examples/l3fwd: share queue size variables
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "iavf_ipsec_crypto.h"
31 #include "rte_pmd_iavf.h"
32
33 /* Offset of mbuf dynamic field for protocol extraction's metadata */
34 int rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
35
36 /* Mask of mbuf dynamic flags for protocol extraction's type */
37 uint64_t rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
38 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
39 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
40 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
41 uint64_t rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
42 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
43 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask;
44
45 uint8_t
46 iavf_proto_xtr_type_to_rxdid(uint8_t flex_type)
47 {
48         static uint8_t rxdid_map[] = {
49                 [IAVF_PROTO_XTR_NONE]      = IAVF_RXDID_COMMS_OVS_1,
50                 [IAVF_PROTO_XTR_VLAN]      = IAVF_RXDID_COMMS_AUX_VLAN,
51                 [IAVF_PROTO_XTR_IPV4]      = IAVF_RXDID_COMMS_AUX_IPV4,
52                 [IAVF_PROTO_XTR_IPV6]      = IAVF_RXDID_COMMS_AUX_IPV6,
53                 [IAVF_PROTO_XTR_IPV6_FLOW] = IAVF_RXDID_COMMS_AUX_IPV6_FLOW,
54                 [IAVF_PROTO_XTR_TCP]       = IAVF_RXDID_COMMS_AUX_TCP,
55                 [IAVF_PROTO_XTR_IP_OFFSET] = IAVF_RXDID_COMMS_AUX_IP_OFFSET,
56                 [IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID] =
57                                 IAVF_RXDID_COMMS_IPSEC_CRYPTO,
58         };
59
60         return flex_type < RTE_DIM(rxdid_map) ?
61                                 rxdid_map[flex_type] : IAVF_RXDID_COMMS_OVS_1;
62 }
63
64 static int
65 iavf_monitor_callback(const uint64_t value,
66                 const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
67 {
68         const uint64_t m = rte_cpu_to_le_64(1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
69         /*
70          * we expect the DD bit to be set to 1 if this descriptor was already
71          * written to.
72          */
73         return (value & m) == m ? -1 : 0;
74 }
75
76 int
77 iavf_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
78 {
79         struct iavf_rx_queue *rxq = rx_queue;
80         volatile union iavf_rx_desc *rxdp;
81         uint16_t desc;
82
83         desc = rxq->rx_tail;
84         rxdp = &rxq->rx_ring[desc];
85         /* watch for changes in status bit */
86         pmc->addr = &rxdp->wb.qword1.status_error_len;
87
88         /* comparison callback */
89         pmc->fn = iavf_monitor_callback;
90
91         /* registers are 64-bit */
92         pmc->size = sizeof(uint64_t);
93
94         return 0;
95 }
96
97 static inline int
98 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
99 {
100         /* The following constraints must be satisfied:
101          *   thresh < rxq->nb_rx_desc
102          */
103         if (thresh >= nb_desc) {
104                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
105                              thresh, nb_desc);
106                 return -EINVAL;
107         }
108         return 0;
109 }
110
111 static inline int
112 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
113                 uint16_t tx_free_thresh)
114 {
115         /* TX descriptors will have their RS bit set after tx_rs_thresh
116          * descriptors have been used. The TX descriptor ring will be cleaned
117          * after tx_free_thresh descriptors are used or if the number of
118          * descriptors required to transmit a packet is greater than the
119          * number of free TX descriptors.
120          *
121          * The following constraints must be satisfied:
122          *  - tx_rs_thresh must be less than the size of the ring minus 2.
123          *  - tx_free_thresh must be less than the size of the ring minus 3.
124          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
125          *  - tx_rs_thresh must be a divisor of the ring size.
126          *
127          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
128          * race condition, hence the maximum threshold constraints. When set
129          * to zero use default values.
130          */
131         if (tx_rs_thresh >= (nb_desc - 2)) {
132                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
133                              "number of TX descriptors (%u) minus 2",
134                              tx_rs_thresh, nb_desc);
135                 return -EINVAL;
136         }
137         if (tx_free_thresh >= (nb_desc - 3)) {
138                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
139                              "number of TX descriptors (%u) minus 3.",
140                              tx_free_thresh, nb_desc);
141                 return -EINVAL;
142         }
143         if (tx_rs_thresh > tx_free_thresh) {
144                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
145                              "equal to tx_free_thresh (%u).",
146                              tx_rs_thresh, tx_free_thresh);
147                 return -EINVAL;
148         }
149         if ((nb_desc % tx_rs_thresh) != 0) {
150                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
151                              "number of TX descriptors (%u).",
152                              tx_rs_thresh, nb_desc);
153                 return -EINVAL;
154         }
155
156         return 0;
157 }
158
159 static inline bool
160 check_rx_vec_allow(struct iavf_rx_queue *rxq)
161 {
162         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
163             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
164                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
165                 return true;
166         }
167
168         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
169         return false;
170 }
171
172 static inline bool
173 check_tx_vec_allow(struct iavf_tx_queue *txq)
174 {
175         if (!(txq->offloads & IAVF_TX_NO_VECTOR_FLAGS) &&
176             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
177             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
178                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
179                 return true;
180         }
181         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
182         return false;
183 }
184
185 static inline bool
186 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
187 {
188         int ret = true;
189
190         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
191                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
192                              "rxq->rx_free_thresh=%d, "
193                              "IAVF_RX_MAX_BURST=%d",
194                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
195                 ret = false;
196         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
197                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
198                              "rxq->nb_rx_desc=%d, "
199                              "rxq->rx_free_thresh=%d",
200                              rxq->nb_rx_desc, rxq->rx_free_thresh);
201                 ret = false;
202         }
203         return ret;
204 }
205
206 static inline void
207 reset_rx_queue(struct iavf_rx_queue *rxq)
208 {
209         uint16_t len;
210         uint32_t i;
211
212         if (!rxq)
213                 return;
214
215         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
216
217         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
218                 ((volatile char *)rxq->rx_ring)[i] = 0;
219
220         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
221
222         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
223                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
224
225         /* for rx bulk */
226         rxq->rx_nb_avail = 0;
227         rxq->rx_next_avail = 0;
228         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
229
230         rxq->rx_tail = 0;
231         rxq->nb_rx_hold = 0;
232
233         rte_pktmbuf_free(rxq->pkt_first_seg);
234
235         rxq->pkt_first_seg = NULL;
236         rxq->pkt_last_seg = NULL;
237         rxq->rxrearm_nb = 0;
238         rxq->rxrearm_start = 0;
239 }
240
241 static inline void
242 reset_tx_queue(struct iavf_tx_queue *txq)
243 {
244         struct iavf_tx_entry *txe;
245         uint32_t i, size;
246         uint16_t prev;
247
248         if (!txq) {
249                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
250                 return;
251         }
252
253         txe = txq->sw_ring;
254         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
255         for (i = 0; i < size; i++)
256                 ((volatile char *)txq->tx_ring)[i] = 0;
257
258         prev = (uint16_t)(txq->nb_tx_desc - 1);
259         for (i = 0; i < txq->nb_tx_desc; i++) {
260                 txq->tx_ring[i].cmd_type_offset_bsz =
261                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
262                 txe[i].mbuf =  NULL;
263                 txe[i].last_id = i;
264                 txe[prev].next_id = i;
265                 prev = i;
266         }
267
268         txq->tx_tail = 0;
269         txq->nb_used = 0;
270
271         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
272         txq->nb_free = txq->nb_tx_desc - 1;
273
274         txq->next_dd = txq->rs_thresh - 1;
275         txq->next_rs = txq->rs_thresh - 1;
276 }
277
278 static int
279 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
280 {
281         volatile union iavf_rx_desc *rxd;
282         struct rte_mbuf *mbuf = NULL;
283         uint64_t dma_addr;
284         uint16_t i, j;
285
286         for (i = 0; i < rxq->nb_rx_desc; i++) {
287                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
288                 if (unlikely(!mbuf)) {
289                         for (j = 0; j < i; j++) {
290                                 rte_pktmbuf_free_seg(rxq->sw_ring[j]);
291                                 rxq->sw_ring[j] = NULL;
292                         }
293                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
294                         return -ENOMEM;
295                 }
296
297                 rte_mbuf_refcnt_set(mbuf, 1);
298                 mbuf->next = NULL;
299                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
300                 mbuf->nb_segs = 1;
301                 mbuf->port = rxq->port_id;
302
303                 dma_addr =
304                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
305
306                 rxd = &rxq->rx_ring[i];
307                 rxd->read.pkt_addr = dma_addr;
308                 rxd->read.hdr_addr = 0;
309 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
310                 rxd->read.rsvd1 = 0;
311                 rxd->read.rsvd2 = 0;
312 #endif
313
314                 rxq->sw_ring[i] = mbuf;
315         }
316
317         return 0;
318 }
319
320 static inline void
321 release_rxq_mbufs(struct iavf_rx_queue *rxq)
322 {
323         uint16_t i;
324
325         if (!rxq->sw_ring)
326                 return;
327
328         for (i = 0; i < rxq->nb_rx_desc; i++) {
329                 if (rxq->sw_ring[i]) {
330                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
331                         rxq->sw_ring[i] = NULL;
332                 }
333         }
334
335         /* for rx bulk */
336         if (rxq->rx_nb_avail == 0)
337                 return;
338         for (i = 0; i < rxq->rx_nb_avail; i++) {
339                 struct rte_mbuf *mbuf;
340
341                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
342                 rte_pktmbuf_free_seg(mbuf);
343         }
344         rxq->rx_nb_avail = 0;
345 }
346
347 static inline void
348 release_txq_mbufs(struct iavf_tx_queue *txq)
349 {
350         uint16_t i;
351
352         if (!txq || !txq->sw_ring) {
353                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
354                 return;
355         }
356
357         for (i = 0; i < txq->nb_tx_desc; i++) {
358                 if (txq->sw_ring[i].mbuf) {
359                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
360                         txq->sw_ring[i].mbuf = NULL;
361                 }
362         }
363 }
364
365 static const struct iavf_rxq_ops def_rxq_ops = {
366         .release_mbufs = release_rxq_mbufs,
367 };
368
369 static const struct iavf_txq_ops def_txq_ops = {
370         .release_mbufs = release_txq_mbufs,
371 };
372
373 static inline void
374 iavf_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct iavf_rx_queue *rxq,
375                                     struct rte_mbuf *mb,
376                                     volatile union iavf_rx_flex_desc *rxdp)
377 {
378         volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
379                         (volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
380 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
381         uint16_t stat_err;
382 #endif
383
384         if (desc->flow_id != 0xFFFFFFFF) {
385                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
386                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
387         }
388
389 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
390         stat_err = rte_le_to_cpu_16(desc->status_error0);
391         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
392                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
393                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
394         }
395 #endif
396 }
397
398 static inline void
399 iavf_rxd_to_pkt_fields_by_comms_aux_v1(struct iavf_rx_queue *rxq,
400                                        struct rte_mbuf *mb,
401                                        volatile union iavf_rx_flex_desc *rxdp)
402 {
403         volatile struct iavf_32b_rx_flex_desc_comms *desc =
404                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
405         uint16_t stat_err;
406
407         stat_err = rte_le_to_cpu_16(desc->status_error0);
408         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
409                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
410                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
411         }
412
413 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
414         if (desc->flow_id != 0xFFFFFFFF) {
415                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
416                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
417         }
418
419         if (rxq->xtr_ol_flag) {
420                 uint32_t metadata = 0;
421
422                 stat_err = rte_le_to_cpu_16(desc->status_error1);
423
424                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
425                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
426
427                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
428                         metadata |=
429                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
430
431                 if (metadata) {
432                         mb->ol_flags |= rxq->xtr_ol_flag;
433
434                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
435                 }
436         }
437 #endif
438 }
439
440 static inline void
441 iavf_rxd_to_pkt_fields_by_comms_aux_v2(struct iavf_rx_queue *rxq,
442                                        struct rte_mbuf *mb,
443                                        volatile union iavf_rx_flex_desc *rxdp)
444 {
445         volatile struct iavf_32b_rx_flex_desc_comms *desc =
446                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
447         uint16_t stat_err;
448
449         stat_err = rte_le_to_cpu_16(desc->status_error0);
450         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
451                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
452                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
453         }
454
455 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
456         if (desc->flow_id != 0xFFFFFFFF) {
457                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
458                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
459         }
460
461         if (rxq->xtr_ol_flag) {
462                 uint32_t metadata = 0;
463
464                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
465                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
466                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
467                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
468
469                 if (metadata) {
470                         mb->ol_flags |= rxq->xtr_ol_flag;
471
472                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
473                 }
474         }
475 #endif
476 }
477
478 static const
479 iavf_rxd_to_pkt_fields_t rxd_to_pkt_fields_ops[] = {
480         [IAVF_RXDID_COMMS_AUX_VLAN] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
481         [IAVF_RXDID_COMMS_AUX_IPV4] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
482         [IAVF_RXDID_COMMS_AUX_IPV6] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
483         [IAVF_RXDID_COMMS_AUX_IPV6_FLOW] =
484                 iavf_rxd_to_pkt_fields_by_comms_aux_v1,
485         [IAVF_RXDID_COMMS_AUX_TCP] = iavf_rxd_to_pkt_fields_by_comms_aux_v1,
486         [IAVF_RXDID_COMMS_AUX_IP_OFFSET] =
487                 iavf_rxd_to_pkt_fields_by_comms_aux_v2,
488         [IAVF_RXDID_COMMS_IPSEC_CRYPTO] =
489                 iavf_rxd_to_pkt_fields_by_comms_aux_v2,
490         [IAVF_RXDID_COMMS_OVS_1] = iavf_rxd_to_pkt_fields_by_comms_ovs,
491 };
492
493 static void
494 iavf_select_rxd_to_pkt_fields_handler(struct iavf_rx_queue *rxq, uint32_t rxdid)
495 {
496         rxq->rxdid = rxdid;
497
498         switch (rxdid) {
499         case IAVF_RXDID_COMMS_AUX_VLAN:
500                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
501                 break;
502         case IAVF_RXDID_COMMS_AUX_IPV4:
503                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
504                 break;
505         case IAVF_RXDID_COMMS_AUX_IPV6:
506                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
507                 break;
508         case IAVF_RXDID_COMMS_AUX_IPV6_FLOW:
509                 rxq->xtr_ol_flag =
510                         rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
511                 break;
512         case IAVF_RXDID_COMMS_AUX_TCP:
513                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
514                 break;
515         case IAVF_RXDID_COMMS_AUX_IP_OFFSET:
516                 rxq->xtr_ol_flag =
517                         rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
518                 break;
519         case IAVF_RXDID_COMMS_IPSEC_CRYPTO:
520                 rxq->xtr_ol_flag =
521                         rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask;
522                 break;
523         case IAVF_RXDID_COMMS_OVS_1:
524                 break;
525         default:
526                 /* update this according to the RXDID for FLEX_DESC_NONE */
527                 rxq->rxdid = IAVF_RXDID_COMMS_OVS_1;
528                 break;
529         }
530
531         if (!rte_pmd_ifd_dynf_proto_xtr_metadata_avail())
532                 rxq->xtr_ol_flag = 0;
533 }
534
535 int
536 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
537                        uint16_t nb_desc, unsigned int socket_id,
538                        const struct rte_eth_rxconf *rx_conf,
539                        struct rte_mempool *mp)
540 {
541         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
542         struct iavf_adapter *ad =
543                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
544         struct iavf_info *vf =
545                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
546         struct iavf_vsi *vsi = &vf->vsi;
547         struct iavf_rx_queue *rxq;
548         const struct rte_memzone *mz;
549         uint32_t ring_size;
550         uint8_t proto_xtr;
551         uint16_t len;
552         uint16_t rx_free_thresh;
553         uint64_t offloads;
554
555         PMD_INIT_FUNC_TRACE();
556
557         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
558
559         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
560             nb_desc > IAVF_MAX_RING_DESC ||
561             nb_desc < IAVF_MIN_RING_DESC) {
562                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
563                              "invalid", nb_desc);
564                 return -EINVAL;
565         }
566
567         /* Check free threshold */
568         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
569                          IAVF_DEFAULT_RX_FREE_THRESH :
570                          rx_conf->rx_free_thresh;
571         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
572                 return -EINVAL;
573
574         /* Free memory if needed */
575         if (dev->data->rx_queues[queue_idx]) {
576                 iavf_dev_rx_queue_release(dev, queue_idx);
577                 dev->data->rx_queues[queue_idx] = NULL;
578         }
579
580         /* Allocate the rx queue data structure */
581         rxq = rte_zmalloc_socket("iavf rxq",
582                                  sizeof(struct iavf_rx_queue),
583                                  RTE_CACHE_LINE_SIZE,
584                                  socket_id);
585         if (!rxq) {
586                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
587                              "rx queue data structure");
588                 return -ENOMEM;
589         }
590
591         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
592                 proto_xtr = vf->proto_xtr ? vf->proto_xtr[queue_idx] :
593                                 IAVF_PROTO_XTR_NONE;
594                 rxq->rxdid = iavf_proto_xtr_type_to_rxdid(proto_xtr);
595                 rxq->proto_xtr = proto_xtr;
596         } else {
597                 rxq->rxdid = IAVF_RXDID_LEGACY_1;
598                 rxq->proto_xtr = IAVF_PROTO_XTR_NONE;
599         }
600
601         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
602                 struct virtchnl_vlan_supported_caps *stripping_support =
603                                 &vf->vlan_v2_caps.offloads.stripping_support;
604                 uint32_t stripping_cap;
605
606                 if (stripping_support->outer)
607                         stripping_cap = stripping_support->outer;
608                 else
609                         stripping_cap = stripping_support->inner;
610
611                 if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
612                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
613                 else if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
614                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
615         } else {
616                 rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
617         }
618
619         iavf_select_rxd_to_pkt_fields_handler(rxq, rxq->rxdid);
620
621         rxq->mp = mp;
622         rxq->nb_rx_desc = nb_desc;
623         rxq->rx_free_thresh = rx_free_thresh;
624         rxq->queue_id = queue_idx;
625         rxq->port_id = dev->data->port_id;
626         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
627         rxq->rx_hdr_len = 0;
628         rxq->vsi = vsi;
629         rxq->offloads = offloads;
630
631         if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
632                 rxq->crc_len = RTE_ETHER_CRC_LEN;
633         else
634                 rxq->crc_len = 0;
635
636         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
637         rxq->rx_buf_len = RTE_ALIGN_FLOOR(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
638
639         /* Allocate the software ring. */
640         len = nb_desc + IAVF_RX_MAX_BURST;
641         rxq->sw_ring =
642                 rte_zmalloc_socket("iavf rx sw ring",
643                                    sizeof(struct rte_mbuf *) * len,
644                                    RTE_CACHE_LINE_SIZE,
645                                    socket_id);
646         if (!rxq->sw_ring) {
647                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
648                 rte_free(rxq);
649                 return -ENOMEM;
650         }
651
652         /* Allocate the maximum number of RX ring hardware descriptor with
653          * a little more to support bulk allocate.
