i40e: fix check of descriptor done flag
[dpdk.git] / drivers / net / i40e / i40e_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <errno.h>
38 #include <stdint.h>
39 #include <stdarg.h>
40 #include <unistd.h>
41 #include <inttypes.h>
42 #include <sys/queue.h>
43
44 #include <rte_string_fns.h>
45 #include <rte_memzone.h>
46 #include <rte_mbuf.h>
47 #include <rte_malloc.h>
48 #include <rte_ether.h>
49 #include <rte_ethdev.h>
50 #include <rte_tcp.h>
51 #include <rte_sctp.h>
52 #include <rte_udp.h>
53
54 #include "i40e_logs.h"
55 #include "base/i40e_prototype.h"
56 #include "base/i40e_type.h"
57 #include "i40e_ethdev.h"
58 #include "i40e_rxtx.h"
59
60 #define I40E_MIN_RING_DESC     64
61 #define I40E_MAX_RING_DESC     4096
62 #define I40E_ALIGN             128
63 #define DEFAULT_TX_RS_THRESH   32
64 #define DEFAULT_TX_FREE_THRESH 32
65 #define I40E_MAX_PKT_TYPE      256
66
67 #define I40E_TX_MAX_BURST  32
68
69 #define I40E_DMA_MEM_ALIGN 4096
70
71 #define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
72                                         ETH_TXQ_FLAGS_NOOFFLOADS)
73
74 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
75
76 #define I40E_TX_CKSUM_OFFLOAD_MASK (             \
77                 PKT_TX_IP_CKSUM |                \
78                 PKT_TX_L4_MASK |                 \
79                 PKT_TX_OUTER_IP_CKSUM)
80
81 #define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
82         (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
83
84 #define RTE_MBUF_DATA_DMA_ADDR(mb) \
85         ((uint64_t)((mb)->buf_physaddr + (mb)->data_off))
86
87 static const struct rte_memzone *
88 i40e_ring_dma_zone_reserve(struct rte_eth_dev *dev,
89                            const char *ring_name,
90                            uint16_t queue_id,
91                            uint32_t ring_size,
92                            int socket_id);
93 static uint16_t i40e_xmit_pkts_simple(void *tx_queue,
94                                       struct rte_mbuf **tx_pkts,
95                                       uint16_t nb_pkts);
96
97 static inline void
98 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
99 {
100         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
101                 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
102                 mb->ol_flags |= PKT_RX_VLAN_PKT;
103                 mb->vlan_tci =
104                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
105                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
106                            rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
107         } else {
108                 mb->vlan_tci = 0;
109         }
110 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
111         if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
112                 (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
113                 mb->ol_flags |= PKT_RX_QINQ_PKT;
114                 mb->vlan_tci_outer = mb->vlan_tci;
115                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
116                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
117                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
118                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
119         } else {
120                 mb->vlan_tci_outer = 0;
121         }
122 #endif
123         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
124                    mb->vlan_tci, mb->vlan_tci_outer);
125 }
126
127 /* Translate the rx descriptor status to pkt flags */
128 static inline uint64_t
129 i40e_rxd_status_to_pkt_flags(uint64_t qword)
130 {
131         uint64_t flags;
132
133         /* Check if RSS_HASH */
134         flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
135                                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
136                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
137
138         /* Check if FDIR Match */
139         flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
140                                                         PKT_RX_FDIR : 0);
141
142         return flags;
143 }
144
145 static inline uint64_t
146 i40e_rxd_error_to_pkt_flags(uint64_t qword)
147 {
148         uint64_t flags = 0;
149         uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
150
151 #define I40E_RX_ERR_BITS 0x3f
152         if (likely((error_bits & I40E_RX_ERR_BITS) == 0))
153                 return flags;
154         /* If RXE bit set, all other status bits are meaningless */
155         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
156                 flags |= PKT_RX_MAC_ERR;
157                 return flags;
158         }
159
160         /* If RECIPE bit set, all other status indications should be ignored */
161         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RECIPE_SHIFT))) {
162                 flags |= PKT_RX_RECIP_ERR;
163                 return flags;
164         }
165         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT)))
166                 flags |= PKT_RX_HBUF_OVERFLOW;
167         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
168                 flags |= PKT_RX_IP_CKSUM_BAD;
169         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
170                 flags |= PKT_RX_L4_CKSUM_BAD;
171         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
172                 flags |= PKT_RX_EIP_CKSUM_BAD;
173         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_OVERSIZE_SHIFT)))
174                 flags |= PKT_RX_OVERSIZE;
175
176         return flags;
177 }
178
179 /* Translate pkt types to pkt flags */
180 static inline uint64_t
181 i40e_rxd_ptype_to_pkt_flags(uint64_t qword)
182 {
183         uint8_t ptype = (uint8_t)((qword & I40E_RXD_QW1_PTYPE_MASK) >>
184                                         I40E_RXD_QW1_PTYPE_SHIFT);
185         static const uint64_t ip_ptype_map[I40E_MAX_PKT_TYPE] = {
186                 0, /* PTYPE 0 */
187                 0, /* PTYPE 1 */
188                 PKT_RX_IEEE1588_PTP, /* PTYPE 2 */
189                 0, /* PTYPE 3 */
190                 0, /* PTYPE 4 */
191                 0, /* PTYPE 5 */
192                 0, /* PTYPE 6 */
193                 0, /* PTYPE 7 */
194                 0, /* PTYPE 8 */
195                 0, /* PTYPE 9 */
196                 0, /* PTYPE 10 */
197                 0, /* PTYPE 11 */
198                 0, /* PTYPE 12 */
199                 0, /* PTYPE 13 */
200                 0, /* PTYPE 14 */
201                 0, /* PTYPE 15 */
202                 0, /* PTYPE 16 */
203                 0, /* PTYPE 17 */
204                 0, /* PTYPE 18 */
205                 0, /* PTYPE 19 */
206                 0, /* PTYPE 20 */
207                 0, /* PTYPE 21 */
208                 PKT_RX_IPV4_HDR, /* PTYPE 22 */
209                 PKT_RX_IPV4_HDR, /* PTYPE 23 */
210                 PKT_RX_IPV4_HDR, /* PTYPE 24 */
211                 0, /* PTYPE 25 */
212                 PKT_RX_IPV4_HDR, /* PTYPE 26 */
213                 PKT_RX_IPV4_HDR, /* PTYPE 27 */
214                 PKT_RX_IPV4_HDR, /* PTYPE 28 */
215                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 29 */
216                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 30 */
217                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 31 */
218                 0, /* PTYPE 32 */
219                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 33 */
220                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 34 */
221                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 35 */
222                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 36 */
223                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 37 */
224                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 38 */
225                 0, /* PTYPE 39 */
226                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 40 */
227                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 41 */
228                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 42 */
229                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 43 */
230                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 44 */
231                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 45 */
232                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 46 */
233                 0, /* PTYPE 47 */
234                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 48 */
235                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 49 */
236                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 50 */
237                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 51 */
238                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 52 */
239                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 53 */
240                 0, /* PTYPE 54 */
241                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 55 */
242                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 56 */
243                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 57 */
244                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 58 */
245                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 59 */
246                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 60 */
247                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 61 */
248                 0, /* PTYPE 62 */
249                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 63 */
250                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 64 */
251                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 65 */
252                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 66 */
253                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 67 */
254                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 68 */
255                 0, /* PTYPE 69 */
256                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 70 */
257                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 71 */
258                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 72 */
259                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 73 */
260                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 74 */
261                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 75 */
262                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 76 */
263                 0, /* PTYPE 77 */
264                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 78 */
265                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 79 */
266                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 80 */
267                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 81 */
268                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 82 */
269                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 83 */
270                 0, /* PTYPE 84 */
271                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 85 */
272                 PKT_RX_TUNNEL_IPV4_HDR, /* PTYPE 86 */
273                 PKT_RX_IPV4_HDR_EXT, /* PTYPE 87 */
274                 PKT_RX_IPV6_HDR, /* PTYPE 88 */
275                 PKT_RX_IPV6_HDR, /* PTYPE 89 */
276                 PKT_RX_IPV6_HDR, /* PTYPE 90 */
277                 0, /* PTYPE 91 */
278                 PKT_RX_IPV6_HDR, /* PTYPE 92 */
279                 PKT_RX_IPV6_HDR, /* PTYPE 93 */
280                 PKT_RX_IPV6_HDR, /* PTYPE 94 */
281                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 95 */
282                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 96 */
283                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 97 */
284                 0, /* PTYPE 98 */
285                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 99 */
286                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 100 */
287                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 101 */
288                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 102 */
289                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 103 */
290                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 104 */
291                 0, /* PTYPE 105 */
292                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 106 */
293                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 107 */
294                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 108 */
295                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 109 */
296                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 110 */
297                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 111 */
298                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 112 */
299                 0, /* PTYPE 113 */
300                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 114 */
301                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 115 */
302                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 116 */
303                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 117 */
304                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 118 */
305                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 119 */
306                 0, /* PTYPE 120 */
307                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 121 */
308                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 122 */
309                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 123 */
310                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 124 */
311                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 125 */
312                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 126 */
313                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 127 */
314                 0, /* PTYPE 128 */
315                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 129 */
316                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 130 */
317                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 131 */
318                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 132 */
319                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 133 */
320                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 134 */
321                 0, /* PTYPE 135 */
322                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 136 */
323                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 137 */
324                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 138 */
325                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 139 */
326                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 140 */
327                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 141 */
328                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 142 */
329                 0, /* PTYPE 143 */
330                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 144 */
331                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 145 */
332                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 146 */
333                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 147 */
334                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 148 */
