net/mlx5: fix E-Switch manager vport ID
[dpdk.git] / drivers / net / i40e / i40e_rxtx_vec_neon.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation.
3  * Copyright(c) 2016-2018, Linaro Limited.
4  */
5
6 #include <stdint.h>
7 #include <ethdev_driver.h>
8 #include <rte_malloc.h>
9 #include <rte_vect.h>
10
11 #include "base/i40e_prototype.h"
12 #include "base/i40e_type.h"
13 #include "i40e_ethdev.h"
14 #include "i40e_rxtx.h"
15 #include "i40e_rxtx_vec_common.h"
16
17
18 #pragma GCC diagnostic ignored "-Wcast-qual"
19
20 static inline void
21 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
22 {
23         int i;
24         uint16_t rx_id;
25         volatile union i40e_rx_desc *rxdp;
26         struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
27         struct rte_mbuf *mb0, *mb1;
28         uint64x2_t dma_addr0, dma_addr1;
29         uint64x2_t zero = vdupq_n_u64(0);
30         uint64_t paddr;
31
32         rxdp = rxq->rx_ring + rxq->rxrearm_start;
33
34         /* Pull 'n' more MBUFs into the software ring */
35         if (unlikely(rte_mempool_get_bulk(rxq->mp,
36                                           (void *)rxep,
37                                           RTE_I40E_RXQ_REARM_THRESH) < 0)) {
38                 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
39                     rxq->nb_rx_desc) {
40                         for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
41                                 rxep[i].mbuf = &rxq->fake_mbuf;
42                                 vst1q_u64((uint64_t *)&rxdp[i].read, zero);
43                         }
44                 }
45                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46                         RTE_I40E_RXQ_REARM_THRESH;
47                 return;
48         }
49
50         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
51         for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
52                 mb0 = rxep[0].mbuf;
53                 mb1 = rxep[1].mbuf;
54
55                 paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
56                 dma_addr0 = vdupq_n_u64(paddr);
57
58                 /* flush desc with pa dma_addr */
59                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0);
60
61                 paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
62                 dma_addr1 = vdupq_n_u64(paddr);
63                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1);
64         }
65
66         rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
67         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
68                 rxq->rxrearm_start = 0;
69
70         rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
71
72         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
73                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
74
75         rte_io_wmb();
76         /* Update the tail pointer on the NIC */
77         I40E_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rx_id);
78 }
79
80 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
81 /* NEON version of FDIR mark extraction for 4 32B descriptors at a time */
82 static inline uint32x4_t
83 descs_to_fdir_32b(volatile union i40e_rx_desc *rxdp, struct rte_mbuf **rx_pkt)
84 {
85         /* 32B descriptors: Load 2nd half of descriptors for FDIR ID data */
86         uint64x2_t desc0_qw23, desc1_qw23, desc2_qw23, desc3_qw23;
87         desc0_qw23 = vld1q_u64((uint64_t *)&(rxdp + 0)->wb.qword2);
88         desc1_qw23 = vld1q_u64((uint64_t *)&(rxdp + 1)->wb.qword2);
89         desc2_qw23 = vld1q_u64((uint64_t *)&(rxdp + 2)->wb.qword2);
90         desc3_qw23 = vld1q_u64((uint64_t *)&(rxdp + 3)->wb.qword2);
91
92         /* FDIR ID data: move last u32 of each desc to 4 u32 lanes */
93         uint32x4_t v_unpack_02, v_unpack_13;
94         v_unpack_02 = vzipq_u32(vreinterpretq_u32_u64(desc0_qw23),
95                                 vreinterpretq_u32_u64(desc2_qw23)).val[1];
96         v_unpack_13 = vzipq_u32(vreinterpretq_u32_u64(desc1_qw23),
97                                 vreinterpretq_u32_u64(desc3_qw23)).val[1];
98         uint32x4_t v_fdir_ids = vzipq_u32(v_unpack_02, v_unpack_13).val[1];
99
100         /* Extended Status: extract from each lower 32 bits, to u32 lanes */
101         v_unpack_02 = vzipq_u32(vreinterpretq_u32_u64(desc0_qw23),
102                                 vreinterpretq_u32_u64(desc2_qw23)).val[0];
103         v_unpack_13 = vzipq_u32(vreinterpretq_u32_u64(desc1_qw23),
104                                 vreinterpretq_u32_u64(desc3_qw23)).val[0];
105         uint32x4_t v_flt_status = vzipq_u32(v_unpack_02, v_unpack_13).val[0];
106
107         /* Shift u32 left and right to "mask away" bits not required.
