764218ace0ef0931fc6127652c2d1782c1cd2b5d
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "iavf_ipsec_crypto.h"
31 #include "rte_pmd_iavf.h"
32
33 /* Offset of mbuf dynamic field for protocol extraction's metadata */
34 int rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
35
36 /* Mask of mbuf dynamic flags for protocol extraction's type */
37 uint64_t rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
38 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
39 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
40 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
41 uint64_t rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
42 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
43 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask;
44
45 uint8_t
46 iavf_proto_xtr_type_to_rxdid(uint8_t flex_type)
47 {
48         static uint8_t rxdid_map[] = {
49                 [IAVF_PROTO_XTR_NONE]      = IAVF_RXDID_COMMS_OVS_1,
50                 [IAVF_PROTO_XTR_VLAN]      = IAVF_RXDID_COMMS_AUX_VLAN,
51                 [IAVF_PROTO_XTR_IPV4]      = IAVF_RXDID_COMMS_AUX_IPV4,
52                 [IAVF_PROTO_XTR_IPV6]      = IAVF_RXDID_COMMS_AUX_IPV6,
53                 [IAVF_PROTO_XTR_IPV6_FLOW] = IAVF_RXDID_COMMS_AUX_IPV6_FLOW,
54                 [IAVF_PROTO_XTR_TCP]       = IAVF_RXDID_COMMS_AUX_TCP,
55                 [IAVF_PROTO_XTR_IP_OFFSET] = IAVF_RXDID_COMMS_AUX_IP_OFFSET,
56                 [IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID] =
57                                 IAVF_RXDID_COMMS_IPSEC_CRYPTO,
58         };
59
60         return flex_type < RTE_DIM(rxdid_map) ?
61                                 rxdid_map[flex_type] : IAVF_RXDID_COMMS_OVS_1;
62 }
63
64 static int
65 iavf_monitor_callback(const uint64_t value,
66                 const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
67 {
68         const uint64_t m = rte_cpu_to_le_64(1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
69         /*
70          * we expect the DD bit to be set to 1 if this descriptor was already
71          * written to.
72          */
73         return (value & m) == m ? -1 : 0;
74 }
75
76 int
77 iavf_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
78 {
79         struct iavf_rx_queue *rxq = rx_queue;
80         volatile union iavf_rx_desc *rxdp;
81         uint16_t desc;
82
83         desc = rxq->rx_tail;
84         rxdp = &rxq->rx_ring[desc];
85         /* watch for changes in status bit */
86         pmc->addr = &rxdp->wb.qword1.status_error_len;
87
88         /* comparison callback */
89         pmc->fn = iavf_monitor_callback;
90
91         /* registers are 64-bit */
92         pmc->size = sizeof(uint64_t);
93
94         return 0;
95 }
96
97 static inline int
98 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
99 {
100         /* The following constraints must be satisfied:
101          *   thresh < rxq->nb_rx_desc
102          */
103         if (thresh >= nb_desc) {
104                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
105                              thresh, nb_desc);
106                 return -EINVAL;
107         }
108         return 0;
109 }
110
111 static inline int
112 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
113                 uint16_t tx_free_thresh)
114 {
115         /* TX descriptors will have their RS bit set after tx_rs_thresh
116          * descriptors have been used. The TX descriptor ring will be cleaned
117          * after tx_free_thresh descriptors are used or if the number of
118          * descriptors required to transmit a packet is greater than the
119          * number of free TX descriptors.
120          *
121          * The following constraints must be satisfied:
122          *  - tx_rs_thresh must be less than the size of the ring minus 2.
123          *  - tx_free_thresh must be less than the size of the ring minus 3.
124          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
125          *  - tx_rs_thresh must be a divisor of the ring size.
126          *
127          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
128          * race condition, hence the maximum threshold constraints. When set
129          * to zero use default values.
130          */
131         if (tx_rs_thresh >= (nb_desc - 2)) {
132                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
133                              "number of TX descriptors (%u) minus 2",
134                              tx_rs_thresh, nb_desc);
135                 return -EINVAL;
136         }
137         if (tx_free_thresh >= (nb_desc - 3)) {
138                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
139                              "number of TX descriptors (%u) minus 3.",
140                              tx_free_thresh, nb_desc);
141                 return -EINVAL;
142         }
143         if (tx_rs_thresh > tx_free_thresh) {
144                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
145                              "equal to tx_free_thresh (%u).",
146                              tx_rs_thresh, tx_free_thresh);
147                 return -EINVAL;
148         }
149         if ((nb_desc % tx_rs_thresh) != 0) {
150                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
151                              "number of TX descriptors (%u).",
152                              tx_rs_thresh, nb_desc);
153                 return -EINVAL;
154         }
155
156         return 0;
157 }
158
159 static inline bool
160 check_rx_vec_allow(struct iavf_rx_queue *rxq)
161 {
162         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
163             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
164                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
165                 return true;
166         }
167
168         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
169         return false;
170 }
171
172 static inline bool
173 check_tx_vec_allow(struct iavf_tx_queue *txq)
174 {
175         if (!(txq->offloads & IAVF_TX_NO_VECTOR_FLAGS) &&
176             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
177             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
178                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
179                 return true;
180         }
181         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
182         return false;
183 }
184
185 static inline bool
186 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
187 {
188         int ret = true;
189
190         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
191                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
192                              "rxq->rx_free_thresh=%d, "
193                              "IAVF_RX_MAX_BURST=%d",
194                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
195                 ret = false;
196         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
197                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
198                              "rxq->nb_rx_desc=%d, "
199                              "rxq->rx_free_thresh=%d",
200                              rxq->nb_rx_desc, rxq->rx_free_thresh);
201                 ret = false;
202         }
203         return ret;
204 }
205
206 static inline void
207 reset_rx_queue(struct iavf_rx_queue *rxq)
208 {
209         uint16_t len;
210         uint32_t i;
211
212         if (!rxq)
213                 return;
214
215         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
216
217         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
218                 ((volatile char *)rxq->rx_ring)[i] = 0;
219
220         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
221
222         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
223                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
224
225         /* for rx bulk */
226         rxq->rx_nb_avail = 0;
227         rxq->rx_next_avail = 0;
228         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
229
230         rxq->rx_tail = 0;
231         rxq->nb_rx_hold = 0;
232
233         rte_pktmbuf_free(rxq->pkt_first_seg);
234
235         rxq->pkt_first_seg = NULL;
236         rxq->pkt_last_seg = NULL;
237         rxq->rxrearm_nb = 0;
238         rxq->rxrearm_start = 0;
239 }
240
241 static inline void
242 reset_tx_queue(struct iavf_tx_queue *txq)
243 {
244         struct iavf_tx_entry *txe;
245         uint32_t i, size;
246         uint16_t prev;
247
248         if (!txq) {
249                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
250                 return;
251         }
252
253         txe = txq->sw_ring;
254         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
255         for (i = 0; i < size; i++)
256                 ((volatile char *)txq->tx_ring)[i] = 0;
257
258         prev = (uint16_t)(txq->nb_tx_desc - 1);
259         for (i = 0; i < txq->nb_tx_desc; i++) {
260                 txq->tx_ring[i].cmd_type_offset_bsz =
261                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
262                 txe[i].mbuf =  NULL;
263                 txe[i].last_id = i;
264                 txe[prev].next_id = i;
265                 prev = i;
266         }
267
268         txq->tx_tail = 0;
269         txq->nb_used = 0;
270
271         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
272         txq->nb_free = txq->nb_tx_desc - 1;
273
274         txq->next_dd = txq->rs_thresh - 1;
275         txq->next_rs = txq->rs_thresh - 1;
276 }
277
278 static int
279 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
280 {
281         volatile union iavf_rx_desc *rxd;
282         struct rte_mbuf *mbuf = NULL;
283         uint64_t dma_addr;
284         uint16_t i, j;
285
286         for (i = 0; i < rxq->nb_rx_desc; i++) {
287                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
288                 if (unlikely(!mbuf)) {
289                         for (j = 0; j < i; j++) {
290                                 rte_pktmbuf_free_seg(rxq->sw_ring[j]);
291                                 rxq->sw_ring[j] = NULL;
292                         }
293                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
294                         return -ENOMEM;
295                 }
296
297                 rte_mbuf_refcnt_set(mbuf, 1);
298                 mbuf->next = NULL;
299                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
300                 mbuf->nb_segs = 1;
301                 mbuf->port = rxq->port_id;
302
303                 dma_addr =
304                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
305
306                 rxd = &rxq->rx_ring[i];
307                 rxd->read.pkt_addr = dma_addr;
308                 rxd->read.hdr_addr = 0;
309 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
310                 rxd->read.rsvd1 = 0;
311                 rxd->read.rsvd2 = 0;
312 #endif
313
314                 rxq->sw_ring[i] = mbuf;
315         }
316
317         return 0;
318 }
319
320 static inline void
321 release_rxq_mbufs(struct iavf_rx_queue *rxq)
322 {
323         uint16_t i;
324
325         if (!rxq->sw_ring)
326                 return;
327
328         for (i = 0; i < rxq->nb_rx_desc; i++) {
329                 if (rxq->sw_ring[i]) {
330                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
331                         rxq->sw_ring[i] = NULL;
332                 }
333         }
334
335         /* for rx bulk */
336         if (rxq->rx_nb_avail == 0)
337                 return;
338         for (i = 0; i < rxq->rx_nb_avail; i++) {
339                 struct rte_mbuf *mbuf;
340
341                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
342                 rte_pktmbuf_free_seg(mbuf);
343         }
344         rxq->rx_nb_avail = 0;
345 }
346
347 static inline void
348 release_txq_mbufs(struct iavf_tx_queue *txq)
349 {
350         uint16_t i;
351
352         if (!txq || !txq->sw_ring) {
353                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
354                 return;
355         }
356
357         for (i = 0; i < txq->nb_tx_desc; i++) {
358                 if (txq->sw_ring[i].mbuf) {
359                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
360                         txq->sw_ring[i].mbuf = NULL;
361                 }
362         }
363 }
364
365 static const struct iavf_rxq_ops def_rxq_ops = {
366         .release_mbufs = release_rxq_mbufs,
367 };
368
369 static const struct iavf_txq_ops def_txq_ops = {
370         .release_mbufs = release_txq_mbufs,
371 };
372
373 static inline void
374 iavf_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct iavf_rx_queue *rxq,
375                                     struct rte_mbuf *mb,
376                                     volatile union iavf_rx_flex_desc *rxdp)
377 {
378         volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
379                         (volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
380 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
381         uint16_t stat_err;
382 #endif
383
384         if (desc->flow_id != 0xFFFFFFFF) {
385                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
386                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
387         }
388
389 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
390         stat_err = rte_le_to_cpu_16(desc->status_error0);
391         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
392                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
393                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
394         }
395 #endif
396 }
397
398 static inline void
399 iavf_rxd_to_pkt_fields_by_comms_aux_v1(struct iavf_rx_queue *rxq,
400                                        struct rte_mbuf *mb,
401                                        volatile union iavf_rx_flex_desc *rxdp)
402 {
403         volatile struct iavf_32b_rx_flex_desc_comms *desc =
404                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
405         uint16_t stat_err;
406
407         stat_err = rte_le_to_cpu_16(desc->status_error0);
408         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
409                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
410                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
411         }
412
413 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
414         if (desc->flow_id != 0xFFFFFFFF) {
415                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
416                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
417         }
418
419         if (rxq->xtr_ol_flag) {
420                 uint32_t metadata = 0;
421
422                 stat_err = rte_le_to_cpu_16(desc->status_error1);
423
424                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
425                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
426
427                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
428                         metadata |=
429                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
430
431                 if (metadata) {
432                         mb->ol_flags |= rxq->xtr_ol_flag;
433
434                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
435                 }
436         }
437 #endif
438 }
439
440 static inline void
441 iavf_rxd_to_pkt_fields_by_comms_aux_v2(struct iavf_rx_queue *rxq,
442                                        struct rte_mbuf *mb,
443                                        volatile union iavf_rx_flex_desc *rxdp)
444 {
445         volatile struct iavf_32b_rx_flex_desc_comms *desc =
446                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
447         uint16_t stat_err;
448
449         stat_err = rte_le_to_cpu_16(desc->status_error0);
450         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
451                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
452                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
453         }
454
455 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
456         if (desc->flow_id != 0xFFFFFFFF) {
457                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
458                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
459         }
460
461         if (rxq->xtr_ol_flag) {
462                 uint32_t metadata = 0;
463
464                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
465                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
466                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
467                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
468
469                 if (metadata) {
470                         mb->ol_flags |= rxq->xtr_ol_flag;
471
472                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
473                 }
474         }
475 #endif
476 }
477
478 static const
479 iavf_rxd_to_pkt_fields_t rxd_to_pkt_fields_ops[IAVF_RXDID_LAST + 1] = {
480         [IAVF_RXDID_LEGACY_0] = iavf_rxd_to_pkt_fields_by_comms_ovs,
481         [IAVF_RXDID_LEGACY_1] = iavf_rxd_to_pkt_fields_by_comms_ovs,
482         [IAVF_RXDID_COMMS_AUX_VLAN] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
483         [IAVF_RXDID_COMMS_AUX_IPV4] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
484         [IAVF_RXDID_COMMS_AUX_IPV6] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
485         [IAVF_RXDID_COMMS_AUX_IPV6_FLOW] =
486                 iavf_rxd_to_pkt_fields_by_comms_aux_v1,
487         [IAVF_RXDID_COMMS_AUX_TCP] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
488         [IAVF_RXDID_COMMS_AUX_IP_OFFSET] =
489                 iavf_rxd_to_pkt_fields_by_comms_aux_v2,
490         [IAVF_RXDID_COMMS_IPSEC_CRYPTO] =
491                 iavf_rxd_to_pkt_fields_by_comms_aux_v2,
492         [IAVF_RXDID_COMMS_OVS_1] = iavf_rxd_to_pkt_fields_by_comms_ovs,
493 };
494
495 static void
496 iavf_select_rxd_to_pkt_fields_handler(struct iavf_rx_queue *rxq, uint32_t rxdid)
497 {
498         rxq->rxdid = rxdid;
499
500         switch (rxdid) {
501         case IAVF_RXDID_COMMS_AUX_VLAN:
502                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
503                 break;
504         case IAVF_RXDID_COMMS_AUX_IPV4:
505                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
506                 break;
507         case IAVF_RXDID_COMMS_AUX_IPV6:
508                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
509                 break;
510         case IAVF_RXDID_COMMS_AUX_IPV6_FLOW:
511                 rxq->xtr_ol_flag =
512                         rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
513                 break;
514         case IAVF_RXDID_COMMS_AUX_TCP:
515                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
516                 break;
517         case IAVF_RXDID_COMMS_AUX_IP_OFFSET:
518                 rxq->xtr_ol_flag =
519                         rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
520                 break;
521         case IAVF_RXDID_COMMS_IPSEC_CRYPTO:
522                 rxq->xtr_ol_flag =
523                         rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask;
524                 break;
525         case IAVF_RXDID_COMMS_OVS_1:
526         case IAVF_RXDID_LEGACY_0:
527         case IAVF_RXDID_LEGACY_1:
528                 break;
529         default:
530                 /* update this according to the RXDID for FLEX_DESC_NONE */
531                 rxq->rxdid = IAVF_RXDID_COMMS_OVS_1;
532                 break;
533         }
534
535         if (!rte_pmd_ifd_dynf_proto_xtr_metadata_avail())
536                 rxq->xtr_ol_flag = 0;
537 }
538
539 int
540 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
541                        uint16_t nb_desc, unsigned int socket_id,
542                        const struct rte_eth_rxconf *rx_conf,
543                        struct rte_mempool *mp)
544 {
545         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
546         struct iavf_adapter *ad =
547                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
548         struct iavf_info *vf =
549                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
550         struct iavf_vsi *vsi = &vf->vsi;
551         struct iavf_rx_queue *rxq;
552         const struct rte_memzone *mz;
553         uint32_t ring_size;
554         uint8_t proto_xtr;
555         uint16_t len;
556         uint16_t rx_free_thresh;
557         uint64_t offloads;
558
559         PMD_INIT_FUNC_TRACE();
560
561         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
562
563         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
564             nb_desc > IAVF_MAX_RING_DESC ||
565             nb_desc < IAVF_MIN_RING_DESC) {
566                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
567                              "invalid", nb_desc);
568                 return -EINVAL;
569         }
570
571         /* Check free threshold */
572         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
573                          IAVF_DEFAULT_RX_FREE_THRESH :
574                          rx_conf->rx_free_thresh;
575         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
576                 return -EINVAL;
577
578         /* Free memory if needed */
579         if (dev->data->rx_queues[queue_idx]) {
580                 iavf_dev_rx_queue_release(dev, queue_idx);
581                 dev->data->rx_queues[queue_idx] = NULL;
582         }
583
584         /* Allocate the rx queue data structure */
585         rxq = rte_zmalloc_socket("iavf rxq",
586                                  sizeof(struct iavf_rx_queue),
587                                  RTE_CACHE_LINE_SIZE,
588                                  socket_id);
589         if (!rxq) {
590                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
591                              "rx queue data structure");
592                 return -ENOMEM;
593         }
594
595         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
596                 proto_xtr = vf->proto_xtr ? vf->proto_xtr[queue_idx] :
597                                 IAVF_PROTO_XTR_NONE;
598                 rxq->rxdid = iavf_proto_xtr_type_to_rxdid(proto_xtr);
599                 rxq->proto_xtr = proto_xtr;
600         } else {
601                 rxq->rxdid = IAVF_RXDID_LEGACY_1;
602                 rxq->proto_xtr = IAVF_PROTO_XTR_NONE;
603         }
604
605         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
606                 struct virtchnl_vlan_supported_caps *stripping_support =
607                                 &vf->vlan_v2_caps.offloads.stripping_support;
608                 uint32_t stripping_cap;
609
610                 if (stripping_support->outer)
611                         stripping_cap = stripping_support->outer;
612                 else
613                         stripping_cap = stripping_support->inner;
614
615                 if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
616                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
617                 else if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
618                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
619         } else {
620                 rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
621         }
622
623         iavf_select_rxd_to_pkt_fields_handler(rxq, rxq->rxdid);
624
625         rxq->mp = mp;
626         rxq->nb_rx_desc = nb_desc;
627         rxq->rx_free_thresh = rx_free_thresh;
628         rxq->queue_id = queue_idx;
629         rxq->port_id = dev->data->port_id;
630         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
631         rxq->rx_hdr_len = 0;
632         rxq->vsi = vsi;
633         rxq->offloads = offloads;
634
635         if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
636                 rxq->crc_len = RTE_ETHER_CRC_LEN;
637         else
638                 rxq->crc_len = 0;
639
640         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
641         rxq->rx_buf_len = RTE_ALIGN_FLOOR(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
642
643         /* Allocate the software ring. */
644         len = nb_desc + IAVF_RX_MAX_BURST;
645         rxq->sw_ring =
646                 rte_zmalloc_socket("iavf rx sw ring",
647                                    sizeof(struct rte_mbuf *) * len,
648                                    RTE_CACHE_LINE_SIZE,
649                                    socket_id);
650         if (!rxq->sw_ring) {
651                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
652                 rte_free(rxq);
653                 return -ENOMEM;
654         }
655
656         /* Allocate the maximum number of RX ring hardware descriptor with
657          * a little more to support bulk allocate.