335                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 149 */
336                 0, /* PTYPE 150 */
337                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 151 */
338                 PKT_RX_TUNNEL_IPV6_HDR, /* PTYPE 152 */
339                 PKT_RX_IPV6_HDR_EXT, /* PTYPE 153 */
340                 0, /* PTYPE 154 */
341                 0, /* PTYPE 155 */
342                 0, /* PTYPE 156 */
343                 0, /* PTYPE 157 */
344                 0, /* PTYPE 158 */
345                 0, /* PTYPE 159 */
346                 0, /* PTYPE 160 */
347                 0, /* PTYPE 161 */
348                 0, /* PTYPE 162 */
349                 0, /* PTYPE 163 */
350                 0, /* PTYPE 164 */
351                 0, /* PTYPE 165 */
352                 0, /* PTYPE 166 */
353                 0, /* PTYPE 167 */
354                 0, /* PTYPE 168 */
355                 0, /* PTYPE 169 */
356                 0, /* PTYPE 170 */
357                 0, /* PTYPE 171 */
358                 0, /* PTYPE 172 */
359                 0, /* PTYPE 173 */
360                 0, /* PTYPE 174 */
361                 0, /* PTYPE 175 */
362                 0, /* PTYPE 176 */
363                 0, /* PTYPE 177 */
364                 0, /* PTYPE 178 */
365                 0, /* PTYPE 179 */
366                 0, /* PTYPE 180 */
367                 0, /* PTYPE 181 */
368                 0, /* PTYPE 182 */
369                 0, /* PTYPE 183 */
370                 0, /* PTYPE 184 */
371                 0, /* PTYPE 185 */
372                 0, /* PTYPE 186 */
373                 0, /* PTYPE 187 */
374                 0, /* PTYPE 188 */
375                 0, /* PTYPE 189 */
376                 0, /* PTYPE 190 */
377                 0, /* PTYPE 191 */
378                 0, /* PTYPE 192 */
379                 0, /* PTYPE 193 */
380                 0, /* PTYPE 194 */
381                 0, /* PTYPE 195 */
382                 0, /* PTYPE 196 */
383                 0, /* PTYPE 197 */
384                 0, /* PTYPE 198 */
385                 0, /* PTYPE 199 */
386                 0, /* PTYPE 200 */
387                 0, /* PTYPE 201 */
388                 0, /* PTYPE 202 */
389                 0, /* PTYPE 203 */
390                 0, /* PTYPE 204 */
391                 0, /* PTYPE 205 */
392                 0, /* PTYPE 206 */
393                 0, /* PTYPE 207 */
394                 0, /* PTYPE 208 */
395                 0, /* PTYPE 209 */
396                 0, /* PTYPE 210 */
397                 0, /* PTYPE 211 */
398                 0, /* PTYPE 212 */
399                 0, /* PTYPE 213 */
400                 0, /* PTYPE 214 */
401                 0, /* PTYPE 215 */
402                 0, /* PTYPE 216 */
403                 0, /* PTYPE 217 */
404                 0, /* PTYPE 218 */
405                 0, /* PTYPE 219 */
406                 0, /* PTYPE 220 */
407                 0, /* PTYPE 221 */
408                 0, /* PTYPE 222 */
409                 0, /* PTYPE 223 */
410                 0, /* PTYPE 224 */
411                 0, /* PTYPE 225 */
412                 0, /* PTYPE 226 */
413                 0, /* PTYPE 227 */
414                 0, /* PTYPE 228 */
415                 0, /* PTYPE 229 */
416                 0, /* PTYPE 230 */
417                 0, /* PTYPE 231 */
418                 0, /* PTYPE 232 */
419                 0, /* PTYPE 233 */
420                 0, /* PTYPE 234 */
421                 0, /* PTYPE 235 */
422                 0, /* PTYPE 236 */
423                 0, /* PTYPE 237 */
424                 0, /* PTYPE 238 */
425                 0, /* PTYPE 239 */
426                 0, /* PTYPE 240 */
427                 0, /* PTYPE 241 */
428                 0, /* PTYPE 242 */
429                 0, /* PTYPE 243 */
430                 0, /* PTYPE 244 */
431                 0, /* PTYPE 245 */
432                 0, /* PTYPE 246 */
433                 0, /* PTYPE 247 */
434                 0, /* PTYPE 248 */
435                 0, /* PTYPE 249 */
436                 0, /* PTYPE 250 */
437                 0, /* PTYPE 251 */
438                 0, /* PTYPE 252 */
439                 0, /* PTYPE 253 */
440                 0, /* PTYPE 254 */
441                 0, /* PTYPE 255 */
442         };
443
444         return ip_ptype_map[ptype];
445 }
446
447 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK   0x03
448 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID  0x01
449 #define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX   0x02
450 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK   0x03
451 #define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX   0x01
452
453 static inline uint64_t
454 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
455 {
456         uint64_t flags = 0;
457 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
458         uint16_t flexbh, flexbl;
459
460         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
461                 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
462                 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
463         flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
464                 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
465                 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
466
467
468         if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
469                 mb->hash.fdir.hi =
470                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
471                 flags |= PKT_RX_FDIR_ID;
472         } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
473                 mb->hash.fdir.hi =
474                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
475                 flags |= PKT_RX_FDIR_FLX;
476         }
477         if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
478                 mb->hash.fdir.lo =
479                         rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
480                 flags |= PKT_RX_FDIR_FLX;
481         }
482 #else
483         mb->hash.fdir.hi =
484                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
485         flags |= PKT_RX_FDIR_ID;
486 #endif
487         return flags;
488 }
489 static inline void
490 i40e_txd_enable_checksum(uint64_t ol_flags,
491                         uint32_t *td_cmd,
492                         uint32_t *td_offset,
493                         union i40e_tx_offload tx_offload,
494                         uint32_t *cd_tunneling)
495 {
496         /* UDP tunneling packet TX checksum offload */
497         if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
498
499                 *td_offset |= (tx_offload.outer_l2_len >> 1)
500                                 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
501
502                 if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
503                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
504                 else if (ol_flags & PKT_TX_OUTER_IPV4)
505                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
506                 else if (ol_flags & PKT_TX_OUTER_IPV6)
507                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
508
509                 /* Now set the ctx descriptor fields */
510                 *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
511                                 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
512                                 (tx_offload.l2_len >> 1) <<
513                                 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
514
515         } else
516                 *td_offset |= (tx_offload.l2_len >> 1)
517                         << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
518
519         /* Enable L3 checksum offloads */
520         if (ol_flags & PKT_TX_IP_CKSUM) {
521                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
522                 *td_offset |= (tx_offload.l3_len >> 2)
523                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
524         } else if (ol_flags & PKT_TX_IPV4) {
525                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
526                 *td_offset |= (tx_offload.l3_len >> 2)
527                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
528         } else if (ol_flags & PKT_TX_IPV6) {
529                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
530                 *td_offset |= (tx_offload.l3_len >> 2)
531                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
532         }
533
534         if (ol_flags & PKT_TX_TCP_SEG) {
535                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
536                 *td_offset |= (tx_offload.l4_len >> 2)
537                         << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
538                 return;
539         }
540
541         /* Enable L4 checksum offloads */
542         switch (ol_flags & PKT_TX_L4_MASK) {
543         case PKT_TX_TCP_CKSUM:
544                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
545                 *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
546                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
547                 break;
548         case PKT_TX_SCTP_CKSUM:
549                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
550                 *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
551                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
552                 break;
553         case PKT_TX_UDP_CKSUM:
554                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
555                 *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
556                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
557                 break;
558         default:
559                 break;
560         }
561 }
562
563 static inline struct rte_mbuf *
564 rte_rxmbuf_alloc(struct rte_mempool *mp)
565 {
566         struct rte_mbuf *m;
567
568         m = __rte_mbuf_raw_alloc(mp);
569         __rte_mbuf_sanity_check_raw(m, 0);
570
571         return m;
572 }
573
574 /* Construct the tx flags */
575 static inline uint64_t
576 i40e_build_ctob(uint32_t td_cmd,
577                 uint32_t td_offset,
578                 unsigned int size,
579                 uint32_t td_tag)
580 {
581         return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
582                         ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
583                         ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
584                         ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
585                         ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
586 }
587
588 static inline int
589 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
590 {
591         struct i40e_tx_entry *sw_ring = txq->sw_ring;
592         volatile struct i40e_tx_desc *txd = txq->tx_ring;
593         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
594         uint16_t nb_tx_desc = txq->nb_tx_desc;
595         uint16_t desc_to_clean_to;
596         uint16_t nb_tx_to_clean;
597
598         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
599         if (desc_to_clean_to >= nb_tx_desc)
600                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
601
602         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
603         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
604                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
605                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
606                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
607                         "(port=%d queue=%d)", desc_to_clean_to,
608                                 txq->port_id, txq->queue_id);
609                 return -1;
610         }
611
612         if (last_desc_cleaned > desc_to_clean_to)
613                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
614                                                         desc_to_clean_to);
615         else
616                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
617                                         last_desc_cleaned);
618
619         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
620
621         txq->last_desc_cleaned = desc_to_clean_to;
622         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
623
624         return 0;
625 }
626
627 static inline int
628 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
629 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
630 #else
631 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
632 #endif
633 {
634         int ret = 0;
635
636 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
637         if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
638                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
639                              "rxq->rx_free_thresh=%d, "
640                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
641                              rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
642                 ret = -EINVAL;
643         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
644                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
645                              "rxq->rx_free_thresh=%d, "
646                              "rxq->nb_rx_desc=%d",
647                              rxq->rx_free_thresh, rxq->nb_rx_desc);
648                 ret = -EINVAL;
649         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
650                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
651                              "rxq->nb_rx_desc=%d, "
652                              "rxq->rx_free_thresh=%d",
653                              rxq->nb_rx_desc, rxq->rx_free_thresh);
654                 ret = -EINVAL;
655         } else if (!(rxq->nb_rx_desc < (I40E_MAX_RING_DESC -
656                                 RTE_PMD_I40E_RX_MAX_BURST))) {
657                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
658                              "rxq->nb_rx_desc=%d, "
659                              "I40E_MAX_RING_DESC=%d, "
660                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
661                              rxq->nb_rx_desc, I40E_MAX_RING_DESC,
662                              RTE_PMD_I40E_RX_MAX_BURST);
663                 ret = -EINVAL;
664         }
665 #else
666         ret = -EINVAL;
667 #endif
668
669         return ret;
670 }
671
672 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
673 #define I40E_LOOK_AHEAD 8
674 #if (I40E_LOOK_AHEAD != 8)
675 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
676 #endif
677 static inline int
678 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
679 {
680         volatile union i40e_rx_desc *rxdp;
681         struct i40e_rx_entry *rxep;
682         struct rte_mbuf *mb;
683         uint16_t pkt_len;
684         uint64_t qword1;
685         uint32_t rx_status;
686         int32_t s[I40E_LOOK_AHEAD], nb_dd;
687         int32_t i, j, nb_rx = 0;
688         uint64_t pkt_flags;
689
690         rxdp = &rxq->rx_ring[rxq->rx_tail];
691         rxep = &rxq->sw_ring[rxq->rx_tail];
692
693         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
694         rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
695                                 I40E_RXD_QW1_STATUS_SHIFT;
696
697         /* Make sure there is at least 1 packet to receive */
698         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
699                 return 0;
700
701         /**
702          * Scan LOOK_AHEAD descriptors at a time to determine which
703          * descriptors reference packets that are ready to be received.
