net/ngbe: support MAC filters
[dpdk.git] / drivers / net / i40e / i40e_rxtx_vec_neon.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation.
3  * Copyright(c) 2016-2018, Linaro Limited.
4  */
5
6 #include <stdint.h>
7 #include <ethdev_driver.h>
8 #include <rte_malloc.h>
9 #include <rte_vect.h>
10
11 #include "base/i40e_prototype.h"
12 #include "base/i40e_type.h"
13 #include "i40e_ethdev.h"
14 #include "i40e_rxtx.h"
15 #include "i40e_rxtx_vec_common.h"
16
17
18 #pragma GCC diagnostic ignored "-Wcast-qual"
19
20 static inline void
21 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
22 {
23         int i;
24         uint16_t rx_id;
25         volatile union i40e_rx_desc *rxdp;
26         struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
27         struct rte_mbuf *mb0, *mb1;
28         uint64x2_t dma_addr0, dma_addr1;
29         uint64x2_t zero = vdupq_n_u64(0);
30         uint64_t paddr;
31
32         rxdp = rxq->rx_ring + rxq->rxrearm_start;
33
34         /* Pull 'n' more MBUFs into the software ring */
35         if (unlikely(rte_mempool_get_bulk(rxq->mp,
36                                           (void *)rxep,
37                                           RTE_I40E_RXQ_REARM_THRESH) < 0)) {
38                 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
39                     rxq->nb_rx_desc) {
40                         for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
41                                 rxep[i].mbuf = &rxq->fake_mbuf;
42                                 vst1q_u64((uint64_t *)&rxdp[i].read, zero);
43                         }
44                 }
45                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46                         RTE_I40E_RXQ_REARM_THRESH;
47                 return;
48         }
49
50         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
51         for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
52                 mb0 = rxep[0].mbuf;
53                 mb1 = rxep[1].mbuf;
54
55                 paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
56                 dma_addr0 = vdupq_n_u64(paddr);
57
58                 /* flush desc with pa dma_addr */
59                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0);
60
61                 paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
62                 dma_addr1 = vdupq_n_u64(paddr);
63                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1);
64         }
65
66         rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
67         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
68                 rxq->rxrearm_start = 0;
69
70         rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
71
72         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
73                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
74
75         rte_io_wmb();
76         /* Update the tail pointer on the NIC */
77         I40E_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rx_id);
78 }
79
80 static inline void
81 desc_to_olflags_v(struct i40e_rx_queue *rxq, uint64x2_t descs[4],
82                   struct rte_mbuf **rx_pkts)
83 {
84         uint32x4_t vlan0, vlan1, rss, l3_l4e;
85         const uint64x2_t mbuf_init = {rxq->mbuf_initializer, 0};
86         uint64x2_t rearm0, rearm1, rearm2, rearm3;
87
88         /* mask everything except RSS, flow director and VLAN flags
89          * bit2 is for VLAN tag, bit11 for flow director indication
90          * bit13:12 for RSS indication.
91          */
92         const uint32x4_t rss_vlan_msk = {
93                         0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804};
94
95         const uint32x4_t cksum_mask = {
96                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
97                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
98                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
99                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
100                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
101                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
102                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
103                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
104                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
105                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
106                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
107                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD};
108
109         /* map rss and vlan type to rss hash and vlan flag */
110         const uint8x16_t vlan_flags = {
111                         0, 0, 0, 0,
112                         RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0, 0, 0,
113                         0, 0, 0, 0,
114                         0, 0, 0, 0};
115
116         const uint8x16_t rss_flags = {
117                         0, RTE_MBUF_F_RX_FDIR, 0, 0,
118                         0, 0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR,
119                         0, 0, 0, 0,
120                         0, 0, 0, 0};
121
122         const uint8x16_t l3_l4e_flags = {
123                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1,
124                         RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
125                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
126                         (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
127                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
128                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
129                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