658          */
659         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
660         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
661                               IAVF_DMA_MEM_ALIGN);
662         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
663                                       ring_size, IAVF_RING_BASE_ALIGN,
664                                       socket_id);
665         if (!mz) {
666                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
667                 rte_free(rxq->sw_ring);
668                 rte_free(rxq);
669                 return -ENOMEM;
670         }
671         /* Zero all the descriptors in the ring. */
672         memset(mz->addr, 0, ring_size);
673         rxq->rx_ring_phys_addr = mz->iova;
674         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
675
676         rxq->mz = mz;
677         reset_rx_queue(rxq);
678         rxq->q_set = true;
679         dev->data->rx_queues[queue_idx] = rxq;
680         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
681         rxq->ops = &def_rxq_ops;
682
683         if (check_rx_bulk_allow(rxq) == true) {
684                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
685                              "satisfied. Rx Burst Bulk Alloc function will be "
686                              "used on port=%d, queue=%d.",
687                              rxq->port_id, rxq->queue_id);
688         } else {
689                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
690                              "not satisfied, Scattered Rx is requested "
691                              "on port=%d, queue=%d.",
692                              rxq->port_id, rxq->queue_id);
693                 ad->rx_bulk_alloc_allowed = false;
694         }
695
696         if (check_rx_vec_allow(rxq) == false)
697                 ad->rx_vec_allowed = false;
698
699         return 0;
700 }
701
702 int
703 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
704                        uint16_t queue_idx,
705                        uint16_t nb_desc,
706                        unsigned int socket_id,
707                        const struct rte_eth_txconf *tx_conf)
708 {
709         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
710         struct iavf_adapter *adapter =
711                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
712         struct iavf_info *vf =
713                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
714         struct iavf_tx_queue *txq;
715         const struct rte_memzone *mz;
716         uint32_t ring_size;
717         uint16_t tx_rs_thresh, tx_free_thresh;
718         uint64_t offloads;
719
720         PMD_INIT_FUNC_TRACE();
721
722         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
723
724         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
725             nb_desc > IAVF_MAX_RING_DESC ||
726             nb_desc < IAVF_MIN_RING_DESC) {
727                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
728                             "invalid", nb_desc);
729                 return -EINVAL;
730         }
731
732         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
733                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
734         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
735                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
736         if (check_tx_thresh(nb_desc, tx_rs_thresh, tx_free_thresh) != 0)
737                 return -EINVAL;
738
739         /* Free memory if needed. */
740         if (dev->data->tx_queues[queue_idx]) {
741                 iavf_dev_tx_queue_release(dev, queue_idx);
742                 dev->data->tx_queues[queue_idx] = NULL;
743         }
744
745         /* Allocate the TX queue data structure. */
746         txq = rte_zmalloc_socket("iavf txq",
747                                  sizeof(struct iavf_tx_queue),
748                                  RTE_CACHE_LINE_SIZE,
749                                  socket_id);
750         if (!txq) {
751                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
752                              "tx queue structure");
753                 return -ENOMEM;
754         }
755
756         if (adapter->vf.vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
757                 struct virtchnl_vlan_supported_caps *insertion_support =
758                         &adapter->vf.vlan_v2_caps.offloads.insertion_support;
759                 uint32_t insertion_cap;
760
761                 if (insertion_support->outer)
762                         insertion_cap = insertion_support->outer;
763                 else
764                         insertion_cap = insertion_support->inner;
765
766                 if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
767                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
768                 else if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
769                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2;
770         } else {
771                 txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
772         }
773
774         txq->nb_tx_desc = nb_desc;
775         txq->rs_thresh = tx_rs_thresh;
776         txq->free_thresh = tx_free_thresh;
777         txq->queue_id = queue_idx;
778         txq->port_id = dev->data->port_id;
779         txq->offloads = offloads;
780         txq->tx_deferred_start = tx_conf->tx_deferred_start;
781
782         if (iavf_ipsec_crypto_supported(adapter))
783                 txq->ipsec_crypto_pkt_md_offset =
784                         iavf_security_get_pkt_md_offset(adapter);
785
786         /* Allocate software ring */
787         txq->sw_ring =
788                 rte_zmalloc_socket("iavf tx sw ring",
789                                    sizeof(struct iavf_tx_entry) * nb_desc,
790                                    RTE_CACHE_LINE_SIZE,
791                                    socket_id);
792         if (!txq->sw_ring) {
793                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
794                 rte_free(txq);
795                 return -ENOMEM;
796         }
797
798         /* Allocate TX hardware ring descriptors. */
799         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
800         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
801         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
802                                       ring_size, IAVF_RING_BASE_ALIGN,
803                                       socket_id);
804         if (!mz) {
805                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
806                 rte_free(txq->sw_ring);
807                 rte_free(txq);
808                 return -ENOMEM;
809         }
810         txq->tx_ring_phys_addr = mz->iova;
811         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
812
813         txq->mz = mz;
814         reset_tx_queue(txq);
815         txq->q_set = true;
816         dev->data->tx_queues[queue_idx] = txq;
817         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
818         txq->ops = &def_txq_ops;
819
820         if (check_tx_vec_allow(txq) == false) {
821                 struct iavf_adapter *ad =
822                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
823                 ad->tx_vec_allowed = false;
824         }
825
826         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
827             vf->tm_conf.committed) {
828                 int tc;
829                 for (tc = 0; tc < vf->qos_cap->num_elem; tc++) {
830                         if (txq->queue_id >= vf->qtc_map[tc].start_queue_id &&
831                             txq->queue_id < (vf->qtc_map[tc].start_queue_id +
832                             vf->qtc_map[tc].queue_count))
833                                 break;
834                 }
835                 if (tc >= vf->qos_cap->num_elem) {
836                         PMD_INIT_LOG(ERR, "Queue TC mapping is not correct");
837                         return -EINVAL;
838                 }
839                 txq->tc = tc;
840         }
841
842         return 0;
843 }
844
845 int
846 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
847 {
848         struct iavf_adapter *adapter =
849                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
850         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
851         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
852         struct iavf_rx_queue *rxq;
853         int err = 0;
854
855         PMD_DRV_FUNC_TRACE();
856
857         if (rx_queue_id >= dev->data->nb_rx_queues)
858                 return -EINVAL;
859
860         rxq = dev->data->rx_queues[rx_queue_id];
861
862         err = alloc_rxq_mbufs(rxq);
863         if (err) {
864                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
865                 return err;
866         }
867
868         rte_wmb();
869
870         /* Init the RX tail register. */
871         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
872         IAVF_WRITE_FLUSH(hw);
873
874         /* Ready to switch the queue on */
875         if (!vf->lv_enabled)
876                 err = iavf_switch_queue(adapter, rx_queue_id, true, true);
877         else
878                 err = iavf_switch_queue_lv(adapter, rx_queue_id, true, true);
879
880         if (err) {
881                 release_rxq_mbufs(rxq);
882                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
883                             rx_queue_id);
884         } else {
885                 dev->data->rx_queue_state[rx_queue_id] =
886                         RTE_ETH_QUEUE_STATE_STARTED;
887         }
888
889         return err;
890 }
891
892 int
893 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
894 {
895         struct iavf_adapter *adapter =
896                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
897         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
898         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
899         struct iavf_tx_queue *txq;
900         int err = 0;
901
902         PMD_DRV_FUNC_TRACE();
903
904         if (tx_queue_id >= dev->data->nb_tx_queues)
905                 return -EINVAL;
906
907         txq = dev->data->tx_queues[tx_queue_id];
908
909         /* Init the RX tail register. */
910         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
911         IAVF_WRITE_FLUSH(hw);
912
913         /* Ready to switch the queue on */
914         if (!vf->lv_enabled)
915                 err = iavf_switch_queue(adapter, tx_queue_id, false, true);
916         else
917                 err = iavf_switch_queue_lv(adapter, tx_queue_id, false, true);
918
919         if (err)
920                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
921                             tx_queue_id);
922         else
923                 dev->data->tx_queue_state[tx_queue_id] =
924                         RTE_ETH_QUEUE_STATE_STARTED;
925
926         return err;
927 }
928
929 int
930 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
931 {
932         struct iavf_adapter *adapter =
933                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
934         struct iavf_rx_queue *rxq;
935         int err;
936
937         PMD_DRV_FUNC_TRACE();
938
939         if (rx_queue_id >= dev->data->nb_rx_queues)
940                 return -EINVAL;
941
942         err = iavf_switch_queue(adapter, rx_queue_id, true, false);
943         if (err) {
944                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
945                             rx_queue_id);
946                 return err;
947         }
948
949         rxq = dev->data->rx_queues[rx_queue_id];
950         rxq->ops->release_mbufs(rxq);
951         reset_rx_queue(rxq);
952         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
953
954         return 0;
955 }
956
957 int
958 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
959 {
960         struct iavf_adapter *adapter =
961                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
962         struct iavf_tx_queue *txq;
963         int err;
964
965         PMD_DRV_FUNC_TRACE();
966
967         if (tx_queue_id >= dev->data->nb_tx_queues)
968                 return -EINVAL;
969
970         err = iavf_switch_queue(adapter, tx_queue_id, false, false);
971         if (err) {
972                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
973                             tx_queue_id);
974                 return err;
975         }
976
977         txq = dev->data->tx_queues[tx_queue_id];
978         txq->ops->release_mbufs(txq);
979         reset_tx_queue(txq);
980         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
981
982         return 0;
983 }
984
985 void
986 iavf_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
987 {
988         struct iavf_rx_queue *q = dev->data->rx_queues[qid];
989
990         if (!q)
991                 return;
992
993         q->ops->release_mbufs(q);
994         rte_free(q->sw_ring);
995         rte_memzone_free(q->mz);
996         rte_free(q);
997 }
998
999 void
1000 iavf_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1001 {
1002         struct iavf_tx_queue *q = dev->data->tx_queues[qid];
1003
1004         if (!q)
1005                 return;
1006
1007         q->ops->release_mbufs(q);
1008         rte_free(q->sw_ring);
1009         rte_memzone_free(q->mz);
1010         rte_free(q);
1011 }
1012
1013 void
1014 iavf_stop_queues(struct rte_eth_dev *dev)
1015 {
1016         struct iavf_adapter *adapter =
1017                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1018         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1019         struct iavf_rx_queue *rxq;
1020         struct iavf_tx_queue *txq;
1021         int ret, i;
1022
1023         /* Stop All queues */
1024         if (!vf->lv_enabled) {
1025                 ret = iavf_disable_queues(adapter);
1026                 if (ret)
1027                         PMD_DRV_LOG(WARNING, "Fail to stop queues");
1028         } else {
1029                 ret = iavf_disable_queues_lv(adapter);
1030                 if (ret)
1031                         PMD_DRV_LOG(WARNING, "Fail to stop queues for large VF");
1032         }
1033
1034         if (ret)
1035                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
1036
1037         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1038                 txq = dev->data->tx_queues[i];
1039                 if (!txq)
1040                         continue;
1041                 txq->ops->release_mbufs(txq);
1042                 reset_tx_queue(txq);
1043                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1044         }
1045         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1046                 rxq = dev->data->rx_queues[i];
1047                 if (!rxq)
1048                         continue;
1049                 rxq->ops->release_mbufs(rxq);
1050                 reset_rx_queue(rxq);
1051                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1052         }
1053 }
1054
1055 #define IAVF_RX_FLEX_ERR0_BITS  \
1056         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1057          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1058          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1059          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1060          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1061          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1062
1063 static inline void
1064 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
1065 {
1066         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1067                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1068                 mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
1069                 mb->vlan_tci =
1070                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
1071         } else {
1072                 mb->vlan_tci = 0;
1073         }
1074 }
1075
1076 static inline void
1077 iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
1078                           volatile union iavf_rx_flex_desc *rxdp)
1079 {
1080         if (rte_le_to_cpu_64(rxdp->wb.status_error0) &
1081                 (1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1082                 mb->ol_flags |= RTE_MBUF_F_RX_VLAN |
1083                                 RTE_MBUF_F_RX_VLAN_STRIPPED;
1084                 mb->vlan_tci =
1085                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
1086         } else {
1087                 mb->vlan_tci = 0;
1088         }
1089
1090 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1091         if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1092             (1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1093                 mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED |
1094                                 RTE_MBUF_F_RX_QINQ |
1095                                 RTE_MBUF_F_RX_VLAN_STRIPPED |
1096                                 RTE_MBUF_F_RX_VLAN;
1097                 mb->vlan_tci_outer = mb->vlan_tci;
1098                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1099                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1100                            rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1101                            rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1102         } else {
1103                 mb->vlan_tci_outer = 0;
1104         }
1105 #endif
1106 }
1107
1108 static inline void
1109 iavf_flex_rxd_to_ipsec_crypto_said_get(struct rte_mbuf *mb,
1110                           volatile union iavf_rx_flex_desc *rxdp)
1111 {
1112         volatile struct iavf_32b_rx_flex_desc_comms_ipsec *desc =
1113                 (volatile struct iavf_32b_rx_flex_desc_comms_ipsec *)rxdp;
1114
1115         mb->dynfield1[0] = desc->ipsec_said &
1116                          IAVF_RX_FLEX_DESC_IPSEC_CRYPTO_SAID_MASK;
1117         }
1118
1119 static inline void
1120 iavf_flex_rxd_to_ipsec_crypto_status(struct rte_mbuf *mb,
1121                           volatile union iavf_rx_flex_desc *rxdp,
1122                           struct iavf_ipsec_crypto_stats *stats)
1123 {
1124         uint16_t status1 = rte_le_to_cpu_64(rxdp->wb.status_error1);
