1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017 Intel Corporation
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
19 #include <rte_atomic.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
29 #include "base/iavf_prototype.h"
30 #include "base/iavf_adminq_cmd.h"
31 #include "base/iavf_type.h"
34 #include "iavf_rxtx.h"
36 static int iavf_dev_configure(struct rte_eth_dev *dev);
37 static int iavf_dev_start(struct rte_eth_dev *dev);
38 static void iavf_dev_stop(struct rte_eth_dev *dev);
39 static void iavf_dev_close(struct rte_eth_dev *dev);
40 static int iavf_dev_info_get(struct rte_eth_dev *dev,
41 struct rte_eth_dev_info *dev_info);
42 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
44 struct rte_eth_stats *stats);
45 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
46 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
47 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
48 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
49 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
50 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
51 struct rte_ether_addr *addr,
54 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
55 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
56 uint16_t vlan_id, int on);
57 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
58 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
59 struct rte_eth_rss_reta_entry64 *reta_conf,
61 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
62 struct rte_eth_rss_reta_entry64 *reta_conf,
64 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
65 struct rte_eth_rss_conf *rss_conf);
66 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
67 struct rte_eth_rss_conf *rss_conf);
68 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
69 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
70 struct rte_ether_addr *mac_addr);
71 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
73 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
76 int iavf_logtype_init;
77 int iavf_logtype_driver;
79 #ifdef RTE_LIBRTE_IAVF_DEBUG_RX
82 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
85 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_FREE
86 int iavf_logtype_tx_free;
89 static const struct rte_pci_id pci_id_iavf_map[] = {
90 { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
91 { .vendor_id = 0, /* sentinel */ },
94 static const struct eth_dev_ops iavf_eth_dev_ops = {
95 .dev_configure = iavf_dev_configure,
96 .dev_start = iavf_dev_start,
97 .dev_stop = iavf_dev_stop,
98 .dev_close = iavf_dev_close,
99 .dev_infos_get = iavf_dev_info_get,
100 .dev_supported_ptypes_get = iavf_dev_supported_ptypes_get,
101 .link_update = iavf_dev_link_update,
102 .stats_get = iavf_dev_stats_get,
103 .stats_reset = iavf_dev_stats_reset,
104 .promiscuous_enable = iavf_dev_promiscuous_enable,
105 .promiscuous_disable = iavf_dev_promiscuous_disable,
106 .allmulticast_enable = iavf_dev_allmulticast_enable,
107 .allmulticast_disable = iavf_dev_allmulticast_disable,
108 .mac_addr_add = iavf_dev_add_mac_addr,
109 .mac_addr_remove = iavf_dev_del_mac_addr,
110 .vlan_filter_set = iavf_dev_vlan_filter_set,
111 .vlan_offload_set = iavf_dev_vlan_offload_set,
112 .rx_queue_start = iavf_dev_rx_queue_start,
113 .rx_queue_stop = iavf_dev_rx_queue_stop,
114 .tx_queue_start = iavf_dev_tx_queue_start,
115 .tx_queue_stop = iavf_dev_tx_queue_stop,
116 .rx_queue_setup = iavf_dev_rx_queue_setup,
117 .rx_queue_release = iavf_dev_rx_queue_release,
118 .tx_queue_setup = iavf_dev_tx_queue_setup,
119 .tx_queue_release = iavf_dev_tx_queue_release,
120 .mac_addr_set = iavf_dev_set_default_mac_addr,
121 .reta_update = iavf_dev_rss_reta_update,
122 .reta_query = iavf_dev_rss_reta_query,
123 .rss_hash_update = iavf_dev_rss_hash_update,
124 .rss_hash_conf_get = iavf_dev_rss_hash_conf_get,
125 .rxq_info_get = iavf_dev_rxq_info_get,
126 .txq_info_get = iavf_dev_txq_info_get,
127 .rx_queue_count = iavf_dev_rxq_count,
128 .rx_descriptor_status = iavf_dev_rx_desc_status,
129 .tx_descriptor_status = iavf_dev_tx_desc_status,
130 .mtu_set = iavf_dev_mtu_set,
131 .rx_queue_intr_enable = iavf_dev_rx_queue_intr_enable,
132 .rx_queue_intr_disable = iavf_dev_rx_queue_intr_disable,
136 iavf_dev_configure(struct rte_eth_dev *dev)
138 struct iavf_adapter *ad =
139 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
140 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
141 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
143 ad->rx_bulk_alloc_allowed = true;
144 #ifdef RTE_LIBRTE_IAVF_INC_VECTOR
145 /* Initialize to TRUE. If any of Rx queues doesn't meet the
146 * vector Rx/Tx preconditions, it will be reset.
