net/i40e: add packet type metadata in vector Rx
[dpdk.git] / drivers / net / i40e / i40e_rxtx_vec.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stdint.h>
35 #include <rte_ethdev.h>
36 #include <rte_malloc.h>
37
38 #include "base/i40e_prototype.h"
39 #include "base/i40e_type.h"
40 #include "i40e_ethdev.h"
41 #include "i40e_rxtx.h"
42
43 #include <tmmintrin.h>
44
45 #ifndef __INTEL_COMPILER
46 #pragma GCC diagnostic ignored "-Wcast-qual"
47 #endif
48
49 static inline void
50 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
51 {
52         int i;
53         uint16_t rx_id;
54         volatile union i40e_rx_desc *rxdp;
55         struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
56         struct rte_mbuf *mb0, *mb1;
57         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
58                         RTE_PKTMBUF_HEADROOM);
59         __m128i dma_addr0, dma_addr1;
60
61         rxdp = rxq->rx_ring + rxq->rxrearm_start;
62
63         /* Pull 'n' more MBUFs into the software ring */
64         if (rte_mempool_get_bulk(rxq->mp,
65                                  (void *)rxep,
66                                  RTE_I40E_RXQ_REARM_THRESH) < 0) {
67                 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
68                     rxq->nb_rx_desc) {
69                         dma_addr0 = _mm_setzero_si128();
70                         for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
71                                 rxep[i].mbuf = &rxq->fake_mbuf;
72                                 _mm_store_si128((__m128i *)&rxdp[i].read,
73                                                 dma_addr0);
74                         }
75                 }
76                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
77                         RTE_I40E_RXQ_REARM_THRESH;
78                 return;
79         }
80
81         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
82         for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
83                 __m128i vaddr0, vaddr1;
84                 uintptr_t p0, p1;
85
86                 mb0 = rxep[0].mbuf;
87                 mb1 = rxep[1].mbuf;
88
89                  /* Flush mbuf with pkt template.
90                  * Data to be rearmed is 6 bytes long.
91                  * Though, RX will overwrite ol_flags that are coming next
92                  * anyway. So overwrite whole 8 bytes with one load:
93                  * 6 bytes of rearm_data plus first 2 bytes of ol_flags.
94                  */
95                 p0 = (uintptr_t)&mb0->rearm_data;
96                 *(uint64_t *)p0 = rxq->mbuf_initializer;
97                 p1 = (uintptr_t)&mb1->rearm_data;
98                 *(uint64_t *)p1 = rxq->mbuf_initializer;
99
100                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
101                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
102                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
103
104                 /* convert pa to dma_addr hdr/data */
105                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
106                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
107
108                 /* add headroom to pa values */
109                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
110                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
111
112                 /* flush desc with pa dma_addr */
113                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
114                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
115         }
116
117         rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
118         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
119                 rxq->rxrearm_start = 0;
120
121         rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
122
123         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
124                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
125
126         /* Update the tail pointer on the NIC */
127         I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
128 }
129
130 /* Handling the offload flags (olflags) field takes computation
131  * time when receiving packets. Therefore we provide a flag to disable
132  * the processing of the olflags field when they are not needed. This
133  * gives improved performance, at the cost of losing the offload info
134  * in the received packet
135  */
136 #ifdef RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE
137
138 static inline void
139 desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
140 {
141         __m128i vlan0, vlan1, rss;
142         union {
143                 uint16_t e[4];
144                 uint64_t dword;
145         } vol;
146
147         /* mask everything except RSS, flow director and VLAN flags
148          * bit2 is for VLAN tag, bit11 for flow director indication
149          * bit13:12 for RSS indication.
