net/i40e: fix build with 16B descriptor on Arm
[dpdk.git] / drivers / net / i40e / i40e_rxtx_vec_neon.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation.
3  * Copyright(c) 2016-2018, Linaro Limited.
4  */
5
6 #include <stdint.h>
7 #include <ethdev_driver.h>
8 #include <rte_malloc.h>
9 #include <rte_vect.h>
10
11 #include "base/i40e_prototype.h"
12 #include "base/i40e_type.h"
13 #include "i40e_ethdev.h"
14 #include "i40e_rxtx.h"
15 #include "i40e_rxtx_vec_common.h"
16
17
18 #pragma GCC diagnostic ignored "-Wcast-qual"
19
20 static inline void
21 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
22 {
23         int i;
24         uint16_t rx_id;
25         volatile union i40e_rx_desc *rxdp;
26         struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
27         struct rte_mbuf *mb0, *mb1;
28         uint64x2_t dma_addr0, dma_addr1;
29         uint64x2_t zero = vdupq_n_u64(0);
30         uint64_t paddr;
31
32         rxdp = rxq->rx_ring + rxq->rxrearm_start;
33
34         /* Pull 'n' more MBUFs into the software ring */
35         if (unlikely(rte_mempool_get_bulk(rxq->mp,
36                                           (void *)rxep,
37                                           RTE_I40E_RXQ_REARM_THRESH) < 0)) {
38                 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
39                     rxq->nb_rx_desc) {
40                         for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
41                                 rxep[i].mbuf = &rxq->fake_mbuf;
42                                 vst1q_u64((uint64_t *)&rxdp[i].read, zero);
43                         }
44                 }
45                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46                         RTE_I40E_RXQ_REARM_THRESH;
47                 return;
48         }
49
50         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
51         for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
52                 mb0 = rxep[0].mbuf;
53                 mb1 = rxep[1].mbuf;
54
55                 paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
56                 dma_addr0 = vdupq_n_u64(paddr);
57
58                 /* flush desc with pa dma_addr */
59                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0);
60
61                 paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
62                 dma_addr1 = vdupq_n_u64(paddr);
63                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1);
64         }
65
66         rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
67         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
68                 rxq->rxrearm_start = 0;
69
70         rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
71
72         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
73                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
74
75         rte_io_wmb();
76         /* Update the tail pointer on the NIC */
77         I40E_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rx_id);
78 }
79
80 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
81 /* NEON version of FDIR mark extraction for 4 32B descriptors at a time */
82 static inline uint32x4_t
83 descs_to_fdir_32b(volatile union i40e_rx_desc *rxdp, struct rte_mbuf **rx_pkt)
84 {
85         /* 32B descriptors: Load 2nd half of descriptors for FDIR ID data */
86         uint64x2_t desc0_qw23, desc1_qw23, desc2_qw23, desc3_qw23;
87         desc0_qw23 = vld1q_u64((uint64_t *)&(rxdp + 0)->wb.qword2);
88         desc1_qw23 = vld1q_u64((uint64_t *)&(rxdp + 1)->wb.qword2);
89         desc2_qw23 = vld1q_u64((uint64_t *)&(rxdp + 2)->wb.qword2);
90         desc3_qw23 = vld1q_u64((uint64_t *)&(rxdp + 3)->wb.qword2);
91
92         /* FDIR ID data: move last u32 of each desc to 4 u32 lanes */
93         uint32x4_t v_unpack_02, v_unpack_13;
94         v_unpack_02 = vzipq_u32(vreinterpretq_u32_u64(desc0_qw23),
95                                 vreinterpretq_u32_u64(desc2_qw23)).val[1];
96         v_unpack_13 = vzipq_u32(vreinterpretq_u32_u64(desc1_qw23),
97                                 vreinterpretq_u32_u64(desc3_qw23)).val[1];
98         uint32x4_t v_fdir_ids = vzipq_u32(v_unpack_02, v_unpack_13).val[1];
99
100         /* Extended Status: extract from each lower 32 bits, to u32 lanes */
101         v_unpack_02 = vzipq_u32(vreinterpretq_u32_u64(desc0_qw23),
102                                 vreinterpretq_u32_u64(desc2_qw23)).val[0];
103         v_unpack_13 = vzipq_u32(vreinterpretq_u32_u64(desc1_qw23),
104                                 vreinterpretq_u32_u64(desc3_qw23)).val[0];
105         uint32x4_t v_flt_status = vzipq_u32(v_unpack_02, v_unpack_13).val[0];
106
107         /* Shift u32 left and right to "mask away" bits not required.