654          */
655         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
656         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
657                               IAVF_DMA_MEM_ALIGN);
658         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
659                                       ring_size, IAVF_RING_BASE_ALIGN,
660                                       socket_id);
661         if (!mz) {
662                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
663                 rte_free(rxq->sw_ring);
664                 rte_free(rxq);
665                 return -ENOMEM;
666         }
667         /* Zero all the descriptors in the ring. */
668         memset(mz->addr, 0, ring_size);
669         rxq->rx_ring_phys_addr = mz->iova;
670         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
671
672         rxq->mz = mz;
673         reset_rx_queue(rxq);
674         rxq->q_set = true;
675         dev->data->rx_queues[queue_idx] = rxq;
676         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
677         rxq->ops = &def_rxq_ops;
678
679         if (check_rx_bulk_allow(rxq) == true) {
680                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
681                              "satisfied. Rx Burst Bulk Alloc function will be "
682                              "used on port=%d, queue=%d.",
683                              rxq->port_id, rxq->queue_id);
684         } else {
685                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
686                              "not satisfied, Scattered Rx is requested "
687                              "on port=%d, queue=%d.",
688                              rxq->port_id, rxq->queue_id);
689                 ad->rx_bulk_alloc_allowed = false;
690         }
691
692         if (check_rx_vec_allow(rxq) == false)
693                 ad->rx_vec_allowed = false;
694
695         return 0;
696 }
697
698 int
699 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
700                        uint16_t queue_idx,
701                        uint16_t nb_desc,
702                        unsigned int socket_id,
703                        const struct rte_eth_txconf *tx_conf)
704 {
705         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
706         struct iavf_adapter *adapter =
707                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
708         struct iavf_info *vf =
709                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
710         struct iavf_tx_queue *txq;
711         const struct rte_memzone *mz;
712         uint32_t ring_size;
713         uint16_t tx_rs_thresh, tx_free_thresh;
714         uint64_t offloads;
715
716         PMD_INIT_FUNC_TRACE();
717
718         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
719
720         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
721             nb_desc > IAVF_MAX_RING_DESC ||
722             nb_desc < IAVF_MIN_RING_DESC) {
723                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
724                             "invalid", nb_desc);
725                 return -EINVAL;
726         }
727
728         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
729                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
730         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
731                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
732         if (check_tx_thresh(nb_desc, tx_rs_thresh, tx_free_thresh) != 0)
733                 return -EINVAL;
734
735         /* Free memory if needed. */
736         if (dev->data->tx_queues[queue_idx]) {
737                 iavf_dev_tx_queue_release(dev, queue_idx);
738                 dev->data->tx_queues[queue_idx] = NULL;
739         }
740
741         /* Allocate the TX queue data structure. */
742         txq = rte_zmalloc_socket("iavf txq",
743                                  sizeof(struct iavf_tx_queue),
744                                  RTE_CACHE_LINE_SIZE,
745                                  socket_id);
746         if (!txq) {
747                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
748                              "tx queue structure");
749                 return -ENOMEM;
750         }
751
752         if (adapter->vf.vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
753                 struct virtchnl_vlan_supported_caps *insertion_support =
754                         &adapter->vf.vlan_v2_caps.offloads.insertion_support;
755                 uint32_t insertion_cap;
756
757                 if (insertion_support->outer)
758                         insertion_cap = insertion_support->outer;
759                 else
760                         insertion_cap = insertion_support->inner;
761
762                 if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
763                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
764                 else if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
765                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2;
766         } else {
767                 txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
768         }
769
770         txq->nb_tx_desc = nb_desc;
771         txq->rs_thresh = tx_rs_thresh;
772         txq->free_thresh = tx_free_thresh;
773         txq->queue_id = queue_idx;
774         txq->port_id = dev->data->port_id;
775         txq->offloads = offloads;
776         txq->tx_deferred_start = tx_conf->tx_deferred_start;
777
778         if (iavf_ipsec_crypto_supported(adapter))
779                 txq->ipsec_crypto_pkt_md_offset =
780                         iavf_security_get_pkt_md_offset(adapter);
781
782         /* Allocate software ring */
783         txq->sw_ring =
784                 rte_zmalloc_socket("iavf tx sw ring",
785                                    sizeof(struct iavf_tx_entry) * nb_desc,
786                                    RTE_CACHE_LINE_SIZE,
787                                    socket_id);
788         if (!txq->sw_ring) {
789                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
790                 rte_free(txq);
791                 return -ENOMEM;
792         }
793
794         /* Allocate TX hardware ring descriptors. */
795         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
796         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
797         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
798                                       ring_size, IAVF_RING_BASE_ALIGN,
799                                       socket_id);
800         if (!mz) {
801                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
802                 rte_free(txq->sw_ring);
803                 rte_free(txq);
804                 return -ENOMEM;
805         }
806         txq->tx_ring_phys_addr = mz->iova;
807         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
808
809         txq->mz = mz;
810         reset_tx_queue(txq);
811         txq->q_set = true;
812         dev->data->tx_queues[queue_idx] = txq;
813         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
814         txq->ops = &def_txq_ops;
815
816         if (check_tx_vec_allow(txq) == false) {
817                 struct iavf_adapter *ad =
818                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
819                 ad->tx_vec_allowed = false;
820         }
821
822         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
823             vf->tm_conf.committed) {
824                 int tc;
825                 for (tc = 0; tc < vf->qos_cap->num_elem; tc++) {
826                         if (txq->queue_id >= vf->qtc_map[tc].start_queue_id &&
827                             txq->queue_id < (vf->qtc_map[tc].start_queue_id +
828                             vf->qtc_map[tc].queue_count))
829                                 break;
830                 }
831                 if (tc >= vf->qos_cap->num_elem) {
832                         PMD_INIT_LOG(ERR, "Queue TC mapping is not correct");
833                         return -EINVAL;
834                 }
835                 txq->tc = tc;
836         }
837
838         return 0;
839 }
840
841 int
842 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
843 {
844         struct iavf_adapter *adapter =
845                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
846         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
847         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
848         struct iavf_rx_queue *rxq;
849         int err = 0;
850
851         PMD_DRV_FUNC_TRACE();
852
853         if (rx_queue_id >= dev->data->nb_rx_queues)
854                 return -EINVAL;
855
856         rxq = dev->data->rx_queues[rx_queue_id];
857
858         err = alloc_rxq_mbufs(rxq);
859         if (err) {
860                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
861                 return err;
862         }
863
864         rte_wmb();
865
866         /* Init the RX tail register. */
867         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
868         IAVF_WRITE_FLUSH(hw);
869
870         /* Ready to switch the queue on */
871         if (!vf->lv_enabled)
872                 err = iavf_switch_queue(adapter, rx_queue_id, true, true);
873         else
874                 err = iavf_switch_queue_lv(adapter, rx_queue_id, true, true);
875
876         if (err) {
877                 release_rxq_mbufs(rxq);
878                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
879                             rx_queue_id);
880         } else {
881                 dev->data->rx_queue_state[rx_queue_id] =
882                         RTE_ETH_QUEUE_STATE_STARTED;
883         }
884
885         return err;
886 }
887
888 int
889 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
890 {
891         struct iavf_adapter *adapter =
892                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
893         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
894         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
895         struct iavf_tx_queue *txq;
896         int err = 0;
897
898         PMD_DRV_FUNC_TRACE();
899
900         if (tx_queue_id >= dev->data->nb_tx_queues)
901                 return -EINVAL;
902
903         txq = dev->data->tx_queues[tx_queue_id];
904
905         /* Init the RX tail register. */
906         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
907         IAVF_WRITE_FLUSH(hw);
908
909         /* Ready to switch the queue on */
910         if (!vf->lv_enabled)
911                 err = iavf_switch_queue(adapter, tx_queue_id, false, true);
912         else
913                 err = iavf_switch_queue_lv(adapter, tx_queue_id, false, true);
914
915         if (err)
916                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
917                             tx_queue_id);
918         else
919                 dev->data->tx_queue_state[tx_queue_id] =
920                         RTE_ETH_QUEUE_STATE_STARTED;
921
922         return err;
923 }
924
925 int
926 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
927 {
928         struct iavf_adapter *adapter =
929                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
930         struct iavf_rx_queue *rxq;
931         int err;
932
933         PMD_DRV_FUNC_TRACE();
934
935         if (rx_queue_id >= dev->data->nb_rx_queues)
936                 return -EINVAL;
937
938         err = iavf_switch_queue(adapter, rx_queue_id, true, false);
939         if (err) {
940                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
941                             rx_queue_id);
942                 return err;
943         }
944
945         rxq = dev->data->rx_queues[rx_queue_id];
946         rxq->ops->release_mbufs(rxq);
947         reset_rx_queue(rxq);
948         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
949
950         return 0;
951 }
952
953 int
954 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
955 {
956         struct iavf_adapter *adapter =
957                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
958         struct iavf_tx_queue *txq;
959         int err;
960
961         PMD_DRV_FUNC_TRACE();
962
963         if (tx_queue_id >= dev->data->nb_tx_queues)
964                 return -EINVAL;
965
966         err = iavf_switch_queue(adapter, tx_queue_id, false, false);
967         if (err) {
968                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
969                             tx_queue_id);
970                 return err;
971         }
972
973         txq = dev->data->tx_queues[tx_queue_id];
974         txq->ops->release_mbufs(txq);
975         reset_tx_queue(txq);
976         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
977
978         return 0;
979 }
980
981 void
982 iavf_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
983 {
984         struct iavf_rx_queue *q = dev->data->rx_queues[qid];
985
986         if (!q)
987                 return;
988
989         q->ops->release_mbufs(q);
990         rte_free(q->sw_ring);
991         rte_memzone_free(q->mz);
992         rte_free(q);
993 }
994
995 void
996 iavf_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
997 {
998         struct iavf_tx_queue *q = dev->data->tx_queues[qid];
999
1000         if (!q)
1001                 return;
1002
1003         q->ops->release_mbufs(q);
1004         rte_free(q->sw_ring);
1005         rte_memzone_free(q->mz);
1006         rte_free(q);
1007 }
1008
1009 void
1010 iavf_stop_queues(struct rte_eth_dev *dev)
1011 {
1012         struct iavf_adapter *adapter =
1013                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1014         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1015         struct iavf_rx_queue *rxq;
1016         struct iavf_tx_queue *txq;
1017         int ret, i;
1018
1019         /* Stop All queues */
1020         if (!vf->lv_enabled) {
1021                 ret = iavf_disable_queues(adapter);
1022                 if (ret)
1023                         PMD_DRV_LOG(WARNING, "Fail to stop queues");
1024         } else {
1025                 ret = iavf_disable_queues_lv(adapter);
1026                 if (ret)
1027                         PMD_DRV_LOG(WARNING, "Fail to stop queues for large VF");
1028         }
1029
1030         if (ret)
1031                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
1032
1033         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1034                 txq = dev->data->tx_queues[i];
1035                 if (!txq)
1036                         continue;
1037                 txq->ops->release_mbufs(txq);
1038                 reset_tx_queue(txq);
1039                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1040         }
1041         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1042                 rxq = dev->data->rx_queues[i];
1043                 if (!rxq)
1044                         continue;
1045                 rxq->ops->release_mbufs(rxq);
1046                 reset_rx_queue(rxq);
1047                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1048         }
1049 }
1050
1051 #define IAVF_RX_FLEX_ERR0_BITS  \
1052         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1053          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1054          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1055          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1056          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1057          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1058
1059 static inline void
1060 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
1061 {
1062         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1063                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1064                 mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
1065                 mb->vlan_tci =
1066                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
1067         } else {
1068                 mb->vlan_tci = 0;
1069         }
1070 }
1071
1072 static inline void
1073 iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
1074                           volatile union iavf_rx_flex_desc *rxdp)
1075 {
1076         if (rte_le_to_cpu_64(rxdp->wb.status_error0) &
1077                 (1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1078                 mb->ol_flags |= RTE_MBUF_F_RX_VLAN |
1079                                 RTE_MBUF_F_RX_VLAN_STRIPPED;
1080                 mb->vlan_tci =
1081                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
1082         } else {
1083                 mb->vlan_tci = 0;
1084         }
1085
1086 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1087         if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1088             (1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1089                 mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED |
1090                                 RTE_MBUF_F_RX_QINQ |
1091                                 RTE_MBUF_F_RX_VLAN_STRIPPED |
1092                                 RTE_MBUF_F_RX_VLAN;
1093                 mb->vlan_tci_outer = mb->vlan_tci;
1094                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1095                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1096                            rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1097                            rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1098         } else {
1099                 mb->vlan_tci_outer = 0;
1100         }
1101 #endif
1102 }
1103
1104 static inline void
1105 iavf_flex_rxd_to_ipsec_crypto_said_get(struct rte_mbuf *mb,
1106                           volatile union iavf_rx_flex_desc *rxdp)
1107 {
1108         volatile struct iavf_32b_rx_flex_desc_comms_ipsec *desc =
1109                 (volatile struct iavf_32b_rx_flex_desc_comms_ipsec *)rxdp;
1110
1111         mb->dynfield1[0] = desc->ipsec_said &
1112                          IAVF_RX_FLEX_DESC_IPSEC_CRYPTO_SAID_MASK;
1113         }
1114
1115 static inline void
1116 iavf_flex_rxd_to_ipsec_crypto_status(struct rte_mbuf *mb,
1117                           volatile union iavf_rx_flex_desc *rxdp,
1118                           struct iavf_ipsec_crypto_stats *stats)
1119 {
1120         uint16_t status1 = rte_le_to_cpu_64(rxdp->wb.status_error1);
