net/virtio: support NAPI when using vhost-net backend
[dpdk.git] / drivers / net / iavf / iavf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_alarm.h>
20 #include <rte_atomic.h>
21 #include <rte_eal.h>
22 #include <rte_ether.h>
23 #include <ethdev_driver.h>
24 #include <ethdev_pci.h>
25 #include <rte_malloc.h>
26 #include <rte_memzone.h>
27 #include <rte_dev.h>
28
29 #include "iavf.h"
30 #include "iavf_rxtx.h"
31 #include "iavf_generic_flow.h"
32 #include "rte_pmd_iavf.h"
33 #include "iavf_ipsec_crypto.h"
34
35 /* devargs */
36 #define IAVF_PROTO_XTR_ARG         "proto_xtr"
37 #define IAVF_QUANTA_SIZE_ARG       "quanta_size"
38
39 static const char * const iavf_valid_args[] = {
40         IAVF_PROTO_XTR_ARG,
41         IAVF_QUANTA_SIZE_ARG,
42         NULL
43 };
44
45 static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = {
46         .name = "intel_pmd_dynfield_proto_xtr_metadata",
47         .size = sizeof(uint32_t),
48         .align = __alignof__(uint32_t),
49         .flags = 0,
50 };
51
52 struct iavf_proto_xtr_ol {
53         const struct rte_mbuf_dynflag param;
54         uint64_t *ol_flag;
55         bool required;
56 };
57
58 static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = {
59         [IAVF_PROTO_XTR_VLAN] = {
60                 .param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
61                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask },
62         [IAVF_PROTO_XTR_IPV4] = {
63                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
64                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask },
65         [IAVF_PROTO_XTR_IPV6] = {
66                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
67                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask },
68         [IAVF_PROTO_XTR_IPV6_FLOW] = {
69                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
70                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask },
71         [IAVF_PROTO_XTR_TCP] = {
72                 .param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
73                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask },
74         [IAVF_PROTO_XTR_IP_OFFSET] = {
75                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
76                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask },
77         [IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID] = {
78                 .param = {
79                 .name = "intel_pmd_dynflag_proto_xtr_ipsec_crypto_said" },
80                 .ol_flag =
81                         &rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask },
82 };
83
84 static int iavf_dev_configure(struct rte_eth_dev *dev);
85 static int iavf_dev_start(struct rte_eth_dev *dev);
86 static int iavf_dev_stop(struct rte_eth_dev *dev);
87 static int iavf_dev_close(struct rte_eth_dev *dev);
88 static int iavf_dev_reset(struct rte_eth_dev *dev);
89 static int iavf_dev_info_get(struct rte_eth_dev *dev,
90                              struct rte_eth_dev_info *dev_info);
91 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
92 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
93                              struct rte_eth_stats *stats);
94 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
95 static int iavf_dev_xstats_reset(struct rte_eth_dev *dev);
96 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
97                                  struct rte_eth_xstat *xstats, unsigned int n);
98 static int iavf_dev_xstats_get_names(struct rte_eth_dev *dev,
99                                        struct rte_eth_xstat_name *xstats_names,
100                                        unsigned int limit);
101 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
102 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
103 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
104 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
105 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
106                                 struct rte_ether_addr *addr,
107                                 uint32_t index,
108                                 uint32_t pool);
109 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
110 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
111                                    uint16_t vlan_id, int on);
112 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
113 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
114                                    struct rte_eth_rss_reta_entry64 *reta_conf,
115                                    uint16_t reta_size);
116 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
117                                   struct rte_eth_rss_reta_entry64 *reta_conf,
118                                   uint16_t reta_size);
119 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
120                                    struct rte_eth_rss_conf *rss_conf);
121 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
122                                      struct rte_eth_rss_conf *rss_conf);
123 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
124 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
125                                          struct rte_ether_addr *mac_addr);
126 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
127                                         uint16_t queue_id);
128 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
129                                          uint16_t queue_id);
130 static int iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
131                                  const struct rte_flow_ops **ops);
132 static int iavf_set_mc_addr_list(struct rte_eth_dev *dev,
133                         struct rte_ether_addr *mc_addrs,
134                         uint32_t mc_addrs_num);
135 static int iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused, void *arg);
136
137 static const struct rte_pci_id pci_id_iavf_map[] = {
138         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
139         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF) },
140         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF_HV) },
141         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_VF) },
142         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_A0_VF) },
143         { .vendor_id = 0, /* sentinel */ },
144 };
145
146 struct rte_iavf_xstats_name_off {
147         char name[RTE_ETH_XSTATS_NAME_SIZE];
148         unsigned int offset;
149 };
150
151 #define _OFF_OF(a) offsetof(struct iavf_eth_xstats, a)
152 static const struct rte_iavf_xstats_name_off rte_iavf_stats_strings[] = {
153         {"rx_bytes", _OFF_OF(eth_stats.rx_bytes)},
154         {"rx_unicast_packets", _OFF_OF(eth_stats.rx_unicast)},
155         {"rx_multicast_packets", _OFF_OF(eth_stats.rx_multicast)},
156         {"rx_broadcast_packets", _OFF_OF(eth_stats.rx_broadcast)},
157         {"rx_dropped_packets", _OFF_OF(eth_stats.rx_discards)},
158         {"rx_unknown_protocol_packets", offsetof(struct iavf_eth_stats,
159                 rx_unknown_protocol)},
160         {"tx_bytes", _OFF_OF(eth_stats.tx_bytes)},
161         {"tx_unicast_packets", _OFF_OF(eth_stats.tx_unicast)},
162         {"tx_multicast_packets", _OFF_OF(eth_stats.tx_multicast)},
163         {"tx_broadcast_packets", _OFF_OF(eth_stats.tx_broadcast)},
164         {"tx_dropped_packets", _OFF_OF(eth_stats.tx_discards)},
165         {"tx_error_packets", _OFF_OF(eth_stats.tx_errors)},
166
167         {"inline_ipsec_crypto_ipackets", _OFF_OF(ips_stats.icount)},
168         {"inline_ipsec_crypto_ibytes", _OFF_OF(ips_stats.ibytes)},
169         {"inline_ipsec_crypto_ierrors", _OFF_OF(ips_stats.ierrors.count)},
170         {"inline_ipsec_crypto_ierrors_sad_lookup",
171                         _OFF_OF(ips_stats.ierrors.sad_miss)},
172         {"inline_ipsec_crypto_ierrors_not_processed",
173                         _OFF_OF(ips_stats.ierrors.not_processed)},
174         {"inline_ipsec_crypto_ierrors_icv_fail",
175                         _OFF_OF(ips_stats.ierrors.icv_check)},
176         {"inline_ipsec_crypto_ierrors_length",
177                         _OFF_OF(ips_stats.ierrors.ipsec_length)},
178         {"inline_ipsec_crypto_ierrors_misc",
179                         _OFF_OF(ips_stats.ierrors.misc)},
180 };
181 #undef _OFF_OF
182
183 #define IAVF_NB_XSTATS (sizeof(rte_iavf_stats_strings) / \
184                 sizeof(rte_iavf_stats_strings[0]))
185
186 static const struct eth_dev_ops iavf_eth_dev_ops = {
187         .dev_configure              = iavf_dev_configure,
188         .dev_start                  = iavf_dev_start,
189         .dev_stop                   = iavf_dev_stop,
190         .dev_close                  = iavf_dev_close,
191         .dev_reset                  = iavf_dev_reset,
192         .dev_infos_get              = iavf_dev_info_get,
193         .dev_supported_ptypes_get   = iavf_dev_supported_ptypes_get,
194         .link_update                = iavf_dev_link_update,
195         .stats_get                  = iavf_dev_stats_get,
196         .stats_reset                = iavf_dev_stats_reset,
197         .xstats_get                 = iavf_dev_xstats_get,
198         .xstats_get_names           = iavf_dev_xstats_get_names,
199         .xstats_reset               = iavf_dev_xstats_reset,
200         .promiscuous_enable         = iavf_dev_promiscuous_enable,
201         .promiscuous_disable        = iavf_dev_promiscuous_disable,
202         .allmulticast_enable        = iavf_dev_allmulticast_enable,
203         .allmulticast_disable       = iavf_dev_allmulticast_disable,
204         .mac_addr_add               = iavf_dev_add_mac_addr,
205         .mac_addr_remove            = iavf_dev_del_mac_addr,
206         .set_mc_addr_list                       = iavf_set_mc_addr_list,
207         .vlan_filter_set            = iavf_dev_vlan_filter_set,
208         .vlan_offload_set           = iavf_dev_vlan_offload_set,
209         .rx_queue_start             = iavf_dev_rx_queue_start,
210         .rx_queue_stop              = iavf_dev_rx_queue_stop,
211         .tx_queue_start             = iavf_dev_tx_queue_start,
212         .tx_queue_stop              = iavf_dev_tx_queue_stop,
213         .rx_queue_setup             = iavf_dev_rx_queue_setup,
214         .rx_queue_release           = iavf_dev_rx_queue_release,
215         .tx_queue_setup             = iavf_dev_tx_queue_setup,
216         .tx_queue_release           = iavf_dev_tx_queue_release,
217         .mac_addr_set               = iavf_dev_set_default_mac_addr,
218         .reta_update                = iavf_dev_rss_reta_update,
219         .reta_query                 = iavf_dev_rss_reta_query,
220         .rss_hash_update            = iavf_dev_rss_hash_update,
221         .rss_hash_conf_get          = iavf_dev_rss_hash_conf_get,
222         .rxq_info_get               = iavf_dev_rxq_info_get,
223         .txq_info_get               = iavf_dev_txq_info_get,
224         .mtu_set                    = iavf_dev_mtu_set,
225         .rx_queue_intr_enable       = iavf_dev_rx_queue_intr_enable,
226         .rx_queue_intr_disable      = iavf_dev_rx_queue_intr_disable,
227         .flow_ops_get               = iavf_dev_flow_ops_get,
228         .tx_done_cleanup            = iavf_dev_tx_done_cleanup,
229         .get_monitor_addr           = iavf_get_monitor_addr,
230         .tm_ops_get                 = iavf_tm_ops_get,
231 };
232
233 static int
234 iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused,
235                         void *arg)
236 {
237         if (!arg)
238                 return -EINVAL;
239
240         *(const void **)arg = &iavf_tm_ops;
241
242         return 0;
243 }
244
245 __rte_unused
246 static int
247 iavf_vfr_inprogress(struct iavf_hw *hw)
248 {
249         int inprogress = 0;
250
251         if ((IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
252                 IAVF_VFGEN_RSTAT_VFR_STATE_MASK) ==
253                 VIRTCHNL_VFR_INPROGRESS)
254                 inprogress = 1;
255
256         if (inprogress)
257                 PMD_DRV_LOG(INFO, "Watchdog detected VFR in progress");
258
259         return inprogress;
260 }
261
262 __rte_unused
263 static void
264 iavf_dev_watchdog(void *cb_arg)
265 {
266         struct iavf_adapter *adapter = cb_arg;
267         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
268         int vfr_inprogress = 0, rc = 0;
269
270         /* check if watchdog has been disabled since last call */
271         if (!adapter->vf.watchdog_enabled)
272                 return;
273
274         /* If in reset then poll vfr_inprogress register for completion */
275         if (adapter->vf.vf_reset) {
276                 vfr_inprogress = iavf_vfr_inprogress(hw);
277
278                 if (!vfr_inprogress) {
279                         PMD_DRV_LOG(INFO, "VF \"%s\" reset has completed",
280                                 adapter->vf.eth_dev->data->name);
281                         adapter->vf.vf_reset = false;
282                 }
283         /* If not in reset then poll vfr_inprogress register for VFLR event */
284         } else {
285                 vfr_inprogress = iavf_vfr_inprogress(hw);
286
287                 if (vfr_inprogress) {
288                         PMD_DRV_LOG(INFO,
289                                 "VF \"%s\" reset event detected by watchdog",
290                                 adapter->vf.eth_dev->data->name);
291
292                         /* enter reset state with VFLR event */
293                         adapter->vf.vf_reset = true;
294
295                         rte_eth_dev_callback_process(adapter->vf.eth_dev,
296                                 RTE_ETH_EVENT_INTR_RESET, NULL);
297                 }
298         }
299
300         /* re-alarm watchdog */
301         rc = rte_eal_alarm_set(IAVF_DEV_WATCHDOG_PERIOD,
302                         &iavf_dev_watchdog, cb_arg);
303
304         if (rc)
305                 PMD_DRV_LOG(ERR, "Failed \"%s\" to reset device watchdog alarm",
306                         adapter->vf.eth_dev->data->name);
307 }
308
309 static void
310 iavf_dev_watchdog_enable(struct iavf_adapter *adapter __rte_unused)
311 {
312 #if (IAVF_DEV_WATCHDOG_PERIOD > 0)
313         PMD_DRV_LOG(INFO, "Enabling device watchdog");
314         adapter->vf.watchdog_enabled = true;
315         if (rte_eal_alarm_set(IAVF_DEV_WATCHDOG_PERIOD,
316                         &iavf_dev_watchdog, (void *)adapter))
317                 PMD_DRV_LOG(ERR, "Failed to enabled device watchdog");
318 #endif
319 }
320
321 static void
322 iavf_dev_watchdog_disable(struct iavf_adapter *adapter __rte_unused)
323 {
324 #if (IAVF_DEV_WATCHDOG_PERIOD > 0)
325         PMD_DRV_LOG(INFO, "Disabling device watchdog");
326         adapter->vf.watchdog_enabled = false;
327 #endif
328 }
329
330 static int
331 iavf_set_mc_addr_list(struct rte_eth_dev *dev,
332                         struct rte_ether_addr *mc_addrs,
333                         uint32_t mc_addrs_num)
334 {
335         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
336         struct iavf_adapter *adapter =
337                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
338         int err, ret;
339
340         if (mc_addrs_num > IAVF_NUM_MACADDR_MAX) {
341                 PMD_DRV_LOG(ERR,
342                             "can't add more than a limited number (%u) of addresses.",
343                             (uint32_t)IAVF_NUM_MACADDR_MAX);
344                 return -EINVAL;
345         }
346
347         /* flush previous addresses */
348         err = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
349                                         false);
350         if (err)
351                 return err;
352
353         /* add new ones */
354         err = iavf_add_del_mc_addr_list(adapter, mc_addrs, mc_addrs_num, true);
355
356         if (err) {
357                 /* if adding mac address list fails, should add the previous
358                  * addresses back.