150          */
151         const __m128i rss_vlan_msk = _mm_set_epi16(
152                         0x0000, 0x0000, 0x0000, 0x0000,
153                         0x3804, 0x3804, 0x3804, 0x3804);
154
155         /* map rss and vlan type to rss hash and vlan flag */
156         const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
157                         0, 0, 0, 0,
158                         0, 0, 0, PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED,
159                         0, 0, 0, 0);
160
161         const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
162                         0, 0, 0, 0,
163                         PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
164                         0, 0, PKT_RX_FDIR, 0);
165
166         vlan0 = _mm_unpackhi_epi16(descs[0], descs[1]);
167         vlan1 = _mm_unpackhi_epi16(descs[2], descs[3]);
168         vlan0 = _mm_unpacklo_epi32(vlan0, vlan1);
169
170         vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
171         vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
172
173         rss = _mm_srli_epi16(vlan1, 11);
174         rss = _mm_shuffle_epi8(rss_flags, rss);
175
176         vlan0 = _mm_or_si128(vlan0, rss);
177         vol.dword = _mm_cvtsi128_si64(vlan0);
178
179         rx_pkts[0]->ol_flags = vol.e[0];
180         rx_pkts[1]->ol_flags = vol.e[1];
181         rx_pkts[2]->ol_flags = vol.e[2];
182         rx_pkts[3]->ol_flags = vol.e[3];
183 }
184 #else
185 #define desc_to_olflags_v(desc, rx_pkts) do {} while (0)
186 #endif
187
188 #define PKTLEN_SHIFT     10
189
190 static inline void
191 desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
192 {
193         __m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
194         __m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
195
196         ptype0 = _mm_srli_epi64(ptype0, 30);
197         ptype1 = _mm_srli_epi64(ptype1, 30);
198
199         rx_pkts[0]->packet_type = i40e_rxd_pkt_type_mapping(_mm_extract_epi8(ptype0, 0));
200         rx_pkts[1]->packet_type = i40e_rxd_pkt_type_mapping(_mm_extract_epi8(ptype0, 8));
201         rx_pkts[2]->packet_type = i40e_rxd_pkt_type_mapping(_mm_extract_epi8(ptype1, 0));
202         rx_pkts[3]->packet_type = i40e_rxd_pkt_type_mapping(_mm_extract_epi8(ptype1, 8));
203 }
204
205  /*
206  * Notice:
207  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
208  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
209  *   numbers of DD bits
210  */
211 static inline uint16_t
212 _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
213                    uint16_t nb_pkts, uint8_t *split_packet)
214 {
215         volatile union i40e_rx_desc *rxdp;
216         struct i40e_rx_entry *sw_ring;
217         uint16_t nb_pkts_recd;
218         int pos;
219         uint64_t var;
220         __m128i shuf_msk;
221
222         __m128i crc_adjust = _mm_set_epi16(
223                                 0, 0, 0,    /* ignore non-length fields */
224                                 -rxq->crc_len, /* sub crc on data_len */
225                                 0,          /* ignore high-16bits of pkt_len */
226                                 -rxq->crc_len, /* sub crc on pkt_len */
227                                 0, 0            /* ignore pkt_type field */
228                         );
229         __m128i dd_check, eop_check;
230
231         /* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */
232         nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST);
233
234         /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
235         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
236
237         /* Just the act of getting into the function from the application is
238          * going to cost about 7 cycles
239          */
240         rxdp = rxq->rx_ring + rxq->rx_tail;
241
242         rte_prefetch0(rxdp);
243
244         /* See if we need to rearm the RX queue - gives the prefetch a bit
245          * of time to act
246          */
247         if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
248                 i40e_rxq_rearm(rxq);
249
250         /* Before we start moving massive data around, check to see if
251          * there is actually a packet available
252          */
253         if (!(rxdp->wb.qword1.status_error_len &
254                         rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
255                 return 0;
256
257         /* 4 packets DD mask */
258         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
259
260         /* 4 packets EOP mask */
261         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
262
263         /* mask to shuffle from desc. to mbuf */
264         shuf_msk = _mm_set_epi8(
265                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
266                 3, 2,        /* octet 2~3, low 16 bits vlan_macip */
267                 15, 14,      /* octet 15~14, 16 bits data_len */
268                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
269                 15, 14,      /* octet 15~14, low 16 bits pkt_len */
270                 0xFF, 0xFF,  /* pkt_type set as unknown */
271                 0xFF, 0xFF  /*pkt_type set as unknown */
272                 );
273
274         /* Cache is empty -> need to scan the buffer rings, but first move
275          * the next 'n' mbufs into the cache
276          */
277         sw_ring = &rxq->sw_ring[rxq->rx_tail];
278
279         /* A. load 4 packet in one loop