704          */
705         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
706                         rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
707                 /* Read desc statuses backwards to avoid race condition */
708                 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
709                         qword1 = rte_le_to_cpu_64(\
710                                 rxdp[j].wb.qword1.status_error_len);
711                         s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
712                                         I40E_RXD_QW1_STATUS_SHIFT;
713                 }
714
715                 /* Compute how many status bits were set */
716                 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
717                         nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
718
719                 nb_rx += nb_dd;
720
721                 /* Translate descriptor info to mbuf parameters */
722                 for (j = 0; j < nb_dd; j++) {
723                         mb = rxep[j].mbuf;
724                         qword1 = rte_le_to_cpu_64(\
725                                 rxdp[j].wb.qword1.status_error_len);
726                         pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
727                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
728                         mb->data_len = pkt_len;
729                         mb->pkt_len = pkt_len;
730                         mb->ol_flags = 0;
731                         i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
732                         pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
733                         pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
734                         pkt_flags |= i40e_rxd_ptype_to_pkt_flags(qword1);
735
736                         mb->packet_type = (uint16_t)((qword1 &
737                                         I40E_RXD_QW1_PTYPE_MASK) >>
738                                         I40E_RXD_QW1_PTYPE_SHIFT);
739                         if (pkt_flags & PKT_RX_RSS_HASH)
740                                 mb->hash.rss = rte_le_to_cpu_32(\
741                                         rxdp[j].wb.qword0.hi_dword.rss);
742                         if (pkt_flags & PKT_RX_FDIR)
743                                 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
744
745 #ifdef RTE_LIBRTE_IEEE1588
746                         uint16_t tsyn = (qword1
747                                          & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
748                                            | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
749                                          >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
750
751                         if (tsyn & 0x04)
752                                 pkt_flags |= PKT_RX_IEEE1588_TMST;
753
754                         mb->timesync = tsyn & 0x03;
755 #endif
756                         mb->ol_flags |= pkt_flags;
757
758                 }
759
760                 for (j = 0; j < I40E_LOOK_AHEAD; j++)
761                         rxq->rx_stage[i + j] = rxep[j].mbuf;
762
763                 if (nb_dd != I40E_LOOK_AHEAD)
764                         break;
765         }
766
767         /* Clear software ring entries */
768         for (i = 0; i < nb_rx; i++)
769                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
770
771         return nb_rx;
772 }
773
774 static inline uint16_t
775 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
776                         struct rte_mbuf **rx_pkts,
777                         uint16_t nb_pkts)
778 {
779         uint16_t i;
780         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
781
782         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
783
784         for (i = 0; i < nb_pkts; i++)
785                 rx_pkts[i] = stage[i];
786
787         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
788         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
789
790         return nb_pkts;
791 }
792
793 static inline int
794 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
795 {
796         volatile union i40e_rx_desc *rxdp;
797         struct i40e_rx_entry *rxep;
798         struct rte_mbuf *mb;
799         uint16_t alloc_idx, i;
800         uint64_t dma_addr;
801         int diag;
802
803         /* Allocate buffers in bulk */
804         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
805                                 (rxq->rx_free_thresh - 1));
806         rxep = &(rxq->sw_ring[alloc_idx]);
807         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
808                                         rxq->rx_free_thresh);
809         if (unlikely(diag != 0)) {
810                 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
811                 return -ENOMEM;
812         }
813
814         rxdp = &rxq->rx_ring[alloc_idx];
815         for (i = 0; i < rxq->rx_free_thresh; i++) {
816                 mb = rxep[i].mbuf;
817                 rte_mbuf_refcnt_set(mb, 1);
818                 mb->next = NULL;
819                 mb->data_off = RTE_PKTMBUF_HEADROOM;
820                 mb->nb_segs = 1;
821                 mb->port = rxq->port_id;
822                 dma_addr = rte_cpu_to_le_64(\
823                         RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb));
824                 rxdp[i].read.hdr_addr = dma_addr;
825                 rxdp[i].read.pkt_addr = dma_addr;
826         }
827
828         /* Update rx tail regsiter */
829         rte_wmb();
830         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
831
832         rxq->rx_free_trigger =
833                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
834         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
835                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
836
837         return 0;
838 }
839
840 static inline uint16_t
841 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
842 {
843         struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
844         uint16_t nb_rx = 0;
845
846         if (!nb_pkts)
847                 return 0;
848
849         if (rxq->rx_nb_avail)
850                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
851
852         nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
853         rxq->rx_next_avail = 0;
854         rxq->rx_nb_avail = nb_rx;
855         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
856
857         if (rxq->rx_tail > rxq->rx_free_trigger) {
858                 if (i40e_rx_alloc_bufs(rxq) != 0) {
859                         uint16_t i, j;
860
861                         PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
862                                    "port_id=%u, queue_id=%u",
863                                    rxq->port_id, rxq->queue_id);
864                         rxq->rx_nb_avail = 0;
865                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
866                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
867                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
868
869                         return 0;
870                 }
871         }
872
873         if (rxq->rx_tail >= rxq->nb_rx_desc)
874                 rxq->rx_tail = 0;
875
876         if (rxq->rx_nb_avail)
877                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
878
879         return 0;
880 }
881
882 static uint16_t
883 i40e_recv_pkts_bulk_alloc(void *rx_queue,
884                           struct rte_mbuf **rx_pkts,
885                           uint16_t nb_pkts)
886 {
887         uint16_t nb_rx = 0, n, count;
888
889         if (unlikely(nb_pkts == 0))
890                 return 0;
891
892         if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
893                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
894
895         while (nb_pkts) {
896                 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
897                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
898                 nb_rx = (uint16_t)(nb_rx + count);
899                 nb_pkts = (uint16_t)(nb_pkts - count);
900                 if (count < n)
901                         break;
902         }
903
904         return nb_rx;
905 }
906 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
907
908 uint16_t
909 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
910 {
911         struct i40e_rx_queue *rxq;
912         volatile union i40e_rx_desc *rx_ring;
913         volatile union i40e_rx_desc *rxdp;
914         union i40e_rx_desc rxd;
915         struct i40e_rx_entry *sw_ring;
916         struct i40e_rx_entry *rxe;
917         struct rte_mbuf *rxm;
918         struct rte_mbuf *nmb;
919         uint16_t nb_rx;
920         uint32_t rx_status;
921         uint64_t qword1;
922         uint16_t rx_packet_len;
923         uint16_t rx_id, nb_hold;
924         uint64_t dma_addr;
925         uint64_t pkt_flags;
926
927         nb_rx = 0;
928         nb_hold = 0;
929         rxq = rx_queue;
930         rx_id = rxq->rx_tail;
931         rx_ring = rxq->rx_ring;
932         sw_ring = rxq->sw_ring;
933
934         while (nb_rx < nb_pkts) {
935                 rxdp = &rx_ring[rx_id];
936                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
937                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
938                                 >> I40E_RXD_QW1_STATUS_SHIFT;
939
940                 /* Check the DD bit first */
941                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
942                         break;
943
944                 nmb = rte_rxmbuf_alloc(rxq->mp);
945                 if (unlikely(!nmb))
946                         break;
947                 rxd = *rxdp;
948
949                 nb_hold++;
950                 rxe = &sw_ring[rx_id];
951                 rx_id++;
952                 if (unlikely(rx_id == rxq->nb_rx_desc))
953                         rx_id = 0;
954
955                 /* Prefetch next mbuf */
956                 rte_prefetch0(sw_ring[rx_id].mbuf);
957
958                 /**
959                  * When next RX descriptor is on a cache line boundary,
960                  * prefetch the next 4 RX descriptors and next 8 pointers
961                  * to mbufs.
962                  */
963                 if ((rx_id & 0x3) == 0) {
964                         rte_prefetch0(&rx_ring[rx_id]);
965                         rte_prefetch0(&sw_ring[rx_id]);
966                 }
967                 rxm = rxe->mbuf;
968                 rxe->mbuf = nmb;
969                 dma_addr =
970                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
971                 rxdp->read.hdr_addr = dma_addr;
972                 rxdp->read.pkt_addr = dma_addr;
973
974                 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
975                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
976
977                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
978                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
979                 rxm->nb_segs = 1;
980                 rxm->next = NULL;
981                 rxm->pkt_len = rx_packet_len;
982                 rxm->data_len = rx_packet_len;
983                 rxm->port = rxq->port_id;
984                 rxm->ol_flags = 0;
985                 i40e_rxd_to_vlan_tci(rxm, &rxd);
986                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
987                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
988                 pkt_flags |= i40e_rxd_ptype_to_pkt_flags(qword1);
989                 rxm->packet_type = (uint16_t)((qword1 & I40E_RXD_QW1_PTYPE_MASK) >>
990                                 I40E_RXD_QW1_PTYPE_SHIFT);
991                 if (pkt_flags & PKT_RX_RSS_HASH)
992                         rxm->hash.rss =
993                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
994                 if (pkt_flags & PKT_RX_FDIR)
995                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
996
997 #ifdef RTE_LIBRTE_IEEE1588
998                 uint16_t tsyn = (qword1 & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
999                                         | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
1000                                         >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
1001
1002                 if (tsyn & 0x04)
1003                         pkt_flags |= PKT_RX_IEEE1588_TMST;
1004
1005                 rxm->timesync = tsyn & 0x03;
1006 #endif
1007                 rxm->ol_flags |= pkt_flags;
1008
1009                 rx_pkts[nb_rx++] = rxm;
1010         }
1011         rxq->rx_tail = rx_id;
1012
1013         /**
1014          * If the number of free RX descriptors is greater than the RX free
1015          * threshold of the queue, advance the receive tail register of queue.
1016          * Update that register with the value of the last processed RX
1017          * descriptor minus 1.
1018          */
1019         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1020         if (nb_hold > rxq->rx_free_thresh) {
1021                 rx_id = (uint16_t) ((rx_id == 0) ?
1022                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1023                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1024                 nb_hold = 0;
1025         }
1026         rxq->nb_rx_hold = nb_hold;
1027
1028         return nb_rx;
1029 }
1030
1031 uint16_t
1032 i40e_recv_scattered_pkts(void *rx_queue,
1033                          struct rte_mbuf **rx_pkts,
1034                          uint16_t nb_pkts)
1035 {
1036         struct i40e_rx_queue *rxq = rx_queue;
1037         volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
1038         volatile union i40e_rx_desc *rxdp;
1039         union i40e_rx_desc rxd;
1040         struct i40e_rx_entry *sw_ring = rxq->sw_ring;
1041         struct i40e_rx_entry *rxe;
1042         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1043         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1044         struct rte_mbuf *nmb, *rxm;
1045         uint16_t rx_id = rxq->rx_tail;
1046         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1047         uint32_t rx_status;
1048         uint64_t qword1;
1049         uint64_t dma_addr;
1050         uint64_t pkt_flags;
1051
1052         while (nb_rx < nb_pkts) {
1053                 rxdp = &rx_ring[rx_id];
1054                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1055                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
1056                                         I40E_RXD_QW1_STATUS_SHIFT;
1057
1058                 /* Check the DD bit */
1059                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1060                         break;
1061
1062                 nmb = rte_rxmbuf_alloc(rxq->mp);
1063                 if (unlikely(!nmb))
1064                         break;
1065                 rxd = *rxdp;
1066                 nb_hold++;
1067                 rxe = &sw_ring[rx_id];
1068                 rx_id++;
1069                 if (rx_id == rxq->nb_rx_desc)
1070                         rx_id = 0;
1071
1072                 /* Prefetch next mbuf */
1073                 rte_prefetch0(sw_ring[rx_id].mbuf);
1074
1075                 /**
1076                  * When next RX descriptor is on a cache line boundary,
1077                  * prefetch the next 4 RX descriptors and next 8 pointers
1078                  * to mbufs.
