1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017 Intel Corporation
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
19 #include <rte_atomic.h>
21 #include <rte_ether.h>
22 #include <ethdev_driver.h>
23 #include <ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
29 #include "iavf_rxtx.h"
30 #include "iavf_generic_flow.h"
31 #include "rte_pmd_iavf.h"
34 #define IAVF_PROTO_XTR_ARG "proto_xtr"
36 static const char * const iavf_valid_args[] = {
41 static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = {
42 .name = "intel_pmd_dynfield_proto_xtr_metadata",
43 .size = sizeof(uint32_t),
44 .align = __alignof__(uint32_t),
48 struct iavf_proto_xtr_ol {
49 const struct rte_mbuf_dynflag param;
54 static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = {
55 [IAVF_PROTO_XTR_VLAN] = {
56 .param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
57 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask },
58 [IAVF_PROTO_XTR_IPV4] = {
59 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
60 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask },
61 [IAVF_PROTO_XTR_IPV6] = {
62 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
63 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask },
64 [IAVF_PROTO_XTR_IPV6_FLOW] = {
65 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
66 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask },
67 [IAVF_PROTO_XTR_TCP] = {
68 .param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
69 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask },
70 [IAVF_PROTO_XTR_IP_OFFSET] = {
71 .param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
72 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask },
75 static int iavf_dev_configure(struct rte_eth_dev *dev);
76 static int iavf_dev_start(struct rte_eth_dev *dev);
77 static int iavf_dev_stop(struct rte_eth_dev *dev);
78 static int iavf_dev_close(struct rte_eth_dev *dev);
79 static int iavf_dev_reset(struct rte_eth_dev *dev);
80 static int iavf_dev_info_get(struct rte_eth_dev *dev,
81 struct rte_eth_dev_info *dev_info);
82 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
83 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
84 struct rte_eth_stats *stats);
85 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
86 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
87 struct rte_eth_xstat *xstats, unsigned int n);
88 static int iavf_dev_xstats_get_names(struct rte_eth_dev *dev,
89 struct rte_eth_xstat_name *xstats_names,
91 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
92 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
93 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
94 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
95 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
96 struct rte_ether_addr *addr,
99 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
100 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
101 uint16_t vlan_id, int on);
102 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
103 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
104 struct rte_eth_rss_reta_entry64 *reta_conf,
106 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
107 struct rte_eth_rss_reta_entry64 *reta_conf,
109 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
110 struct rte_eth_rss_conf *rss_conf);
111 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
112 struct rte_eth_rss_conf *rss_conf);
113 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
114 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
115 struct rte_ether_addr *mac_addr);
116 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
118 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
120 static int iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
121 const struct rte_flow_ops **ops);
122 static int iavf_set_mc_addr_list(struct rte_eth_dev *dev,
123 struct rte_ether_addr *mc_addrs,
124 uint32_t mc_addrs_num);
125 static int iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused, void *arg);
127 static const struct rte_pci_id pci_id_iavf_map[] = {
128 { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
129 { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF) },
130 { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF_HV) },
131 { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_VF) },
132 { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_A0_VF) },
133 { .vendor_id = 0, /* sentinel */ },
136 struct rte_iavf_xstats_name_off {
137 char name[RTE_ETH_XSTATS_NAME_SIZE];
141 static const struct rte_iavf_xstats_name_off rte_iavf_stats_strings[] = {
142 {"rx_bytes", offsetof(struct iavf_eth_stats, rx_bytes)},
143 {"rx_unicast_packets", offsetof(struct iavf_eth_stats, rx_unicast)},
144 {"rx_multicast_packets", offsetof(struct iavf_eth_stats, rx_multicast)},
145 {"rx_broadcast_packets", offsetof(struct iavf_eth_stats, rx_broadcast)},
146 {"rx_dropped_packets", offsetof(struct iavf_eth_stats, rx_discards)},
147 {"rx_unknown_protocol_packets", offsetof(struct iavf_eth_stats,
148 rx_unknown_protocol)},
149 {"tx_bytes", offsetof(struct iavf_eth_stats, tx_bytes)},
150 {"tx_unicast_packets", offsetof(struct iavf_eth_stats, tx_unicast)},
151 {"tx_multicast_packets", offsetof(struct iavf_eth_stats, tx_multicast)},
152 {"tx_broadcast_packets", offsetof(struct iavf_eth_stats, tx_broadcast)},
153 {"tx_dropped_packets", offsetof(struct iavf_eth_stats, tx_discards)},
154 {"tx_error_packets", offsetof(struct iavf_eth_stats, tx_errors)},
157 #define IAVF_NB_XSTATS (sizeof(rte_iavf_stats_strings) / \
158 sizeof(rte_iavf_stats_strings[0]))
160 static const struct eth_dev_ops iavf_eth_dev_ops = {
161 .dev_configure = iavf_dev_configure,
162 .dev_start = iavf_dev_start,
163 .dev_stop = iavf_dev_stop,
164 .dev_close = iavf_dev_close,
165 .dev_reset = iavf_dev_reset,
166 .dev_infos_get = iavf_dev_info_get,
167 .dev_supported_ptypes_get = iavf_dev_supported_ptypes_get,
168 .link_update = iavf_dev_link_update,
169 .stats_get = iavf_dev_stats_get,
170 .stats_reset = iavf_dev_stats_reset,
171 .xstats_get = iavf_dev_xstats_get,
172 .xstats_get_names = iavf_dev_xstats_get_names,
173 .xstats_reset = iavf_dev_stats_reset,
174 .promiscuous_enable = iavf_dev_promiscuous_enable,
175 .promiscuous_disable = iavf_dev_promiscuous_disable,
176 .allmulticast_enable = iavf_dev_allmulticast_enable,
177 .allmulticast_disable = iavf_dev_allmulticast_disable,
178 .mac_addr_add = iavf_dev_add_mac_addr,
179 .mac_addr_remove = iavf_dev_del_mac_addr,
180 .set_mc_addr_list = iavf_set_mc_addr_list,
181 .vlan_filter_set = iavf_dev_vlan_filter_set,
182 .vlan_offload_set = iavf_dev_vlan_offload_set,
183 .rx_queue_start = iavf_dev_rx_queue_start,
184 .rx_queue_stop = iavf_dev_rx_queue_stop,
185 .tx_queue_start = iavf_dev_tx_queue_start,
186 .tx_queue_stop = iavf_dev_tx_queue_stop,
187 .rx_queue_setup = iavf_dev_rx_queue_setup,
188 .rx_queue_release = iavf_dev_rx_queue_release,
189 .tx_queue_setup = iavf_dev_tx_queue_setup,
190 .tx_queue_release = iavf_dev_tx_queue_release,
191 .mac_addr_set = iavf_dev_set_default_mac_addr,
192 .reta_update = iavf_dev_rss_reta_update,
193 .reta_query = iavf_dev_rss_reta_query,
194 .rss_hash_update = iavf_dev_rss_hash_update,
195 .rss_hash_conf_get = iavf_dev_rss_hash_conf_get,
196 .rxq_info_get = iavf_dev_rxq_info_get,