1121
1122         if (status1 & BIT(IAVF_RX_FLEX_DESC_STATUS1_IPSEC_CRYPTO_PROCESSED)) {
1123                 uint16_t ipsec_status;
1124
1125                 mb->ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD;
1126
1127                 ipsec_status = status1 &
1128                         IAVF_RX_FLEX_DESC_IPSEC_CRYPTO_STATUS_MASK;
1129
1130
1131                 if (unlikely(ipsec_status !=
1132                         IAVF_IPSEC_CRYPTO_STATUS_SUCCESS)) {
1133                         mb->ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
1134
1135                         switch (ipsec_status) {
1136                         case IAVF_IPSEC_CRYPTO_STATUS_SAD_MISS:
1137                                 stats->ierrors.sad_miss++;
1138                                 break;
1139                         case IAVF_IPSEC_CRYPTO_STATUS_NOT_PROCESSED:
1140                                 stats->ierrors.not_processed++;
1141                                 break;
1142                         case IAVF_IPSEC_CRYPTO_STATUS_ICV_CHECK_FAIL:
1143                                 stats->ierrors.icv_check++;
1144                                 break;
1145                         case IAVF_IPSEC_CRYPTO_STATUS_LENGTH_ERR:
1146                                 stats->ierrors.ipsec_length++;
1147                                 break;
1148                         case IAVF_IPSEC_CRYPTO_STATUS_MISC_ERR:
1149                                 stats->ierrors.misc++;
1150                                 break;
1151 }
1152
1153                         stats->ierrors.count++;
1154                         return;
1155                 }
1156
1157                 stats->icount++;
1158                 stats->ibytes += rxdp->wb.pkt_len & 0x3FFF;
1159
1160                 if (rxdp->wb.rxdid == IAVF_RXDID_COMMS_IPSEC_CRYPTO &&
1161                         ipsec_status !=
1162                                 IAVF_IPSEC_CRYPTO_STATUS_SAD_MISS)
1163                         iavf_flex_rxd_to_ipsec_crypto_said_get(mb, rxdp);
1164         }
1165 }
1166
1167
1168 /* Translate the rx descriptor status and error fields to pkt flags */
1169 static inline uint64_t
1170 iavf_rxd_to_pkt_flags(uint64_t qword)
1171 {
1172         uint64_t flags;
1173         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
1174
1175 #define IAVF_RX_ERR_BITS 0x3f
1176
1177         /* Check if RSS_HASH */
1178         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
1179                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
1180                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? RTE_MBUF_F_RX_RSS_HASH : 0;
1181
1182         /* Check if FDIR Match */
1183         flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
1184                                 RTE_MBUF_F_RX_FDIR : 0);
1185
1186         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
1187                 flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
1188                 return flags;
1189         }
1190
1191         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
1192                 flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1193         else
1194                 flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1195
1196         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
1197                 flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1198         else
1199                 flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1200
1201         /* TODO: Oversize error bit is not processed here */
1202
1203         return flags;
1204 }
1205
1206 static inline uint64_t
1207 iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
1208 {
1209         uint64_t flags = 0;
1210 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1211         uint16_t flexbh;
1212
1213         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
1214                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
1215                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
1216
1217         if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
1218                 mb->hash.fdir.hi =
1219                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
1220                 flags |= RTE_MBUF_F_RX_FDIR_ID;
1221         }
1222 #else
1223         mb->hash.fdir.hi =
1224                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
1225         flags |= RTE_MBUF_F_RX_FDIR_ID;
1226 #endif
1227         return flags;
1228 }
1229
1230 #define IAVF_RX_FLEX_ERR0_BITS  \
1231         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1232          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1233          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1234          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1235          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1236          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1237
1238 /* Rx L3/L4 checksum */
1239 static inline uint64_t
1240 iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
1241 {
1242         uint64_t flags = 0;
1243
1244         /* check if HW has decoded the packet and checksum */
1245         if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1246                 return 0;
1247
1248         if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
1249                 flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
1250                 return flags;
1251         }
1252
1253         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1254                 flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1255         else
1256                 flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1257
1258         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1259                 flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1260         else
1261                 flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1262
1263         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1264                 flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
1265
1266         return flags;
1267 }
1268
1269 /* If the number of free RX descriptors is greater than the RX free
1270  * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1271  * register. Update the RDT with the value of the last processed RX
1272  * descriptor minus 1, to guarantee that the RDT register is never
1273  * equal to the RDH register, which creates a "full" ring situation
1274  * from the hardware point of view.
1275  */
1276 static inline void
1277 iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
1278 {
1279         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1280
1281         if (nb_hold > rxq->rx_free_thresh) {
1282                 PMD_RX_LOG(DEBUG,
1283                            "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
1284                            rxq->port_id, rxq->queue_id, rx_id, nb_hold);
1285                 rx_id = (uint16_t)((rx_id == 0) ?
1286                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1287                 IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1288                 nb_hold = 0;
1289         }
1290         rxq->nb_rx_hold = nb_hold;
1291 }
1292
1293 /* implement recv_pkts */
1294 uint16_t
1295 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1296 {
1297         volatile union iavf_rx_desc *rx_ring;
1298         volatile union iavf_rx_desc *rxdp;
1299         struct iavf_rx_queue *rxq;
1300         union iavf_rx_desc rxd;
1301         struct rte_mbuf *rxe;
1302         struct rte_eth_dev *dev;
1303         struct rte_mbuf *rxm;
1304         struct rte_mbuf *nmb;
1305         uint16_t nb_rx;
1306         uint32_t rx_status;
1307         uint64_t qword1;
1308         uint16_t rx_packet_len;
1309         uint16_t rx_id, nb_hold;
1310         uint64_t dma_addr;
1311         uint64_t pkt_flags;
1312         const uint32_t *ptype_tbl;
1313
1314         nb_rx = 0;
1315         nb_hold = 0;
1316         rxq = rx_queue;
1317         rx_id = rxq->rx_tail;
1318         rx_ring = rxq->rx_ring;
1319         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1320
1321         while (nb_rx < nb_pkts) {
1322                 rxdp = &rx_ring[rx_id];
1323                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1324                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1325                             IAVF_RXD_QW1_STATUS_SHIFT;
1326
1327                 /* Check the DD bit first */
1328                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1329                         break;
1330                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1331
1332                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1333                 if (unlikely(!nmb)) {
1334                         dev = &rte_eth_devices[rxq->port_id];
1335                         dev->data->rx_mbuf_alloc_failed++;
1336                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1337                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1338                         break;
1339                 }
1340
1341                 rxd = *rxdp;
1342                 nb_hold++;
1343                 rxe = rxq->sw_ring[rx_id];
1344                 rxq->sw_ring[rx_id] = nmb;
1345                 rx_id++;
1346                 if (unlikely(rx_id == rxq->nb_rx_desc))
1347                         rx_id = 0;
1348
1349                 /* Prefetch next mbuf */
1350                 rte_prefetch0(rxq->sw_ring[rx_id]);
1351
1352                 /* When next RX descriptor is on a cache line boundary,
1353                  * prefetch the next 4 RX descriptors and next 8 pointers
1354                  * to mbufs.
1355                  */
1356                 if ((rx_id & 0x3) == 0) {
1357                         rte_prefetch0(&rx_ring[rx_id]);
1358                         rte_prefetch0(rxq->sw_ring[rx_id]);
1359                 }
1360                 rxm = rxe;
1361                 dma_addr =
1362                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1363                 rxdp->read.hdr_addr = 0;
1364                 rxdp->read.pkt_addr = dma_addr;
1365
1366                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1367                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1368
1369                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1370                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1371                 rxm->nb_segs = 1;
1372                 rxm->next = NULL;
1373                 rxm->pkt_len = rx_packet_len;
1374                 rxm->data_len = rx_packet_len;
1375                 rxm->port = rxq->port_id;
1376                 rxm->ol_flags = 0;
1377                 iavf_rxd_to_vlan_tci(rxm, &rxd);
1378                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1379                 rxm->packet_type =
1380                         ptype_tbl[(uint8_t)((qword1 &
1381                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1382
1383                 if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
1384                         rxm->hash.rss =
1385                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1386
1387                 if (pkt_flags & RTE_MBUF_F_RX_FDIR)
1388                         pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
1389
1390                 rxm->ol_flags |= pkt_flags;
1391
1392                 rx_pkts[nb_rx++] = rxm;
1393         }
1394         rxq->rx_tail = rx_id;
1395
1396         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1397
1398         return nb_rx;
1399 }
1400
1401 /* implement recv_pkts for flexible Rx descriptor */
1402 uint16_t
1403 iavf_recv_pkts_flex_rxd(void *rx_queue,
1404                         struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1405 {
1406         volatile union iavf_rx_desc *rx_ring;
1407         volatile union iavf_rx_flex_desc *rxdp;
1408         struct iavf_rx_queue *rxq;
1409         union iavf_rx_flex_desc rxd;
1410         struct rte_mbuf *rxe;
1411         struct rte_eth_dev *dev;
1412         struct rte_mbuf *rxm;
1413         struct rte_mbuf *nmb;
1414         uint16_t nb_rx;
1415         uint16_t rx_stat_err0;
1416         uint16_t rx_packet_len;
1417         uint16_t rx_id, nb_hold;
1418         uint64_t dma_addr;
1419         uint64_t pkt_flags;
1420         const uint32_t *ptype_tbl;
1421
1422         nb_rx = 0;
1423         nb_hold = 0;
1424         rxq = rx_queue;
1425         rx_id = rxq->rx_tail;
1426         rx_ring = rxq->rx_ring;
1427         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1428
1429         while (nb_rx < nb_pkts) {
1430                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1431                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1432
1433                 /* Check the DD bit first */
1434                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1435                         break;
1436                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1437
1438                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1439                 if (unlikely(!nmb)) {
1440                         dev = &rte_eth_devices[rxq->port_id];
1441                         dev->data->rx_mbuf_alloc_failed++;
1442                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1443                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1444                         break;
1445                 }
1446
1447                 rxd = *rxdp;
1448                 nb_hold++;
1449                 rxe = rxq->sw_ring[rx_id];
1450                 rxq->sw_ring[rx_id] = nmb;
1451                 rx_id++;
1452                 if (unlikely(rx_id == rxq->nb_rx_desc))
1453                         rx_id = 0;
1454
1455                 /* Prefetch next mbuf */
1456                 rte_prefetch0(rxq->sw_ring[rx_id]);
1457
1458                 /* When next RX descriptor is on a cache line boundary,
1459                  * prefetch the next 4 RX descriptors and next 8 pointers
1460                  * to mbufs.
1461                  */
1462                 if ((rx_id & 0x3) == 0) {
1463                         rte_prefetch0(&rx_ring[rx_id]);
1464                         rte_prefetch0(rxq->sw_ring[rx_id]);
1465                 }
1466                 rxm = rxe;
1467                 dma_addr =
1468                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1469                 rxdp->read.hdr_addr = 0;
1470                 rxdp->read.pkt_addr = dma_addr;
1471
1472                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
1473                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1474
1475                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1476                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1477                 rxm->nb_segs = 1;
1478                 rxm->next = NULL;
1479                 rxm->pkt_len = rx_packet_len;
1480                 rxm->data_len = rx_packet_len;
1481                 rxm->port = rxq->port_id;
1482                 rxm->ol_flags = 0;
1483                 rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1484                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1485                 iavf_flex_rxd_to_vlan_tci(rxm, &rxd);
1486                 iavf_flex_rxd_to_ipsec_crypto_status(rxm, &rxd,
1487                                 &rxq->stats.ipsec_crypto);
1488                 rxd_to_pkt_fields_ops[rxq->rxdid](rxq, rxm, &rxd);
1489                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1490                 rxm->ol_flags |= pkt_flags;
1491
1492                 rx_pkts[nb_rx++] = rxm;
1493         }
1494         rxq->rx_tail = rx_id;
1495
1496         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1497
1498         return nb_rx;
1499 }
1500
1501 /* implement recv_scattered_pkts for flexible Rx descriptor */
1502 uint16_t
1503 iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1504                                   uint16_t nb_pkts)
1505 {
1506         struct iavf_rx_queue *rxq = rx_queue;
1507         union iavf_rx_flex_desc rxd;
1508         struct rte_mbuf *rxe;
1509         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1510         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1511         struct rte_mbuf *nmb, *rxm;
1512         uint16_t rx_id = rxq->rx_tail;
1513         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1514         struct rte_eth_dev *dev;
1515         uint16_t rx_stat_err0;
1516         uint64_t dma_addr;
1517         uint64_t pkt_flags;
1518
1519         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1520         volatile union iavf_rx_flex_desc *rxdp;
1521         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1522
1523         while (nb_rx < nb_pkts) {
1524                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1525                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1526
1527                 /* Check the DD bit */
1528                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1529                         break;
1530                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1531
1532                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1533                 if (unlikely(!nmb)) {
1534                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1535                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1536                         dev = &rte_eth_devices[rxq->port_id];
1537                         dev->data->rx_mbuf_alloc_failed++;
1538                         break;
1539                 }
1540
1541                 rxd = *rxdp;
1542                 nb_hold++;
1543                 rxe = rxq->sw_ring[rx_id];
1544                 rxq->sw_ring[rx_id] = nmb;
1545                 rx_id++;
1546                 if (rx_id == rxq->nb_rx_desc)
1547                         rx_id = 0;
1548
1549                 /* Prefetch next mbuf */
1550                 rte_prefetch0(rxq->sw_ring[rx_id]);
1551
1552                 /* When next RX descriptor is on a cache line boundary,
1553                  * prefetch the next 4 RX descriptors and next 8 pointers
1554                  * to mbufs.