1125
1126         if (status1 & BIT(IAVF_RX_FLEX_DESC_STATUS1_IPSEC_CRYPTO_PROCESSED)) {
1127                 uint16_t ipsec_status;
1128
1129                 mb->ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD;
1130
1131                 ipsec_status = status1 &
1132                         IAVF_RX_FLEX_DESC_IPSEC_CRYPTO_STATUS_MASK;
1133
1134
1135                 if (unlikely(ipsec_status !=
1136                         IAVF_IPSEC_CRYPTO_STATUS_SUCCESS)) {
1137                         mb->ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
1138
1139                         switch (ipsec_status) {
1140                         case IAVF_IPSEC_CRYPTO_STATUS_SAD_MISS:
1141                                 stats->ierrors.sad_miss++;
1142                                 break;
1143                         case IAVF_IPSEC_CRYPTO_STATUS_NOT_PROCESSED:
1144                                 stats->ierrors.not_processed++;
1145                                 break;
1146                         case IAVF_IPSEC_CRYPTO_STATUS_ICV_CHECK_FAIL:
1147                                 stats->ierrors.icv_check++;
1148                                 break;
1149                         case IAVF_IPSEC_CRYPTO_STATUS_LENGTH_ERR:
1150                                 stats->ierrors.ipsec_length++;
1151                                 break;
1152                         case IAVF_IPSEC_CRYPTO_STATUS_MISC_ERR:
1153                                 stats->ierrors.misc++;
1154                                 break;
1155 }
1156
1157                         stats->ierrors.count++;
1158                         return;
1159                 }
1160
1161                 stats->icount++;
1162                 stats->ibytes += rxdp->wb.pkt_len & 0x3FFF;
1163
1164                 if (rxdp->wb.rxdid == IAVF_RXDID_COMMS_IPSEC_CRYPTO &&
1165                         ipsec_status !=
1166                                 IAVF_IPSEC_CRYPTO_STATUS_SAD_MISS)
1167                         iavf_flex_rxd_to_ipsec_crypto_said_get(mb, rxdp);
1168         }
1169 }
1170
1171
1172 /* Translate the rx descriptor status and error fields to pkt flags */
1173 static inline uint64_t
1174 iavf_rxd_to_pkt_flags(uint64_t qword)
1175 {
1176         uint64_t flags;
1177         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
1178
1179 #define IAVF_RX_ERR_BITS 0x3f
1180
1181         /* Check if RSS_HASH */
1182         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
1183                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
1184                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? RTE_MBUF_F_RX_RSS_HASH : 0;
1185
1186         /* Check if FDIR Match */
1187         flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
1188                                 RTE_MBUF_F_RX_FDIR : 0);
1189
1190         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
1191                 flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
1192                 return flags;
1193         }
1194
1195         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
1196                 flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1197         else
1198                 flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1199
1200         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
1201                 flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1202         else
1203                 flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1204
1205         /* TODO: Oversize error bit is not processed here */
1206
1207         return flags;
1208 }
1209
1210 static inline uint64_t
1211 iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
1212 {
1213         uint64_t flags = 0;
1214 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1215         uint16_t flexbh;
1216
1217         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
1218                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
1219                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
1220
1221         if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
1222                 mb->hash.fdir.hi =
1223                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
1224                 flags |= RTE_MBUF_F_RX_FDIR_ID;
1225         }
1226 #else
1227         mb->hash.fdir.hi =
1228                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
1229         flags |= RTE_MBUF_F_RX_FDIR_ID;
1230 #endif
1231         return flags;
1232 }
1233
1234 #define IAVF_RX_FLEX_ERR0_BITS  \
1235         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1236          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1237          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1238          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1239          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1240          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1241
1242 /* Rx L3/L4 checksum */
1243 static inline uint64_t
1244 iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
1245 {
1246         uint64_t flags = 0;
1247
1248         /* check if HW has decoded the packet and checksum */
1249         if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1250                 return 0;
1251
1252         if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
1253                 flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
1254                 return flags;
1255         }
1256
1257         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1258                 flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1259         else
1260                 flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1261
1262         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1263                 flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1264         else
1265                 flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1266
1267         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1268                 flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
1269
1270         return flags;
1271 }
1272
1273 /* If the number of free RX descriptors is greater than the RX free
1274  * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1275  * register. Update the RDT with the value of the last processed RX
1276  * descriptor minus 1, to guarantee that the RDT register is never
1277  * equal to the RDH register, which creates a "full" ring situation
1278  * from the hardware point of view.
1279  */
1280 static inline void
1281 iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
1282 {
1283         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1284
1285         if (nb_hold > rxq->rx_free_thresh) {
1286                 PMD_RX_LOG(DEBUG,
1287                            "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
1288                            rxq->port_id, rxq->queue_id, rx_id, nb_hold);
1289                 rx_id = (uint16_t)((rx_id == 0) ?
1290                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1291                 IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1292                 nb_hold = 0;
1293         }
1294         rxq->nb_rx_hold = nb_hold;
1295 }
1296
1297 /* implement recv_pkts */
1298 uint16_t
1299 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1300 {
1301         volatile union iavf_rx_desc *rx_ring;
1302         volatile union iavf_rx_desc *rxdp;
1303         struct iavf_rx_queue *rxq;
1304         union iavf_rx_desc rxd;
1305         struct rte_mbuf *rxe;
1306         struct rte_eth_dev *dev;
1307         struct rte_mbuf *rxm;
1308         struct rte_mbuf *nmb;
1309         uint16_t nb_rx;
1310         uint32_t rx_status;
1311         uint64_t qword1;
1312         uint16_t rx_packet_len;
1313         uint16_t rx_id, nb_hold;
1314         uint64_t dma_addr;
1315         uint64_t pkt_flags;
1316         const uint32_t *ptype_tbl;
1317
1318         nb_rx = 0;
1319         nb_hold = 0;
1320         rxq = rx_queue;
1321         rx_id = rxq->rx_tail;
1322         rx_ring = rxq->rx_ring;
1323         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1324
1325         while (nb_rx < nb_pkts) {
1326                 rxdp = &rx_ring[rx_id];
1327                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1328                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1329                             IAVF_RXD_QW1_STATUS_SHIFT;
1330
1331                 /* Check the DD bit first */
1332                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1333                         break;
1334                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1335
1336                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1337                 if (unlikely(!nmb)) {
1338                         dev = &rte_eth_devices[rxq->port_id];
1339                         dev->data->rx_mbuf_alloc_failed++;
1340                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1341                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1342                         break;
1343                 }
1344
1345                 rxd = *rxdp;
1346                 nb_hold++;
1347                 rxe = rxq->sw_ring[rx_id];
1348                 rxq->sw_ring[rx_id] = nmb;
1349                 rx_id++;
1350                 if (unlikely(rx_id == rxq->nb_rx_desc))
1351                         rx_id = 0;
1352
1353                 /* Prefetch next mbuf */
1354                 rte_prefetch0(rxq->sw_ring[rx_id]);
1355
1356                 /* When next RX descriptor is on a cache line boundary,
1357                  * prefetch the next 4 RX descriptors and next 8 pointers
1358                  * to mbufs.
1359                  */
1360                 if ((rx_id & 0x3) == 0) {
1361                         rte_prefetch0(&rx_ring[rx_id]);
1362                         rte_prefetch0(rxq->sw_ring[rx_id]);
1363                 }
1364                 rxm = rxe;
1365                 dma_addr =
1366                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1367                 rxdp->read.hdr_addr = 0;
1368                 rxdp->read.pkt_addr = dma_addr;
1369
1370                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1371                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1372
1373                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1374                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1375                 rxm->nb_segs = 1;
1376                 rxm->next = NULL;
1377                 rxm->pkt_len = rx_packet_len;
1378                 rxm->data_len = rx_packet_len;
1379                 rxm->port = rxq->port_id;
1380                 rxm->ol_flags = 0;
1381                 iavf_rxd_to_vlan_tci(rxm, &rxd);
1382                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1383                 rxm->packet_type =
1384                         ptype_tbl[(uint8_t)((qword1 &
1385                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1386
1387                 if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
1388                         rxm->hash.rss =
1389                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1390
1391                 if (pkt_flags & RTE_MBUF_F_RX_FDIR)
1392                         pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
1393
1394                 rxm->ol_flags |= pkt_flags;
1395
1396                 rx_pkts[nb_rx++] = rxm;
1397         }
1398         rxq->rx_tail = rx_id;
1399
1400         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1401
1402         return nb_rx;
1403 }
1404
1405 /* implement recv_pkts for flexible Rx descriptor */
1406 uint16_t
1407 iavf_recv_pkts_flex_rxd(void *rx_queue,
1408                         struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1409 {
1410         volatile union iavf_rx_desc *rx_ring;
1411         volatile union iavf_rx_flex_desc *rxdp;
1412         struct iavf_rx_queue *rxq;
1413         union iavf_rx_flex_desc rxd;
1414         struct rte_mbuf *rxe;
1415         struct rte_eth_dev *dev;
1416         struct rte_mbuf *rxm;
1417         struct rte_mbuf *nmb;
1418         uint16_t nb_rx;
1419         uint16_t rx_stat_err0;
1420         uint16_t rx_packet_len;
1421         uint16_t rx_id, nb_hold;
1422         uint64_t dma_addr;
1423         uint64_t pkt_flags;
1424         const uint32_t *ptype_tbl;
1425
1426         nb_rx = 0;
1427         nb_hold = 0;
1428         rxq = rx_queue;
1429         rx_id = rxq->rx_tail;
1430         rx_ring = rxq->rx_ring;
1431         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1432
1433         while (nb_rx < nb_pkts) {
1434                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1435                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1436
1437                 /* Check the DD bit first */
1438                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1439                         break;
1440                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1441
1442                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1443                 if (unlikely(!nmb)) {
1444                         dev = &rte_eth_devices[rxq->port_id];
1445                         dev->data->rx_mbuf_alloc_failed++;
1446                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1447                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1448                         break;
1449                 }
1450
1451                 rxd = *rxdp;
1452                 nb_hold++;
1453                 rxe = rxq->sw_ring[rx_id];
1454                 rxq->sw_ring[rx_id] = nmb;
1455                 rx_id++;
1456                 if (unlikely(rx_id == rxq->nb_rx_desc))
1457                         rx_id = 0;
1458
1459                 /* Prefetch next mbuf */
1460                 rte_prefetch0(rxq->sw_ring[rx_id]);
1461
1462                 /* When next RX descriptor is on a cache line boundary,
1463                  * prefetch the next 4 RX descriptors and next 8 pointers
1464                  * to mbufs.
1465                  */
1466                 if ((rx_id & 0x3) == 0) {
1467                         rte_prefetch0(&rx_ring[rx_id]);
1468                         rte_prefetch0(rxq->sw_ring[rx_id]);
1469                 }
1470                 rxm = rxe;
1471                 dma_addr =
1472                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1473                 rxdp->read.hdr_addr = 0;
1474                 rxdp->read.pkt_addr = dma_addr;
1475
1476                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
1477                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1478
1479                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1480                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1481                 rxm->nb_segs = 1;
1482                 rxm->next = NULL;
1483                 rxm->pkt_len = rx_packet_len;
1484                 rxm->data_len = rx_packet_len;
1485                 rxm->port = rxq->port_id;
1486                 rxm->ol_flags = 0;
1487                 rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1488                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1489                 iavf_flex_rxd_to_vlan_tci(rxm, &rxd);
1490                 iavf_flex_rxd_to_ipsec_crypto_status(rxm, &rxd,
1491                                 &rxq->stats.ipsec_crypto);
1492                 rxd_to_pkt_fields_ops[rxq->rxdid](rxq, rxm, &rxd);
1493                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1494                 rxm->ol_flags |= pkt_flags;
1495
1496                 rx_pkts[nb_rx++] = rxm;
1497         }
1498         rxq->rx_tail = rx_id;
1499
1500         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1501
1502         return nb_rx;
1503 }
1504
1505 /* implement recv_scattered_pkts for flexible Rx descriptor */
1506 uint16_t
1507 iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1508                                   uint16_t nb_pkts)
1509 {
1510         struct iavf_rx_queue *rxq = rx_queue;
1511         union iavf_rx_flex_desc rxd;
1512         struct rte_mbuf *rxe;
1513         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1514         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1515         struct rte_mbuf *nmb, *rxm;
1516         uint16_t rx_id = rxq->rx_tail;
1517         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1518         struct rte_eth_dev *dev;
1519         uint16_t rx_stat_err0;
1520         uint64_t dma_addr;
1521         uint64_t pkt_flags;
1522
1523         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1524         volatile union iavf_rx_flex_desc *rxdp;
1525         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1526
1527         while (nb_rx < nb_pkts) {
1528                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1529                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1530
1531                 /* Check the DD bit */
1532                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1533                         break;
1534                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1535
1536                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1537                 if (unlikely(!nmb)) {
1538                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1539                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1540                         dev = &rte_eth_devices[rxq->port_id];
1541                         dev->data->rx_mbuf_alloc_failed++;
1542                         break;
1543                 }
1544
1545                 rxd = *rxdp;
1546                 nb_hold++;
1547                 rxe = rxq->sw_ring[rx_id];
1548                 rxq->sw_ring[rx_id] = nmb;
1549                 rx_id++;
1550                 if (rx_id == rxq->nb_rx_desc)
1551                         rx_id = 0;
1552
1553                 /* Prefetch next mbuf */
1554                 rte_prefetch0(rxq->sw_ring[rx_id]);
1555
1556                 /* When next RX descriptor is on a cache line boundary,
1557                  * prefetch the next 4 RX descriptors and next 8 pointers
1558                  * to mbufs.