197 .txq_info_get = iavf_dev_txq_info_get,
198 .mtu_set = iavf_dev_mtu_set,
199 .rx_queue_intr_enable = iavf_dev_rx_queue_intr_enable,
200 .rx_queue_intr_disable = iavf_dev_rx_queue_intr_disable,
201 .flow_ops_get = iavf_dev_flow_ops_get,
202 .tx_done_cleanup = iavf_dev_tx_done_cleanup,
203 .get_monitor_addr = iavf_get_monitor_addr,
204 .tm_ops_get = iavf_tm_ops_get,
208 iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused,
214 *(const void **)arg = &iavf_tm_ops;
220 iavf_set_mc_addr_list(struct rte_eth_dev *dev,
221 struct rte_ether_addr *mc_addrs,
222 uint32_t mc_addrs_num)
224 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
225 struct iavf_adapter *adapter =
226 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
229 if (mc_addrs_num > IAVF_NUM_MACADDR_MAX) {
231 "can't add more than a limited number (%u) of addresses.",
232 (uint32_t)IAVF_NUM_MACADDR_MAX);
236 /* flush previous addresses */
237 err = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
243 err = iavf_add_del_mc_addr_list(adapter, mc_addrs, mc_addrs_num, true);
246 /* if adding mac address list fails, should add the previous
249 ret = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs,
250 vf->mc_addrs_num, true);
254 vf->mc_addrs_num = mc_addrs_num;
256 mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
263 iavf_config_rss_hf(struct iavf_adapter *adapter, uint64_t rss_hf)
265 static const uint64_t map_hena_rss[] = {
267 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] =
268 ETH_RSS_NONFRAG_IPV4_UDP,
269 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] =
270 ETH_RSS_NONFRAG_IPV4_UDP,
271 [IAVF_FILTER_PCTYPE_NONF_IPV4_UDP] =
272 ETH_RSS_NONFRAG_IPV4_UDP,
273 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] =
274 ETH_RSS_NONFRAG_IPV4_TCP,
275 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP] =
276 ETH_RSS_NONFRAG_IPV4_TCP,
277 [IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP] =
278 ETH_RSS_NONFRAG_IPV4_SCTP,
279 [IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER] =
280 ETH_RSS_NONFRAG_IPV4_OTHER,
281 [IAVF_FILTER_PCTYPE_FRAG_IPV4] = ETH_RSS_FRAG_IPV4,
284 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] =
285 ETH_RSS_NONFRAG_IPV6_UDP,
286 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] =
287 ETH_RSS_NONFRAG_IPV6_UDP,
288 [IAVF_FILTER_PCTYPE_NONF_IPV6_UDP] =
289 ETH_RSS_NONFRAG_IPV6_UDP,
290 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] =
291 ETH_RSS_NONFRAG_IPV6_TCP,
292 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP] =
293 ETH_RSS_NONFRAG_IPV6_TCP,
294 [IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP] =
295 ETH_RSS_NONFRAG_IPV6_SCTP,
296 [IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER] =
297 ETH_RSS_NONFRAG_IPV6_OTHER,
298 [IAVF_FILTER_PCTYPE_FRAG_IPV6] = ETH_RSS_FRAG_IPV6,
301 [IAVF_FILTER_PCTYPE_L2_PAYLOAD] = ETH_RSS_L2_PAYLOAD
304 const uint64_t ipv4_rss = ETH_RSS_NONFRAG_IPV4_UDP |
305 ETH_RSS_NONFRAG_IPV4_TCP |
306 ETH_RSS_NONFRAG_IPV4_SCTP |
307 ETH_RSS_NONFRAG_IPV4_OTHER |
310 const uint64_t ipv6_rss = ETH_RSS_NONFRAG_IPV6_UDP |
311 ETH_RSS_NONFRAG_IPV6_TCP |
312 ETH_RSS_NONFRAG_IPV6_SCTP |
313 ETH_RSS_NONFRAG_IPV6_OTHER |
316 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
317 uint64_t caps = 0, hena = 0, valid_rss_hf = 0;
321 ret = iavf_get_hena_caps(adapter, &caps);
324 * RSS offload type configuration is not a necessary feature
325 * for VF, so here just print a warning and return.
328 "fail to get RSS offload type caps, ret: %d", ret);
333 * ETH_RSS_IPV4 and ETH_RSS_IPV6 can be considered as 2
334 * generalizations of all other IPv4 and IPv6 RSS types.
336 if (rss_hf & ETH_RSS_IPV4)
339 if (rss_hf & ETH_RSS_IPV6)
342 RTE_BUILD_BUG_ON(RTE_DIM(map_hena_rss) > sizeof(uint64_t) * CHAR_BIT);
344 for (i = 0; i < RTE_DIM(map_hena_rss); i++) {
345 uint64_t bit = BIT_ULL(i);
347 if ((caps & bit) && (map_hena_rss[i] & rss_hf)) {
348 valid_rss_hf |= map_hena_rss[i];
353 ret = iavf_set_hena(adapter, hena);
356 * RSS offload type configuration is not a necessary feature
357 * for VF, so here just print a warning and return.
360 "fail to set RSS offload types, ret: %d", ret);
364 if (valid_rss_hf & ipv4_rss)
365 valid_rss_hf |= rss_hf & ETH_RSS_IPV4;
367 if (valid_rss_hf & ipv6_rss)
368 valid_rss_hf |= rss_hf & ETH_RSS_IPV6;
370 if (rss_hf & ~valid_rss_hf)
371 PMD_DRV_LOG(WARNING, "Unsupported rss_hf 0x%" PRIx64,
372 rss_hf & ~valid_rss_hf);
374 vf->rss_hf = valid_rss_hf;
378 iavf_init_rss(struct iavf_adapter *adapter)
380 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
381 struct rte_eth_rss_conf *rss_conf;
385 rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
386 nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
387 vf->max_rss_qregion);
389 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
390 PMD_DRV_LOG(DEBUG, "RSS is not supported");
394 /* configure RSS key */
395 if (!rss_conf->rss_key) {
396 /* Calculate the default hash key */
397 for (i = 0; i < vf->vf_res->rss_key_size; i++)
398 vf->rss_key[i] = (uint8_t)rte_rand();
400 rte_memcpy(vf->rss_key, rss_conf->rss_key,
401 RTE_MIN(rss_conf->rss_key_len,
402 vf->vf_res->rss_key_size));
404 /* init RSS LUT table */
405 for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
410 /* send virtchnnl ops to configure rss*/
411 ret = iavf_configure_rss_lut(adapter);
414 ret = iavf_configure_rss_key(adapter);
418 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
419 /* Set RSS hash configuration based on rss_conf->rss_hf. */
420 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
422 PMD_DRV_LOG(ERR, "fail to set default RSS");
426 iavf_config_rss_hf(adapter, rss_conf->rss_hf);
433 iavf_queues_req_reset(struct rte_eth_dev *dev, uint16_t num)
435 struct iavf_adapter *ad =
436 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
437 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
440 ret = iavf_request_queues(ad, num);
442 PMD_DRV_LOG(ERR, "request queues from PF failed");
445 PMD_DRV_LOG(INFO, "change queue pairs from %u to %u",
446 vf->vsi_res->num_queue_pairs, num);
448 ret = iavf_dev_reset(dev);
450 PMD_DRV_LOG(ERR, "vf reset failed");
458 iavf_dev_vlan_insert_set(struct rte_eth_dev *dev)
460 struct iavf_adapter *adapter =
461 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
462 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
465 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2))
468 enable = !!(dev->data->dev_conf.txmode.offloads &
469 DEV_TX_OFFLOAD_VLAN_INSERT);
470 iavf_config_vlan_insert_v2(adapter, enable);
476 iavf_dev_init_vlan(struct rte_eth_dev *dev)
480 err = iavf_dev_vlan_offload_set(dev,
481 ETH_VLAN_STRIP_MASK |
482 ETH_QINQ_STRIP_MASK |
483 ETH_VLAN_FILTER_MASK |
484 ETH_VLAN_EXTEND_MASK);
486 PMD_DRV_LOG(ERR, "Failed to update vlan offload");
490 err = iavf_dev_vlan_insert_set(dev);
492 PMD_DRV_LOG(ERR, "Failed to update vlan insertion");
498 iavf_dev_configure(struct rte_eth_dev *dev)
500 struct iavf_adapter *ad =
501 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
502 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
503 uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
504 dev->data->nb_tx_queues);
507 ad->rx_bulk_alloc_allowed = true;
508 /* Initialize to TRUE. If any of Rx queues doesn't meet the
509 * vector Rx/Tx preconditions, it will be reset.