130                          RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
131                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
132                          RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
133                         0, 0, 0, 0, 0, 0, 0, 0};
134
135         vlan0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
136                           vreinterpretq_u32_u64(descs[2])).val[1];
137         vlan1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
138                           vreinterpretq_u32_u64(descs[3])).val[1];
139         vlan0 = vzipq_u32(vlan0, vlan1).val[0];
140
141         vlan1 = vandq_u32(vlan0, rss_vlan_msk);
142         vlan0 = vreinterpretq_u32_u8(vqtbl1q_u8(vlan_flags,
143                                                 vreinterpretq_u8_u32(vlan1)));
144
145         rss = vshrq_n_u32(vlan1, 11);
146         rss = vreinterpretq_u32_u8(vqtbl1q_u8(rss_flags,
147                                               vreinterpretq_u8_u32(rss)));
148
149         l3_l4e = vshrq_n_u32(vlan1, 22);
150         l3_l4e = vreinterpretq_u32_u8(vqtbl1q_u8(l3_l4e_flags,
151                                               vreinterpretq_u8_u32(l3_l4e)));
152         /* then we shift left 1 bit */
153         l3_l4e = vshlq_n_u32(l3_l4e, 1);
154         /* we need to mask out the reduntant bits */
155         l3_l4e = vandq_u32(l3_l4e, cksum_mask);
156
157         vlan0 = vorrq_u32(vlan0, rss);
158         vlan0 = vorrq_u32(vlan0, l3_l4e);
159
160         rearm0 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 0), mbuf_init, 1);
161         rearm1 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 1), mbuf_init, 1);
162         rearm2 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 2), mbuf_init, 1);
163         rearm3 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 3), mbuf_init, 1);
164
165         vst1q_u64((uint64_t *)&rx_pkts[0]->rearm_data, rearm0);
166         vst1q_u64((uint64_t *)&rx_pkts[1]->rearm_data, rearm1);
167         vst1q_u64((uint64_t *)&rx_pkts[2]->rearm_data, rearm2);
168         vst1q_u64((uint64_t *)&rx_pkts[3]->rearm_data, rearm3);
169 }
170
171 #define PKTLEN_SHIFT     10
172 #define I40E_UINT16_BIT (CHAR_BIT * sizeof(uint16_t))
173
174 static inline void
175 desc_to_ptype_v(uint64x2_t descs[4], struct rte_mbuf **__rte_restrict rx_pkts,
176                 uint32_t *__rte_restrict ptype_tbl)
177 {
178         int i;
179         uint8_t ptype;
180         uint8x16_t tmp;
181
182         for (i = 0; i < 4; i++) {
183                 tmp = vreinterpretq_u8_u64(vshrq_n_u64(descs[i], 30));
184                 ptype = vgetq_lane_u8(tmp, 8);
185                 rx_pkts[i]->packet_type = ptype_tbl[ptype];
186         }
187
188 }
189
190 /**
191  * vPMD raw receive routine, only accept(nb_pkts >= RTE_I40E_DESCS_PER_LOOP)
192  *
193  * Notice:
194  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
195  * - floor align nb_pkts to a RTE_I40E_DESCS_PER_LOOP power-of-two
196  */
197 static inline uint16_t
198 _recv_raw_pkts_vec(struct i40e_rx_queue *__rte_restrict rxq,
199                    struct rte_mbuf **__rte_restrict rx_pkts,
200                    uint16_t nb_pkts, uint8_t *split_packet)
201 {
202         volatile union i40e_rx_desc *rxdp;
203         struct i40e_rx_entry *sw_ring;
204         uint16_t nb_pkts_recd;
205         int pos;
206         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
207
208         /* mask to shuffle from desc. to mbuf */
209         uint8x16_t shuf_msk = {
210                 0xFF, 0xFF,   /* pkt_type set as unknown */
211                 0xFF, 0xFF,   /* pkt_type set as unknown */
212                 14, 15,       /* octet 15~14, low 16 bits pkt_len */
213                 0xFF, 0xFF,   /* skip high 16 bits pkt_len, zero out */
214                 14, 15,       /* octet 15~14, 16 bits data_len */
215                 2, 3,         /* octet 2~3, low 16 bits vlan_macip */
216                 4, 5, 6, 7    /* octet 4~7, 32bits rss */
217                 };
218
219         uint8x16_t eop_check = {
220                 0x02, 0x00, 0x02, 0x00,
221                 0x02, 0x00, 0x02, 0x00,
222                 0x00, 0x00, 0x00, 0x00,
223                 0x00, 0x00, 0x00, 0x00
224                 };
225
226         uint16x8_t crc_adjust = {
227                 0, 0,         /* ignore pkt_type field */
228                 rxq->crc_len, /* sub crc on pkt_len */
229                 0,            /* ignore high-16bits of pkt_len */
230                 rxq->crc_len, /* sub crc on data_len */
231                 0, 0, 0       /* ignore non-length fields */
232                 };
233
234         /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
235         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
236
237         /* Just the act of getting into the function from the application is
238          * going to cost about 7 cycles
239          */
240         rxdp = rxq->rx_ring + rxq->rx_tail;
241
242         rte_prefetch_non_temporal(rxdp);
243
244         /* See if we need to rearm the RX queue - gives the prefetch a bit
245          * of time to act
246          */
247         if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
248                 i40e_rxq_rearm(rxq);
249
250         /* Before we start moving massive data around, check to see if
251          * there is actually a packet available
252          */
253         if (!(rxdp->wb.qword1.status_error_len &
254                         rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
255                 return 0;
256
257         /* Cache is empty -> need to scan the buffer rings, but first move
258          * the next 'n' mbufs into the cache
259          */
260         sw_ring = &rxq->sw_ring[rxq->rx_tail];