359                  */
360                 ret = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs,
361                                                 vf->mc_addrs_num, true);
362                 if (ret)
363                         return ret;
364         } else {
365                 vf->mc_addrs_num = mc_addrs_num;
366                 memcpy(vf->mc_addrs,
367                        mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
368         }
369
370         return err;
371 }
372
373 static void
374 iavf_config_rss_hf(struct iavf_adapter *adapter, uint64_t rss_hf)
375 {
376         static const uint64_t map_hena_rss[] = {
377                 /* IPv4 */
378                 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] =
379                                 RTE_ETH_RSS_NONFRAG_IPV4_UDP,
380                 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] =
381                                 RTE_ETH_RSS_NONFRAG_IPV4_UDP,
382                 [IAVF_FILTER_PCTYPE_NONF_IPV4_UDP] =
383                                 RTE_ETH_RSS_NONFRAG_IPV4_UDP,
384                 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] =
385                                 RTE_ETH_RSS_NONFRAG_IPV4_TCP,
386                 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP] =
387                                 RTE_ETH_RSS_NONFRAG_IPV4_TCP,
388                 [IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP] =
389                                 RTE_ETH_RSS_NONFRAG_IPV4_SCTP,
390                 [IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER] =
391                                 RTE_ETH_RSS_NONFRAG_IPV4_OTHER,
392                 [IAVF_FILTER_PCTYPE_FRAG_IPV4] = RTE_ETH_RSS_FRAG_IPV4,
393
394                 /* IPv6 */
395                 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] =
396                                 RTE_ETH_RSS_NONFRAG_IPV6_UDP,
397                 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] =
398                                 RTE_ETH_RSS_NONFRAG_IPV6_UDP,
399                 [IAVF_FILTER_PCTYPE_NONF_IPV6_UDP] =
400                                 RTE_ETH_RSS_NONFRAG_IPV6_UDP,
401                 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] =
402                                 RTE_ETH_RSS_NONFRAG_IPV6_TCP,
403                 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP] =
404                                 RTE_ETH_RSS_NONFRAG_IPV6_TCP,
405                 [IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP] =
406                                 RTE_ETH_RSS_NONFRAG_IPV6_SCTP,
407                 [IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER] =
408                                 RTE_ETH_RSS_NONFRAG_IPV6_OTHER,
409                 [IAVF_FILTER_PCTYPE_FRAG_IPV6] = RTE_ETH_RSS_FRAG_IPV6,
410
411                 /* L2 Payload */
412                 [IAVF_FILTER_PCTYPE_L2_PAYLOAD] = RTE_ETH_RSS_L2_PAYLOAD
413         };
414
415         const uint64_t ipv4_rss = RTE_ETH_RSS_NONFRAG_IPV4_UDP |
416                                   RTE_ETH_RSS_NONFRAG_IPV4_TCP |
417                                   RTE_ETH_RSS_NONFRAG_IPV4_SCTP |
418                                   RTE_ETH_RSS_NONFRAG_IPV4_OTHER |
419                                   RTE_ETH_RSS_FRAG_IPV4;
420
421         const uint64_t ipv6_rss = RTE_ETH_RSS_NONFRAG_IPV6_UDP |
422                                   RTE_ETH_RSS_NONFRAG_IPV6_TCP |
423                                   RTE_ETH_RSS_NONFRAG_IPV6_SCTP |
424                                   RTE_ETH_RSS_NONFRAG_IPV6_OTHER |
425                                   RTE_ETH_RSS_FRAG_IPV6;
426
427         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
428         uint64_t caps = 0, hena = 0, valid_rss_hf = 0;
429         uint32_t i;
430         int ret;
431
432         ret = iavf_get_hena_caps(adapter, &caps);
433         if (ret) {
434                 /**
435                  * RSS offload type configuration is not a necessary feature
436                  * for VF, so here just print a warning and return.
437                  */
438                 PMD_DRV_LOG(WARNING,
439                             "fail to get RSS offload type caps, ret: %d", ret);
440                 return;
441         }
442
443         /**
444          * RTE_ETH_RSS_IPV4 and RTE_ETH_RSS_IPV6 can be considered as 2
445          * generalizations of all other IPv4 and IPv6 RSS types.
446          */
447         if (rss_hf & RTE_ETH_RSS_IPV4)
448                 rss_hf |= ipv4_rss;
449
450         if (rss_hf & RTE_ETH_RSS_IPV6)
451                 rss_hf |= ipv6_rss;
452
453         RTE_BUILD_BUG_ON(RTE_DIM(map_hena_rss) > sizeof(uint64_t) * CHAR_BIT);
454
455         for (i = 0; i < RTE_DIM(map_hena_rss); i++) {
456                 uint64_t bit = BIT_ULL(i);
457
458                 if ((caps & bit) && (map_hena_rss[i] & rss_hf)) {
459                         valid_rss_hf |= map_hena_rss[i];
460                         hena |= bit;
461                 }
462         }
463
464         ret = iavf_set_hena(adapter, hena);
465         if (ret) {
466                 /**
467                  * RSS offload type configuration is not a necessary feature
468                  * for VF, so here just print a warning and return.
469                  */
470                 PMD_DRV_LOG(WARNING,
471                             "fail to set RSS offload types, ret: %d", ret);
472                 return;
473         }
474
475         if (valid_rss_hf & ipv4_rss)
476                 valid_rss_hf |= rss_hf & RTE_ETH_RSS_IPV4;
477
478         if (valid_rss_hf & ipv6_rss)
479                 valid_rss_hf |= rss_hf & RTE_ETH_RSS_IPV6;
480
481         if (rss_hf & ~valid_rss_hf)
482                 PMD_DRV_LOG(WARNING, "Unsupported rss_hf 0x%" PRIx64,
483                             rss_hf & ~valid_rss_hf);
484
485         vf->rss_hf = valid_rss_hf;
486 }
487
488 static int
489 iavf_init_rss(struct iavf_adapter *adapter)
490 {
491         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
492         struct rte_eth_rss_conf *rss_conf;
493         uint16_t i, j, nb_q;
494         int ret;
495
496         rss_conf = &adapter->dev_data->dev_conf.rx_adv_conf.rss_conf;
497         nb_q = RTE_MIN(adapter->dev_data->nb_rx_queues,
498                        vf->max_rss_qregion);
499
500         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
501                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
502                 return -ENOTSUP;
503         }
504
505         /* configure RSS key */
506         if (!rss_conf->rss_key) {
507                 /* Calculate the default hash key */
508                 for (i = 0; i < vf->vf_res->rss_key_size; i++)
509                         vf->rss_key[i] = (uint8_t)rte_rand();
510         } else
511                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
512                            RTE_MIN(rss_conf->rss_key_len,
513                                    vf->vf_res->rss_key_size));
514
515         /* init RSS LUT table */
516         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
517                 if (j >= nb_q)
518                         j = 0;
519                 vf->rss_lut[i] = j;
520         }
521         /* send virtchnl ops to configure RSS */
522         ret = iavf_configure_rss_lut(adapter);
523         if (ret)
524                 return ret;
525         ret = iavf_configure_rss_key(adapter);
526         if (ret)
527                 return ret;
528
529         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
530                 /* Set RSS hash configuration based on rss_conf->rss_hf. */
531                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
532                 if (ret) {
533                         PMD_DRV_LOG(ERR, "fail to set default RSS");
534                         return ret;
535                 }
536         } else {
537                 iavf_config_rss_hf(adapter, rss_conf->rss_hf);
538         }
539
540         return 0;
541 }
542
543 static int
544 iavf_queues_req_reset(struct rte_eth_dev *dev, uint16_t num)
545 {
546         struct iavf_adapter *ad =
547                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
548         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
549         int ret;
550
551         ret = iavf_request_queues(dev, num);
552         if (ret) {
553                 PMD_DRV_LOG(ERR, "request queues from PF failed");
554                 return ret;
555         }
556         PMD_DRV_LOG(INFO, "change queue pairs from %u to %u",
557                         vf->vsi_res->num_queue_pairs, num);
558
559         ret = iavf_dev_reset(dev);
560         if (ret) {
561                 PMD_DRV_LOG(ERR, "vf reset failed");
562                 return ret;
563         }
564
565         return 0;
566 }
567
568 static int
569 iavf_dev_vlan_insert_set(struct rte_eth_dev *dev)
570 {
571         struct iavf_adapter *adapter =
572                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
573         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
574         bool enable;
575
576         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2))
577                 return 0;
578
579         enable = !!(dev->data->dev_conf.txmode.offloads &
580                     RTE_ETH_TX_OFFLOAD_VLAN_INSERT);
581         iavf_config_vlan_insert_v2(adapter, enable);
582
583         return 0;
584 }
585
586 static int
587 iavf_dev_init_vlan(struct rte_eth_dev *dev)
588 {
589         int err;
590
591         err = iavf_dev_vlan_offload_set(dev,
592                                         RTE_ETH_VLAN_STRIP_MASK |
593                                         RTE_ETH_QINQ_STRIP_MASK |
594                                         RTE_ETH_VLAN_FILTER_MASK |
595                                         RTE_ETH_VLAN_EXTEND_MASK);
596         if (err) {
597                 PMD_DRV_LOG(ERR, "Failed to update vlan offload");
598                 return err;
599         }
600
601         err = iavf_dev_vlan_insert_set(dev);
602         if (err)
603                 PMD_DRV_LOG(ERR, "Failed to update vlan insertion");
604
605         return err;
606 }
607
608 static int
609 iavf_dev_configure(struct rte_eth_dev *dev)
610 {
611         struct iavf_adapter *ad =
612                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
613         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
614         uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
615                 dev->data->nb_tx_queues);
616         int ret;
617
618         ad->rx_bulk_alloc_allowed = true;
619         /* Initialize to TRUE. If any of Rx queues doesn't meet the
620          * vector Rx/Tx preconditions, it will be reset.