511 ad->rx_vec_allowed = true;
512 ad->tx_vec_allowed = true;
514 if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
515 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
517 /* Large VF setting */
518 if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT) {
519 if (!(vf->vf_res->vf_cap_flags &
520 VIRTCHNL_VF_LARGE_NUM_QPAIRS)) {
521 PMD_DRV_LOG(ERR, "large VF is not supported");
525 if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_LV) {
526 PMD_DRV_LOG(ERR, "queue pairs number cannot be larger than %u",
527 IAVF_MAX_NUM_QUEUES_LV);
531 ret = iavf_queues_req_reset(dev, num_queue_pairs);
535 ret = iavf_get_max_rss_queue_region(ad);
537 PMD_INIT_LOG(ERR, "get max rss queue region failed");
541 vf->lv_enabled = true;
543 /* Check if large VF is already enabled. If so, disable and
544 * release redundant queue resource.
545 * Or check if enough queue pairs. If not, request them from PF.
547 if (vf->lv_enabled ||
548 num_queue_pairs > vf->vsi_res->num_queue_pairs) {
549 ret = iavf_queues_req_reset(dev, num_queue_pairs);
553 vf->lv_enabled = false;
555 /* if large VF is not required, use default rss queue region */
556 vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT;
559 ret = iavf_dev_init_vlan(dev);
561 PMD_DRV_LOG(ERR, "configure VLAN failed: %d", ret);
563 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
564 if (iavf_init_rss(ad) != 0) {
565 PMD_DRV_LOG(ERR, "configure rss failed");
573 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
575 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
576 struct rte_eth_dev_data *dev_data = dev->data;
577 uint16_t buf_size, max_pkt_len;
579 buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
581 /* Calculate the maximum packet length allowed */
582 max_pkt_len = RTE_MIN((uint32_t)
583 rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS,
584 dev->data->dev_conf.rxmode.max_rx_pkt_len);
586 /* Check if the jumbo frame and maximum packet length are set
589 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
590 if (max_pkt_len <= IAVF_ETH_MAX_LEN ||
591 max_pkt_len > IAVF_FRAME_SIZE_MAX) {
592 PMD_DRV_LOG(ERR, "maximum packet length must be "
593 "larger than %u and smaller than %u, "
594 "as jumbo frame is enabled",
595 (uint32_t)IAVF_ETH_MAX_LEN,
596 (uint32_t)IAVF_FRAME_SIZE_MAX);
600 if (max_pkt_len < RTE_ETHER_MIN_LEN ||
601 max_pkt_len > IAVF_ETH_MAX_LEN) {
602 PMD_DRV_LOG(ERR, "maximum packet length must be "
603 "larger than %u and smaller than %u, "
604 "as jumbo frame is disabled",
605 (uint32_t)RTE_ETHER_MIN_LEN,
606 (uint32_t)IAVF_ETH_MAX_LEN);
611 rxq->max_pkt_len = max_pkt_len;
612 if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
613 rxq->max_pkt_len > buf_size) {
614 dev_data->scattered_rx = 1;
616 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
617 IAVF_WRITE_FLUSH(hw);
623 iavf_init_queues(struct rte_eth_dev *dev)
625 struct iavf_rx_queue **rxq =
626 (struct iavf_rx_queue **)dev->data->rx_queues;
627 int i, ret = IAVF_SUCCESS;
629 for (i = 0; i < dev->data->nb_rx_queues; i++) {
630 if (!rxq[i] || !rxq[i]->q_set)
632 ret = iavf_init_rxq(dev, rxq[i]);
633 if (ret != IAVF_SUCCESS)
636 /* set rx/tx function to vector/scatter/single-segment
637 * according to parameters
639 iavf_set_rx_function(dev);
640 iavf_set_tx_function(dev);
645 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
646 struct rte_intr_handle *intr_handle)
648 struct iavf_adapter *adapter =
649 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
650 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
651 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
652 struct iavf_qv_map *qv_map;
653 uint16_t interval, i;
656 if (rte_intr_cap_multiple(intr_handle) &&
657 dev->data->dev_conf.intr_conf.rxq) {
658 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
662 if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
663 intr_handle->intr_vec =
664 rte_zmalloc("intr_vec",
665 dev->data->nb_rx_queues * sizeof(int), 0);
666 if (!intr_handle->intr_vec) {
667 PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
668 dev->data->nb_rx_queues);
673 qv_map = rte_zmalloc("qv_map",
674 dev->data->nb_rx_queues * sizeof(struct iavf_qv_map), 0);
676 PMD_DRV_LOG(ERR, "Failed to allocate %d queue-vector map",
677 dev->data->nb_rx_queues);
681 if (!dev->data->dev_conf.intr_conf.rxq ||
682 !rte_intr_dp_is_en(intr_handle)) {
683 /* Rx interrupt disabled, Map interrupt only for writeback */
685 if (vf->vf_res->vf_cap_flags &
686 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
687 /* If WB_ON_ITR supports, enable it */
688 vf->msix_base = IAVF_RX_VEC_START;
689 /* Set the ITR for index zero, to 2us to make sure that
690 * we leave time for aggregation to occur, but don't
691 * increase latency dramatically.
694 IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1),
695 (0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
696 IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
697 (2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
698 /* debug - check for success! the return value
699 * should be 2, offset is 0x2800
701 /* IAVF_READ_REG(hw, IAVF_VFINT_ITRN1(0, 0)); */
703 /* If no WB_ON_ITR offload flags, need to set
704 * interrupt for descriptor write back.
706 vf->msix_base = IAVF_MISC_VEC_ID;
709 interval = iavf_calc_itr_interval(
710 IAVF_QUEUE_ITR_INTERVAL_MAX);
711 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
712 IAVF_VFINT_DYN_CTL01_INTENA_MASK |
713 (IAVF_ITR_INDEX_DEFAULT <<
714 IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
716 IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
718 IAVF_WRITE_FLUSH(hw);
719 /* map all queues to the same interrupt */
720 for (i = 0; i < dev->data->nb_rx_queues; i++) {
721 qv_map[i].queue_id = i;
722 qv_map[i].vector_id = vf->msix_base;
726 if (!rte_intr_allow_others(intr_handle)) {
728 vf->msix_base = IAVF_MISC_VEC_ID;
729 for (i = 0; i < dev->data->nb_rx_queues; i++) {
730 qv_map[i].queue_id = i;
731 qv_map[i].vector_id = vf->msix_base;
732 intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID;
736 "vector %u are mapping to all Rx queues",
739 /* If Rx interrupt is reuquired, and we can use
740 * multi interrupts, then the vec is from 1
742 vf->nb_msix = RTE_MIN(intr_handle->nb_efd,
743 (uint16_t)(vf->vf_res->max_vectors - 1));
744 vf->msix_base = IAVF_RX_VEC_START;
745 vec = IAVF_RX_VEC_START;
746 for (i = 0; i < dev->data->nb_rx_queues; i++) {
747 qv_map[i].queue_id = i;
748 qv_map[i].vector_id = vec;
749 intr_handle->intr_vec[i] = vec++;
750 if (vec >= vf->nb_msix + IAVF_RX_VEC_START)
751 vec = IAVF_RX_VEC_START;
755 "%u vectors are mapping to %u Rx queues",
756 vf->nb_msix, dev->data->nb_rx_queues);
760 if (!vf->lv_enabled) {
761 if (iavf_config_irq_map(adapter)) {
762 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
766 uint16_t num_qv_maps = dev->data->nb_rx_queues;
769 while (num_qv_maps > IAVF_IRQ_MAP_NUM_PER_BUF) {
770 if (iavf_config_irq_map_lv(adapter,
771 IAVF_IRQ_MAP_NUM_PER_BUF, index)) {
772 PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
775 num_qv_maps -= IAVF_IRQ_MAP_NUM_PER_BUF;
776 index += IAVF_IRQ_MAP_NUM_PER_BUF;
779 if (iavf_config_irq_map_lv(adapter, num_qv_maps, index)) {
780 PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
788 iavf_start_queues(struct rte_eth_dev *dev)
790 struct iavf_rx_queue *rxq;
791 struct iavf_tx_queue *txq;
794 for (i = 0; i < dev->data->nb_tx_queues; i++) {
795 txq = dev->data->tx_queues[i];
796 if (txq->tx_deferred_start)
798 if (iavf_dev_tx_queue_start(dev, i) != 0) {
799 PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
804 for (i = 0; i < dev->data->nb_rx_queues; i++) {
805 rxq = dev->data->rx_queues[i];
806 if (rxq->rx_deferred_start)
808 if (iavf_dev_rx_queue_start(dev, i) != 0) {
809 PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
818 iavf_dev_start(struct rte_eth_dev *dev)
820 struct iavf_adapter *adapter =
821 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
822 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
823 struct rte_intr_handle *intr_handle = dev->intr_handle;
824 uint16_t num_queue_pairs;
827 PMD_INIT_FUNC_TRACE();
829 adapter->stopped = 0;
831 vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
832 vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
833 dev->data->nb_tx_queues);
834 num_queue_pairs = vf->num_queue_pairs;
836 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
837 if (iavf_get_qos_cap(adapter)) {
838 PMD_INIT_LOG(ERR, "Failed to get qos capability");
842 if (iavf_init_queues(dev) != 0) {
843 PMD_DRV_LOG(ERR, "failed to do Queue init");
847 /* If needed, send configure queues msg multiple times to make the
848 * adminq buffer length smaller than the 4K limitation.
