remove unnecessary null checks
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "iavf_ipsec_crypto.h"
31 #include "rte_pmd_iavf.h"
32
33 /* Offset of mbuf dynamic field for protocol extraction's metadata */
34 int rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
35
36 /* Mask of mbuf dynamic flags for protocol extraction's type */
37 uint64_t rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
38 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
39 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
40 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
41 uint64_t rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
42 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
43 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask;
44
45 uint8_t
46 iavf_proto_xtr_type_to_rxdid(uint8_t flex_type)
47 {
48         static uint8_t rxdid_map[] = {
49                 [IAVF_PROTO_XTR_NONE]      = IAVF_RXDID_COMMS_OVS_1,
50                 [IAVF_PROTO_XTR_VLAN]      = IAVF_RXDID_COMMS_AUX_VLAN,
51                 [IAVF_PROTO_XTR_IPV4]      = IAVF_RXDID_COMMS_AUX_IPV4,
52                 [IAVF_PROTO_XTR_IPV6]      = IAVF_RXDID_COMMS_AUX_IPV6,
53                 [IAVF_PROTO_XTR_IPV6_FLOW] = IAVF_RXDID_COMMS_AUX_IPV6_FLOW,
54                 [IAVF_PROTO_XTR_TCP]       = IAVF_RXDID_COMMS_AUX_TCP,
55                 [IAVF_PROTO_XTR_IP_OFFSET] = IAVF_RXDID_COMMS_AUX_IP_OFFSET,
56                 [IAVF_PROTO_XTR_IPSEC_CRYPTO_SAID] =
57                                 IAVF_RXDID_COMMS_IPSEC_CRYPTO,
58         };
59
60         return flex_type < RTE_DIM(rxdid_map) ?
61                                 rxdid_map[flex_type] : IAVF_RXDID_COMMS_OVS_1;
62 }
63
64 static int
65 iavf_monitor_callback(const uint64_t value,
66                 const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
67 {
68         const uint64_t m = rte_cpu_to_le_64(1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
69         /*
70          * we expect the DD bit to be set to 1 if this descriptor was already
71          * written to.
72          */
73         return (value & m) == m ? -1 : 0;
74 }
75
76 int
77 iavf_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
78 {
79         struct iavf_rx_queue *rxq = rx_queue;
80         volatile union iavf_rx_desc *rxdp;
81         uint16_t desc;
82
83         desc = rxq->rx_tail;
84         rxdp = &rxq->rx_ring[desc];
85         /* watch for changes in status bit */
86         pmc->addr = &rxdp->wb.qword1.status_error_len;
87
88         /* comparison callback */
89         pmc->fn = iavf_monitor_callback;
90
91         /* registers are 64-bit */
92         pmc->size = sizeof(uint64_t);
93
94         return 0;
95 }
96
97 static inline int
98 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
99 {
100         /* The following constraints must be satisfied:
101          *   thresh < rxq->nb_rx_desc
102          */
103         if (thresh >= nb_desc) {
104                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
105                              thresh, nb_desc);
106                 return -EINVAL;
107         }
108         return 0;
109 }
110
111 static inline int
112 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
113                 uint16_t tx_free_thresh)
114 {
115         /* TX descriptors will have their RS bit set after tx_rs_thresh
116          * descriptors have been used. The TX descriptor ring will be cleaned
117          * after tx_free_thresh descriptors are used or if the number of
118          * descriptors required to transmit a packet is greater than the
119          * number of free TX descriptors.
120          *
121          * The following constraints must be satisfied:
122          *  - tx_rs_thresh must be less than the size of the ring minus 2.
123          *  - tx_free_thresh must be less than the size of the ring minus 3.
124          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
125          *  - tx_rs_thresh must be a divisor of the ring size.
126          *
127          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
128          * race condition, hence the maximum threshold constraints. When set
129          * to zero use default values.
130          */
131         if (tx_rs_thresh >= (nb_desc - 2)) {
132                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
133                              "number of TX descriptors (%u) minus 2",
134                              tx_rs_thresh, nb_desc);
135                 return -EINVAL;
136         }
137         if (tx_free_thresh >= (nb_desc - 3)) {
138                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
139                              "number of TX descriptors (%u) minus 3.",
140                              tx_free_thresh, nb_desc);
141                 return -EINVAL;
142         }
143         if (tx_rs_thresh > tx_free_thresh) {
144                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
145                              "equal to tx_free_thresh (%u).",
146                              tx_rs_thresh, tx_free_thresh);
147                 return -EINVAL;
148         }
149         if ((nb_desc % tx_rs_thresh) != 0) {
150                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
151                              "number of TX descriptors (%u).",
152                              tx_rs_thresh, nb_desc);
153                 return -EINVAL;
154         }
155
156         return 0;
157 }
158
159 static inline bool
160 check_rx_vec_allow(struct iavf_rx_queue *rxq)
161 {
162         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
163             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
164                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
165                 return true;
166         }
167
168         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
169         return false;
170 }
171
172 static inline bool
173 check_tx_vec_allow(struct iavf_tx_queue *txq)
174 {
175         if (!(txq->offloads & IAVF_TX_NO_VECTOR_FLAGS) &&
176             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
177             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
178                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
179                 return true;
180         }
181         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
182         return false;
183 }
184
185 static inline bool
186 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
187 {
188         int ret = true;
189
190         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
191                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
192                              "rxq->rx_free_thresh=%d, "
193                              "IAVF_RX_MAX_BURST=%d",
194                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
195                 ret = false;
196         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
197                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
198                              "rxq->nb_rx_desc=%d, "
199                              "rxq->rx_free_thresh=%d",
200                              rxq->nb_rx_desc, rxq->rx_free_thresh);
201                 ret = false;
202         }
203         return ret;
204 }
205
206 static inline void
207 reset_rx_queue(struct iavf_rx_queue *rxq)
208 {
209         uint16_t len;
210         uint32_t i;
211
212         if (!rxq)
213                 return;
214
215         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
216
217         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
218                 ((volatile char *)rxq->rx_ring)[i] = 0;
219
220         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
221
222         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
223                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
224
225         /* for rx bulk */
226         rxq->rx_nb_avail = 0;
227         rxq->rx_next_avail = 0;
228         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
229
230         rxq->rx_tail = 0;
231         rxq->nb_rx_hold = 0;
232
233         rte_pktmbuf_free(rxq->pkt_first_seg);
234
235         rxq->pkt_first_seg = NULL;
236         rxq->pkt_last_seg = NULL;
