1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2015 Intel Corporation
6 #include <rte_ethdev_driver.h>
7 #include <rte_malloc.h>
9 #include "base/i40e_prototype.h"
10 #include "base/i40e_type.h"
11 #include "i40e_ethdev.h"
12 #include "i40e_rxtx.h"
13 #include "i40e_rxtx_vec_common.h"
15 #include <tmmintrin.h>
17 #ifndef __INTEL_COMPILER
18 #pragma GCC diagnostic ignored "-Wcast-qual"
22 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
26 volatile union i40e_rx_desc *rxdp;
27 struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
28 struct rte_mbuf *mb0, *mb1;
29 __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
30 RTE_PKTMBUF_HEADROOM);
31 __m128i dma_addr0, dma_addr1;
33 rxdp = rxq->rx_ring + rxq->rxrearm_start;
35 /* Pull 'n' more MBUFs into the software ring */
36 if (rte_mempool_get_bulk(rxq->mp,
38 RTE_I40E_RXQ_REARM_THRESH) < 0) {
39 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
41 dma_addr0 = _mm_setzero_si128();
42 for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
43 rxep[i].mbuf = &rxq->fake_mbuf;
44 _mm_store_si128((__m128i *)&rxdp[i].read,
48 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
49 RTE_I40E_RXQ_REARM_THRESH;
53 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
54 for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
55 __m128i vaddr0, vaddr1;
60 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
61 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
62 offsetof(struct rte_mbuf, buf_addr) + 8);
63 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
64 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
66 /* convert pa to dma_addr hdr/data */
67 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
68 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
70 /* add headroom to pa values */
71 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
72 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
74 /* flush desc with pa dma_addr */
75 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
76 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
79 rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
80 if (rxq->rxrearm_start >= rxq->nb_rx_desc)
81 rxq->rxrearm_start = 0;
83 rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
85 rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
86 (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
88 /* Update the tail pointer on the NIC */
89 I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
92 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
93 /* SSE version of FDIR mark extraction for 4 32B descriptors at a time */
95 descs_to_fdir_32b(volatile union i40e_rx_desc *rxdp, struct rte_mbuf **rx_pkt)
97 /* 32B descriptors: Load 2nd half of descriptors for FDIR ID data */
98 __m128i desc0_qw23, desc1_qw23, desc2_qw23, desc3_qw23;
99 desc0_qw23 = _mm_loadu_si128((__m128i *)&(rxdp + 0)->wb.qword2);
100 desc1_qw23 = _mm_loadu_si128((__m128i *)&(rxdp + 1)->wb.qword2);
101 desc2_qw23 = _mm_loadu_si128((__m128i *)&(rxdp + 2)->wb.qword2);
102 desc3_qw23 = _mm_loadu_si128((__m128i *)&(rxdp + 3)->wb.qword2);
104 /* FDIR ID data: move last u32 of each desc to 4 u32 lanes */
105 __m128i v_unpack_01, v_unpack_23;
106 v_unpack_01 = _mm_unpackhi_epi32(desc0_qw23, desc1_qw23);
107 v_unpack_23 = _mm_unpackhi_epi32(desc2_qw23, desc3_qw23);
108 __m128i v_fdir_ids = _mm_unpackhi_epi64(v_unpack_01, v_unpack_23);
110 /* Extended Status: extract from each lower 32 bits, to u32 lanes */
111 v_unpack_01 = _mm_unpacklo_epi32(desc0_qw23, desc1_qw23);
112 v_unpack_23 = _mm_unpacklo_epi32(desc2_qw23, desc3_qw23);
113 __m128i v_flt_status = _mm_unpacklo_epi64(v_unpack_01, v_unpack_23);
115 /* Shift u32 left and right to "mask away" bits not required.
116 * Data required is 4:5 (zero based), so left shift by 26 (32-6)
117 * and then right shift by 30 (32 - 2 bits required).