621          */
622         ad->rx_vec_allowed = true;
623         ad->tx_vec_allowed = true;
624
625         if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
626                 dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
627
628         /* Large VF setting */
629         if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT) {
630                 if (!(vf->vf_res->vf_cap_flags &
631                                 VIRTCHNL_VF_LARGE_NUM_QPAIRS)) {
632                         PMD_DRV_LOG(ERR, "large VF is not supported");
633                         return -1;
634                 }
635
636                 if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_LV) {
637                         PMD_DRV_LOG(ERR, "queue pairs number cannot be larger than %u",
638                                 IAVF_MAX_NUM_QUEUES_LV);
639                         return -1;
640                 }
641
642                 ret = iavf_queues_req_reset(dev, num_queue_pairs);
643                 if (ret)
644                         return ret;
645
646                 ret = iavf_get_max_rss_queue_region(ad);
647                 if (ret) {
648                         PMD_INIT_LOG(ERR, "get max rss queue region failed");
649                         return ret;
650                 }
651
652                 vf->lv_enabled = true;
653         } else {
654                 /* Check if large VF is already enabled. If so, disable and
655                  * release redundant queue resource.
656                  * Or check if enough queue pairs. If not, request them from PF.
657                  */
658                 if (vf->lv_enabled ||
659                     num_queue_pairs > vf->vsi_res->num_queue_pairs) {
660                         ret = iavf_queues_req_reset(dev, num_queue_pairs);
661                         if (ret)
662                                 return ret;
663
664                         vf->lv_enabled = false;
665                 }
666                 /* if large VF is not required, use default rss queue region */
667                 vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT;
668         }
669
670         ret = iavf_dev_init_vlan(dev);
671         if (ret)
672                 PMD_DRV_LOG(ERR, "configure VLAN failed: %d", ret);
673
674         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
675                 if (iavf_init_rss(ad) != 0) {
676                         PMD_DRV_LOG(ERR, "configure rss failed");
677                         return -1;
678                 }
679         }
680         return 0;
681 }
682
683 static int
684 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
685 {
686         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
687         struct rte_eth_dev_data *dev_data = dev->data;
688         uint16_t buf_size, max_pkt_len;
689         uint32_t frame_size = dev->data->mtu + IAVF_ETH_OVERHEAD;
690
691         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
692
693         /* Calculate the maximum packet length allowed */
694         max_pkt_len = RTE_MIN((uint32_t)
695                         rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS,
696                         frame_size);
697
698         /* Check if maximum packet length is set correctly.  */
699         if (max_pkt_len <= RTE_ETHER_MIN_LEN ||
700             max_pkt_len > IAVF_FRAME_SIZE_MAX) {
701                 PMD_DRV_LOG(ERR, "maximum packet length must be "
702                             "larger than %u and smaller than %u",
703                             (uint32_t)IAVF_ETH_MAX_LEN,
704                             (uint32_t)IAVF_FRAME_SIZE_MAX);
705                 return -EINVAL;
706         }
707
708         rxq->max_pkt_len = max_pkt_len;
709         if ((dev_data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_SCATTER) ||
710             rxq->max_pkt_len > buf_size) {
711                 dev_data->scattered_rx = 1;
712         }
713         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
714         IAVF_WRITE_FLUSH(hw);
715
716         return 0;
717 }
718
719 static int
720 iavf_init_queues(struct rte_eth_dev *dev)
721 {
722         struct iavf_rx_queue **rxq =
723                 (struct iavf_rx_queue **)dev->data->rx_queues;
724         int i, ret = IAVF_SUCCESS;
725
726         for (i = 0; i < dev->data->nb_rx_queues; i++) {
727                 if (!rxq[i] || !rxq[i]->q_set)
728                         continue;
729                 ret = iavf_init_rxq(dev, rxq[i]);
730                 if (ret != IAVF_SUCCESS)
731                         break;
732         }
733         /* set rx/tx function to vector/scatter/single-segment
734          * according to parameters
735          */
736         iavf_set_rx_function(dev);
737         iavf_set_tx_function(dev);
738
739         return ret;
740 }
741
742 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
743                                      struct rte_intr_handle *intr_handle)
744 {
745         struct iavf_adapter *adapter =
746                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
747         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
748         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
749         struct iavf_qv_map *qv_map;
750         uint16_t interval, i;
751         int vec;
752
753         if (rte_intr_cap_multiple(intr_handle) &&
754             dev->data->dev_conf.intr_conf.rxq) {
755                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
756                         return -1;
757         }
758
759         if (rte_intr_dp_is_en(intr_handle)) {
760                 if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
761                                                     dev->data->nb_rx_queues)) {
762                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
763                                     dev->data->nb_rx_queues);
764                         return -1;
765                 }
766         }
767
768
769         qv_map = rte_zmalloc("qv_map",
770                 dev->data->nb_rx_queues * sizeof(struct iavf_qv_map), 0);
771         if (!qv_map) {
772                 PMD_DRV_LOG(ERR, "Failed to allocate %d queue-vector map",
773                                 dev->data->nb_rx_queues);
774                 goto qv_map_alloc_err;
775         }
776
777         if (!dev->data->dev_conf.intr_conf.rxq ||
778             !rte_intr_dp_is_en(intr_handle)) {
779                 /* Rx interrupt disabled, Map interrupt only for writeback */
780                 vf->nb_msix = 1;
781                 if (vf->vf_res->vf_cap_flags &
782                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
783                         /* If WB_ON_ITR supports, enable it */
784                         vf->msix_base = IAVF_RX_VEC_START;
785                         /* Set the ITR for index zero, to 2us to make sure that
786                          * we leave time for aggregation to occur, but don't
787                          * increase latency dramatically.
788                          */
789                         IAVF_WRITE_REG(hw,
790                                        IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1),
791                                        (0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
792                                        IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
793                                        (2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
794                         /* debug - check for success! the return value
795                          * should be 2, offset is 0x2800
796                          */
797                         /* IAVF_READ_REG(hw, IAVF_VFINT_ITRN1(0, 0)); */
798                 } else {
799                         /* If no WB_ON_ITR offload flags, need to set
800                          * interrupt for descriptor write back.
801                          */
802                         vf->msix_base = IAVF_MISC_VEC_ID;
803
804                         /* set ITR to default */
805                         interval = iavf_calc_itr_interval(
806                                         IAVF_QUEUE_ITR_INTERVAL_DEFAULT);
807                         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
808                                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
809                                        (IAVF_ITR_INDEX_DEFAULT <<
810                                         IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
811                                        (interval <<
812                                         IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
813                 }
814                 IAVF_WRITE_FLUSH(hw);
815                 /* map all queues to the same interrupt */
816                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
817                         qv_map[i].queue_id = i;
818                         qv_map[i].vector_id = vf->msix_base;
819                 }
820                 vf->qv_map = qv_map;
821         } else {
822                 if (!rte_intr_allow_others(intr_handle)) {
823                         vf->nb_msix = 1;
824                         vf->msix_base = IAVF_MISC_VEC_ID;
825                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
826                                 qv_map[i].queue_id = i;
827                                 qv_map[i].vector_id = vf->msix_base;
828                                 rte_intr_vec_list_index_set(intr_handle,
829                                                         i, IAVF_MISC_VEC_ID);
830                         }
831                         vf->qv_map = qv_map;
832                         PMD_DRV_LOG(DEBUG,
833                                     "vector %u are mapping to all Rx queues",
834                                     vf->msix_base);
835                 } else {
836                         /* If Rx interrupt is required, and we can use
837                          * multi interrupts, then the vec is from 1
838                          */
839                         vf->nb_msix =
840                                 RTE_MIN(rte_intr_nb_efd_get(intr_handle),
841                                 (uint16_t)(vf->vf_res->max_vectors - 1));
842                         vf->msix_base = IAVF_RX_VEC_START;
843                         vec = IAVF_RX_VEC_START;
844                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
845                                 qv_map[i].queue_id = i;
846                                 qv_map[i].vector_id = vec;
847                                 rte_intr_vec_list_index_set(intr_handle,
848                                                                    i, vec++);
849                                 if (vec >= vf->nb_msix + IAVF_RX_VEC_START)
850                                         vec = IAVF_RX_VEC_START;
851                         }
852                         vf->qv_map = qv_map;
853                         PMD_DRV_LOG(DEBUG,
854                                     "%u vectors are mapping to %u Rx queues",
855                                     vf->nb_msix, dev->data->nb_rx_queues);
856                 }
857         }
858
859         if (!vf->lv_enabled) {
860                 if (iavf_config_irq_map(adapter)) {
861                         PMD_DRV_LOG(ERR, "config interrupt mapping failed");
862                         goto config_irq_map_err;
863                 }
864         } else {
865                 uint16_t num_qv_maps = dev->data->nb_rx_queues;
866                 uint16_t index = 0;
867
868                 while (num_qv_maps > IAVF_IRQ_MAP_NUM_PER_BUF) {
869                         if (iavf_config_irq_map_lv(adapter,
870                                         IAVF_IRQ_MAP_NUM_PER_BUF, index)) {
871                                 PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
872                                 goto config_irq_map_err;
873                         }
874                         num_qv_maps -= IAVF_IRQ_MAP_NUM_PER_BUF;
875                         index += IAVF_IRQ_MAP_NUM_PER_BUF;
876                 }
877
878                 if (iavf_config_irq_map_lv(adapter, num_qv_maps, index)) {
879                         PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
880                         goto config_irq_map_err;
881                 }
882         }
883         return 0;
884
885 config_irq_map_err:
886         rte_free(vf->qv_map);
887         vf->qv_map = NULL;
888
889 qv_map_alloc_err:
890         rte_intr_vec_list_free(intr_handle);
891
892         return -1;
893 }
894
895 static int
896 iavf_start_queues(struct rte_eth_dev *dev)
897 {
898         struct iavf_rx_queue *rxq;
899         struct iavf_tx_queue *txq;
900         int i;
901
902         for (i = 0; i < dev->data->nb_tx_queues; i++) {
903                 txq = dev->data->tx_queues[i];
904                 if (txq->tx_deferred_start)
905                         continue;
906                 if (iavf_dev_tx_queue_start(dev, i) != 0) {
907                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
908                         return -1;
909                 }
910         }
911
912         for (i = 0; i < dev->data->nb_rx_queues; i++) {
913                 rxq = dev->data->rx_queues[i];
914                 if (rxq->rx_deferred_start)
915                         continue;
916                 if (iavf_dev_rx_queue_start(dev, i) != 0) {
917                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
918                         return -1;
919                 }
920         }
921
922         return 0;
923 }
924
925 static int
926 iavf_dev_start(struct rte_eth_dev *dev)
927 {
928         struct iavf_adapter *adapter =
929                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
930         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
931         struct rte_intr_handle *intr_handle = dev->intr_handle;
932         uint16_t num_queue_pairs;
933         uint16_t index = 0;
934
935         PMD_INIT_FUNC_TRACE();
936
937         adapter->stopped = 0;
938
939         vf->max_pkt_len = dev->data->mtu + IAVF_ETH_OVERHEAD;
940         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
941                                       dev->data->nb_tx_queues);
942         num_queue_pairs = vf->num_queue_pairs;
943
944         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
945                 if (iavf_get_qos_cap(adapter)) {
946                         PMD_INIT_LOG(ERR, "Failed to get qos capability");
947                         return -1;
948                 }
949
950         if (iavf_init_queues(dev) != 0) {
951                 PMD_DRV_LOG(ERR, "failed to do Queue init");
952                 return -1;
953         }
954
955         if (iavf_set_vf_quanta_size(adapter, index, num_queue_pairs) != 0)
956                 PMD_DRV_LOG(WARNING, "configure quanta size failed");
957
958         /* If needed, send configure queues msg multiple times to make the
959          * adminq buffer length smaller than the 4K limitation.