237         rxq->rxrearm_nb = 0;
238         rxq->rxrearm_start = 0;
239 }
240
241 static inline void
242 reset_tx_queue(struct iavf_tx_queue *txq)
243 {
244         struct iavf_tx_entry *txe;
245         uint32_t i, size;
246         uint16_t prev;
247
248         if (!txq) {
249                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
250                 return;
251         }
252
253         txe = txq->sw_ring;
254         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
255         for (i = 0; i < size; i++)
256                 ((volatile char *)txq->tx_ring)[i] = 0;
257
258         prev = (uint16_t)(txq->nb_tx_desc - 1);
259         for (i = 0; i < txq->nb_tx_desc; i++) {
260                 txq->tx_ring[i].cmd_type_offset_bsz =
261                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
262                 txe[i].mbuf =  NULL;
263                 txe[i].last_id = i;
264                 txe[prev].next_id = i;
265                 prev = i;
266         }
267
268         txq->tx_tail = 0;
269         txq->nb_used = 0;
270
271         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
272         txq->nb_free = txq->nb_tx_desc - 1;
273
274         txq->next_dd = txq->rs_thresh - 1;
275         txq->next_rs = txq->rs_thresh - 1;
276 }
277
278 static int
279 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
280 {
281         volatile union iavf_rx_desc *rxd;
282         struct rte_mbuf *mbuf = NULL;
283         uint64_t dma_addr;
284         uint16_t i, j;
285
286         for (i = 0; i < rxq->nb_rx_desc; i++) {
287                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
288                 if (unlikely(!mbuf)) {
289                         for (j = 0; j < i; j++) {
290                                 rte_pktmbuf_free_seg(rxq->sw_ring[j]);
291                                 rxq->sw_ring[j] = NULL;
292                         }
293                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
294                         return -ENOMEM;
295                 }
296
297                 rte_mbuf_refcnt_set(mbuf, 1);
298                 mbuf->next = NULL;
299                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
300                 mbuf->nb_segs = 1;
301                 mbuf->port = rxq->port_id;
302
303                 dma_addr =
304                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
305
306                 rxd = &rxq->rx_ring[i];
307                 rxd->read.pkt_addr = dma_addr;
308                 rxd->read.hdr_addr = 0;
309 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
310                 rxd->read.rsvd1 = 0;
311                 rxd->read.rsvd2 = 0;
312 #endif
313
314                 rxq->sw_ring[i] = mbuf;
315         }
316
317         return 0;
318 }
319
320 static inline void
321 release_rxq_mbufs(struct iavf_rx_queue *rxq)
322 {
323         uint16_t i;
324
325         if (!rxq->sw_ring)
326                 return;
327
328         for (i = 0; i < rxq->nb_rx_desc; i++) {
329                 if (rxq->sw_ring[i]) {
330                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
331                         rxq->sw_ring[i] = NULL;
332                 }
333         }
334
335         /* for rx bulk */
336         if (rxq->rx_nb_avail == 0)
337                 return;
338         for (i = 0; i < rxq->rx_nb_avail; i++) {
339                 struct rte_mbuf *mbuf;
340
341                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
342                 rte_pktmbuf_free_seg(mbuf);
343         }
344         rxq->rx_nb_avail = 0;
345 }
346
347 static inline void
348 release_txq_mbufs(struct iavf_tx_queue *txq)
349 {
350         uint16_t i;
351
352         if (!txq || !txq->sw_ring) {
353                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
354                 return;
355         }
356
357         for (i = 0; i < txq->nb_tx_desc; i++) {
358                 if (txq->sw_ring[i].mbuf) {
359                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
360                         txq->sw_ring[i].mbuf = NULL;
361                 }
362         }
363 }
364
365 static const struct iavf_rxq_ops def_rxq_ops = {
366         .release_mbufs = release_rxq_mbufs,
367 };
368
369 static const struct iavf_txq_ops def_txq_ops = {
370         .release_mbufs = release_txq_mbufs,
371 };
372
373 static inline void
374 iavf_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct iavf_rx_queue *rxq,
375                                     struct rte_mbuf *mb,
376                                     volatile union iavf_rx_flex_desc *rxdp)
377 {
378         volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
379                         (volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
380 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
381         uint16_t stat_err;
382 #endif
383
384         if (desc->flow_id != 0xFFFFFFFF) {
385                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
386                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
387         }
388
389 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
390         stat_err = rte_le_to_cpu_16(desc->status_error0);
391         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
392                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
393                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
394         }
395 #endif
396 }
397
398 static inline void
399 iavf_rxd_to_pkt_fields_by_comms_aux_v1(struct iavf_rx_queue *rxq,
400                                        struct rte_mbuf *mb,
401                                        volatile union iavf_rx_flex_desc *rxdp)
402 {
403         volatile struct iavf_32b_rx_flex_desc_comms *desc =
404                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
405         uint16_t stat_err;
406
407         stat_err = rte_le_to_cpu_16(desc->status_error0);
408         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
409                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
410                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
411         }
412
413 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
414         if (desc->flow_id != 0xFFFFFFFF) {
415                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
416                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
417         }
418
419         if (rxq->xtr_ol_flag) {
420                 uint32_t metadata = 0;
421
422                 stat_err = rte_le_to_cpu_16(desc->status_error1);
423
424                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
425                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
426
427                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
428                         metadata |=
429                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
430
431                 if (metadata) {
432                         mb->ol_flags |= rxq->xtr_ol_flag;
433
434                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
435                 }
436         }
437 #endif
438 }
439
440 static inline void
441 iavf_rxd_to_pkt_fields_by_comms_aux_v2(struct iavf_rx_queue *rxq,
442                                        struct rte_mbuf *mb,
443                                        volatile union iavf_rx_flex_desc *rxdp)
444 {
445         volatile struct iavf_32b_rx_flex_desc_comms *desc =
446                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
447         uint16_t stat_err;
448
449         stat_err = rte_le_to_cpu_16(desc->status_error0);
450         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
451                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
452                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
453         }
454
455 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
456         if (desc->flow_id != 0xFFFFFFFF) {
457                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
458                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
459         }
460
461         if (rxq->xtr_ol_flag) {
462                 uint32_t metadata = 0;
463
464                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