119 v_flt_status = _mm_slli_epi32(v_flt_status, 26);
120 v_flt_status = _mm_srli_epi32(v_flt_status, 30);
122 /* Generate constant 1 in all u32 lanes and compare */
123 RTE_BUILD_BUG_ON(I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID != 1);
124 __m128i v_zeros = _mm_setzero_si128();
125 __m128i v_ffff = _mm_cmpeq_epi32(v_zeros, v_zeros);
126 __m128i v_u32_one = _mm_srli_epi32(v_ffff, 31);
128 /* per desc mask, bits set if FDIR ID is valid */
129 __m128i v_fd_id_mask = _mm_cmpeq_epi32(v_flt_status, v_u32_one);
131 /* Mask ID data to zero if the FD_ID bit not set in desc */
132 v_fdir_ids = _mm_and_si128(v_fdir_ids, v_fd_id_mask);
134 /* Extract and store as u32. No advantage to combining into SSE
135 * stores, there are no surrounding stores to around fdir.hi
137 rx_pkt[0]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 0);
138 rx_pkt[1]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 1);
139 rx_pkt[2]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 2);
140 rx_pkt[3]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 3);
142 /* convert fdir_id_mask into a single bit, then shift as required for
143 * correct location in the mbuf->olflags
145 const uint32_t FDIR_ID_BIT_SHIFT = 13;
146 RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << FDIR_ID_BIT_SHIFT));
147 v_fd_id_mask = _mm_srli_epi32(v_fd_id_mask, 31);
148 v_fd_id_mask = _mm_slli_epi32(v_fd_id_mask, FDIR_ID_BIT_SHIFT);
150 /* The returned value must be combined into each mbuf. This is already
151 * being done for RSS and VLAN mbuf olflags, so return bits to OR in.
156 #else /* 32 or 16B FDIR ID handling */
158 /* Handle 16B descriptor FDIR ID flag setting based on FLM. See scalar driver
159 * for scalar implementation of the same functionality.
161 static inline __m128i
162 descs_to_fdir_16b(__m128i fltstat, __m128i descs[4], struct rte_mbuf **rx_pkt)
164 /* unpack filter-status data from descriptors */
165 __m128i v_tmp_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
166 __m128i v_tmp_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
167 __m128i v_fdir_ids = _mm_unpackhi_epi64(v_tmp_01, v_tmp_23);
169 /* Generate one bit in each u32 lane */
170 __m128i v_zeros = _mm_setzero_si128();
171 __m128i v_ffff = _mm_cmpeq_epi32(v_zeros, v_zeros);
172 __m128i v_111_mask = _mm_srli_epi32(v_ffff, 29);
173 __m128i v_11_mask = _mm_srli_epi32(v_ffff, 30);
175 /* Top lane ones mask for FDIR isolation */
176 __m128i v_desc_fdir_mask = _mm_insert_epi32(v_zeros, UINT32_MAX, 1);
178 /* Compare and mask away FDIR ID data if bit not set */
179 __m128i v_u32_bits = _mm_and_si128(v_111_mask, fltstat);
180 __m128i v_fdir_id_mask = _mm_cmpeq_epi32(v_u32_bits, v_11_mask);
181 v_fdir_ids = _mm_and_si128(v_fdir_id_mask, v_fdir_ids);
183 /* Store data to fdir.hi in mbuf */
184 rx_pkt[0]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 0);
185 rx_pkt[1]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 1);
186 rx_pkt[2]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 2);
187 rx_pkt[3]->hash.fdir.hi = _mm_extract_epi32(v_fdir_ids, 3);
189 /* Move fdir_id_mask to correct lane, blend RSS to zero on hits */
190 __m128i v_desc3_shift = _mm_alignr_epi8(v_zeros, v_fdir_id_mask, 8);
191 __m128i v_desc3_mask = _mm_and_si128(v_desc_fdir_mask, v_desc3_shift);
192 descs[3] = _mm_blendv_epi8(descs[3], _mm_setzero_si128(), v_desc3_mask);
194 __m128i v_desc2_shift = _mm_alignr_epi8(v_zeros, v_fdir_id_mask, 4);
195 __m128i v_desc2_mask = _mm_and_si128(v_desc_fdir_mask, v_desc2_shift);
196 descs[2] = _mm_blendv_epi8(descs[2], _mm_setzero_si128(), v_desc2_mask);
198 __m128i v_desc1_shift = v_fdir_id_mask;
199 __m128i v_desc1_mask = _mm_and_si128(v_desc_fdir_mask, v_desc1_shift);
200 descs[1] = _mm_blendv_epi8(descs[1], _mm_setzero_si128(), v_desc1_mask);
202 __m128i v_desc0_shift = _mm_alignr_epi8(v_fdir_id_mask, v_zeros, 12);
203 __m128i v_desc0_mask = _mm_and_si128(v_desc_fdir_mask, v_desc0_shift);
204 descs[0] = _mm_blendv_epi8(descs[0], _mm_setzero_si128(), v_desc0_mask);
206 /* Shift to 1 or 0 bit per u32 lane, then to PKT_RX_FDIR_ID offset */
207 const uint32_t FDIR_ID_BIT_SHIFT = 13;
208 RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << FDIR_ID_BIT_SHIFT));
209 __m128i v_mask_one_bit = _mm_srli_epi32(v_fdir_id_mask, 31);
210 return _mm_slli_epi32(v_mask_one_bit, FDIR_ID_BIT_SHIFT);
215 desc_to_olflags_v(struct i40e_rx_queue *rxq, volatile union i40e_rx_desc *rxdp,
216 __m128i descs[4], struct rte_mbuf **rx_pkts)
218 const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
219 __m128i rearm0, rearm1, rearm2, rearm3;
221 __m128i vlan0, vlan1, rss, l3_l4e;
223 /* mask everything except RSS, flow director and VLAN flags
224 * bit2 is for VLAN tag, bit11 for flow director indication
225 * bit13:12 for RSS indication.