960          */
961         while (num_queue_pairs > IAVF_CFG_Q_NUM_PER_BUF) {
962                 if (iavf_configure_queues(adapter,
963                                 IAVF_CFG_Q_NUM_PER_BUF, index) != 0) {
964                         PMD_DRV_LOG(ERR, "configure queues failed");
965                         goto err_queue;
966                 }
967                 num_queue_pairs -= IAVF_CFG_Q_NUM_PER_BUF;
968                 index += IAVF_CFG_Q_NUM_PER_BUF;
969         }
970
971         if (iavf_configure_queues(adapter, num_queue_pairs, index) != 0) {
972                 PMD_DRV_LOG(ERR, "configure queues failed");
973                 goto err_queue;
974         }
975
976         if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
977                 PMD_DRV_LOG(ERR, "configure irq failed");
978                 goto err_queue;
979         }
980         /* re-enable intr again, because efd assign may change */
981         if (dev->data->dev_conf.intr_conf.rxq != 0) {
982                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
983                         rte_intr_disable(intr_handle);
984                 rte_intr_enable(intr_handle);
985         }
986
987         /* Set all mac addrs */
988         iavf_add_del_all_mac_addr(adapter, true);
989
990         /* Set all multicast addresses */
991         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
992                                   true);
993
994         if (iavf_start_queues(dev) != 0) {
995                 PMD_DRV_LOG(ERR, "enable queues failed");
996                 goto err_mac;
997         }
998
999         return 0;
1000
1001 err_mac:
1002         iavf_add_del_all_mac_addr(adapter, false);
1003 err_queue:
1004         return -1;
1005 }
1006
1007 static int
1008 iavf_dev_stop(struct rte_eth_dev *dev)
1009 {
1010         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1011         struct iavf_adapter *adapter =
1012                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1013         struct rte_intr_handle *intr_handle = dev->intr_handle;
1014
1015         PMD_INIT_FUNC_TRACE();
1016
1017         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) &&
1018             dev->data->dev_conf.intr_conf.rxq != 0)
1019                 rte_intr_disable(intr_handle);
1020
1021         if (adapter->stopped == 1)
1022                 return 0;
1023
1024         iavf_stop_queues(dev);
1025
1026         /* Disable the interrupt for Rx */
1027         rte_intr_efd_disable(intr_handle);
1028         /* Rx interrupt vector mapping free */
1029         rte_intr_vec_list_free(intr_handle);
1030
1031         /* remove all mac addrs */
1032         iavf_add_del_all_mac_addr(adapter, false);
1033
1034         /* remove all multicast addresses */
1035         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
1036                                   false);
1037
1038         /* free iAVF security device context all related resources */
1039         iavf_security_ctx_destroy(adapter);
1040
1041         adapter->stopped = 1;
1042         dev->data->dev_started = 0;
1043
1044         return 0;
1045 }
1046
1047 static int
1048 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1049 {
1050         struct iavf_adapter *adapter =
1051                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1052         struct iavf_info *vf = &adapter->vf;
1053
1054         dev_info->max_rx_queues = IAVF_MAX_NUM_QUEUES_LV;
1055         dev_info->max_tx_queues = IAVF_MAX_NUM_QUEUES_LV;
1056         dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
1057         dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
1058         dev_info->max_mtu = dev_info->max_rx_pktlen - IAVF_ETH_OVERHEAD;
1059         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
1060         dev_info->hash_key_size = vf->vf_res->rss_key_size;
1061         dev_info->reta_size = vf->vf_res->rss_lut_size;
1062         dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
1063         dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
1064         dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
1065         dev_info->rx_offload_capa =
1066                 RTE_ETH_RX_OFFLOAD_VLAN_STRIP |
1067                 RTE_ETH_RX_OFFLOAD_QINQ_STRIP |
1068                 RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
1069                 RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
1070                 RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
1071                 RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
1072                 RTE_ETH_RX_OFFLOAD_SCATTER |
1073                 RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
1074                 RTE_ETH_RX_OFFLOAD_RSS_HASH;
1075
1076         dev_info->tx_offload_capa =
1077                 RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
1078                 RTE_ETH_TX_OFFLOAD_QINQ_INSERT |
1079                 RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1080                 RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1081                 RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
1082                 RTE_ETH_TX_OFFLOAD_SCTP_CKSUM |
1083                 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
1084                 RTE_ETH_TX_OFFLOAD_TCP_TSO |
1085                 RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
1086                 RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO |
1087                 RTE_ETH_TX_OFFLOAD_IPIP_TNL_TSO |
1088                 RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO |
1089                 RTE_ETH_TX_OFFLOAD_MULTI_SEGS |
1090                 RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
1091
1092         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_CRC)
1093                 dev_info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_KEEP_CRC;
1094
1095         if (iavf_ipsec_crypto_supported(adapter)) {
1096                 dev_info->rx_offload_capa |= RTE_ETH_RX_OFFLOAD_SECURITY;
1097                 dev_info->tx_offload_capa |= RTE_ETH_TX_OFFLOAD_SECURITY;
1098         }
1099
1100         dev_info->default_rxconf = (struct rte_eth_rxconf) {
1101                 .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
1102                 .rx_drop_en = 0,
1103                 .offloads = 0,
1104         };
1105
1106         dev_info->default_txconf = (struct rte_eth_txconf) {
1107                 .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
1108                 .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
1109                 .offloads = 0,
1110         };
1111
1112         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1113                 .nb_max = IAVF_MAX_RING_DESC,
1114                 .nb_min = IAVF_MIN_RING_DESC,
1115                 .nb_align = IAVF_ALIGN_RING_DESC,
1116         };
1117
1118         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1119                 .nb_max = IAVF_MAX_RING_DESC,
1120                 .nb_min = IAVF_MIN_RING_DESC,
1121                 .nb_align = IAVF_ALIGN_RING_DESC,
1122         };
1123
1124         return 0;
1125 }
1126
1127 static const uint32_t *
1128 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1129 {
1130         static const uint32_t ptypes[] = {
1131                 RTE_PTYPE_L2_ETHER,
1132                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1133                 RTE_PTYPE_L4_FRAG,
1134                 RTE_PTYPE_L4_ICMP,
1135                 RTE_PTYPE_L4_NONFRAG,
1136                 RTE_PTYPE_L4_SCTP,
1137                 RTE_PTYPE_L4_TCP,
1138                 RTE_PTYPE_L4_UDP,
1139                 RTE_PTYPE_UNKNOWN
1140         };
1141         return ptypes;
1142 }
1143
1144 int
1145 iavf_dev_link_update(struct rte_eth_dev *dev,
1146                     __rte_unused int wait_to_complete)
1147 {
1148         struct rte_eth_link new_link;
1149         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1150
1151         memset(&new_link, 0, sizeof(new_link));
1152
1153         /* Only read status info stored in VF, and the info is updated
1154          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
1155          */
1156         switch (vf->link_speed) {
1157         case 10:
1158                 new_link.link_speed = RTE_ETH_SPEED_NUM_10M;
1159                 break;
1160         case 100:
1161                 new_link.link_speed = RTE_ETH_SPEED_NUM_100M;
1162                 break;
1163         case 1000:
1164                 new_link.link_speed = RTE_ETH_SPEED_NUM_1G;
1165                 break;
1166         case 10000:
1167                 new_link.link_speed = RTE_ETH_SPEED_NUM_10G;
1168                 break;
1169         case 20000:
1170                 new_link.link_speed = RTE_ETH_SPEED_NUM_20G;
1171                 break;
1172         case 25000:
1173                 new_link.link_speed = RTE_ETH_SPEED_NUM_25G;
1174                 break;
1175         case 40000:
1176                 new_link.link_speed = RTE_ETH_SPEED_NUM_40G;
1177                 break;
1178         case 50000:
1179                 new_link.link_speed = RTE_ETH_SPEED_NUM_50G;
1180                 break;
1181         case 100000:
1182                 new_link.link_speed = RTE_ETH_SPEED_NUM_100G;
1183                 break;
1184         default:
1185                 new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
1186                 break;
1187         }
1188
1189         new_link.link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
1190         new_link.link_status = vf->link_up ? RTE_ETH_LINK_UP :
1191                                              RTE_ETH_LINK_DOWN;
1192         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1193                                 RTE_ETH_LINK_SPEED_FIXED);
1194
1195         return rte_eth_linkstatus_set(dev, &new_link);
1196 }
1197
1198 static int
1199 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
1200 {
1201         struct iavf_adapter *adapter =
1202                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1203         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1204
1205         return iavf_config_promisc(adapter,
1206                                   true, vf->promisc_multicast_enabled);
1207 }
1208
1209 static int
1210 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
1211 {
1212         struct iavf_adapter *adapter =
1213                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1214         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1215
1216         return iavf_config_promisc(adapter,
1217                                   false, vf->promisc_multicast_enabled);
1218 }
1219
1220 static int
1221 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
1222 {
1223         struct iavf_adapter *adapter =
1224                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1225         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1226
1227         return iavf_config_promisc(adapter,
1228                                   vf->promisc_unicast_enabled, true);
1229 }
1230
1231 static int
1232 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
1233 {
1234         struct iavf_adapter *adapter =
1235                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1236         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1237
1238         return iavf_config_promisc(adapter,
1239                                   vf->promisc_unicast_enabled, false);
1240 }
1241
1242 static int
1243 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
1244                      __rte_unused uint32_t index,
1245                      __rte_unused uint32_t pool)
1246 {
1247         struct iavf_adapter *adapter =
1248                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1249         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1250         int err;
1251
1252         if (rte_is_zero_ether_addr(addr)) {
1253                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
1254                 return -EINVAL;
1255         }
1256
1257         err = iavf_add_del_eth_addr(adapter, addr, true, VIRTCHNL_ETHER_ADDR_EXTRA);
1258         if (err) {
1259                 PMD_DRV_LOG(ERR, "fail to add MAC address");
1260                 return -EIO;
1261         }
1262
1263         vf->mac_num++;
1264
1265         return 0;
1266 }
1267
1268 static void
1269 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
1270 {
1271         struct iavf_adapter *adapter =
1272                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1273         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1274         struct rte_ether_addr *addr;
1275         int err;
1276
1277         addr = &dev->data->mac_addrs[index];
1278
1279         err = iavf_add_del_eth_addr(adapter, addr, false, VIRTCHNL_ETHER_ADDR_EXTRA);
1280         if (err)
1281                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
1282
1283         vf->mac_num--;
1284 }
1285
1286 static int
1287 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1288 {
1289         struct iavf_adapter *adapter =
1290                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1291         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1292         int err;
1293
1294         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
1295                 err = iavf_add_del_vlan_v2(adapter, vlan_id, on);
1296                 if (err)
1297                         return -EIO;
1298                 return 0;
1299         }
1300
1301         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1302                 return -ENOTSUP;
1303
1304         err = iavf_add_del_vlan(adapter, vlan_id, on);
1305         if (err)
1306                 return -EIO;
1307         return 0;
1308 }
1309
1310 static void
1311 iavf_iterate_vlan_filters_v2(struct rte_eth_dev *dev, bool enable)
1312 {
1313         struct rte_vlan_filter_conf *vfc = &dev->data->vlan_filter_conf;
1314         struct iavf_adapter *adapter =
1315                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1316         uint32_t i, j;
1317         uint64_t ids;
1318
1319         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1320                 if (vfc->ids[i] == 0)
1321                         continue;
1322
1323                 ids = vfc->ids[i];
1324                 for (j = 0; ids != 0 && j < 64; j++, ids >>= 1) {
1325                         if (ids & 1)
1326                                 iavf_add_del_vlan_v2(adapter,
1327                                                      64 * i + j, enable);