465                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
466                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
467                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
468
469                 if (metadata) {
470                         mb->ol_flags |= rxq->xtr_ol_flag;
471
472                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
473                 }
474         }
475 #endif
476 }
477
478 static void
479 iavf_select_rxd_to_pkt_fields_handler(struct iavf_rx_queue *rxq, uint32_t rxdid)
480 {
481         switch (rxdid) {
482         case IAVF_RXDID_COMMS_AUX_VLAN:
483                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
484                 rxq->rxd_to_pkt_fields =
485                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
486                 break;
487         case IAVF_RXDID_COMMS_AUX_IPV4:
488                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
489                 rxq->rxd_to_pkt_fields =
490                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
491                 break;
492         case IAVF_RXDID_COMMS_AUX_IPV6:
493                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
494                 rxq->rxd_to_pkt_fields =
495                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
496                 break;
497         case IAVF_RXDID_COMMS_AUX_IPV6_FLOW:
498                 rxq->xtr_ol_flag =
499                         rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
500                 rxq->rxd_to_pkt_fields =
501                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
502                 break;
503         case IAVF_RXDID_COMMS_AUX_TCP:
504                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
505                 rxq->rxd_to_pkt_fields =
506                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
507                 break;
508         case IAVF_RXDID_COMMS_AUX_IP_OFFSET:
509                 rxq->xtr_ol_flag =
510                         rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
511                 rxq->rxd_to_pkt_fields =
512                         iavf_rxd_to_pkt_fields_by_comms_aux_v2;
513                 break;
514         case IAVF_RXDID_COMMS_IPSEC_CRYPTO:
515                 rxq->xtr_ol_flag =
516                         rte_pmd_ifd_dynflag_proto_xtr_ipsec_crypto_said_mask;
517                 rxq->rxd_to_pkt_fields =
518                         iavf_rxd_to_pkt_fields_by_comms_aux_v2;
519                 break;
520         case IAVF_RXDID_COMMS_OVS_1:
521                 rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
522                 break;
523         default:
524                 /* update this according to the RXDID for FLEX_DESC_NONE */
525                 rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
526                 break;
527         }
528
529         if (!rte_pmd_ifd_dynf_proto_xtr_metadata_avail())
530                 rxq->xtr_ol_flag = 0;
531 }
532
533 int
534 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
535                        uint16_t nb_desc, unsigned int socket_id,
536                        const struct rte_eth_rxconf *rx_conf,
537                        struct rte_mempool *mp)
538 {
539         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
540         struct iavf_adapter *ad =
541                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
542         struct iavf_info *vf =
543                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
544         struct iavf_vsi *vsi = &vf->vsi;
545         struct iavf_rx_queue *rxq;
546         const struct rte_memzone *mz;
547         uint32_t ring_size;
548         uint8_t proto_xtr;
549         uint16_t len;
550         uint16_t rx_free_thresh;
551         uint64_t offloads;
552
553         PMD_INIT_FUNC_TRACE();
554
555         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
556
557         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
558             nb_desc > IAVF_MAX_RING_DESC ||
559             nb_desc < IAVF_MIN_RING_DESC) {
560                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
561                              "invalid", nb_desc);
562                 return -EINVAL;
563         }
564
565         /* Check free threshold */
566         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
567                          IAVF_DEFAULT_RX_FREE_THRESH :
568                          rx_conf->rx_free_thresh;
569         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
570                 return -EINVAL;
571
572         /* Free memory if needed */
573         if (dev->data->rx_queues[queue_idx]) {
574                 iavf_dev_rx_queue_release(dev, queue_idx);
575                 dev->data->rx_queues[queue_idx] = NULL;
576         }
577
578         /* Allocate the rx queue data structure */
579         rxq = rte_zmalloc_socket("iavf rxq",
580                                  sizeof(struct iavf_rx_queue),
581                                  RTE_CACHE_LINE_SIZE,
582                                  socket_id);
583         if (!rxq) {
584                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
585                              "rx queue data structure");
586                 return -ENOMEM;
587         }
588
589         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
590                 proto_xtr = vf->proto_xtr ? vf->proto_xtr[queue_idx] :
591                                 IAVF_PROTO_XTR_NONE;
592                 rxq->rxdid = iavf_proto_xtr_type_to_rxdid(proto_xtr);
593                 rxq->proto_xtr = proto_xtr;
594         } else {
595                 rxq->rxdid = IAVF_RXDID_LEGACY_1;
596                 rxq->proto_xtr = IAVF_PROTO_XTR_NONE;
597         }
598
599         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
600                 struct virtchnl_vlan_supported_caps *stripping_support =
601                                 &vf->vlan_v2_caps.offloads.stripping_support;
602                 uint32_t stripping_cap;
603
604                 if (stripping_support->outer)
605                         stripping_cap = stripping_support->outer;
606                 else
607                         stripping_cap = stripping_support->inner;
608
609                 if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
610                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
611                 else if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
612                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
613         } else {
614                 rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
615         }
616
617         iavf_select_rxd_to_pkt_fields_handler(rxq, rxq->rxdid);
618
619         rxq->mp = mp;
620         rxq->nb_rx_desc = nb_desc;
621         rxq->rx_free_thresh = rx_free_thresh;
622         rxq->queue_id = queue_idx;
623         rxq->port_id = dev->data->port_id;
624         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
625         rxq->rx_hdr_len = 0;
626         rxq->vsi = vsi;
627         rxq->offloads = offloads;
628
629         if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
630                 rxq->crc_len = RTE_ETHER_CRC_LEN;
631         else
632                 rxq->crc_len = 0;
633
634         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
635         rxq->rx_buf_len = RTE_ALIGN_FLOOR(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
636
637         /* Allocate the software ring. */
638         len = nb_desc + IAVF_RX_MAX_BURST;
639         rxq->sw_ring =
640                 rte_zmalloc_socket("iavf rx sw ring",
641                                    sizeof(struct rte_mbuf *) * len,
642                                    RTE_CACHE_LINE_SIZE,
643                                    socket_id);
644         if (!rxq->sw_ring) {
645                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
646                 rte_free(rxq);
647                 return -ENOMEM;
648         }
649
650         /* Allocate the maximum number of RX ring hardware descriptor with
651          * a little more to support bulk allocate.