261
262         /* A. load 4 packet in one loop
263          * [A*. mask out 4 unused dirty field in desc]
264          * B. copy 4 mbuf point from swring to rx_pkts
265          * C. calc the number of DD bits among the 4 packets
266          * [C*. extract the end-of-packet bit, if requested]
267          * D. fill info. from desc to mbuf
268          */
269
270         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
271                         pos += RTE_I40E_DESCS_PER_LOOP,
272                         rxdp += RTE_I40E_DESCS_PER_LOOP) {
273                 uint64x2_t descs[RTE_I40E_DESCS_PER_LOOP];
274                 uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
275                 uint16x8x2_t sterr_tmp1, sterr_tmp2;
276                 uint64x2_t mbp1, mbp2;
277                 uint16x8_t staterr;
278                 uint16x8_t tmp;
279                 uint64_t stat;
280
281                 int32x4_t len_shl = {0, 0, 0, PKTLEN_SHIFT};
282
283                 /* A.1 load desc[3-0] */
284                 descs[3] =  vld1q_u64((uint64_t *)(rxdp + 3));
285                 descs[2] =  vld1q_u64((uint64_t *)(rxdp + 2));
286                 descs[1] =  vld1q_u64((uint64_t *)(rxdp + 1));
287                 descs[0] =  vld1q_u64((uint64_t *)(rxdp));
288
289                 /* Use acquire fence to order loads of descriptor qwords */
290                 rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
291                 /* A.2 reload qword0 to make it ordered after qword1 load */
292                 descs[3] = vld1q_lane_u64((uint64_t *)(rxdp + 3), descs[3], 0);
293                 descs[2] = vld1q_lane_u64((uint64_t *)(rxdp + 2), descs[2], 0);
294                 descs[1] = vld1q_lane_u64((uint64_t *)(rxdp + 1), descs[1], 0);
295                 descs[0] = vld1q_lane_u64((uint64_t *)(rxdp), descs[0], 0);
296
297                 /* B.1 load 4 mbuf point */
298                 mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
299                 mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
300
301                 /* B.2 copy 4 mbuf point into rx_pkts  */
302                 vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
303                 vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
304
305                 if (split_packet) {
306                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
307                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
308                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
309                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
310                 }
311
312                 /* pkts shift the pktlen field to be 16-bit aligned*/
313                 uint32x4_t len3 = vshlq_u32(vreinterpretq_u32_u64(descs[3]),
314                                             len_shl);
315                 descs[3] = vreinterpretq_u64_u16(vsetq_lane_u16
316                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len3), 7),
317                                  vreinterpretq_u16_u64(descs[3]),
318                                  7));
319                 uint32x4_t len2 = vshlq_u32(vreinterpretq_u32_u64(descs[2]),
320                                             len_shl);
321                 descs[2] = vreinterpretq_u64_u16(vsetq_lane_u16
322                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len2), 7),
323                                  vreinterpretq_u16_u64(descs[2]),
324                                  7));
325                 uint32x4_t len1 = vshlq_u32(vreinterpretq_u32_u64(descs[1]),
326                                             len_shl);
327                 descs[1] = vreinterpretq_u64_u16(vsetq_lane_u16
328                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len1), 7),
329                                  vreinterpretq_u16_u64(descs[1]),
330                                  7));
331                 uint32x4_t len0 = vshlq_u32(vreinterpretq_u32_u64(descs[0]),
332                                             len_shl);
333                 descs[0] = vreinterpretq_u64_u16(vsetq_lane_u16
334                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len0), 7),
335                                  vreinterpretq_u16_u64(descs[0]),
336                                  7));
337
338                 /* D.1 pkts convert format from desc to pktmbuf */
339                 pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
340                 pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
341                 pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
342                 pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
343
344                 /* D.2 pkts set in_port/nb_seg and remove crc */
345                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
346                 pkt_mb4 = vreinterpretq_u8_u16(tmp);
347                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
348                 pkt_mb3 = vreinterpretq_u8_u16(tmp);
349                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
350                 pkt_mb2 = vreinterpretq_u8_u16(tmp);
351                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
352                 pkt_mb1 = vreinterpretq_u8_u16(tmp);
353
354                 /* D.3 copy final data to rx_pkts */
355                 vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
356                                 pkt_mb4);
357                 vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
358                                 pkt_mb3);
359                 vst1q_u8((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
360                                 pkt_mb2);
361                 vst1q_u8((void *)&rx_pkts[pos]->rx_descriptor_fields1,