108          * Data required is 4:5 (zero based), so left shift by 26 (32-6)
109          * and then right shift by 30 (32 - 2 bits required).
110          */
111         v_flt_status = vshlq_n_u32(v_flt_status, 26);
112         v_flt_status = vshrq_n_u32(v_flt_status, 30);
113
114         /* Generate constant 1 in all u32 lanes */
115         RTE_BUILD_BUG_ON(I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID != 1);
116         uint32x4_t v_u32_one = vdupq_n_u32(1);
117
118         /* Per desc mask, bits set if FDIR ID is valid */
119         uint32x4_t v_fd_id_mask = vceqq_u32(v_flt_status, v_u32_one);
120
121         /* Mask ID data to zero if the FD_ID bit not set in desc */
122         v_fdir_ids = vandq_u32(v_fdir_ids, v_fd_id_mask);
123
124         /* Store data to fdir.hi in mbuf */
125         rx_pkt[0]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 0);
126         rx_pkt[1]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 1);
127         rx_pkt[2]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 2);
128         rx_pkt[3]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 3);
129
130         /* Convert fdir_id_mask into a single bit, then shift as required for
131          * correct location in the mbuf->olflags
132          */
133         RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
134         v_fd_id_mask = vshrq_n_u32(v_fd_id_mask, 31);
135         v_fd_id_mask = vshlq_n_u32(v_fd_id_mask, 13);
136
137         /* The returned value must be combined into each mbuf. This is already
138          * being done for RSS and VLAN mbuf olflags, so return bits to OR in.
139          */
140         return v_fd_id_mask;
141 }
142
143 #else /* 32 or 16B FDIR ID handling */
144
145 /* Handle 16B descriptor FDIR ID flag setting based on FLM(bit11). See scalar driver
146  * for scalar implementation of the same functionality.
147  */
148 static inline uint32x4_t
149 descs_to_fdir_16b(uint32x4_t fltstat, uint64x2_t descs[4], struct rte_mbuf **rx_pkt)
150 {
151         /* Unpack filter-status data from descriptors */
152         uint32x4_t v_tmp_02 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
153                                         vreinterpretq_u32_u64(descs[2])).val[0];
154         uint32x4_t v_tmp_13 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
155                                         vreinterpretq_u32_u64(descs[3])).val[0];
156         uint32x4_t v_fdir_ids = vzipq_u32(v_tmp_02, v_tmp_13).val[1];
157
158         /* Generate 111 and 11 in each u32 lane */
159         uint32x4_t v_111_mask = vdupq_n_u32(7);
160         uint32x4_t v_11_mask = vdupq_n_u32(3);
161
162         /* Compare and mask away FDIR ID data if bit not set */
163         uint32x4_t v_u32_bits = vandq_u32(v_111_mask, fltstat);
164         uint32x4_t v_fdir_id_mask = vceqq_u32(v_u32_bits, v_11_mask);
165         v_fdir_ids = vandq_u32(v_fdir_id_mask, v_fdir_ids);
166
167         /* Store data to fdir.hi in mbuf */
168         rx_pkt[0]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 0);
169         rx_pkt[1]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 1);
170         rx_pkt[2]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 2);
171         rx_pkt[3]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 3);
172
173         /* Top lane ones mask for FDIR isolation */
174         uint32x4_t v_desc_fdir_mask = {0, UINT32_MAX, 0, 0};
175
176         /* Move fdir_id_mask to correct lane, zero RSS in mbuf if fdir hits */
177         uint32x4_t v_zeros = {0, 0, 0, 0};
178         uint32x4_t v_desc3_shift = vextq_u32(v_fdir_id_mask, v_zeros, 2);
179         uint32x4_t v_desc3_mask = vandq_u32(v_desc_fdir_mask, v_desc3_shift);
180         descs[3] = vbslq_u32(v_desc3_mask, v_zeros, vreinterpretq_u32_u64(descs[3]));
181
182         uint32x4_t v_desc2_shift = vextq_u32(v_fdir_id_mask, v_zeros, 1);
183         uint32x4_t v_desc2_mask = vandq_u32(v_desc_fdir_mask, v_desc2_shift);
184         descs[2] = vbslq_u32(v_desc2_mask, v_zeros, vreinterpretq_u32_u64(descs[2]));
185
186         uint32x4_t v_desc1_shift = v_fdir_id_mask;
187         uint32x4_t v_desc1_mask = vandq_u32(v_desc_fdir_mask, v_desc1_shift);
188         descs[1] = vbslq_u32(v_desc1_mask, v_zeros, vreinterpretq_u32_u64(descs[1]));