1328                 }
1329         }
1330 }
1331
1332 static int
1333 iavf_dev_vlan_offload_set_v2(struct rte_eth_dev *dev, int mask)
1334 {
1335         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1336         struct iavf_adapter *adapter =
1337                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1338         bool enable;
1339         int err;
1340
1341         if (mask & RTE_ETH_VLAN_FILTER_MASK) {
1342                 enable = !!(rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER);
1343
1344                 iavf_iterate_vlan_filters_v2(dev, enable);
1345         }
1346
1347         if (mask & RTE_ETH_VLAN_STRIP_MASK) {
1348                 enable = !!(rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP);
1349
1350                 err = iavf_config_vlan_strip_v2(adapter, enable);
1351                 /* If not support, the stripping is already disabled by PF */
1352                 if (err == -ENOTSUP && !enable)
1353                         err = 0;
1354                 if (err)
1355                         return -EIO;
1356         }
1357
1358         return 0;
1359 }
1360
1361 static int
1362 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1363 {
1364         struct iavf_adapter *adapter =
1365                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1366         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1367         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1368         int err;
1369
1370         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2)
1371                 return iavf_dev_vlan_offload_set_v2(dev, mask);
1372
1373         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1374                 return -ENOTSUP;
1375
1376         /* Vlan stripping setting */
1377         if (mask & RTE_ETH_VLAN_STRIP_MASK) {
1378                 /* Enable or disable VLAN stripping */
1379                 if (dev_conf->rxmode.offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
1380                         err = iavf_enable_vlan_strip(adapter);
1381                 else
1382                         err = iavf_disable_vlan_strip(adapter);
1383
1384                 if (err)
1385                         return -EIO;
1386         }
1387         return 0;
1388 }
1389
1390 static int
1391 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
1392                         struct rte_eth_rss_reta_entry64 *reta_conf,
1393                         uint16_t reta_size)
1394 {
1395         struct iavf_adapter *adapter =
1396                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1397         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1398         uint8_t *lut;
1399         uint16_t i, idx, shift;
1400         int ret;
1401
1402         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1403                 return -ENOTSUP;
1404
1405         if (reta_size != vf->vf_res->rss_lut_size) {
1406                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1407                         "(%d) doesn't match the number of hardware can "
1408                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1409                 return -EINVAL;
1410         }
1411
1412         lut = rte_zmalloc("rss_lut", reta_size, 0);
1413         if (!lut) {
1414                 PMD_DRV_LOG(ERR, "No memory can be allocated");
1415                 return -ENOMEM;
1416         }
1417         /* store the old lut table temporarily */
1418         rte_memcpy(lut, vf->rss_lut, reta_size);
1419
1420         for (i = 0; i < reta_size; i++) {
1421                 idx = i / RTE_ETH_RETA_GROUP_SIZE;
1422                 shift = i % RTE_ETH_RETA_GROUP_SIZE;
1423                 if (reta_conf[idx].mask & (1ULL << shift))
1424                         lut[i] = reta_conf[idx].reta[shift];
1425         }
1426
1427         rte_memcpy(vf->rss_lut, lut, reta_size);
1428         /* send virtchnl ops to configure RSS */
1429         ret = iavf_configure_rss_lut(adapter);
1430         if (ret) /* revert back */
1431                 rte_memcpy(vf->rss_lut, lut, reta_size);
1432         rte_free(lut);
1433
1434         return ret;
1435 }
1436
1437 static int
1438 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
1439                        struct rte_eth_rss_reta_entry64 *reta_conf,
1440                        uint16_t reta_size)
1441 {
1442         struct iavf_adapter *adapter =
1443                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1444         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1445         uint16_t i, idx, shift;
1446
1447         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1448                 return -ENOTSUP;
1449
1450         if (reta_size != vf->vf_res->rss_lut_size) {
1451                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1452                         "(%d) doesn't match the number of hardware can "
1453                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1454                 return -EINVAL;
1455         }
1456
1457         for (i = 0; i < reta_size; i++) {
1458                 idx = i / RTE_ETH_RETA_GROUP_SIZE;
1459                 shift = i % RTE_ETH_RETA_GROUP_SIZE;
1460                 if (reta_conf[idx].mask & (1ULL << shift))
1461                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
1462         }
1463
1464         return 0;
1465 }
1466
1467 static int
1468 iavf_set_rss_key(struct iavf_adapter *adapter, uint8_t *key, uint8_t key_len)
1469 {
1470         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1471
1472         /* HENA setting, it is enabled by default, no change */
1473         if (!key || key_len == 0) {
1474                 PMD_DRV_LOG(DEBUG, "No key to be configured");
1475                 return 0;
1476         } else if (key_len != vf->vf_res->rss_key_size) {
1477                 PMD_DRV_LOG(ERR, "The size of hash key configured "
1478                         "(%d) doesn't match the size of hardware can "
1479                         "support (%d)", key_len,
1480                         vf->vf_res->rss_key_size);
1481                 return -EINVAL;
1482         }
1483
1484         rte_memcpy(vf->rss_key, key, key_len);
1485
1486         return iavf_configure_rss_key(adapter);
1487 }
1488
1489 static int
1490 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
1491                         struct rte_eth_rss_conf *rss_conf)
1492 {
1493         struct iavf_adapter *adapter =
1494                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1495         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1496         int ret;
1497
1498         adapter->dev_data->dev_conf.rx_adv_conf.rss_conf = *rss_conf;
1499
1500         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1501                 return -ENOTSUP;
1502
1503         /* Set hash key. */
1504         ret = iavf_set_rss_key(adapter, rss_conf->rss_key,
1505                                rss_conf->rss_key_len);
1506         if (ret)
1507                 return ret;
1508
1509         if (rss_conf->rss_hf == 0) {
1510                 vf->rss_hf = 0;
1511                 ret = iavf_set_hena(adapter, 0);
1512
1513                 /* It is a workaround, temporarily allow error to be returned
1514                  * due to possible lack of PF handling for hena = 0.
1515                  */
1516                 if (ret)
1517                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS, lack PF support");
1518                 return 0;
1519         }
1520
1521         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
1522                 /* Clear existing RSS. */
1523                 ret = iavf_set_hena(adapter, 0);
1524
1525                 /* It is a workaround, temporarily allow error to be returned
1526                  * due to possible lack of PF handling for hena = 0.
1527                  */
1528                 if (ret)
1529                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS,"
1530                                     "lack PF support");
1531
1532                 /* Set new RSS configuration. */
1533                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
1534                 if (ret) {
1535                         PMD_DRV_LOG(ERR, "fail to set new RSS");
1536                         return ret;
1537                 }
1538         } else {
1539                 iavf_config_rss_hf(adapter, rss_conf->rss_hf);
1540         }
1541
1542         return 0;
1543 }
1544
1545 static int
1546 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1547                           struct rte_eth_rss_conf *rss_conf)
1548 {
1549         struct iavf_adapter *adapter =
1550                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1551         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1552
1553         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1554                 return -ENOTSUP;
1555
1556         rss_conf->rss_hf = vf->rss_hf;
1557
1558         if (!rss_conf->rss_key)
1559                 return 0;
1560
1561         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
1562         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
1563
1564         return 0;
1565 }
1566
1567 static int
1568 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu __rte_unused)
1569 {
1570         /* mtu setting is forbidden if port is start */
1571         if (dev->data->dev_started) {
1572                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
1573                 return -EBUSY;
1574         }
1575
1576         return 0;
1577 }
1578
1579 static int
1580 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
1581                              struct rte_ether_addr *mac_addr)
1582 {
1583         struct iavf_adapter *adapter =
1584                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1585         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1586         struct rte_ether_addr *old_addr;
1587         int ret;
1588
1589         old_addr = (struct rte_ether_addr *)hw->mac.addr;
1590
1591         if (rte_is_same_ether_addr(old_addr, mac_addr))
1592                 return 0;
1593
1594         ret = iavf_add_del_eth_addr(adapter, old_addr, false, VIRTCHNL_ETHER_ADDR_PRIMARY);
1595         if (ret)
1596                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
1597                             RTE_ETHER_ADDR_PRT_FMT,
1598                                 RTE_ETHER_ADDR_BYTES(old_addr));
1599
1600         ret = iavf_add_del_eth_addr(adapter, mac_addr, true, VIRTCHNL_ETHER_ADDR_PRIMARY);
1601         if (ret)
1602                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1603                             RTE_ETHER_ADDR_PRT_FMT,
1604                                 RTE_ETHER_ADDR_BYTES(mac_addr));
1605
1606         if (ret)
1607                 return -EIO;
1608
1609         rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1610         return 0;
1611 }
1612
1613 static void
1614 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1615 {
1616         if (*stat >= *offset)
1617                 *stat = *stat - *offset;
1618         else
1619                 *stat = (uint64_t)((*stat +
1620                         ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1621
1622         *stat &= IAVF_48_BIT_MASK;
1623 }
1624
1625 static void
1626 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1627 {
1628         if (*stat >= *offset)
1629                 *stat = (uint64_t)(*stat - *offset);
1630         else
1631                 *stat = (uint64_t)((*stat +
1632                         ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1633 }
1634
1635 static void
1636 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1637 {
1638         struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset.eth_stats;
1639
1640         iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1641         iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1642         iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1643         iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1644         iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1645         iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1646         iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1647         iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1648         iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1649         iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1650         iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1651 }
1652
1653 static int
1654 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1655 {
1656         struct iavf_adapter *adapter =
1657                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1658         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1659         struct iavf_vsi *vsi = &vf->vsi;
1660         struct virtchnl_eth_stats *pstats = NULL;
1661         int ret;
1662
1663         ret = iavf_query_stats(adapter, &pstats);
1664         if (ret == 0) {
1665                 uint8_t crc_stats_len = (dev->data->dev_conf.rxmode.offloads &
1666                                          RTE_ETH_RX_OFFLOAD_KEEP_CRC) ? 0 :
1667                                          RTE_ETHER_CRC_LEN;
1668                 iavf_update_stats(vsi, pstats);
1669                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1670                                 pstats->rx_broadcast - pstats->rx_discards;
1671                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1672                                                 pstats->tx_unicast;
1673                 stats->imissed = pstats->rx_discards;
1674                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1675                 stats->ibytes = pstats->rx_bytes;
1676                 stats->ibytes -= stats->ipackets * crc_stats_len;
1677                 stats->obytes = pstats->tx_bytes;
1678         } else {
1679                 PMD_DRV_LOG(ERR, "Get statistics failed");
1680         }
1681         return ret;
1682 }
1683
1684 static int
1685 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1686 {
1687         int ret;
1688         struct iavf_adapter *adapter =
1689                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1690         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1691         struct iavf_vsi *vsi = &vf->vsi;
1692         struct virtchnl_eth_stats *pstats = NULL;
1693
1694         /* read stat values to clear hardware registers */
1695         ret = iavf_query_stats(adapter, &pstats);
