (uint64_t)tz->phys_addr;
3284 txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
3286 * don't need to allocate software ring and reset for the fdir
3287 * program queue just set the queue has been configured.
3292 return I40E_SUCCESS;
3295 enum i40e_status_code
3296 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
3298 struct i40e_rx_queue *rxq;
3299 const struct rte_memzone *rz = NULL;
3301 struct rte_eth_dev *dev = pf->adapter->eth_dev;
3304 PMD_DRV_LOG(ERR, "PF is not available");
3305 return I40E_ERR_BAD_PTR;
3308 /* Allocate the RX queue data structure. */
3309 rxq = rte_zmalloc_socket("i40e fdir rx queue",
3310 sizeof(struct i40e_rx_queue),
3311 RTE_CACHE_LINE_SIZE,
3314 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
3315 "rx queue structure.");
3316 return I40E_ERR_NO_MEMORY;
3319 /* Allocate RX hardware ring descriptors. */
3320 ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
3321 ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
3323 rz = i40e_ring_dma_zone_reserve(dev,
3329 i40e_dev_rx_queue_release(rxq);
3330 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
3331 return I40E_ERR_NO_MEMORY;
3334 rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
3335 rxq->queue_id = I40E_FDIR_QUEUE_ID;
3336 rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3337 rxq->vsi = pf->fdir.fdir_vsi;
3339 #ifdef RTE_LIBRTE_XEN_DOM0
3340 rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
3342 rxq->rx_ring_phys_addr = (uint64_t)rz->phys_addr;
3344 rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
3347 * Don't need to allocate software ring and reset for the fdir
3348 * rx queue, just set the queue has been configured.
3353 return I40E_SUCCESS;