1079                  */
1080                 if ((rx_id & 0x3) == 0) {
1081                         rte_prefetch0(&rx_ring[rx_id]);
1082                         rte_prefetch0(&sw_ring[rx_id]);
1083                 }
1084
1085                 rxm = rxe->mbuf;
1086                 rxe->mbuf = nmb;
1087                 dma_addr =
1088                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
1089
1090                 /* Set data buffer address and data length of the mbuf */
1091                 rxdp->read.hdr_addr = dma_addr;
1092                 rxdp->read.pkt_addr = dma_addr;
1093                 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1094                                         I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1095                 rxm->data_len = rx_packet_len;
1096                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1097
1098                 /**
1099                  * If this is the first buffer of the received packet, set the
1100                  * pointer to the first mbuf of the packet and initialize its
1101                  * context. Otherwise, update the total length and the number
1102                  * of segments of the current scattered packet, and update the
1103                  * pointer to the last mbuf of the current packet.
1104                  */
1105                 if (!first_seg) {
1106                         first_seg = rxm;
1107                         first_seg->nb_segs = 1;
1108                         first_seg->pkt_len = rx_packet_len;
1109                 } else {
1110                         first_seg->pkt_len =
1111                                 (uint16_t)(first_seg->pkt_len +
1112                                                 rx_packet_len);
1113                         first_seg->nb_segs++;
1114                         last_seg->next = rxm;
1115                 }
1116
1117                 /**
1118                  * If this is not the last buffer of the received packet,
1119                  * update the pointer to the last mbuf of the current scattered
1120                  * packet and continue to parse the RX ring.
1121                  */
1122                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
1123                         last_seg = rxm;
1124                         continue;
1125                 }
1126
1127                 /**
1128                  * This is the last buffer of the received packet. If the CRC
1129                  * is not stripped by the hardware:
1130                  *  - Subtract the CRC length from the total packet length.
1131                  *  - If the last buffer only contains the whole CRC or a part
1132                  *  of it, free the mbuf associated to the last buffer. If part
1133                  *  of the CRC is also contained in the previous mbuf, subtract
1134                  *  the length of that CRC part from the data length of the
1135                  *  previous mbuf.
1136                  */
1137                 rxm->next = NULL;
1138                 if (unlikely(rxq->crc_len > 0)) {
1139                         first_seg->pkt_len -= ETHER_CRC_LEN;
1140                         if (rx_packet_len <= ETHER_CRC_LEN) {
1141                                 rte_pktmbuf_free_seg(rxm);
1142                                 first_seg->nb_segs--;
1143                                 last_seg->data_len =
1144                                         (uint16_t)(last_seg->data_len -
1145                                         (ETHER_CRC_LEN - rx_packet_len));
1146                                 last_seg->next = NULL;
1147                         } else
1148                                 rxm->data_len = (uint16_t)(rx_packet_len -
1149                                                                 ETHER_CRC_LEN);
1150                 }
1151
1152                 first_seg->port = rxq->port_id;
1153                 first_seg->ol_flags = 0;
1154                 i40e_rxd_to_vlan_tci(first_seg, &rxd);
1155                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
1156                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
1157                 pkt_flags |= i40e_rxd_ptype_to_pkt_flags(qword1);
1158                 first_seg->packet_type = (uint16_t)((qword1 &
1159                                         I40E_RXD_QW1_PTYPE_MASK) >>
1160                                         I40E_RXD_QW1_PTYPE_SHIFT);
1161                 if (pkt_flags & PKT_RX_RSS_HASH)
1162                         rxm->hash.rss =
1163                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1164                 if (pkt_flags & PKT_RX_FDIR)
1165                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
1166
1167 #ifdef RTE_LIBRTE_IEEE1588
1168                 uint16_t tsyn = (qword1 & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
1169                                         | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
1170                                         >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
1171
1172                 if (tsyn & 0x04)
1173                         pkt_flags |= PKT_RX_IEEE1588_TMST;
1174
1175                 first_seg->timesync = tsyn & 0x03;
1176 #endif
1177                 first_seg->ol_flags |= pkt_flags;
1178
1179                 /* Prefetch data of first segment, if configured to do so. */
1180                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1181                         first_seg->data_off));
1182                 rx_pkts[nb_rx++] = first_seg;
1183                 first_seg = NULL;
1184         }
1185
1186         /* Record index of the next RX descriptor to probe. */
1187         rxq->rx_tail = rx_id;
1188         rxq->pkt_first_seg = first_seg;
1189         rxq->pkt_last_seg = last_seg;
1190
1191         /**
1192          * If the number of free RX descriptors is greater than the RX free
1193          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1194          * register. Update the RDT with the value of the last processed RX
1195          * descriptor minus 1, to guarantee that the RDT register is never
1196          * equal to the RDH register, which creates a "full" ring situtation
1197          * from the hardware point of view.
1198          */
1199         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1200         if (nb_hold > rxq->rx_free_thresh) {
1201                 rx_id = (uint16_t)(rx_id == 0 ?
1202                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1203                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1204                 nb_hold = 0;
1205         }
1206         rxq->nb_rx_hold = nb_hold;
1207
1208         return nb_rx;
1209 }
1210
1211 /* Check if the context descriptor is needed for TX offloading */
1212 static inline uint16_t
1213 i40e_calc_context_desc(uint64_t flags)
1214 {
1215         static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
1216                 PKT_TX_TCP_SEG |
1217                 PKT_TX_QINQ_PKT;
1218
1219 #ifdef RTE_LIBRTE_IEEE1588
1220         mask |= PKT_TX_IEEE1588_TMST;
1221 #endif
1222
1223         return ((flags & mask) ? 1 : 0);
1224 }
1225
1226 /* set i40e TSO context descriptor */
1227 static inline uint64_t
1228 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
1229 {
1230         uint64_t ctx_desc = 0;
1231         uint32_t cd_cmd, hdr_len, cd_tso_len;
1232
1233         if (!tx_offload.l4_len) {
1234                 PMD_DRV_LOG(DEBUG, "L4 length set to 0");
1235                 return ctx_desc;
1236         }
1237
1238         /**
1239          * in case of tunneling packet, the outer_l2_len and
1240          * outer_l3_len must be 0.
1241          */
1242         hdr_len = tx_offload.outer_l2_len +
1243                 tx_offload.outer_l3_len +
1244                 tx_offload.l2_len +
1245                 tx_offload.l3_len +
1246                 tx_offload.l4_len;
1247
1248         cd_cmd = I40E_TX_CTX_DESC_TSO;
1249         cd_tso_len = mbuf->pkt_len - hdr_len;
1250         ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1251                 ((uint64_t)cd_tso_len <<
1252                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1253                 ((uint64_t)mbuf->tso_segsz <<
1254                  I40E_TXD_CTX_QW1_MSS_SHIFT);
1255
1256         return ctx_desc;
1257 }
1258
1259 uint16_t
1260 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1261 {
1262         struct i40e_tx_queue *txq;
1263         struct i40e_tx_entry *sw_ring;
1264         struct i40e_tx_entry *txe, *txn;
1265         volatile struct i40e_tx_desc *txd;
1266         volatile struct i40e_tx_desc *txr;
1267         struct rte_mbuf *tx_pkt;
1268         struct rte_mbuf *m_seg;
1269         uint32_t cd_tunneling_params;
1270         uint16_t tx_id;
1271         uint16_t nb_tx;
1272         uint32_t td_cmd;
1273         uint32_t td_offset;
1274         uint32_t tx_flags;
1275         uint32_t td_tag;
1276         uint64_t ol_flags;
1277         uint16_t nb_used;
1278         uint16_t nb_ctx;
1279         uint16_t tx_last;
1280         uint16_t slen;
1281         uint64_t buf_dma_addr;
1282         union i40e_tx_offload tx_offload = {0};
1283
1284         txq = tx_queue;
1285         sw_ring = txq->sw_ring;
1286         txr = txq->tx_ring;
1287         tx_id = txq->tx_tail;
1288         txe = &sw_ring[tx_id];
1289
1290         /* Check if the descriptor ring needs to be cleaned. */
1291         if (txq->nb_tx_free < txq->tx_free_thresh)
1292                 i40e_xmit_cleanup(txq);
1293
1294         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1295                 td_cmd = 0;
1296                 td_tag = 0;
1297                 td_offset = 0;
1298                 tx_flags = 0;
1299
1300                 tx_pkt = *tx_pkts++;
1301                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1302
1303                 ol_flags = tx_pkt->ol_flags;
1304                 tx_offload.l2_len = tx_pkt->l2_len;
1305                 tx_offload.l3_len = tx_pkt->l3_len;
1306                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1307                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1308                 tx_offload.l4_len = tx_pkt->l4_len;
1309                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1310
1311                 /* Calculate the number of context descriptors needed. */
1312                 nb_ctx = i40e_calc_context_desc(ol_flags);
1313
1314                 /**
1315                  * The number of descriptors that must be allocated for
1316                  * a packet equals to the number of the segments of that
1317                  * packet plus 1 context descriptor if needed.