850 while (num_queue_pairs > IAVF_CFG_Q_NUM_PER_BUF) {
851 if (iavf_configure_queues(adapter,
852 IAVF_CFG_Q_NUM_PER_BUF, index) != 0) {
853 PMD_DRV_LOG(ERR, "configure queues failed");
856 num_queue_pairs -= IAVF_CFG_Q_NUM_PER_BUF;
857 index += IAVF_CFG_Q_NUM_PER_BUF;
860 if (iavf_configure_queues(adapter, num_queue_pairs, index) != 0) {
861 PMD_DRV_LOG(ERR, "configure queues failed");
865 if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
866 PMD_DRV_LOG(ERR, "configure irq failed");
869 /* re-enable intr again, because efd assign may change */
870 if (dev->data->dev_conf.intr_conf.rxq != 0) {
871 rte_intr_disable(intr_handle);
872 rte_intr_enable(intr_handle);
875 /* Set all mac addrs */
876 iavf_add_del_all_mac_addr(adapter, true);
878 /* Set all multicast addresses */
879 iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
882 if (iavf_start_queues(dev) != 0) {
883 PMD_DRV_LOG(ERR, "enable queues failed");
890 iavf_add_del_all_mac_addr(adapter, false);
896 iavf_dev_stop(struct rte_eth_dev *dev)
898 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
899 struct iavf_adapter *adapter =
900 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
901 struct rte_intr_handle *intr_handle = dev->intr_handle;
903 PMD_INIT_FUNC_TRACE();
905 if (adapter->stopped == 1)
908 iavf_stop_queues(dev);
910 /* Disable the interrupt for Rx */
911 rte_intr_efd_disable(intr_handle);
912 /* Rx interrupt vector mapping free */
913 if (intr_handle->intr_vec) {
914 rte_free(intr_handle->intr_vec);
915 intr_handle->intr_vec = NULL;
918 /* remove all mac addrs */
919 iavf_add_del_all_mac_addr(adapter, false);
921 /* remove all multicast addresses */
922 iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
925 adapter->stopped = 1;
926 dev->data->dev_started = 0;
932 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
934 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
936 dev_info->max_rx_queues = IAVF_MAX_NUM_QUEUES_LV;
937 dev_info->max_tx_queues = IAVF_MAX_NUM_QUEUES_LV;
938 dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
939 dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
940 dev_info->max_mtu = dev_info->max_rx_pktlen - IAVF_ETH_OVERHEAD;
941 dev_info->min_mtu = RTE_ETHER_MIN_MTU;
942 dev_info->hash_key_size = vf->vf_res->rss_key_size;
943 dev_info->reta_size = vf->vf_res->rss_lut_size;
944 dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
945 dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
946 dev_info->rx_offload_capa =
947 DEV_RX_OFFLOAD_VLAN_STRIP |
948 DEV_RX_OFFLOAD_QINQ_STRIP |
949 DEV_RX_OFFLOAD_IPV4_CKSUM |
950 DEV_RX_OFFLOAD_UDP_CKSUM |
951 DEV_RX_OFFLOAD_TCP_CKSUM |
952 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
953 DEV_RX_OFFLOAD_SCATTER |
954 DEV_RX_OFFLOAD_JUMBO_FRAME |
955 DEV_RX_OFFLOAD_VLAN_FILTER |
956 DEV_RX_OFFLOAD_RSS_HASH;
958 dev_info->tx_offload_capa =
959 DEV_TX_OFFLOAD_VLAN_INSERT |
960 DEV_TX_OFFLOAD_QINQ_INSERT |
961 DEV_TX_OFFLOAD_IPV4_CKSUM |
962 DEV_TX_OFFLOAD_UDP_CKSUM |
963 DEV_TX_OFFLOAD_TCP_CKSUM |
964 DEV_TX_OFFLOAD_SCTP_CKSUM |
965 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
966 DEV_TX_OFFLOAD_TCP_TSO |
967 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
968 DEV_TX_OFFLOAD_GRE_TNL_TSO |
969 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
970 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
971 DEV_TX_OFFLOAD_MULTI_SEGS |
972 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
974 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_CRC)
975 dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_KEEP_CRC;
977 dev_info->default_rxconf = (struct rte_eth_rxconf) {
978 .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
983 dev_info->default_txconf = (struct rte_eth_txconf) {
984 .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
985 .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
989 dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
990 .nb_max = IAVF_MAX_RING_DESC,
991 .nb_min = IAVF_MIN_RING_DESC,
992 .nb_align = IAVF_ALIGN_RING_DESC,
995 dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
996 .nb_max = IAVF_MAX_RING_DESC,
997 .nb_min = IAVF_MIN_RING_DESC,
998 .nb_align = IAVF_ALIGN_RING_DESC,
1004 static const uint32_t *
1005 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1007 static const uint32_t ptypes[] = {
1009 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1012 RTE_PTYPE_L4_NONFRAG,
1022 iavf_dev_link_update(struct rte_eth_dev *dev,
1023 __rte_unused int wait_to_complete)
1025 struct rte_eth_link new_link;
1026 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1028 memset(&new_link, 0, sizeof(new_link));
1030 /* Only read status info stored in VF, and the info is updated
1031 * when receive LINK_CHANGE evnet from PF by Virtchnnl.