148 ad->rx_vec_allowed = true;
149 ad->tx_vec_allowed = true;
151 ad->rx_vec_allowed = false;
152 ad->tx_vec_allowed = false;
155 /* Vlan stripping setting */
156 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
157 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
158 iavf_enable_vlan_strip(ad);
160 iavf_disable_vlan_strip(ad);
166 iavf_init_rss(struct iavf_adapter *adapter)
168 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
169 struct rte_eth_rss_conf *rss_conf;
173 rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
174 nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
175 IAVF_MAX_NUM_QUEUES);
177 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
178 PMD_DRV_LOG(DEBUG, "RSS is not supported");
181 if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
182 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
183 /* set all lut items to default queue */
184 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
186 ret = iavf_configure_rss_lut(adapter);
190 /* In IAVF, RSS enablement is set by PF driver. It is not supported
191 * to set based on rss_conf->rss_hf.
194 /* configure RSS key */
195 if (!rss_conf->rss_key) {
196 /* Calculate the default hash key */
197 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
198 vf->rss_key[i] = (uint8_t)rte_rand();
200 rte_memcpy(vf->rss_key, rss_conf->rss_key,
201 RTE_MIN(rss_conf->rss_key_len,
202 vf->vf_res->rss_key_size));
204 /* init RSS LUT table */
205 for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
210 /* send virtchnnl ops to configure rss*/
211 ret = iavf_configure_rss_lut(adapter);
214 ret = iavf_configure_rss_key(adapter);
222 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
224 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
225 struct rte_eth_dev_data *dev_data = dev->data;
226 uint16_t buf_size, max_pkt_len, len;
228 buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
230 /* Calculate the maximum packet length allowed */
231 len = rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS;
232 max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
234 /* Check if the jumbo frame and maximum packet length are set
237 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
238 if (max_pkt_len <= RTE_ETHER_MAX_LEN ||
239 max_pkt_len > IAVF_FRAME_SIZE_MAX) {
240 PMD_DRV_LOG(ERR, "maximum packet length must be "
241 "larger than %u and smaller than %u, "
242 "as jumbo frame is enabled",
243 (uint32_t)RTE_ETHER_MAX_LEN,
244 (uint32_t)IAVF_FRAME_SIZE_MAX);
248 if (max_pkt_len < RTE_ETHER_MIN_LEN ||
249 max_pkt_len > RTE_ETHER_MAX_LEN) {
250 PMD_DRV_LOG(ERR, "maximum packet length must be "
251 "larger than %u and smaller than %u, "
252 "as jumbo frame is disabled",
253 (uint32_t)RTE_ETHER_MIN_LEN,
254 (uint32_t)RTE_ETHER_MAX_LEN);
259 rxq->max_pkt_len = max_pkt_len;
260 if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
261 (rxq->max_pkt_len + 2 * IAVF_VLAN_TAG_SIZE) > buf_size) {
262 dev_data->scattered_rx = 1;
264 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
265 IAVF_WRITE_FLUSH(hw);
271 iavf_init_queues(struct rte_eth_dev *dev)
273 struct iavf_rx_queue **rxq =
274 (struct iavf_rx_queue **)dev->data->rx_queues;
275 int i, ret = IAVF_SUCCESS;
277 for (i = 0; i < dev->data->nb_rx_queues; i++) {
278 if (!rxq[i] || !rxq[i]->q_set)
280 ret = iavf_init_rxq(dev, rxq[i]);
281 if (ret != IAVF_SUCCESS)
284 /* set rx/tx function to vector/scatter/single-segment
285 * according to parameters
287 iavf_set_rx_function(dev);
288 iavf_set_tx_function(dev);
293 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
294 struct rte_intr_handle *intr_handle)
296 struct iavf_adapter *adapter =
297 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
298 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
299 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
300 uint16_t interval, i;
303 if (rte_intr_cap_multiple(intr_handle) &&
304 dev->data->dev_conf.intr_conf.rxq) {
305 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
309 if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
310 intr_handle->intr_vec =
311 rte_zmalloc("intr_vec",
312 dev->data->nb_rx_queues * sizeof(int), 0);
313 if (!intr_handle->intr_vec) {
314 PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
315 dev->data->nb_rx_queues);
320 if (!dev->data->dev_conf.intr_conf.rxq ||
321 !rte_intr_dp_is_en(intr_handle)) {
322 /* Rx interrupt disabled, Map interrupt only for writeback */
324 if (vf->vf_res->vf_cap_flags &
325 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
326 /* If WB_ON_ITR supports, enable it */
327 vf->msix_base = IAVF_RX_VEC_START;
328 IAVF_WRITE_REG(hw, IAVFINT_DYN_CTLN1(vf->msix_base - 1),
329 IAVFINT_DYN_CTLN1_ITR_INDX_MASK |
330 IAVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
332 /* If no WB_ON_ITR offload flags, need to set
333 * interrupt for descriptor write back.