108          * Data required is 4:5 (zero based), so left shift by 26 (32-6)
109          * and then right shift by 30 (32 - 2 bits required).
110          */
111         v_flt_status = vshlq_n_u32(v_flt_status, 26);
112         v_flt_status = vshrq_n_u32(v_flt_status, 30);
113
114         /* Generate constant 1 in all u32 lanes */
115         RTE_BUILD_BUG_ON(I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID != 1);
116         uint32x4_t v_u32_one = vdupq_n_u32(1);
117
118         /* Per desc mask, bits set if FDIR ID is valid */
119         uint32x4_t v_fd_id_mask = vceqq_u32(v_flt_status, v_u32_one);
120
121         /* Mask ID data to zero if the FD_ID bit not set in desc */
122         v_fdir_ids = vandq_u32(v_fdir_ids, v_fd_id_mask);
123
124         /* Store data to fdir.hi in mbuf */
125         rx_pkt[0]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 0);
126         rx_pkt[1]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 1);
127         rx_pkt[2]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 2);
128         rx_pkt[3]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 3);
129
130         /* Convert fdir_id_mask into a single bit, then shift as required for
131          * correct location in the mbuf->olflags
132          */
133         RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
134         v_fd_id_mask = vshrq_n_u32(v_fd_id_mask, 31);
135         v_fd_id_mask = vshlq_n_u32(v_fd_id_mask, 13);
136
137         /* The returned value must be combined into each mbuf. This is already
138          * being done for RSS and VLAN mbuf olflags, so return bits to OR in.
139          */
140         return v_fd_id_mask;
141 }
142
143 #else /* 32 or 16B FDIR ID handling */
144
145 /* Handle 16B descriptor FDIR ID flag setting based on FLM(bit11). See scalar driver
146  * for scalar implementation of the same functionality.
147  */
148 static inline uint32x4_t
149 descs_to_fdir_16b(uint32x4_t fltstat, uint64x2_t descs[4], struct rte_mbuf **rx_pkt)
150 {
151         /* Unpack filter-status data from descriptors */
152         uint32x4_t v_tmp_02 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
153                                         vreinterpretq_u32_u64(descs[2])).val[0];
154         uint32x4_t v_tmp_13 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
155                                         vreinterpretq_u32_u64(descs[3])).val[0];
156         uint32x4_t v_fdir_ids = vzipq_u32(v_tmp_02, v_tmp_13).val[1];
157
158         /* Generate 111 and 11 in each u32 lane */
159         uint32x4_t v_111_mask = vdupq_n_u32(7);
160         uint32x4_t v_11_mask = vdupq_n_u32(3);
161
162         /* Compare and mask away FDIR ID data if bit not set */
163         uint32x4_t v_u32_bits = vandq_u32(v_111_mask, fltstat);