1696         if (ret != 0)
1697                 return ret;
1698
1699         /* set stats offset base on current values */
1700         vsi->eth_stats_offset.eth_stats = *pstats;
1701
1702         return 0;
1703 }
1704
1705 static int
1706 iavf_dev_xstats_reset(struct rte_eth_dev *dev)
1707 {
1708         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1709         iavf_dev_stats_reset(dev);
1710         memset(&vf->vsi.eth_stats_offset.ips_stats, 0,
1711                         sizeof(struct iavf_ipsec_crypto_stats));
1712         return 0;
1713 }
1714
1715 static int iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1716                                       struct rte_eth_xstat_name *xstats_names,
1717                                       __rte_unused unsigned int limit)
1718 {
1719         unsigned int i;
1720
1721         if (xstats_names != NULL)
1722                 for (i = 0; i < IAVF_NB_XSTATS; i++) {
1723                         snprintf(xstats_names[i].name,
1724                                 sizeof(xstats_names[i].name),
1725                                 "%s", rte_iavf_stats_strings[i].name);
1726                 }
1727         return IAVF_NB_XSTATS;
1728 }
1729
1730 static void
1731 iavf_dev_update_ipsec_xstats(struct rte_eth_dev *ethdev,
1732                 struct iavf_ipsec_crypto_stats *ips)
1733 {
1734         uint16_t idx;
1735         for (idx = 0; idx < ethdev->data->nb_rx_queues; idx++) {
1736                 struct iavf_rx_queue *rxq;
1737                 struct iavf_ipsec_crypto_stats *stats;
1738                 rxq = (struct iavf_rx_queue *)ethdev->data->rx_queues[idx];
1739                 stats = &rxq->stats.ipsec_crypto;
1740                 ips->icount += stats->icount;
1741                 ips->ibytes += stats->ibytes;
1742                 ips->ierrors.count += stats->ierrors.count;
1743                 ips->ierrors.sad_miss += stats->ierrors.sad_miss;
1744                 ips->ierrors.not_processed += stats->ierrors.not_processed;
1745                 ips->ierrors.icv_check += stats->ierrors.icv_check;
1746                 ips->ierrors.ipsec_length += stats->ierrors.ipsec_length;
1747                 ips->ierrors.misc += stats->ierrors.misc;
1748         }
1749 }
1750
1751 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
1752                                  struct rte_eth_xstat *xstats, unsigned int n)
1753 {
1754         int ret;
1755         unsigned int i;
1756         struct iavf_adapter *adapter =
1757                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1758         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1759         struct iavf_vsi *vsi = &vf->vsi;
1760         struct virtchnl_eth_stats *pstats = NULL;
1761         struct iavf_eth_xstats iavf_xtats = {{0}};
1762
1763         if (n < IAVF_NB_XSTATS)
1764                 return IAVF_NB_XSTATS;
1765
1766         ret = iavf_query_stats(adapter, &pstats);
1767         if (ret != 0)
1768                 return 0;
1769
1770         if (!xstats)
1771                 return 0;
1772
1773         iavf_update_stats(vsi, pstats);
1774         iavf_xtats.eth_stats = *pstats;
1775
1776         if (iavf_ipsec_crypto_supported(adapter))
1777                 iavf_dev_update_ipsec_xstats(dev, &iavf_xtats.ips_stats);
1778
1779         /* loop over xstats array and values from pstats */
1780         for (i = 0; i < IAVF_NB_XSTATS; i++) {
1781                 xstats[i].id = i;
1782                 xstats[i].value = *(uint64_t *)(((char *)&iavf_xtats) +
1783                         rte_iavf_stats_strings[i].offset);
1784         }
1785
1786         return IAVF_NB_XSTATS;
1787 }
1788
1789
1790 static int
1791 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1792 {
1793         struct iavf_adapter *adapter =
1794                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1795         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1796         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1797         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1798         uint16_t msix_intr;
1799
1800         msix_intr = rte_intr_vec_list_index_get(pci_dev->intr_handle,
1801                                                        queue_id);
1802         if (msix_intr == IAVF_MISC_VEC_ID) {
1803                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1804                 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1805                                IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1806                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1807                                IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1808         } else {
1809                 IAVF_WRITE_REG(hw,
1810                                IAVF_VFINT_DYN_CTLN1
1811                                 (msix_intr - IAVF_RX_VEC_START),
1812                                IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1813                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1814                                IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
1815         }
1816
1817         IAVF_WRITE_FLUSH(hw);
1818
1819         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1820                 rte_intr_ack(pci_dev->intr_handle);
1821
1822         return 0;
1823 }
1824
1825 static int
1826 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1827 {
1828         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1829         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1830         uint16_t msix_intr;
1831
1832         msix_intr = rte_intr_vec_list_index_get(pci_dev->intr_handle,
1833                                                        queue_id);
1834         if (msix_intr == IAVF_MISC_VEC_ID) {
1835                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1836                 return -EIO;
1837         }
1838
1839         IAVF_WRITE_REG(hw,
1840                       IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1841                       0);
1842
1843         IAVF_WRITE_FLUSH(hw);
1844         return 0;
1845 }
1846
1847 static int
1848 iavf_check_vf_reset_done(struct iavf_hw *hw)
1849 {
1850         int i, reset;
1851
1852         for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1853                 reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
1854                         IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1855                 reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT;
1856                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1857                     reset == VIRTCHNL_VFR_COMPLETED)
1858                         break;
1859                 rte_delay_ms(20);
1860         }
1861
1862         if (i >= IAVF_RESET_WAIT_CNT)
1863                 return -1;
1864
1865         return 0;
1866 }
1867
1868 static int
1869 iavf_lookup_proto_xtr_type(const char *flex_name)
1870 {
1871         static struct {
1872                 const char *name;
1873                 enum iavf_proto_xtr_type type;
1874         } xtr_type_map[] = {
1875                 { "vlan",      IAVF_PROTO_XTR_VLAN      },
1876                 { "ipv4",      IAVF_PROTO_XTR_IPV4      },
1877                 { "ipv6",      IAVF_PROTO_XTR_IPV6      },
1878                 { "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW },
1879                 { "tcp",       IAVF_PROTO_XTR_TCP       },
1880                 { "ip_offset", IAVF_PROTO_XTR_IP_OFFSET },
1881                 { "ipsec_crypto_said", IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID },
1882         };
1883         uint32_t i;
1884
1885         for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
1886                 if (strcmp(flex_name, xtr_type_map[i].name) == 0)
1887                         return xtr_type_map[i].type;
1888         }
1889
1890         PMD_DRV_LOG(ERR, "wrong proto_xtr type, it should be: "
1891                         "vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset|ipsec_crypto_said");
1892
1893         return -1;
1894 }
1895
1896 /**
1897  * Parse elem, the elem could be single number/range or '(' ')' group
1898  * 1) A single number elem, it's just a simple digit. e.g. 9
1899  * 2) A single range elem, two digits with a '-' between. e.g. 2-6
1900  * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
1901  *    Within group elem, '-' used for a range separator;
1902  *                       ',' used for a single number.
1903  */
1904 static int
1905 iavf_parse_queue_set(const char *input, int xtr_type,
1906                      struct iavf_devargs *devargs)
1907 {
1908         const char *str = input;
1909         char *end = NULL;
1910         uint32_t min, max;
1911         uint32_t idx;
1912
1913         while (isblank(*str))
1914                 str++;
1915
1916         if (!isdigit(*str) && *str != '(')
1917                 return -1;
1918
1919         /* process single number or single range of number */
1920         if (*str != '(') {
1921                 errno = 0;
1922                 idx = strtoul(str, &end, 10);
1923                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1924                         return -1;
1925
1926                 while (isblank(*end))
1927                         end++;
1928
1929                 min = idx;
1930                 max = idx;
1931
1932                 /* process single <number>-<number> */
1933                 if (*end == '-') {
1934                         end++;
1935                         while (isblank(*end))
1936                                 end++;
1937                         if (!isdigit(*end))
1938                                 return -1;
1939
1940                         errno = 0;
1941                         idx = strtoul(end, &end, 10);
1942                         if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1943                                 return -1;
1944
1945                         max = idx;
1946                         while (isblank(*end))
1947                                 end++;
1948                 }
1949
1950                 if (*end != ':')
1951                         return -1;
1952
1953                 for (idx = RTE_MIN(min, max);
1954                      idx <= RTE_MAX(min, max); idx++)
1955                         devargs->proto_xtr[idx] = xtr_type;
1956
1957                 return 0;
1958         }
1959
1960         /* process set within bracket */
1961         str++;
1962         while (isblank(*str))
1963                 str++;
1964         if (*str == '\0')
1965                 return -1;
1966
1967         min = IAVF_MAX_QUEUE_NUM;
1968         do {
1969                 /* go ahead to the first digit */
1970                 while (isblank(*str))
1971                         str++;
1972                 if (!isdigit(*str))
1973                         return -1;
1974
1975                 /* get the digit value */
1976                 errno = 0;
1977                 idx = strtoul(str, &end, 10);
1978                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1979                         return -1;
1980
1981                 /* go ahead to separator '-',',' and ')' */
1982                 while (isblank(*end))
1983                         end++;
1984                 if (*end == '-') {
1985                         if (min == IAVF_MAX_QUEUE_NUM)
1986                                 min = idx;
1987                         else /* avoid continuous '-' */
1988                                 return -1;
1989                 } else if (*end == ',' || *end == ')') {
1990                         max = idx;
1991                         if (min == IAVF_MAX_QUEUE_NUM)
1992                                 min = idx;
1993
1994                         for (idx = RTE_MIN(min, max);
1995                              idx <= RTE_MAX(min, max); idx++)
1996                                 devargs->proto_xtr[idx] = xtr_type;
1997
1998                         min = IAVF_MAX_QUEUE_NUM;
1999                 } else {
2000                         return -1;
2001                 }
2002
2003                 str = end + 1;
2004         } while (*end != ')' && *end != '\0');
2005
2006         return 0;
2007 }
2008
2009 static int
2010 iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs)
2011 {
2012         const char *queue_start;
2013         uint32_t idx;
2014         int xtr_type;
2015         char flex_name[32];
2016
2017         while (isblank(*queues))
2018                 queues++;
2019
2020         if (*queues != '[') {
2021                 xtr_type = iavf_lookup_proto_xtr_type(queues);
2022                 if (xtr_type < 0)
2023                         return -1;
2024
2025                 devargs->proto_xtr_dflt = xtr_type;
2026
2027                 return 0;
2028         }
2029
2030         queues++;
2031         do {
2032                 while (isblank(*queues))
2033                         queues++;
2034                 if (*queues == '\0')
2035                         return -1;
2036
2037                 queue_start = queues;
2038
2039                 /* go across a complete bracket */
2040                 if (*queue_start == '(') {
2041                         queues += strcspn(queues, ")");
2042                         if (*queues != ')')
2043                                 return -1;
2044                 }
2045
2046                 /* scan the separator ':' */
2047                 queues += strcspn(queues, ":");
2048                 if (*queues++ != ':')
2049                         return -1;
2050                 while (isblank(*queues))
2051                         queues++;
2052
2053                 for (idx = 0; ; idx++) {
2054                         if (isblank(queues[idx]) ||
2055                             queues[idx] == ',' ||
2056                             queues[idx] == ']' ||
2057                             queues[idx] == '\0')
2058                                 break;
2059
2060                         if (idx > sizeof(flex_name) - 2)
2061                                 return -1;
2062
2063                         flex_name[idx] = queues[idx];
2064                 }
2065                 flex_name[idx] = '\0';
2066                 xtr_type = iavf_lookup_proto_xtr_type(flex_name);
2067                 if (xtr_type < 0)
2068                         return -1;
2069
2070                 queues += idx;
2071
2072                 while (isblank(*queues) || *queues == ',' || *queues == ']')
2073                         queues++;
2074
2075                 if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0)