335 vf->msix_base = IAVF_MISC_VEC_ID;
338 interval = iavf_calc_itr_interval(
339 IAVF_QUEUE_ITR_INTERVAL_MAX);
340 IAVF_WRITE_REG(hw, IAVFINT_DYN_CTL01,
341 IAVFINT_DYN_CTL01_INTENA_MASK |
342 (IAVF_ITR_INDEX_DEFAULT <<
343 IAVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
345 IAVFINT_DYN_CTL01_INTERVAL_SHIFT));
347 IAVF_WRITE_FLUSH(hw);
348 /* map all queues to the same interrupt */
349 for (i = 0; i < dev->data->nb_rx_queues; i++)
350 vf->rxq_map[vf->msix_base] |= 1 << i;
352 if (!rte_intr_allow_others(intr_handle)) {
354 vf->msix_base = IAVF_MISC_VEC_ID;
355 for (i = 0; i < dev->data->nb_rx_queues; i++) {
356 vf->rxq_map[vf->msix_base] |= 1 << i;
357 intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID;
360 "vector %u are mapping to all Rx queues",
363 /* If Rx interrupt is reuquired, and we can use
364 * multi interrupts, then the vec is from 1
366 vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
367 intr_handle->nb_efd);
368 vf->msix_base = IAVF_RX_VEC_START;
369 vec = IAVF_RX_VEC_START;
370 for (i = 0; i < dev->data->nb_rx_queues; i++) {
371 vf->rxq_map[vec] |= 1 << i;
372 intr_handle->intr_vec[i] = vec++;
373 if (vec >= vf->nb_msix)
374 vec = IAVF_RX_VEC_START;
377 "%u vectors are mapping to %u Rx queues",
378 vf->nb_msix, dev->data->nb_rx_queues);
382 if (iavf_config_irq_map(adapter)) {
383 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
390 iavf_start_queues(struct rte_eth_dev *dev)
392 struct iavf_rx_queue *rxq;
393 struct iavf_tx_queue *txq;
396 for (i = 0; i < dev->data->nb_tx_queues; i++) {
397 txq = dev->data->tx_queues[i];
398 if (txq->tx_deferred_start)
400 if (iavf_dev_tx_queue_start(dev, i) != 0) {
401 PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
406 for (i = 0; i < dev->data->nb_rx_queues; i++) {
407 rxq = dev->data->rx_queues[i];
408 if (rxq->rx_deferred_start)
410 if (iavf_dev_rx_queue_start(dev, i) != 0) {
411 PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
420 iavf_dev_start(struct rte_eth_dev *dev)
422 struct iavf_adapter *adapter =
423 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
424 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
425 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
426 struct rte_intr_handle *intr_handle = dev->intr_handle;
428 PMD_INIT_FUNC_TRACE();
430 hw->adapter_stopped = 0;
432 vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
433 vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
434 dev->data->nb_tx_queues);
436 if (iavf_init_queues(dev) != 0) {
437 PMD_DRV_LOG(ERR, "failed to do Queue init");
441 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
442 if (iavf_init_rss(adapter) != 0) {
443 PMD_DRV_LOG(ERR, "configure rss failed");
448 if (iavf_configure_queues(adapter) != 0) {
449 PMD_DRV_LOG(ERR, "configure queues failed");
453 if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
454 PMD_DRV_LOG(ERR, "configure irq failed");
457 /* re-enable intr again, because efd assign may change */
458 if (dev->data->dev_conf.intr_conf.rxq != 0) {
459 rte_intr_disable(intr_handle);
460 rte_intr_enable(intr_handle);
463 /* Set all mac addrs */
464 iavf_add_del_all_mac_addr(adapter, TRUE);
466 if (iavf_start_queues(dev) != 0) {
467 PMD_DRV_LOG(ERR, "enable queues failed");
474 iavf_add_del_all_mac_addr(adapter, FALSE);
481 iavf_dev_stop(struct rte_eth_dev *dev)
483 struct iavf_adapter *adapter =
484 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
485 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
486 struct rte_intr_handle *intr_handle = dev->intr_handle;
488 PMD_INIT_FUNC_TRACE();
490 if (hw->adapter_stopped == 1)
493 iavf_stop_queues(dev);
495 /* Disable the interrupt for Rx */
496 rte_intr_efd_disable(intr_handle);
497 /* Rx interrupt vector mapping free */
498 if (intr_handle->intr_vec) {
499 rte_free(intr_handle->intr_vec);
500 intr_handle->intr_vec = NULL;
503 /* remove all mac addrs */
504 iavf_add_del_all_mac_addr(adapter, FALSE);
505 hw->adapter_stopped = 1;
509 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
511 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
513 dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
514 dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
515 dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
516 dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
517 dev_info->hash_key_size = vf->vf_res->rss_key_size;
518 dev_info->reta_size = vf->vf_res->rss_lut_size;
519 dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
520 dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
521 dev_info->rx_offload_capa =
522 DEV_RX_OFFLOAD_VLAN_STRIP |
523 DEV_RX_OFFLOAD_QINQ_STRIP |
524 DEV_RX_OFFLOAD_IPV4_CKSUM |
525 DEV_RX_OFFLOAD_UDP_CKSUM |
526 DEV_RX_OFFLOAD_TCP_CKSUM |
527 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
528 DEV_RX_OFFLOAD_SCATTER |
529 DEV_RX_OFFLOAD_JUMBO_FRAME |