164         uint32x4_t v_fdir_id_mask = vceqq_u32(v_u32_bits, v_11_mask);
165         v_fdir_ids = vandq_u32(v_fdir_id_mask, v_fdir_ids);
166
167         /* Store data to fdir.hi in mbuf */
168         rx_pkt[0]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 0);
169         rx_pkt[1]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 1);
170         rx_pkt[2]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 2);
171         rx_pkt[3]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 3);
172
173         /* Top lane ones mask for FDIR isolation */
174         uint32x4_t v_desc_fdir_mask = {0, UINT32_MAX, 0, 0};
175
176         /* Move fdir_id_mask to correct lane, zero RSS in mbuf if fdir hits */
177         uint32x4_t v_zeros = {0, 0, 0, 0};
178         uint32x4_t v_desc3_shift = vextq_u32(v_fdir_id_mask, v_zeros, 2);
179         uint32x4_t v_desc3_mask = vandq_u32(v_desc_fdir_mask, v_desc3_shift);
180         descs[3] = vreinterpretq_u64_u32(vbslq_u32(v_desc3_mask, v_zeros,
181                                 vreinterpretq_u32_u64(descs[3])));
182
183         uint32x4_t v_desc2_shift = vextq_u32(v_fdir_id_mask, v_zeros, 1);
184         uint32x4_t v_desc2_mask = vandq_u32(v_desc_fdir_mask, v_desc2_shift);
185         descs[2] = vreinterpretq_u64_u32(vbslq_u32(v_desc2_mask, v_zeros,
186                                 vreinterpretq_u32_u64(descs[2])));
187
188         uint32x4_t v_desc1_shift = v_fdir_id_mask;
189         uint32x4_t v_desc1_mask = vandq_u32(v_desc_fdir_mask, v_desc1_shift);
190         descs[1] = vreinterpretq_u64_u32(vbslq_u32(v_desc1_mask, v_zeros,
191                                 vreinterpretq_u32_u64(descs[1])));
192
193         uint32x4_t v_desc0_shift = vextq_u32(v_zeros, v_fdir_id_mask, 3);
194         uint32x4_t v_desc0_mask = vandq_u32(v_desc_fdir_mask, v_desc0_shift);
195         descs[0] = vreinterpretq_u64_u32(vbslq_u32(v_desc0_mask, v_zeros,
196                                 vreinterpretq_u32_u64(descs[0])));
197
198         /* Shift to 1 or 0 bit per u32 lane, then to RTE_MBUF_F_RX_FDIR_ID offset */
199         RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
200         uint32x4_t v_mask_one_bit = vshrq_n_u32(v_fdir_id_mask, 31);
201         return vshlq_n_u32(v_mask_one_bit, 13);
202 }
203 #endif
204
205 static inline void
206 desc_to_olflags_v(struct i40e_rx_queue *rxq, volatile union i40e_rx_desc *rxdp,
207                   uint64x2_t descs[4], struct rte_mbuf **rx_pkts)
208 {
209         uint32x4_t vlan0, vlan1, rss, l3_l4e;
210         const uint64x2_t mbuf_init = {rxq->mbuf_initializer, 0};
211         uint64x2_t rearm0, rearm1, rearm2, rearm3;
212
213         /* mask everything except RSS, flow director and VLAN flags
214          * bit2 is for VLAN tag, bit11 for flow director indication
215          * bit13:12 for RSS indication.