1559                  */
1560                 if ((rx_id & 0x3) == 0) {
1561                         rte_prefetch0(&rx_ring[rx_id]);
1562                         rte_prefetch0(rxq->sw_ring[rx_id]);
1563                 }
1564
1565                 rxm = rxe;
1566                 dma_addr =
1567                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1568
1569                 /* Set data buffer address and data length of the mbuf */
1570                 rxdp->read.hdr_addr = 0;
1571                 rxdp->read.pkt_addr = dma_addr;
1572                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1573                                 IAVF_RX_FLX_DESC_PKT_LEN_M;
1574                 rxm->data_len = rx_packet_len;
1575                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1576
1577                 /* If this is the first buffer of the received packet, set the
1578                  * pointer to the first mbuf of the packet and initialize its
1579                  * context. Otherwise, update the total length and the number
1580                  * of segments of the current scattered packet, and update the
1581                  * pointer to the last mbuf of the current packet.
1582                  */
1583                 if (!first_seg) {
1584                         first_seg = rxm;
1585                         first_seg->nb_segs = 1;
1586                         first_seg->pkt_len = rx_packet_len;
1587                 } else {
1588                         first_seg->pkt_len =
1589                                 (uint16_t)(first_seg->pkt_len +
1590                                                 rx_packet_len);
1591                         first_seg->nb_segs++;
1592                         last_seg->next = rxm;
1593                 }
1594
1595                 /* If this is not the last buffer of the received packet,
1596                  * update the pointer to the last mbuf of the current scattered
1597                  * packet and continue to parse the RX ring.
1598                  */
1599                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
1600                         last_seg = rxm;
1601                         continue;
1602                 }
1603
1604                 /* This is the last buffer of the received packet. If the CRC
1605                  * is not stripped by the hardware:
1606                  *  - Subtract the CRC length from the total packet length.
1607                  *  - If the last buffer only contains the whole CRC or a part
1608                  *  of it, free the mbuf associated to the last buffer. If part
1609                  *  of the CRC is also contained in the previous mbuf, subtract
1610                  *  the length of that CRC part from the data length of the
1611                  *  previous mbuf.
1612                  */
1613                 rxm->next = NULL;
1614                 if (unlikely(rxq->crc_len > 0)) {
1615                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1616                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1617                                 rte_pktmbuf_free_seg(rxm);
1618                                 first_seg->nb_segs--;
1619                                 last_seg->data_len =
1620                                         (uint16_t)(last_seg->data_len -
1621                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1622                                 last_seg->next = NULL;
1623                         } else {
1624                                 rxm->data_len = (uint16_t)(rx_packet_len -
1625                                                         RTE_ETHER_CRC_LEN);
1626                         }
1627                 }
1628
1629                 first_seg->port = rxq->port_id;
1630                 first_seg->ol_flags = 0;
1631                 first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1632                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1633                 iavf_flex_rxd_to_vlan_tci(first_seg, &rxd);
1634                 iavf_flex_rxd_to_ipsec_crypto_status(first_seg, &rxd,
1635                                 &rxq->stats.ipsec_crypto);
1636                 rxd_to_pkt_fields_ops[rxq->rxdid](rxq, first_seg, &rxd);
1637                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1638
1639                 first_seg->ol_flags |= pkt_flags;
1640
1641                 /* Prefetch data of first segment, if configured to do so. */
1642                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1643                                           first_seg->data_off));
1644                 rx_pkts[nb_rx++] = first_seg;
1645                 first_seg = NULL;
1646         }
1647
1648         /* Record index of the next RX descriptor to probe. */
1649         rxq->rx_tail = rx_id;
1650         rxq->pkt_first_seg = first_seg;
1651         rxq->pkt_last_seg = last_seg;
1652
1653         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1654
1655         return nb_rx;
1656 }
1657
1658 /* implement recv_scattered_pkts  */
1659 uint16_t
1660 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1661                         uint16_t nb_pkts)
1662 {
1663         struct iavf_rx_queue *rxq = rx_queue;
1664         union iavf_rx_desc rxd;
1665         struct rte_mbuf *rxe;
1666         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1667         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1668         struct rte_mbuf *nmb, *rxm;
1669         uint16_t rx_id = rxq->rx_tail;
1670         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1671         struct rte_eth_dev *dev;
1672         uint32_t rx_status;
1673         uint64_t qword1;
1674         uint64_t dma_addr;
1675         uint64_t pkt_flags;
1676
1677         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1678         volatile union iavf_rx_desc *rxdp;
1679         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1680
1681         while (nb_rx < nb_pkts) {
1682                 rxdp = &rx_ring[rx_id];
1683                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1684                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1685                             IAVF_RXD_QW1_STATUS_SHIFT;
1686
1687                 /* Check the DD bit */
1688                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1689                         break;
1690                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1691
1692                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1693                 if (unlikely(!nmb)) {
1694                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1695                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1696                         dev = &rte_eth_devices[rxq->port_id];
1697                         dev->data->rx_mbuf_alloc_failed++;
1698                         break;
1699                 }
1700
1701                 rxd = *rxdp;
1702                 nb_hold++;
1703                 rxe = rxq->sw_ring[rx_id];
1704                 rxq->sw_ring[rx_id] = nmb;
1705                 rx_id++;
1706                 if (rx_id == rxq->nb_rx_desc)
1707                         rx_id = 0;
1708
1709                 /* Prefetch next mbuf */
1710                 rte_prefetch0(rxq->sw_ring[rx_id]);
1711
1712                 /* When next RX descriptor is on a cache line boundary,
1713                  * prefetch the next 4 RX descriptors and next 8 pointers
1714                  * to mbufs.
1715                  */
1716                 if ((rx_id & 0x3) == 0) {
1717                         rte_prefetch0(&rx_ring[rx_id]);
1718                         rte_prefetch0(rxq->sw_ring[rx_id]);
1719                 }
1720
1721                 rxm = rxe;
1722                 dma_addr =
1723                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1724
1725                 /* Set data buffer address and data length of the mbuf */
1726                 rxdp->read.hdr_addr = 0;
1727                 rxdp->read.pkt_addr = dma_addr;
1728                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1729                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1730                 rxm->data_len = rx_packet_len;
1731                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1732
1733                 /* If this is the first buffer of the received packet, set the
1734                  * pointer to the first mbuf of the packet and initialize its
1735                  * context. Otherwise, update the total length and the number
1736                  * of segments of the current scattered packet, and update the
1737                  * pointer to the last mbuf of the current packet.
1738                  */
1739                 if (!first_seg) {
1740                         first_seg = rxm;
1741                         first_seg->nb_segs = 1;
1742                         first_seg->pkt_len = rx_packet_len;
1743                 } else {
1744                         first_seg->pkt_len =
1745                                 (uint16_t)(first_seg->pkt_len +
1746                                                 rx_packet_len);
1747                         first_seg->nb_segs++;
1748                         last_seg->next = rxm;
1749                 }
1750
1751                 /* If this is not the last buffer of the received packet,
1752                  * update the pointer to the last mbuf of the current scattered
1753                  * packet and continue to parse the RX ring.
1754                  */
1755                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1756                         last_seg = rxm;
1757                         continue;
1758                 }
1759
1760                 /* This is the last buffer of the received packet. If the CRC
1761                  * is not stripped by the hardware:
1762                  *  - Subtract the CRC length from the total packet length.
1763                  *  - If the last buffer only contains the whole CRC or a part
1764                  *  of it, free the mbuf associated to the last buffer. If part
1765                  *  of the CRC is also contained in the previous mbuf, subtract
1766                  *  the length of that CRC part from the data length of the
1767                  *  previous mbuf.
1768                  */
1769                 rxm->next = NULL;
1770                 if (unlikely(rxq->crc_len > 0)) {
1771                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1772                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1773                                 rte_pktmbuf_free_seg(rxm);
1774                                 first_seg->nb_segs--;
1775                                 last_seg->data_len =
1776                                         (uint16_t)(last_seg->data_len -
1777                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1778                                 last_seg->next = NULL;
1779                         } else
1780                                 rxm->data_len = (uint16_t)(rx_packet_len -
1781                                                         RTE_ETHER_CRC_LEN);
1782                 }
1783
1784                 first_seg->port = rxq->port_id;
1785                 first_seg->ol_flags = 0;
1786                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1787                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1788                 first_seg->packet_type =
1789                         ptype_tbl[(uint8_t)((qword1 &
1790                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1791
1792                 if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
1793                         first_seg->hash.rss =
1794                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1795
1796                 if (pkt_flags & RTE_MBUF_F_RX_FDIR)
1797                         pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
1798
1799                 first_seg->ol_flags |= pkt_flags;
1800
1801                 /* Prefetch data of first segment, if configured to do so. */
1802                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1803                                           first_seg->data_off));
1804                 rx_pkts[nb_rx++] = first_seg;
1805                 first_seg = NULL;
1806         }
1807
1808         /* Record index of the next RX descriptor to probe. */
1809         rxq->rx_tail = rx_id;
1810         rxq->pkt_first_seg = first_seg;
1811         rxq->pkt_last_seg = last_seg;
1812
1813         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1814
1815         return nb_rx;
1816 }
1817
1818 #define IAVF_LOOK_AHEAD 8
1819 static inline int
1820 iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
1821 {
1822         volatile union iavf_rx_flex_desc *rxdp;
1823         struct rte_mbuf **rxep;
1824         struct rte_mbuf *mb;
1825         uint16_t stat_err0;
1826         uint16_t pkt_len;
1827         int32_t s[IAVF_LOOK_AHEAD], var, nb_dd;
1828         int32_t i, j, nb_rx = 0;
1829         uint64_t pkt_flags;
1830         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1831
1832         rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
1833         rxep = &rxq->sw_ring[rxq->rx_tail];
1834
1835         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1836
1837         /* Make sure there is at least 1 packet to receive */
1838         if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1839                 return 0;
1840
1841         /* Scan LOOK_AHEAD descriptors at a time to determine which
1842          * descriptors reference packets that are ready to be received.
1843          */
1844         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1845              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1846                 /* Read desc statuses backwards to avoid race condition */
1847                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
1848                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1849
1850                 /* This barrier is to order loads of different words in the descriptor */
1851                 rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
1852
1853                 /* Compute how many contiguous DD bits were set */
1854                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++) {
1855                         var = s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
1856 #ifdef RTE_ARCH_ARM
1857                         /* For Arm platforms, count only contiguous descriptors
1858                          * whose DD bit is set to 1. On Arm platforms, reads of
1859                          * descriptors can be reordered. Since the CPU may
1860                          * be reading the descriptors as the NIC updates them
1861                          * in memory, it is possbile that the DD bit for a
1862                          * descriptor earlier in the queue is read as not set
1863                          * while the DD bit for a descriptor later in the queue
1864                          * is read as set.
1865                          */
1866                         if (var)
1867                                 nb_dd += 1;
1868                         else
1869                                 break;
1870 #else
1871                         nb_dd += var;
1872 #endif
1873                 }
1874
1875                 nb_rx += nb_dd;
1876
1877                 /* Translate descriptor info to mbuf parameters */
1878                 for (j = 0; j < nb_dd; j++) {
1879                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1880                                           rxq->rx_tail +
1881                                           i * IAVF_LOOK_AHEAD + j);
1882
1883                         mb = rxep[j];
1884                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1885                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1886                         mb->data_len = pkt_len;
1887                         mb->pkt_len = pkt_len;
1888                         mb->ol_flags = 0;
1889
1890                         mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1891                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1892                         iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j]);
1893                         iavf_flex_rxd_to_ipsec_crypto_status(mb, &rxdp[j],
1894                                 &rxq->stats.ipsec_crypto);
1895                         rxd_to_pkt_fields_ops[rxq->rxdid](rxq, mb, &rxdp[j]);
1896                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1897                         pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
1898
1899                         mb->ol_flags |= pkt_flags;
1900                 }
1901
1902                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1903                         rxq->rx_stage[i + j] = rxep[j];
1904
1905                 if (nb_dd != IAVF_LOOK_AHEAD)
1906                         break;
1907         }
1908
1909         /* Clear software ring entries */
1910         for (i = 0; i < nb_rx; i++)
1911                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1912
1913         return nb_rx;
1914 }
1915
1916 static inline int
1917 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1918 {
1919         volatile union iavf_rx_desc *rxdp;
1920         struct rte_mbuf **rxep;
1921         struct rte_mbuf *mb;
1922         uint16_t pkt_len;
1923         uint64_t qword1;
1924         uint32_t rx_status;
1925         int32_t s[IAVF_LOOK_AHEAD], var, nb_dd;
1926         int32_t i, j, nb_rx = 0;
1927         uint64_t pkt_flags;
1928         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1929
1930         rxdp = &rxq->rx_ring[rxq->rx_tail];
1931         rxep = &rxq->sw_ring[rxq->rx_tail];
1932
1933         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1934         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1935                     IAVF_RXD_QW1_STATUS_SHIFT;
1936
1937         /* Make sure there is at least 1 packet to receive */
1938         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1939                 return 0;
1940
1941         /* Scan LOOK_AHEAD descriptors at a time to determine which
1942          * descriptors reference packets that are ready to be received.
1943          */
1944         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1945              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1946                 /* Read desc statuses backwards to avoid race condition */
1947                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1948                         qword1 = rte_le_to_cpu_64(
1949                                 rxdp[j].wb.qword1.status_error_len);
1950                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1951                                IAVF_RXD_QW1_STATUS_SHIFT;
1952                 }
1953
1954                 /* This barrier is to order loads of different words in the descriptor */
1955                 rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
1956
1957                 /* Compute how many contiguous DD bits were set */
1958                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++) {
1959                         var = s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1960 #ifdef RTE_ARCH_ARM
1961                         /* For Arm platforms, count only contiguous descriptors
1962                          * whose DD bit is set to 1. On Arm platforms, reads of
1963                          * descriptors can be reordered. Since the CPU may
1964                          * be reading the descriptors as the NIC updates them
1965                          * in memory, it is possbile that the DD bit for a
1966                          * descriptor earlier in the queue is read as not set
1967                          * while the DD bit for a descriptor later in the queue
1968                          * is read as set.