2076                         return -1;
2077         } while (*queues != '\0');
2078
2079         return 0;
2080 }
2081
2082 static int
2083 iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
2084                           void *extra_args)
2085 {
2086         struct iavf_devargs *devargs = extra_args;
2087
2088         if (!value || !extra_args)
2089                 return -EINVAL;
2090
2091         if (iavf_parse_queue_proto_xtr(value, devargs) < 0) {
2092                 PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'",
2093                             value);
2094                 return -1;
2095         }
2096
2097         return 0;
2098 }
2099
2100 static int
2101 parse_u16(__rte_unused const char *key, const char *value, void *args)
2102 {
2103         u16 *num = (u16 *)args;
2104         u16 tmp;
2105
2106         errno = 0;
2107         tmp = strtoull(value, NULL, 10);
2108         if (errno || !tmp) {
2109                 PMD_DRV_LOG(WARNING, "%s: \"%s\" is not a valid u16",
2110                             key, value);
2111                 return -1;
2112         }
2113
2114         *num = tmp;
2115
2116         return 0;
2117 }
2118
2119 static int iavf_parse_devargs(struct rte_eth_dev *dev)
2120 {
2121         struct iavf_adapter *ad =
2122                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2123         struct rte_devargs *devargs = dev->device->devargs;
2124         struct rte_kvargs *kvlist;
2125         int ret;
2126
2127         if (!devargs)
2128                 return 0;
2129
2130         kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args);
2131         if (!kvlist) {
2132                 PMD_INIT_LOG(ERR, "invalid kvargs key\n");
2133                 return -EINVAL;
2134         }
2135
2136         ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE;
2137         memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE,
2138                sizeof(ad->devargs.proto_xtr));
2139
2140         ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG,
2141                                  &iavf_handle_proto_xtr_arg, &ad->devargs);
2142         if (ret)
2143                 goto bail;
2144
2145         ret = rte_kvargs_process(kvlist, IAVF_QUANTA_SIZE_ARG,
2146                                  &parse_u16, &ad->devargs.quanta_size);
2147         if (ret)
2148                 goto bail;
2149
2150         if (ad->devargs.quanta_size == 0)
2151                 ad->devargs.quanta_size = 1024;
2152
2153         if (ad->devargs.quanta_size < 256 || ad->devargs.quanta_size > 4096 ||
2154             ad->devargs.quanta_size & 0x40) {
2155                 PMD_INIT_LOG(ERR, "invalid quanta size\n");
2156                 return -EINVAL;
2157         }
2158
2159 bail:
2160         rte_kvargs_free(kvlist);
2161         return ret;
2162 }
2163
2164 static void
2165 iavf_init_proto_xtr(struct rte_eth_dev *dev)
2166 {
2167         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2168         struct iavf_adapter *ad =
2169                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2170         const struct iavf_proto_xtr_ol *xtr_ol;
2171         bool proto_xtr_enable = false;
2172         int offset;
2173         uint16_t i;
2174
2175         vf->proto_xtr = rte_zmalloc("vf proto xtr",
2176                                     vf->vsi_res->num_queue_pairs, 0);
2177         if (unlikely(!(vf->proto_xtr))) {
2178                 PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table");
2179                 return;
2180         }
2181
2182         for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) {
2183                 vf->proto_xtr[i] = ad->devargs.proto_xtr[i] !=
2184                                         IAVF_PROTO_XTR_NONE ?
2185                                         ad->devargs.proto_xtr[i] :
2186                                         ad->devargs.proto_xtr_dflt;
2187
2188                 if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) {
2189                         uint8_t type = vf->proto_xtr[i];
2190
2191                         iavf_proto_xtr_params[type].required = true;
2192                         proto_xtr_enable = true;
2193                 }
2194         }
2195
2196         if (likely(!proto_xtr_enable))
2197                 return;
2198
2199         offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param);
2200         if (unlikely(offset == -1)) {
2201                 PMD_DRV_LOG(ERR,
2202                             "failed to extract protocol metadata, error %d",
2203                             -rte_errno);
2204                 return;
2205         }
2206
2207         PMD_DRV_LOG(DEBUG,
2208                     "proto_xtr metadata offset in mbuf is : %d",
2209                     offset);
2210         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset;
2211
2212         for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) {
2213                 xtr_ol = &iavf_proto_xtr_params[i];
2214
2215                 uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i);
2216
2217                 if (!xtr_ol->required)
2218                         continue;
2219
2220                 if (!(vf->supported_rxdid & BIT(rxdid))) {
2221                         PMD_DRV_LOG(ERR,
2222                                     "rxdid[%u] is not supported in hardware",
2223                                     rxdid);
2224                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2225                         break;
2226                 }
2227
2228                 offset = rte_mbuf_dynflag_register(&xtr_ol->param);
2229                 if (unlikely(offset == -1)) {
2230                         PMD_DRV_LOG(ERR,
2231                                     "failed to register proto_xtr offload '%s', error %d",
2232                                     xtr_ol->param.name, -rte_errno);
2233
2234                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2235                         break;
2236                 }
2237
2238                 PMD_DRV_LOG(DEBUG,
2239                             "proto_xtr offload '%s' offset in mbuf is : %d",
2240                             xtr_ol->param.name, offset);
2241                 *xtr_ol->ol_flag = 1ULL << offset;
2242         }
2243 }
2244
2245 static int
2246 iavf_init_vf(struct rte_eth_dev *dev)
2247 {
2248         int err, bufsz;
2249         struct iavf_adapter *adapter =
2250                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2251         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2252         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2253
2254         vf->eth_dev = dev;
2255
2256         err = iavf_parse_devargs(dev);
2257         if (err) {
2258                 PMD_INIT_LOG(ERR, "Failed to parse devargs");
2259                 goto err;
2260         }
2261
2262         err = iavf_set_mac_type(hw);
2263         if (err) {
2264                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
2265                 goto err;
2266         }
2267
2268         err = iavf_check_vf_reset_done(hw);
2269         if (err) {
2270                 PMD_INIT_LOG(ERR, "VF is still resetting");
2271                 goto err;
2272         }
2273
2274         iavf_init_adminq_parameter(hw);
2275         err = iavf_init_adminq(hw);
2276         if (err) {
2277                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
2278                 goto err;
2279         }
2280
2281         vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
2282         if (!vf->aq_resp) {
2283                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
2284                 goto err_aq;
2285         }
2286         if (iavf_check_api_version(adapter) != 0) {
2287                 PMD_INIT_LOG(ERR, "check_api version failed");
2288                 goto err_api;
2289         }
2290
2291         bufsz = sizeof(struct virtchnl_vf_resource) +
2292                 (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
2293         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
2294         if (!vf->vf_res) {
2295                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
2296                 goto err_api;
2297         }
2298
2299         if (iavf_get_vf_resource(adapter) != 0) {
2300                 PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
2301                 goto err_alloc;
2302         }
2303         /* Allocate memort for RSS info */
2304         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2305                 vf->rss_key = rte_zmalloc("rss_key",
2306                                           vf->vf_res->rss_key_size, 0);
2307                 if (!vf->rss_key) {
2308                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
2309                         goto err_rss;
2310                 }
2311                 vf->rss_lut = rte_zmalloc("rss_lut",
2312                                           vf->vf_res->rss_lut_size, 0);
2313                 if (!vf->rss_lut) {
2314                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
2315                         goto err_rss;
2316                 }
2317         }
2318
2319         if (vf->vsi_res->num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT)
2320                 vf->lv_enabled = true;
2321
2322         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2323                 if (iavf_get_supported_rxdid(adapter) != 0) {
2324                         PMD_INIT_LOG(ERR, "failed to do get supported rxdid");
2325                         goto err_rss;
2326                 }
2327         }
2328
2329         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
2330                 if (iavf_get_vlan_offload_caps_v2(adapter) != 0) {
2331                         PMD_INIT_LOG(ERR, "failed to do get VLAN offload v2 capabilities");
2332                         goto err_rss;
2333                 }
2334         }
2335
2336         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS) {
2337                 bufsz = sizeof(struct virtchnl_qos_cap_list) +
2338                         IAVF_MAX_TRAFFIC_CLASS *
2339                         sizeof(struct virtchnl_qos_cap_elem);
2340                 vf->qos_cap = rte_zmalloc("qos_cap", bufsz, 0);
2341                 if (!vf->qos_cap) {
2342                         PMD_INIT_LOG(ERR, "unable to allocate qos_cap memory");
2343                         goto err_rss;
2344                 }
2345                 iavf_tm_conf_init(dev);
2346         }
2347
2348         iavf_init_proto_xtr(dev);
2349
2350         return 0;
2351 err_rss:
2352         rte_free(vf->rss_key);
2353         rte_free(vf->rss_lut);
2354 err_alloc:
2355         rte_free(vf->qos_cap);
2356         rte_free(vf->vf_res);
2357         vf->vsi_res = NULL;
2358 err_api:
2359         rte_free(vf->aq_resp);
2360 err_aq:
2361         iavf_shutdown_adminq(hw);
2362 err:
2363         return -1;
2364 }
2365
2366 static void
2367 iavf_uninit_vf(struct rte_eth_dev *dev)
2368 {
2369         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2370         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2371
2372         iavf_shutdown_adminq(hw);
2373
2374         rte_free(vf->vf_res);
2375         vf->vsi_res = NULL;
2376         vf->vf_res = NULL;
2377
2378         rte_free(vf->aq_resp);
2379         vf->aq_resp = NULL;
2380
2381         rte_free(vf->qos_cap);
2382         vf->qos_cap = NULL;
2383
2384         rte_free(vf->rss_lut);
2385         vf->rss_lut = NULL;
2386         rte_free(vf->rss_key);
2387         vf->rss_key = NULL;
2388 }
2389
2390 /* Enable default admin queue interrupt setting */
2391 static inline void
2392 iavf_enable_irq0(struct iavf_hw *hw)
2393 {
2394         /* Enable admin queue interrupt trigger */
2395         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1,
2396                        IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
2397
2398         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2399                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
2400                        IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
2401                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2402
2403         IAVF_WRITE_FLUSH(hw);
2404 }
2405
2406 static inline void
2407 iavf_disable_irq0(struct iavf_hw *hw)
2408 {
2409         /* Disable all interrupt types */
2410         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0);
2411         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2412                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2413         IAVF_WRITE_FLUSH(hw);
2414 }
2415
2416 static void
2417 iavf_dev_interrupt_handler(void *param)
2418 {
2419         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2420         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2421
2422         iavf_disable_irq0(hw);
2423
2424         iavf_handle_virtchnl_msg(dev);
2425
2426         iavf_enable_irq0(hw);
2427 }
2428
2429 void
2430 iavf_dev_alarm_handler(void *param)
2431 {
2432         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2433         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2434         uint32_t icr0;
2435
2436         iavf_disable_irq0(hw);
2437
2438         /* read out interrupt causes */
2439         icr0 = IAVF_READ_REG(hw, IAVF_VFINT_ICR01);
2440
2441         if (icr0 & IAVF_VFINT_ICR01_ADMINQ_MASK) {
2442                 PMD_DRV_LOG(DEBUG, "ICR01_ADMINQ is reported");
2443                 iavf_handle_virtchnl_msg(dev);
2444         }
2445
2446         iavf_enable_irq0(hw);
2447
2448         rte_eal_alarm_set(IAVF_ALARM_INTERVAL,
2449                           iavf_dev_alarm_handler, dev);
2450 }
2451
2452 static int
2453 iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
2454                       const struct rte_flow_ops **ops)
2455 {
2456         if (!dev)
2457                 return -EINVAL;
2458
2459         *ops = &iavf_flow_ops;
2460         return 0;
2461 }
2462
2463 static void
2464 iavf_default_rss_disable(struct iavf_adapter *adapter)
2465 {
2466         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
2467         int ret = 0;
2468
2469         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2470                 /* Set hena = 0 to ask PF to cleanup all existing RSS. */
2471                 ret = iavf_set_hena(adapter, 0);
2472                 if (ret)
2473                         /* It is a workaround, temporarily allow error to be
2474                          * returned due to possible lack of PF handling for
2475                          * hena = 0.