530 DEV_RX_OFFLOAD_VLAN_FILTER;
531 dev_info->tx_offload_capa =
532 DEV_TX_OFFLOAD_VLAN_INSERT |
533 DEV_TX_OFFLOAD_QINQ_INSERT |
534 DEV_TX_OFFLOAD_IPV4_CKSUM |
535 DEV_TX_OFFLOAD_UDP_CKSUM |
536 DEV_TX_OFFLOAD_TCP_CKSUM |
537 DEV_TX_OFFLOAD_SCTP_CKSUM |
538 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
539 DEV_TX_OFFLOAD_TCP_TSO |
540 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
541 DEV_TX_OFFLOAD_GRE_TNL_TSO |
542 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
543 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
544 DEV_TX_OFFLOAD_MULTI_SEGS;
546 dev_info->default_rxconf = (struct rte_eth_rxconf) {
547 .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
552 dev_info->default_txconf = (struct rte_eth_txconf) {
553 .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
554 .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
558 dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
559 .nb_max = IAVF_MAX_RING_DESC,
560 .nb_min = IAVF_MIN_RING_DESC,
561 .nb_align = IAVF_ALIGN_RING_DESC,
564 dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
565 .nb_max = IAVF_MAX_RING_DESC,
566 .nb_min = IAVF_MIN_RING_DESC,
567 .nb_align = IAVF_ALIGN_RING_DESC,
573 static const uint32_t *
574 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
576 static const uint32_t ptypes[] = {
578 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
581 RTE_PTYPE_L4_NONFRAG,
591 iavf_dev_link_update(struct rte_eth_dev *dev,
592 __rte_unused int wait_to_complete)
594 struct rte_eth_link new_link;
595 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
597 /* Only read status info stored in VF, and the info is updated
598 * when receive LINK_CHANGE evnet from PF by Virtchnnl.
600 switch (vf->link_speed) {
602 new_link.link_speed = ETH_SPEED_NUM_10M;
605 new_link.link_speed = ETH_SPEED_NUM_100M;
608 new_link.link_speed = ETH_SPEED_NUM_1G;
611 new_link.link_speed = ETH_SPEED_NUM_10G;
614 new_link.link_speed = ETH_SPEED_NUM_20G;
617 new_link.link_speed = ETH_SPEED_NUM_25G;
620 new_link.link_speed = ETH_SPEED_NUM_40G;
623 new_link.link_speed = ETH_SPEED_NUM_50G;
626 new_link.link_speed = ETH_SPEED_NUM_100G;
629 new_link.link_speed = ETH_SPEED_NUM_NONE;
633 new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
634 new_link.link_status = vf->link_up ? ETH_LINK_UP :
636 new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
637 ETH_LINK_SPEED_FIXED);
639 if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
640 *(uint64_t *)&dev->data->dev_link,
641 *(uint64_t *)&new_link) == 0)
648 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
650 struct iavf_adapter *adapter =
651 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
652 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
655 if (vf->promisc_unicast_enabled)
658 ret = iavf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
660 vf->promisc_unicast_enabled = TRUE;
668 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
670 struct iavf_adapter *adapter =
671 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
672 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
675 if (!vf->promisc_unicast_enabled)
678 ret = iavf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
680 vf->promisc_unicast_enabled = FALSE;
688 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
690 struct iavf_adapter *adapter =
691 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
692 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
695 if (vf->promisc_multicast_enabled)
698 ret = iavf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
700 vf->promisc_multicast_enabled = TRUE;
708 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
710 struct iavf_adapter *adapter =
711 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
712 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
715 if (!vf->promisc_multicast_enabled)
718 ret = iavf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
720 vf->promisc_multicast_enabled = FALSE;
728 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
729 __rte_unused uint32_t index,
730 __rte_unused uint32_t pool)
732 struct iavf_adapter *adapter =
733 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
734 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
737 if (rte_is_zero_ether_addr(addr)) {
738 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
742 err = iavf_add_del_eth_addr(adapter, addr, TRUE);
744 PMD_DRV_LOG(ERR, "fail to add MAC address");
754 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
756 struct iavf_adapter *adapter =
757 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
758 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
759 struct rte_ether_addr *addr;
762 addr = &dev->data->mac_addrs[index];
764 err = iavf_add_del_eth_addr(adapter, addr, FALSE);
766 PMD_DRV_LOG(ERR, "fail to delete MAC address");