1969                          */
1970                         if (var)
1971                                 nb_dd += 1;
1972                         else
1973                                 break;
1974 #else
1975                         nb_dd += var;
1976 #endif
1977                 }
1978
1979                 nb_rx += nb_dd;
1980
1981                 /* Translate descriptor info to mbuf parameters */
1982                 for (j = 0; j < nb_dd; j++) {
1983                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1984                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1985
1986                         mb = rxep[j];
1987                         qword1 = rte_le_to_cpu_64
1988                                         (rxdp[j].wb.qword1.status_error_len);
1989                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1990                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1991                         mb->data_len = pkt_len;
1992                         mb->pkt_len = pkt_len;
1993                         mb->ol_flags = 0;
1994                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1995                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1996                         mb->packet_type =
1997                                 ptype_tbl[(uint8_t)((qword1 &
1998                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1999                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
2000
2001                         if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
2002                                 mb->hash.rss = rte_le_to_cpu_32(
2003                                         rxdp[j].wb.qword0.hi_dword.rss);
2004
2005                         if (pkt_flags & RTE_MBUF_F_RX_FDIR)
2006                                 pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
2007
2008                         mb->ol_flags |= pkt_flags;
2009                 }
2010
2011                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
2012                         rxq->rx_stage[i + j] = rxep[j];
2013
2014                 if (nb_dd != IAVF_LOOK_AHEAD)
2015                         break;
2016         }
2017
2018         /* Clear software ring entries */
2019         for (i = 0; i < nb_rx; i++)
2020                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
2021
2022         return nb_rx;
2023 }
2024
2025 static inline uint16_t
2026 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
2027                        struct rte_mbuf **rx_pkts,
2028                        uint16_t nb_pkts)
2029 {
2030         uint16_t i;
2031         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
2032
2033         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
2034
2035         for (i = 0; i < nb_pkts; i++)
2036                 rx_pkts[i] = stage[i];
2037
2038         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
2039         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
2040
2041         return nb_pkts;
2042 }
2043
2044 static inline int
2045 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
2046 {
2047         volatile union iavf_rx_desc *rxdp;
2048         struct rte_mbuf **rxep;
2049         struct rte_mbuf *mb;
2050         uint16_t alloc_idx, i;
2051         uint64_t dma_addr;
2052         int diag;
2053
2054         /* Allocate buffers in bulk */
2055         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
2056                                 (rxq->rx_free_thresh - 1));
2057         rxep = &rxq->sw_ring[alloc_idx];
2058         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
2059                                     rxq->rx_free_thresh);
2060         if (unlikely(diag != 0)) {
2061                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
2062                 return -ENOMEM;
2063         }
2064
2065         rxdp = &rxq->rx_ring[alloc_idx];
2066         for (i = 0; i < rxq->rx_free_thresh; i++) {
2067                 if (likely(i < (rxq->rx_free_thresh - 1)))
2068                         /* Prefetch next mbuf */
2069                         rte_prefetch0(rxep[i + 1]);
2070
2071                 mb = rxep[i];
2072                 rte_mbuf_refcnt_set(mb, 1);
2073                 mb->next = NULL;
2074                 mb->data_off = RTE_PKTMBUF_HEADROOM;
2075                 mb->nb_segs = 1;
2076                 mb->port = rxq->port_id;
2077                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
2078                 rxdp[i].read.hdr_addr = 0;
2079                 rxdp[i].read.pkt_addr = dma_addr;
2080         }
2081
2082         /* Update rx tail register */
2083         rte_wmb();
2084         IAVF_PCI_REG_WC_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
2085
2086         rxq->rx_free_trigger =
2087                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
2088         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
2089                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2090
2091         return 0;
2092 }
2093
2094 static inline uint16_t
2095 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
2096 {
2097         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
2098         uint16_t nb_rx = 0;
2099
2100         if (!nb_pkts)
2101                 return 0;
2102
2103         if (rxq->rx_nb_avail)
2104                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
2105
2106         if (rxq->rxdid >= IAVF_RXDID_FLEX_NIC && rxq->rxdid <= IAVF_RXDID_LAST)
2107                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
2108         else
2109                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
2110         rxq->rx_next_avail = 0;
2111         rxq->rx_nb_avail = nb_rx;
2112         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
2113
2114         if (rxq->rx_tail > rxq->rx_free_trigger) {
2115                 if (iavf_rx_alloc_bufs(rxq) != 0) {
2116                         uint16_t i, j;
2117
2118                         /* TODO: count rx_mbuf_alloc_failed here */
2119
2120                         rxq->rx_nb_avail = 0;
2121                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
2122                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
2123                                 rxq->sw_ring[j] = rxq->rx_stage[i];
2124
2125                         return 0;
2126                 }
2127         }
2128
2129         if (rxq->rx_tail >= rxq->nb_rx_desc)
2130                 rxq->rx_tail = 0;
2131
2132         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
2133                    rxq->port_id, rxq->queue_id,
2134                    rxq->rx_tail, nb_rx);
2135
2136         if (rxq->rx_nb_avail)
2137                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
2138
2139         return 0;
2140 }
2141
2142 static uint16_t
2143 iavf_recv_pkts_bulk_alloc(void *rx_queue,
2144                          struct rte_mbuf **rx_pkts,
2145                          uint16_t nb_pkts)
2146 {
2147         uint16_t nb_rx = 0, n, count;
2148
2149         if (unlikely(nb_pkts == 0))
2150                 return 0;
2151
2152         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
2153                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
2154
2155         while (nb_pkts) {
2156                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
2157                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
2158                 nb_rx = (uint16_t)(nb_rx + count);
2159                 nb_pkts = (uint16_t)(nb_pkts - count);
2160                 if (count < n)
2161                         break;
2162         }
2163
2164         return nb_rx;
2165 }
2166
2167 static inline int
2168 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
2169 {
2170         struct iavf_tx_entry *sw_ring = txq->sw_ring;
2171         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2172         uint16_t nb_tx_desc = txq->nb_tx_desc;
2173         uint16_t desc_to_clean_to;
2174         uint16_t nb_tx_to_clean;
2175
2176         volatile struct iavf_tx_desc *txd = txq->tx_ring;
2177
2178         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
2179         if (desc_to_clean_to >= nb_tx_desc)
2180                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2181
2182         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2183         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
2184                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
2185                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
2186                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2187                            "(port=%d queue=%d)", desc_to_clean_to,
2188                            txq->port_id, txq->queue_id);
2189                 return -1;
2190         }
2191
2192         if (last_desc_cleaned > desc_to_clean_to)
2193                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2194                                                         desc_to_clean_to);
2195         else
2196                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2197                                         last_desc_cleaned);
2198
2199         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2200
2201         txq->last_desc_cleaned = desc_to_clean_to;
2202         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
2203
2204         return 0;
2205 }
2206
2207 /* Check if the context descriptor is needed for TX offloading */
2208 static inline uint16_t
2209 iavf_calc_context_desc(uint64_t flags, uint8_t vlan_flag)
2210 {
2211         if (flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG |
2212                         RTE_MBUF_F_TX_TUNNEL_MASK))
2213                 return 1;
2214         if (flags & RTE_MBUF_F_TX_VLAN &&
2215             vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
2216                 return 1;
2217         return 0;
2218 }
2219
2220 static inline void
2221 iavf_fill_ctx_desc_cmd_field(volatile uint64_t *field, struct rte_mbuf *m,
2222                 uint8_t vlan_flag)
2223 {
2224         uint64_t cmd = 0;
2225
2226         /* TSO enabled */
2227         if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG))
2228                 cmd = IAVF_TX_CTX_DESC_TSO << IAVF_TXD_CTX_QW1_CMD_SHIFT;
2229
2230         if (m->ol_flags & RTE_MBUF_F_TX_VLAN &&
2231                         vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2) {
2232                 cmd |= IAVF_TX_CTX_DESC_IL2TAG2
2233                         << IAVF_TXD_CTX_QW1_CMD_SHIFT;
2234         }
2235
2236         *field |= cmd;
2237 }
2238
2239 static inline void
2240 iavf_fill_ctx_desc_ipsec_field(volatile uint64_t *field,
2241         struct iavf_ipsec_crypto_pkt_metadata *ipsec_md)
2242 {
2243         uint64_t ipsec_field =
2244                 (uint64_t)ipsec_md->ctx_desc_ipsec_params <<
2245                         IAVF_TXD_CTX_QW1_IPSEC_PARAMS_CIPHERBLK_SHIFT;
2246
2247         *field |= ipsec_field;
2248 }
2249
2250
2251 static inline void
2252 iavf_fill_ctx_desc_tunnelling_field(volatile uint64_t *qw0,
2253                 const struct rte_mbuf *m)
2254 {
2255         uint64_t eip_typ = IAVF_TX_CTX_DESC_EIPT_NONE;
2256         uint64_t eip_len = 0;
2257         uint64_t eip_noinc = 0;
2258         /* Default - IP_ID is increment in each segment of LSO */
2259
2260         switch (m->ol_flags & (RTE_MBUF_F_TX_OUTER_IPV4 |
2261                         RTE_MBUF_F_TX_OUTER_IPV6 |
2262                         RTE_MBUF_F_TX_OUTER_IP_CKSUM)) {
2263         case RTE_MBUF_F_TX_OUTER_IPV4:
2264                 eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV4_NO_CHECKSUM_OFFLOAD;
2265                 eip_len = m->outer_l3_len >> 2;
2266         break;
2267         case RTE_MBUF_F_TX_OUTER_IPV4 | RTE_MBUF_F_TX_OUTER_IP_CKSUM:
2268                 eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV4_CHECKSUM_OFFLOAD;
2269                 eip_len = m->outer_l3_len >> 2;
2270         break;
2271         case RTE_MBUF_F_TX_OUTER_IPV6:
2272                 eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV6;
2273                 eip_len = m->outer_l3_len >> 2;
2274         break;
2275         }
2276
2277         *qw0 = eip_typ << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIPT_SHIFT |
2278                 eip_len << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIPLEN_SHIFT |
2279                 eip_noinc << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIP_NOINC_SHIFT;
2280 }
2281
2282 static inline uint16_t
2283 iavf_fill_ctx_desc_segmentation_field(volatile uint64_t *field,
2284         struct rte_mbuf *m, struct iavf_ipsec_crypto_pkt_metadata *ipsec_md)
2285 {
2286         uint64_t segmentation_field = 0;
2287         uint64_t total_length = 0;
2288
2289         if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) {
2290                 total_length = ipsec_md->l4_payload_len;
2291         } else {
2292                 total_length = m->pkt_len - (m->l2_len + m->l3_len + m->l4_len);
2293
2294                 if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2295                         total_length -= m->outer_l3_len;
2296         }
2297
2298 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
2299         if (!m->l4_len || !m->tso_segsz)
2300                 PMD_TX_LOG(DEBUG, "L4 length %d, LSO Segment size %d",
2301                          m->l4_len, m->tso_segsz);
2302         if (m->tso_segsz < 88)
2303                 PMD_TX_LOG(DEBUG, "LSO Segment size %d is less than minimum %d",
2304                         m->tso_segsz, 88);
2305 #endif
2306         segmentation_field =
2307                 (((uint64_t)total_length << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) &
2308                                 IAVF_TXD_CTX_QW1_TSO_LEN_MASK) |
2309                 (((uint64_t)m->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT) &
2310                                 IAVF_TXD_CTX_QW1_MSS_MASK);
2311
2312         *field |= segmentation_field;
2313
2314         return total_length;
2315 }
2316
2317
2318 struct iavf_tx_context_desc_qws {
2319         __le64 qw0;
2320         __le64 qw1;
2321 };
2322
2323 static inline void
2324 iavf_fill_context_desc(volatile struct iavf_tx_context_desc *desc,
2325         struct rte_mbuf *m, struct iavf_ipsec_crypto_pkt_metadata *ipsec_md,
2326         uint16_t *tlen, uint8_t vlan_flag)
2327 {
2328         volatile struct iavf_tx_context_desc_qws *desc_qws =
2329                         (volatile struct iavf_tx_context_desc_qws *)desc;
2330         /* fill descriptor type field */
2331         desc_qws->qw1 = IAVF_TX_DESC_DTYPE_CONTEXT;
2332
2333         /* fill command field */
2334         iavf_fill_ctx_desc_cmd_field(&desc_qws->qw1, m, vlan_flag);
2335
2336         /* fill segmentation field */
2337         if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) {
2338                 /* fill IPsec field */
2339                 if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
2340                         iavf_fill_ctx_desc_ipsec_field(&desc_qws->qw1,
2341                                 ipsec_md);
2342
2343                 *tlen = iavf_fill_ctx_desc_segmentation_field(&desc_qws->qw1,
2344                                 m, ipsec_md);
2345         }
2346
2347         /* fill tunnelling field */
2348         if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2349                 iavf_fill_ctx_desc_tunnelling_field(&desc_qws->qw0, m);
2350         else
2351                 desc_qws->qw0 = 0;
2352
2353         desc_qws->qw0 = rte_cpu_to_le_64(desc_qws->qw0);
2354         desc_qws->qw1 = rte_cpu_to_le_64(desc_qws->qw1);
2355
2356         if (vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
2357                 desc->l2tag2 = m->vlan_tci;
2358 }
2359
2360
2361 static inline void
2362 iavf_fill_ipsec_desc(volatile struct iavf_tx_ipsec_desc *desc,
2363         const struct iavf_ipsec_crypto_pkt_metadata *md, uint16_t *ipsec_len)
2364 {
2365         desc->qw0 = rte_cpu_to_le_64(((uint64_t)md->l4_payload_len <<
2366                 IAVF_IPSEC_TX_DESC_QW0_L4PAYLEN_SHIFT) |
2367                 ((uint64_t)md->esn << IAVF_IPSEC_TX_DESC_QW0_IPSECESN_SHIFT) |
2368                 ((uint64_t)md->esp_trailer_len <<
2369                                 IAVF_IPSEC_TX_DESC_QW0_TRAILERLEN_SHIFT));
2370
2371         desc->qw1 = rte_cpu_to_le_64(((uint64_t)md->sa_idx <<
2372                 IAVF_IPSEC_TX_DESC_QW1_IPSECSA_SHIFT) |
2373                 ((uint64_t)md->next_proto <<
2374                                 IAVF_IPSEC_TX_DESC_QW1_IPSECNH_SHIFT) |
2375                 ((uint64_t)(md->len_iv & 0x3) <<
2376                                 IAVF_IPSEC_TX_DESC_QW1_IVLEN_SHIFT) |
2377                 ((uint64_t)(md->ol_flags & IAVF_IPSEC_CRYPTO_OL_FLAGS_NATT ?
2378                                 1ULL : 0ULL) <<
2379                                 IAVF_IPSEC_TX_DESC_QW1_UDP_SHIFT) |
2380                 (uint64_t)IAVF_TX_DESC_DTYPE_IPSEC);
2381
2382         /**
2383          * TODO: Pre-calculate this in the Session initialization
2384          *
2385          * Calculate IPsec length required in data descriptor func when TSO
2386          * offload is enabled
2387          */
2388         *ipsec_len = sizeof(struct rte_esp_hdr) + (md->len_iv >> 2) +
2389                         (md->ol_flags & IAVF_IPSEC_CRYPTO_OL_FLAGS_NATT ?