280          * [A*. mask out 4 unused dirty field in desc]
281          * B. copy 4 mbuf point from swring to rx_pkts
282          * C. calc the number of DD bits among the 4 packets
283          * [C*. extract the end-of-packet bit, if requested]
284          * D. fill info. from desc to mbuf
285          */
286
287         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
288                         pos += RTE_I40E_DESCS_PER_LOOP,
289                         rxdp += RTE_I40E_DESCS_PER_LOOP) {
290                 __m128i descs[RTE_I40E_DESCS_PER_LOOP];
291                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
292                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
293                 __m128i mbp1, mbp2; /* two mbuf pointer in one XMM reg. */
294
295                 /* B.1 load 1 mbuf point */
296                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
297                 /* Read desc statuses backwards to avoid race condition */
298                 /* A.1 load 4 pkts desc */
299                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
300
301                 /* B.2 copy 2 mbuf point into rx_pkts  */
302                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
303
304                 /* B.1 load 1 mbuf point */
305                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
306
307                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
308                 /* B.1 load 2 mbuf point */
309                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
310                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
311
312                 /* B.2 copy 2 mbuf point into rx_pkts  */
313                 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
314
315                 if (split_packet) {
316                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
317                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
318                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
319                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
320                 }
321
322                 /* avoid compiler reorder optimization */
323                 rte_compiler_barrier();
324
325                 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
326                 const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
327                 const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
328
329                 /* merge the now-aligned packet length fields back in */
330                 descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
331                 descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
332
333                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
334                 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
335                 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
336
337                 /* C.1 4=>2 filter staterr info only */
338                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
339                 /* C.1 4=>2 filter staterr info only */
340                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
341
342                 desc_to_olflags_v(descs, &rx_pkts[pos]);
343
344                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
345                 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
346                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
347
348                 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
349                 const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
350                 const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
351
352                 /* merge the now-aligned packet length fields back in */
353                 descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
354                 descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
355
356                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
357                 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
358                 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
359
360                 /* C.2 get 4 pkts staterr value  */
361                 zero = _mm_xor_si128(dd_check, dd_check);
362                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
363
364                 /* D.3 copy final 3,4 data to rx_pkts */
365                 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
366                                  pkt_mb4);
367                 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
368                                  pkt_mb3);
369
370                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
371                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
372                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
373
374                 /* C* extract and record EOP bit */
375                 if (split_packet) {
376                         __m128i eop_shuf_mask = _mm_set_epi8(
377                                         0xFF, 0xFF, 0xFF, 0xFF,
378                                         0xFF, 0xFF, 0xFF, 0xFF,
379                                         0xFF, 0xFF, 0xFF, 0xFF,
380                                         0x04, 0x0C, 0x00, 0x08
381                                         );
382