227 const __m128i rss_vlan_msk = _mm_set_epi32(
228 0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804);
230 const __m128i cksum_mask = _mm_set_epi32(
231 PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
232 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
233 PKT_RX_EIP_CKSUM_BAD,
234 PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
235 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
236 PKT_RX_EIP_CKSUM_BAD,
237 PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
238 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
239 PKT_RX_EIP_CKSUM_BAD,
240 PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
241 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
242 PKT_RX_EIP_CKSUM_BAD);
244 /* map rss and vlan type to rss hash and vlan flag */
245 const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
247 0, 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
250 const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
252 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
253 0, 0, PKT_RX_FDIR, 0);
255 const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
256 /* shift right 1 bit to make sure it not exceed 255 */
257 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
258 PKT_RX_IP_CKSUM_BAD) >> 1,
259 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
260 PKT_RX_L4_CKSUM_BAD) >> 1,
261 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
262 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
263 (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
264 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
265 PKT_RX_IP_CKSUM_BAD >> 1,
266 (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
268 /* Unpack "status" from quadword 1, bits 0:32 */
269 vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
270 vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
271 vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
273 vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
274 vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
276 const __m128i desc_fltstat = _mm_srli_epi32(vlan1, 11);
277 rss = _mm_shuffle_epi8(rss_flags, desc_fltstat);
279 l3_l4e = _mm_srli_epi32(vlan1, 22);
280 l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
281 /* then we shift left 1 bit */
282 l3_l4e = _mm_slli_epi32(l3_l4e, 1);
283 /* we need to mask out the reduntant bits */
284 l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);
286 vlan0 = _mm_or_si128(vlan0, rss);
287 vlan0 = _mm_or_si128(vlan0, l3_l4e);
289 /* Extract FDIR ID only if FDIR is enabled to avoid useless work */
290 if (rxq->fdir_enabled) {
291 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
292 __m128i v_fdir_ol_flags = descs_to_fdir_32b(rxdp, rx_pkts);
294 (void)rxdp; /* rxdp not required for 16B desc mode */
295 __m128i v_fdir_ol_flags = descs_to_fdir_16b(desc_fltstat,
298 /* OR in ol_flag bits after descriptor speicific extraction */
299 vlan0 = _mm_or_si128(vlan0, v_fdir_ol_flags);
303 * At this point, we have the 4 sets of flags in the low 16-bits
304 * of each 32-bit value in vlan0.
305 * We want to extract these, and merge them with the mbuf init data
306 * so we can do a single 16-byte write to the mbuf to set the flags
307 * and all the other initialization fields. Extracting the
308 * appropriate flags means that we have to do a shift and blend for
309 * each mbuf before we do the write.
311 rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
312 rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
313 rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
314 rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
316 /* write the rearm data and the olflags in one write */
317 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
318 offsetof(struct rte_mbuf, rearm_data) + 8);
319 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
320 RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
321 _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
322 _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
323 _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
324 _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
327 #define PKTLEN_SHIFT 10
330 desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
333 __m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
334 __m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
336 ptype0 = _mm_srli_epi64(ptype0, 30);
337 ptype1 = _mm_srli_epi64(ptype1, 30);
339 rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 0)];
340 rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 8)];
341 rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 0)];
342 rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 8)];
347 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
348 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
351 static inline uint16_t
352 _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
353 uint16_t nb_pkts, uint8_t *split_packet)
355 volatile union i40e_rx_desc *rxdp;
356 struct i40e_rx_entry *sw_ring;
357 uint16_t nb_pkts_recd;
361 uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
363 __m128i crc_adjust = _mm_set_epi16(
364 0, 0, 0, /* ignore non-length fields */
365 -rxq->crc_len, /* sub crc on data_len */
366 0, /* ignore high-16bits of pkt_len */
367 -rxq->crc_len, /* sub crc on pkt_len */
368 0, 0 /* ignore pkt_type field */
371 * compile-time check the above crc_adjust layout is correct.