2390                         sizeof(struct rte_udp_hdr) : 0);
2391 }
2392
2393 static inline void
2394 iavf_build_data_desc_cmd_offset_fields(volatile uint64_t *qw1,
2395                 struct rte_mbuf *m, uint8_t vlan_flag)
2396 {
2397         uint64_t command = 0;
2398         uint64_t offset = 0;
2399         uint64_t l2tag1 = 0;
2400
2401         *qw1 = IAVF_TX_DESC_DTYPE_DATA;
2402
2403         command = (uint64_t)IAVF_TX_DESC_CMD_ICRC;
2404
2405         /* Descriptor based VLAN insertion */
2406         if ((vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1) &&
2407                         m->ol_flags & RTE_MBUF_F_TX_VLAN) {
2408                 command |= (uint64_t)IAVF_TX_DESC_CMD_IL2TAG1;
2409                 l2tag1 |= m->vlan_tci;
2410         }
2411
2412         /* Set MACLEN */
2413         offset |= (m->l2_len >> 1) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
2414
2415         /* Enable L3 checksum offloading inner */
2416         if (m->ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4)) {
2417                 command |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
2418                 offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2419         } else if (m->ol_flags & RTE_MBUF_F_TX_IPV4) {
2420                 command |= IAVF_TX_DESC_CMD_IIPT_IPV4;
2421                 offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2422         } else if (m->ol_flags & RTE_MBUF_F_TX_IPV6) {
2423                 command |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2424                 offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2425         }
2426
2427         if (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2428                 command |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2429                 offset |= (m->l4_len >> 2) <<
2430                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2431         }
2432
2433         /* Enable L4 checksum offloads */
2434         switch (m->ol_flags & RTE_MBUF_F_TX_L4_MASK) {
2435         case RTE_MBUF_F_TX_TCP_CKSUM:
2436                 command |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2437                 offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2438                                 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2439                 break;
2440         case RTE_MBUF_F_TX_SCTP_CKSUM:
2441                 command |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2442                 offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2443                                 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2444                 break;
2445         case RTE_MBUF_F_TX_UDP_CKSUM:
2446                 command |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2447                 offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2448                                 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2449                 break;
2450         }
2451
2452         *qw1 = rte_cpu_to_le_64((((uint64_t)command <<
2453                 IAVF_TXD_DATA_QW1_CMD_SHIFT) & IAVF_TXD_DATA_QW1_CMD_MASK) |
2454                 (((uint64_t)offset << IAVF_TXD_DATA_QW1_OFFSET_SHIFT) &
2455                 IAVF_TXD_DATA_QW1_OFFSET_MASK) |
2456                 ((uint64_t)l2tag1 << IAVF_TXD_DATA_QW1_L2TAG1_SHIFT));
2457 }
2458
2459 static inline void
2460 iavf_fill_data_desc(volatile struct iavf_tx_desc *desc,
2461         struct rte_mbuf *m, uint64_t desc_template,
2462         uint16_t tlen, uint16_t ipseclen)
2463 {
2464         uint32_t hdrlen = m->l2_len;
2465         uint32_t bufsz = 0;
2466
2467         /* fill data descriptor qw1 from template */
2468         desc->cmd_type_offset_bsz = desc_template;
2469
2470         /* set data buffer address */
2471         desc->buffer_addr = rte_mbuf_data_iova(m);
2472
2473         /* calculate data buffer size less set header lengths */
2474         if ((m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) &&
2475                         (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG |
2476                                         RTE_MBUF_F_TX_UDP_SEG))) {
2477                 hdrlen += m->outer_l3_len;
2478                 if (m->ol_flags & RTE_MBUF_F_TX_L4_MASK)
2479                         hdrlen += m->l3_len + m->l4_len;
2480                 else
2481                         hdrlen += m->l3_len;
2482                 if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
2483                         hdrlen += ipseclen;
2484                 bufsz = hdrlen + tlen;
2485         } else if ((m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) &&
2486                         (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG |
2487                                         RTE_MBUF_F_TX_UDP_SEG))) {
2488                 hdrlen += m->outer_l3_len + m->l3_len + ipseclen;
2489                 if (m->ol_flags & RTE_MBUF_F_TX_L4_MASK)
2490                         hdrlen += m->l4_len;
2491                 bufsz = hdrlen + tlen;
2492
2493         } else {
2494                 bufsz = m->data_len;
2495         }
2496
2497         /* set data buffer size */
2498         desc->cmd_type_offset_bsz |=
2499                 (((uint64_t)bufsz << IAVF_TXD_DATA_QW1_TX_BUF_SZ_SHIFT) &
2500                 IAVF_TXD_DATA_QW1_TX_BUF_SZ_MASK);
2501
2502         desc->buffer_addr = rte_cpu_to_le_64(desc->buffer_addr);
2503         desc->cmd_type_offset_bsz = rte_cpu_to_le_64(desc->cmd_type_offset_bsz);
2504 }
2505
2506
2507 static struct iavf_ipsec_crypto_pkt_metadata *
2508 iavf_ipsec_crypto_get_pkt_metadata(const struct iavf_tx_queue *txq,
2509                 struct rte_mbuf *m)
2510 {
2511         if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
2512                 return RTE_MBUF_DYNFIELD(m, txq->ipsec_crypto_pkt_md_offset,
2513                                 struct iavf_ipsec_crypto_pkt_metadata *);
2514
2515         return NULL;
2516 }
2517
2518 /* TX function */
2519 uint16_t
2520 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2521 {
2522         struct iavf_tx_queue *txq = tx_queue;
2523         volatile struct iavf_tx_desc *txr = txq->tx_ring;
2524         struct iavf_tx_entry *txe_ring = txq->sw_ring;
2525         struct iavf_tx_entry *txe, *txn;
2526         struct rte_mbuf *mb, *mb_seg;
2527         uint16_t desc_idx, desc_idx_last;
2528         uint16_t idx;
2529
2530
2531         /* Check if the descriptor ring needs to be cleaned. */
2532         if (txq->nb_free < txq->free_thresh)
2533                 iavf_xmit_cleanup(txq);
2534
2535         desc_idx = txq->tx_tail;
2536         txe = &txe_ring[desc_idx];
2537
2538 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_DESC_RING
2539                 iavf_dump_tx_entry_ring(txq);
2540                 iavf_dump_tx_desc_ring(txq);
2541 #endif
2542
2543
2544         for (idx = 0; idx < nb_pkts; idx++) {
2545                 volatile struct iavf_tx_desc *ddesc;
2546                 struct iavf_ipsec_crypto_pkt_metadata *ipsec_md;
2547
2548                 uint16_t nb_desc_ctx, nb_desc_ipsec;
2549                 uint16_t nb_desc_data, nb_desc_required;
2550                 uint16_t tlen = 0, ipseclen = 0;
2551                 uint64_t ddesc_template = 0;
2552                 uint64_t ddesc_cmd = 0;
2553
2554                 mb = tx_pkts[idx];
2555
2556                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
2557
2558                 /**
2559                  * Get metadata for ipsec crypto from mbuf dynamic fields if
2560                  * security offload is specified.
2561                  */
2562                 ipsec_md = iavf_ipsec_crypto_get_pkt_metadata(txq, mb);
2563
2564                 nb_desc_data = mb->nb_segs;
2565                 nb_desc_ctx =
2566                         iavf_calc_context_desc(mb->ol_flags, txq->vlan_flag);
2567                 nb_desc_ipsec = !!(mb->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD);
2568
2569                 /**
2570                  * The number of descriptors that must be allocated for
2571                  * a packet equals to the number of the segments of that
2572                  * packet plus the context and ipsec descriptors if needed.
2573                  */
2574                 nb_desc_required = nb_desc_data + nb_desc_ctx + nb_desc_ipsec;
2575
2576                 desc_idx_last = (uint16_t)(desc_idx + nb_desc_required - 1);
2577
2578                 /* wrap descriptor ring */
2579                 if (desc_idx_last >= txq->nb_tx_desc)
2580                         desc_idx_last =
2581                                 (uint16_t)(desc_idx_last - txq->nb_tx_desc);
2582
2583                 PMD_TX_LOG(DEBUG,
2584                         "port_id=%u queue_id=%u tx_first=%u tx_last=%u",
2585                         txq->port_id, txq->queue_id, desc_idx, desc_idx_last);
2586
2587                 if (nb_desc_required > txq->nb_free) {
2588                         if (iavf_xmit_cleanup(txq)) {
2589                                 if (idx == 0)
2590                                         return 0;
2591                                 goto end_of_tx;
2592                         }
2593                         if (unlikely(nb_desc_required > txq->rs_thresh)) {
2594                                 while (nb_desc_required > txq->nb_free) {
2595                                         if (iavf_xmit_cleanup(txq)) {
2596                                                 if (idx == 0)
2597                                                         return 0;
2598                                                 goto end_of_tx;
2599                                         }
2600                                 }
2601                         }
2602                 }
2603
2604                 iavf_build_data_desc_cmd_offset_fields(&ddesc_template, mb,
2605                         txq->vlan_flag);
2606
2607                         /* Setup TX context descriptor if required */
2608                 if (nb_desc_ctx) {
2609                         volatile struct iavf_tx_context_desc *ctx_desc =
2610                                 (volatile struct iavf_tx_context_desc *)
2611                                         &txr[desc_idx];
2612
2613                         /* clear QW0 or the previous writeback value
2614                          * may impact next write
2615                          */
2616                         *(volatile uint64_t *)ctx_desc = 0;
2617
2618                         txn = &txe_ring[txe->next_id];
2619                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2620
2621                         if (txe->mbuf) {
2622                                 rte_pktmbuf_free_seg(txe->mbuf);
2623                                 txe->mbuf = NULL;
2624                         }
2625
2626                         iavf_fill_context_desc(ctx_desc, mb, ipsec_md, &tlen,
2627                                 txq->vlan_flag);
2628                         IAVF_DUMP_TX_DESC(txq, ctx_desc, desc_idx);
2629
2630                         txe->last_id = desc_idx_last;
2631                         desc_idx = txe->next_id;
2632                         txe = txn;
2633                         }
2634
2635                 if (nb_desc_ipsec) {
2636                         volatile struct iavf_tx_ipsec_desc *ipsec_desc =
2637                                 (volatile struct iavf_tx_ipsec_desc *)
2638                                         &txr[desc_idx];
2639
2640                         txn = &txe_ring[txe->next_id];
2641                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2642
2643                         if (txe->mbuf) {
2644                                 rte_pktmbuf_free_seg(txe->mbuf);
2645                                 txe->mbuf = NULL;
2646                 }
2647
2648                         iavf_fill_ipsec_desc(ipsec_desc, ipsec_md, &ipseclen);
2649
2650                         IAVF_DUMP_TX_DESC(txq, ipsec_desc, desc_idx);
2651
2652                         txe->last_id = desc_idx_last;
2653                         desc_idx = txe->next_id;
2654                         txe = txn;
2655                 }
2656
2657                 mb_seg = mb;
2658
2659                 do {
2660                         ddesc = (volatile struct iavf_tx_desc *)
2661                                         &txr[desc_idx];
2662
2663                         txn = &txe_ring[txe->next_id];
2664                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2665
2666                         if (txe->mbuf)
2667                                 rte_pktmbuf_free_seg(txe->mbuf);
2668
2669                         txe->mbuf = mb_seg;
2670                         iavf_fill_data_desc(ddesc, mb_seg,
2671                                         ddesc_template, tlen, ipseclen);
2672
2673                         IAVF_DUMP_TX_DESC(txq, ddesc, desc_idx);
2674
2675                         txe->last_id = desc_idx_last;
2676                         desc_idx = txe->next_id;
2677                         txe = txn;
2678                         mb_seg = mb_seg->next;
2679                 } while (mb_seg);
2680
2681                 /* The last packet data descriptor needs End Of Packet (EOP) */
2682                 ddesc_cmd = IAVF_TX_DESC_CMD_EOP;
2683
2684                 txq->nb_used = (uint16_t)(txq->nb_used + nb_desc_required);
2685                 txq->nb_free = (uint16_t)(txq->nb_free - nb_desc_required);
2686
2687                 if (txq->nb_used >= txq->rs_thresh) {
2688                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
2689                                    "%4u (port=%d queue=%d)",
2690                                    desc_idx_last, txq->port_id, txq->queue_id);
2691
2692                         ddesc_cmd |= IAVF_TX_DESC_CMD_RS;
2693
2694                         /* Update txq RS bit counters */
2695                         txq->nb_used = 0;
2696                 }
2697
2698                 ddesc->cmd_type_offset_bsz |= rte_cpu_to_le_64(ddesc_cmd <<
2699                                 IAVF_TXD_DATA_QW1_CMD_SHIFT);
2700
2701                 IAVF_DUMP_TX_DESC(txq, ddesc, desc_idx - 1);
2702         }
2703
2704 end_of_tx:
2705         rte_wmb();
2706
2707         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2708                    txq->port_id, txq->queue_id, desc_idx, idx);
2709
2710         IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, desc_idx);
2711         txq->tx_tail = desc_idx;
2712
2713         return idx;
2714 }
2715
2716 /* Check if the packet with vlan user priority is transmitted in the
2717  * correct queue.
2718  */
2719 static int
2720 iavf_check_vlan_up2tc(struct iavf_tx_queue *txq, struct rte_mbuf *m)
2721 {
2722         struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
2723         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2724         uint16_t up;
2725
2726         up = m->vlan_tci >> IAVF_VLAN_TAG_PCP_OFFSET;
2727
2728         if (!(vf->qos_cap->cap[txq->tc].tc_prio & BIT(up))) {
2729                 PMD_TX_LOG(ERR, "packet with vlan pcp %u cannot transmit in queue %u\n",
2730                         up, txq->queue_id);
2731                 return -1;
2732         } else {
2733                 return 0;
2734         }
2735 }
2736
2737 /* TX prep functions */
2738 uint16_t
2739 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2740               uint16_t nb_pkts)
2741 {
2742         int i, ret;
2743         uint64_t ol_flags;
2744         struct rte_mbuf *m;
2745         struct iavf_tx_queue *txq = tx_queue;
2746         struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
2747         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2748
2749         for (i = 0; i < nb_pkts; i++) {
2750                 m = tx_pkts[i];
2751                 ol_flags = m->ol_flags;
2752
2753                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
2754                 if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG)) {
2755                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
2756                                 rte_errno = EINVAL;
2757                                 return i;
2758                         }
2759                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
2760                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
2761                         /* MSS outside the range are considered malicious */
2762                         rte_errno = EINVAL;
2763                         return i;
2764                 }
2765
2766                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
2767                         rte_errno = ENOTSUP;
2768                         return i;
2769                 }
2770
2771 #ifdef RTE_ETHDEV_DEBUG_TX
2772                 ret = rte_validate_tx_offload(m);
2773                 if (ret != 0) {
2774                         rte_errno = -ret;
2775                         return i;
2776                 }
2777 #endif
2778                 ret = rte_net_intel_cksum_prepare(m);
2779                 if (ret != 0) {
2780                         rte_errno = -ret;
2781                         return i;
2782                 }
2783
2784                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
2785                     ol_flags & (RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN)) {
2786                         ret = iavf_check_vlan_up2tc(txq, m);
2787                         if (ret != 0) {
2788                                 rte_errno = -ret;
2789                                 return i;
2790                         }
2791                 }
2792         }
2793
2794         return i;
2795 }
2796
2797 /* choose rx function*/
2798 void
2799 iavf_set_rx_function(struct rte_eth_dev *dev)
2800 {
2801         struct iavf_adapter *adapter =
2802                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2803         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2804
2805 #ifdef RTE_ARCH_X86
2806         struct iavf_rx_queue *rxq;
2807         int i;
2808         int check_ret;
2809         bool use_avx2 = false;
2810         bool use_avx512 = false;
2811         bool use_flex = false;
2812
2813         check_ret = iavf_rx_vec_dev_check(dev);
2814         if (check_ret >= 0 &&
2815             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2816                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2817                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2818                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2819                         use_avx2 = true;
2820
2821 #ifdef CC_AVX512_SUPPORT
2822                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2823                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2824                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2825                         use_avx512 = true;
2826 #endif
2827
2828                 if (vf->vf_res->vf_cap_flags &
2829                         VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2830                         use_flex = true;
2831
2832                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2833                         rxq = dev->data->rx_queues[i];
2834                         (void)iavf_rxq_vec_setup(rxq);
2835                 }
2836
2837                 if (dev->data->scattered_rx) {
2838                         if (!use_avx512) {
2839                                 PMD_DRV_LOG(DEBUG,
2840                                             "Using %sVector Scattered Rx (port %d).",
2841                                             use_avx2 ? "avx2 " : "",
2842                                             dev->data->port_id);
2843                         } else {
2844                                 if (check_ret == IAVF_VECTOR_PATH)
2845                                         PMD_DRV_LOG(DEBUG,
2846                                                     "Using AVX512 Vector Scattered Rx (port %d).",
2847                                                     dev->data->port_id);
2848                                 else
2849                                         PMD_DRV_LOG(DEBUG,
2850                                                     "Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
2851                                                     dev->data->port_id);
2852                         }
2853                         if (use_flex) {
2854                                 dev->rx_pkt_burst = use_avx2 ?
2855                                         iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
2856                                         iavf_recv_scattered_pkts_vec_flex_rxd;
2857 #ifdef CC_AVX512_SUPPORT
2858                                 if (use_avx512) {
2859                                         if (check_ret == IAVF_VECTOR_PATH)
2860                                                 dev->rx_pkt_burst =
2861                                                         iavf_recv_scattered_pkts_vec_avx512_flex_rxd;
2862                                         else
2863                                                 dev->rx_pkt_burst =
2864                                                         iavf_recv_scattered_pkts_vec_avx512_flex_rxd_offload;
2865                                 }
2866 #endif
2867                         } else {
2868                                 dev->rx_pkt_burst = use_avx2 ?