1318                  */
1319                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1320                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1321
1322                 /* Circular ring */
1323                 if (tx_last >= txq->nb_tx_desc)
1324                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1325
1326                 if (nb_used > txq->nb_tx_free) {
1327                         if (i40e_xmit_cleanup(txq) != 0) {
1328                                 if (nb_tx == 0)
1329                                         return 0;
1330                                 goto end_of_tx;
1331                         }
1332                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
1333                                 while (nb_used > txq->nb_tx_free) {
1334                                         if (i40e_xmit_cleanup(txq) != 0) {
1335                                                 if (nb_tx == 0)
1336                                                         return 0;
1337                                                 goto end_of_tx;
1338                                         }
1339                                 }
1340                         }
1341                 }
1342
1343                 /* Descriptor based VLAN insertion */
1344                 if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1345                         tx_flags |= tx_pkt->vlan_tci <<
1346                                 I40E_TX_FLAG_L2TAG1_SHIFT;
1347                         tx_flags |= I40E_TX_FLAG_INSERT_VLAN;
1348                         td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1349                         td_tag = (tx_flags & I40E_TX_FLAG_L2TAG1_MASK) >>
1350                                                 I40E_TX_FLAG_L2TAG1_SHIFT;
1351                 }
1352
1353                 /* Always enable CRC offload insertion */
1354                 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1355
1356                 /* Enable checksum offloading */
1357                 cd_tunneling_params = 0;
1358                 if (unlikely(ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)) {
1359                         i40e_txd_enable_checksum(ol_flags, &td_cmd, &td_offset,
1360                                 tx_offload, &cd_tunneling_params);
1361                 }
1362
1363                 if (unlikely(nb_ctx)) {
1364                         /* Setup TX context descriptor if required */
1365                         volatile struct i40e_tx_context_desc *ctx_txd =
1366                                 (volatile struct i40e_tx_context_desc *)\
1367                                                         &txr[tx_id];
1368                         uint16_t cd_l2tag2 = 0;
1369                         uint64_t cd_type_cmd_tso_mss =
1370                                 I40E_TX_DESC_DTYPE_CONTEXT;
1371
1372                         txn = &sw_ring[txe->next_id];
1373                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1374                         if (txe->mbuf != NULL) {
1375                                 rte_pktmbuf_free_seg(txe->mbuf);
1376                                 txe->mbuf = NULL;
1377                         }
1378
1379                         /* TSO enabled means no timestamp */
1380                         if (ol_flags & PKT_TX_TCP_SEG)
1381                                 cd_type_cmd_tso_mss |=
1382                                         i40e_set_tso_ctx(tx_pkt, tx_offload);
1383                         else {
1384 #ifdef RTE_LIBRTE_IEEE1588
1385                                 if (ol_flags & PKT_TX_IEEE1588_TMST)
1386                                         cd_type_cmd_tso_mss |=
1387                                                 ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1388                                                  I40E_TXD_CTX_QW1_CMD_SHIFT);
1389 #endif
1390                         }
1391
1392                         ctx_txd->tunneling_params =
1393                                 rte_cpu_to_le_32(cd_tunneling_params);
1394                         if (ol_flags & PKT_TX_QINQ_PKT) {
1395                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1396                                 cd_type_cmd_tso_mss |=
1397                                         ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1398                                                 I40E_TXD_CTX_QW1_CMD_SHIFT);
1399                         }
1400                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1401                         ctx_txd->type_cmd_tso_mss =
1402                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1403
1404                         PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1405                                 "tunneling_params: %#x;\n"
1406                                 "l2tag2: %#hx;\n"
1407                                 "rsvd: %#hx;\n"
1408                                 "type_cmd_tso_mss: %#"PRIx64";\n",
1409                                 tx_pkt, tx_id,
1410                                 ctx_txd->tunneling_params,
1411                                 ctx_txd->l2tag2,
1412                                 ctx_txd->rsvd,
1413                                 ctx_txd->type_cmd_tso_mss);
1414
1415                         txe->last_id = tx_last;
1416                         tx_id = txe->next_id;
1417                         txe = txn;
1418                 }
1419
1420                 m_seg = tx_pkt;
1421                 do {
1422                         txd = &txr[tx_id];
1423                         txn = &sw_ring[txe->next_id];
1424
1425                         if (txe->mbuf)
1426                                 rte_pktmbuf_free_seg(txe->mbuf);
1427                         txe->mbuf = m_seg;
1428
1429                         /* Setup TX Descriptor */
1430                         slen = m_seg->data_len;
1431                         buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
1432
1433                         PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1434                                 "buf_dma_addr: %#"PRIx64";\n"
1435                                 "td_cmd: %#x;\n"
1436                                 "td_offset: %#x;\n"
1437                                 "td_len: %u;\n"
1438                                 "td_tag: %#x;\n",
1439                                 tx_pkt, tx_id, buf_dma_addr,
1440                                 td_cmd, td_offset, slen, td_tag);
1441
1442                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1443                         txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1444                                                 td_offset, slen, td_tag);
1445                         txe->last_id = tx_last;
1446                         tx_id = txe->next_id;
1447                         txe = txn;
1448                         m_seg = m_seg->next;
1449                 } while (m_seg != NULL);
1450
1451                 /* The last packet data descriptor needs End Of Packet (EOP) */
1452                 td_cmd |= I40E_TX_DESC_CMD_EOP;
1453                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1454                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1455
1456                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1457                         PMD_TX_FREE_LOG(DEBUG,
1458                                         "Setting RS bit on TXD id="
1459                                         "%4u (port=%d queue=%d)",
1460                                         tx_last, txq->port_id, txq->queue_id);
1461
1462                         td_cmd |= I40E_TX_DESC_CMD_RS;
1463
1464                         /* Update txq RS bit counters */
1465                         txq->nb_tx_used = 0;
1466                 }
1467
1468                 txd->cmd_type_offset_bsz |=
1469                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1470                                         I40E_TXD_QW1_CMD_SHIFT);
1471         }
1472
1473 end_of_tx:
1474         rte_wmb();
1475
1476         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1477                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
1478                    (unsigned) tx_id, (unsigned) nb_tx);
1479
1480         I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id);
1481         txq->tx_tail = tx_id;
1482
1483         return nb_tx;
1484 }
1485
1486 static inline int __attribute__((always_inline))
1487 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1488 {
1489         struct i40e_tx_entry *txep;
1490         uint16_t i;
1491
1492         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1493                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1494                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1495                 return 0;
1496
1497         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
1498
1499         for (i = 0; i < txq->tx_rs_thresh; i++)
1500                 rte_prefetch0((txep + i)->mbuf);
1501
1502         if (!(txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT)) {
1503                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1504                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
1505                         txep->mbuf = NULL;
1506                 }
1507         } else {
1508                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1509                         rte_pktmbuf_free_seg(txep->mbuf);
1510                         txep->mbuf = NULL;
1511                 }
1512         }
1513
1514         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1515         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1516         if (txq->tx_next_dd >= txq->nb_tx_desc)
1517                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1518
1519         return txq->tx_rs_thresh;
1520 }
1521
1522 #define I40E_TD_CMD (I40E_TX_DESC_CMD_ICRC |\
1523                      I40E_TX_DESC_CMD_EOP)
1524
1525 /* Populate 4 descriptors with data from 4 mbufs */
1526 static inline void
1527 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1528 {
1529         uint64_t dma_addr;
1530         uint32_t i;
1531
1532         for (i = 0; i < 4; i++, txdp++, pkts++) {
1533                 dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
1534                 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1535                 txdp->cmd_type_offset_bsz =
1536                         i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1537                                         (*pkts)->data_len, 0);
1538         }
1539 }
1540
1541 /* Populate 1 descriptor with data from 1 mbuf */
1542 static inline void
1543 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1544 {
1545         uint64_t dma_addr;
1546
1547         dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
1548         txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1549         txdp->cmd_type_offset_bsz =
1550                 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1551                                 (*pkts)->data_len, 0);
1552 }
1553
1554 /* Fill hardware descriptor ring with mbuf data */
1555 static inline void
1556 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1557                      struct rte_mbuf **pkts,
1558                      uint16_t nb_pkts)
1559 {
1560         volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1561         struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1562         const int N_PER_LOOP = 4;
1563         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1564         int mainpart, leftover;
1565         int i, j;
1566
1567         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1568         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1569         for (i = 0; i < mainpart; i += N_PER_LOOP) {
1570                 for (j = 0; j < N_PER_LOOP; ++j) {
1571                         (txep + i + j)->mbuf = *(pkts + i + j);
1572                 }
1573                 tx4(txdp + i, pkts + i);
1574         }
1575         if (unlikely(leftover > 0)) {
1576                 for (i = 0; i < leftover; ++i) {
1577                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1578                         tx1(txdp + mainpart + i, pkts + mainpart + i);
1579                 }
1580         }
1581 }
1582
1583 static inline uint16_t
1584 tx_xmit_pkts(struct i40e_tx_queue *txq,
1585              struct rte_mbuf **tx_pkts,
1586              uint16_t nb_pkts)
1587 {
1588         volatile struct i40e_tx_desc *txr = txq->tx_ring;
1589         uint16_t n = 0;
1590
1591         /**
1592          * Begin scanning the H/W ring for done descriptors when the number
1593          * of available descriptors drops below tx_free_thresh. For each done
1594          * descriptor, free the associated buffer.
1595          */
1596         if (txq->nb_tx_free < txq->tx_free_thresh)
1597                 i40e_tx_free_bufs(txq);
1598
1599         /* Use available descriptor only */
1600         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1601         if (unlikely(!nb_pkts))
1602                 return 0;
1603
1604         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1605         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1606                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1607                 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1608                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1609                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1610                                                 I40E_TXD_QW1_CMD_SHIFT);
1611                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1612                 txq->tx_tail = 0;
1613         }
1614
1615         /* Fill hardware descriptor ring with mbuf data */
1616         i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1617         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1618
1619         /* Determin if RS bit needs to be set */
1620         if (txq->tx_tail > txq->tx_next_rs) {
1621                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1622                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1623                                                 I40E_TXD_QW1_CMD_SHIFT);
1624                 txq->tx_next_rs =
1625                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1626                 if (txq->tx_next_rs >= txq->nb_tx_desc)
1627                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1628         }
1629
1630         if (txq->tx_tail >= txq->nb_tx_desc)
1631                 txq->tx_tail = 0;
1632
1633         /* Update the tx tail register */
1634         rte_wmb();
1635         I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
1636
1637         return nb_pkts;
1638 }
1639
1640 static uint16_t
1641 i40e_xmit_pkts_simple(void *tx_queue,
1642                       struct rte_mbuf **tx_pkts,
1643                       uint16_t nb_pkts)
1644 {
1645         uint16_t nb_tx = 0;
1646
1647         if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1648                 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1649                                                 tx_pkts, nb_pkts);
1650
1651         while (nb_pkts) {
1652                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1653                                                 I40E_TX_MAX_BURST);
1654
1655                 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1656                                                 &tx_pkts[nb_tx], num);
1657                 nb_tx = (uint16_t)(nb_tx + ret);
1658                 nb_pkts = (uint16_t)(nb_pkts - ret);
1659                 if (ret < num)
1660                         break;
1661         }
1662
1663         return nb_tx;
1664 }
1665
1666 /*
1667  * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1668  * application used, which assume having sequential ones. But from driver's
1669  * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1670  * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1671  * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1672  * use queue_idx from 0 to 95 to access queues, while real queue would be
1673  * different. This function will do a queue mapping to find VSI the queue
1674  * belongs to.
1675  */
1676 static struct i40e_vsi*
1677 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1678 {
1679         /* the queue in MAIN VSI range */
1680         if (queue_idx < pf->main_vsi->nb_qps)
1681                 return pf->main_vsi;
1682
1683         queue_idx -= pf->main_vsi->nb_qps;
1684
1685         /* queue_idx is greater than VMDQ VSIs range */
1686         if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1687                 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1688                 return NULL;
1689         }
1690
1691         return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1692 }
1693
1694 static uint16_t
1695 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1696 {
1697         /* the queue in MAIN VSI range */
1698         if (queue_idx < pf->main_vsi->nb_qps)
1699                 return queue_idx;
1700
1701         /* It's VMDQ queues */
1702         queue_idx -= pf->main_vsi->nb_qps;
1703
1704         if (pf->nb_cfg_vmdq_vsi)
1705                 return queue_idx % pf->vmdq_nb_qps;
1706         else {
1707                 PMD_INIT_LOG(ERR, "Fail to get queue offset");
1708                 return (uint16_t)(-1);
1709         }
1710 }
1711
1712 int
1713 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1714 {
1715         struct i40e_rx_queue *rxq;
1716         int err = -1;
1717         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1718
1719         PMD_INIT_FUNC_TRACE();
1720
1721         if (rx_queue_id < dev->data->nb_rx_queues) {
1722                 rxq = dev->data->rx_queues[rx_queue_id];
1723
1724                 err = i40e_alloc_rx_queue_mbufs(rxq);
1725                 if (err) {
1726                         PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1727                         return err;
1728                 }
1729
1730                 rte_wmb();
1731
1732                 /* Init the RX tail regieter. */
1733                 I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
1734
1735                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
1736
1737                 if (err) {
1738                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
1739                                     rx_queue_id);
1740
1741                         i40e_rx_queue_release_mbufs(rxq);
1742                         i40e_reset_rx_queue(rxq);
1743                 }
1744         }
1745
1746         return err;
1747 }
1748
1749 int
1750 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1751 {
1752         struct i40e_rx_queue *rxq;
1753         int err;
1754         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1755
1756         if (rx_queue_id < dev->data->nb_rx_queues) {
1757                 rxq = dev->data->rx_queues[rx_queue_id];
1758
1759                 /*
1760                 * rx_queue_id is queue id aplication refers to, while
1761                 * rxq->reg_idx is the real queue index.