383                         /* and with mask to extract bits, flipping 1-0 */
384                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
385                         /* the staterr values are not in order, as the count
386                          * count of dd bits doesn't care. However, for end of
387                          * packet tracking, we do care, so shuffle. This also
388                          * compresses the 32-bit values to 8-bit
389                          */
390                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
391                         /* store the resulting 32-bit value */
392                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
393                         split_packet += RTE_I40E_DESCS_PER_LOOP;
394
395                         /* zero-out next pointers */
396                         rx_pkts[pos]->next = NULL;
397                         rx_pkts[pos + 1]->next = NULL;
398                         rx_pkts[pos + 2]->next = NULL;
399                         rx_pkts[pos + 3]->next = NULL;
400                 }
401
402                 /* C.3 calc available number of desc */
403                 staterr = _mm_and_si128(staterr, dd_check);
404                 staterr = _mm_packs_epi32(staterr, zero);
405
406                 /* D.3 copy final 1,2 data to rx_pkts */
407                 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
408                                  pkt_mb2);
409                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
410                                  pkt_mb1);
411                 desc_to_ptype_v(descs, &rx_pkts[pos]);
412                 /* C.4 calc avaialbe number of desc */
413                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
414                 nb_pkts_recd += var;
415                 if (likely(var != RTE_I40E_DESCS_PER_LOOP))
416                         break;
417         }
418
419         /* Update our internal tail pointer */
420         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
421         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
422         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
423
424         return nb_pkts_recd;
425 }
426
427  /*
428  * Notice:
429  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
430  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
431  *   numbers of DD bits
432  */
433 uint16_t
434 i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
435                    uint16_t nb_pkts)
436 {
437         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
438 }
439
440 static inline uint16_t
441 reassemble_packets(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_bufs,
442                    uint16_t nb_bufs, uint8_t *split_flags)
443 {
444         struct rte_mbuf *pkts[RTE_I40E_VPMD_RX_BURST]; /*finished pkts*/
445         struct rte_mbuf *start = rxq->pkt_first_seg;
446         struct rte_mbuf *end =  rxq->pkt_last_seg;
447         unsigned pkt_idx, buf_idx;
448
449         for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
450                 if (end != NULL) {
451                         /* processing a split packet */
452                         end->next = rx_bufs[buf_idx];
453                         rx_bufs[buf_idx]->data_len += rxq->crc_len;
454
455                         start->nb_segs++;
456                         start->pkt_len += rx_bufs[buf_idx]->data_len;
457                         end = end->next;
458
459                         if (!split_flags[buf_idx]) {
460                                 /* it's the last packet of the set */
461                                 start->hash = end->hash;
462                                 start->ol_flags = end->ol_flags;
463                                 /* we need to strip crc for the whole packet */
464                                 start->pkt_len -= rxq->crc_len;
465                                 if (end->data_len > rxq->crc_len) {
466                                         end->data_len -= rxq->crc_len;
467                                 } else {
468                                         /* free up last mbuf */
469                                         struct rte_mbuf *secondlast = start;
470
471                                         while (secondlast->next != end)
472                                                 secondlast = secondlast->next;
473                                         secondlast->data_len -= (rxq->crc_len -
474                                                         end->data_len);
475                                         secondlast->next = NULL;
476                                         rte_pktmbuf_free_seg(end);
477                                         end = secondlast;
478                                 }
479                                 pkts[pkt_idx++] = start;
480                                 start = end = NULL;
481                         }
482                 } else {
483                         /* not processing a split packet */
484                         if (!split_flags[buf_idx]) {
485                                 /* not a split packet, save and skip */
486                                 pkts[pkt_idx++] = rx_bufs[buf_idx];
487                                 continue;
488                         }
489                         end = start = rx_bufs[buf_idx];
490                         rx_bufs[buf_idx]->data_len += rxq->crc_len;
491                         rx_bufs[buf_idx]->pkt_len += rxq->crc_len;