2869                                         iavf_recv_scattered_pkts_vec_avx2 :
2870                                         iavf_recv_scattered_pkts_vec;
2871 #ifdef CC_AVX512_SUPPORT
2872                                 if (use_avx512) {
2873                                         if (check_ret == IAVF_VECTOR_PATH)
2874                                                 dev->rx_pkt_burst =
2875                                                         iavf_recv_scattered_pkts_vec_avx512;
2876                                         else
2877                                                 dev->rx_pkt_burst =
2878                                                         iavf_recv_scattered_pkts_vec_avx512_offload;
2879                                 }
2880 #endif
2881                         }
2882                 } else {
2883                         if (!use_avx512) {
2884                                 PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2885                                             use_avx2 ? "avx2 " : "",
2886                                             dev->data->port_id);
2887                         } else {
2888                                 if (check_ret == IAVF_VECTOR_PATH)
2889                                         PMD_DRV_LOG(DEBUG,
2890                                                     "Using AVX512 Vector Rx (port %d).",
2891                                                     dev->data->port_id);
2892                                 else
2893                                         PMD_DRV_LOG(DEBUG,
2894                                                     "Using AVX512 OFFLOAD Vector Rx (port %d).",
2895                                                     dev->data->port_id);
2896                         }
2897                         if (use_flex) {
2898                                 dev->rx_pkt_burst = use_avx2 ?
2899                                         iavf_recv_pkts_vec_avx2_flex_rxd :
2900                                         iavf_recv_pkts_vec_flex_rxd;
2901 #ifdef CC_AVX512_SUPPORT
2902                                 if (use_avx512) {
2903                                         if (check_ret == IAVF_VECTOR_PATH)
2904                                                 dev->rx_pkt_burst =
2905                                                         iavf_recv_pkts_vec_avx512_flex_rxd;
2906                                         else
2907                                                 dev->rx_pkt_burst =
2908                                                         iavf_recv_pkts_vec_avx512_flex_rxd_offload;
2909                                 }
2910 #endif
2911                         } else {
2912                                 dev->rx_pkt_burst = use_avx2 ?
2913                                         iavf_recv_pkts_vec_avx2 :
2914                                         iavf_recv_pkts_vec;
2915 #ifdef CC_AVX512_SUPPORT
2916                                 if (use_avx512) {
2917                                         if (check_ret == IAVF_VECTOR_PATH)
2918                                                 dev->rx_pkt_burst =
2919                                                         iavf_recv_pkts_vec_avx512;
2920                                         else
2921                                                 dev->rx_pkt_burst =
2922                                                         iavf_recv_pkts_vec_avx512_offload;
2923                                 }
2924 #endif
2925                         }
2926                 }
2927
2928                 return;
2929         }
2930
2931 #endif
2932         if (dev->data->scattered_rx) {
2933                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
2934                             dev->data->port_id);
2935                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2936                         dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
2937                 else
2938                         dev->rx_pkt_burst = iavf_recv_scattered_pkts;
2939         } else if (adapter->rx_bulk_alloc_allowed) {
2940                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
2941                             dev->data->port_id);
2942                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
2943         } else {
2944                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
2945                             dev->data->port_id);
2946                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2947                         dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
2948                 else
2949                         dev->rx_pkt_burst = iavf_recv_pkts;
2950         }
2951 }
2952
2953 /* choose tx function*/
2954 void
2955 iavf_set_tx_function(struct rte_eth_dev *dev)
2956 {
2957 #ifdef RTE_ARCH_X86
2958         struct iavf_tx_queue *txq;
2959         int i;
2960         int check_ret;
2961         bool use_sse = false;
2962         bool use_avx2 = false;
2963         bool use_avx512 = false;
2964
2965         check_ret = iavf_tx_vec_dev_check(dev);
2966
2967         if (check_ret >= 0 &&
2968             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2969                 /* SSE and AVX2 not support offload path yet. */
2970                 if (check_ret == IAVF_VECTOR_PATH) {
2971                         use_sse = true;
2972                         if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2973                              rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2974                             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2975                                 use_avx2 = true;
2976                 }
2977 #ifdef CC_AVX512_SUPPORT
2978                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2979                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2980                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2981                         use_avx512 = true;
2982 #endif
2983
2984                 if (!use_sse && !use_avx2 && !use_avx512)
2985                         goto normal;
2986
2987                 if (!use_avx512) {
2988                         PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2989                                     use_avx2 ? "avx2 " : "",
2990                                     dev->data->port_id);
2991                         dev->tx_pkt_burst = use_avx2 ?
2992                                             iavf_xmit_pkts_vec_avx2 :
2993                                             iavf_xmit_pkts_vec;
2994                 }
2995                 dev->tx_pkt_prepare = NULL;
2996 #ifdef CC_AVX512_SUPPORT
2997                 if (use_avx512) {
2998                         if (check_ret == IAVF_VECTOR_PATH) {
2999                                 dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512;
3000                                 PMD_DRV_LOG(DEBUG, "Using AVX512 Vector Tx (port %d).",
3001                                             dev->data->port_id);
3002                         } else {
3003                                 dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512_offload;
3004                                 dev->tx_pkt_prepare = iavf_prep_pkts;
3005                                 PMD_DRV_LOG(DEBUG, "Using AVX512 OFFLOAD Vector Tx (port %d).",
3006                                             dev->data->port_id);
3007                         }
3008                 }
3009 #endif
3010
3011                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
3012                         txq = dev->data->tx_queues[i];
3013                         if (!txq)
3014                                 continue;
3015 #ifdef CC_AVX512_SUPPORT
3016                         if (use_avx512)
3017                                 iavf_txq_vec_setup_avx512(txq);
3018                         else
3019                                 iavf_txq_vec_setup(txq);
3020 #else
3021                         iavf_txq_vec_setup(txq);
3022 #endif
3023                 }
3024
3025                 return;
3026         }
3027
3028 normal:
3029 #endif
3030         PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
3031                     dev->data->port_id);
3032         dev->tx_pkt_burst = iavf_xmit_pkts;
3033         dev->tx_pkt_prepare = iavf_prep_pkts;
3034 }
3035
3036 static int
3037 iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
3038                         uint32_t free_cnt)
3039 {
3040         struct iavf_tx_entry *swr_ring = txq->sw_ring;
3041         uint16_t i, tx_last, tx_id;
3042         uint16_t nb_tx_free_last;
3043         uint16_t nb_tx_to_clean;
3044         uint32_t pkt_cnt;
3045
3046         /* Start free mbuf from the next of tx_tail */
3047         tx_last = txq->tx_tail;
3048         tx_id  = swr_ring[tx_last].next_id;
3049
3050         if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
3051                 return 0;
3052
3053         nb_tx_to_clean = txq->nb_free;
3054         nb_tx_free_last = txq->nb_free;
3055         if (!free_cnt)
3056                 free_cnt = txq->nb_tx_desc;
3057
3058         /* Loop through swr_ring to count the amount of
3059          * freeable mubfs and packets.
3060          */
3061         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
3062                 for (i = 0; i < nb_tx_to_clean &&
3063                         pkt_cnt < free_cnt &&
3064                         tx_id != tx_last; i++) {
3065                         if (swr_ring[tx_id].mbuf != NULL) {
3066                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
3067                                 swr_ring[tx_id].mbuf = NULL;
3068
3069                                 /*
3070                                  * last segment in the packet,
3071                                  * increment packet count
3072                                  */
3073                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
3074                         }
3075
3076                         tx_id = swr_ring[tx_id].next_id;
3077                 }
3078
3079                 if (txq->rs_thresh > txq->nb_tx_desc -
3080                         txq->nb_free || tx_id == tx_last)
3081                         break;
3082
3083                 if (pkt_cnt < free_cnt) {
3084                         if (iavf_xmit_cleanup(txq))
3085                                 break;
3086
3087                         nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
3088                         nb_tx_free_last = txq->nb_free;
3089                 }
3090         }
3091
3092         return (int)pkt_cnt;
3093 }
3094
3095 int
3096 iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
3097 {
3098         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
3099
3100         return iavf_tx_done_cleanup_full(q, free_cnt);
3101 }
3102
3103 void
3104 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3105                      struct rte_eth_rxq_info *qinfo)
3106 {
3107         struct iavf_rx_queue *rxq;
3108
3109         rxq = dev->data->rx_queues[queue_id];
3110
3111         qinfo->mp = rxq->mp;
3112         qinfo->scattered_rx = dev->data->scattered_rx;
3113         qinfo->nb_desc = rxq->nb_rx_desc;
3114
3115         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
3116         qinfo->conf.rx_drop_en = true;
3117         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
3118 }
3119
3120 void
3121 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3122                      struct rte_eth_txq_info *qinfo)
3123 {
3124         struct iavf_tx_queue *txq;
3125
3126         txq = dev->data->tx_queues[queue_id];
3127
3128         qinfo->nb_desc = txq->nb_tx_desc;
3129
3130         qinfo->conf.tx_free_thresh = txq->free_thresh;
3131         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
3132         qinfo->conf.offloads = txq->offloads;
3133         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
3134 }
3135
3136 /* Get the number of used descriptors of a rx queue */
3137 uint32_t
3138 iavf_dev_rxq_count(void *rx_queue)
3139 {
3140 #define IAVF_RXQ_SCAN_INTERVAL 4
3141         volatile union iavf_rx_desc *rxdp;
3142         struct iavf_rx_queue *rxq;
3143         uint16_t desc = 0;
3144
3145         rxq = rx_queue;
3146         rxdp = &rxq->rx_ring[rxq->rx_tail];
3147
3148         while ((desc < rxq->nb_rx_desc) &&
3149                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
3150                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
3151                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
3152                 /* Check the DD bit of a rx descriptor of each 4 in a group,
3153                  * to avoid checking too frequently and downgrading performance
3154                  * too much.
3155                  */
3156                 desc += IAVF_RXQ_SCAN_INTERVAL;
3157                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
3158                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
3159                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
3160                                         desc - rxq->nb_rx_desc]);
3161         }
3162
3163         return desc;
3164 }
3165
3166 int
3167 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
3168 {
3169         struct iavf_rx_queue *rxq = rx_queue;
3170         volatile uint64_t *status;
3171         uint64_t mask;
3172         uint32_t desc;
3173
3174         if (unlikely(offset >= rxq->nb_rx_desc))
3175                 return -EINVAL;
3176
3177         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
3178                 return RTE_ETH_RX_DESC_UNAVAIL;
3179
3180         desc = rxq->rx_tail + offset;
3181         if (desc >= rxq->nb_rx_desc)
3182                 desc -= rxq->nb_rx_desc;
3183
3184         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
3185         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
3186                 << IAVF_RXD_QW1_STATUS_SHIFT);
3187         if (*status & mask)
3188                 return RTE_ETH_RX_DESC_DONE;
3189
3190         return RTE_ETH_RX_DESC_AVAIL;
3191 }
3192
3193 int
3194 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
3195 {
3196         struct iavf_tx_queue *txq = tx_queue;
3197         volatile uint64_t *status;
3198         uint64_t mask, expect;
3199         uint32_t desc;
3200
3201         if (unlikely(offset >= txq->nb_tx_desc))
3202                 return -EINVAL;
3203
3204         desc = txq->tx_tail + offset;
3205         /* go to next desc that has the RS bit */
3206         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
3207                 txq->rs_thresh;
3208         if (desc >= txq->nb_tx_desc) {
3209                 desc -= txq->nb_tx_desc;
3210                 if (desc >= txq->nb_tx_desc)
3211                         desc -= txq->nb_tx_desc;
3212         }
3213
3214         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
3215         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
3216         expect = rte_cpu_to_le_64(
3217                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
3218         if ((*status & mask) == expect)
3219                 return RTE_ETH_TX_DESC_DONE;
3220
3221         return RTE_ETH_TX_DESC_FULL;
3222 }
3223
3224 static inline uint32_t
3225 iavf_get_default_ptype(uint16_t ptype)
3226 {
3227         static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
3228                 __rte_cache_aligned = {
3229                 /* L2 types */
3230                 /* [0] reserved */
3231                 [1] = RTE_PTYPE_L2_ETHER,
3232                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
3233                 /* [3] - [5] reserved */
3234                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
3235                 /* [7] - [10] reserved */
3236                 [11] = RTE_PTYPE_L2_ETHER_ARP,
3237                 /* [12] - [21] reserved */
3238
3239                 /* Non tunneled IPv4 */
3240                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3241                        RTE_PTYPE_L4_FRAG,
3242                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3243                        RTE_PTYPE_L4_NONFRAG,
3244                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3245                        RTE_PTYPE_L4_UDP,
3246                 /* [25] reserved */
3247                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3248                        RTE_PTYPE_L4_TCP,
3249                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3250                        RTE_PTYPE_L4_SCTP,
3251                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3252                        RTE_PTYPE_L4_ICMP,
3253
3254                 /* IPv4 --> IPv4 */
3255                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3256                        RTE_PTYPE_TUNNEL_IP |
3257                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3258                        RTE_PTYPE_INNER_L4_FRAG,
3259                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3260                        RTE_PTYPE_TUNNEL_IP |
3261                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3262                        RTE_PTYPE_INNER_L4_NONFRAG,
3263                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3264                        RTE_PTYPE_TUNNEL_IP |
3265                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3266                        RTE_PTYPE_INNER_L4_UDP,
3267                 /* [32] reserved */
3268                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3269                        RTE_PTYPE_TUNNEL_IP |
3270                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3271                        RTE_PTYPE_INNER_L4_TCP,
3272                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3273                        RTE_PTYPE_TUNNEL_IP |
3274                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3275                        RTE_PTYPE_INNER_L4_SCTP,
3276                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3277                        RTE_PTYPE_TUNNEL_IP |
3278                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3279                        RTE_PTYPE_INNER_L4_ICMP,
3280
3281                 /* IPv4 --> IPv6 */
3282                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3283                        RTE_PTYPE_TUNNEL_IP |
3284                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3285                        RTE_PTYPE_INNER_L4_FRAG,
3286                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3287                        RTE_PTYPE_TUNNEL_IP |
3288                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3289                        RTE_PTYPE_INNER_L4_NONFRAG,
3290                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3291                        RTE_PTYPE_TUNNEL_IP |
3292                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3293                        RTE_PTYPE_INNER_L4_UDP,
3294                 /* [39] reserved */
3295                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3296                        RTE_PTYPE_TUNNEL_IP |
3297                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3298                        RTE_PTYPE_INNER_L4_TCP,
3299                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3300                        RTE_PTYPE_TUNNEL_IP |
3301                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3302                        RTE_PTYPE_INNER_L4_SCTP,
3303                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3304                        RTE_PTYPE_TUNNEL_IP |
3305                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3306                        RTE_PTYPE_INNER_L4_ICMP,
3307
3308                 /* IPv4 --> GRE/Teredo/VXLAN */
3309                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3310                        RTE_PTYPE_TUNNEL_GRENAT,
3311
3312                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
3313                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3314                        RTE_PTYPE_TUNNEL_GRENAT |
3315                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3316                        RTE_PTYPE_INNER_L4_FRAG,
3317                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3318                        RTE_PTYPE_TUNNEL_GRENAT |
3319                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3320                        RTE_PTYPE_INNER_L4_NONFRAG,
3321                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3322                        RTE_PTYPE_TUNNEL_GRENAT |
3323                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3324                        RTE_PTYPE_INNER_L4_UDP,
3325                 /* [47] reserved */
3326                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3327                        RTE_PTYPE_TUNNEL_GRENAT |
3328                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3329                        RTE_PTYPE_INNER_L4_TCP,
3330                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3331                        RTE_PTYPE_TUNNEL_GRENAT |
3332                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3333                        RTE_PTYPE_INNER_L4_SCTP,
3334                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3335                        RTE_PTYPE_TUNNEL_GRENAT |
3336                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3337                        RTE_PTYPE_INNER_L4_ICMP,
3338
3339                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
3340                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3341                        RTE_PTYPE_TUNNEL_GRENAT |
3342                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3343                        RTE_PTYPE_INNER_L4_FRAG,
3344                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3345                        RTE_PTYPE_TUNNEL_GRENAT |
3346                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3347                        RTE_PTYPE_INNER_L4_NONFRAG,
3348                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3349                        RTE_PTYPE_TUNNEL_GRENAT |
3350                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3351                        RTE_PTYPE_INNER_L4_UDP,
3352                 /* [54] reserved */
3353                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3354                        RTE_PTYPE_TUNNEL_GRENAT |
3355                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3356                        RTE_PTYPE_INNER_L4_TCP,
3357                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3358                        RTE_PTYPE_TUNNEL_GRENAT |
3359                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3360                        RTE_PTYPE_INNER_L4_SCTP,
3361                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3362                        RTE_PTYPE_TUNNEL_GRENAT |
3363                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3364                        RTE_PTYPE_INNER_L4_ICMP,
3365
3366                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
3367                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3368                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3369
3370                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3371                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3372                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3373                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3374                        RTE_PTYPE_INNER_L4_FRAG,
3375                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3376                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3377                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3378                        RTE_PTYPE_INNER_L4_NONFRAG,
3379                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3380                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3381                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3382                        RTE_PTYPE_INNER_L4_UDP,
3383                 /* [62] reserved */
3384                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3385                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3386                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3387                        RTE_PTYPE_INNER_L4_TCP,
3388                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3389                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3390                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3391                        RTE_PTYPE_INNER_L4_SCTP,