1555                  */
1556                 if ((rx_id & 0x3) == 0) {
1557                         rte_prefetch0(&rx_ring[rx_id]);
1558                         rte_prefetch0(rxq->sw_ring[rx_id]);
1559                 }
1560
1561                 rxm = rxe;
1562                 dma_addr =
1563                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1564
1565                 /* Set data buffer address and data length of the mbuf */
1566                 rxdp->read.hdr_addr = 0;
1567                 rxdp->read.pkt_addr = dma_addr;
1568                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1569                                 IAVF_RX_FLX_DESC_PKT_LEN_M;
1570                 rxm->data_len = rx_packet_len;
1571                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1572
1573                 /* If this is the first buffer of the received packet, set the
1574                  * pointer to the first mbuf of the packet and initialize its
1575                  * context. Otherwise, update the total length and the number
1576                  * of segments of the current scattered packet, and update the
1577                  * pointer to the last mbuf of the current packet.
1578                  */
1579                 if (!first_seg) {
1580                         first_seg = rxm;
1581                         first_seg->nb_segs = 1;
1582                         first_seg->pkt_len = rx_packet_len;
1583                 } else {
1584                         first_seg->pkt_len =
1585                                 (uint16_t)(first_seg->pkt_len +
1586                                                 rx_packet_len);
1587                         first_seg->nb_segs++;
1588                         last_seg->next = rxm;
1589                 }
1590
1591                 /* If this is not the last buffer of the received packet,
1592                  * update the pointer to the last mbuf of the current scattered
1593                  * packet and continue to parse the RX ring.
1594                  */
1595                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
1596                         last_seg = rxm;
1597                         continue;
1598                 }
1599
1600                 /* This is the last buffer of the received packet. If the CRC
1601                  * is not stripped by the hardware:
1602                  *  - Subtract the CRC length from the total packet length.
1603                  *  - If the last buffer only contains the whole CRC or a part
1604                  *  of it, free the mbuf associated to the last buffer. If part
1605                  *  of the CRC is also contained in the previous mbuf, subtract
1606                  *  the length of that CRC part from the data length of the
1607                  *  previous mbuf.
1608                  */
1609                 rxm->next = NULL;
1610                 if (unlikely(rxq->crc_len > 0)) {
1611                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1612                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1613                                 rte_pktmbuf_free_seg(rxm);
1614                                 first_seg->nb_segs--;
1615                                 last_seg->data_len =
1616                                         (uint16_t)(last_seg->data_len -
1617                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1618                                 last_seg->next = NULL;
1619                         } else {
1620                                 rxm->data_len = (uint16_t)(rx_packet_len -
1621                                                         RTE_ETHER_CRC_LEN);
1622                         }
1623                 }
1624
1625                 first_seg->port = rxq->port_id;
1626                 first_seg->ol_flags = 0;
1627                 first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1628                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1629                 iavf_flex_rxd_to_vlan_tci(first_seg, &rxd);
1630                 iavf_flex_rxd_to_ipsec_crypto_status(first_seg, &rxd,
1631                                 &rxq->stats.ipsec_crypto);
1632                 rxd_to_pkt_fields_ops[rxq->rxdid](rxq, first_seg, &rxd);
1633                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1634
1635                 first_seg->ol_flags |= pkt_flags;
1636
1637                 /* Prefetch data of first segment, if configured to do so. */
1638                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1639                                           first_seg->data_off));
1640                 rx_pkts[nb_rx++] = first_seg;
1641                 first_seg = NULL;
1642         }
1643
1644         /* Record index of the next RX descriptor to probe. */
1645         rxq->rx_tail = rx_id;
1646         rxq->pkt_first_seg = first_seg;
1647         rxq->pkt_last_seg = last_seg;
1648
1649         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1650
1651         return nb_rx;
1652 }
1653
1654 /* implement recv_scattered_pkts  */
1655 uint16_t
1656 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1657                         uint16_t nb_pkts)
1658 {
1659         struct iavf_rx_queue *rxq = rx_queue;
1660         union iavf_rx_desc rxd;
1661         struct rte_mbuf *rxe;
1662         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1663         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1664         struct rte_mbuf *nmb, *rxm;
1665         uint16_t rx_id = rxq->rx_tail;
1666         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1667         struct rte_eth_dev *dev;
1668         uint32_t rx_status;
1669         uint64_t qword1;
1670         uint64_t dma_addr;
1671         uint64_t pkt_flags;
1672
1673         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1674         volatile union iavf_rx_desc *rxdp;
1675         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1676
1677         while (nb_rx < nb_pkts) {
1678                 rxdp = &rx_ring[rx_id];
1679                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1680                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1681                             IAVF_RXD_QW1_STATUS_SHIFT;
1682
1683                 /* Check the DD bit */
1684                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1685                         break;
1686                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1687
1688                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1689                 if (unlikely(!nmb)) {
1690                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1691                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1692                         dev = &rte_eth_devices[rxq->port_id];
1693                         dev->data->rx_mbuf_alloc_failed++;
1694                         break;
1695                 }
1696
1697                 rxd = *rxdp;
1698                 nb_hold++;
1699                 rxe = rxq->sw_ring[rx_id];
1700                 rxq->sw_ring[rx_id] = nmb;
1701                 rx_id++;
1702                 if (rx_id == rxq->nb_rx_desc)
1703                         rx_id = 0;
1704
1705                 /* Prefetch next mbuf */
1706                 rte_prefetch0(rxq->sw_ring[rx_id]);
1707
1708                 /* When next RX descriptor is on a cache line boundary,
1709                  * prefetch the next 4 RX descriptors and next 8 pointers
1710                  * to mbufs.
1711                  */
1712                 if ((rx_id & 0x3) == 0) {
1713                         rte_prefetch0(&rx_ring[rx_id]);
1714                         rte_prefetch0(rxq->sw_ring[rx_id]);
1715                 }
1716
1717                 rxm = rxe;
1718                 dma_addr =
1719                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1720
1721                 /* Set data buffer address and data length of the mbuf */
1722                 rxdp->read.hdr_addr = 0;
1723                 rxdp->read.pkt_addr = dma_addr;
1724                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1725                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1726                 rxm->data_len = rx_packet_len;
1727                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1728
1729                 /* If this is the first buffer of the received packet, set the
1730                  * pointer to the first mbuf of the packet and initialize its
1731                  * context. Otherwise, update the total length and the number
1732                  * of segments of the current scattered packet, and update the
1733                  * pointer to the last mbuf of the current packet.
1734                  */
1735                 if (!first_seg) {
1736                         first_seg = rxm;
1737                         first_seg->nb_segs = 1;
1738                         first_seg->pkt_len = rx_packet_len;
1739                 } else {
1740                         first_seg->pkt_len =
1741                                 (uint16_t)(first_seg->pkt_len +
1742                                                 rx_packet_len);
1743                         first_seg->nb_segs++;
1744                         last_seg->next = rxm;
1745                 }
1746
1747                 /* If this is not the last buffer of the received packet,
1748                  * update the pointer to the last mbuf of the current scattered
1749                  * packet and continue to parse the RX ring.
1750                  */
1751                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1752                         last_seg = rxm;
1753                         continue;
1754                 }
1755
1756                 /* This is the last buffer of the received packet. If the CRC
1757                  * is not stripped by the hardware:
1758                  *  - Subtract the CRC length from the total packet length.
1759                  *  - If the last buffer only contains the whole CRC or a part
1760                  *  of it, free the mbuf associated to the last buffer. If part
1761                  *  of the CRC is also contained in the previous mbuf, subtract
1762                  *  the length of that CRC part from the data length of the
1763                  *  previous mbuf.
1764                  */
1765                 rxm->next = NULL;
1766                 if (unlikely(rxq->crc_len > 0)) {
1767                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1768                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1769                                 rte_pktmbuf_free_seg(rxm);
1770                                 first_seg->nb_segs--;
1771                                 last_seg->data_len =
1772                                         (uint16_t)(last_seg->data_len -
1773                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1774                                 last_seg->next = NULL;
1775                         } else
1776                                 rxm->data_len = (uint16_t)(rx_packet_len -
1777                                                         RTE_ETHER_CRC_LEN);
1778                 }
1779
1780                 first_seg->port = rxq->port_id;
1781                 first_seg->ol_flags = 0;
1782                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1783                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1784                 first_seg->packet_type =
1785                         ptype_tbl[(uint8_t)((qword1 &
1786                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1787
1788                 if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
1789                         first_seg->hash.rss =
1790                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1791
1792                 if (pkt_flags & RTE_MBUF_F_RX_FDIR)
1793                         pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
1794
1795                 first_seg->ol_flags |= pkt_flags;
1796
1797                 /* Prefetch data of first segment, if configured to do so. */
1798                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1799                                           first_seg->data_off));
1800                 rx_pkts[nb_rx++] = first_seg;
1801                 first_seg = NULL;
1802         }
1803
1804         /* Record index of the next RX descriptor to probe. */
1805         rxq->rx_tail = rx_id;
1806         rxq->pkt_first_seg = first_seg;
1807         rxq->pkt_last_seg = last_seg;
1808
1809         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1810
1811         return nb_rx;
1812 }
1813
1814 #define IAVF_LOOK_AHEAD 8
1815 static inline int
1816 iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
1817 {
1818         volatile union iavf_rx_flex_desc *rxdp;
1819         struct rte_mbuf **rxep;
1820         struct rte_mbuf *mb;
1821         uint16_t stat_err0;
1822         uint16_t pkt_len;
1823         int32_t s[IAVF_LOOK_AHEAD], var, nb_dd;
1824         int32_t i, j, nb_rx = 0;
1825         uint64_t pkt_flags;
1826         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1827
1828         rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
1829         rxep = &rxq->sw_ring[rxq->rx_tail];
1830
1831         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1832
1833         /* Make sure there is at least 1 packet to receive */
1834         if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1835                 return 0;
1836
1837         /* Scan LOOK_AHEAD descriptors at a time to determine which
1838          * descriptors reference packets that are ready to be received.
1839          */
1840         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1841              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1842                 /* Read desc statuses backwards to avoid race condition */
1843                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
1844                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1845
1846                 rte_smp_rmb();
1847
1848                 /* Compute how many contiguous DD bits were set */
1849                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++) {
1850                         var = s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
1851 #ifdef RTE_ARCH_ARM
1852                         /* For Arm platforms, count only contiguous descriptors
1853                          * whose DD bit is set to 1. On Arm platforms, reads of
1854                          * descriptors can be reordered. Since the CPU may
1855                          * be reading the descriptors as the NIC updates them
1856                          * in memory, it is possbile that the DD bit for a
1857                          * descriptor earlier in the queue is read as not set
1858                          * while the DD bit for a descriptor later in the queue
1859                          * is read as set.
1860                          */
1861                         if (var)
1862                                 nb_dd += 1;
1863                         else
1864                                 break;
1865 #else
1866                         nb_dd += var;
1867 #endif
1868                 }
1869
1870                 nb_rx += nb_dd;
1871
1872                 /* Translate descriptor info to mbuf parameters */
1873                 for (j = 0; j < nb_dd; j++) {
1874                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1875                                           rxq->rx_tail +
1876                                           i * IAVF_LOOK_AHEAD + j);
1877
1878                         mb = rxep[j];
1879                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1880                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1881                         mb->data_len = pkt_len;
1882                         mb->pkt_len = pkt_len;
1883                         mb->ol_flags = 0;
1884
1885                         mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1886                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1887                         iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j]);
1888                         iavf_flex_rxd_to_ipsec_crypto_status(mb, &rxdp[j],
1889                                 &rxq->stats.ipsec_crypto);
1890                         rxd_to_pkt_fields_ops[rxq->rxdid](rxq, mb, &rxdp[j]);
1891                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1892                         pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
1893
1894                         mb->ol_flags |= pkt_flags;
1895                 }
1896
1897                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1898                         rxq->rx_stage[i + j] = rxep[j];
1899
1900                 if (nb_dd != IAVF_LOOK_AHEAD)
1901                         break;
1902         }
1903
1904         /* Clear software ring entries */
1905         for (i = 0; i < nb_rx; i++)
1906                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1907
1908         return nb_rx;
1909 }
1910
1911 static inline int
1912 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1913 {
1914         volatile union iavf_rx_desc *rxdp;
1915         struct rte_mbuf **rxep;
1916         struct rte_mbuf *mb;
1917         uint16_t pkt_len;
1918         uint64_t qword1;
1919         uint32_t rx_status;
1920         int32_t s[IAVF_LOOK_AHEAD], var, nb_dd;
1921         int32_t i, j, nb_rx = 0;
1922         uint64_t pkt_flags;
1923         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1924
1925         rxdp = &rxq->rx_ring[rxq->rx_tail];
1926         rxep = &rxq->sw_ring[rxq->rx_tail];
1927
1928         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1929         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1930                     IAVF_RXD_QW1_STATUS_SHIFT;
1931
1932         /* Make sure there is at least 1 packet to receive */
1933         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1934                 return 0;
1935
1936         /* Scan LOOK_AHEAD descriptors at a time to determine which
1937          * descriptors reference packets that are ready to be received.
1938          */
1939         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1940              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1941                 /* Read desc statuses backwards to avoid race condition */
1942                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1943                         qword1 = rte_le_to_cpu_64(
1944                                 rxdp[j].wb.qword1.status_error_len);
1945                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1946                                IAVF_RXD_QW1_STATUS_SHIFT;
1947                 }
1948
1949                 rte_smp_rmb();
1950
1951                 /* Compute how many contiguous DD bits were set */
1952                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++) {
1953                         var = s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1954 #ifdef RTE_ARCH_ARM
1955                         /* For Arm platforms, count only contiguous descriptors
1956                          * whose DD bit is set to 1. On Arm platforms, reads of
1957                          * descriptors can be reordered. Since the CPU may
1958                          * be reading the descriptors as the NIC updates them
1959                          * in memory, it is possbile that the DD bit for a
1960                          * descriptor earlier in the queue is read as not set
1961                          * while the DD bit for a descriptor later in the queue
1962                          * is read as set.