772 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
774 struct iavf_adapter *adapter =
775 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
776 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
779 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
782 err = iavf_add_del_vlan(adapter, vlan_id, on);
789 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
791 struct iavf_adapter *adapter =
792 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
793 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
794 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
797 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
800 /* Vlan stripping setting */
801 if (mask & ETH_VLAN_STRIP_MASK) {
802 /* Enable or disable VLAN stripping */
803 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
804 err = iavf_enable_vlan_strip(adapter);
806 err = iavf_disable_vlan_strip(adapter);
815 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
816 struct rte_eth_rss_reta_entry64 *reta_conf,
819 struct iavf_adapter *adapter =
820 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
821 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
823 uint16_t i, idx, shift;
826 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
829 if (reta_size != vf->vf_res->rss_lut_size) {
830 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
831 "(%d) doesn't match the number of hardware can "
832 "support (%d)", reta_size, vf->vf_res->rss_lut_size);
836 lut = rte_zmalloc("rss_lut", reta_size, 0);
838 PMD_DRV_LOG(ERR, "No memory can be allocated");
841 /* store the old lut table temporarily */
842 rte_memcpy(lut, vf->rss_lut, reta_size);
844 for (i = 0; i < reta_size; i++) {
845 idx = i / RTE_RETA_GROUP_SIZE;
846 shift = i % RTE_RETA_GROUP_SIZE;
847 if (reta_conf[idx].mask & (1ULL << shift))
848 lut[i] = reta_conf[idx].reta[shift];
851 rte_memcpy(vf->rss_lut, lut, reta_size);
852 /* send virtchnnl ops to configure rss*/
853 ret = iavf_configure_rss_lut(adapter);
854 if (ret) /* revert back */
855 rte_memcpy(vf->rss_lut, lut, reta_size);
862 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
863 struct rte_eth_rss_reta_entry64 *reta_conf,
866 struct iavf_adapter *adapter =
867 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
868 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
869 uint16_t i, idx, shift;
871 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
874 if (reta_size != vf->vf_res->rss_lut_size) {
875 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
876 "(%d) doesn't match the number of hardware can "
877 "support (%d)", reta_size, vf->vf_res->rss_lut_size);
881 for (i = 0; i < reta_size; i++) {
882 idx = i / RTE_RETA_GROUP_SIZE;
883 shift = i % RTE_RETA_GROUP_SIZE;
884 if (reta_conf[idx].mask & (1ULL << shift))
885 reta_conf[idx].reta[shift] = vf->rss_lut[i];
892 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
893 struct rte_eth_rss_conf *rss_conf)
895 struct iavf_adapter *adapter =
896 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
897 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
899 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
902 /* HENA setting, it is enabled by default, no change */
903 if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
904 PMD_DRV_LOG(DEBUG, "No key to be configured");
906 } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
907 PMD_DRV_LOG(ERR, "The size of hash key configured "
908 "(%d) doesn't match the size of hardware can "
909 "support (%d)", rss_conf->rss_key_len,
910 vf->vf_res->rss_key_size);
914 rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
916 return iavf_configure_rss_key(adapter);
920 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
921 struct rte_eth_rss_conf *rss_conf)
923 struct iavf_adapter *adapter =
924 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
925 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
927 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
930 /* Just set it to default value now. */
931 rss_conf->rss_hf = IAVF_RSS_OFFLOAD_ALL;
933 if (!rss_conf->rss_key)
936 rss_conf->rss_key_len = vf->vf_res->rss_key_size;
937 rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
943 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
945 uint32_t frame_size = mtu + IAVF_ETH_OVERHEAD;
948 if (mtu < RTE_ETHER_MIN_MTU || frame_size > IAVF_FRAME_SIZE_MAX)
951 /* mtu setting is forbidden if port is start */
952 if (dev->data->dev_started) {
953 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
957 if (frame_size > RTE_ETHER_MAX_LEN)
958 dev->data->dev_conf.rxmode.offloads |=
959 DEV_RX_OFFLOAD_JUMBO_FRAME;
961 dev->data->dev_conf.rxmode.offloads &=
962 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
964 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
970 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
971 struct rte_ether_addr *mac_addr)
