1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2015 Intel Corporation.
3 * Copyright(c) 2016-2018, Linaro Limited.
7 #include <rte_ethdev_driver.h>
8 #include <rte_malloc.h>
10 #include "base/i40e_prototype.h"
11 #include "base/i40e_type.h"
12 #include "i40e_ethdev.h"
13 #include "i40e_rxtx.h"
14 #include "i40e_rxtx_vec_common.h"
18 #pragma GCC diagnostic ignored "-Wcast-qual"
21 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
25 volatile union i40e_rx_desc *rxdp;
26 struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
27 struct rte_mbuf *mb0, *mb1;
28 uint64x2_t dma_addr0, dma_addr1;
29 uint64x2_t zero = vdupq_n_u64(0);
32 rxdp = rxq->rx_ring + rxq->rxrearm_start;
34 /* Pull 'n' more MBUFs into the software ring */
35 if (unlikely(rte_mempool_get_bulk(rxq->mp,
37 RTE_I40E_RXQ_REARM_THRESH) < 0)) {
38 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
40 for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
41 rxep[i].mbuf = &rxq->fake_mbuf;
42 vst1q_u64((uint64_t *)&rxdp[i].read, zero);
45 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46 RTE_I40E_RXQ_REARM_THRESH;
50 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
51 for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
55 paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
56 dma_addr0 = vdupq_n_u64(paddr);
58 /* flush desc with pa dma_addr */
59 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0);
61 paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
62 dma_addr1 = vdupq_n_u64(paddr);
63 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1);
66 rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
67 if (rxq->rxrearm_start >= rxq->nb_rx_desc)
68 rxq->rxrearm_start = 0;
70 rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
72 rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
73 (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
76 /* Update the tail pointer on the NIC */
77 I40E_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rx_id);
81 desc_to_olflags_v(struct i40e_rx_queue *rxq, uint64x2_t descs[4],
82 struct rte_mbuf **rx_pkts)
84 uint32x4_t vlan0, vlan1, rss, l3_l4e;
85 const uint64x2_t mbuf_init = {rxq->mbuf_initializer, 0};
86 uint64x2_t rearm0, rearm1, rearm2, rearm3;
88 /* mask everything except RSS, flow director and VLAN flags
89 * bit2 is for VLAN tag, bit11 for flow director indication
90 * bit13:12 for RSS indication.
92 const uint32x4_t rss_vlan_msk = {
93 0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804};
95 const uint32x4_t cksum_mask = {
96 PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
97 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
99 PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
100 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
101 PKT_RX_EIP_CKSUM_BAD,
102 PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
103 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
104 PKT_RX_EIP_CKSUM_BAD,
105 PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
106 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
107 PKT_RX_EIP_CKSUM_BAD};
109 /* map rss and vlan type to rss hash and vlan flag */
110 const uint8x16_t vlan_flags = {
112 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, 0, 0,
116 const uint8x16_t rss_flags = {
117 0, PKT_RX_FDIR, 0, 0,
118 0, 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH | PKT_RX_FDIR,
122 const uint8x16_t l3_l4e_flags = {
123 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
124 PKT_RX_IP_CKSUM_BAD >> 1,
125 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
126 (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
127 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
128 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
129 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
130 PKT_RX_L4_CKSUM_BAD) >> 1,
131 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
132 PKT_RX_IP_CKSUM_BAD) >> 1,
133 0, 0, 0, 0, 0, 0, 0, 0};
135 vlan0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
136 vreinterpretq_u32_u64(descs[2])).val[1];
137 vlan1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
138 vreinterpretq_u32_u64(descs[3])).val[1];
139 vlan0 = vzipq_u32(vlan0, vlan1).val[0];
141 vlan1 = vandq_u32(vlan0, rss_vlan_msk);
142 vlan0 = vreinterpretq_u32_u8(vqtbl1q_u8(vlan_flags,
143 vreinterpretq_u8_u32(vlan1)));