216          */
217         const uint32x4_t rss_vlan_msk = {
218                         0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804};
219
220         const uint32x4_t cksum_mask = {
221                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
222                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
223                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
224                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
225                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
226                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
227                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
228                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
229                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
230                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
231                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
232                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD};
233
234         /* map rss and vlan type to rss hash and vlan flag */
235         const uint8x16_t vlan_flags = {
236                         0, 0, 0, 0,
237                         RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0, 0, 0,
238                         0, 0, 0, 0,
239                         0, 0, 0, 0};
240
241         const uint8x16_t rss_flags = {
242                         0, RTE_MBUF_F_RX_FDIR, 0, 0,
243                         0, 0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR,
244                         0, 0, 0, 0,
245                         0, 0, 0, 0};
246
247         const uint8x16_t l3_l4e_flags = {
248                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1,
249                         RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
250                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
251                         (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
252                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
253                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
254                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
255                          RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
256                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
257                          RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
258                         0, 0, 0, 0, 0, 0, 0, 0};
259
260         vlan0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
261                           vreinterpretq_u32_u64(descs[2])).val[1];
262         vlan1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
263                           vreinterpretq_u32_u64(descs[3])).val[1];
264         vlan0 = vzipq_u32(vlan0, vlan1).val[0];
265
266         vlan1 = vandq_u32(vlan0, rss_vlan_msk);
267         vlan0 = vreinterpretq_u32_u8(vqtbl1q_u8(vlan_flags,
268                                                 vreinterpretq_u8_u32(vlan1)));
269
270         const uint32x4_t desc_fltstat = vshrq_n_u32(vlan1, 11);
271         rss = vreinterpretq_u32_u8(vqtbl1q_u8(rss_flags,
272                                               vreinterpretq_u8_u32(desc_fltstat)));
273
274         l3_l4e = vshrq_n_u32(vlan1, 22);
275         l3_l4e = vreinterpretq_u32_u8(vqtbl1q_u8(l3_l4e_flags,
276                                               vreinterpretq_u8_u32(l3_l4e)));
277         /* then we shift left 1 bit */
278         l3_l4e = vshlq_n_u32(l3_l4e, 1);
279         /* we need to mask out the redundant bits */
280         l3_l4e = vandq_u32(l3_l4e, cksum_mask);
281
282         vlan0 = vorrq_u32(vlan0, rss);
283         vlan0 = vorrq_u32(vlan0, l3_l4e);
284
285         /* Extract FDIR ID only if FDIR is enabled to avoid useless work */
286         if (rxq->fdir_enabled) {
287 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
288                 uint32x4_t v_fdir_ol_flags = descs_to_fdir_32b(rxdp, rx_pkts);
289 #else
290                 (void)rxdp; /* rxdp not required for 16B desc mode */
291                 uint32x4_t v_fdir_ol_flags = descs_to_fdir_16b(desc_fltstat, descs, rx_pkts);
292 #endif
293                 /* OR in ol_flag bits after descriptor specific extraction */
294                 vlan0 = vorrq_u32(vlan0, v_fdir_ol_flags);
295         }
296
297         rearm0 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 0), mbuf_init, 1);
298         rearm1 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 1), mbuf_init, 1);
299         rearm2 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 2), mbuf_init, 1);
300         rearm3 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 3), mbuf_init, 1);
301
302         vst1q_u64((uint64_t *)&rx_pkts[0]->rearm_data, rearm0);
303         vst1q_u64((uint64_t *)&rx_pkts[1]->rearm_data, rearm1);
304         vst1q_u64((uint64_t *)&rx_pkts[2]->rearm_data, rearm2);
305         vst1q_u64((uint64_t *)&rx_pkts[3]->rearm_data, rearm3);
