net/igc: fix speed configuration
[dpdk.git] / drivers / net / i40e / i40e_rxtx_vec_common.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation
3  */
4
5 #ifndef _I40E_RXTX_VEC_COMMON_H_
6 #define _I40E_RXTX_VEC_COMMON_H_
7 #include <stdint.h>
8 #include <ethdev_driver.h>
9 #include <rte_malloc.h>
10
11 #include "i40e_ethdev.h"
12 #include "i40e_rxtx.h"
13
14 #ifndef __INTEL_COMPILER
15 #pragma GCC diagnostic ignored "-Wcast-qual"
16 #endif
17
18 static inline uint16_t
19 reassemble_packets(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_bufs,
20                    uint16_t nb_bufs, uint8_t *split_flags)
21 {
22         struct rte_mbuf *pkts[RTE_I40E_VPMD_RX_BURST]; /*finished pkts*/
23         struct rte_mbuf *start = rxq->pkt_first_seg;
24         struct rte_mbuf *end =  rxq->pkt_last_seg;
25         unsigned pkt_idx, buf_idx;
26
27         for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
28                 if (end != NULL) {
29                         /* processing a split packet */
30                         end->next = rx_bufs[buf_idx];
31                         rx_bufs[buf_idx]->data_len += rxq->crc_len;
32
33                         start->nb_segs++;
34                         start->pkt_len += rx_bufs[buf_idx]->data_len;
35                         end = end->next;
36
37                         if (!split_flags[buf_idx]) {
38                                 /* it's the last packet of the set */
39                                 start->hash = end->hash;
40                                 start->vlan_tci = end->vlan_tci;
41                                 start->ol_flags = end->ol_flags;
42                                 /* we need to strip crc for the whole packet */
43                                 start->pkt_len -= rxq->crc_len;
44                                 if (end->data_len > rxq->crc_len)
45                                         end->data_len -= rxq->crc_len;
46                                 else {
47                                         /* free up last mbuf */
48                                         struct rte_mbuf *secondlast = start;
49
50                                         start->nb_segs--;
51                                         while (secondlast->next != end)
52                                                 secondlast = secondlast->next;
53                                         secondlast->data_len -= (rxq->crc_len -
54                                                         end->data_len);
55                                         secondlast->next = NULL;
56                                         rte_pktmbuf_free_seg(end);
57                                 }
58                                 pkts[pkt_idx++] = start;
59                                 start = end = NULL;
60                         }
61                 } else {
62                         /* not processing a split packet */
63                         if (!split_flags[buf_idx]) {
64                                 /* not a split packet, save and skip */
65                                 pkts[pkt_idx++] = rx_bufs[buf_idx];
66                                 continue;
67                         }
68                         end = start = rx_bufs[buf_idx];
69                         rx_bufs[buf_idx]->data_len += rxq->crc_len;
70                         rx_bufs[buf_idx]->pkt_len += rxq->crc_len;
71                 }
72         }
73
74         /* save the partial packet for next time */
75         rxq->pkt_first_seg = start;
76         rxq->pkt_last_seg = end;
77         memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
78         return pkt_idx;
79 }
80
81 static __rte_always_inline int
82 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
83 {
84         struct i40e_tx_entry *txep;
85         uint32_t n;
86         uint32_t i;
87         int nb_free = 0;
88         struct rte_mbuf *m, *free[RTE_I40E_TX_MAX_FREE_BUF_SZ];
89
90         /* check DD bits on threshold descriptor */
91         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
92                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
93                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
94                 return 0;
95
96         n = txq->tx_rs_thresh;
97
98          /* first buffer to free from S/W ring is at index
99           * tx_next_dd - (tx_rs_thresh-1)
100           */
101         txep = &txq->sw_ring[txq->tx_next_dd - (n - 1)];
102         m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
103         if (likely(m != NULL)) {
104                 free[0] = m;
105                 nb_free = 1;
106                 for (i = 1; i < n; i++) {
107                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
108                         if (likely(m != NULL)) {
109                                 if (likely(m->pool == free[0]->pool)) {
110                                         free[nb_free++] = m;