362                                 pkt_mb1);
363
364                 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
365
366                 desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
367
368                 if (likely(pos + RTE_I40E_DESCS_PER_LOOP < nb_pkts)) {
369                         rte_prefetch_non_temporal(rxdp + RTE_I40E_DESCS_PER_LOOP);
370                 }
371
372                 /* C.1 4=>2 filter staterr info only */
373                 sterr_tmp2 = vzipq_u16(vreinterpretq_u16_u64(descs[1]),
374                                        vreinterpretq_u16_u64(descs[3]));
375                 sterr_tmp1 = vzipq_u16(vreinterpretq_u16_u64(descs[0]),
376                                        vreinterpretq_u16_u64(descs[2]));
377
378                 /* C.2 get 4 pkts staterr value  */
379                 staterr = vzipq_u16(sterr_tmp1.val[1],
380                                     sterr_tmp2.val[1]).val[0];
381
382                 /* C* extract and record EOP bit */
383                 if (split_packet) {
384                         uint8x16_t eop_shuf_mask = {
385                                         0x00, 0x02, 0x04, 0x06,
386                                         0xFF, 0xFF, 0xFF, 0xFF,
387                                         0xFF, 0xFF, 0xFF, 0xFF,
388                                         0xFF, 0xFF, 0xFF, 0xFF};
389                         uint8x16_t eop_bits;
390
391                         /* and with mask to extract bits, flipping 1-0 */
392                         eop_bits = vmvnq_u8(vreinterpretq_u8_u16(staterr));
393                         eop_bits = vandq_u8(eop_bits, eop_check);
394                         /* the staterr values are not in order, as the count
395                          * of dd bits doesn't care. However, for end of
396                          * packet tracking, we do care, so shuffle. This also
397                          * compresses the 32-bit values to 8-bit
398                          */
399                         eop_bits = vqtbl1q_u8(eop_bits, eop_shuf_mask);
400
401                         /* store the resulting 32-bit value */
402                         vst1q_lane_u32((uint32_t *)split_packet,
403                                        vreinterpretq_u32_u8(eop_bits), 0);
404                         split_packet += RTE_I40E_DESCS_PER_LOOP;
405
406                         /* zero-out next pointers */
407                         rx_pkts[pos]->next = NULL;
408                         rx_pkts[pos + 1]->next = NULL;
409                         rx_pkts[pos + 2]->next = NULL;
410                         rx_pkts[pos + 3]->next = NULL;
411                 }
412
413                 staterr = vshlq_n_u16(staterr, I40E_UINT16_BIT - 1);
414                 staterr = vreinterpretq_u16_s16(
415                                 vshrq_n_s16(vreinterpretq_s16_u16(staterr),
416                                             I40E_UINT16_BIT - 1));
417                 stat = ~vgetq_lane_u64(vreinterpretq_u64_u16(staterr), 0);
418
419                 /* C.4 calc avaialbe number of desc */
420                 if (unlikely(stat == 0)) {
421                         nb_pkts_recd += RTE_I40E_DESCS_PER_LOOP;
422                 } else {
423                         nb_pkts_recd += __builtin_ctzl(stat) / I40E_UINT16_BIT;
424                         break;
425                 }
426         }
427
428         /* Update our internal tail pointer */
429         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
430         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
431         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
432
433         return nb_pkts_recd;
434 }
435
436  /*
437  * Notice:
438  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
439  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
440  *   numbers of DD bits
441  */
442 uint16_t
443 i40e_recv_pkts_vec(void *__rte_restrict rx_queue,
444                 struct rte_mbuf **__rte_restrict rx_pkts, uint16_t nb_pkts)
445 {
446         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
447 }
448
449 /**
450  * vPMD receive routine that reassembles single burst of 32 scattered packets
451  *
452  * Notice:
453  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
454  */
455 static uint16_t
456 i40e_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
457                               uint16_t nb_pkts)
458 {
459
460         struct i40e_rx_queue *rxq = rx_queue;
461         uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
462
463         /* get some new buffers */
464         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
465                         split_flags);
466         if (nb_bufs == 0)
467                 return 0;
468
469         /* happy day case, full burst + no packets to be joined */
470         const uint64_t *split_fl64 = (uint64_t *)split_flags;
471
472         if (rxq->pkt_first_seg == NULL &&
473                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
474                         split_fl64[2] == 0 && split_fl64[3] == 0)
475                 return nb_bufs;
476
477         /* reassemble any packets that need reassembly*/
478         unsigned i = 0;
479
480         if (rxq->pkt_first_seg == NULL) {
481                 /* find the first split flag, and only reassemble then*/
482                 while (i < nb_bufs && !split_flags[i])
483                         i++;
484                 if (i == nb_bufs)
485                         return nb_bufs;
486                 rxq->pkt_first_seg = rx_pkts[i];
487         }
488         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
489                 &split_flags[i]);
490 }
491
492 /**
493  * vPMD receive routine that reassembles scattered packets.