973 struct iavf_adapter *adapter =
974 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
975 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
976 struct rte_ether_addr *perm_addr, *old_addr;
979 old_addr = (struct rte_ether_addr *)hw->mac.addr;
980 perm_addr = (struct rte_ether_addr *)hw->mac.perm_addr;
982 if (rte_is_same_ether_addr(mac_addr, old_addr))
985 /* If the MAC address is configured by host, skip the setting */
986 if (rte_is_valid_assigned_ether_addr(perm_addr))
989 ret = iavf_add_del_eth_addr(adapter, old_addr, FALSE);
991 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
992 " %02X:%02X:%02X:%02X:%02X:%02X",
993 old_addr->addr_bytes[0],
994 old_addr->addr_bytes[1],
995 old_addr->addr_bytes[2],
996 old_addr->addr_bytes[3],
997 old_addr->addr_bytes[4],
998 old_addr->addr_bytes[5]);
1000 ret = iavf_add_del_eth_addr(adapter, mac_addr, TRUE);
1002 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1003 " %02X:%02X:%02X:%02X:%02X:%02X",
1004 mac_addr->addr_bytes[0],
1005 mac_addr->addr_bytes[1],
1006 mac_addr->addr_bytes[2],
1007 mac_addr->addr_bytes[3],
1008 mac_addr->addr_bytes[4],
1009 mac_addr->addr_bytes[5]);
1014 rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1019 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1021 if (*stat >= *offset)
1022 *stat = *stat - *offset;
1024 *stat = (uint64_t)((*stat +
1025 ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1027 *stat &= IAVF_48_BIT_MASK;
1031 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1033 if (*stat >= *offset)
1034 *stat = (uint64_t)(*stat - *offset);
1036 *stat = (uint64_t)((*stat +
1037 ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1041 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1043 struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset;
1045 iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1046 iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1047 iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1048 iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1049 iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1050 iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1051 iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1052 iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1053 iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1054 iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1055 iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1059 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1061 struct iavf_adapter *adapter =
1062 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1063 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1064 struct iavf_vsi *vsi = &vf->vsi;
1065 struct virtchnl_eth_stats *pstats = NULL;
1068 ret = iavf_query_stats(adapter, &pstats);
1070 iavf_update_stats(vsi, pstats);
1071 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1072 pstats->rx_broadcast;
1073 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1075 stats->imissed = pstats->rx_discards;
1076 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1077 stats->ibytes = pstats->rx_bytes;
1078 stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
1079 stats->obytes = pstats->tx_bytes;
1081 PMD_DRV_LOG(ERR, "Get statistics failed");
1087 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1090 struct iavf_adapter *adapter =
1091 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1092 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1093 struct iavf_vsi *vsi = &vf->vsi;
1094 struct virtchnl_eth_stats *pstats = NULL;
1096 /* read stat values to clear hardware registers */
1097 ret = iavf_query_stats(adapter, &pstats);
1101 /* set stats offset base on current values */
1102 vsi->eth_stats_offset = *pstats;
1108 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1110 struct iavf_adapter *adapter =
1111 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1112 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1113 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1116 msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1117 if (msix_intr == IAVF_MISC_VEC_ID) {
1118 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1119 IAVF_WRITE_REG(hw, IAVFINT_DYN_CTL01,
1120 IAVFINT_DYN_CTL01_INTENA_MASK |
1121 IAVFINT_DYN_CTL01_CLEARPBA_MASK |
1122 IAVFINT_DYN_CTL01_ITR_INDX_MASK);
1125 IAVFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1126 IAVFINT_DYN_CTLN1_INTENA_MASK |
1127 IAVFINT_DYN_CTL01_CLEARPBA_MASK |
1128 IAVFINT_DYN_CTLN1_ITR_INDX_MASK);
1131 IAVF_WRITE_FLUSH(hw);
1133 rte_intr_ack(&pci_dev->intr_handle);
1139 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1141 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1142 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1145 msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1146 if (msix_intr == IAVF_MISC_VEC_ID) {