111                                 } else {
112                                         rte_mempool_put_bulk(free[0]->pool,
113                                                              (void *)free,
114                                                              nb_free);
115                                         free[0] = m;
116                                         nb_free = 1;
117                                 }
118                         }
119                 }
120                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
121         } else {
122                 for (i = 1; i < n; i++) {
123                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
124                         if (m != NULL)
125                                 rte_mempool_put(m->pool, m);
126                 }
127         }
128
129         /* buffers were freed, update counters */
130         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
131         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
132         if (txq->tx_next_dd >= txq->nb_tx_desc)
133                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
134
135         return txq->tx_rs_thresh;
136 }
137
138 static __rte_always_inline void
139 tx_backlog_entry(struct i40e_tx_entry *txep,
140                  struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
141 {
142         int i;
143
144         for (i = 0; i < (int)nb_pkts; ++i)
145                 txep[i].mbuf = tx_pkts[i];
146 }
147
148 static inline void
149 _i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
150 {
151         const unsigned mask = rxq->nb_rx_desc - 1;
152         unsigned i;
153
154         if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_rx_desc)
155                 return;
156
157         /* free all mbufs that are valid in the ring */
158         if (rxq->rxrearm_nb == 0) {
159                 for (i = 0; i < rxq->nb_rx_desc; i++) {
160                         if (rxq->sw_ring[i].mbuf != NULL)
161                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
162                 }
163         } else {
164                 for (i = rxq->rx_tail;
165                      i != rxq->rxrearm_start;
166                      i = (i + 1) & mask) {
167                         if (rxq->sw_ring[i].mbuf != NULL)
168                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
169                 }
170         }
171
172         rxq->rxrearm_nb = rxq->nb_rx_desc;
173
174         /* set all entries to NULL */
175         memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc);
176 }
177
178 static inline int
179 i40e_rxq_vec_setup_default(struct i40e_rx_queue *rxq)
180 {
181         uintptr_t p;
182         struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
183
184         mb_def.nb_segs = 1;
185         mb_def.data_off = RTE_PKTMBUF_HEADROOM;
186         mb_def.port = rxq->port_id;
187         rte_mbuf_refcnt_set(&mb_def, 1);
188
189         /* prevent compiler reordering: rearm_data covers previous fields */
190         rte_compiler_barrier();
191         p = (uintptr_t)&mb_def.rearm_data;
192         rxq->mbuf_initializer = *(uint64_t *)p;
193         return 0;
194 }
195
196 static inline int
197 i40e_rx_vec_dev_conf_condition_check_default(struct rte_eth_dev *dev)
198 {
199 #ifndef RTE_LIBRTE_IEEE1588
200         struct i40e_adapter *ad =
201                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
202         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
203         struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
204         struct i40e_rx_queue *rxq;
205         uint16_t desc, i;
206         bool first_queue;
207
208         /* no fdir support */
209         if (fconf->mode != RTE_FDIR_MODE_NONE)
210                 return -1;
211
212          /* no header split support */
213         if (rxmode->offloads & DEV_RX_OFFLOAD_HEADER_SPLIT)
214                 return -1;
215
216         /* no QinQ support */
217         if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
218                 return -1;
219
220         /**
221          * Vector mode is allowed only when number of Rx queue
222          * descriptor is power of 2.
223          */
224         if (!dev->data->dev_started) {
225                 first_queue = true;
226                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
227                         rxq = dev->data->rx_queues[i];
228                         if (!rxq)
229                                 continue;
230                         desc = rxq->nb_rx_desc;
231                         if (first_queue)
232                                 ad->rx_vec_allowed =
233                                         rte_is_power_of_2(desc);
234                         else
235                                 ad->rx_vec_allowed =
236                                         ad->rx_vec_allowed ?