372 * NOTE: the first field (lowest address) is given last in set_epi16
375 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
376 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
377 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
378 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
379 __m128i dd_check, eop_check;
381 /* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */
382 nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST);
384 /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
385 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
387 /* Just the act of getting into the function from the application is
388 * going to cost about 7 cycles
390 rxdp = rxq->rx_ring + rxq->rx_tail;
394 /* See if we need to rearm the RX queue - gives the prefetch a bit
397 if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
400 /* Before we start moving massive data around, check to see if
401 * there is actually a packet available
403 if (!(rxdp->wb.qword1.status_error_len &
404 rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
407 /* 4 packets DD mask */
408 dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
410 /* 4 packets EOP mask */
411 eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
413 /* mask to shuffle from desc. to mbuf */
414 shuf_msk = _mm_set_epi8(
415 7, 6, 5, 4, /* octet 4~7, 32bits rss */
416 3, 2, /* octet 2~3, low 16 bits vlan_macip */
417 15, 14, /* octet 15~14, 16 bits data_len */
418 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
419 15, 14, /* octet 15~14, low 16 bits pkt_len */
420 0xFF, 0xFF, /* pkt_type set as unknown */
421 0xFF, 0xFF /*pkt_type set as unknown */
424 * Compile-time verify the shuffle mask
425 * NOTE: some field positions already verified above, but duplicated
426 * here for completeness in case of future modifications.
428 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
429 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
430 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
431 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
432 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
433 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
434 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
435 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
437 /* Cache is empty -> need to scan the buffer rings, but first move
438 * the next 'n' mbufs into the cache
440 sw_ring = &rxq->sw_ring[rxq->rx_tail];
442 /* A. load 4 packet in one loop
443 * [A*. mask out 4 unused dirty field in desc]
444 * B. copy 4 mbuf point from swring to rx_pkts
445 * C. calc the number of DD bits among the 4 packets
446 * [C*. extract the end-of-packet bit, if requested]
447 * D. fill info. from desc to mbuf
450 for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
451 pos += RTE_I40E_DESCS_PER_LOOP,
452 rxdp += RTE_I40E_DESCS_PER_LOOP) {
453 __m128i descs[RTE_I40E_DESCS_PER_LOOP];
454 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
455 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
456 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
458 #if defined(RTE_ARCH_X86_64)
462 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
463 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
464 /* Read desc statuses backwards to avoid race condition */
465 /* A.1 load 4 pkts desc */
466 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
467 rte_compiler_barrier();
469 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
470 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
472 #if defined(RTE_ARCH_X86_64)
473 /* B.1 load 2 64 bit mbuf points */
474 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
477 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
478 rte_compiler_barrier();
479 /* B.1 load 2 mbuf point */
480 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
481 rte_compiler_barrier();
482 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
484 #if defined(RTE_ARCH_X86_64)
485 /* B.2 copy 2 mbuf point into rx_pkts */
486 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
490 rte_mbuf_prefetch_part2(rx_pkts[pos]);
491 rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
492 rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
493 rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
496 /* avoid compiler reorder optimization */
497 rte_compiler_barrier();
499 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
500 const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
501 const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
503 /* merge the now-aligned packet length fields back in */
504 descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
505 descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
507 /* C.1 4=>2 filter staterr info only */
508 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
509 /* C.1 4=>2 filter staterr info only */
510 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
512 desc_to_olflags_v(rxq, rxdp, descs, &rx_pkts[pos]);
514 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
515 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
516 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
518 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
519 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
520 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
522 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
523 const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
524 const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
526 /* merge the now-aligned packet length fields back in */
527 descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
528 descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
530 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
531 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