1147 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1152 IAVFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1155 IAVF_WRITE_FLUSH(hw);
1160 iavf_check_vf_reset_done(struct iavf_hw *hw)
1164 for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1165 reset = IAVF_READ_REG(hw, IAVFGEN_RSTAT) &
1166 IAVFGEN_RSTAT_VFR_STATE_MASK;
1167 reset = reset >> IAVFGEN_RSTAT_VFR_STATE_SHIFT;
1168 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1169 reset == VIRTCHNL_VFR_COMPLETED)
1174 if (i >= IAVF_RESET_WAIT_CNT)
1181 iavf_init_vf(struct rte_eth_dev *dev)
1184 struct iavf_adapter *adapter =
1185 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1186 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1187 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1189 err = iavf_set_mac_type(hw);
1191 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1195 err = iavf_check_vf_reset_done(hw);
1197 PMD_INIT_LOG(ERR, "VF is still resetting");
1201 iavf_init_adminq_parameter(hw);
1202 err = iavf_init_adminq(hw);
1204 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1208 vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
1210 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1213 if (iavf_check_api_version(adapter) != 0) {
1214 PMD_INIT_LOG(ERR, "check_api version failed");
1218 bufsz = sizeof(struct virtchnl_vf_resource) +
1219 (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1220 vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1222 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1225 if (iavf_get_vf_resource(adapter) != 0) {
1226 PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
1229 /* Allocate memort for RSS info */
1230 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1231 vf->rss_key = rte_zmalloc("rss_key",
1232 vf->vf_res->rss_key_size, 0);
1234 PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1237 vf->rss_lut = rte_zmalloc("rss_lut",
1238 vf->vf_res->rss_lut_size, 0);
1240 PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1246 rte_free(vf->rss_key);
1247 rte_free(vf->rss_lut);
1249 rte_free(vf->vf_res);
1252 rte_free(vf->aq_resp);
1254 iavf_shutdown_adminq(hw);
1259 /* Enable default admin queue interrupt setting */
1261 iavf_enable_irq0(struct iavf_hw *hw)
1263 /* Enable admin queue interrupt trigger */
1264 IAVF_WRITE_REG(hw, IAVFINT_ICR0_ENA1, IAVFINT_ICR0_ENA1_ADMINQ_MASK);
1266 IAVF_WRITE_REG(hw, IAVFINT_DYN_CTL01, IAVFINT_DYN_CTL01_INTENA_MASK |
1267 IAVFINT_DYN_CTL01_CLEARPBA_MASK | IAVFINT_DYN_CTL01_ITR_INDX_MASK);
1269 IAVF_WRITE_FLUSH(hw);
1273 iavf_disable_irq0(struct iavf_hw *hw)
1275 /* Disable all interrupt types */
1276 IAVF_WRITE_REG(hw, IAVFINT_ICR0_ENA1, 0);
1277 IAVF_WRITE_REG(hw, IAVFINT_DYN_CTL01,
1278 IAVFINT_DYN_CTL01_ITR_INDX_MASK);
1279 IAVF_WRITE_FLUSH(hw);
1283 iavf_dev_interrupt_handler(void *param)
1285 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1286 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1288 iavf_disable_irq0(hw);
1290 iavf_handle_virtchnl_msg(dev);
1292 iavf_enable_irq0(hw);
1296 iavf_dev_init(struct rte_eth_dev *eth_dev)
1298 struct iavf_adapter *adapter =
1299 IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1300 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1301 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1303 PMD_INIT_FUNC_TRACE();
1305 /* assign ops func pointer */
1306 eth_dev->dev_ops = &iavf_eth_dev_ops;
1307 eth_dev->rx_pkt_burst = &iavf_recv_pkts;
1308 eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
1309 eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
1311 /* For secondary processes, we don't initialise any further as primary
1312 * has already done this work. Only check if we need a different RX
1315 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1316 iavf_set_rx_function(eth_dev);
1317 iavf_set_tx_function(eth_dev);
1320 rte_eth_copy_pci_info(eth_dev, pci_dev);
1322 hw->vendor_id = pci_dev->id.vendor_id;
1323 hw->device_id = pci_dev->id.device_id;
1324 hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1325 hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1326 hw->bus.bus_id = pci_dev->addr.bus;
1327 hw->bus.device = pci_dev->addr.devid;
1328 hw->bus.func = pci_dev->addr.function;
1329 hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1330 hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1331 adapter->eth_dev = eth_dev;
1333 if (iavf_init_vf(eth_dev) != 0) {
1334 PMD_INIT_LOG(ERR, "Init vf failed");
1339 eth_dev->data->mac_addrs = rte_zmalloc(
1340 "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
1341 if (!eth_dev->data->mac_addrs) {
1342 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1343 " store MAC addresses",
1344 RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
1347 /* If the MAC address is not configured by host,
1348 * generate a random one.