1762                 */
1763                 err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
1764
1765                 if (err) {
1766                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
1767                                     rx_queue_id);
1768                         return err;
1769                 }
1770                 i40e_rx_queue_release_mbufs(rxq);
1771                 i40e_reset_rx_queue(rxq);
1772         }
1773
1774         return 0;
1775 }
1776
1777 int
1778 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1779 {
1780         int err = -1;
1781         struct i40e_tx_queue *txq;
1782         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1783
1784         PMD_INIT_FUNC_TRACE();
1785
1786         if (tx_queue_id < dev->data->nb_tx_queues) {
1787                 txq = dev->data->tx_queues[tx_queue_id];
1788
1789                 /*
1790                 * tx_queue_id is queue id aplication refers to, while
1791                 * rxq->reg_idx is the real queue index.
1792                 */
1793                 err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
1794                 if (err)
1795                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
1796                                     tx_queue_id);
1797         }
1798
1799         return err;
1800 }
1801
1802 int
1803 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1804 {
1805         struct i40e_tx_queue *txq;
1806         int err;
1807         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1808
1809         if (tx_queue_id < dev->data->nb_tx_queues) {
1810                 txq = dev->data->tx_queues[tx_queue_id];
1811
1812                 /*
1813                 * tx_queue_id is queue id aplication refers to, while
1814                 * txq->reg_idx is the real queue index.
1815                 */
1816                 err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
1817
1818                 if (err) {
1819                         PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
1820                                     tx_queue_id);
1821                         return err;
1822                 }
1823
1824                 i40e_tx_queue_release_mbufs(txq);
1825                 i40e_reset_tx_queue(txq);
1826         }
1827
1828         return 0;
1829 }
1830
1831 int
1832 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
1833                         uint16_t queue_idx,
1834                         uint16_t nb_desc,
1835                         unsigned int socket_id,
1836                         const struct rte_eth_rxconf *rx_conf,
1837                         struct rte_mempool *mp)
1838 {
1839         struct i40e_vsi *vsi;
1840         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1841         struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1842         struct i40e_rx_queue *rxq;
1843         const struct rte_memzone *rz;
1844         uint32_t ring_size;
1845         uint16_t len;
1846         int use_def_burst_func = 1;
1847
1848         if (hw->mac.type == I40E_MAC_VF) {
1849                 struct i40e_vf *vf =
1850                         I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1851                 vsi = &vf->vsi;
1852         } else
1853                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1854
1855         if (vsi == NULL) {
1856                 PMD_DRV_LOG(ERR, "VSI not available or queue "
1857                             "index exceeds the maximum");
1858                 return I40E_ERR_PARAM;
1859         }
1860         if (((nb_desc * sizeof(union i40e_rx_desc)) % I40E_ALIGN) != 0 ||
1861                                         (nb_desc > I40E_MAX_RING_DESC) ||
1862                                         (nb_desc < I40E_MIN_RING_DESC)) {
1863                 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
1864                             "invalid", nb_desc);
1865                 return I40E_ERR_PARAM;
1866         }
1867
1868         /* Free memory if needed */
1869         if (dev->data->rx_queues[queue_idx]) {
1870                 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
1871                 dev->data->rx_queues[queue_idx] = NULL;
1872         }
1873
1874         /* Allocate the rx queue data structure */
1875         rxq = rte_zmalloc_socket("i40e rx queue",
1876                                  sizeof(struct i40e_rx_queue),
1877                                  RTE_CACHE_LINE_SIZE,
1878                                  socket_id);
1879         if (!rxq) {
1880                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
1881                             "rx queue data structure");
1882                 return (-ENOMEM);
1883         }
1884         rxq->mp = mp;
1885         rxq->nb_rx_desc = nb_desc;
1886         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1887         rxq->queue_id = queue_idx;
1888         if (hw->mac.type == I40E_MAC_VF)
1889                 rxq->reg_idx = queue_idx;
1890         else /* PF device */
1891                 rxq->reg_idx = vsi->base_queue +
1892                         i40e_get_queue_offset_by_qindex(pf, queue_idx);
1893
1894         rxq->port_id = dev->data->port_id;
1895         rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
1896                                                         0 : ETHER_CRC_LEN);
1897         rxq->drop_en = rx_conf->rx_drop_en;
1898         rxq->vsi = vsi;
1899         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1900
1901         /* Allocate the maximun number of RX ring hardware descriptor. */
1902         ring_size = sizeof(union i40e_rx_desc) * I40E_MAX_RING_DESC;
1903         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
1904         rz = i40e_ring_dma_zone_reserve(dev,
1905                                         "rx_ring",
1906                                         queue_idx,
1907                                         ring_size,
1908                                         socket_id);
1909         if (!rz) {
1910                 i40e_dev_rx_queue_release(rxq);
1911                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
1912                 return (-ENOMEM);
1913         }
1914
1915         /* Zero all the descriptors in the ring. */
1916         memset(rz->addr, 0, ring_size);
1917
1918 #ifdef RTE_LIBRTE_XEN_DOM0
1919         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
1920 #else
1921         rxq->rx_ring_phys_addr = (uint64_t)rz->phys_addr;
1922 #endif
1923
1924         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
1925
1926 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1927         len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
1928 #else
1929         len = nb_desc;
1930 #endif
1931
1932         /* Allocate the software ring. */
1933         rxq->sw_ring =
1934                 rte_zmalloc_socket("i40e rx sw ring",
1935                                    sizeof(struct i40e_rx_entry) * len,
1936                                    RTE_CACHE_LINE_SIZE,
1937                                    socket_id);
1938         if (!rxq->sw_ring) {
1939                 i40e_dev_rx_queue_release(rxq);
1940                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
1941                 return (-ENOMEM);
1942         }
1943
1944         i40e_reset_rx_queue(rxq);
1945         rxq->q_set = TRUE;
1946         dev->data->rx_queues[queue_idx] = rxq;
1947
1948         use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
1949
1950         if (!use_def_burst_func && !dev->data->scattered_rx) {
1951 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1952                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1953                              "satisfied. Rx Burst Bulk Alloc function will be "
1954                              "used on port=%d, queue=%d.",
1955                              rxq->port_id, rxq->queue_id);
1956                 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
1957 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
1958         } else {
1959                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1960                              "not satisfied, Scattered Rx is requested, "
1961                              "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
1962                              "not enabled on port=%d, queue=%d.",
1963                              rxq->port_id, rxq->queue_id);
1964         }
1965
1966         return 0;
1967 }
1968
1969 void
1970 i40e_dev_rx_queue_release(void *rxq)
1971 {
1972         struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
1973
1974         if (!q) {
1975                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1976                 return;
1977         }
1978
1979         i40e_rx_queue_release_mbufs(q);
1980         rte_free(q->sw_ring);
1981         rte_free(q);
1982 }
1983
1984 uint32_t
1985 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1986 {
1987 #define I40E_RXQ_SCAN_INTERVAL 4
1988         volatile union i40e_rx_desc *rxdp;
1989         struct i40e_rx_queue *rxq;
1990         uint16_t desc = 0;
1991
1992         if (unlikely(rx_queue_id >= dev->data->nb_rx_queues)) {
1993                 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", rx_queue_id);
1994                 return 0;
1995         }
1996
1997         rxq = dev->data->rx_queues[rx_queue_id];
1998         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1999         while ((desc < rxq->nb_rx_desc) &&
2000                 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2001                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2002                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
2003                 /**
2004                  * Check the DD bit of a rx descriptor of each 4 in a group,
2005                  * to avoid checking too frequently and downgrading performance
2006                  * too much.
2007                  */
2008                 desc += I40E_RXQ_SCAN_INTERVAL;
2009                 rxdp += I40E_RXQ_SCAN_INTERVAL;
2010                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2011                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2012                                         desc - rxq->nb_rx_desc]);
2013         }
2014
2015         return desc;
2016 }
2017
2018 int
2019 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
2020 {
2021         volatile union i40e_rx_desc *rxdp;
2022         struct i40e_rx_queue *rxq = rx_queue;
2023         uint16_t desc;
2024         int ret;
2025
2026         if (unlikely(offset >= rxq->nb_rx_desc)) {
2027                 PMD_DRV_LOG(ERR, "Invalid RX queue id %u", offset);
2028                 return 0;
2029         }
2030
2031         desc = rxq->rx_tail + offset;
2032         if (desc >= rxq->nb_rx_desc)
2033                 desc -= rxq->nb_rx_desc;
2034
2035         rxdp = &(rxq->rx_ring[desc]);
2036
2037         ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2038                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2039                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
2040
2041         return ret;
2042 }
2043
2044 int
2045 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
2046                         uint16_t queue_idx,
2047                         uint16_t nb_desc,
2048                         unsigned int socket_id,
2049                         const struct rte_eth_txconf *tx_conf)
2050 {
2051         struct i40e_vsi *vsi;
2052         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2053         struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2054         struct i40e_tx_queue *txq;
2055         const struct rte_memzone *tz;
2056         uint32_t ring_size;
2057         uint16_t tx_rs_thresh, tx_free_thresh;
2058
2059         if (hw->mac.type == I40E_MAC_VF) {
2060                 struct i40e_vf *vf =
2061                         I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2062                 vsi = &vf->vsi;
2063         } else
2064                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2065
2066         if (vsi == NULL) {
2067                 PMD_DRV_LOG(ERR, "VSI is NULL, or queue index (%u) "
2068                             "exceeds the maximum", queue_idx);
2069                 return I40E_ERR_PARAM;
2070         }
2071
2072         if (((nb_desc * sizeof(struct i40e_tx_desc)) % I40E_ALIGN) != 0 ||
2073                                         (nb_desc > I40E_MAX_RING_DESC) ||
2074                                         (nb_desc < I40E_MIN_RING_DESC)) {
2075                 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
2076                             "invalid", nb_desc);
2077                 return I40E_ERR_PARAM;
2078         }
2079
2080         /**
2081          * The following two parameters control the setting of the RS bit on
2082          * transmit descriptors. TX descriptors will have their RS bit set
2083          * after txq->tx_rs_thresh descriptors have been used. The TX
2084          * descriptor ring will be cleaned after txq->tx_free_thresh
2085          * descriptors are used or if the number of descriptors required to
2086          * transmit a packet is greater than the number of free TX descriptors.