532 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
534 /* C.2 get 4 pkts staterr value */
535 zero = _mm_xor_si128(dd_check, dd_check);
536 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
538 /* D.3 copy final 3,4 data to rx_pkts */
539 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
541 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
544 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
545 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
546 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
548 /* C* extract and record EOP bit */
550 __m128i eop_shuf_mask = _mm_set_epi8(
551 0xFF, 0xFF, 0xFF, 0xFF,
552 0xFF, 0xFF, 0xFF, 0xFF,
553 0xFF, 0xFF, 0xFF, 0xFF,
554 0x04, 0x0C, 0x00, 0x08
557 /* and with mask to extract bits, flipping 1-0 */
558 __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
559 /* the staterr values are not in order, as the count
560 * count of dd bits doesn't care. However, for end of
561 * packet tracking, we do care, so shuffle. This also
562 * compresses the 32-bit values to 8-bit
564 eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
565 /* store the resulting 32-bit value */
566 *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
567 split_packet += RTE_I40E_DESCS_PER_LOOP;
570 /* C.3 calc available number of desc */
571 staterr = _mm_and_si128(staterr, dd_check);
572 staterr = _mm_packs_epi32(staterr, zero);
574 /* D.3 copy final 1,2 data to rx_pkts */
575 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
577 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
579 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
580 /* C.4 calc avaialbe number of desc */
581 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
583 if (likely(var != RTE_I40E_DESCS_PER_LOOP))
587 /* Update our internal tail pointer */
588 rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
589 rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
590 rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
597 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
598 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
602 i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
605 return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
608 /* vPMD receive routine that reassembles scattered packets
610 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
611 * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
615 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
619 struct i40e_rx_queue *rxq = rx_queue;
620 uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
622 /* get some new buffers */
623 uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
628 /* happy day case, full burst + no packets to be joined */
629 const uint64_t *split_fl64 = (uint64_t *)split_flags;
631 if (rxq->pkt_first_seg == NULL &&
632 split_fl64[0] == 0 && split_fl64[1] == 0 &&
633 split_fl64[2] == 0 && split_fl64[3] == 0)
636 /* reassemble any packets that need reassembly*/
639 if (rxq->pkt_first_seg == NULL) {
640 /* find the first split flag, and only reassemble then*/
641 while (i < nb_bufs && !split_flags[i])
645 rxq->pkt_first_seg = rx_pkts[i];
647 return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
652 vtx1(volatile struct i40e_tx_desc *txdp,
653 struct rte_mbuf *pkt, uint64_t flags)
655 uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
656 ((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) |
657 ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
659 __m128i descriptor = _mm_set_epi64x(high_qw,
660 pkt->buf_iova + pkt->data_off);
661 _mm_store_si128((__m128i *)txdp, descriptor);
665 vtx(volatile struct i40e_tx_desc *txdp,
666 struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
670 for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
671 vtx1(txdp, *pkt, flags);
675 i40e_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
678 struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
679 volatile struct i40e_tx_desc *txdp;
680 struct i40e_tx_entry *txep;
681 uint16_t n, nb_commit, tx_id;
682 uint64_t flags = I40E_TD_CMD;
683 uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
686 /* cross rx_thresh boundary is not allowed */
687 nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
689 if (txq->nb_tx_free < txq->tx_free_thresh)
690 i40e_tx_free_bufs(txq);
692 nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
693 if (unlikely(nb_pkts == 0))
696 tx_id = txq->tx_tail;
697 txdp = &txq->tx_ring[tx_id];
698 txep = &txq->sw_ring[tx_id];
700 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
702 n = (uint16_t)(txq->nb_tx_desc - tx_id);
703 if (nb_commit >= n) {
704 tx_backlog_entry(txep, tx_pkts, n);
706 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
707 vtx1(txdp, *tx_pkts, flags);
709 vtx1(txdp, *tx_pkts++, rs);
711 nb_commit = (uint16_t)(nb_commit - n);
714 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
716 /* avoid reach the end of ring */
717 txdp = &txq->tx_ring[tx_id];
718 txep = &txq->sw_ring[tx_id];
721 tx_backlog_entry(txep, tx_pkts, nb_commit);
723 vtx(txdp, tx_pkts, nb_commit, flags);
725 tx_id = (uint16_t)(tx_id + nb_commit);
726 if (tx_id > txq->tx_next_rs) {
727 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
728 rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
729 I40E_TXD_QW1_CMD_SHIFT);
731 (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
734 txq->tx_tail = tx_id;
736 I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
742 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
744 _i40e_rx_queue_release_mbufs_vec(rxq);
748 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
750 return i40e_rxq_vec_setup_default(rxq);
754 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
760 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
762 return i40e_rx_vec_dev_conf_condition_check_default(dev);