1963                          */
1964                         if (var)
1965                                 nb_dd += 1;
1966                         else
1967                                 break;
1968 #else
1969                         nb_dd += var;
1970 #endif
1971                 }
1972
1973                 nb_rx += nb_dd;
1974
1975                 /* Translate descriptor info to mbuf parameters */
1976                 for (j = 0; j < nb_dd; j++) {
1977                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1978                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1979
1980                         mb = rxep[j];
1981                         qword1 = rte_le_to_cpu_64
1982                                         (rxdp[j].wb.qword1.status_error_len);
1983                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1984                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1985                         mb->data_len = pkt_len;
1986                         mb->pkt_len = pkt_len;
1987                         mb->ol_flags = 0;
1988                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1989                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1990                         mb->packet_type =
1991                                 ptype_tbl[(uint8_t)((qword1 &
1992                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1993                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
1994
1995                         if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
1996                                 mb->hash.rss = rte_le_to_cpu_32(
1997                                         rxdp[j].wb.qword0.hi_dword.rss);
1998
1999                         if (pkt_flags & RTE_MBUF_F_RX_FDIR)
2000                                 pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
2001
2002                         mb->ol_flags |= pkt_flags;
2003                 }
2004
2005                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
2006                         rxq->rx_stage[i + j] = rxep[j];
2007
2008                 if (nb_dd != IAVF_LOOK_AHEAD)
2009                         break;
2010         }
2011
2012         /* Clear software ring entries */
2013         for (i = 0; i < nb_rx; i++)
2014                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
2015
2016         return nb_rx;
2017 }
2018
2019 static inline uint16_t
2020 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
2021                        struct rte_mbuf **rx_pkts,
2022                        uint16_t nb_pkts)
2023 {
2024         uint16_t i;
2025         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
2026
2027         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
2028
2029         for (i = 0; i < nb_pkts; i++)
2030                 rx_pkts[i] = stage[i];
2031
2032         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
2033         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
2034
2035         return nb_pkts;
2036 }
2037
2038 static inline int
2039 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
2040 {
2041         volatile union iavf_rx_desc *rxdp;
2042         struct rte_mbuf **rxep;
2043         struct rte_mbuf *mb;
2044         uint16_t alloc_idx, i;
2045         uint64_t dma_addr;
2046         int diag;
2047
2048         /* Allocate buffers in bulk */
2049         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
2050                                 (rxq->rx_free_thresh - 1));
2051         rxep = &rxq->sw_ring[alloc_idx];
2052         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
2053                                     rxq->rx_free_thresh);
2054         if (unlikely(diag != 0)) {
2055                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
2056                 return -ENOMEM;
2057         }
2058
2059         rxdp = &rxq->rx_ring[alloc_idx];
2060         for (i = 0; i < rxq->rx_free_thresh; i++) {
2061                 if (likely(i < (rxq->rx_free_thresh - 1)))
2062                         /* Prefetch next mbuf */
2063                         rte_prefetch0(rxep[i + 1]);
2064
2065                 mb = rxep[i];
2066                 rte_mbuf_refcnt_set(mb, 1);
2067                 mb->next = NULL;
2068                 mb->data_off = RTE_PKTMBUF_HEADROOM;
2069                 mb->nb_segs = 1;
2070                 mb->port = rxq->port_id;
2071                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
2072                 rxdp[i].read.hdr_addr = 0;
2073                 rxdp[i].read.pkt_addr = dma_addr;
2074         }
2075
2076         /* Update rx tail register */
2077         rte_wmb();
2078         IAVF_PCI_REG_WC_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
2079
2080         rxq->rx_free_trigger =
2081                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
2082         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
2083                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2084
2085         return 0;
2086 }
2087
2088 static inline uint16_t
2089 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
2090 {
2091         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
2092         uint16_t nb_rx = 0;
2093
2094         if (!nb_pkts)
2095                 return 0;
2096
2097         if (rxq->rx_nb_avail)
2098                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
2099
2100         if (rxq->rxdid >= IAVF_RXDID_FLEX_NIC && rxq->rxdid <= IAVF_RXDID_LAST)
2101                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
2102         else
2103                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
2104         rxq->rx_next_avail = 0;
2105         rxq->rx_nb_avail = nb_rx;
2106         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
2107
2108         if (rxq->rx_tail > rxq->rx_free_trigger) {
2109                 if (iavf_rx_alloc_bufs(rxq) != 0) {
2110                         uint16_t i, j;
2111
2112                         /* TODO: count rx_mbuf_alloc_failed here */
2113
2114                         rxq->rx_nb_avail = 0;
2115                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
2116                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
2117                                 rxq->sw_ring[j] = rxq->rx_stage[i];
2118
2119                         return 0;
2120                 }
2121         }
2122
2123         if (rxq->rx_tail >= rxq->nb_rx_desc)
2124                 rxq->rx_tail = 0;
2125
2126         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
2127                    rxq->port_id, rxq->queue_id,
2128                    rxq->rx_tail, nb_rx);
2129
2130         if (rxq->rx_nb_avail)
2131                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
2132
2133         return 0;
2134 }
2135
2136 static uint16_t
2137 iavf_recv_pkts_bulk_alloc(void *rx_queue,
2138                          struct rte_mbuf **rx_pkts,
2139                          uint16_t nb_pkts)
2140 {
2141         uint16_t nb_rx = 0, n, count;
2142
2143         if (unlikely(nb_pkts == 0))
2144                 return 0;
2145
2146         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
2147                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
2148
2149         while (nb_pkts) {
2150                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
2151                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
2152                 nb_rx = (uint16_t)(nb_rx + count);
2153                 nb_pkts = (uint16_t)(nb_pkts - count);
2154                 if (count < n)
2155                         break;
2156         }
2157
2158         return nb_rx;
2159 }
2160
2161 static inline int
2162 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
2163 {
2164         struct iavf_tx_entry *sw_ring = txq->sw_ring;
2165         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2166         uint16_t nb_tx_desc = txq->nb_tx_desc;
2167         uint16_t desc_to_clean_to;
2168         uint16_t nb_tx_to_clean;
2169
2170         volatile struct iavf_tx_desc *txd = txq->tx_ring;
2171
2172         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
2173         if (desc_to_clean_to >= nb_tx_desc)
2174                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2175
2176         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2177         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
2178                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
2179                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
2180                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2181                            "(port=%d queue=%d)", desc_to_clean_to,
2182                            txq->port_id, txq->queue_id);
2183                 return -1;
2184         }
2185
2186         if (last_desc_cleaned > desc_to_clean_to)
2187                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2188                                                         desc_to_clean_to);
2189         else
2190                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2191                                         last_desc_cleaned);
2192
2193         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2194
2195         txq->last_desc_cleaned = desc_to_clean_to;
2196         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
2197
2198         return 0;
2199 }
2200
2201 /* Check if the context descriptor is needed for TX offloading */
2202 static inline uint16_t
2203 iavf_calc_context_desc(uint64_t flags, uint8_t vlan_flag)
2204 {
2205         if (flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG |
2206                         RTE_MBUF_F_TX_TUNNEL_MASK))
2207                 return 1;
2208         if (flags & RTE_MBUF_F_TX_VLAN &&
2209             vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
2210                 return 1;
2211         return 0;
2212 }
2213
2214 static inline void
2215 iavf_fill_ctx_desc_cmd_field(volatile uint64_t *field, struct rte_mbuf *m,
2216                 uint8_t vlan_flag)
2217 {
2218         uint64_t cmd = 0;
2219
2220         /* TSO enabled */
2221         if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG))
2222                 cmd = IAVF_TX_CTX_DESC_TSO << IAVF_TXD_CTX_QW1_CMD_SHIFT;
2223
2224         if (m->ol_flags & RTE_MBUF_F_TX_VLAN &&
2225                         vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2) {
2226                 cmd |= IAVF_TX_CTX_DESC_IL2TAG2
2227                         << IAVF_TXD_CTX_QW1_CMD_SHIFT;
2228         }
2229
2230         *field |= cmd;
2231 }
2232
2233 static inline void
2234 iavf_fill_ctx_desc_ipsec_field(volatile uint64_t *field,
2235         struct iavf_ipsec_crypto_pkt_metadata *ipsec_md)
2236 {
2237         uint64_t ipsec_field =
2238                 (uint64_t)ipsec_md->ctx_desc_ipsec_params <<
2239                         IAVF_TXD_CTX_QW1_IPSEC_PARAMS_CIPHERBLK_SHIFT;
2240
2241         *field |= ipsec_field;
2242 }
2243
2244
2245 static inline void
2246 iavf_fill_ctx_desc_tunnelling_field(volatile uint64_t *qw0,
2247                 const struct rte_mbuf *m)
2248 {
2249         uint64_t eip_typ = IAVF_TX_CTX_DESC_EIPT_NONE;
2250         uint64_t eip_len = 0;
2251         uint64_t eip_noinc = 0;
2252         /* Default - IP_ID is increment in each segment of LSO */
2253
2254         switch (m->ol_flags & (RTE_MBUF_F_TX_OUTER_IPV4 |
2255                         RTE_MBUF_F_TX_OUTER_IPV6 |
2256                         RTE_MBUF_F_TX_OUTER_IP_CKSUM)) {
2257         case RTE_MBUF_F_TX_OUTER_IPV4:
2258                 eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV4_NO_CHECKSUM_OFFLOAD;
2259                 eip_len = m->outer_l3_len >> 2;
2260         break;
2261         case RTE_MBUF_F_TX_OUTER_IPV4 | RTE_MBUF_F_TX_OUTER_IP_CKSUM:
2262                 eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV4_CHECKSUM_OFFLOAD;
2263                 eip_len = m->outer_l3_len >> 2;
2264         break;
2265         case RTE_MBUF_F_TX_OUTER_IPV6:
2266                 eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV6;
2267                 eip_len = m->outer_l3_len >> 2;
2268         break;
2269         }
2270
2271         *qw0 = eip_typ << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIPT_SHIFT |
2272                 eip_len << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIPLEN_SHIFT |
2273                 eip_noinc << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIP_NOINC_SHIFT;
2274 }
2275
2276 static inline uint16_t
2277 iavf_fill_ctx_desc_segmentation_field(volatile uint64_t *field,
2278         struct rte_mbuf *m, struct iavf_ipsec_crypto_pkt_metadata *ipsec_md)
2279 {
2280         uint64_t segmentation_field = 0;
2281         uint64_t total_length = 0;
2282
2283         if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) {
2284                 total_length = ipsec_md->l4_payload_len;
2285         } else {
2286                 total_length = m->pkt_len - (m->l2_len + m->l3_len + m->l4_len);
2287
2288                 if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2289                         total_length -= m->outer_l3_len;
2290         }
2291
2292 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
2293         if (!m->l4_len || !m->tso_segsz)
2294                 PMD_TX_LOG(DEBUG, "L4 length %d, LSO Segment size %d",
2295                          m->l4_len, m->tso_segsz);
2296         if (m->tso_segsz < 88)
2297                 PMD_TX_LOG(DEBUG, "LSO Segment size %d is less than minimum %d",
2298                         m->tso_segsz, 88);
2299 #endif
2300         segmentation_field =
2301                 (((uint64_t)total_length << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) &
2302                                 IAVF_TXD_CTX_QW1_TSO_LEN_MASK) |
2303                 (((uint64_t)m->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT) &
2304                                 IAVF_TXD_CTX_QW1_MSS_MASK);
2305
2306         *field |= segmentation_field;
2307
2308         return total_length;
2309 }
2310
2311
2312 struct iavf_tx_context_desc_qws {
2313         __le64 qw0;
2314         __le64 qw1;
2315 };
2316
2317 static inline void
2318 iavf_fill_context_desc(volatile struct iavf_tx_context_desc *desc,
2319         struct rte_mbuf *m, struct iavf_ipsec_crypto_pkt_metadata *ipsec_md,
2320         uint16_t *tlen, uint8_t vlan_flag)
2321 {
2322         volatile struct iavf_tx_context_desc_qws *desc_qws =
2323                         (volatile struct iavf_tx_context_desc_qws *)desc;
2324         /* fill descriptor type field */
2325         desc_qws->qw1 = IAVF_TX_DESC_DTYPE_CONTEXT;
2326
2327         /* fill command field */
2328         iavf_fill_ctx_desc_cmd_field(&desc_qws->qw1, m, vlan_flag);
2329
2330         /* fill segmentation field */
2331         if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) {
2332                 /* fill IPsec field */
2333                 if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
2334                         iavf_fill_ctx_desc_ipsec_field(&desc_qws->qw1,
2335                                 ipsec_md);
2336
2337                 *tlen = iavf_fill_ctx_desc_segmentation_field(&desc_qws->qw1,
2338                                 m, ipsec_md);
2339         }
2340
2341         /* fill tunnelling field */
2342         if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2343                 iavf_fill_ctx_desc_tunnelling_field(&desc_qws->qw0, m);
2344         else
2345                 desc_qws->qw0 = 0;
2346
2347         desc_qws->qw0 = rte_cpu_to_le_64(desc_qws->qw0);
2348         desc_qws->qw1 = rte_cpu_to_le_64(desc_qws->qw1);
2349
2350         if (vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
2351                 desc->l2tag2 = m->vlan_tci;
2352 }
2353
2354
2355 static inline void
2356 iavf_fill_ipsec_desc(volatile struct iavf_tx_ipsec_desc *desc,
2357         const struct iavf_ipsec_crypto_pkt_metadata *md, uint16_t *ipsec_len)
2358 {
2359         desc->qw0 = rte_cpu_to_le_64(((uint64_t)md->l4_payload_len <<
2360                 IAVF_IPSEC_TX_DESC_QW0_L4PAYLEN_SHIFT) |
2361                 ((uint64_t)md->esn << IAVF_IPSEC_TX_DESC_QW0_IPSECESN_SHIFT) |
2362                 ((uint64_t)md->esp_trailer_len <<
2363                                 IAVF_IPSEC_TX_DESC_QW0_TRAILERLEN_SHIFT));
2364
2365         desc->qw1 = rte_cpu_to_le_64(((uint64_t)md->sa_idx <<
2366                 IAVF_IPSEC_TX_DESC_QW1_IPSECSA_SHIFT) |
2367                 ((uint64_t)md->next_proto <<
2368                                 IAVF_IPSEC_TX_DESC_QW1_IPSECNH_SHIFT) |
2369                 ((uint64_t)(md->len_iv & 0x3) <<
2370                                 IAVF_IPSEC_TX_DESC_QW1_IVLEN_SHIFT) |
2371                 ((uint64_t)(md->ol_flags & IAVF_IPSEC_CRYPTO_OL_FLAGS_NATT ?
2372                                 1ULL : 0ULL) <<
2373                                 IAVF_IPSEC_TX_DESC_QW1_UDP_SHIFT) |
2374                 (uint64_t)IAVF_TX_DESC_DTYPE_IPSEC);
2375
2376         /**
2377          * TODO: Pre-calculate this in the Session initialization
2378          *
2379          * Calculate IPsec length required in data descriptor func when TSO
2380          * offload is enabled
2381          */
2382         *ipsec_len = sizeof(struct rte_esp_hdr) + (md->len_iv >> 2) +
2383                         (md->ol_flags & IAVF_IPSEC_CRYPTO_OL_FLAGS_NATT ?