306 }
307
308 #define PKTLEN_SHIFT     10
309 #define I40E_UINT16_BIT (CHAR_BIT * sizeof(uint16_t))
310
311 static inline void
312 desc_to_ptype_v(uint64x2_t descs[4], struct rte_mbuf **__rte_restrict rx_pkts,
313                 uint32_t *__rte_restrict ptype_tbl)
314 {
315         int i;
316         uint8_t ptype;
317         uint8x16_t tmp;
318
319         for (i = 0; i < 4; i++) {
320                 tmp = vreinterpretq_u8_u64(vshrq_n_u64(descs[i], 30));
321                 ptype = vgetq_lane_u8(tmp, 8);
322                 rx_pkts[i]->packet_type = ptype_tbl[ptype];
323         }
324
325 }
326
327 /**
328  * vPMD raw receive routine, only accept(nb_pkts >= RTE_I40E_DESCS_PER_LOOP)
329  *
330  * Notice:
331  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
332  * - floor align nb_pkts to a RTE_I40E_DESCS_PER_LOOP power-of-two
333  */
334 static inline uint16_t
335 _recv_raw_pkts_vec(struct i40e_rx_queue *__rte_restrict rxq,
336                    struct rte_mbuf **__rte_restrict rx_pkts,
337                    uint16_t nb_pkts, uint8_t *split_packet)
338 {
339         volatile union i40e_rx_desc *rxdp;
340         struct i40e_rx_entry *sw_ring;
341         uint16_t nb_pkts_recd;
342         int pos;
343         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
344
345         /* mask to shuffle from desc. to mbuf */
346         uint8x16_t shuf_msk = {
347                 0xFF, 0xFF,   /* pkt_type set as unknown */
348                 0xFF, 0xFF,   /* pkt_type set as unknown */
349                 14, 15,       /* octet 15~14, low 16 bits pkt_len */
350                 0xFF, 0xFF,   /* skip high 16 bits pkt_len, zero out */
351                 14, 15,       /* octet 15~14, 16 bits data_len */
352                 2, 3,         /* octet 2~3, low 16 bits vlan_macip */
353                 4, 5, 6, 7    /* octet 4~7, 32bits rss */
354                 };
355
356         uint8x16_t eop_check = {
357                 0x02, 0x00, 0x02, 0x00,
358                 0x02, 0x00, 0x02, 0x00,
359                 0x00, 0x00, 0x00, 0x00,
360                 0x00, 0x00, 0x00, 0x00
361                 };
362
363         uint16x8_t crc_adjust = {
364                 0, 0,         /* ignore pkt_type field */
365                 rxq->crc_len, /* sub crc on pkt_len */
366                 0,            /* ignore high-16bits of pkt_len */
367                 rxq->crc_len, /* sub crc on data_len */
368                 0, 0, 0       /* ignore non-length fields */
369                 };
370
371         /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
372         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
373
374         /* Just the act of getting into the function from the application is
375          * going to cost about 7 cycles
376          */
377         rxdp = rxq->rx_ring + rxq->rx_tail;
378
379         rte_prefetch_non_temporal(rxdp);
380
381         /* See if we need to rearm the RX queue - gives the prefetch a bit
382          * of time to act
383          */
384         if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
385                 i40e_rxq_rearm(rxq);
386
387         /* Before we start moving massive data around, check to see if
388          * there is actually a packet available
389          */
390         if (!(rxdp->wb.qword1.status_error_len &
391                         rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
392                 return 0;
393
394         /* Cache is empty -> need to scan the buffer rings, but first move
395          * the next 'n' mbufs into the cache
396          */
397         sw_ring = &rxq->sw_ring[rxq->rx_tail];
398
399         /* A. load 4 packet in one loop
400          * [A*. mask out 4 unused dirty field in desc]
401          * B. copy 4 mbuf point from swring to rx_pkts
402          * C. calc the number of DD bits among the 4 packets
403          * [C*. extract the end-of-packet bit, if requested]
404          * D. fill info. from desc to mbuf
405          */
406
407         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
408                         pos += RTE_I40E_DESCS_PER_LOOP,
409                         rxdp += RTE_I40E_DESCS_PER_LOOP) {
410                 uint64x2_t descs[RTE_I40E_DESCS_PER_LOOP];
411                 uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
412                 uint16x8x2_t sterr_tmp1, sterr_tmp2;
413                 uint64x2_t mbp1, mbp2;
414                 uint16x8_t staterr;
415                 uint16x8_t tmp;
416                 uint64_t stat;
417
418                 int32x4_t len_shl = {0, 0, 0, PKTLEN_SHIFT};
419
420                 /* A.1 load desc[3-0] */
421                 descs[3] =  vld1q_u64((uint64_t *)(rxdp + 3));
422                 descs[2] =  vld1q_u64((uint64_t *)(rxdp + 2));
423                 descs[1] =  vld1q_u64((uint64_t *)(rxdp + 1));
424                 descs[0] =  vld1q_u64((uint64_t *)(rxdp));
425
426                 /* Use acquire fence to order loads of descriptor qwords */
427                 rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