652          */
653         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
654         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
655                               IAVF_DMA_MEM_ALIGN);
656         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
657                                       ring_size, IAVF_RING_BASE_ALIGN,
658                                       socket_id);
659         if (!mz) {
660                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
661                 rte_free(rxq->sw_ring);
662                 rte_free(rxq);
663                 return -ENOMEM;
664         }
665         /* Zero all the descriptors in the ring. */
666         memset(mz->addr, 0, ring_size);
667         rxq->rx_ring_phys_addr = mz->iova;
668         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
669
670         rxq->mz = mz;
671         reset_rx_queue(rxq);
672         rxq->q_set = true;
673         dev->data->rx_queues[queue_idx] = rxq;
674         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
675         rxq->ops = &def_rxq_ops;
676
677         if (check_rx_bulk_allow(rxq) == true) {
678                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
679                              "satisfied. Rx Burst Bulk Alloc function will be "
680                              "used on port=%d, queue=%d.",
681                              rxq->port_id, rxq->queue_id);
682         } else {
683                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
684                              "not satisfied, Scattered Rx is requested "
685                              "on port=%d, queue=%d.",
686                              rxq->port_id, rxq->queue_id);
687                 ad->rx_bulk_alloc_allowed = false;
688         }
689
690         if (check_rx_vec_allow(rxq) == false)
691                 ad->rx_vec_allowed = false;
692
693         return 0;
694 }
695
696 int
697 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
698                        uint16_t queue_idx,
699                        uint16_t nb_desc,
700                        unsigned int socket_id,
701                        const struct rte_eth_txconf *tx_conf)
702 {
703         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
704         struct iavf_adapter *adapter =
705                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
706         struct iavf_info *vf =
707                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
708         struct iavf_tx_queue *txq;
709         const struct rte_memzone *mz;
710         uint32_t ring_size;
711         uint16_t tx_rs_thresh, tx_free_thresh;
712         uint64_t offloads;
713
714         PMD_INIT_FUNC_TRACE();
715
716         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
717
718         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
719             nb_desc > IAVF_MAX_RING_DESC ||
720             nb_desc < IAVF_MIN_RING_DESC) {
721                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
722                             "invalid", nb_desc);
723                 return -EINVAL;
724         }
725
726         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
727                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
728         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
729                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
730         if (check_tx_thresh(nb_desc, tx_rs_thresh, tx_free_thresh) != 0)
731                 return -EINVAL;
732
733         /* Free memory if needed. */
734         if (dev->data->tx_queues[queue_idx]) {
735                 iavf_dev_tx_queue_release(dev, queue_idx);
736                 dev->data->tx_queues[queue_idx] = NULL;
737         }
738
739         /* Allocate the TX queue data structure. */
740         txq = rte_zmalloc_socket("iavf txq",
741                                  sizeof(struct iavf_tx_queue),
742                                  RTE_CACHE_LINE_SIZE,
743                                  socket_id);
744         if (!txq) {
745                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
746                              "tx queue structure");
747                 return -ENOMEM;
748         }
749
750         if (adapter->vf.vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
751                 struct virtchnl_vlan_supported_caps *insertion_support =
752                         &adapter->vf.vlan_v2_caps.offloads.insertion_support;
753                 uint32_t insertion_cap;
754
755                 if (insertion_support->outer)
756                         insertion_cap = insertion_support->outer;
757                 else
758                         insertion_cap = insertion_support->inner;
759
760                 if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
761                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
762                 else if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
763                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2;
764         } else {
765                 txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
766         }
767
768         txq->nb_tx_desc = nb_desc;
769         txq->rs_thresh = tx_rs_thresh;
770         txq->free_thresh = tx_free_thresh;
771         txq->queue_id = queue_idx;
772         txq->port_id = dev->data->port_id;
773         txq->offloads = offloads;
774         txq->tx_deferred_start = tx_conf->tx_deferred_start;
775
776         if (iavf_ipsec_crypto_supported(adapter))
777                 txq->ipsec_crypto_pkt_md_offset =
778                         iavf_security_get_pkt_md_offset(adapter);
779
780         /* Allocate software ring */
781         txq->sw_ring =
782                 rte_zmalloc_socket("iavf tx sw ring",
783                                    sizeof(struct iavf_tx_entry) * nb_desc,
784                                    RTE_CACHE_LINE_SIZE,
785                                    socket_id);
786         if (!txq->sw_ring) {
787                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
788                 rte_free(txq);
789                 return -ENOMEM;
790         }
791
792         /* Allocate TX hardware ring descriptors. */
793         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
794         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
795         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
796                                       ring_size, IAVF_RING_BASE_ALIGN,
797                                       socket_id);
798         if (!mz) {
799                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
800                 rte_free(txq->sw_ring);
801                 rte_free(txq);
802                 return -ENOMEM;
803         }
804         txq->tx_ring_phys_addr = mz->iova;
805         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
806
807         txq->mz = mz;
808         reset_tx_queue(txq);
809         txq->q_set = true;
810         dev->data->tx_queues[queue_idx] = txq;