2384                         sizeof(struct rte_udp_hdr) : 0);
2385 }
2386
2387 static inline void
2388 iavf_build_data_desc_cmd_offset_fields(volatile uint64_t *qw1,
2389                 struct rte_mbuf *m, uint8_t vlan_flag)
2390 {
2391         uint64_t command = 0;
2392         uint64_t offset = 0;
2393         uint64_t l2tag1 = 0;
2394
2395         *qw1 = IAVF_TX_DESC_DTYPE_DATA;
2396
2397         command = (uint64_t)IAVF_TX_DESC_CMD_ICRC;
2398
2399         /* Descriptor based VLAN insertion */
2400         if ((vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1) &&
2401                         m->ol_flags & RTE_MBUF_F_TX_VLAN) {
2402                 command |= (uint64_t)IAVF_TX_DESC_CMD_IL2TAG1;
2403                 l2tag1 |= m->vlan_tci;
2404         }
2405
2406         /* Set MACLEN */
2407         offset |= (m->l2_len >> 1) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
2408
2409         /* Enable L3 checksum offloading inner */
2410         if (m->ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4)) {
2411                 command |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
2412                 offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2413         } else if (m->ol_flags & RTE_MBUF_F_TX_IPV4) {
2414                 command |= IAVF_TX_DESC_CMD_IIPT_IPV4;
2415                 offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2416         } else if (m->ol_flags & RTE_MBUF_F_TX_IPV6) {
2417                 command |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2418                 offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2419         }
2420
2421         if (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2422                 command |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2423                 offset |= (m->l4_len >> 2) <<
2424                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2425         }
2426
2427         /* Enable L4 checksum offloads */
2428         switch (m->ol_flags & RTE_MBUF_F_TX_L4_MASK) {
2429         case RTE_MBUF_F_TX_TCP_CKSUM:
2430                 command |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2431                 offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2432                                 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2433                 break;
2434         case RTE_MBUF_F_TX_SCTP_CKSUM:
2435                 command |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2436                 offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2437                                 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2438                 break;
2439         case RTE_MBUF_F_TX_UDP_CKSUM:
2440                 command |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2441                 offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2442                                 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2443                 break;
2444         }
2445
2446         *qw1 = rte_cpu_to_le_64((((uint64_t)command <<
2447                 IAVF_TXD_DATA_QW1_CMD_SHIFT) & IAVF_TXD_DATA_QW1_CMD_MASK) |
2448                 (((uint64_t)offset << IAVF_TXD_DATA_QW1_OFFSET_SHIFT) &
2449                 IAVF_TXD_DATA_QW1_OFFSET_MASK) |
2450                 ((uint64_t)l2tag1 << IAVF_TXD_DATA_QW1_L2TAG1_SHIFT));
2451 }
2452
2453 static inline void
2454 iavf_fill_data_desc(volatile struct iavf_tx_desc *desc,
2455         struct rte_mbuf *m, uint64_t desc_template,
2456         uint16_t tlen, uint16_t ipseclen)
2457 {
2458         uint32_t hdrlen = m->l2_len;
2459         uint32_t bufsz = 0;
2460
2461         /* fill data descriptor qw1 from template */
2462         desc->cmd_type_offset_bsz = desc_template;
2463
2464         /* set data buffer address */
2465         desc->buffer_addr = rte_mbuf_data_iova(m);
2466
2467         /* calculate data buffer size less set header lengths */
2468         if ((m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) &&
2469                         (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG |
2470                                         RTE_MBUF_F_TX_UDP_SEG))) {
2471                 hdrlen += m->outer_l3_len;
2472                 if (m->ol_flags & RTE_MBUF_F_TX_L4_MASK)
2473                         hdrlen += m->l3_len + m->l4_len;
2474                 else
2475                         hdrlen += m->l3_len;
2476                 if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
2477                         hdrlen += ipseclen;
2478                 bufsz = hdrlen + tlen;
2479         } else if ((m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) &&
2480                         (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG |
2481                                         RTE_MBUF_F_TX_UDP_SEG))) {
2482                 hdrlen += m->outer_l3_len + m->l3_len + ipseclen;
2483                 if (m->ol_flags & RTE_MBUF_F_TX_L4_MASK)
2484                         hdrlen += m->l4_len;
2485                 bufsz = hdrlen + tlen;
2486
2487         } else {
2488                 bufsz = m->data_len;
2489         }
2490
2491         /* set data buffer size */
2492         desc->cmd_type_offset_bsz |=
2493                 (((uint64_t)bufsz << IAVF_TXD_DATA_QW1_TX_BUF_SZ_SHIFT) &
2494                 IAVF_TXD_DATA_QW1_TX_BUF_SZ_MASK);
2495
2496         desc->buffer_addr = rte_cpu_to_le_64(desc->buffer_addr);
2497         desc->cmd_type_offset_bsz = rte_cpu_to_le_64(desc->cmd_type_offset_bsz);
2498 }
2499
2500
2501 static struct iavf_ipsec_crypto_pkt_metadata *
2502 iavf_ipsec_crypto_get_pkt_metadata(const struct iavf_tx_queue *txq,
2503                 struct rte_mbuf *m)
2504 {
2505         if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
2506                 return RTE_MBUF_DYNFIELD(m, txq->ipsec_crypto_pkt_md_offset,
2507                                 struct iavf_ipsec_crypto_pkt_metadata *);
2508
2509         return NULL;
2510 }
2511
2512 /* TX function */
2513 uint16_t
2514 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2515 {
2516         struct iavf_tx_queue *txq = tx_queue;
2517         volatile struct iavf_tx_desc *txr = txq->tx_ring;
2518         struct iavf_tx_entry *txe_ring = txq->sw_ring;
2519         struct iavf_tx_entry *txe, *txn;
2520         struct rte_mbuf *mb, *mb_seg;
2521         uint16_t desc_idx, desc_idx_last;
2522         uint16_t idx;
2523
2524
2525         /* Check if the descriptor ring needs to be cleaned. */
2526         if (txq->nb_free < txq->free_thresh)
2527                 iavf_xmit_cleanup(txq);
2528
2529         desc_idx = txq->tx_tail;
2530         txe = &txe_ring[desc_idx];
2531
2532 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_DESC_RING
2533                 iavf_dump_tx_entry_ring(txq);
2534                 iavf_dump_tx_desc_ring(txq);
2535 #endif
2536
2537
2538         for (idx = 0; idx < nb_pkts; idx++) {
2539                 volatile struct iavf_tx_desc *ddesc;
2540                 struct iavf_ipsec_crypto_pkt_metadata *ipsec_md;
2541
2542                 uint16_t nb_desc_ctx, nb_desc_ipsec;
2543                 uint16_t nb_desc_data, nb_desc_required;
2544                 uint16_t tlen = 0, ipseclen = 0;
2545                 uint64_t ddesc_template = 0;
2546                 uint64_t ddesc_cmd = 0;
2547
2548                 mb = tx_pkts[idx];
2549
2550                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
2551
2552                 /**
2553                  * Get metadata for ipsec crypto from mbuf dynamic fields if
2554                  * security offload is specified.
2555                  */
2556                 ipsec_md = iavf_ipsec_crypto_get_pkt_metadata(txq, mb);
2557
2558                 nb_desc_data = mb->nb_segs;
2559                 nb_desc_ctx =
2560                         iavf_calc_context_desc(mb->ol_flags, txq->vlan_flag);
2561                 nb_desc_ipsec = !!(mb->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD);
2562
2563                 /**
2564                  * The number of descriptors that must be allocated for
2565                  * a packet equals to the number of the segments of that
2566                  * packet plus the context and ipsec descriptors if needed.
2567                  */
2568                 nb_desc_required = nb_desc_data + nb_desc_ctx + nb_desc_ipsec;
2569
2570                 desc_idx_last = (uint16_t)(desc_idx + nb_desc_required - 1);
2571
2572                 /* wrap descriptor ring */
2573                 if (desc_idx_last >= txq->nb_tx_desc)
2574                         desc_idx_last =
2575                                 (uint16_t)(desc_idx_last - txq->nb_tx_desc);
2576
2577                 PMD_TX_LOG(DEBUG,
2578                         "port_id=%u queue_id=%u tx_first=%u tx_last=%u",
2579                         txq->port_id, txq->queue_id, desc_idx, desc_idx_last);
2580
2581                 if (nb_desc_required > txq->nb_free) {
2582                         if (iavf_xmit_cleanup(txq)) {
2583                                 if (idx == 0)
2584                                         return 0;
2585                                 goto end_of_tx;
2586                         }
2587                         if (unlikely(nb_desc_required > txq->rs_thresh)) {
2588                                 while (nb_desc_required > txq->nb_free) {
2589                                         if (iavf_xmit_cleanup(txq)) {
2590                                                 if (idx == 0)
2591                                                         return 0;
2592                                                 goto end_of_tx;
2593                                         }
2594                                 }
2595                         }
2596                 }
2597
2598                 iavf_build_data_desc_cmd_offset_fields(&ddesc_template, mb,
2599                         txq->vlan_flag);
2600
2601                         /* Setup TX context descriptor if required */
2602                 if (nb_desc_ctx) {
2603                         volatile struct iavf_tx_context_desc *ctx_desc =
2604                                 (volatile struct iavf_tx_context_desc *)
2605                                         &txr[desc_idx];
2606
2607                         /* clear QW0 or the previous writeback value
2608                          * may impact next write
2609                          */
2610                         *(volatile uint64_t *)ctx_desc = 0;
2611
2612                         txn = &txe_ring[txe->next_id];
2613                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2614
2615                         if (txe->mbuf) {
2616                                 rte_pktmbuf_free_seg(txe->mbuf);
2617                                 txe->mbuf = NULL;
2618                         }
2619
2620                         iavf_fill_context_desc(ctx_desc, mb, ipsec_md, &tlen,
2621                                 txq->vlan_flag);
2622                         IAVF_DUMP_TX_DESC(txq, ctx_desc, desc_idx);
2623
2624                         txe->last_id = desc_idx_last;
2625                         desc_idx = txe->next_id;
2626                         txe = txn;
2627                         }
2628
2629                 if (nb_desc_ipsec) {
2630                         volatile struct iavf_tx_ipsec_desc *ipsec_desc =
2631                                 (volatile struct iavf_tx_ipsec_desc *)
2632                                         &txr[desc_idx];
2633
2634                         txn = &txe_ring[txe->next_id];
2635                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2636
2637                         if (txe->mbuf) {
2638                                 rte_pktmbuf_free_seg(txe->mbuf);
2639                                 txe->mbuf = NULL;
2640                 }
2641
2642                         iavf_fill_ipsec_desc(ipsec_desc, ipsec_md, &ipseclen);
2643
2644                         IAVF_DUMP_TX_DESC(txq, ipsec_desc, desc_idx);
2645
2646                         txe->last_id = desc_idx_last;
2647                         desc_idx = txe->next_id;
2648                         txe = txn;
2649                 }
2650
2651                 mb_seg = mb;
2652
2653                 do {
2654                         ddesc = (volatile struct iavf_tx_desc *)
2655                                         &txr[desc_idx];
2656
2657                         txn = &txe_ring[txe->next_id];
2658                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2659
2660                         if (txe->mbuf)
2661                                 rte_pktmbuf_free_seg(txe->mbuf);
2662
2663                         txe->mbuf = mb_seg;
2664                         iavf_fill_data_desc(ddesc, mb_seg,
2665                                         ddesc_template, tlen, ipseclen);
2666
2667                         IAVF_DUMP_TX_DESC(txq, ddesc, desc_idx);
2668
2669                         txe->last_id = desc_idx_last;
2670                         desc_idx = txe->next_id;
2671                         txe = txn;
2672                         mb_seg = mb_seg->next;
2673                 } while (mb_seg);
2674
2675                 /* The last packet data descriptor needs End Of Packet (EOP) */
2676                 ddesc_cmd = IAVF_TX_DESC_CMD_EOP;
2677
2678                 txq->nb_used = (uint16_t)(txq->nb_used + nb_desc_required);
2679                 txq->nb_free = (uint16_t)(txq->nb_free - nb_desc_required);
2680
2681                 if (txq->nb_used >= txq->rs_thresh) {
2682                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
2683                                    "%4u (port=%d queue=%d)",
2684                                    desc_idx_last, txq->port_id, txq->queue_id);
2685
2686                         ddesc_cmd |= IAVF_TX_DESC_CMD_RS;
2687
2688                         /* Update txq RS bit counters */
2689                         txq->nb_used = 0;
2690                 }
2691
2692                 ddesc->cmd_type_offset_bsz |= rte_cpu_to_le_64(ddesc_cmd <<
2693                                 IAVF_TXD_DATA_QW1_CMD_SHIFT);
2694
2695                 IAVF_DUMP_TX_DESC(txq, ddesc, desc_idx - 1);
2696         }
2697
2698 end_of_tx:
2699         rte_wmb();
2700
2701         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2702                    txq->port_id, txq->queue_id, desc_idx, idx);
2703
2704         IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, desc_idx);
2705         txq->tx_tail = desc_idx;
2706
2707         return idx;
2708 }
2709
2710 /* Check if the packet with vlan user priority is transmitted in the
2711  * correct queue.
2712  */
2713 static int
2714 iavf_check_vlan_up2tc(struct iavf_tx_queue *txq, struct rte_mbuf *m)
2715 {
2716         struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
2717         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2718         uint16_t up;
2719
2720         up = m->vlan_tci >> IAVF_VLAN_TAG_PCP_OFFSET;
2721
2722         if (!(vf->qos_cap->cap[txq->tc].tc_prio & BIT(up))) {
2723                 PMD_TX_LOG(ERR, "packet with vlan pcp %u cannot transmit in queue %u\n",
2724                         up, txq->queue_id);
2725                 return -1;
2726         } else {
2727                 return 0;
2728         }
2729 }
2730
2731 /* TX prep functions */
2732 uint16_t
2733 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2734               uint16_t nb_pkts)
2735 {
2736         int i, ret;
2737         uint64_t ol_flags;
2738         struct rte_mbuf *m;
2739         struct iavf_tx_queue *txq = tx_queue;
2740         struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
2741         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2742
2743         for (i = 0; i < nb_pkts; i++) {
2744                 m = tx_pkts[i];
2745                 ol_flags = m->ol_flags;
2746
2747                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
2748                 if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG)) {
2749                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
2750                                 rte_errno = EINVAL;
2751                                 return i;
2752                         }
2753                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
2754                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
2755                         /* MSS outside the range are considered malicious */
2756                         rte_errno = EINVAL;
2757                         return i;
2758                 }
2759
2760                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
2761                         rte_errno = ENOTSUP;
2762                         return i;
2763                 }
2764
2765 #ifdef RTE_ETHDEV_DEBUG_TX
2766                 ret = rte_validate_tx_offload(m);
2767                 if (ret != 0) {
2768                         rte_errno = -ret;
2769                         return i;
2770                 }
2771 #endif
2772                 ret = rte_net_intel_cksum_prepare(m);
2773                 if (ret != 0) {
2774                         rte_errno = -ret;
2775                         return i;
2776                 }
2777
2778                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
2779                     ol_flags & (RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN)) {
2780                         ret = iavf_check_vlan_up2tc(txq, m);
2781                         if (ret != 0) {
2782                                 rte_errno = -ret;
2783                                 return i;
2784                         }
2785                 }
2786         }
2787
2788         return i;
2789 }
2790
2791 /* choose rx function*/
2792 void
2793 iavf_set_rx_function(struct rte_eth_dev *dev)
2794 {
2795         struct iavf_adapter *adapter =
2796                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2797         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2798
2799 #ifdef RTE_ARCH_X86
2800         struct iavf_rx_queue *rxq;
2801         int i;
2802         int check_ret;
2803         bool use_avx2 = false;
2804         bool use_avx512 = false;
2805         bool use_flex = false;
2806
2807         check_ret = iavf_rx_vec_dev_check(dev);
2808         if (check_ret >= 0 &&
2809             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2810                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2811                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2812                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2813                         use_avx2 = true;
2814
2815 #ifdef CC_AVX512_SUPPORT
2816                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2817                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2818                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2819                         use_avx512 = true;
2820 #endif
2821
2822                 if (vf->vf_res->vf_cap_flags &
2823                         VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2824                         use_flex = true;
2825
2826                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2827                         rxq = dev->data->rx_queues[i];
2828                         (void)iavf_rxq_vec_setup(rxq);
2829                 }
2830
2831                 if (dev->data->scattered_rx) {
2832                         if (!use_avx512) {
2833                                 PMD_DRV_LOG(DEBUG,
2834                                             "Using %sVector Scattered Rx (port %d).",
2835                                             use_avx2 ? "avx2 " : "",
2836                                             dev->data->port_id);
2837                         } else {
2838                                 if (check_ret == IAVF_VECTOR_PATH)
2839                                         PMD_DRV_LOG(DEBUG,
2840                                                     "Using AVX512 Vector Scattered Rx (port %d).",
2841                                                     dev->data->port_id);
2842                                 else
2843                                         PMD_DRV_LOG(DEBUG,
2844                                                     "Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
2845                                                     dev->data->port_id);
2846                         }
2847                         if (use_flex) {
2848                                 dev->rx_pkt_burst = use_avx2 ?
2849                                         iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
2850                                         iavf_recv_scattered_pkts_vec_flex_rxd;
2851 #ifdef CC_AVX512_SUPPORT
2852                                 if (use_avx512) {
2853                                         if (check_ret == IAVF_VECTOR_PATH)
2854                                                 dev->rx_pkt_burst =
2855                                                         iavf_recv_scattered_pkts_vec_avx512_flex_rxd;
2856                                         else
2857                                                 dev->rx_pkt_burst =
2858                                                         iavf_recv_scattered_pkts_vec_avx512_flex_rxd_offload;
2859                                 }
2860 #endif
2861                         } else {
2862                                 dev->rx_pkt_burst = use_avx2 ?