145 rss = vshrq_n_u32(vlan1, 11);
146 rss = vreinterpretq_u32_u8(vqtbl1q_u8(rss_flags,
147 vreinterpretq_u8_u32(rss)));
149 l3_l4e = vshrq_n_u32(vlan1, 22);
150 l3_l4e = vreinterpretq_u32_u8(vqtbl1q_u8(l3_l4e_flags,
151 vreinterpretq_u8_u32(l3_l4e)));
152 /* then we shift left 1 bit */
153 l3_l4e = vshlq_n_u32(l3_l4e, 1);
154 /* we need to mask out the reduntant bits */
155 l3_l4e = vandq_u32(l3_l4e, cksum_mask);
157 vlan0 = vorrq_u32(vlan0, rss);
158 vlan0 = vorrq_u32(vlan0, l3_l4e);
160 rearm0 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 0), mbuf_init, 1);
161 rearm1 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 1), mbuf_init, 1);
162 rearm2 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 2), mbuf_init, 1);
163 rearm3 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 3), mbuf_init, 1);
165 vst1q_u64((uint64_t *)&rx_pkts[0]->rearm_data, rearm0);
166 vst1q_u64((uint64_t *)&rx_pkts[1]->rearm_data, rearm1);
167 vst1q_u64((uint64_t *)&rx_pkts[2]->rearm_data, rearm2);
168 vst1q_u64((uint64_t *)&rx_pkts[3]->rearm_data, rearm3);
171 #define PKTLEN_SHIFT 10
172 #define I40E_UINT16_BIT (CHAR_BIT * sizeof(uint16_t))
175 desc_to_ptype_v(uint64x2_t descs[4], struct rte_mbuf **__restrict rx_pkts,
176 uint32_t *__restrict ptype_tbl)
182 for (i = 0; i < 4; i++) {
183 tmp = vreinterpretq_u8_u64(vshrq_n_u64(descs[i], 30));
184 ptype = vgetq_lane_u8(tmp, 8);
185 rx_pkts[i]->packet_type = ptype_tbl[ptype];
192 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
193 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
196 static inline uint16_t
197 _recv_raw_pkts_vec(struct i40e_rx_queue *__restrict rxq, struct rte_mbuf
198 **__restrict rx_pkts, uint16_t nb_pkts, uint8_t *split_packet)
200 volatile union i40e_rx_desc *rxdp;
201 struct i40e_rx_entry *sw_ring;
202 uint16_t nb_pkts_recd;
204 uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
206 /* mask to shuffle from desc. to mbuf */
207 uint8x16_t shuf_msk = {
208 0xFF, 0xFF, /* pkt_type set as unknown */
209 0xFF, 0xFF, /* pkt_type set as unknown */
210 14, 15, /* octet 15~14, low 16 bits pkt_len */
211 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
212 14, 15, /* octet 15~14, 16 bits data_len */
213 2, 3, /* octet 2~3, low 16 bits vlan_macip */
214 4, 5, 6, 7 /* octet 4~7, 32bits rss */
217 uint8x16_t eop_check = {
218 0x02, 0x00, 0x02, 0x00,
219 0x02, 0x00, 0x02, 0x00,
220 0x00, 0x00, 0x00, 0x00,
221 0x00, 0x00, 0x00, 0x00
224 uint16x8_t crc_adjust = {
225 0, 0, /* ignore pkt_type field */
226 rxq->crc_len, /* sub crc on pkt_len */
227 0, /* ignore high-16bits of pkt_len */
228 rxq->crc_len, /* sub crc on data_len */
229 0, 0, 0 /* ignore non-length fields */
232 /* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */
233 nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST);
235 /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
236 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
238 /* Just the act of getting into the function from the application is
239 * going to cost about 7 cycles
241 rxdp = rxq->rx_ring + rxq->rx_tail;
243 rte_prefetch_non_temporal(rxdp);
245 /* See if we need to rearm the RX queue - gives the prefetch a bit
248 if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
251 /* Before we start moving massive data around, check to see if
252 * there is actually a packet available
254 if (!(rxdp->wb.qword1.status_error_len &
255 rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
258 /* Cache is empty -> need to scan the buffer rings, but first move
259 * the next 'n' mbufs into the cache
261 sw_ring = &rxq->sw_ring[rxq->rx_tail];
263 /* A. load 4 packet in one loop
264 * [A*. mask out 4 unused dirty field in desc]
265 * B. copy 4 mbuf point from swring to rx_pkts
266 * C. calc the number of DD bits among the 4 packets
267 * [C*. extract the end-of-packet bit, if requested]
268 * D. fill info. from desc to mbuf
271 for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
272 pos += RTE_I40E_DESCS_PER_LOOP,
273 rxdp += RTE_I40E_DESCS_PER_LOOP) {
274 uint64x2_t descs[RTE_I40E_DESCS_PER_LOOP];
275 uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
276 uint16x8x2_t sterr_tmp1, sterr_tmp2;
277 uint64x2_t mbp1, mbp2;
282 int32x4_t len_shl = {0, 0, 0, PKTLEN_SHIFT};
284 /* B.1 load 1 mbuf point */
285 mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