811         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
812         txq->ops = &def_txq_ops;
813
814         if (check_tx_vec_allow(txq) == false) {
815                 struct iavf_adapter *ad =
816                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
817                 ad->tx_vec_allowed = false;
818         }
819
820         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
821             vf->tm_conf.committed) {
822                 int tc;
823                 for (tc = 0; tc < vf->qos_cap->num_elem; tc++) {
824                         if (txq->queue_id >= vf->qtc_map[tc].start_queue_id &&
825                             txq->queue_id < (vf->qtc_map[tc].start_queue_id +
826                             vf->qtc_map[tc].queue_count))
827                                 break;
828                 }
829                 if (tc >= vf->qos_cap->num_elem) {
830                         PMD_INIT_LOG(ERR, "Queue TC mapping is not correct");
831                         return -EINVAL;
832                 }
833                 txq->tc = tc;
834         }
835
836         return 0;
837 }
838
839 int
840 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
841 {
842         struct iavf_adapter *adapter =
843                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
844         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
845         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
846         struct iavf_rx_queue *rxq;
847         int err = 0;
848
849         PMD_DRV_FUNC_TRACE();
850
851         if (rx_queue_id >= dev->data->nb_rx_queues)
852                 return -EINVAL;
853
854         rxq = dev->data->rx_queues[rx_queue_id];
855
856         err = alloc_rxq_mbufs(rxq);
857         if (err) {
858                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
859                 return err;
860         }
861
862         rte_wmb();
863
864         /* Init the RX tail register. */
865         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
866         IAVF_WRITE_FLUSH(hw);
867
868         /* Ready to switch the queue on */
869         if (!vf->lv_enabled)
870                 err = iavf_switch_queue(adapter, rx_queue_id, true, true);
871         else
872                 err = iavf_switch_queue_lv(adapter, rx_queue_id, true, true);
873
874         if (err) {
875                 release_rxq_mbufs(rxq);
876                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
877                             rx_queue_id);
878         } else {
879                 dev->data->rx_queue_state[rx_queue_id] =
880                         RTE_ETH_QUEUE_STATE_STARTED;
881         }
882
883         return err;
884 }
885
886 int
887 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
888 {
889         struct iavf_adapter *adapter =
890                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
891         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
892         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
893         struct iavf_tx_queue *txq;
894         int err = 0;
895
896         PMD_DRV_FUNC_TRACE();
897
898         if (tx_queue_id >= dev->data->nb_tx_queues)
899                 return -EINVAL;
900
901         txq = dev->data->tx_queues[tx_queue_id];
902
903         /* Init the RX tail register. */
904         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
905         IAVF_WRITE_FLUSH(hw);
906
907         /* Ready to switch the queue on */
908         if (!vf->lv_enabled)
909                 err = iavf_switch_queue(adapter, tx_queue_id, false, true);
910         else
911                 err = iavf_switch_queue_lv(adapter, tx_queue_id, false, true);
912
913         if (err)
914                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
915                             tx_queue_id);
916         else
917                 dev->data->tx_queue_state[tx_queue_id] =
918                         RTE_ETH_QUEUE_STATE_STARTED;
919
920         return err;
921 }
922
923 int
924 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
925 {
926         struct iavf_adapter *adapter =
927                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
928         struct iavf_rx_queue *rxq;
929         int err;
930
931         PMD_DRV_FUNC_TRACE();
932
933         if (rx_queue_id >= dev->data->nb_rx_queues)
934                 return -EINVAL;
935
936         err = iavf_switch_queue(adapter, rx_queue_id, true, false);
937         if (err) {
938                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
939                             rx_queue_id);
940                 return err;
941         }
942
943         rxq = dev->data->rx_queues[rx_queue_id];
944         rxq->ops->release_mbufs(rxq);
945         reset_rx_queue(rxq);
946         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
947
948         return 0;
949 }
950
951 int
952 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
953 {
954         struct iavf_adapter *adapter =
955                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
956         struct iavf_tx_queue *txq;
957         int err;
958
959         PMD_DRV_FUNC_TRACE();
960
961         if (tx_queue_id >= dev->data->nb_tx_queues)
962                 return -EINVAL;
963
964         err = iavf_switch_queue(adapter, tx_queue_id, false, false);
965         if (err) {
966                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
967                             tx_queue_id);
968                 return err;
969         }
970
971         txq = dev->data->tx_queues[tx_queue_id];
972         txq->ops->release_mbufs(txq);
973         reset_tx_queue(txq);
974         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
975
976         return 0;
977 }
978
979 void
980 iavf_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
981 {
982         struct iavf_rx_queue *q = dev->data->rx_queues[qid];
983
984         if (!q)
985                 return;
986
987         q->ops->release_mbufs(q);
988         rte_free(q->sw_ring);
989         rte_memzone_free(q->mz);
990         rte_free(q);
991 }
992
993 void
994 iavf_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
995 {
996         struct iavf_tx_queue *q = dev->data->tx_queues[qid];
997
998         if (!q)
999                 return;
1000
1001         q->ops->release_mbufs(q);
1002         rte_free(q->sw_ring);
1003         rte_memzone_free(q->mz);
1004         rte_free(q);
1005 }
1006
1007 void
1008 iavf_stop_queues(struct rte_eth_dev *dev)
1009 {
1010         struct iavf_adapter *adapter =
1011                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1012         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1013         struct iavf_rx_queue *rxq;
1014         struct iavf_tx_queue *txq;
1015         int ret, i;
1016
1017         /* Stop All queues */
1018         if (!vf->lv_enabled) {
1019                 ret = iavf_disable_queues(adapter);
1020                 if (ret)
1021                         PMD_DRV_LOG(WARNING, "Fail to stop queues");