2087          *
2088          * The following constraints must be satisfied:
2089          *  - tx_rs_thresh must be greater than 0.
2090          *  - tx_rs_thresh must be less than the size of the ring minus 2.
2091          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
2092          *  - tx_rs_thresh must be a divisor of the ring size.
2093          *  - tx_free_thresh must be greater than 0.
2094          *  - tx_free_thresh must be less than the size of the ring minus 3.
2095          *
2096          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
2097          * race condition, hence the maximum threshold constraints. When set
2098          * to zero use default values.
2099          */
2100         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
2101                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
2102         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2103                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2104         if (tx_rs_thresh >= (nb_desc - 2)) {
2105                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2106                              "number of TX descriptors minus 2. "
2107                              "(tx_rs_thresh=%u port=%d queue=%d)",
2108                              (unsigned int)tx_rs_thresh,
2109                              (int)dev->data->port_id,
2110                              (int)queue_idx);
2111                 return I40E_ERR_PARAM;
2112         }
2113         if (tx_free_thresh >= (nb_desc - 3)) {
2114                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2115                              "tx_free_thresh must be less than the "
2116                              "number of TX descriptors minus 3. "
2117                              "(tx_free_thresh=%u port=%d queue=%d)",
2118                              (unsigned int)tx_free_thresh,
2119                              (int)dev->data->port_id,
2120                              (int)queue_idx);
2121                 return I40E_ERR_PARAM;
2122         }
2123         if (tx_rs_thresh > tx_free_thresh) {
2124                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2125                              "equal to tx_free_thresh. (tx_free_thresh=%u"
2126                              " tx_rs_thresh=%u port=%d queue=%d)",
2127                              (unsigned int)tx_free_thresh,
2128                              (unsigned int)tx_rs_thresh,
2129                              (int)dev->data->port_id,
2130                              (int)queue_idx);
2131                 return I40E_ERR_PARAM;
2132         }
2133         if ((nb_desc % tx_rs_thresh) != 0) {
2134                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2135                              "number of TX descriptors. (tx_rs_thresh=%u"
2136                              " port=%d queue=%d)",
2137                              (unsigned int)tx_rs_thresh,
2138                              (int)dev->data->port_id,
2139                              (int)queue_idx);
2140                 return I40E_ERR_PARAM;
2141         }
2142         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2143                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2144                              "tx_rs_thresh is greater than 1. "
2145                              "(tx_rs_thresh=%u port=%d queue=%d)",
2146                              (unsigned int)tx_rs_thresh,
2147                              (int)dev->data->port_id,
2148                              (int)queue_idx);
2149                 return I40E_ERR_PARAM;
2150         }
2151
2152         /* Free memory if needed. */
2153         if (dev->data->tx_queues[queue_idx]) {
2154                 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
2155                 dev->data->tx_queues[queue_idx] = NULL;
2156         }
2157
2158         /* Allocate the TX queue data structure. */
2159         txq = rte_zmalloc_socket("i40e tx queue",
2160                                   sizeof(struct i40e_tx_queue),
2161                                   RTE_CACHE_LINE_SIZE,
2162                                   socket_id);
2163         if (!txq) {
2164                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2165                             "tx queue structure");
2166                 return (-ENOMEM);
2167         }
2168
2169         /* Allocate TX hardware ring descriptors. */
2170         ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2171         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2172         tz = i40e_ring_dma_zone_reserve(dev,
2173                                         "tx_ring",
2174                                         queue_idx,
2175                                         ring_size,
2176                                         socket_id);
2177         if (!tz) {
2178                 i40e_dev_tx_queue_release(txq);
2179                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2180                 return (-ENOMEM);
2181         }
2182
2183         txq->nb_tx_desc = nb_desc;
2184         txq->tx_rs_thresh = tx_rs_thresh;
2185         txq->tx_free_thresh = tx_free_thresh;
2186         txq->pthresh = tx_conf->tx_thresh.pthresh;
2187         txq->hthresh = tx_conf->tx_thresh.hthresh;
2188         txq->wthresh = tx_conf->tx_thresh.wthresh;
2189         txq->queue_id = queue_idx;
2190         if (hw->mac.type == I40E_MAC_VF)
2191                 txq->reg_idx = queue_idx;
2192         else /* PF device */
2193                 txq->reg_idx = vsi->base_queue +
2194                         i40e_get_queue_offset_by_qindex(pf, queue_idx);
2195
2196         txq->port_id = dev->data->port_id;
2197         txq->txq_flags = tx_conf->txq_flags;
2198         txq->vsi = vsi;
2199         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2200
2201 #ifdef RTE_LIBRTE_XEN_DOM0
2202         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
2203 #else
2204         txq->tx_ring_phys_addr = (uint64_t)tz->phys_addr;
2205 #endif
2206         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2207
2208         /* Allocate software ring */
2209         txq->sw_ring =
2210                 rte_zmalloc_socket("i40e tx sw ring",
2211                                    sizeof(struct i40e_tx_entry) * nb_desc,
2212                                    RTE_CACHE_LINE_SIZE,
2213                                    socket_id);
2214         if (!txq->sw_ring) {
2215                 i40e_dev_tx_queue_release(txq);
2216                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2217                 return (-ENOMEM);
2218         }
2219
2220         i40e_reset_tx_queue(txq);
2221         txq->q_set = TRUE;
2222         dev->data->tx_queues[queue_idx] = txq;
2223
2224         /* Use a simple TX queue without offloads or multi segs if possible */
2225         if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS) &&
2226                                 (txq->tx_rs_thresh >= I40E_TX_MAX_BURST)) {
2227                 PMD_INIT_LOG(INFO, "Using simple tx path");
2228                 dev->tx_pkt_burst = i40e_xmit_pkts_simple;
2229         } else {
2230                 PMD_INIT_LOG(INFO, "Using full-featured tx path");
2231                 dev->tx_pkt_burst = i40e_xmit_pkts;
2232         }
2233
2234         return 0;
2235 }
2236
2237 void
2238 i40e_dev_tx_queue_release(void *txq)
2239 {
2240         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2241
2242         if (!q) {
2243                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2244                 return;
2245         }
2246
2247         i40e_tx_queue_release_mbufs(q);
2248         rte_free(q->sw_ring);
2249         rte_free(q);
2250 }
2251
2252 static const struct rte_memzone *
2253 i40e_ring_dma_zone_reserve(struct rte_eth_dev *dev,
2254                            const char *ring_name,
2255                            uint16_t queue_id,
2256                            uint32_t ring_size,
2257                            int socket_id)
2258 {
2259         char z_name[RTE_MEMZONE_NAMESIZE];
2260         const struct rte_memzone *mz;
2261
2262         snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
2263                         dev->driver->pci_drv.name, ring_name,
2264                                 dev->data->port_id, queue_id);
2265         mz = rte_memzone_lookup(z_name);
2266         if (mz)
2267                 return mz;
2268
2269 #ifdef RTE_LIBRTE_XEN_DOM0
2270         return rte_memzone_reserve_bounded(z_name, ring_size,
2271                 socket_id, 0, I40E_ALIGN, RTE_PGSIZE_2M);
2272 #else
2273         return rte_memzone_reserve_aligned(z_name, ring_size,
2274                                 socket_id, 0, I40E_ALIGN);
2275 #endif
2276 }
2277
2278 const struct rte_memzone *
2279 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2280 {
2281         const struct rte_memzone *mz = NULL;
2282
2283         mz = rte_memzone_lookup(name);
2284         if (mz)
2285                 return mz;
2286 #ifdef RTE_LIBRTE_XEN_DOM0
2287         mz = rte_memzone_reserve_bounded(name, len,
2288                 socket_id, 0, I40E_ALIGN, RTE_PGSIZE_2M);
2289 #else
2290         mz = rte_memzone_reserve_aligned(name, len,
2291                                 socket_id, 0, I40E_ALIGN);
2292 #endif
2293         return mz;
2294 }
2295
2296 void
2297 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2298 {
2299         uint16_t i;
2300
2301         if (!rxq || !rxq->sw_ring) {
2302                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2303                 return;
2304         }
2305
2306         for (i = 0; i < rxq->nb_rx_desc; i++) {
2307                 if (rxq->sw_ring[i].mbuf) {
2308                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2309                         rxq->sw_ring[i].mbuf = NULL;
2310                 }
2311         }
2312 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2313         if (rxq->rx_nb_avail == 0)
2314                 return;
2315         for (i = 0; i < rxq->rx_nb_avail; i++) {
2316                 struct rte_mbuf *mbuf;
2317
2318                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2319                 rte_pktmbuf_free_seg(mbuf);
2320         }
2321         rxq->rx_nb_avail = 0;
2322 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2323 }
2324
2325 void
2326 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2327 {
2328         unsigned i;
2329         uint16_t len;
2330
2331 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2332         if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2333                 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2334         else
2335 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2336                 len = rxq->nb_rx_desc;
2337
2338         for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2339                 ((volatile char *)rxq->rx_ring)[i] = 0;
2340
2341 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2342         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2343         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2344                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2345
2346         rxq->rx_nb_avail = 0;
2347         rxq->rx_next_avail = 0;
2348         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2349 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2350         rxq->rx_tail = 0;
2351         rxq->nb_rx_hold = 0;
2352         rxq->pkt_first_seg = NULL;
2353         rxq->pkt_last_seg = NULL;
2354 }
2355
2356 void
2357 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2358 {
2359         uint16_t i;
2360
2361         if (!txq || !txq->sw_ring) {
2362                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
2363                 return;
2364         }
2365
2366         for (i = 0; i < txq->nb_tx_desc; i++) {
2367                 if (txq->sw_ring[i].mbuf) {
2368                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2369                         txq->sw_ring[i].mbuf = NULL;
2370                 }
2371         }
2372 }
2373
2374 void
2375 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2376 {
2377         struct i40e_tx_entry *txe;
2378         uint16_t i, prev, size;
2379
2380         if (!txq) {
2381                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2382                 return;
2383         }
2384
2385         txe = txq->sw_ring;
2386         size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2387         for (i = 0; i < size; i++)
2388                 ((volatile char *)txq->tx_ring)[i] = 0;
2389
2390         prev = (uint16_t)(txq->nb_tx_desc - 1);
2391         for (i = 0; i < txq->nb_tx_desc; i++) {
2392                 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2393
2394                 txd->cmd_type_offset_bsz =
2395                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2396                 txe[i].mbuf =  NULL;
2397                 txe[i].last_id = i;
2398                 txe[prev].next_id = i;
2399                 prev = i;
2400         }
2401
2402         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2403         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2404
2405         txq->tx_tail = 0;
2406         txq->nb_tx_used = 0;
2407
2408         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2409         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2410 }
2411
2412 /* Init the TX queue in hardware */
2413 int
2414 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2415 {
2416         enum i40e_status_code err = I40E_SUCCESS;
2417         struct i40e_vsi *vsi = txq->vsi;
2418         struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2419         uint16_t pf_q = txq->reg_idx;
2420         struct i40e_hmc_obj_txq tx_ctx;
2421         uint32_t qtx_ctl;
2422
2423         /* clear the context structure first */
2424         memset(&tx_ctx, 0, sizeof(tx_ctx));
2425         tx_ctx.new_context = 1;
2426         tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2427         tx_ctx.qlen = txq->nb_tx_desc;
2428
2429 #ifdef RTE_LIBRTE_IEEE1588
2430         tx_ctx.timesync_ena = 1;
2431 #endif
2432         tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[0]);
2433         if (vsi->type == I40E_VSI_FDIR)
2434                 tx_ctx.fd_ena = TRUE;
2435
2436         err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2437         if (err != I40E_SUCCESS) {
2438                 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2439                 return err;
2440         }
2441
2442         err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2443         if (err != I40E_SUCCESS) {
2444                 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2445                 return err;
2446         }
2447
2448         /* Now associate this queue with this PCI function */
2449         qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2450         qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2451                                         I40E_QTX_CTL_PF_INDX_MASK);
2452         I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2453         I40E_WRITE_FLUSH(hw);
2454
2455         txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2456
2457         return err;
2458 }
2459
2460 int
2461 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2462 {
2463         struct i40e_rx_entry *rxe = rxq->sw_ring;
2464         uint64_t dma_addr;
2465         uint16_t i;
2466
2467         for (i = 0; i < rxq->nb_rx_desc; i++) {
2468                 volatile union i40e_rx_desc *rxd;
2469                 struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mp);
2470
2471                 if (unlikely(!mbuf)) {
2472                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2473                         return -ENOMEM;
2474                 }
2475
2476                 rte_mbuf_refcnt_set(mbuf, 1);
2477                 mbuf->next = NULL;
2478                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2479                 mbuf->nb_segs = 1;
2480                 mbuf->port = rxq->port_id;
2481
2482                 dma_addr =
2483                         rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
2484
2485                 rxd = &rxq->rx_ring[i];
2486                 rxd->read.pkt_addr = dma_addr;
2487                 rxd->read.hdr_addr = dma_addr;
2488 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2489                 rxd->read.rsvd1 = 0;
2490                 rxd->read.rsvd2 = 0;
2491 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2492
2493                 rxe[i].mbuf = mbuf;
2494         }
2495
2496         return 0;
2497 }
2498
2499 /*
2500  * Calculate the buffer length, and check the jumbo frame
2501  * and maximum packet length.