189
190         uint32x4_t v_desc0_shift = vextq_u32(v_zeros, v_fdir_id_mask, 3);
191         uint32x4_t v_desc0_mask = vandq_u32(v_desc_fdir_mask, v_desc0_shift);
192         descs[0] = vbslq_u32(v_desc0_mask, v_zeros, vreinterpretq_u32_u64(descs[0]));
193
194         /* Shift to 1 or 0 bit per u32 lane, then to RTE_MBUF_F_RX_FDIR_ID offset */
195         RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
196         uint32x4_t v_mask_one_bit = vshrq_n_u32(v_fdir_id_mask, 31);
197         return vshlq_n_u32(v_mask_one_bit, 13);
198 }
199 #endif
200
201 static inline void
202 desc_to_olflags_v(struct i40e_rx_queue *rxq, volatile union i40e_rx_desc *rxdp,
203                   uint64x2_t descs[4], struct rte_mbuf **rx_pkts)
204 {
205         uint32x4_t vlan0, vlan1, rss, l3_l4e;
206         const uint64x2_t mbuf_init = {rxq->mbuf_initializer, 0};
207         uint64x2_t rearm0, rearm1, rearm2, rearm3;
208
209         /* mask everything except RSS, flow director and VLAN flags
210          * bit2 is for VLAN tag, bit11 for flow director indication
211          * bit13:12 for RSS indication.
212          */
213         const uint32x4_t rss_vlan_msk = {
214                         0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804};
215
216         const uint32x4_t cksum_mask = {
217                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
218                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
219                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
220                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
221                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
222                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
223                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
224                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
225                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
226                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
227                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
228                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD};
229
230         /* map rss and vlan type to rss hash and vlan flag */
231         const uint8x16_t vlan_flags = {
232                         0, 0, 0, 0,
233                         RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0, 0, 0,
234                         0, 0, 0, 0,
235                         0, 0, 0, 0};
236
237         const uint8x16_t rss_flags = {
238                         0, RTE_MBUF_F_RX_FDIR, 0, 0,
239                         0, 0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR,
240                         0, 0, 0, 0,
241                         0, 0, 0, 0};
242
243         const uint8x16_t l3_l4e_flags = {
244                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1,
245                         RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
246                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
247                         (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
248                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
249                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
250                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
251                          RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
252                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
253                          RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
254                         0, 0, 0, 0, 0, 0, 0, 0};
255
256         vlan0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
257                           vreinterpretq_u32_u64(descs[2])).val[1];
258         vlan1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
259                           vreinterpretq_u32_u64(descs[3])).val[1];
260         vlan0 = vzipq_u32(vlan0, vlan1).val[0];
261
262         vlan1 = vandq_u32(vlan0, rss_vlan_msk);
263         vlan0 = vreinterpretq_u32_u8(vqtbl1q_u8(vlan_flags,
264                                                 vreinterpretq_u8_u32(vlan1)));
265
266         const uint32x4_t desc_fltstat = vshrq_n_u32(vlan1, 11);