1022         } else {
1023                 ret = iavf_disable_queues_lv(adapter);
1024                 if (ret)
1025                         PMD_DRV_LOG(WARNING, "Fail to stop queues for large VF");
1026         }
1027
1028         if (ret)
1029                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
1030
1031         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1032                 txq = dev->data->tx_queues[i];
1033                 if (!txq)
1034                         continue;
1035                 txq->ops->release_mbufs(txq);
1036                 reset_tx_queue(txq);
1037                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1038         }
1039         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1040                 rxq = dev->data->rx_queues[i];
1041                 if (!rxq)
1042                         continue;
1043                 rxq->ops->release_mbufs(rxq);
1044                 reset_rx_queue(rxq);
1045                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1046         }
1047 }
1048
1049 #define IAVF_RX_FLEX_ERR0_BITS  \
1050         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1051          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1052          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1053          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1054          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1055          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1056
1057 static inline void
1058 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
1059 {
1060         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1061                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1062                 mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
1063                 mb->vlan_tci =
1064                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
1065         } else {
1066                 mb->vlan_tci = 0;
1067         }
1068 }
1069
1070 static inline void
1071 iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
1072                           volatile union iavf_rx_flex_desc *rxdp)
1073 {
1074         if (rte_le_to_cpu_64(rxdp->wb.status_error0) &
1075                 (1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1076                 mb->ol_flags |= RTE_MBUF_F_RX_VLAN |
1077                                 RTE_MBUF_F_RX_VLAN_STRIPPED;
1078                 mb->vlan_tci =
1079                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
1080         } else {
1081                 mb->vlan_tci = 0;
1082         }
1083
1084 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1085         if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1086             (1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1087                 mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED |
1088                                 RTE_MBUF_F_RX_QINQ |
1089                                 RTE_MBUF_F_RX_VLAN_STRIPPED |
1090                                 RTE_MBUF_F_RX_VLAN;
1091                 mb->vlan_tci_outer = mb->vlan_tci;
1092                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1093                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1094                            rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1095                            rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1096         } else {
1097                 mb->vlan_tci_outer = 0;
1098         }
1099 #endif
1100 }
1101
1102 static inline void
1103 iavf_flex_rxd_to_ipsec_crypto_said_get(struct rte_mbuf *mb,
1104                           volatile union iavf_rx_flex_desc *rxdp)
1105 {
1106         volatile struct iavf_32b_rx_flex_desc_comms_ipsec *desc =
1107                 (volatile struct iavf_32b_rx_flex_desc_comms_ipsec *)rxdp;
1108
1109         mb->dynfield1[0] = desc->ipsec_said &
1110                          IAVF_RX_FLEX_DESC_IPSEC_CRYPTO_SAID_MASK;
1111         }
1112
1113 static inline void
1114 iavf_flex_rxd_to_ipsec_crypto_status(struct rte_mbuf *mb,
1115                           volatile union iavf_rx_flex_desc *rxdp,
1116                           struct iavf_ipsec_crypto_stats *stats)
1117 {
1118         uint16_t status1 = rte_le_to_cpu_64(rxdp->wb.status_error1);
1119
1120         if (status1 & BIT(IAVF_RX_FLEX_DESC_STATUS1_IPSEC_CRYPTO_PROCESSED)) {
1121                 uint16_t ipsec_status;
1122
1123                 mb->ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD;
1124
1125                 ipsec_status = status1 &
1126                         IAVF_RX_FLEX_DESC_IPSEC_CRYPTO_STATUS_MASK;
1127
1128
1129                 if (unlikely(ipsec_status !=
1130                         IAVF_IPSEC_CRYPTO_STATUS_SUCCESS)) {
1131                         mb->ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
1132
1133                         switch (ipsec_status) {
1134                         case IAVF_IPSEC_CRYPTO_STATUS_SAD_MISS:
1135                                 stats->ierrors.sad_miss++;
1136                                 break;
1137                         case IAVF_IPSEC_CRYPTO_STATUS_NOT_PROCESSED:
1138                                 stats->ierrors.not_processed++;
1139                                 break;
1140                         case IAVF_IPSEC_CRYPTO_STATUS_ICV_CHECK_FAIL:
1141                                 stats->ierrors.icv_check++;
1142                                 break;
1143                         case IAVF_IPSEC_CRYPTO_STATUS_LENGTH_ERR:
1144                                 stats->ierrors.ipsec_length++;
1145                                 break;
1146                         case IAVF_IPSEC_CRYPTO_STATUS_MISC_ERR:
1147                                 stats->ierrors.misc++;
1148                                 break;
1149 }
1150
1151                         stats->ierrors.count++;
1152                         return;
1153                 }
1154
1155                 stats->icount++;
1156                 stats->ibytes += rxdp->wb.pkt_len & 0x3FFF;
1157
1158                 if (rxdp->wb.rxdid == IAVF_RXDID_COMMS_IPSEC_CRYPTO &&
1159                         ipsec_status !=
1160                                 IAVF_IPSEC_CRYPTO_STATUS_SAD_MISS)
1161                         iavf_flex_rxd_to_ipsec_crypto_said_get(mb, rxdp);
1162         }
1163 }
1164
1165
1166 /* Translate the rx descriptor status and error fields to pkt flags */
1167 static inline uint64_t
1168 iavf_rxd_to_pkt_flags(uint64_t qword)
1169 {
1170         uint64_t flags;
1171         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
1172
1173 #define IAVF_RX_ERR_BITS 0x3f
1174
1175         /* Check if RSS_HASH */
1176         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
1177                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
1178                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? RTE_MBUF_F_RX_RSS_HASH : 0;
1179
1180         /* Check if FDIR Match */
1181         flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