1033 switch (vf->link_speed) {
1035 new_link.link_speed = ETH_SPEED_NUM_10M;
1038 new_link.link_speed = ETH_SPEED_NUM_100M;
1041 new_link.link_speed = ETH_SPEED_NUM_1G;
1044 new_link.link_speed = ETH_SPEED_NUM_10G;
1047 new_link.link_speed = ETH_SPEED_NUM_20G;
1050 new_link.link_speed = ETH_SPEED_NUM_25G;
1053 new_link.link_speed = ETH_SPEED_NUM_40G;
1056 new_link.link_speed = ETH_SPEED_NUM_50G;
1059 new_link.link_speed = ETH_SPEED_NUM_100G;
1062 new_link.link_speed = ETH_SPEED_NUM_NONE;
1066 new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
1067 new_link.link_status = vf->link_up ? ETH_LINK_UP :
1069 new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1070 ETH_LINK_SPEED_FIXED);
1072 return rte_eth_linkstatus_set(dev, &new_link);
1076 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
1078 struct iavf_adapter *adapter =
1079 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1080 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1082 return iavf_config_promisc(adapter,
1083 true, vf->promisc_multicast_enabled);
1087 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
1089 struct iavf_adapter *adapter =
1090 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1091 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1093 return iavf_config_promisc(adapter,
1094 false, vf->promisc_multicast_enabled);
1098 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
1100 struct iavf_adapter *adapter =
1101 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1102 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1104 return iavf_config_promisc(adapter,
1105 vf->promisc_unicast_enabled, true);
1109 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
1111 struct iavf_adapter *adapter =
1112 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1113 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1115 return iavf_config_promisc(adapter,
1116 vf->promisc_unicast_enabled, false);
1120 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
1121 __rte_unused uint32_t index,
1122 __rte_unused uint32_t pool)
1124 struct iavf_adapter *adapter =
1125 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1126 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1129 if (rte_is_zero_ether_addr(addr)) {
1130 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
1134 err = iavf_add_del_eth_addr(adapter, addr, true, VIRTCHNL_ETHER_ADDR_EXTRA);
1136 PMD_DRV_LOG(ERR, "fail to add MAC address");
1146 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
1148 struct iavf_adapter *adapter =
1149 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1150 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1151 struct rte_ether_addr *addr;
1154 addr = &dev->data->mac_addrs[index];
1156 err = iavf_add_del_eth_addr(adapter, addr, false, VIRTCHNL_ETHER_ADDR_EXTRA);
1158 PMD_DRV_LOG(ERR, "fail to delete MAC address");
1164 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1166 struct iavf_adapter *adapter =
1167 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1168 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1171 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
1172 err = iavf_add_del_vlan_v2(adapter, vlan_id, on);
1178 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1181 err = iavf_add_del_vlan(adapter, vlan_id, on);
1188 iavf_iterate_vlan_filters_v2(struct rte_eth_dev *dev, bool enable)
1190 struct rte_vlan_filter_conf *vfc = &dev->data->vlan_filter_conf;
1191 struct iavf_adapter *adapter =
1192 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1196 for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1197 if (vfc->ids[i] == 0)
1201 for (j = 0; ids != 0 && j < 64; j++, ids >>= 1) {
1203 iavf_add_del_vlan_v2(adapter,
1204 64 * i + j, enable);
1210 iavf_dev_vlan_offload_set_v2(struct rte_eth_dev *dev, int mask)
1212 struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1213 struct iavf_adapter *adapter =
1214 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1218 if (mask & ETH_VLAN_FILTER_MASK) {
1219 enable = !!(rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER);
1221 iavf_iterate_vlan_filters_v2(dev, enable);
1224 if (mask & ETH_VLAN_STRIP_MASK) {
1225 enable = !!(rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP);
1227 err = iavf_config_vlan_strip_v2(adapter, enable);
1228 /* If not support, the stripping is already disabled by PF */
1229 if (err == -ENOTSUP && !enable)
1239 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1241 struct iavf_adapter *adapter =
1242 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1243 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1244 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1247 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2)
1248 return iavf_dev_vlan_offload_set_v2(dev, mask);
1250 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1253 /* Vlan stripping setting */
1254 if (mask & ETH_VLAN_STRIP_MASK) {
1255 /* Enable or disable VLAN stripping */
1256 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1257 err = iavf_enable_vlan_strip(adapter);
1259 err = iavf_disable_vlan_strip(adapter);
1268 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
1269 struct rte_eth_rss_reta_entry64 *reta_conf,
1272 struct iavf_adapter *adapter =
1273 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1274 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1276 uint16_t i, idx, shift;
1279 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1282 if (reta_size != vf->vf_res->rss_lut_size) {
1283 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1284 "(%d) doesn't match the number of hardware can "
1285 "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1289 lut = rte_zmalloc("rss_lut", reta_size, 0);
1291 PMD_DRV_LOG(ERR, "No memory can be allocated");
1294 /* store the old lut table temporarily */
1295 rte_memcpy(lut, vf->rss_lut, reta_size);
1297 for (i = 0; i < reta_size; i++) {
1298 idx = i / RTE_RETA_GROUP_SIZE;
1299 shift = i % RTE_RETA_GROUP_SIZE;
1300 if (reta_conf[idx].mask & (1ULL << shift))
1301 lut[i] = reta_conf[idx].reta[shift];
1304 rte_memcpy(vf->rss_lut, lut, reta_size);
1305 /* send virtchnnl ops to configure rss*/
1306 ret = iavf_configure_rss_lut(adapter);
1307 if (ret) /* revert back */
1308 rte_memcpy(vf->rss_lut, lut, reta_size);
1315 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
1316 struct rte_eth_rss_reta_entry64 *reta_conf,
1319 struct iavf_adapter *adapter =
1320 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1321 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1322 uint16_t i, idx, shift;
1324 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1327 if (reta_size != vf->vf_res->rss_lut_size) {
1328 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1329 "(%d) doesn't match the number of hardware can "
1330 "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1334 for (i = 0; i < reta_size; i++) {
1335 idx = i / RTE_RETA_GROUP_SIZE;
1336 shift = i % RTE_RETA_GROUP_SIZE;
1337 if (reta_conf[idx].mask & (1ULL << shift))
1338 reta_conf[idx].reta[shift] = vf->rss_lut[i];
1345 iavf_set_rss_key(struct iavf_adapter *adapter, uint8_t *key, uint8_t key_len)
1347 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1349 /* HENA setting, it is enabled by default, no change */
1350 if (!key || key_len == 0) {
1351 PMD_DRV_LOG(DEBUG, "No key to be configured");
1353 } else if (key_len != vf->vf_res->rss_key_size) {
1354 PMD_DRV_LOG(ERR, "The size of hash key configured "
1355 "(%d) doesn't match the size of hardware can "
1356 "support (%d)", key_len,
1357 vf->vf_res->rss_key_size);
1361 rte_memcpy(vf->rss_key, key, key_len);
1363 return iavf_configure_rss_key(adapter);
1367 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
1368 struct rte_eth_rss_conf *rss_conf)
1370 struct iavf_adapter *adapter =
1371 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1372 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1375 adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf = *rss_conf;
1377 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1381 ret = iavf_set_rss_key(adapter, rss_conf->rss_key,
1382 rss_conf->rss_key_len);
1386 if (rss_conf->rss_hf == 0) {
1388 ret = iavf_set_hena(adapter, 0);
1390 /* It is a workaround, temporarily allow error to be returned
1391 * due to possible lack of PF handling for hena = 0.
1394 PMD_DRV_LOG(WARNING, "fail to clean existing RSS, lack PF support");
1398 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
1399 /* Clear existing RSS. */
1400 ret = iavf_set_hena(adapter, 0);
1402 /* It is a workaround, temporarily allow error to be returned
1403 * due to possible lack of PF handling for hena = 0.