267         rss = vreinterpretq_u32_u8(vqtbl1q_u8(rss_flags,
268                                               vreinterpretq_u8_u32(desc_fltstat)));
269
270         l3_l4e = vshrq_n_u32(vlan1, 22);
271         l3_l4e = vreinterpretq_u32_u8(vqtbl1q_u8(l3_l4e_flags,
272                                               vreinterpretq_u8_u32(l3_l4e)));
273         /* then we shift left 1 bit */
274         l3_l4e = vshlq_n_u32(l3_l4e, 1);
275         /* we need to mask out the redundant bits */
276         l3_l4e = vandq_u32(l3_l4e, cksum_mask);
277
278         vlan0 = vorrq_u32(vlan0, rss);
279         vlan0 = vorrq_u32(vlan0, l3_l4e);
280
281         /* Extract FDIR ID only if FDIR is enabled to avoid useless work */
282         if (rxq->fdir_enabled) {
283 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
284                 uint32x4_t v_fdir_ol_flags = descs_to_fdir_32b(rxdp, rx_pkts);
285 #else
286                 (void)rxdp; /* rxdp not required for 16B desc mode */
287                 uint32x4_t v_fdir_ol_flags = descs_to_fdir_16b(desc_fltstat, descs, rx_pkts);
288 #endif
289                 /* OR in ol_flag bits after descriptor specific extraction */
290                 vlan0 = vorrq_u32(vlan0, v_fdir_ol_flags);
291         }
292
293         rearm0 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 0), mbuf_init, 1);
294         rearm1 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 1), mbuf_init, 1);
295         rearm2 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 2), mbuf_init, 1);
296         rearm3 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 3), mbuf_init, 1);
297
298         vst1q_u64((uint64_t *)&rx_pkts[0]->rearm_data, rearm0);
299         vst1q_u64((uint64_t *)&rx_pkts[1]->rearm_data, rearm1);
300         vst1q_u64((uint64_t *)&rx_pkts[2]->rearm_data, rearm2);
301         vst1q_u64((uint64_t *)&rx_pkts[3]->rearm_data, rearm3);
302 }
303
304 #define PKTLEN_SHIFT     10
305 #define I40E_UINT16_BIT (CHAR_BIT * sizeof(uint16_t))
306
307 static inline void
308 desc_to_ptype_v(uint64x2_t descs[4], struct rte_mbuf **__rte_restrict rx_pkts,
309                 uint32_t *__rte_restrict ptype_tbl)
310 {
311         int i;
312         uint8_t ptype;
313         uint8x16_t tmp;
314
315         for (i = 0; i < 4; i++) {
316                 tmp = vreinterpretq_u8_u64(vshrq_n_u64(descs[i], 30));
317                 ptype = vgetq_lane_u8(tmp, 8);
318                 rx_pkts[i]->packet_type = ptype_tbl[ptype];
319         }
320
321 }
322
323 /**
324  * vPMD raw receive routine, only accept(nb_pkts >= RTE_I40E_DESCS_PER_LOOP)
325  *
326  * Notice:
327  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
328  * - floor align nb_pkts to a RTE_I40E_DESCS_PER_LOOP power-of-two
329  */
330 static inline uint16_t
331 _recv_raw_pkts_vec(struct i40e_rx_queue *__rte_restrict rxq,
332                    struct rte_mbuf **__rte_restrict rx_pkts,
333                    uint16_t nb_pkts, uint8_t *split_packet)
334 {
335         volatile union i40e_rx_desc *rxdp;
336         struct i40e_rx_entry *sw_ring;
337         uint16_t nb_pkts_recd;
338         int pos;
339         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
340
341         /* mask to shuffle from desc. to mbuf */
342         uint8x16_t shuf_msk = {
343                 0xFF, 0xFF,   /* pkt_type set as unknown */
344                 0xFF, 0xFF,   /* pkt_type set as unknown */
345                 14, 15,       /* octet 15~14, low 16 bits pkt_len */
346                 0xFF, 0xFF,   /* skip high 16 bits pkt_len, zero out */
347                 14, 15,       /* octet 15~14, 16 bits data_len */
348                 2, 3,         /* octet 2~3, low 16 bits vlan_macip */
349                 4, 5, 6, 7    /* octet 4~7, 32bits rss */
350                 };
351
352         uint8x16_t eop_check = {
353                 0x02, 0x00, 0x02, 0x00,
354                 0x02, 0x00, 0x02, 0x00,
355                 0x00, 0x00, 0x00, 0x00,
356                 0x00, 0x00, 0x00, 0x00
357                 };
358
359         uint16x8_t crc_adjust = {
360                 0, 0,         /* ignore pkt_type field */
361                 rxq->crc_len, /* sub crc on pkt_len */
362                 0,            /* ignore high-16bits of pkt_len */