492                 }
493         }
494
495         /* save the partial packet for next time */
496         rxq->pkt_first_seg = start;
497         rxq->pkt_last_seg = end;
498         memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
499         return pkt_idx;
500 }
501
502  /* vPMD receive routine that reassembles scattered packets
503  * Notice:
504  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
505  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
506  *   numbers of DD bits
507  */
508 uint16_t
509 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
510                              uint16_t nb_pkts)
511 {
512
513         struct i40e_rx_queue *rxq = rx_queue;
514         uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
515
516         /* get some new buffers */
517         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
518                         split_flags);
519         if (nb_bufs == 0)
520                 return 0;
521
522         /* happy day case, full burst + no packets to be joined */
523         const uint64_t *split_fl64 = (uint64_t *)split_flags;
524
525         if (rxq->pkt_first_seg == NULL &&
526                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
527                         split_fl64[2] == 0 && split_fl64[3] == 0)
528                 return nb_bufs;
529
530         /* reassemble any packets that need reassembly*/
531         unsigned i = 0;
532
533         if (rxq->pkt_first_seg == NULL) {
534                 /* find the first split flag, and only reassemble then*/
535                 while (i < nb_bufs && !split_flags[i])
536                         i++;
537                 if (i == nb_bufs)
538                         return nb_bufs;
539         }
540         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
541                 &split_flags[i]);
542 }
543
544 static inline void
545 vtx1(volatile struct i40e_tx_desc *txdp,
546                 struct rte_mbuf *pkt, uint64_t flags)
547 {
548         uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
549                         ((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
550                         ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
551
552         __m128i descriptor = _mm_set_epi64x(high_qw,
553                                 pkt->buf_physaddr + pkt->data_off);
554         _mm_store_si128((__m128i *)txdp, descriptor);
555 }
556
557 static inline void
558 vtx(volatile struct i40e_tx_desc *txdp,
559                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
560 {
561         int i;
562
563         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
564                 vtx1(txdp, *pkt, flags);
565 }
566
567 static inline int __attribute__((always_inline))
568 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
569 {
570         struct i40e_tx_entry *txep;
571         uint32_t n;
572         uint32_t i;
573         int nb_free = 0;
574         struct rte_mbuf *m, *free[RTE_I40E_TX_MAX_FREE_BUF_SZ];
575
576         /* check DD bits on threshold descriptor */
577         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
578                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
579                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
580                 return 0;
581
582         n = txq->tx_rs_thresh;
583
584          /* first buffer to free from S/W ring is at index
585           * tx_next_dd - (tx_rs_thresh-1)
586           */
587         txep = &txq->sw_ring[txq->tx_next_dd - (n - 1)];
588         m = __rte_pktmbuf_prefree_seg(txep[0].mbuf);
589         if (likely(m != NULL)) {
590                 free[0] = m;
591                 nb_free = 1;
592                 for (i = 1; i < n; i++) {
593                         m = __rte_pktmbuf_prefree_seg(txep[i].mbuf);
594                         if (likely(m != NULL)) {
595                                 if (likely(m->pool == free[0]->pool)) {
596                                         free[nb_free++] = m;
597                                 } else {
598                                         rte_mempool_put_bulk(free[0]->pool,
599                                                              (void *)free,
600                                                              nb_free);
601                                         free[0] = m;
602                                         nb_free = 1;
603                                 }
604                         }
605                 }
606                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
607         } else {
608                 for (i = 1; i < n; i++) {
609                         m = __rte_pktmbuf_prefree_seg(txep[i].mbuf);
610                         if (m != NULL)
611                                 rte_mempool_put(m->pool, m);
612                 }
613         }
614
615         /* buffers were freed, update counters */
616         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
617         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
618         if (txq->tx_next_dd >= txq->nb_tx_desc)
619                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
620
621         return txq->tx_rs_thresh;
622 }
623
624 static inline void __attribute__((always_inline))
625 tx_backlog_entry(struct i40e_tx_entry *txep,
626                  struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
627 {
628         int i;