1406 PMD_DRV_LOG(WARNING, "fail to clean existing RSS,"
1409 /* Set new RSS configuration. */
1410 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
1412 PMD_DRV_LOG(ERR, "fail to set new RSS");
1416 iavf_config_rss_hf(adapter, rss_conf->rss_hf);
1423 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1424 struct rte_eth_rss_conf *rss_conf)
1426 struct iavf_adapter *adapter =
1427 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1428 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1430 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1433 rss_conf->rss_hf = vf->rss_hf;
1435 if (!rss_conf->rss_key)
1438 rss_conf->rss_key_len = vf->vf_res->rss_key_size;
1439 rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
1445 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1447 uint32_t frame_size = mtu + IAVF_ETH_OVERHEAD;
1450 if (mtu < RTE_ETHER_MIN_MTU || frame_size > IAVF_FRAME_SIZE_MAX)
1453 /* mtu setting is forbidden if port is start */
1454 if (dev->data->dev_started) {
1455 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
1459 if (frame_size > IAVF_ETH_MAX_LEN)
1460 dev->data->dev_conf.rxmode.offloads |=
1461 DEV_RX_OFFLOAD_JUMBO_FRAME;
1463 dev->data->dev_conf.rxmode.offloads &=
1464 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1466 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1472 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
1473 struct rte_ether_addr *mac_addr)
1475 struct iavf_adapter *adapter =
1476 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1477 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1478 struct rte_ether_addr *old_addr;
1481 old_addr = (struct rte_ether_addr *)hw->mac.addr;
1483 if (rte_is_same_ether_addr(old_addr, mac_addr))
1486 ret = iavf_add_del_eth_addr(adapter, old_addr, false, VIRTCHNL_ETHER_ADDR_PRIMARY);
1488 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
1489 " %02X:%02X:%02X:%02X:%02X:%02X",
1490 old_addr->addr_bytes[0],
1491 old_addr->addr_bytes[1],
1492 old_addr->addr_bytes[2],
1493 old_addr->addr_bytes[3],
1494 old_addr->addr_bytes[4],
1495 old_addr->addr_bytes[5]);
1497 ret = iavf_add_del_eth_addr(adapter, mac_addr, true, VIRTCHNL_ETHER_ADDR_PRIMARY);
1499 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1500 " %02X:%02X:%02X:%02X:%02X:%02X",
1501 mac_addr->addr_bytes[0],
1502 mac_addr->addr_bytes[1],
1503 mac_addr->addr_bytes[2],
1504 mac_addr->addr_bytes[3],
1505 mac_addr->addr_bytes[4],
1506 mac_addr->addr_bytes[5]);
1511 rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1516 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1518 if (*stat >= *offset)
1519 *stat = *stat - *offset;
1521 *stat = (uint64_t)((*stat +
1522 ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1524 *stat &= IAVF_48_BIT_MASK;
1528 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1530 if (*stat >= *offset)
1531 *stat = (uint64_t)(*stat - *offset);
1533 *stat = (uint64_t)((*stat +
1534 ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1538 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1540 struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset;
1542 iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1543 iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1544 iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1545 iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1546 iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1547 iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1548 iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1549 iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1550 iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1551 iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1552 iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1556 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1558 struct iavf_adapter *adapter =
1559 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1560 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1561 struct iavf_vsi *vsi = &vf->vsi;
1562 struct virtchnl_eth_stats *pstats = NULL;
1565 ret = iavf_query_stats(adapter, &pstats);
1567 uint8_t crc_stats_len = (dev->data->dev_conf.rxmode.offloads &
1568 DEV_RX_OFFLOAD_KEEP_CRC) ? 0 :
1570 iavf_update_stats(vsi, pstats);
1571 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1572 pstats->rx_broadcast - pstats->rx_discards;
1573 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1575 stats->imissed = pstats->rx_discards;
1576 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1577 stats->ibytes = pstats->rx_bytes;
1578 stats->ibytes -= stats->ipackets * crc_stats_len;
1579 stats->obytes = pstats->tx_bytes;
1581 PMD_DRV_LOG(ERR, "Get statistics failed");
1587 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1590 struct iavf_adapter *adapter =
1591 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1592 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1593 struct iavf_vsi *vsi = &vf->vsi;
1594 struct virtchnl_eth_stats *pstats = NULL;
1596 /* read stat values to clear hardware registers */
1597 ret = iavf_query_stats(adapter, &pstats);
1601 /* set stats offset base on current values */
1602 vsi->eth_stats_offset = *pstats;
1607 static int iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1608 struct rte_eth_xstat_name *xstats_names,
1609 __rte_unused unsigned int limit)
1613 if (xstats_names != NULL)
1614 for (i = 0; i < IAVF_NB_XSTATS; i++) {
1615 snprintf(xstats_names[i].name,
1616 sizeof(xstats_names[i].name),
1617 "%s", rte_iavf_stats_strings[i].name);
1619 return IAVF_NB_XSTATS;
1622 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
1623 struct rte_eth_xstat *xstats, unsigned int n)
1627 struct iavf_adapter *adapter =
1628 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1629 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1630 struct iavf_vsi *vsi = &vf->vsi;
1631 struct virtchnl_eth_stats *pstats = NULL;
1633 if (n < IAVF_NB_XSTATS)
1634 return IAVF_NB_XSTATS;
1636 ret = iavf_query_stats(adapter, &pstats);
1643 iavf_update_stats(vsi, pstats);
1645 /* loop over xstats array and values from pstats */
1646 for (i = 0; i < IAVF_NB_XSTATS; i++) {
1648 xstats[i].value = *(uint64_t *)(((char *)pstats) +
1649 rte_iavf_stats_strings[i].offset);
1652 return IAVF_NB_XSTATS;
1657 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1659 struct iavf_adapter *adapter =
1660 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1661 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1662 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1665 msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1666 if (msix_intr == IAVF_MISC_VEC_ID) {
1667 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1668 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1669 IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1670 IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1671 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1674 IAVF_VFINT_DYN_CTLN1
1675 (msix_intr - IAVF_RX_VEC_START),
1676 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1677 IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1678 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
1681 IAVF_WRITE_FLUSH(hw);
1683 rte_intr_ack(&pci_dev->intr_handle);
1689 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1691 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1692 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1695 msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1696 if (msix_intr == IAVF_MISC_VEC_ID) {
1697 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1702 IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1705 IAVF_WRITE_FLUSH(hw);
1710 iavf_check_vf_reset_done(struct iavf_hw *hw)
1714 for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1715 reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
1716 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1717 reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT;
1718 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1719 reset == VIRTCHNL_VFR_COMPLETED)
1724 if (i >= IAVF_RESET_WAIT_CNT)
1731 iavf_lookup_proto_xtr_type(const char *flex_name)
1735 enum iavf_proto_xtr_type type;
1736 } xtr_type_map[] = {
1737 { "vlan", IAVF_PROTO_XTR_VLAN },
1738 { "ipv4", IAVF_PROTO_XTR_IPV4 },
1739 { "ipv6", IAVF_PROTO_XTR_IPV6 },
1740 { "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW },
1741 { "tcp", IAVF_PROTO_XTR_TCP },
1742 { "ip_offset", IAVF_PROTO_XTR_IP_OFFSET },
1746 for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
1747 if (strcmp(flex_name, xtr_type_map[i].name) == 0)
1748 return xtr_type_map[i].type;
1751 PMD_DRV_LOG(ERR, "wrong proto_xtr type, "
1752 "it should be: vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset");
1758 * Parse elem, the elem could be single number/range or '(' ')' group
1759 * 1) A single number elem, it's just a simple digit. e.g. 9
1760 * 2) A single range elem, two digits with a '-' between. e.g. 2-6
1761 * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
1762 * Within group elem, '-' used for a range separator;
1763 * ',' used for a single number.