2863                                         iavf_recv_scattered_pkts_vec_avx2 :
2864                                         iavf_recv_scattered_pkts_vec;
2865 #ifdef CC_AVX512_SUPPORT
2866                                 if (use_avx512) {
2867                                         if (check_ret == IAVF_VECTOR_PATH)
2868                                                 dev->rx_pkt_burst =
2869                                                         iavf_recv_scattered_pkts_vec_avx512;
2870                                         else
2871                                                 dev->rx_pkt_burst =
2872                                                         iavf_recv_scattered_pkts_vec_avx512_offload;
2873                                 }
2874 #endif
2875                         }
2876                 } else {
2877                         if (!use_avx512) {
2878                                 PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2879                                             use_avx2 ? "avx2 " : "",
2880                                             dev->data->port_id);
2881                         } else {
2882                                 if (check_ret == IAVF_VECTOR_PATH)
2883                                         PMD_DRV_LOG(DEBUG,
2884                                                     "Using AVX512 Vector Rx (port %d).",
2885                                                     dev->data->port_id);
2886                                 else
2887                                         PMD_DRV_LOG(DEBUG,
2888                                                     "Using AVX512 OFFLOAD Vector Rx (port %d).",
2889                                                     dev->data->port_id);
2890                         }
2891                         if (use_flex) {
2892                                 dev->rx_pkt_burst = use_avx2 ?
2893                                         iavf_recv_pkts_vec_avx2_flex_rxd :
2894                                         iavf_recv_pkts_vec_flex_rxd;
2895 #ifdef CC_AVX512_SUPPORT
2896                                 if (use_avx512) {
2897                                         if (check_ret == IAVF_VECTOR_PATH)
2898                                                 dev->rx_pkt_burst =
2899                                                         iavf_recv_pkts_vec_avx512_flex_rxd;
2900                                         else
2901                                                 dev->rx_pkt_burst =
2902                                                         iavf_recv_pkts_vec_avx512_flex_rxd_offload;
2903                                 }
2904 #endif
2905                         } else {
2906                                 dev->rx_pkt_burst = use_avx2 ?
2907                                         iavf_recv_pkts_vec_avx2 :
2908                                         iavf_recv_pkts_vec;
2909 #ifdef CC_AVX512_SUPPORT
2910                                 if (use_avx512) {
2911                                         if (check_ret == IAVF_VECTOR_PATH)
2912                                                 dev->rx_pkt_burst =
2913                                                         iavf_recv_pkts_vec_avx512;
2914                                         else
2915                                                 dev->rx_pkt_burst =
2916                                                         iavf_recv_pkts_vec_avx512_offload;
2917                                 }
2918 #endif
2919                         }
2920                 }
2921
2922                 return;
2923         }
2924
2925 #endif
2926         if (dev->data->scattered_rx) {
2927                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
2928                             dev->data->port_id);
2929                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2930                         dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
2931                 else
2932                         dev->rx_pkt_burst = iavf_recv_scattered_pkts;
2933         } else if (adapter->rx_bulk_alloc_allowed) {
2934                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
2935                             dev->data->port_id);
2936                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
2937         } else {
2938                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
2939                             dev->data->port_id);
2940                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2941                         dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
2942                 else
2943                         dev->rx_pkt_burst = iavf_recv_pkts;
2944         }
2945 }
2946
2947 /* choose tx function*/
2948 void
2949 iavf_set_tx_function(struct rte_eth_dev *dev)
2950 {
2951 #ifdef RTE_ARCH_X86
2952         struct iavf_tx_queue *txq;
2953         int i;
2954         int check_ret;
2955         bool use_sse = false;
2956         bool use_avx2 = false;
2957         bool use_avx512 = false;
2958
2959         check_ret = iavf_tx_vec_dev_check(dev);
2960
2961         if (check_ret >= 0 &&
2962             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2963                 /* SSE and AVX2 not support offload path yet. */
2964                 if (check_ret == IAVF_VECTOR_PATH) {
2965                         use_sse = true;
2966                         if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2967                              rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2968                             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2969                                 use_avx2 = true;
2970                 }
2971 #ifdef CC_AVX512_SUPPORT
2972                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2973                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2974                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2975                         use_avx512 = true;
2976 #endif
2977
2978                 if (!use_sse && !use_avx2 && !use_avx512)
2979                         goto normal;
2980
2981                 if (!use_avx512) {
2982                         PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2983                                     use_avx2 ? "avx2 " : "",
2984                                     dev->data->port_id);
2985                         dev->tx_pkt_burst = use_avx2 ?
2986                                             iavf_xmit_pkts_vec_avx2 :
2987                                             iavf_xmit_pkts_vec;
2988                 }
2989                 dev->tx_pkt_prepare = NULL;
2990 #ifdef CC_AVX512_SUPPORT
2991                 if (use_avx512) {
2992                         if (check_ret == IAVF_VECTOR_PATH) {
2993                                 dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512;
2994                                 PMD_DRV_LOG(DEBUG, "Using AVX512 Vector Tx (port %d).",
2995                                             dev->data->port_id);
2996                         } else {
2997                                 dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512_offload;
2998                                 dev->tx_pkt_prepare = iavf_prep_pkts;
2999                                 PMD_DRV_LOG(DEBUG, "Using AVX512 OFFLOAD Vector Tx (port %d).",
3000                                             dev->data->port_id);
3001                         }
3002                 }
3003 #endif
3004
3005                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
3006                         txq = dev->data->tx_queues[i];
3007                         if (!txq)
3008                                 continue;
3009 #ifdef CC_AVX512_SUPPORT
3010                         if (use_avx512)
3011                                 iavf_txq_vec_setup_avx512(txq);
3012                         else
3013                                 iavf_txq_vec_setup(txq);
3014 #else
3015                         iavf_txq_vec_setup(txq);
3016 #endif
3017                 }
3018
3019                 return;
3020         }
3021
3022 normal:
3023 #endif
3024         PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
3025                     dev->data->port_id);
3026         dev->tx_pkt_burst = iavf_xmit_pkts;
3027         dev->tx_pkt_prepare = iavf_prep_pkts;
3028 }
3029
3030 static int
3031 iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
3032                         uint32_t free_cnt)
3033 {
3034         struct iavf_tx_entry *swr_ring = txq->sw_ring;
3035         uint16_t i, tx_last, tx_id;
3036         uint16_t nb_tx_free_last;
3037         uint16_t nb_tx_to_clean;
3038         uint32_t pkt_cnt;
3039
3040         /* Start free mbuf from the next of tx_tail */
3041         tx_last = txq->tx_tail;
3042         tx_id  = swr_ring[tx_last].next_id;
3043
3044         if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
3045                 return 0;
3046
3047         nb_tx_to_clean = txq->nb_free;
3048         nb_tx_free_last = txq->nb_free;
3049         if (!free_cnt)
3050                 free_cnt = txq->nb_tx_desc;
3051
3052         /* Loop through swr_ring to count the amount of
3053          * freeable mubfs and packets.
3054          */
3055         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
3056                 for (i = 0; i < nb_tx_to_clean &&
3057                         pkt_cnt < free_cnt &&
3058                         tx_id != tx_last; i++) {
3059                         if (swr_ring[tx_id].mbuf != NULL) {
3060                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
3061                                 swr_ring[tx_id].mbuf = NULL;
3062
3063                                 /*
3064                                  * last segment in the packet,
3065                                  * increment packet count
3066                                  */
3067                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
3068                         }
3069
3070                         tx_id = swr_ring[tx_id].next_id;
3071                 }
3072
3073                 if (txq->rs_thresh > txq->nb_tx_desc -
3074                         txq->nb_free || tx_id == tx_last)
3075                         break;
3076
3077                 if (pkt_cnt < free_cnt) {
3078                         if (iavf_xmit_cleanup(txq))
3079                                 break;
3080
3081                         nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
3082                         nb_tx_free_last = txq->nb_free;
3083                 }
3084         }
3085
3086         return (int)pkt_cnt;
3087 }
3088
3089 int
3090 iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
3091 {
3092         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
3093
3094         return iavf_tx_done_cleanup_full(q, free_cnt);
3095 }
3096
3097 void
3098 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3099                      struct rte_eth_rxq_info *qinfo)
3100 {
3101         struct iavf_rx_queue *rxq;
3102
3103         rxq = dev->data->rx_queues[queue_id];
3104
3105         qinfo->mp = rxq->mp;
3106         qinfo->scattered_rx = dev->data->scattered_rx;
3107         qinfo->nb_desc = rxq->nb_rx_desc;
3108
3109         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
3110         qinfo->conf.rx_drop_en = true;
3111         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
3112 }
3113
3114 void
3115 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3116                      struct rte_eth_txq_info *qinfo)
3117 {
3118         struct iavf_tx_queue *txq;
3119
3120         txq = dev->data->tx_queues[queue_id];
3121
3122         qinfo->nb_desc = txq->nb_tx_desc;
3123
3124         qinfo->conf.tx_free_thresh = txq->free_thresh;
3125         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
3126         qinfo->conf.offloads = txq->offloads;
3127         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
3128 }
3129
3130 /* Get the number of used descriptors of a rx queue */
3131 uint32_t
3132 iavf_dev_rxq_count(void *rx_queue)
3133 {
3134 #define IAVF_RXQ_SCAN_INTERVAL 4
3135         volatile union iavf_rx_desc *rxdp;
3136         struct iavf_rx_queue *rxq;
3137         uint16_t desc = 0;
3138
3139         rxq = rx_queue;
3140         rxdp = &rxq->rx_ring[rxq->rx_tail];
3141
3142         while ((desc < rxq->nb_rx_desc) &&
3143                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
3144                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
3145                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
3146                 /* Check the DD bit of a rx descriptor of each 4 in a group,
3147                  * to avoid checking too frequently and downgrading performance
3148                  * too much.
3149                  */
3150                 desc += IAVF_RXQ_SCAN_INTERVAL;
3151                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
3152                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
3153                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
3154                                         desc - rxq->nb_rx_desc]);
3155         }
3156
3157         return desc;
3158 }
3159
3160 int
3161 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
3162 {
3163         struct iavf_rx_queue *rxq = rx_queue;
3164         volatile uint64_t *status;
3165         uint64_t mask;
3166         uint32_t desc;
3167
3168         if (unlikely(offset >= rxq->nb_rx_desc))
3169                 return -EINVAL;
3170
3171         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
3172                 return RTE_ETH_RX_DESC_UNAVAIL;
3173
3174         desc = rxq->rx_tail + offset;
3175         if (desc >= rxq->nb_rx_desc)
3176                 desc -= rxq->nb_rx_desc;
3177
3178         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
3179         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
3180                 << IAVF_RXD_QW1_STATUS_SHIFT);
3181         if (*status & mask)
3182                 return RTE_ETH_RX_DESC_DONE;
3183
3184         return RTE_ETH_RX_DESC_AVAIL;
3185 }
3186
3187 int
3188 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
3189 {
3190         struct iavf_tx_queue *txq = tx_queue;
3191         volatile uint64_t *status;
3192         uint64_t mask, expect;
3193         uint32_t desc;
3194
3195         if (unlikely(offset >= txq->nb_tx_desc))
3196                 return -EINVAL;
3197
3198         desc = txq->tx_tail + offset;
3199         /* go to next desc that has the RS bit */
3200         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
3201                 txq->rs_thresh;
3202         if (desc >= txq->nb_tx_desc) {
3203                 desc -= txq->nb_tx_desc;
3204                 if (desc >= txq->nb_tx_desc)
3205                         desc -= txq->nb_tx_desc;
3206         }
3207
3208         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
3209         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
3210         expect = rte_cpu_to_le_64(
3211                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
3212         if ((*status & mask) == expect)
3213                 return RTE_ETH_TX_DESC_DONE;
3214
3215         return RTE_ETH_TX_DESC_FULL;
3216 }
3217
3218 static inline uint32_t
3219 iavf_get_default_ptype(uint16_t ptype)
3220 {
3221         static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
3222                 __rte_cache_aligned = {
3223                 /* L2 types */
3224                 /* [0] reserved */
3225                 [1] = RTE_PTYPE_L2_ETHER,
3226                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
3227                 /* [3] - [5] reserved */
3228                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
3229                 /* [7] - [10] reserved */
3230                 [11] = RTE_PTYPE_L2_ETHER_ARP,
3231                 /* [12] - [21] reserved */
3232
3233                 /* Non tunneled IPv4 */
3234                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3235                        RTE_PTYPE_L4_FRAG,
3236                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3237                        RTE_PTYPE_L4_NONFRAG,
3238                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3239                        RTE_PTYPE_L4_UDP,
3240                 /* [25] reserved */
3241                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3242                        RTE_PTYPE_L4_TCP,
3243                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3244                        RTE_PTYPE_L4_SCTP,
3245                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3246                        RTE_PTYPE_L4_ICMP,
3247
3248                 /* IPv4 --> IPv4 */
3249                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3250                        RTE_PTYPE_TUNNEL_IP |
3251                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3252                        RTE_PTYPE_INNER_L4_FRAG,
3253                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3254                        RTE_PTYPE_TUNNEL_IP |
3255                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3256                        RTE_PTYPE_INNER_L4_NONFRAG,
3257                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3258                        RTE_PTYPE_TUNNEL_IP |
3259                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3260                        RTE_PTYPE_INNER_L4_UDP,
3261                 /* [32] reserved */
3262                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3263                        RTE_PTYPE_TUNNEL_IP |
3264                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3265                        RTE_PTYPE_INNER_L4_TCP,
3266                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3267                        RTE_PTYPE_TUNNEL_IP |
3268                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3269                        RTE_PTYPE_INNER_L4_SCTP,
3270                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3271                        RTE_PTYPE_TUNNEL_IP |
3272                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3273                        RTE_PTYPE_INNER_L4_ICMP,
3274
3275                 /* IPv4 --> IPv6 */
3276                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3277                        RTE_PTYPE_TUNNEL_IP |
3278                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3279                        RTE_PTYPE_INNER_L4_FRAG,
3280                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3281                        RTE_PTYPE_TUNNEL_IP |
3282                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3283                        RTE_PTYPE_INNER_L4_NONFRAG,
3284                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3285                        RTE_PTYPE_TUNNEL_IP |
3286                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3287                        RTE_PTYPE_INNER_L4_UDP,
3288                 /* [39] reserved */
3289                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3290                        RTE_PTYPE_TUNNEL_IP |
3291                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3292                        RTE_PTYPE_INNER_L4_TCP,
3293                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3294                        RTE_PTYPE_TUNNEL_IP |
3295                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3296                        RTE_PTYPE_INNER_L4_SCTP,
3297                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3298                        RTE_PTYPE_TUNNEL_IP |
3299                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3300                        RTE_PTYPE_INNER_L4_ICMP,
3301
3302                 /* IPv4 --> GRE/Teredo/VXLAN */
3303                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3304                        RTE_PTYPE_TUNNEL_GRENAT,
3305
3306                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
3307                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3308                        RTE_PTYPE_TUNNEL_GRENAT |
3309                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3310                        RTE_PTYPE_INNER_L4_FRAG,
3311                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3312                        RTE_PTYPE_TUNNEL_GRENAT |
3313                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3314                        RTE_PTYPE_INNER_L4_NONFRAG,
3315                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3316                        RTE_PTYPE_TUNNEL_GRENAT |
3317                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3318                        RTE_PTYPE_INNER_L4_UDP,
3319                 /* [47] reserved */
3320                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3321                        RTE_PTYPE_TUNNEL_GRENAT |
3322                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3323                        RTE_PTYPE_INNER_L4_TCP,
3324                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3325                        RTE_PTYPE_TUNNEL_GRENAT |
3326                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3327                        RTE_PTYPE_INNER_L4_SCTP,
3328                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3329                        RTE_PTYPE_TUNNEL_GRENAT |
3330                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3331                        RTE_PTYPE_INNER_L4_ICMP,
3332
3333                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
3334                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3335                        RTE_PTYPE_TUNNEL_GRENAT |
3336                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3337                        RTE_PTYPE_INNER_L4_FRAG,
3338                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3339                        RTE_PTYPE_TUNNEL_GRENAT |
3340                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3341                        RTE_PTYPE_INNER_L4_NONFRAG,
3342                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3343                        RTE_PTYPE_TUNNEL_GRENAT |
3344                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3345                        RTE_PTYPE_INNER_L4_UDP,
3346                 /* [54] reserved */
3347                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3348                        RTE_PTYPE_TUNNEL_GRENAT |
3349                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3350                        RTE_PTYPE_INNER_L4_TCP,
3351                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3352                        RTE_PTYPE_TUNNEL_GRENAT |
3353                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3354                        RTE_PTYPE_INNER_L4_SCTP,
3355                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3356                        RTE_PTYPE_TUNNEL_GRENAT |
3357                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3358                        RTE_PTYPE_INNER_L4_ICMP,
3359
3360                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
3361                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3362                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3363
3364                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3365                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3366                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3367                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3368                        RTE_PTYPE_INNER_L4_FRAG,
3369                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3370                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3371                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3372                        RTE_PTYPE_INNER_L4_NONFRAG,
3373                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3374                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3375                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3376                        RTE_PTYPE_INNER_L4_UDP,
3377                 /* [62] reserved */
3378                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3379                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3380                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3381                        RTE_PTYPE_INNER_L4_TCP,
3382                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3383                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3384                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3385                        RTE_PTYPE_INNER_L4_SCTP,