363                 rxq->crc_len, /* sub crc on data_len */
364                 0, 0, 0       /* ignore non-length fields */
365                 };
366
367         /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
368         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
369
370         /* Just the act of getting into the function from the application is
371          * going to cost about 7 cycles
372          */
373         rxdp = rxq->rx_ring + rxq->rx_tail;
374
375         rte_prefetch_non_temporal(rxdp);
376
377         /* See if we need to rearm the RX queue - gives the prefetch a bit
378          * of time to act
379          */
380         if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
381                 i40e_rxq_rearm(rxq);
382
383         /* Before we start moving massive data around, check to see if
384          * there is actually a packet available
385          */
386         if (!(rxdp->wb.qword1.status_error_len &
387                         rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
388                 return 0;
389
390         /* Cache is empty -> need to scan the buffer rings, but first move
391          * the next 'n' mbufs into the cache
392          */
393         sw_ring = &rxq->sw_ring[rxq->rx_tail];
394
395         /* A. load 4 packet in one loop
396          * [A*. mask out 4 unused dirty field in desc]
397          * B. copy 4 mbuf point from swring to rx_pkts
398          * C. calc the number of DD bits among the 4 packets
399          * [C*. extract the end-of-packet bit, if requested]
400          * D. fill info. from desc to mbuf
401          */
402
403         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
404                         pos += RTE_I40E_DESCS_PER_LOOP,
405                         rxdp += RTE_I40E_DESCS_PER_LOOP) {
406                 uint64x2_t descs[RTE_I40E_DESCS_PER_LOOP];
407                 uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
408                 uint16x8x2_t sterr_tmp1, sterr_tmp2;
409                 uint64x2_t mbp1, mbp2;
410                 uint16x8_t staterr;
411                 uint16x8_t tmp;
412                 uint64_t stat;
413
414                 int32x4_t len_shl = {0, 0, 0, PKTLEN_SHIFT};
415
416                 /* A.1 load desc[3-0] */
417                 descs[3] =  vld1q_u64((uint64_t *)(rxdp + 3));
418                 descs[2] =  vld1q_u64((uint64_t *)(rxdp + 2));
419                 descs[1] =  vld1q_u64((uint64_t *)(rxdp + 1));
420                 descs[0] =  vld1q_u64((uint64_t *)(rxdp));
421
422                 /* Use acquire fence to order loads of descriptor qwords */
423                 rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
424                 /* A.2 reload qword0 to make it ordered after qword1 load */
425                 descs[3] = vld1q_lane_u64((uint64_t *)(rxdp + 3), descs[3], 0);
426                 descs[2] = vld1q_lane_u64((uint64_t *)(rxdp + 2), descs[2], 0);
427                 descs[1] = vld1q_lane_u64((uint64_t *)(rxdp + 1), descs[1], 0);
428                 descs[0] = vld1q_lane_u64((uint64_t *)(rxdp), descs[0], 0);
429
430                 /* B.1 load 4 mbuf point */
431                 mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
432                 mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
433
434                 /* B.2 copy 4 mbuf point into rx_pkts  */
435                 vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
436                 vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
437
438                 if (split_packet) {
439                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
440                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
441                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
442                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
443                 }
444
445                 /* pkts shift the pktlen field to be 16-bit aligned*/
446                 uint32x4_t len3 = vshlq_u32(vreinterpretq_u32_u64(descs[3]),
447                                             len_shl);
448                 descs[3] = vreinterpretq_u64_u16(vsetq_lane_u16
449                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len3), 7),