1766 iavf_parse_queue_set(const char *input, int xtr_type,
1767 struct iavf_devargs *devargs)
1769 const char *str = input;
1774 while (isblank(*str))
1777 if (!isdigit(*str) && *str != '(')
1780 /* process single number or single range of number */
1783 idx = strtoul(str, &end, 10);
1784 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1787 while (isblank(*end))
1793 /* process single <number>-<number> */
1796 while (isblank(*end))
1802 idx = strtoul(end, &end, 10);
1803 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1807 while (isblank(*end))
1814 for (idx = RTE_MIN(min, max);
1815 idx <= RTE_MAX(min, max); idx++)
1816 devargs->proto_xtr[idx] = xtr_type;
1821 /* process set within bracket */
1823 while (isblank(*str))
1828 min = IAVF_MAX_QUEUE_NUM;
1830 /* go ahead to the first digit */
1831 while (isblank(*str))
1836 /* get the digit value */
1838 idx = strtoul(str, &end, 10);
1839 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1842 /* go ahead to separator '-',',' and ')' */
1843 while (isblank(*end))
1846 if (min == IAVF_MAX_QUEUE_NUM)
1848 else /* avoid continuous '-' */
1850 } else if (*end == ',' || *end == ')') {
1852 if (min == IAVF_MAX_QUEUE_NUM)
1855 for (idx = RTE_MIN(min, max);
1856 idx <= RTE_MAX(min, max); idx++)
1857 devargs->proto_xtr[idx] = xtr_type;
1859 min = IAVF_MAX_QUEUE_NUM;
1865 } while (*end != ')' && *end != '\0');
1871 iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs)
1873 const char *queue_start;
1878 while (isblank(*queues))
1881 if (*queues != '[') {
1882 xtr_type = iavf_lookup_proto_xtr_type(queues);
1886 devargs->proto_xtr_dflt = xtr_type;
1893 while (isblank(*queues))
1895 if (*queues == '\0')
1898 queue_start = queues;
1900 /* go across a complete bracket */
1901 if (*queue_start == '(') {
1902 queues += strcspn(queues, ")");
1907 /* scan the separator ':' */
1908 queues += strcspn(queues, ":");
1909 if (*queues++ != ':')
1911 while (isblank(*queues))
1914 for (idx = 0; ; idx++) {
1915 if (isblank(queues[idx]) ||
1916 queues[idx] == ',' ||
1917 queues[idx] == ']' ||
1918 queues[idx] == '\0')
1921 if (idx > sizeof(flex_name) - 2)
1924 flex_name[idx] = queues[idx];
1926 flex_name[idx] = '\0';
1927 xtr_type = iavf_lookup_proto_xtr_type(flex_name);
1933 while (isblank(*queues) || *queues == ',' || *queues == ']')
1936 if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0)
1938 } while (*queues != '\0');
1944 iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
1947 struct iavf_devargs *devargs = extra_args;
1949 if (!value || !extra_args)
1952 if (iavf_parse_queue_proto_xtr(value, devargs) < 0) {
1953 PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'",
1961 static int iavf_parse_devargs(struct rte_eth_dev *dev)
1963 struct iavf_adapter *ad =
1964 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1965 struct rte_devargs *devargs = dev->device->devargs;
1966 struct rte_kvargs *kvlist;
1972 kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args);
1974 PMD_INIT_LOG(ERR, "invalid kvargs key\n");
1978 ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE;
1979 memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE,
1980 sizeof(ad->devargs.proto_xtr));
1982 ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG,
1983 &iavf_handle_proto_xtr_arg, &ad->devargs);
1988 rte_kvargs_free(kvlist);
1993 iavf_init_proto_xtr(struct rte_eth_dev *dev)
1995 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1996 struct iavf_adapter *ad =
1997 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1998 const struct iavf_proto_xtr_ol *xtr_ol;
1999 bool proto_xtr_enable = false;
2003 vf->proto_xtr = rte_zmalloc("vf proto xtr",
2004 vf->vsi_res->num_queue_pairs, 0);
2005 if (unlikely(!(vf->proto_xtr))) {
2006 PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table");
2010 for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) {
2011 vf->proto_xtr[i] = ad->devargs.proto_xtr[i] !=
2012 IAVF_PROTO_XTR_NONE ?
2013 ad->devargs.proto_xtr[i] :
2014 ad->devargs.proto_xtr_dflt;
2016 if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) {
2017 uint8_t type = vf->proto_xtr[i];
2019 iavf_proto_xtr_params[type].required = true;
2020 proto_xtr_enable = true;
2024 if (likely(!proto_xtr_enable))
2027 offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param);
2028 if (unlikely(offset == -1)) {
2030 "failed to extract protocol metadata, error %d",
2036 "proto_xtr metadata offset in mbuf is : %d",
2038 rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset;
2040 for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) {
2041 xtr_ol = &iavf_proto_xtr_params[i];
2043 uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i);
2045 if (!xtr_ol->required)
2048 if (!(vf->supported_rxdid & BIT(rxdid))) {
2050 "rxdid[%u] is not supported in hardware",
2052 rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2056 offset = rte_mbuf_dynflag_register(&xtr_ol->param);
2057 if (unlikely(offset == -1)) {
2059 "failed to register proto_xtr offload '%s', error %d",
2060 xtr_ol->param.name, -rte_errno);
2062 rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2067 "proto_xtr offload '%s' offset in mbuf is : %d",
2068 xtr_ol->param.name, offset);
2069 *xtr_ol->ol_flag = 1ULL << offset;
2074 iavf_init_vf(struct rte_eth_dev *dev)
2077 struct iavf_adapter *adapter =
2078 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2079 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2080 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2082 err = iavf_parse_devargs(dev);
2084 PMD_INIT_LOG(ERR, "Failed to parse devargs");
2088 err = iavf_set_mac_type(hw);
2090 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
2094 err = iavf_check_vf_reset_done(hw);
2096 PMD_INIT_LOG(ERR, "VF is still resetting");
2100 iavf_init_adminq_parameter(hw);
2101 err = iavf_init_adminq(hw);
2103 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
2107 vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
2109 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
2112 if (iavf_check_api_version(adapter) != 0) {
2113 PMD_INIT_LOG(ERR, "check_api version failed");
2117 bufsz = sizeof(struct virtchnl_vf_resource) +
2118 (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
2119 vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
2121 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
2125 if (iavf_get_vf_resource(adapter) != 0) {
2126 PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
2129 /* Allocate memort for RSS info */
2130 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2131 vf->rss_key = rte_zmalloc("rss_key",
2132 vf->vf_res->rss_key_size, 0);
2134 PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
2137 vf->rss_lut = rte_zmalloc("rss_lut",
2138 vf->vf_res->rss_lut_size, 0);
2140 PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
2145 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2146 if (iavf_get_supported_rxdid(adapter) != 0) {
2147 PMD_INIT_LOG(ERR, "failed to do get supported rxdid");
2152 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
2153 if (iavf_get_vlan_offload_caps_v2(adapter) != 0) {
2154 PMD_INIT_LOG(ERR, "failed to do get VLAN offload v2 capabilities");
2159 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS) {
2160 bufsz = sizeof(struct virtchnl_qos_cap_list) +
2161 IAVF_MAX_TRAFFIC_CLASS *
2162 sizeof(struct virtchnl_qos_cap_elem);
2163 vf->qos_cap = rte_zmalloc("qos_cap", bufsz, 0);
2165 PMD_INIT_LOG(ERR, "unable to allocate qos_cap memory");
2168 iavf_tm_conf_init(dev);
2171 iavf_init_proto_xtr(dev);
2175 rte_free(vf->rss_key);
2176 rte_free(vf->rss_lut);
2178 rte_free(vf->qos_cap);
2179 rte_free(vf->vf_res);
2182 rte_free(vf->aq_resp);
2184 iavf_shutdown_adminq(hw);
2189 /* Enable default admin queue interrupt setting */
2191 iavf_enable_irq0(struct iavf_hw *hw)
2193 /* Enable admin queue interrupt trigger */
2194 IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1,
2195 IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
2197 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2198 IAVF_VFINT_DYN_CTL01_INTENA_MASK |
2199 IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
2200 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2202 IAVF_WRITE_FLUSH(hw);
2206 iavf_disable_irq0(struct iavf_hw *hw)
2208 /* Disable all interrupt types */
2209 IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0);
2210 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2211 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2212 IAVF_WRITE_FLUSH(hw);
2216 iavf_dev_interrupt_handler(void *param)
2218 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2219 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2221 iavf_disable_irq0(hw);
2223 iavf_handle_virtchnl_msg(dev);
2225 iavf_enable_irq0(hw);
2229 iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
2230 const struct rte_flow_ops **ops)
2235 *ops = &iavf_flow_ops;
2240 iavf_default_rss_disable(struct iavf_adapter *adapter)
2242 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
2245 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2246 /* Set hena = 0 to ask PF to cleanup all existing RSS. */
2247 ret = iavf_set_hena(adapter, 0);
2249 /* It is a workaround, temporarily allow error to be
2250 * returned due to possible lack of PF handling for
2253 PMD_INIT_LOG(WARNING, "fail to disable default RSS,"
2259 iavf_dev_init(struct rte_eth_dev *eth_dev)
2261 struct iavf_adapter *adapter =
2262 IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2263 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
2264 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2267 PMD_INIT_FUNC_TRACE();
2269 /* assign ops func pointer */
2270 eth_dev->dev_ops = &iavf_eth_dev_ops;
2271 eth_dev->rx_queue_count = iavf_dev_rxq_count;
2272 eth_dev->rx_descriptor_status = iavf_dev_rx_desc_status;
2273 eth_dev->tx_descriptor_status = iavf_dev_tx_desc_status;
2274 eth_dev->rx_pkt_burst = &iavf_recv_pkts;
2275 eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
2276 eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
2278 /* For secondary processes, we don't initialise any further as primary
2279 * has already done this work. Only check if we need a different RX
2282 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2283 iavf_set_rx_function(eth_dev);
2284 iavf_set_tx_function(eth_dev);
2287 rte_eth_copy_pci_info(eth_dev, pci_dev);
2288 eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2290 hw->vendor_id = pci_dev->id.vendor_id;
2291 hw->device_id = pci_dev->id.device_id;
2292 hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
2293 hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
2294 hw->bus.bus_id = pci_dev->addr.bus;
2295 hw->bus.device = pci_dev->addr.devid;
2296 hw->bus.func = pci_dev->addr.function;
2297 hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
2298 hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2299 adapter->eth_dev = eth_dev;
2300 adapter->stopped = 1;
2302 if (iavf_init_vf(eth_dev) != 0) {
2303 PMD_INIT_LOG(ERR, "Init vf failed");
2307 /* set default ptype table */
2308 adapter->ptype_tbl = iavf_get_default_ptype_table();
2311 eth_dev->data->mac_addrs = rte_zmalloc(
2312 "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
2313 if (!eth_dev->data->mac_addrs) {
2314 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
2315 " store MAC addresses",
2316 RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
2319 /* If the MAC address is not configured by host,
2320 * generate a random one.