2502  */
2503 static int
2504 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2505 {
2506         struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2507         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2508         struct rte_eth_dev_data *data = pf->dev_data;
2509         uint16_t buf_size, len;
2510
2511         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2512                 RTE_PKTMBUF_HEADROOM);
2513
2514         switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2515                         I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2516         case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2517                 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2518                                 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2519                 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2520                                 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2521                 rxq->hs_mode = i40e_header_split_enabled;
2522                 break;
2523         case I40E_FLAG_HEADER_SPLIT_DISABLED:
2524         default:
2525                 rxq->rx_hdr_len = 0;
2526                 rxq->rx_buf_len = RTE_ALIGN(buf_size,
2527                         (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2528                 rxq->hs_mode = i40e_header_split_none;
2529                 break;
2530         }
2531
2532         len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
2533         rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
2534         if (data->dev_conf.rxmode.jumbo_frame == 1) {
2535                 if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
2536                         rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2537                         PMD_DRV_LOG(ERR, "maximum packet length must "
2538                                     "be larger than %u and smaller than %u,"
2539                                     "as jumbo frame is enabled",
2540                                     (uint32_t)ETHER_MAX_LEN,
2541                                     (uint32_t)I40E_FRAME_SIZE_MAX);
2542                         return I40E_ERR_CONFIG;
2543                 }
2544         } else {
2545                 if (rxq->max_pkt_len < ETHER_MIN_LEN ||
2546                         rxq->max_pkt_len > ETHER_MAX_LEN) {
2547                         PMD_DRV_LOG(ERR, "maximum packet length must be "
2548                                     "larger than %u and smaller than %u, "
2549                                     "as jumbo frame is disabled",
2550                                     (uint32_t)ETHER_MIN_LEN,
2551                                     (uint32_t)ETHER_MAX_LEN);
2552                         return I40E_ERR_CONFIG;
2553                 }
2554         }
2555
2556         return 0;
2557 }
2558
2559 /* Init the RX queue in hardware */
2560 int
2561 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2562 {
2563         int err = I40E_SUCCESS;
2564         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2565         struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2566         struct rte_eth_dev *dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
2567         uint16_t pf_q = rxq->reg_idx;
2568         uint16_t buf_size;
2569         struct i40e_hmc_obj_rxq rx_ctx;
2570
2571         err = i40e_rx_queue_config(rxq);
2572         if (err < 0) {
2573                 PMD_DRV_LOG(ERR, "Failed to config RX queue");
2574                 return err;
2575         }
2576
2577         /* Clear the context structure first */
2578         memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2579         rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2580         rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2581
2582         rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2583         rx_ctx.qlen = rxq->nb_rx_desc;
2584 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2585         rx_ctx.dsize = 1;
2586 #endif
2587         rx_ctx.dtype = rxq->hs_mode;
2588         if (rxq->hs_mode)
2589                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2590         else
2591                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2592         rx_ctx.rxmax = rxq->max_pkt_len;
2593         rx_ctx.tphrdesc_ena = 1;
2594         rx_ctx.tphwdesc_ena = 1;
2595         rx_ctx.tphdata_ena = 1;
2596         rx_ctx.tphhead_ena = 1;
2597         rx_ctx.lrxqthresh = 2;
2598         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2599         rx_ctx.l2tsel = 1;
2600         rx_ctx.showiv = 1;
2601         rx_ctx.prefena = 1;
2602
2603         err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2604         if (err != I40E_SUCCESS) {
2605                 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2606                 return err;
2607         }
2608         err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2609         if (err != I40E_SUCCESS) {
2610                 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2611                 return err;
2612         }
2613
2614         rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2615
2616         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2617                 RTE_PKTMBUF_HEADROOM);
2618
2619         /* Check if scattered RX needs to be used. */
2620         if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
2621                 dev_data->scattered_rx = 1;
2622                 dev->rx_pkt_burst = i40e_recv_scattered_pkts;
2623         }
2624
2625         /* Init the RX tail regieter. */
2626         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2627
2628         return 0;
2629 }
2630
2631 void
2632 i40e_dev_clear_queues(struct rte_eth_dev *dev)
2633 {
2634         uint16_t i;
2635
2636         PMD_INIT_FUNC_TRACE();
2637
2638         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2639                 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
2640                 i40e_reset_tx_queue(dev->data->tx_queues[i]);
2641         }
2642
2643         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2644                 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
2645                 i40e_reset_rx_queue(dev->data->rx_queues[i]);
2646         }
2647 }
2648
2649 #define I40E_FDIR_NUM_TX_DESC  I40E_MIN_RING_DESC
2650 #define I40E_FDIR_NUM_RX_DESC  I40E_MIN_RING_DESC
2651
2652 enum i40e_status_code
2653 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
2654 {
2655         struct i40e_tx_queue *txq;
2656         const struct rte_memzone *tz = NULL;
2657         uint32_t ring_size;
2658         struct rte_eth_dev *dev = pf->adapter->eth_dev;
2659
2660         if (!pf) {
2661                 PMD_DRV_LOG(ERR, "PF is not available");
2662                 return I40E_ERR_BAD_PTR;
2663         }
2664
2665         /* Allocate the TX queue data structure. */
2666         txq = rte_zmalloc_socket("i40e fdir tx queue",
2667                                   sizeof(struct i40e_tx_queue),
2668                                   RTE_CACHE_LINE_SIZE,
2669                                   SOCKET_ID_ANY);
2670         if (!txq) {
2671                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2672                                         "tx queue structure.");
2673                 return I40E_ERR_NO_MEMORY;
2674         }
2675
2676         /* Allocate TX hardware ring descriptors. */
2677         ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
2678         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2679
2680         tz = i40e_ring_dma_zone_reserve(dev,
2681                                         "fdir_tx_ring",
2682                                         I40E_FDIR_QUEUE_ID,
2683                                         ring_size,
2684                                         SOCKET_ID_ANY);
2685         if (!tz) {
2686                 i40e_dev_tx_queue_release(txq);
2687                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2688                 return I40E_ERR_NO_MEMORY;
2689         }
2690
2691         txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
2692         txq->queue_id = I40E_FDIR_QUEUE_ID;
2693         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2694         txq->vsi = pf->fdir.fdir_vsi;
2695
2696 #ifdef RTE_LIBRTE_XEN_DOM0
2697         txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
2698 #else
2699         txq->tx_ring_phys_addr = (uint64_t)tz->phys_addr;
2700 #endif
2701         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2702         /*
2703          * don't need to allocate software ring and reset for the fdir
2704          * program queue just set the queue has been configured.
2705          */
2706         txq->q_set = TRUE;
2707         pf->fdir.txq = txq;
2708
2709         return I40E_SUCCESS;
2710 }
2711
2712 enum i40e_status_code
2713 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
2714 {
2715         struct i40e_rx_queue *rxq;
2716         const struct rte_memzone *rz = NULL;
2717         uint32_t ring_size;
2718         struct rte_eth_dev *dev = pf->adapter->eth_dev;
2719
2720         if (!pf) {
2721                 PMD_DRV_LOG(ERR, "PF is not available");
2722                 return I40E_ERR_BAD_PTR;
2723         }
2724
2725         /* Allocate the RX queue data structure. */
2726         rxq = rte_zmalloc_socket("i40e fdir rx queue",
2727                                   sizeof(struct i40e_rx_queue),
2728                                   RTE_CACHE_LINE_SIZE,
2729                                   SOCKET_ID_ANY);
2730         if (!rxq) {
2731                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2732                                         "rx queue structure.");
2733                 return I40E_ERR_NO_MEMORY;
2734         }
2735
2736         /* Allocate RX hardware ring descriptors. */
2737         ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
2738         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2739
2740         rz = i40e_ring_dma_zone_reserve(dev,
2741                                         "fdir_rx_ring",
2742                                         I40E_FDIR_QUEUE_ID,
2743                                         ring_size,
2744                                         SOCKET_ID_ANY);
2745         if (!rz) {
2746                 i40e_dev_rx_queue_release(rxq);
2747                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2748                 return I40E_ERR_NO_MEMORY;
2749         }
2750
2751         rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
2752         rxq->queue_id = I40E_FDIR_QUEUE_ID;
2753         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2754         rxq->vsi = pf->fdir.fdir_vsi;
2755
2756 #ifdef RTE_LIBRTE_XEN_DOM0
2757         rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
2758 #else
2759         rxq->rx_ring_phys_addr = (uint64_t)rz->phys_addr;
2760 #endif
2761         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2762
2763         /*
2764          * Don't need to allocate software ring and reset for the fdir
2765          * rx queue, just set the queue has been configured.
2766          */
2767         rxq->q_set = TRUE;
2768         pf->fdir.rxq = rxq;
2769
2770         return I40E_SUCCESS;
2771 }