286 /* Read desc statuses backwards to avoid race condition */
287 /* A.1 load 4 pkts desc */
288 descs[3] = vld1q_u64((uint64_t *)(rxdp + 3));
290 /* B.2 copy 2 mbuf point into rx_pkts */
291 vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
293 /* B.1 load 1 mbuf point */
294 mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
296 descs[2] = vld1q_u64((uint64_t *)(rxdp + 2));
297 /* B.1 load 2 mbuf point */
298 descs[1] = vld1q_u64((uint64_t *)(rxdp + 1));
299 descs[0] = vld1q_u64((uint64_t *)(rxdp));
301 /* B.2 copy 2 mbuf point into rx_pkts */
302 vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
305 rte_mbuf_prefetch_part2(rx_pkts[pos]);
306 rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
307 rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
308 rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
311 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
312 uint32x4_t len3 = vshlq_u32(vreinterpretq_u32_u64(descs[3]),
314 descs[3] = vreinterpretq_u64_u32(len3);
315 uint32x4_t len2 = vshlq_u32(vreinterpretq_u32_u64(descs[2]),
317 descs[2] = vreinterpretq_u64_u32(len2);
319 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
320 pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
321 pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
323 /* C.1 4=>2 filter staterr info only */
324 sterr_tmp2 = vzipq_u16(vreinterpretq_u16_u64(descs[1]),
325 vreinterpretq_u16_u64(descs[3]));
326 /* C.1 4=>2 filter staterr info only */
327 sterr_tmp1 = vzipq_u16(vreinterpretq_u16_u64(descs[0]),
328 vreinterpretq_u16_u64(descs[2]));
330 /* C.2 get 4 pkts staterr value */
331 staterr = vzipq_u16(sterr_tmp1.val[1],
332 sterr_tmp2.val[1]).val[0];
334 desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
336 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
337 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
338 pkt_mb4 = vreinterpretq_u8_u16(tmp);
339 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
340 pkt_mb3 = vreinterpretq_u8_u16(tmp);
342 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
343 uint32x4_t len1 = vshlq_u32(vreinterpretq_u32_u64(descs[1]),
345 descs[1] = vreinterpretq_u64_u32(len1);
346 uint32x4_t len0 = vshlq_u32(vreinterpretq_u32_u64(descs[0]),
348 descs[0] = vreinterpretq_u64_u32(len0);
350 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
351 pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
352 pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
354 /* D.3 copy final 3,4 data to rx_pkts */
355 vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
357 vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
360 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
361 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
362 pkt_mb2 = vreinterpretq_u8_u16(tmp);
363 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
364 pkt_mb1 = vreinterpretq_u8_u16(tmp);
366 /* C* extract and record EOP bit */
368 uint8x16_t eop_shuf_mask = {
369 0x00, 0x02, 0x04, 0x06,
370 0xFF, 0xFF, 0xFF, 0xFF,
371 0xFF, 0xFF, 0xFF, 0xFF,
372 0xFF, 0xFF, 0xFF, 0xFF};
375 /* and with mask to extract bits, flipping 1-0 */
376 eop_bits = vmvnq_u8(vreinterpretq_u8_u16(staterr));
377 eop_bits = vandq_u8(eop_bits, eop_check);
378 /* the staterr values are not in order, as the count
379 * count of dd bits doesn't care. However, for end of
380 * packet tracking, we do care, so shuffle. This also
381 * compresses the 32-bit values to 8-bit
383 eop_bits = vqtbl1q_u8(eop_bits, eop_shuf_mask);
385 /* store the resulting 32-bit value */
386 vst1q_lane_u32((uint32_t *)split_packet,
387 vreinterpretq_u32_u8(eop_bits), 0);
388 split_packet += RTE_I40E_DESCS_PER_LOOP;
390 /* zero-out next pointers */
391 rx_pkts[pos]->next = NULL;
392 rx_pkts[pos + 1]->next = NULL;
393 rx_pkts[pos + 2]->next = NULL;
394 rx_pkts[pos + 3]->next = NULL;
397 staterr = vshlq_n_u16(staterr, I40E_UINT16_BIT - 1);
398 staterr = vreinterpretq_u16_s16(
399 vshrq_n_s16(vreinterpretq_s16_u16(staterr),
400 I40E_UINT16_BIT - 1));
401 stat = ~vgetq_lane_u64(vreinterpretq_u64_u16(staterr), 0);
403 rte_prefetch_non_temporal(rxdp + RTE_I40E_DESCS_PER_LOOP);
405 /* D.3 copy final 1,2 data to rx_pkts */
406 vst1q_u8((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
408 vst1q_u8((void *)&rx_pkts[pos]->rx_descriptor_fields1,
410 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