3386                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3387                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3388                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3389                        RTE_PTYPE_INNER_L4_ICMP,
3390
3391                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3392                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3393                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3394                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3395                        RTE_PTYPE_INNER_L4_FRAG,
3396                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3397                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3398                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3399                        RTE_PTYPE_INNER_L4_NONFRAG,
3400                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3401                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3402                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3403                        RTE_PTYPE_INNER_L4_UDP,
3404                 /* [69] reserved */
3405                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3406                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3407                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3408                        RTE_PTYPE_INNER_L4_TCP,
3409                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3410                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3411                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3412                        RTE_PTYPE_INNER_L4_SCTP,
3413                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3414                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3415                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3416                        RTE_PTYPE_INNER_L4_ICMP,
3417                 /* [73] - [87] reserved */
3418
3419                 /* Non tunneled IPv6 */
3420                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3421                        RTE_PTYPE_L4_FRAG,
3422                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3423                        RTE_PTYPE_L4_NONFRAG,
3424                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3425                        RTE_PTYPE_L4_UDP,
3426                 /* [91] reserved */
3427                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3428                        RTE_PTYPE_L4_TCP,
3429                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3430                        RTE_PTYPE_L4_SCTP,
3431                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3432                        RTE_PTYPE_L4_ICMP,
3433
3434                 /* IPv6 --> IPv4 */
3435                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3436                        RTE_PTYPE_TUNNEL_IP |
3437                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3438                        RTE_PTYPE_INNER_L4_FRAG,
3439                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3440                        RTE_PTYPE_TUNNEL_IP |
3441                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3442                        RTE_PTYPE_INNER_L4_NONFRAG,
3443                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3444                        RTE_PTYPE_TUNNEL_IP |
3445                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3446                        RTE_PTYPE_INNER_L4_UDP,
3447                 /* [98] reserved */
3448                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3449                        RTE_PTYPE_TUNNEL_IP |
3450                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3451                        RTE_PTYPE_INNER_L4_TCP,
3452                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3453                         RTE_PTYPE_TUNNEL_IP |
3454                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3455                         RTE_PTYPE_INNER_L4_SCTP,
3456                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3457                         RTE_PTYPE_TUNNEL_IP |
3458                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3459                         RTE_PTYPE_INNER_L4_ICMP,
3460
3461                 /* IPv6 --> IPv6 */
3462                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3463                         RTE_PTYPE_TUNNEL_IP |
3464                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3465                         RTE_PTYPE_INNER_L4_FRAG,
3466                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3467                         RTE_PTYPE_TUNNEL_IP |
3468                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3469                         RTE_PTYPE_INNER_L4_NONFRAG,
3470                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3471                         RTE_PTYPE_TUNNEL_IP |
3472                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3473                         RTE_PTYPE_INNER_L4_UDP,
3474                 /* [105] reserved */
3475                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3476                         RTE_PTYPE_TUNNEL_IP |
3477                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3478                         RTE_PTYPE_INNER_L4_TCP,
3479                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3480                         RTE_PTYPE_TUNNEL_IP |
3481                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3482                         RTE_PTYPE_INNER_L4_SCTP,
3483                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3484                         RTE_PTYPE_TUNNEL_IP |
3485                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3486                         RTE_PTYPE_INNER_L4_ICMP,
3487
3488                 /* IPv6 --> GRE/Teredo/VXLAN */
3489                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3490                         RTE_PTYPE_TUNNEL_GRENAT,
3491
3492                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3493                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3494                         RTE_PTYPE_TUNNEL_GRENAT |
3495                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3496                         RTE_PTYPE_INNER_L4_FRAG,
3497                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3498                         RTE_PTYPE_TUNNEL_GRENAT |
3499                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3500                         RTE_PTYPE_INNER_L4_NONFRAG,
3501                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3502                         RTE_PTYPE_TUNNEL_GRENAT |
3503                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3504                         RTE_PTYPE_INNER_L4_UDP,
3505                 /* [113] reserved */
3506                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3507                         RTE_PTYPE_TUNNEL_GRENAT |
3508                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3509                         RTE_PTYPE_INNER_L4_TCP,
3510                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3511                         RTE_PTYPE_TUNNEL_GRENAT |
3512                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3513                         RTE_PTYPE_INNER_L4_SCTP,
3514                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3515                         RTE_PTYPE_TUNNEL_GRENAT |
3516                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3517                         RTE_PTYPE_INNER_L4_ICMP,
3518
3519                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3520                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3521                         RTE_PTYPE_TUNNEL_GRENAT |
3522                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3523                         RTE_PTYPE_INNER_L4_FRAG,
3524                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3525                         RTE_PTYPE_TUNNEL_GRENAT |
3526                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3527                         RTE_PTYPE_INNER_L4_NONFRAG,
3528                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3529                         RTE_PTYPE_TUNNEL_GRENAT |
3530                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3531                         RTE_PTYPE_INNER_L4_UDP,
3532                 /* [120] reserved */
3533                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3534                         RTE_PTYPE_TUNNEL_GRENAT |
3535                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3536                         RTE_PTYPE_INNER_L4_TCP,
3537                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3538                         RTE_PTYPE_TUNNEL_GRENAT |
3539                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3540                         RTE_PTYPE_INNER_L4_SCTP,
3541                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3542                         RTE_PTYPE_TUNNEL_GRENAT |
3543                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3544                         RTE_PTYPE_INNER_L4_ICMP,
3545
3546                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3547                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3548                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3549
3550                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3551                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3552                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3553                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3554                         RTE_PTYPE_INNER_L4_FRAG,
3555                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3556                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3557                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3558                         RTE_PTYPE_INNER_L4_NONFRAG,
3559                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3560                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3561                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3562                         RTE_PTYPE_INNER_L4_UDP,
3563                 /* [128] reserved */
3564                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3565                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3566                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3567                         RTE_PTYPE_INNER_L4_TCP,
3568                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3569                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3570                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3571                         RTE_PTYPE_INNER_L4_SCTP,
3572                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3573                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3574                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3575                         RTE_PTYPE_INNER_L4_ICMP,
3576
3577                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3578                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3579                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3580                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3581                         RTE_PTYPE_INNER_L4_FRAG,
3582                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3583                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3584                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3585                         RTE_PTYPE_INNER_L4_NONFRAG,
3586                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3587                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3588                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3589                         RTE_PTYPE_INNER_L4_UDP,
3590                 /* [135] reserved */
3591                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3592                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3593                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3594                         RTE_PTYPE_INNER_L4_TCP,
3595                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3596                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3597                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3598                         RTE_PTYPE_INNER_L4_SCTP,
3599                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3600                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3601                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3602                         RTE_PTYPE_INNER_L4_ICMP,
3603                 /* [139] - [299] reserved */
3604
3605                 /* PPPoE */
3606                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3607                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3608
3609                 /* PPPoE --> IPv4 */
3610                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3611                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3612                         RTE_PTYPE_L4_FRAG,
3613                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3614                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3615                         RTE_PTYPE_L4_NONFRAG,
3616                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
3617                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3618                         RTE_PTYPE_L4_UDP,
3619                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
3620                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3621                         RTE_PTYPE_L4_TCP,
3622                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
3623                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3624                         RTE_PTYPE_L4_SCTP,
3625                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
3626                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3627                         RTE_PTYPE_L4_ICMP,
3628
3629                 /* PPPoE --> IPv6 */
3630                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
3631                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3632                         RTE_PTYPE_L4_FRAG,
3633                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
3634                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3635                         RTE_PTYPE_L4_NONFRAG,
3636                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
3637                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3638                         RTE_PTYPE_L4_UDP,
3639                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
3640                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3641                         RTE_PTYPE_L4_TCP,
3642                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
3643                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3644                         RTE_PTYPE_L4_SCTP,
3645                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
3646                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3647                         RTE_PTYPE_L4_ICMP,
3648                 /* [314] - [324] reserved */
3649
3650                 /* IPv4/IPv6 --> GTPC/GTPU */
3651                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3652                         RTE_PTYPE_TUNNEL_GTPC,
3653                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3654                         RTE_PTYPE_TUNNEL_GTPC,
3655                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3656                         RTE_PTYPE_TUNNEL_GTPC,
3657                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3658                         RTE_PTYPE_TUNNEL_GTPC,
3659                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3660                         RTE_PTYPE_TUNNEL_GTPU,
3661                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3662                         RTE_PTYPE_TUNNEL_GTPU,
3663
3664                 /* IPv4 --> GTPU --> IPv4 */
3665                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3666                         RTE_PTYPE_TUNNEL_GTPU |
3667                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3668                         RTE_PTYPE_INNER_L4_FRAG,
3669                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3670                         RTE_PTYPE_TUNNEL_GTPU |
3671                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3672                         RTE_PTYPE_INNER_L4_NONFRAG,
3673                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3674                         RTE_PTYPE_TUNNEL_GTPU |
3675                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3676                         RTE_PTYPE_INNER_L4_UDP,
3677                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3678                         RTE_PTYPE_TUNNEL_GTPU |
3679                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3680                         RTE_PTYPE_INNER_L4_TCP,
3681                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3682                         RTE_PTYPE_TUNNEL_GTPU |
3683                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3684                         RTE_PTYPE_INNER_L4_ICMP,
3685
3686                 /* IPv6 --> GTPU --> IPv4 */
3687                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3688                         RTE_PTYPE_TUNNEL_GTPU |
3689                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3690                         RTE_PTYPE_INNER_L4_FRAG,
3691                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3692                         RTE_PTYPE_TUNNEL_GTPU |
3693                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3694                         RTE_PTYPE_INNER_L4_NONFRAG,
3695                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3696                         RTE_PTYPE_TUNNEL_GTPU |
3697                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3698                         RTE_PTYPE_INNER_L4_UDP,
3699                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3700                         RTE_PTYPE_TUNNEL_GTPU |
3701                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3702                         RTE_PTYPE_INNER_L4_TCP,
3703                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3704                         RTE_PTYPE_TUNNEL_GTPU |
3705                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3706                         RTE_PTYPE_INNER_L4_ICMP,
3707
3708                 /* IPv4 --> GTPU --> IPv6 */
3709                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3710                         RTE_PTYPE_TUNNEL_GTPU |
3711                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3712                         RTE_PTYPE_INNER_L4_FRAG,
3713                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3714                         RTE_PTYPE_TUNNEL_GTPU |
3715                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3716                         RTE_PTYPE_INNER_L4_NONFRAG,
3717                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3718                         RTE_PTYPE_TUNNEL_GTPU |
3719                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3720                         RTE_PTYPE_INNER_L4_UDP,
3721                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3722                         RTE_PTYPE_TUNNEL_GTPU |
3723                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3724                         RTE_PTYPE_INNER_L4_TCP,
3725                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3726                         RTE_PTYPE_TUNNEL_GTPU |
3727                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3728                         RTE_PTYPE_INNER_L4_ICMP,
3729
3730                 /* IPv6 --> GTPU --> IPv6 */
3731                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3732                         RTE_PTYPE_TUNNEL_GTPU |
3733                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3734                         RTE_PTYPE_INNER_L4_FRAG,
3735                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3736                         RTE_PTYPE_TUNNEL_GTPU |
3737                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3738                         RTE_PTYPE_INNER_L4_NONFRAG,
3739                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3740                         RTE_PTYPE_TUNNEL_GTPU |
3741                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3742                         RTE_PTYPE_INNER_L4_UDP,
3743                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3744                         RTE_PTYPE_TUNNEL_GTPU |
3745                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3746                         RTE_PTYPE_INNER_L4_TCP,
3747                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3748                         RTE_PTYPE_TUNNEL_GTPU |
3749                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3750                         RTE_PTYPE_INNER_L4_ICMP,
3751
3752                 /* IPv4 --> UDP ECPRI */
3753                 [372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3754                         RTE_PTYPE_L4_UDP,
3755                 [373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3756                         RTE_PTYPE_L4_UDP,
3757                 [374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3758                         RTE_PTYPE_L4_UDP,
3759                 [375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3760                         RTE_PTYPE_L4_UDP,
3761                 [376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3762                         RTE_PTYPE_L4_UDP,
3763                 [377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3764                         RTE_PTYPE_L4_UDP,
3765                 [378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3766                         RTE_PTYPE_L4_UDP,
3767                 [379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3768                         RTE_PTYPE_L4_UDP,
3769                 [380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3770                         RTE_PTYPE_L4_UDP,
3771                 [381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3772                         RTE_PTYPE_L4_UDP,
3773
3774                 /* IPV6 --> UDP ECPRI */
3775                 [382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3776                         RTE_PTYPE_L4_UDP,
3777                 [383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3778                         RTE_PTYPE_L4_UDP,
3779                 [384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3780                         RTE_PTYPE_L4_UDP,
3781                 [385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3782                         RTE_PTYPE_L4_UDP,
3783                 [386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3784                         RTE_PTYPE_L4_UDP,
3785                 [387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3786                         RTE_PTYPE_L4_UDP,
3787                 [388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3788                         RTE_PTYPE_L4_UDP,
3789                 [389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3790                         RTE_PTYPE_L4_UDP,
3791                 [390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3792                         RTE_PTYPE_L4_UDP,
3793                 [391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3794                         RTE_PTYPE_L4_UDP,
3795                 /* All others reserved */
3796         };
3797
3798         return ptype_tbl[ptype];
3799 }
3800
3801 void __rte_cold
3802 iavf_set_default_ptype_table(struct rte_eth_dev *dev)
3803 {
3804         struct iavf_adapter *ad =
3805                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3806         int i;
3807
3808         for (i = 0; i < IAVF_MAX_PKT_TYPE; i++)
3809                 ad->ptype_tbl[i] = iavf_get_default_ptype(i);
3810 }