428                 /* A.2 reload qword0 to make it ordered after qword1 load */
429                 descs[3] = vld1q_lane_u64((uint64_t *)(rxdp + 3), descs[3], 0);
430                 descs[2] = vld1q_lane_u64((uint64_t *)(rxdp + 2), descs[2], 0);
431                 descs[1] = vld1q_lane_u64((uint64_t *)(rxdp + 1), descs[1], 0);
432                 descs[0] = vld1q_lane_u64((uint64_t *)(rxdp), descs[0], 0);
433
434                 /* B.1 load 4 mbuf point */
435                 mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
436                 mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
437
438                 /* B.2 copy 4 mbuf point into rx_pkts  */
439                 vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
440                 vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
441
442                 if (split_packet) {
443                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
444                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
445                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
446                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
447                 }
448
449                 /* pkts shift the pktlen field to be 16-bit aligned*/
450                 uint32x4_t len3 = vshlq_u32(vreinterpretq_u32_u64(descs[3]),
451                                             len_shl);
452                 descs[3] = vreinterpretq_u64_u16(vsetq_lane_u16
453                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len3), 7),
454                                  vreinterpretq_u16_u64(descs[3]),
455                                  7));
456                 uint32x4_t len2 = vshlq_u32(vreinterpretq_u32_u64(descs[2]),
457                                             len_shl);
458                 descs[2] = vreinterpretq_u64_u16(vsetq_lane_u16
459                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len2), 7),
460                                  vreinterpretq_u16_u64(descs[2]),
461                                  7));
462                 uint32x4_t len1 = vshlq_u32(vreinterpretq_u32_u64(descs[1]),
463                                             len_shl);
464                 descs[1] = vreinterpretq_u64_u16(vsetq_lane_u16
465                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len1), 7),
466                                  vreinterpretq_u16_u64(descs[1]),
467                                  7));
468                 uint32x4_t len0 = vshlq_u32(vreinterpretq_u32_u64(descs[0]),
469                                             len_shl);
470                 descs[0] = vreinterpretq_u64_u16(vsetq_lane_u16
471                                 (vgetq_lane_u16(vreinterpretq_u16_u32(len0), 7),
472                                  vreinterpretq_u16_u64(descs[0]),
473                                  7));
474
475                 desc_to_olflags_v(rxq, rxdp, descs, &rx_pkts[pos]);
476
477                 /* D.1 pkts convert format from desc to pktmbuf */
478                 pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
479                 pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
480                 pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
481                 pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
482
483                 /* D.2 pkts set in_port/nb_seg and remove crc */
484                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
485                 pkt_mb4 = vreinterpretq_u8_u16(tmp);
486                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
487                 pkt_mb3 = vreinterpretq_u8_u16(tmp);
488                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
489                 pkt_mb2 = vreinterpretq_u8_u16(tmp);
490                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
491                 pkt_mb1 = vreinterpretq_u8_u16(tmp);
492
493                 /* D.3 copy final data to rx_pkts */
494                 vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
495                                 pkt_mb4);
496                 vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
497                                 pkt_mb3);
498                 vst1q_u8((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
499                                 pkt_mb2);
500                 vst1q_u8((void *)&rx_pkts[pos]->rx_descriptor_fields1,
501                                 pkt_mb1);
502
503                 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
504
505                 if (likely(pos + RTE_I40E_DESCS_PER_LOOP < nb_pkts)) {
506                         rte_prefetch_non_temporal(rxdp + RTE_I40E_DESCS_PER_LOOP);
507                 }
508
509                 /* C.1 4=>2 filter staterr info only */
510                 sterr_tmp2 = vzipq_u16(vreinterpretq_u16_u64(descs[1]),
511                                        vreinterpretq_u16_u64(descs[3]));
512                 sterr_tmp1 = vzipq_u16(vreinterpretq_u16_u64(descs[0]),