2322 if (!rte_is_valid_assigned_ether_addr(
2323 (struct rte_ether_addr *)hw->mac.addr))
2324 rte_eth_random_addr(hw->mac.addr);
2325 rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
2326 ð_dev->data->mac_addrs[0]);
2328 /* register callback func to eal lib */
2329 rte_intr_callback_register(&pci_dev->intr_handle,
2330 iavf_dev_interrupt_handler,
2333 /* enable uio intr after callback register */
2334 rte_intr_enable(&pci_dev->intr_handle);
2336 /* configure and enable device interrupt */
2337 iavf_enable_irq0(hw);
2339 ret = iavf_flow_init(adapter);
2341 PMD_INIT_LOG(ERR, "Failed to initialize flow");
2345 iavf_default_rss_disable(adapter);
2351 iavf_dev_close(struct rte_eth_dev *dev)
2353 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2354 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2355 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2356 struct iavf_adapter *adapter =
2357 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2358 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2361 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2364 ret = iavf_dev_stop(dev);
2366 iavf_flow_flush(dev, NULL);
2367 iavf_flow_uninit(adapter);
2370 * disable promiscuous mode before reset vf
2371 * it is a workaround solution when work with kernel driver
2372 * and it is not the normal way
2374 if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled)
2375 iavf_config_promisc(adapter, false, false);
2377 iavf_shutdown_adminq(hw);
2378 /* disable uio intr before callback unregister */
2379 rte_intr_disable(intr_handle);
2381 /* unregister callback func from eal lib */
2382 rte_intr_callback_unregister(intr_handle,
2383 iavf_dev_interrupt_handler, dev);
2384 iavf_disable_irq0(hw);
2386 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
2387 iavf_tm_conf_uninit(dev);
2389 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2391 rte_free(vf->rss_lut);
2395 rte_free(vf->rss_key);
2400 rte_free(vf->vf_res);
2404 rte_free(vf->aq_resp);
2408 * If the VF is reset via VFLR, the device will be knocked out of bus
2409 * master mode, and the driver will fail to recover from the reset. Fix
2410 * this by enabling bus mastering after every reset. In a non-VFLR case,
2411 * the bus master bit will not be disabled, and this call will have no
2414 if (vf->vf_reset && !rte_pci_set_bus_master(pci_dev, true))
2415 vf->vf_reset = false;
2421 iavf_dev_uninit(struct rte_eth_dev *dev)
2423 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2426 iavf_dev_close(dev);
2432 * Reset VF device only to re-initialize resources in PMD layer
2435 iavf_dev_reset(struct rte_eth_dev *dev)
2439 ret = iavf_dev_uninit(dev);
2443 return iavf_dev_init(dev);
2447 iavf_dcf_cap_check_handler(__rte_unused const char *key,
2448 const char *value, __rte_unused void *opaque)
2450 if (strcmp(value, "dcf"))
2457 iavf_dcf_cap_selected(struct rte_devargs *devargs)
2459 struct rte_kvargs *kvlist;
2460 const char *key = "cap";
2463 if (devargs == NULL)
2466 kvlist = rte_kvargs_parse(devargs->args, NULL);
2470 if (!rte_kvargs_count(kvlist, key))
2473 /* dcf capability selected when there's a key-value pair: cap=dcf */
2474 if (rte_kvargs_process(kvlist, key,
2475 iavf_dcf_cap_check_handler, NULL) < 0)
2481 rte_kvargs_free(kvlist);
2486 iavf_drv_i40evf_check_handler(__rte_unused const char *key,
2487 const char *value, __rte_unused void *opaque)
2489 if (strcmp(value, "i40evf"))
2496 iavf_drv_i40evf_selected(struct rte_devargs *devargs, uint16_t device_id)
2498 struct rte_kvargs *kvlist;
2501 if (device_id != IAVF_DEV_ID_VF &&
2502 device_id != IAVF_DEV_ID_VF_HV &&
2503 device_id != IAVF_DEV_ID_X722_VF &&
2504 device_id != IAVF_DEV_ID_X722_A0_VF)
2507 if (devargs == NULL)
2510 kvlist = rte_kvargs_parse(devargs->args, NULL);
2514 if (!rte_kvargs_count(kvlist, RTE_DEVARGS_KEY_DRIVER))
2517 /* i40evf driver selected when there's a key-value pair:
2520 if (rte_kvargs_process(kvlist, RTE_DEVARGS_KEY_DRIVER,
2521 iavf_drv_i40evf_check_handler, NULL) < 0)
2527 rte_kvargs_free(kvlist);
2531 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2532 struct rte_pci_device *pci_dev)
2534 if (iavf_dcf_cap_selected(pci_dev->device.devargs) ||
2535 iavf_drv_i40evf_selected(pci_dev->device.devargs,
2536 pci_dev->id.device_id))
2539 return rte_eth_dev_pci_generic_probe(pci_dev,
2540 sizeof(struct iavf_adapter), iavf_dev_init);
2543 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
2545 return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
2548 /* Adaptive virtual function driver struct */
2549 static struct rte_pci_driver rte_iavf_pmd = {
2550 .id_table = pci_id_iavf_map,
2551 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
2552 .probe = eth_iavf_pci_probe,
2553 .remove = eth_iavf_pci_remove,
2556 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
2557 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
2558 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
2559 RTE_PMD_REGISTER_PARAM_STRING(net_iavf, "cap=dcf driver=i40evf");
2560 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_init, init, NOTICE);
2561 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_driver, driver, NOTICE);
2562 #ifdef RTE_ETHDEV_DEBUG_RX
2563 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_rx, rx, DEBUG);
2565 #ifdef RTE_ETHDEV_DEBUG_TX
2566 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_tx, tx, DEBUG);