450                                  vreinterpretq_u16_u64(descs[3]),
451                                  7));
452                 uint32x4_t len2 = vshlq_u32(vreinterpretq_u32_u64(descs[2]),
453                                             len_shl);
454                 descs[2] = vreinterpretq_u64_u16(vsetq_lane_u16
455                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len2), 7),
456                                  vreinterpretq_u16_u64(descs[2]),
457                                  7));
458                 uint32x4_t len1 = vshlq_u32(vreinterpretq_u32_u64(descs[1]),
459                                             len_shl);
460                 descs[1] = vreinterpretq_u64_u16(vsetq_lane_u16
461                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len1), 7),
462                                  vreinterpretq_u16_u64(descs[1]),
463                                  7));
464                 uint32x4_t len0 = vshlq_u32(vreinterpretq_u32_u64(descs[0]),
465                                             len_shl);
466                 descs[0] = vreinterpretq_u64_u16(vsetq_lane_u16
467                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len0), 7),
468                                  vreinterpretq_u16_u64(descs[0]),
469                                  7));
470
471                 desc_to_olflags_v(rxq, rxdp, descs, &rx_pkts[pos]);
472
473                 /* D.1 pkts convert format from desc to pktmbuf */
474                 pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
475                 pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
476                 pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
477                 pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
478
479                 /* D.2 pkts set in_port/nb_seg and remove crc */
480                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
481                 pkt_mb4 = vreinterpretq_u8_u16(tmp);
482                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
483                 pkt_mb3 = vreinterpretq_u8_u16(tmp);
484                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
485                 pkt_mb2 = vreinterpretq_u8_u16(tmp);
486                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
487                 pkt_mb1 = vreinterpretq_u8_u16(tmp);
488
489                 /* D.3 copy final data to rx_pkts */
490                 vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
491                                 pkt_mb4);
492                 vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
493                                 pkt_mb3);
494                 vst1q_u8((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
495                                 pkt_mb2);
496                 vst1q_u8((void *)&rx_pkts[pos]->rx_descriptor_fields1,
497                                 pkt_mb1);
498
499                 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
500
501                 if (likely(pos + RTE_I40E_DESCS_PER_LOOP < nb_pkts)) {
502                         rte_prefetch_non_temporal(rxdp + RTE_I40E_DESCS_PER_LOOP);
503                 }
504
505                 /* C.1 4=>2 filter staterr info only */
506                 sterr_tmp2 = vzipq_u16(vreinterpretq_u16_u64(descs[1]),
507                                        vreinterpretq_u16_u64(descs[3]));
508                 sterr_tmp1 = vzipq_u16(vreinterpretq_u16_u64(descs[0]),
509                                        vreinterpretq_u16_u64(descs[2]));
510
511                 /* C.2 get 4 pkts staterr value  */
512                 staterr = vzipq_u16(sterr_tmp1.val[1],
513                                     sterr_tmp2.val[1]).val[0];
514
515                 /* C* extract and record EOP bit */
516                 if (split_packet) {
517                         uint8x16_t eop_shuf_mask = {
518                                         0x00, 0x02, 0x04, 0x06,
519                                         0xFF, 0xFF, 0xFF, 0xFF,
520                                         0xFF, 0xFF, 0xFF, 0xFF,
521                                         0xFF, 0xFF, 0xFF, 0xFF};
522                         uint8x16_t eop_bits;
523
524                         /* and with mask to extract bits, flipping 1-0 */