513                                        vreinterpretq_u16_u64(descs[2]));
514
515                 /* C.2 get 4 pkts staterr value  */
516                 staterr = vzipq_u16(sterr_tmp1.val[1],
517                                     sterr_tmp2.val[1]).val[0];
518
519                 /* C* extract and record EOP bit */
520                 if (split_packet) {
521                         uint8x16_t eop_shuf_mask = {
522                                         0x00, 0x02, 0x04, 0x06,
523                                         0xFF, 0xFF, 0xFF, 0xFF,
524                                         0xFF, 0xFF, 0xFF, 0xFF,
525                                         0xFF, 0xFF, 0xFF, 0xFF};
526                         uint8x16_t eop_bits;
527
528                         /* and with mask to extract bits, flipping 1-0 */
529                         eop_bits = vmvnq_u8(vreinterpretq_u8_u16(staterr));
530                         eop_bits = vandq_u8(eop_bits, eop_check);
531                         /* the staterr values are not in order, as the count
532                          * of dd bits doesn't care. However, for end of
533                          * packet tracking, we do care, so shuffle. This also
534                          * compresses the 32-bit values to 8-bit
535                          */
536                         eop_bits = vqtbl1q_u8(eop_bits, eop_shuf_mask);
537
538                         /* store the resulting 32-bit value */
539                         vst1q_lane_u32((uint32_t *)split_packet,
540                                        vreinterpretq_u32_u8(eop_bits), 0);
541                         split_packet += RTE_I40E_DESCS_PER_LOOP;
542
543                         /* zero-out next pointers */
544                         rx_pkts[pos]->next = NULL;
545                         rx_pkts[pos + 1]->next = NULL;
546                         rx_pkts[pos + 2]->next = NULL;
547                         rx_pkts[pos + 3]->next = NULL;
548                 }
549
550                 staterr = vshlq_n_u16(staterr, I40E_UINT16_BIT - 1);
551                 staterr = vreinterpretq_u16_s16(
552                                 vshrq_n_s16(vreinterpretq_s16_u16(staterr),
553                                             I40E_UINT16_BIT - 1));
554                 stat = ~vgetq_lane_u64(vreinterpretq_u64_u16(staterr), 0);
555
556                 /* C.4 calc available number of desc */
557                 if (unlikely(stat == 0)) {
558                         nb_pkts_recd += RTE_I40E_DESCS_PER_LOOP;
559                 } else {
560                         nb_pkts_recd += __builtin_ctzl(stat) / I40E_UINT16_BIT;
561                         break;
562                 }
563         }
564
565         /* Update our internal tail pointer */
566         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
567         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
568         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
569
570         return nb_pkts_recd;
571 }
572
573  /*
574  * Notice:
575  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
576  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
577  *   numbers of DD bits
578  */
579 uint16_t
580 i40e_recv_pkts_vec(void *__rte_restrict rx_queue,
581                 struct rte_mbuf **__rte_restrict rx_pkts, uint16_t nb_pkts)
582 {
583         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
584 }
585
586 /**
587  * vPMD receive routine that reassembles single burst of 32 scattered packets
588  *
589  * Notice:
590  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
591  */
592 static uint16_t
593 i40e_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
594                               uint16_t nb_pkts)
595 {
596
597         struct i40e_rx_queue *rxq = rx_queue;
598         uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
599
600         /* get some new buffers */
601         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
602                         split_flags);
603         if (nb_bufs == 0)
604                 return 0;
605
606         /* happy day case, full burst + no packets to be joined */
607         const uint64_t *split_fl64 = (uint64_t *)split_flags;
608
609         if (rxq->pkt_first_seg == NULL &&
610                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
611                         split_fl64[2] == 0 && split_fl64[3] == 0)
612                 return nb_bufs;
613
614         /* reassemble any packets that need reassembly*/
615         unsigned i = 0;
616
617         if (rxq->pkt_first_seg == NULL) {
618                 /* find the first split flag, and only reassemble then*/
619                 while (i < nb_bufs && !split_flags[i])
620                         i++;
621                 if (i == nb_bufs)
622                         return nb_bufs;
623                 rxq->pkt_first_seg = rx_pkts[i];
624         }
625         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
626                 &split_flags[i]);
627 }
628
629 /**
630  * vPMD receive routine that reassembles scattered packets.