237                                         rte_is_power_of_2(desc) :
238                                         ad->rx_vec_allowed;
239                         first_queue = false;
240                 }
241         } else {
242                 /* Only check the first queue's descriptor number */
243                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
244                         rxq = dev->data->rx_queues[i];
245                         if (!rxq)
246                                 continue;
247                         desc = rxq->nb_rx_desc;
248                         ad->rx_vec_allowed = rte_is_power_of_2(desc);
249                         break;
250                 }
251         }
252
253         return 0;
254 #else
255         RTE_SET_USED(dev);
256         return -1;
257 #endif
258 }
259
260 #ifdef CC_AVX2_SUPPORT
261 static __rte_always_inline void
262 i40e_rxq_rearm_common(struct i40e_rx_queue *rxq, __rte_unused bool avx512)
263 {
264         int i;
265         uint16_t rx_id;
266         volatile union i40e_rx_desc *rxdp;
267         struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
268
269         rxdp = rxq->rx_ring + rxq->rxrearm_start;
270
271         /* Pull 'n' more MBUFs into the software ring */
272         if (rte_mempool_get_bulk(rxq->mp,
273                                  (void *)rxep,
274                                  RTE_I40E_RXQ_REARM_THRESH) < 0) {
275                 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
276                     rxq->nb_rx_desc) {
277                         __m128i dma_addr0;
278                         dma_addr0 = _mm_setzero_si128();
279                         for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
280                                 rxep[i].mbuf = &rxq->fake_mbuf;
281                                 _mm_store_si128((__m128i *)&rxdp[i].read,
282                                                 dma_addr0);
283                         }
284                 }
285                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
286                         RTE_I40E_RXQ_REARM_THRESH;
287                 return;
288         }
289
290 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
291         struct rte_mbuf *mb0, *mb1;
292         __m128i dma_addr0, dma_addr1;
293         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
294                         RTE_PKTMBUF_HEADROOM);
295         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
296         for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
297                 __m128i vaddr0, vaddr1;
298
299                 mb0 = rxep[0].mbuf;
300                 mb1 = rxep[1].mbuf;
301
302                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
303                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
304                                 offsetof(struct rte_mbuf, buf_addr) + 8);
305                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
306                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
307
308                 /* convert pa to dma_addr hdr/data */
309                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
310                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
311
312                 /* add headroom to pa values */
313                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
314                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
315
316                 /* flush desc with pa dma_addr */
317                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
318                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
319         }
320 #else
321 #ifdef CC_AVX512_SUPPORT
322         if (avx512) {
323                 struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
324                 struct rte_mbuf *mb4, *mb5, *mb6, *mb7;
325                 __m512i dma_addr0_3, dma_addr4_7;
326                 __m512i hdr_room = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
327                 /* Initialize the mbufs in vector, process 8 mbufs in one loop */
328                 for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH;
329                                 i += 8, rxep += 8, rxdp += 8) {
330                         __m128i vaddr0, vaddr1, vaddr2, vaddr3;
331                         __m128i vaddr4, vaddr5, vaddr6, vaddr7;
332                         __m256i vaddr0_1, vaddr2_3;
333                         __m256i vaddr4_5, vaddr6_7;
334                         __m512i vaddr0_3, vaddr4_7;
335
336                         mb0 = rxep[0].mbuf;
337                         mb1 = rxep[1].mbuf;
338                         mb2 = rxep[2].mbuf;
339                         mb3 = rxep[3].mbuf;
340                         mb4 = rxep[4].mbuf;
341                         mb5 = rxep[5].mbuf;
342                         mb6 = rxep[6].mbuf;
343                         mb7 = rxep[7].mbuf;
344
345                         /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
346                         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
347                                         offsetof(struct rte_mbuf, buf_addr) + 8);
348                         vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
349                         vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
350                         vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
351                         vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
352                         vaddr4 = _mm_loadu_si128((__m128i *)&mb4->buf_addr);
353                         vaddr5 = _mm_loadu_si128((__m128i *)&mb5->buf_addr);
354                         vaddr6 = _mm_loadu_si128((__m128i *)&mb6->buf_addr);
355                         vaddr7 = _mm_loadu_si128((__m128i *)&mb7->buf_addr);
356
357                         /**
358                          * merge 0 & 1, by casting 0 to 256-bit and inserting 1
359                          * into the high lanes. Similarly for 2 & 3, and so on.