525                         eop_bits = vmvnq_u8(vreinterpretq_u8_u16(staterr));
526                         eop_bits = vandq_u8(eop_bits, eop_check);
527                         /* the staterr values are not in order, as the count
528                          * of dd bits doesn't care. However, for end of
529                          * packet tracking, we do care, so shuffle. This also
530                          * compresses the 32-bit values to 8-bit
531                          */
532                         eop_bits = vqtbl1q_u8(eop_bits, eop_shuf_mask);
533
534                         /* store the resulting 32-bit value */
535                         vst1q_lane_u32((uint32_t *)split_packet,
536                                        vreinterpretq_u32_u8(eop_bits), 0);
537                         split_packet += RTE_I40E_DESCS_PER_LOOP;
538
539                         /* zero-out next pointers */
540                         rx_pkts[pos]->next = NULL;
541                         rx_pkts[pos + 1]->next = NULL;
542                         rx_pkts[pos + 2]->next = NULL;
543                         rx_pkts[pos + 3]->next = NULL;
544                 }
545
546                 staterr = vshlq_n_u16(staterr, I40E_UINT16_BIT - 1);
547                 staterr = vreinterpretq_u16_s16(
548                                 vshrq_n_s16(vreinterpretq_s16_u16(staterr),
549                                             I40E_UINT16_BIT - 1));
550                 stat = ~vgetq_lane_u64(vreinterpretq_u64_u16(staterr), 0);
551
552                 /* C.4 calc available number of desc */
553                 if (unlikely(stat == 0)) {
554                         nb_pkts_recd += RTE_I40E_DESCS_PER_LOOP;
555                 } else {
556                         nb_pkts_recd += __builtin_ctzl(stat) / I40E_UINT16_BIT;
557                         break;
558                 }
559         }
560
561         /* Update our internal tail pointer */
562         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
563         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
564         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
565
566         return nb_pkts_recd;
567 }
568
569  /*
570  * Notice:
571  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
572  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
573  *   numbers of DD bits
574  */
575 uint16_t
576 i40e_recv_pkts_vec(void *__rte_restrict rx_queue,
577                 struct rte_mbuf **__rte_restrict rx_pkts, uint16_t nb_pkts)
578 {
579         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
580 }
581
582 /**
583  * vPMD receive routine that reassembles single burst of 32 scattered packets
584  *
585  * Notice:
586  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
587  */
588 static uint16_t
589 i40e_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
590                               uint16_t nb_pkts)
591 {
592
593         struct i40e_rx_queue *rxq = rx_queue;
594         uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
595
596         /* get some new buffers */
597         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
598                         split_flags);
599         if (nb_bufs == 0)
600                 return 0;
601
602         /* happy day case, full burst + no packets to be joined */
603         const uint64_t *split_fl64 = (uint64_t *)split_flags;
604
605         if (rxq->pkt_first_seg == NULL &&
606                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
607                         split_fl64[2] == 0 && split_fl64[3] == 0)
608                 return nb_bufs;
609
610         /* reassemble any packets that need reassembly*/
611         unsigned i = 0;
612
613         if (rxq->pkt_first_seg == NULL) {
614                 /* find the first split flag, and only reassemble then*/
615                 while (i < nb_bufs && !split_flags[i])
616                         i++;
617                 if (i == nb_bufs)
618                         return nb_bufs;
619                 rxq->pkt_first_seg = rx_pkts[i];
620         }
621         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
622                 &split_flags[i]);
623 }
624
625 /**
626  * vPMD receive routine that reassembles scattered packets.