631  */
632 uint16_t
633 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
634                              uint16_t nb_pkts)
635 {
636         uint16_t retval = 0;
637
638         while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
639                 uint16_t burst;
640
641                 burst = i40e_recv_scattered_burst_vec(rx_queue,
642                                                       rx_pkts + retval,
643                                                       RTE_I40E_VPMD_RX_BURST);
644                 retval += burst;
645                 nb_pkts -= burst;
646                 if (burst < RTE_I40E_VPMD_RX_BURST)
647                         return retval;
648         }
649
650         return retval + i40e_recv_scattered_burst_vec(rx_queue,
651                                                       rx_pkts + retval,
652                                                       nb_pkts);
653 }
654
655 static inline void
656 vtx1(volatile struct i40e_tx_desc *txdp,
657                 struct rte_mbuf *pkt, uint64_t flags)
658 {
659         uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
660                         ((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
661                         ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
662
663         uint64x2_t descriptor = {pkt->buf_iova + pkt->data_off, high_qw};
664         vst1q_u64((uint64_t *)txdp, descriptor);
665 }
666
667 static inline void
668 vtx(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkt,
669                 uint16_t nb_pkts,  uint64_t flags)
670 {
671         int i;
672
673         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
674                 vtx1(txdp, *pkt, flags);
675 }
676
677 uint16_t
678 i40e_xmit_fixed_burst_vec(void *__rte_restrict tx_queue,
679         struct rte_mbuf **__rte_restrict tx_pkts, uint16_t nb_pkts)
680 {
681         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
682         volatile struct i40e_tx_desc *txdp;
683         struct i40e_tx_entry *txep;
684         uint16_t n, nb_commit, tx_id;
685         uint64_t flags = I40E_TD_CMD;
686         uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
687         int i;
688
689         /* cross rx_thresh boundary is not allowed */
690         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
691
692         if (txq->nb_tx_free < txq->tx_free_thresh)
693                 i40e_tx_free_bufs(txq);
694
695         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
696         if (unlikely(nb_pkts == 0))
697                 return 0;
698
699         tx_id = txq->tx_tail;
700         txdp = &txq->tx_ring[tx_id];
701         txep = &txq->sw_ring[tx_id];
702
703         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
704
705         n = (uint16_t)(txq->nb_tx_desc - tx_id);
706         if (nb_commit >= n) {
707                 tx_backlog_entry(txep, tx_pkts, n);
708
709                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
710                         vtx1(txdp, *tx_pkts, flags);
711
712                 vtx1(txdp, *tx_pkts++, rs);
713
714                 nb_commit = (uint16_t)(nb_commit - n);
715
716                 tx_id = 0;
717                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
718
719                 /* avoid reach the end of ring */
720                 txdp = &txq->tx_ring[tx_id];
721                 txep = &txq->sw_ring[tx_id];
722         }
723
724         tx_backlog_entry(txep, tx_pkts, nb_commit);
725
726         vtx(txdp, tx_pkts, nb_commit, flags);
727
728         tx_id = (uint16_t)(tx_id + nb_commit);
729         if (tx_id > txq->tx_next_rs) {
730                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
731                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
732                                                 I40E_TXD_QW1_CMD_SHIFT);
733                 txq->tx_next_rs =
734                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
735         }
736
737         txq->tx_tail = tx_id;
738
739         rte_io_wmb();
740         I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
741
742         return nb_pkts;
743 }
744
745 void __rte_cold
746 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
747 {
748         _i40e_rx_queue_release_mbufs_vec(rxq);
749 }
750
751 int __rte_cold
752 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
753 {
754         return i40e_rxq_vec_setup_default(rxq);
755 }
756
757 int __rte_cold
758 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
759 {
760         return 0;
761 }
762
763 int __rte_cold
764 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
765 {
766         return i40e_rx_vec_dev_conf_condition_check_default(dev);
767 }