411 /* C.4 calc avaialbe number of desc */
412 if (unlikely(stat == 0)) {
413 nb_pkts_recd += RTE_I40E_DESCS_PER_LOOP;
415 nb_pkts_recd += __builtin_ctzl(stat) / I40E_UINT16_BIT;
420 /* Update our internal tail pointer */
421 rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
422 rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
423 rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
430 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
431 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
435 i40e_recv_pkts_vec(void *__restrict rx_queue,
436 struct rte_mbuf **__restrict rx_pkts, uint16_t nb_pkts)
438 return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
441 /* vPMD receive routine that reassembles scattered packets
443 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
444 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
448 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
452 struct i40e_rx_queue *rxq = rx_queue;
453 uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
455 /* get some new buffers */
456 uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
461 /* happy day case, full burst + no packets to be joined */
462 const uint64_t *split_fl64 = (uint64_t *)split_flags;
464 if (rxq->pkt_first_seg == NULL &&
465 split_fl64[0] == 0 && split_fl64[1] == 0 &&
466 split_fl64[2] == 0 && split_fl64[3] == 0)
469 /* reassemble any packets that need reassembly*/
472 if (rxq->pkt_first_seg == NULL) {
473 /* find the first split flag, and only reassemble then*/
474 while (i < nb_bufs && !split_flags[i])
478 rxq->pkt_first_seg = rx_pkts[i];
480 return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
485 vtx1(volatile struct i40e_tx_desc *txdp,
486 struct rte_mbuf *pkt, uint64_t flags)
488 uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
489 ((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) |
490 ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
492 uint64x2_t descriptor = {pkt->buf_iova + pkt->data_off, high_qw};
493 vst1q_u64((uint64_t *)txdp, descriptor);
497 vtx(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkt,
498 uint16_t nb_pkts, uint64_t flags)
502 for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
503 vtx1(txdp, *pkt, flags);
507 i40e_xmit_fixed_burst_vec(void *__restrict tx_queue,
508 struct rte_mbuf **__restrict tx_pkts, uint16_t nb_pkts)
510 struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
511 volatile struct i40e_tx_desc *txdp;
512 struct i40e_tx_entry *txep;
513 uint16_t n, nb_commit, tx_id;
514 uint64_t flags = I40E_TD_CMD;
515 uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
518 /* cross rx_thresh boundary is not allowed */
519 nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
521 if (txq->nb_tx_free < txq->tx_free_thresh)
522 i40e_tx_free_bufs(txq);
524 nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
525 if (unlikely(nb_pkts == 0))
528 tx_id = txq->tx_tail;
529 txdp = &txq->tx_ring[tx_id];
530 txep = &txq->sw_ring[tx_id];
532 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
534 n = (uint16_t)(txq->nb_tx_desc - tx_id);
535 if (nb_commit >= n) {
536 tx_backlog_entry(txep, tx_pkts, n);
538 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
539 vtx1(txdp, *tx_pkts, flags);
541 vtx1(txdp, *tx_pkts++, rs);
543 nb_commit = (uint16_t)(nb_commit - n);
546 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
548 /* avoid reach the end of ring */
549 txdp = &txq->tx_ring[tx_id];
550 txep = &txq->sw_ring[tx_id];
553 tx_backlog_entry(txep, tx_pkts, nb_commit);
555 vtx(txdp, tx_pkts, nb_commit, flags);
557 tx_id = (uint16_t)(tx_id + nb_commit);
558 if (tx_id > txq->tx_next_rs) {
559 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
560 rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
561 I40E_TXD_QW1_CMD_SHIFT);
563 (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
566 txq->tx_tail = tx_id;
569 I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
575 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
577 _i40e_rx_queue_release_mbufs_vec(rxq);
581 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
583 return i40e_rxq_vec_setup_default(rxq);
587 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
593 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
595 return i40e_rx_vec_dev_conf_condition_check_default(dev);