627  */
628 uint16_t
629 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
630                              uint16_t nb_pkts)
631 {
632         uint16_t retval = 0;
633
634         while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
635                 uint16_t burst;
636
637                 burst = i40e_recv_scattered_burst_vec(rx_queue,
638                                                       rx_pkts + retval,
639                                                       RTE_I40E_VPMD_RX_BURST);
640                 retval += burst;
641                 nb_pkts -= burst;
642                 if (burst < RTE_I40E_VPMD_RX_BURST)
643                         return retval;
644         }
645
646         return retval + i40e_recv_scattered_burst_vec(rx_queue,
647                                                       rx_pkts + retval,
648                                                       nb_pkts);
649 }
650
651 static inline void
652 vtx1(volatile struct i40e_tx_desc *txdp,
653                 struct rte_mbuf *pkt, uint64_t flags)
654 {
655         uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
656                         ((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
657                         ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
658
659         uint64x2_t descriptor = {pkt->buf_iova + pkt->data_off, high_qw};
660         vst1q_u64((uint64_t *)txdp, descriptor);
661 }
662
663 static inline void
664 vtx(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkt,
665                 uint16_t nb_pkts,  uint64_t flags)
666 {
667         int i;
668
669         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
670                 vtx1(txdp, *pkt, flags);
671 }
672
673 uint16_t
674 i40e_xmit_fixed_burst_vec(void *__rte_restrict tx_queue,
675         struct rte_mbuf **__rte_restrict tx_pkts, uint16_t nb_pkts)
676 {
677         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
678         volatile struct i40e_tx_desc *txdp;
679         struct i40e_tx_entry *txep;
680         uint16_t n, nb_commit, tx_id;
681         uint64_t flags = I40E_TD_CMD;
682         uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
683         int i;
684
685         /* cross rx_thresh boundary is not allowed */
686         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
687
688         if (txq->nb_tx_free < txq->tx_free_thresh)
689                 i40e_tx_free_bufs(txq);
690
691         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
692         if (unlikely(nb_pkts == 0))
693                 return 0;
694
695         tx_id = txq->tx_tail;
696         txdp = &txq->tx_ring[tx_id];
697         txep = &txq->sw_ring[tx_id];
698
699         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
700
701         n = (uint16_t)(txq->nb_tx_desc - tx_id);
702         if (nb_commit >= n) {
703                 tx_backlog_entry(txep, tx_pkts, n);
704
705                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
706                         vtx1(txdp, *tx_pkts, flags);
707
708                 vtx1(txdp, *tx_pkts++, rs);
709
710                 nb_commit = (uint16_t)(nb_commit - n);
711
712                 tx_id = 0;
713                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
714
715                 /* avoid reach the end of ring */
716                 txdp = &txq->tx_ring[tx_id];
717                 txep = &txq->sw_ring[tx_id];
718         }
719
720         tx_backlog_entry(txep, tx_pkts, nb_commit);
721
722         vtx(txdp, tx_pkts, nb_commit, flags);
723
724         tx_id = (uint16_t)(tx_id + nb_commit);
725         if (tx_id > txq->tx_next_rs) {
726                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
727                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
728                                                 I40E_TXD_QW1_CMD_SHIFT);
729                 txq->tx_next_rs =
730                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
731         }
732
733         txq->tx_tail = tx_id;
734
735         rte_io_wmb();
736         I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
737
738         return nb_pkts;
739 }
740
741 void __rte_cold
742 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
743 {
744         _i40e_rx_queue_release_mbufs_vec(rxq);
745 }
746
747 int __rte_cold
748 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
749 {
750         return i40e_rxq_vec_setup_default(rxq);
751 }
752
753 int __rte_cold
754 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
755 {
756         return 0;
757 }
758
759 int __rte_cold
760 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
761 {
762         return i40e_rx_vec_dev_conf_condition_check_default(dev);
763 }