360                          */
361                         vaddr0_1 =
362                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
363                                                         vaddr1, 1);
364                         vaddr2_3 =
365                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
366                                                         vaddr3, 1);
367                         vaddr4_5 =
368                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr4),
369                                                         vaddr5, 1);
370                         vaddr6_7 =
371                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr6),
372                                                         vaddr7, 1);
373                         vaddr0_3 =
374                                 _mm512_inserti64x4(_mm512_castsi256_si512(vaddr0_1),
375                                                         vaddr2_3, 1);
376                         vaddr4_7 =
377                                 _mm512_inserti64x4(_mm512_castsi256_si512(vaddr4_5),
378                                                         vaddr6_7, 1);
379
380                         /* convert pa to dma_addr hdr/data */
381                         dma_addr0_3 = _mm512_unpackhi_epi64(vaddr0_3, vaddr0_3);
382                         dma_addr4_7 = _mm512_unpackhi_epi64(vaddr4_7, vaddr4_7);
383
384                         /* add headroom to pa values */
385                         dma_addr0_3 = _mm512_add_epi64(dma_addr0_3, hdr_room);
386                         dma_addr4_7 = _mm512_add_epi64(dma_addr4_7, hdr_room);
387
388                         /* flush desc with pa dma_addr */
389                         _mm512_store_si512((__m512i *)&rxdp->read, dma_addr0_3);
390                         _mm512_store_si512((__m512i *)&(rxdp + 4)->read, dma_addr4_7);
391                 }
392         } else
393 #endif
394         {
395                 struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
396                 __m256i dma_addr0_1, dma_addr2_3;
397                 __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
398                 /* Initialize the mbufs in vector, process 4 mbufs in one loop */
399                 for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH;
400                                 i += 4, rxep += 4, rxdp += 4) {
401                         __m128i vaddr0, vaddr1, vaddr2, vaddr3;
402                         __m256i vaddr0_1, vaddr2_3;
403
404                         mb0 = rxep[0].mbuf;
405                         mb1 = rxep[1].mbuf;
406                         mb2 = rxep[2].mbuf;
407                         mb3 = rxep[3].mbuf;
408
409                         /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
410                         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
411                                         offsetof(struct rte_mbuf, buf_addr) + 8);
412                         vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
413                         vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
414                         vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
415                         vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
416
417                         /*
418                          * merge 0 & 1, by casting 0 to 256-bit and inserting 1
419                          * into the high lanes. Similarly for 2 & 3
420                          */
421                         vaddr0_1 = _mm256_inserti128_si256(
422                                         _mm256_castsi128_si256(vaddr0), vaddr1, 1);
423                         vaddr2_3 = _mm256_inserti128_si256(
424                                         _mm256_castsi128_si256(vaddr2), vaddr3, 1);
425
426                         /* convert pa to dma_addr hdr/data */
427                         dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
428                         dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
429
430                         /* add headroom to pa values */
431                         dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
432                         dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
433
434                         /* flush desc with pa dma_addr */
435                         _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
436                         _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
437                 }
438         }
439
440 #endif
441
442         rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
443         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
444                 rxq->rxrearm_start = 0;
445
446         rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
447
448         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
449                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
450
451         /* Update the tail pointer on the NIC */
452         I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
453 }
454 #endif
455
456 #endif