494  */
495 uint16_t
496 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
497                              uint16_t nb_pkts)
498 {
499         uint16_t retval = 0;
500
501         while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
502                 uint16_t burst;
503
504                 burst = i40e_recv_scattered_burst_vec(rx_queue,
505                                                       rx_pkts + retval,
506                                                       RTE_I40E_VPMD_RX_BURST);
507                 retval += burst;
508                 nb_pkts -= burst;
509                 if (burst < RTE_I40E_VPMD_RX_BURST)
510                         return retval;
511         }
512
513         return retval + i40e_recv_scattered_burst_vec(rx_queue,
514                                                       rx_pkts + retval,
515                                                       nb_pkts);
516 }
517
518 static inline void
519 vtx1(volatile struct i40e_tx_desc *txdp,
520                 struct rte_mbuf *pkt, uint64_t flags)
521 {
522         uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
523                         ((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
524                         ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
525
526         uint64x2_t descriptor = {pkt->buf_iova + pkt->data_off, high_qw};
527         vst1q_u64((uint64_t *)txdp, descriptor);
528 }
529
530 static inline void
531 vtx(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkt,
532                 uint16_t nb_pkts,  uint64_t flags)
533 {
534         int i;
535
536         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
537                 vtx1(txdp, *pkt, flags);
538 }
539
540 uint16_t
541 i40e_xmit_fixed_burst_vec(void *__rte_restrict tx_queue,
542         struct rte_mbuf **__rte_restrict tx_pkts, uint16_t nb_pkts)
543 {
544         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
545         volatile struct i40e_tx_desc *txdp;
546         struct i40e_tx_entry *txep;
547         uint16_t n, nb_commit, tx_id;
548         uint64_t flags = I40E_TD_CMD;
549         uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
550         int i;
551
552         /* cross rx_thresh boundary is not allowed */
553         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
554
555         if (txq->nb_tx_free < txq->tx_free_thresh)
556                 i40e_tx_free_bufs(txq);
557
558         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
559         if (unlikely(nb_pkts == 0))
560                 return 0;
561
562         tx_id = txq->tx_tail;
563         txdp = &txq->tx_ring[tx_id];
564         txep = &txq->sw_ring[tx_id];
565
566         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
567
568         n = (uint16_t)(txq->nb_tx_desc - tx_id);
569         if (nb_commit >= n) {
570                 tx_backlog_entry(txep, tx_pkts, n);
571
572                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
573                         vtx1(txdp, *tx_pkts, flags);
574
575                 vtx1(txdp, *tx_pkts++, rs);
576
577                 nb_commit = (uint16_t)(nb_commit - n);
578
579                 tx_id = 0;
580                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
581
582                 /* avoid reach the end of ring */
583                 txdp = &txq->tx_ring[tx_id];
584                 txep = &txq->sw_ring[tx_id];
585         }
586
587         tx_backlog_entry(txep, tx_pkts, nb_commit);
588
589         vtx(txdp, tx_pkts, nb_commit, flags);
590
591         tx_id = (uint16_t)(tx_id + nb_commit);
592         if (tx_id > txq->tx_next_rs) {
593                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
594                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
595                                                 I40E_TXD_QW1_CMD_SHIFT);
596                 txq->tx_next_rs =
597                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
598         }
599
600         txq->tx_tail = tx_id;
601
602         rte_io_wmb();
603         I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
604
605         return nb_pkts;
606 }
607
608 void __rte_cold
609 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
610 {
611         _i40e_rx_queue_release_mbufs_vec(rxq);
612 }
613
614 int __rte_cold
615 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
616 {
617         return i40e_rxq_vec_setup_default(rxq);
618 }
619
620 int __rte_cold
621 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
622 {
623         return 0;
624 }
625
626 int __rte_cold
627 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
628 {
629         return i40e_rx_vec_dev_conf_condition_check_default(dev);
630 }