629
630         for (i = 0; i < (int)nb_pkts; ++i)
631                 txep[i].mbuf = tx_pkts[i];
632 }
633
634 uint16_t
635 i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
636                    uint16_t nb_pkts)
637 {
638         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
639         volatile struct i40e_tx_desc *txdp;
640         struct i40e_tx_entry *txep;
641         uint16_t n, nb_commit, tx_id;
642         uint64_t flags = I40E_TD_CMD;
643         uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
644         int i;
645
646         /* cross rx_thresh boundary is not allowed */
647         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
648
649         if (txq->nb_tx_free < txq->tx_free_thresh)
650                 i40e_tx_free_bufs(txq);
651
652         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
653         if (unlikely(nb_pkts == 0))
654                 return 0;
655
656         tx_id = txq->tx_tail;
657         txdp = &txq->tx_ring[tx_id];
658         txep = &txq->sw_ring[tx_id];
659
660         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
661
662         n = (uint16_t)(txq->nb_tx_desc - tx_id);
663         if (nb_commit >= n) {
664                 tx_backlog_entry(txep, tx_pkts, n);
665
666                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
667                         vtx1(txdp, *tx_pkts, flags);
668
669                 vtx1(txdp, *tx_pkts++, rs);
670
671                 nb_commit = (uint16_t)(nb_commit - n);
672
673                 tx_id = 0;
674                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
675
676                 /* avoid reach the end of ring */
677                 txdp = &txq->tx_ring[tx_id];
678                 txep = &txq->sw_ring[tx_id];
679         }
680
681         tx_backlog_entry(txep, tx_pkts, nb_commit);
682
683         vtx(txdp, tx_pkts, nb_commit, flags);
684
685         tx_id = (uint16_t)(tx_id + nb_commit);
686         if (tx_id > txq->tx_next_rs) {
687                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
688                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
689                                                 I40E_TXD_QW1_CMD_SHIFT);
690                 txq->tx_next_rs =
691                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
692         }
693
694         txq->tx_tail = tx_id;
695
696         I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
697
698         return nb_pkts;
699 }
700
701 void __attribute__((cold))
702 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
703 {
704         const unsigned mask = rxq->nb_rx_desc - 1;
705         unsigned i;
706
707         if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_rx_desc)
708                 return;
709
710         /* free all mbufs that are valid in the ring */
711         if (rxq->rxrearm_nb == 0) {
712                 for (i = 0; i < rxq->nb_rx_desc; i++) {
713                         if (rxq->sw_ring[i].mbuf != NULL)
714                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
715                 }
716         } else {
717                 for (i = rxq->rx_tail;
718                      i != rxq->rxrearm_start;
719                      i = (i + 1) & mask) {
720                         if (rxq->sw_ring[i].mbuf != NULL)
721                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
722                 }
723         }
724
725         rxq->rxrearm_nb = rxq->nb_rx_desc;
726
727         /* set all entries to NULL */
728         memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc);
729 }
730
731 int __attribute__((cold))
732 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
733 {
734         uintptr_t p;
735         struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
736
737         mb_def.nb_segs = 1;
738         mb_def.data_off = RTE_PKTMBUF_HEADROOM;
739         mb_def.port = rxq->port_id;
740         rte_mbuf_refcnt_set(&mb_def, 1);
741
742         /* prevent compiler reordering: rearm_data covers previous fields */
743         rte_compiler_barrier();
744         p = (uintptr_t)&mb_def.rearm_data;
745         rxq->mbuf_initializer = *(uint64_t *)p;
746         return 0;
747 }
748
749 int __attribute__((cold))
750 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
751 {
752         return 0;
753 }
754
755 int __attribute__((cold))
756 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
757 {
758 #ifndef RTE_LIBRTE_IEEE1588
759         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
760         struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
761
762         /* need SSE4.1 support */
763         if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
764                 return -1;
765
766 #ifndef RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE
767         /* whithout rx ol_flags, no VP flag report */
768         if (rxmode->hw_vlan_strip != 0 ||
769             rxmode->hw_vlan_extend != 0)
770                 return -1;
771 #endif
772
773         /* no fdir support */
774         if (fconf->mode != RTE_FDIR_MODE_NONE)
775                 return -1;
776
777          /* - no csum error report support
778          * - no header split support
779          */
780         if (rxmode->hw_ip_checksum == 1 ||
781             rxmode->header_split == 1)
782                 return -1;
783
784         return 0;
785 #else
786         RTE_SET_USED(dev);
787         return -1;
788 #endif
789 }