2476                          */
2477                         PMD_INIT_LOG(WARNING, "fail to disable default RSS,"
2478                                     "lack PF support");
2479         }
2480 }
2481
2482 static int
2483 iavf_dev_init(struct rte_eth_dev *eth_dev)
2484 {
2485         struct iavf_adapter *adapter =
2486                 IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2487         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
2488         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
2489         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2490         int ret = 0;
2491
2492         PMD_INIT_FUNC_TRACE();
2493
2494         /* assign ops func pointer */
2495         eth_dev->dev_ops = &iavf_eth_dev_ops;
2496         eth_dev->rx_queue_count = iavf_dev_rxq_count;
2497         eth_dev->rx_descriptor_status = iavf_dev_rx_desc_status;
2498         eth_dev->tx_descriptor_status = iavf_dev_tx_desc_status;
2499         eth_dev->rx_pkt_burst = &iavf_recv_pkts;
2500         eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
2501         eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
2502
2503         /* For secondary processes, we don't initialise any further as primary
2504          * has already done this work. Only check if we need a different RX
2505          * and TX function.
2506          */
2507         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2508                 iavf_set_rx_function(eth_dev);
2509                 iavf_set_tx_function(eth_dev);
2510                 return 0;
2511         }
2512         rte_eth_copy_pci_info(eth_dev, pci_dev);
2513
2514         hw->vendor_id = pci_dev->id.vendor_id;
2515         hw->device_id = pci_dev->id.device_id;
2516         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
2517         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
2518         hw->bus.bus_id = pci_dev->addr.bus;
2519         hw->bus.device = pci_dev->addr.devid;
2520         hw->bus.func = pci_dev->addr.function;
2521         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
2522         hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2523         adapter->dev_data = eth_dev->data;
2524         adapter->stopped = 1;
2525
2526         if (iavf_init_vf(eth_dev) != 0) {
2527                 PMD_INIT_LOG(ERR, "Init vf failed");
2528                 return -1;
2529         }
2530
2531         /* set default ptype table */
2532         iavf_set_default_ptype_table(eth_dev);
2533
2534         /* copy mac addr */
2535         eth_dev->data->mac_addrs = rte_zmalloc(
2536                 "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
2537         if (!eth_dev->data->mac_addrs) {
2538                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
2539                              " store MAC addresses",
2540                              RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
2541                 ret = -ENOMEM;
2542                 goto init_vf_err;
2543         }
2544         /* If the MAC address is not configured by host,
2545          * generate a random one.
2546          */
2547         if (!rte_is_valid_assigned_ether_addr(
2548                         (struct rte_ether_addr *)hw->mac.addr))
2549                 rte_eth_random_addr(hw->mac.addr);
2550         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
2551                         &eth_dev->data->mac_addrs[0]);
2552
2553         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
2554                 /* register callback func to eal lib */
2555                 rte_intr_callback_register(pci_dev->intr_handle,
2556                                            iavf_dev_interrupt_handler,
2557                                            (void *)eth_dev);
2558
2559                 /* enable uio intr after callback register */
2560                 rte_intr_enable(pci_dev->intr_handle);
2561         } else {
2562                 rte_eal_alarm_set(IAVF_ALARM_INTERVAL,
2563                                   iavf_dev_alarm_handler, eth_dev);
2564         }
2565
2566         /* configure and enable device interrupt */
2567         iavf_enable_irq0(hw);
2568
2569         ret = iavf_flow_init(adapter);
2570         if (ret) {
2571                 PMD_INIT_LOG(ERR, "Failed to initialize flow");
2572                 goto flow_init_err;
2573         }
2574
2575         /** Check if the IPsec Crypto offload is supported and create
2576          *  security_ctx if it is.
2577          */
2578         if (iavf_ipsec_crypto_supported(adapter)) {
2579                 /* Initialize security_ctx only for primary process*/
2580                 ret = iavf_security_ctx_create(adapter);
2581                 if (ret) {
2582                         PMD_INIT_LOG(ERR, "failed to create ipsec crypto security instance");
2583                         return ret;
2584                 }
2585
2586                 ret = iavf_security_init(adapter);
2587                 if (ret) {
2588                         PMD_INIT_LOG(ERR, "failed to initialized ipsec crypto resources");
2589                         return ret;
2590                 }
2591         }
2592
2593         iavf_default_rss_disable(adapter);
2594
2595
2596         /* Start device watchdog */
2597         iavf_dev_watchdog_enable(adapter);
2598
2599
2600         return 0;
2601
2602 flow_init_err:
2603         rte_free(eth_dev->data->mac_addrs);
2604         eth_dev->data->mac_addrs = NULL;
2605
2606 init_vf_err:
2607         iavf_uninit_vf(eth_dev);
2608
2609         return ret;
2610 }
2611
2612 static int
2613 iavf_dev_close(struct rte_eth_dev *dev)
2614 {
2615         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2616         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2617         struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
2618         struct iavf_adapter *adapter =
2619                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2620         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2621         int ret;
2622
2623         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2624                 return 0;
2625
2626         ret = iavf_dev_stop(dev);
2627
2628         iavf_flow_flush(dev, NULL);
2629         iavf_flow_uninit(adapter);
2630
2631         /*
2632          * disable promiscuous mode before reset vf
2633          * it is a workaround solution when work with kernel driver
2634          * and it is not the normal way
2635          */
2636         if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled)
2637                 iavf_config_promisc(adapter, false, false);
2638
2639         iavf_shutdown_adminq(hw);
2640         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
2641                 /* disable uio intr before callback unregister */
2642                 rte_intr_disable(intr_handle);
2643
2644                 /* unregister callback func from eal lib */
2645                 rte_intr_callback_unregister(intr_handle,
2646                                              iavf_dev_interrupt_handler, dev);
2647         } else {
2648                 rte_eal_alarm_cancel(iavf_dev_alarm_handler, dev);
2649         }
2650         iavf_disable_irq0(hw);
2651
2652         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
2653                 iavf_tm_conf_uninit(dev);
2654
2655         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2656                 if (vf->rss_lut) {
2657                         rte_free(vf->rss_lut);
2658                         vf->rss_lut = NULL;
2659                 }
2660                 if (vf->rss_key) {
2661                         rte_free(vf->rss_key);
2662                         vf->rss_key = NULL;
2663                 }
2664         }
2665
2666         rte_free(vf->vf_res);
2667         vf->vsi_res = NULL;
2668         vf->vf_res = NULL;
2669
2670         rte_free(vf->aq_resp);
2671         vf->aq_resp = NULL;
2672
2673         /*
2674          * If the VF is reset via VFLR, the device will be knocked out of bus
2675          * master mode, and the driver will fail to recover from the reset. Fix
2676          * this by enabling bus mastering after every reset. In a non-VFLR case,
2677          * the bus master bit will not be disabled, and this call will have no
2678          * effect.
2679          */
2680         if (vf->vf_reset && !rte_pci_set_bus_master(pci_dev, true))
2681                 vf->vf_reset = false;
2682
2683         /* disable watchdog */
2684         iavf_dev_watchdog_disable(adapter);
2685
2686         return ret;
2687 }
2688
2689 static int
2690 iavf_dev_uninit(struct rte_eth_dev *dev)
2691 {
2692         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2693                 return -EPERM;
2694
2695         iavf_dev_close(dev);
2696
2697         return 0;
2698 }
2699
2700 /*
2701  * Reset VF device only to re-initialize resources in PMD layer
2702  */
2703 static int
2704 iavf_dev_reset(struct rte_eth_dev *dev)
2705 {
2706         int ret;
2707
2708         ret = iavf_dev_uninit(dev);
2709         if (ret)
2710                 return ret;
2711
2712         return iavf_dev_init(dev);
2713 }
2714
2715 static int
2716 iavf_dcf_cap_check_handler(__rte_unused const char *key,
2717                            const char *value, __rte_unused void *opaque)
2718 {
2719         if (strcmp(value, "dcf"))
2720                 return -1;
2721
2722         return 0;
2723 }
2724
2725 static int
2726 iavf_dcf_cap_selected(struct rte_devargs *devargs)
2727 {
2728         struct rte_kvargs *kvlist;
2729         const char *key = "cap";
2730         int ret = 0;
2731
2732         if (devargs == NULL)
2733                 return 0;
2734
2735         kvlist = rte_kvargs_parse(devargs->args, NULL);
2736         if (kvlist == NULL)
2737                 return 0;
2738
2739         if (!rte_kvargs_count(kvlist, key))
2740                 goto exit;
2741
2742         /* dcf capability selected when there's a key-value pair: cap=dcf */
2743         if (rte_kvargs_process(kvlist, key,
2744                                iavf_dcf_cap_check_handler, NULL) < 0)
2745                 goto exit;
2746
2747         ret = 1;
2748
2749 exit:
2750         rte_kvargs_free(kvlist);
2751         return ret;
2752 }
2753
2754 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2755                              struct rte_pci_device *pci_dev)
2756 {
2757         if (iavf_dcf_cap_selected(pci_dev->device.devargs))
2758                 return 1;
2759
2760         return rte_eth_dev_pci_generic_probe(pci_dev,
2761                 sizeof(struct iavf_adapter), iavf_dev_init);
2762 }
2763
2764 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
2765 {
2766         return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
2767 }
2768
2769 /* Adaptive virtual function driver struct */
2770 static struct rte_pci_driver rte_iavf_pmd = {
2771         .id_table = pci_id_iavf_map,
2772         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
2773         .probe = eth_iavf_pci_probe,
2774         .remove = eth_iavf_pci_remove,
2775 };
2776
2777 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
2778 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
2779 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
2780 RTE_PMD_REGISTER_PARAM_STRING(net_iavf, "cap=dcf");
2781 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_init, init, NOTICE);
2782 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_driver, driver, NOTICE);
2783 #ifdef RTE_ETHDEV_DEBUG_RX
2784 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_rx, rx, DEBUG);
2785 #endif
2786 #ifdef RTE_ETHDEV_DEBUG_TX
2787 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_tx, tx, DEBUG);
2788 #endif