3392                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3393                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3394                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3395                        RTE_PTYPE_INNER_L4_ICMP,
3396
3397                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3398                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3399                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3400                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3401                        RTE_PTYPE_INNER_L4_FRAG,
3402                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3403                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3404                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3405                        RTE_PTYPE_INNER_L4_NONFRAG,
3406                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3407                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3408                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3409                        RTE_PTYPE_INNER_L4_UDP,
3410                 /* [69] reserved */
3411                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3412                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3413                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3414                        RTE_PTYPE_INNER_L4_TCP,
3415                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3416                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3417                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3418                        RTE_PTYPE_INNER_L4_SCTP,
3419                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3420                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3421                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3422                        RTE_PTYPE_INNER_L4_ICMP,
3423                 /* [73] - [87] reserved */
3424
3425                 /* Non tunneled IPv6 */
3426                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3427                        RTE_PTYPE_L4_FRAG,
3428                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3429                        RTE_PTYPE_L4_NONFRAG,
3430                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3431                        RTE_PTYPE_L4_UDP,
3432                 /* [91] reserved */
3433                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3434                        RTE_PTYPE_L4_TCP,
3435                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3436                        RTE_PTYPE_L4_SCTP,
3437                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3438                        RTE_PTYPE_L4_ICMP,
3439
3440                 /* IPv6 --> IPv4 */
3441                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3442                        RTE_PTYPE_TUNNEL_IP |
3443                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3444                        RTE_PTYPE_INNER_L4_FRAG,
3445                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3446                        RTE_PTYPE_TUNNEL_IP |
3447                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3448                        RTE_PTYPE_INNER_L4_NONFRAG,
3449                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3450                        RTE_PTYPE_TUNNEL_IP |
3451                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3452                        RTE_PTYPE_INNER_L4_UDP,
3453                 /* [98] reserved */
3454                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3455                        RTE_PTYPE_TUNNEL_IP |
3456                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3457                        RTE_PTYPE_INNER_L4_TCP,
3458                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3459                         RTE_PTYPE_TUNNEL_IP |
3460                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3461                         RTE_PTYPE_INNER_L4_SCTP,
3462                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3463                         RTE_PTYPE_TUNNEL_IP |
3464                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3465                         RTE_PTYPE_INNER_L4_ICMP,
3466
3467                 /* IPv6 --> IPv6 */
3468                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3469                         RTE_PTYPE_TUNNEL_IP |
3470                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3471                         RTE_PTYPE_INNER_L4_FRAG,
3472                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3473                         RTE_PTYPE_TUNNEL_IP |
3474                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3475                         RTE_PTYPE_INNER_L4_NONFRAG,
3476                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3477                         RTE_PTYPE_TUNNEL_IP |
3478                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3479                         RTE_PTYPE_INNER_L4_UDP,
3480                 /* [105] reserved */
3481                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3482                         RTE_PTYPE_TUNNEL_IP |
3483                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3484                         RTE_PTYPE_INNER_L4_TCP,
3485                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3486                         RTE_PTYPE_TUNNEL_IP |
3487                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3488                         RTE_PTYPE_INNER_L4_SCTP,
3489                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3490                         RTE_PTYPE_TUNNEL_IP |
3491                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3492                         RTE_PTYPE_INNER_L4_ICMP,
3493
3494                 /* IPv6 --> GRE/Teredo/VXLAN */
3495                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3496                         RTE_PTYPE_TUNNEL_GRENAT,
3497
3498                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3499                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3500                         RTE_PTYPE_TUNNEL_GRENAT |
3501                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3502                         RTE_PTYPE_INNER_L4_FRAG,
3503                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3504                         RTE_PTYPE_TUNNEL_GRENAT |
3505                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3506                         RTE_PTYPE_INNER_L4_NONFRAG,
3507                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3508                         RTE_PTYPE_TUNNEL_GRENAT |
3509                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3510                         RTE_PTYPE_INNER_L4_UDP,
3511                 /* [113] reserved */
3512                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3513                         RTE_PTYPE_TUNNEL_GRENAT |
3514                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3515                         RTE_PTYPE_INNER_L4_TCP,
3516                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3517                         RTE_PTYPE_TUNNEL_GRENAT |
3518                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3519                         RTE_PTYPE_INNER_L4_SCTP,
3520                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3521                         RTE_PTYPE_TUNNEL_GRENAT |
3522                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3523                         RTE_PTYPE_INNER_L4_ICMP,
3524
3525                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3526                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3527                         RTE_PTYPE_TUNNEL_GRENAT |
3528                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3529                         RTE_PTYPE_INNER_L4_FRAG,
3530                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3531                         RTE_PTYPE_TUNNEL_GRENAT |
3532                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3533                         RTE_PTYPE_INNER_L4_NONFRAG,
3534                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3535                         RTE_PTYPE_TUNNEL_GRENAT |
3536                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3537                         RTE_PTYPE_INNER_L4_UDP,
3538                 /* [120] reserved */
3539                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3540                         RTE_PTYPE_TUNNEL_GRENAT |
3541                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3542                         RTE_PTYPE_INNER_L4_TCP,
3543                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3544                         RTE_PTYPE_TUNNEL_GRENAT |
3545                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3546                         RTE_PTYPE_INNER_L4_SCTP,
3547                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3548                         RTE_PTYPE_TUNNEL_GRENAT |
3549                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3550                         RTE_PTYPE_INNER_L4_ICMP,
3551
3552                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3553                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3554                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3555
3556                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3557                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3558                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3559                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3560                         RTE_PTYPE_INNER_L4_FRAG,
3561                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3562                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3563                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3564                         RTE_PTYPE_INNER_L4_NONFRAG,
3565                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3566                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3567                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3568                         RTE_PTYPE_INNER_L4_UDP,
3569                 /* [128] reserved */
3570                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3571                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3572                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3573                         RTE_PTYPE_INNER_L4_TCP,
3574                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3575                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3576                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3577                         RTE_PTYPE_INNER_L4_SCTP,
3578                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3579                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3580                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3581                         RTE_PTYPE_INNER_L4_ICMP,
3582
3583                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3584                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3585                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3586                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3587                         RTE_PTYPE_INNER_L4_FRAG,
3588                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3589                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3590                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3591                         RTE_PTYPE_INNER_L4_NONFRAG,
3592                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3593                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3594                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3595                         RTE_PTYPE_INNER_L4_UDP,
3596                 /* [135] reserved */
3597                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3598                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3599                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3600                         RTE_PTYPE_INNER_L4_TCP,
3601                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3602                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3603                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3604                         RTE_PTYPE_INNER_L4_SCTP,
3605                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3606                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3607                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3608                         RTE_PTYPE_INNER_L4_ICMP,
3609                 /* [139] - [299] reserved */
3610
3611                 /* PPPoE */
3612                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3613                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3614
3615                 /* PPPoE --> IPv4 */
3616                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3617                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3618                         RTE_PTYPE_L4_FRAG,
3619                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3620                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3621                         RTE_PTYPE_L4_NONFRAG,
3622                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
3623                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3624                         RTE_PTYPE_L4_UDP,
3625                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
3626                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3627                         RTE_PTYPE_L4_TCP,
3628                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
3629                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3630                         RTE_PTYPE_L4_SCTP,
3631                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
3632                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3633                         RTE_PTYPE_L4_ICMP,
3634
3635                 /* PPPoE --> IPv6 */
3636                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
3637                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3638                         RTE_PTYPE_L4_FRAG,
3639                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
3640                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3641                         RTE_PTYPE_L4_NONFRAG,
3642                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
3643                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3644                         RTE_PTYPE_L4_UDP,
3645                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
3646                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3647                         RTE_PTYPE_L4_TCP,
3648                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
3649                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3650                         RTE_PTYPE_L4_SCTP,
3651                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
3652                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3653                         RTE_PTYPE_L4_ICMP,
3654                 /* [314] - [324] reserved */
3655
3656                 /* IPv4/IPv6 --> GTPC/GTPU */
3657                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3658                         RTE_PTYPE_TUNNEL_GTPC,
3659                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3660                         RTE_PTYPE_TUNNEL_GTPC,
3661                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3662                         RTE_PTYPE_TUNNEL_GTPC,
3663                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3664                         RTE_PTYPE_TUNNEL_GTPC,
3665                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3666                         RTE_PTYPE_TUNNEL_GTPU,
3667                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3668                         RTE_PTYPE_TUNNEL_GTPU,
3669
3670                 /* IPv4 --> GTPU --> IPv4 */
3671                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3672                         RTE_PTYPE_TUNNEL_GTPU |
3673                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3674                         RTE_PTYPE_INNER_L4_FRAG,
3675                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3676                         RTE_PTYPE_TUNNEL_GTPU |
3677                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3678                         RTE_PTYPE_INNER_L4_NONFRAG,
3679                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3680                         RTE_PTYPE_TUNNEL_GTPU |
3681                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3682                         RTE_PTYPE_INNER_L4_UDP,
3683                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3684                         RTE_PTYPE_TUNNEL_GTPU |
3685                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3686                         RTE_PTYPE_INNER_L4_TCP,
3687                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3688                         RTE_PTYPE_TUNNEL_GTPU |
3689                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3690                         RTE_PTYPE_INNER_L4_ICMP,
3691
3692                 /* IPv6 --> GTPU --> IPv4 */
3693                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3694                         RTE_PTYPE_TUNNEL_GTPU |
3695                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3696                         RTE_PTYPE_INNER_L4_FRAG,
3697                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3698                         RTE_PTYPE_TUNNEL_GTPU |
3699                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3700                         RTE_PTYPE_INNER_L4_NONFRAG,
3701                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3702                         RTE_PTYPE_TUNNEL_GTPU |
3703                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3704                         RTE_PTYPE_INNER_L4_UDP,
3705                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3706                         RTE_PTYPE_TUNNEL_GTPU |
3707                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3708                         RTE_PTYPE_INNER_L4_TCP,
3709                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3710                         RTE_PTYPE_TUNNEL_GTPU |
3711                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3712                         RTE_PTYPE_INNER_L4_ICMP,
3713
3714                 /* IPv4 --> GTPU --> IPv6 */
3715                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3716                         RTE_PTYPE_TUNNEL_GTPU |
3717                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3718                         RTE_PTYPE_INNER_L4_FRAG,
3719                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3720                         RTE_PTYPE_TUNNEL_GTPU |
3721                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3722                         RTE_PTYPE_INNER_L4_NONFRAG,
3723                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3724                         RTE_PTYPE_TUNNEL_GTPU |
3725                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3726                         RTE_PTYPE_INNER_L4_UDP,
3727                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3728                         RTE_PTYPE_TUNNEL_GTPU |
3729                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3730                         RTE_PTYPE_INNER_L4_TCP,
3731                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3732                         RTE_PTYPE_TUNNEL_GTPU |
3733                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3734                         RTE_PTYPE_INNER_L4_ICMP,
3735
3736                 /* IPv6 --> GTPU --> IPv6 */
3737                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3738                         RTE_PTYPE_TUNNEL_GTPU |
3739                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3740                         RTE_PTYPE_INNER_L4_FRAG,
3741                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3742                         RTE_PTYPE_TUNNEL_GTPU |
3743                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3744                         RTE_PTYPE_INNER_L4_NONFRAG,
3745                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3746                         RTE_PTYPE_TUNNEL_GTPU |
3747                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3748                         RTE_PTYPE_INNER_L4_UDP,
3749                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3750                         RTE_PTYPE_TUNNEL_GTPU |
3751                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3752                         RTE_PTYPE_INNER_L4_TCP,
3753                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3754                         RTE_PTYPE_TUNNEL_GTPU |
3755                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3756                         RTE_PTYPE_INNER_L4_ICMP,
3757
3758                 /* IPv4 --> UDP ECPRI */
3759                 [372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3760                         RTE_PTYPE_L4_UDP,
3761                 [373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3762                         RTE_PTYPE_L4_UDP,
3763                 [374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3764                         RTE_PTYPE_L4_UDP,
3765                 [375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3766                         RTE_PTYPE_L4_UDP,
3767                 [376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3768                         RTE_PTYPE_L4_UDP,
3769                 [377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3770                         RTE_PTYPE_L4_UDP,
3771                 [378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3772                         RTE_PTYPE_L4_UDP,
3773                 [379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3774                         RTE_PTYPE_L4_UDP,
3775                 [380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3776                         RTE_PTYPE_L4_UDP,
3777                 [381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3778                         RTE_PTYPE_L4_UDP,
3779
3780                 /* IPV6 --> UDP ECPRI */
3781                 [382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3782                         RTE_PTYPE_L4_UDP,
3783                 [383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3784                         RTE_PTYPE_L4_UDP,
3785                 [384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3786                         RTE_PTYPE_L4_UDP,
3787                 [385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3788                         RTE_PTYPE_L4_UDP,
3789                 [386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3790                         RTE_PTYPE_L4_UDP,
3791                 [387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3792                         RTE_PTYPE_L4_UDP,
3793                 [388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3794                         RTE_PTYPE_L4_UDP,
3795                 [389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3796                         RTE_PTYPE_L4_UDP,
3797                 [390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3798                         RTE_PTYPE_L4_UDP,
3799                 [391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3800                         RTE_PTYPE_L4_UDP,
3801                 /* All others reserved */
3802         };
3803
3804         return ptype_tbl[ptype];
3805 }
3806
3807 void __rte_cold
3808 iavf_set_default_ptype_table(struct rte_eth_dev *dev)
3809 {
3810         struct iavf_adapter *ad =
3811                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3812         int i;
3813
3814         for (i = 0; i < IAVF_MAX_PKT_TYPE; i++)
3815                 ad->ptype_tbl[i] = iavf_get_default_ptype(i);
3816 }