1350 if (!rte_is_valid_assigned_ether_addr(
1351 (struct rte_ether_addr *)hw->mac.addr))
1352 rte_eth_random_addr(hw->mac.addr);
1353 rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
1354 ð_dev->data->mac_addrs[0]);
1356 /* register callback func to eal lib */
1357 rte_intr_callback_register(&pci_dev->intr_handle,
1358 iavf_dev_interrupt_handler,
1361 /* enable uio intr after callback register */
1362 rte_intr_enable(&pci_dev->intr_handle);
1364 /* configure and enable device interrupt */
1365 iavf_enable_irq0(hw);
1371 iavf_dev_close(struct rte_eth_dev *dev)
1373 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1374 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1375 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1378 iavf_shutdown_adminq(hw);
1379 /* disable uio intr before callback unregister */
1380 rte_intr_disable(intr_handle);
1382 /* unregister callback func from eal lib */
1383 rte_intr_callback_unregister(intr_handle,
1384 iavf_dev_interrupt_handler, dev);
1385 iavf_disable_irq0(hw);
1389 iavf_dev_uninit(struct rte_eth_dev *dev)
1391 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1392 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1394 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1397 dev->dev_ops = NULL;
1398 dev->rx_pkt_burst = NULL;
1399 dev->tx_pkt_burst = NULL;
1400 if (hw->adapter_stopped == 0)
1401 iavf_dev_close(dev);
1403 rte_free(vf->vf_res);
1407 rte_free(vf->aq_resp);
1411 rte_free(vf->rss_lut);
1415 rte_free(vf->rss_key);
1422 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1423 struct rte_pci_device *pci_dev)
1425 return rte_eth_dev_pci_generic_probe(pci_dev,
1426 sizeof(struct iavf_adapter), iavf_dev_init);
1429 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
1431 return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
1434 /* Adaptive virtual function driver struct */
1435 static struct rte_pci_driver rte_iavf_pmd = {
1436 .id_table = pci_id_iavf_map,
1437 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
1438 .probe = eth_iavf_pci_probe,
1439 .remove = eth_iavf_pci_remove,
1442 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
1443 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
1444 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
1445 RTE_INIT(iavf_init_log)
1447 iavf_logtype_init = rte_log_register("pmd.net.iavf.init");
1448 if (iavf_logtype_init >= 0)
1449 rte_log_set_level(iavf_logtype_init, RTE_LOG_NOTICE);
1450 iavf_logtype_driver = rte_log_register("pmd.net.iavf.driver");
1451 if (iavf_logtype_driver >= 0)
1452 rte_log_set_level(iavf_logtype_driver, RTE_LOG_NOTICE);
1454 #ifdef RTE_LIBRTE_IAVF_DEBUG_RX
1455 iavf_logtype_rx = rte_log_register("pmd.net.iavf.rx");
1456 if (iavf_logtype_rx >= 0)
1457 rte_log_set_level(iavf_logtype_rx, RTE_LOG_DEBUG);
1460 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
1461 iavf_logtype_tx = rte_log_register("pmd.net.iavf.tx");
1462 if (iavf_logtype_tx >= 0)
1463 rte_log_set_level(iavf_logtype_tx, RTE_LOG_DEBUG);
1466 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_FREE
1467 iavf_logtype_tx_free = rte_log_register("pmd.net.iavf.tx_free");
1468 if (iavf_logtype_tx_free >= 0)
1469 rte_log_set_level(iavf_logtype_tx_free, RTE_LOG_DEBUG);
1473 /* memory func for base code */
1474 enum iavf_status_code
1475 iavf_allocate_dma_mem_d(__rte_unused struct iavf_hw *hw,
1476 struct iavf_dma_mem *mem,
1480 const struct rte_memzone *mz = NULL;
1481 char z_name[RTE_MEMZONE_NAMESIZE];
1484 return IAVF_ERR_PARAM;
1486 snprintf(z_name, sizeof(z_name), "iavf_dma_%"PRIu64, rte_rand());
1487 mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY,
1488 RTE_MEMZONE_IOVA_CONTIG, alignment, RTE_PGSIZE_2M);
1490 return IAVF_ERR_NO_MEMORY;
1494 mem->pa = mz->phys_addr;
1495 mem->zone = (const void *)mz;
1497 "memzone %s allocated with physical address: %"PRIu64,
1500 return IAVF_SUCCESS;
1503 enum iavf_status_code
1504 iavf_free_dma_mem_d(__rte_unused struct iavf_hw *hw,
1505 struct iavf_dma_mem *mem)
1508 return IAVF_ERR_PARAM;
1511 "memzone %s to be freed with physical address: %"PRIu64,
1512 ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1513 rte_memzone_free((const struct rte_memzone *)mem->zone);
1518 return IAVF_SUCCESS;
1521 enum iavf_status_code
1522 iavf_allocate_virt_mem_d(__rte_unused struct iavf_hw *hw,
1523 struct iavf_virt_mem *mem,
1527 return IAVF_ERR_PARAM;
1530 mem->va = rte_zmalloc("iavf", size, 0);
1533 return IAVF_SUCCESS;
1535 return IAVF_ERR_NO_MEMORY;
1538 enum iavf_status_code
1539 iavf_free_virt_mem_d(__rte_unused struct iavf_hw *hw,
1540 struct iavf_virt_mem *mem)
1543 return IAVF_ERR_PARAM;
1548 return IAVF_SUCCESS;