1182                                 RTE_MBUF_F_RX_FDIR : 0);
1183
1184         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
1185                 flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
1186                 return flags;
1187         }
1188
1189         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
1190                 flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1191         else
1192                 flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1193
1194         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
1195                 flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1196         else
1197                 flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1198
1199         /* TODO: Oversize error bit is not processed here */
1200
1201         return flags;
1202 }
1203
1204 static inline uint64_t
1205 iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
1206 {
1207         uint64_t flags = 0;
1208 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1209         uint16_t flexbh;
1210
1211         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
1212                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
1213                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
1214
1215         if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
1216                 mb->hash.fdir.hi =
1217                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
1218                 flags |= RTE_MBUF_F_RX_FDIR_ID;
1219         }
1220 #else
1221         mb->hash.fdir.hi =
1222                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
1223         flags |= RTE_MBUF_F_RX_FDIR_ID;
1224 #endif
1225         return flags;
1226 }
1227
1228 #define IAVF_RX_FLEX_ERR0_BITS  \
1229         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1230          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1231          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1232          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1233          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1234          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1235
1236 /* Rx L3/L4 checksum */
1237 static inline uint64_t
1238 iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
1239 {
1240         uint64_t flags = 0;
1241
1242         /* check if HW has decoded the packet and checksum */
1243         if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1244                 return 0;
1245
1246         if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
1247                 flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
1248                 return flags;
1249         }
1250
1251         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1252                 flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1253         else
1254                 flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1255
1256         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1257                 flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1258         else
1259                 flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1260
1261         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1262                 flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
1263
1264         return flags;
1265 }
1266
1267 /* If the number of free RX descriptors is greater than the RX free
1268  * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1269  * register. Update the RDT with the value of the last processed RX
1270  * descriptor minus 1, to guarantee that the RDT register is never
1271  * equal to the RDH register, which creates a "full" ring situation
1272  * from the hardware point of view.
1273  */
1274 static inline void
1275 iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
1276 {
1277         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1278
1279         if (nb_hold > rxq->rx_free_thresh) {
1280                 PMD_RX_LOG(DEBUG,
1281                            "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
1282                            rxq->port_id, rxq->queue_id, rx_id, nb_hold);
1283                 rx_id = (uint16_t)((rx_id == 0) ?
1284                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1285                 IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1286                 nb_hold = 0;
1287         }
1288         rxq->nb_rx_hold = nb_hold;
1289 }
1290
1291 /* implement recv_pkts */
1292 uint16_t
1293 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1294 {
1295         volatile union iavf_rx_desc *rx_ring;
1296         volatile union iavf_rx_desc *rxdp;
1297         struct iavf_rx_queue *rxq;
1298         union iavf_rx_desc rxd;
1299         struct rte_mbuf *rxe;
1300         struct rte_eth_dev *dev;
1301         struct rte_mbuf *rxm;
1302         struct rte_mbuf *nmb;
1303         uint16_t nb_rx;
1304         uint32_t rx_status;
1305         uint64_t qword1;
1306         uint16_t rx_packet_len;
1307         uint16_t rx_id, nb_hold;
1308         uint64_t dma_addr;
1309         uint64_t pkt_flags;
1310         const uint32_t *ptype_tbl;
1311
1312         nb_rx = 0;
1313         nb_hold = 0;
1314         rxq = rx_queue;
1315         rx_id = rxq->rx_tail;
1316         rx_ring = rxq->rx_ring;
1317         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1318
1319         while (nb_rx < nb_pkts) {
1320                 rxdp = &rx_ring[rx_id];
1321                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1322                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1323                             IAVF_RXD_QW1_STATUS_SHIFT;
1324
1325                 /* Check the DD bit first */
1326                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1327                         break;
1328                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1329
1330                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1331                 if (unlikely(!nmb)) {
1332                         dev = &rte_eth_devices[rxq->port_id];
1333                         dev->data->rx_mbuf_alloc_failed++;
1334                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1335                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1336                         break;
1337                 }
1338
1339                 rxd = *rxdp;
1340                 nb_hold++;
1341                 rxe = rxq->sw_ring[rx_id];
1342                 rxq->sw_ring[rx_id] = nmb;
1343                 rx_id++;
1344                 if (unlikely(rx_id == rxq->nb_rx_desc))
1345                         rx_id = 0;
1346
1347                 /* Prefetch next mbuf */
1348                 rte_prefetch0(rxq->sw_ring[rx_id]);
1349
1350                 /* When next RX descriptor is on a cache line boundary,
1351                  * prefetch the next 4 RX descriptors and next 8 pointers
1352                  * to mbufs.
1353                  */
1354                 if ((rx_id & 0x3) == 0) {
1355                         rte_prefetch0(&rx_ring[rx_id]);
1356                         rte_prefetch0(rxq->sw_ring[rx_id]);
1357                 }
1358                 rxm = rxe;
1359                 dma_addr =
1360                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1361                 rxdp->read.hdr_addr = 0;
1362                 rxdp->read.pkt_addr = dma_addr;
1363
1364                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1365                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1366
1367                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1368                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1369                 rxm->nb_segs = 1;
1370                 rxm->next = NULL;
1371                 rxm->pkt_len = rx_packet_len;
1372                 rxm->data_len = rx_packet_len;
1373                 rxm->port = rxq->port_id;
1374                 rxm->ol_flags = 0;
1375                 iavf_rxd_to_vlan_tci(rxm, &rxd);
1376                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1377                 rxm->packet_type =
1378                         ptype_tbl[(uint8_t)((qword1 &
1379                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1380
1381                 if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
1382                         rxm->hash.rss =
1383                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1384
1385                 if (pkt_flags & RTE_MBUF_F_RX_FDIR)
1386                         pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
1387
1388                 rxm->ol_flags |= pkt_flags;
1389
1390                 rx_pkts[nb_rx++] = rxm;
1391         }
1392         rxq->rx_tail = rx_id;
1393
1394         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1395
1396         return nb_rx;
1397 }
1398
1399 /* implement recv_pkts for flexible Rx descriptor */
1400 uint16_t
1401 iavf_recv_pkts_flex_rxd(void *rx_queue,
1402                         struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1403 {
1404         volatile union iavf_rx_desc *rx_ring;
1405         volatile union iavf_rx_flex_desc *rxdp;
1406         struct iavf_rx_queue *rxq;
1407         union iavf_rx_flex_desc rxd;
1408         struct rte_mbuf *rxe;
1409         struct rte_eth_dev *dev;
1410         struct rte_mbuf *rxm;
1411         struct rte_mbuf *nmb;
1412         uint16_t nb_rx;
1413         uint16_t rx_stat_err0;
1414         uint16_t rx_packet_len;
1415         uint16_t rx_id, nb_hold;
1416         uint64_t dma_addr;
1417         uint64_t pkt_flags;
1418         const uint32_t *ptype_tbl;
1419
1420         nb_rx = 0;
1421         nb_hold = 0;
1422         rxq = rx_queue;
1423         rx_id = rxq->rx_tail;
1424         rx_ring = rxq->rx_ring;
1425         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1426
1427         while (nb_rx < nb_pkts) {
1428                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1429                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1430
1431                 /* Check the DD bit first */
1432                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1433                         break;
1434                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1435
1436                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1437                 if (unlikely(!nmb)) {
1438                         dev = &rte_eth_devices[rxq->port_id];
1439                         dev->data->rx_mbuf_alloc_failed++;
1440                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1441                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1442                         break;
1443                 }
1444
1445                 rxd = *rxdp;
1446                 nb_hold++;
1447                 rxe = rxq->sw_ring[rx_id];
1448                 rxq->sw_ring[rx_id] = nmb;
1449                 rx_id++;
1450                 if (unlikely(rx_id == rxq->nb_rx_desc))
1451                         rx_id = 0;
1452
1453                 /* Prefetch next mbuf */
1454                 rte_prefetch0(rxq->sw_ring[rx_id]);
1455
1456                 /* When next RX descriptor is on a cache line boundary,
1457                  * prefetch the next 4 RX descriptors and next 8 pointers
1458                  * to mbufs.
1459                  */
1460                 if ((rx_id & 0x3) == 0) {
1461                         rte_prefetch0(&rx_ring[rx_id]);
1462                         rte_prefetch0(rxq->sw_ring[rx_id]);
1463                 }
1464                 rxm = rxe;
1465                 dma_addr =
1466                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1467                 rxdp->read.hdr_addr = 0;
1468                 rxdp->read.pkt_addr = dma_addr;
1469
1470                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
1471                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1472
1473                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1474                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1475                 rxm->nb_segs = 1;
1476                 rxm->next = NULL;
1477                 rxm->pkt_len = rx_packet_len;
1478                 rxm->data_len = rx_packet_len;
1479                 rxm->port = rxq->port_id;
1480                 rxm->ol_flags = 0;
1481                 rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1482                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1483                 iavf_flex_rxd_to_vlan_tci(rxm, &rxd);
1484                 iavf_flex_rxd_to_ipsec_crypto_status(rxm, &rxd,
1485                                 &rxq->stats.ipsec_crypto);
1486                 rxq->rxd_to_pkt_fields(rxq, rxm, &rxd);
1487                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1488                 rxm->ol_flags |= pkt_flags;
1489
1490                 rx_pkts[nb_rx++] = rxm;
1491         }
1492         rxq->rx_tail = rx_id;
1493
1494         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1495
1496         return nb_rx;
1497 }
1498
1499 /* implement recv_scattered_pkts for flexible Rx descriptor */
1500 uint16_t
1501 iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1502                                   uint16_t nb_pkts)
1503 {
1504         struct iavf_rx_queue *rxq = rx_queue;
1505         union iavf_rx_flex_desc rxd;
1506         struct rte_mbuf *rxe;
1507         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1508         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1509         struct rte_mbuf *nmb, *rxm;
1510         uint16_t rx_id = rxq->rx_tail;
1511         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1512         struct rte_eth_dev *dev;
1513         uint16_t rx_stat_err0;
1514         uint64_t dma_addr;
1515         uint64_t pkt_flags;
1516
1517         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1518         volatile union iavf_rx_flex_desc *rxdp;
1519         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1520
1521         while (nb_rx < nb_pkts) {
1522                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1523                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1524
1525                 /* Check the DD bit */
1526                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1527                         break;
1528                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1529
1530                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1531                 if (unlikely(!nmb)) {
1532                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1533                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1534                         dev = &rte_eth_devices[rxq->port_id];
1535                         dev->data->rx_mbuf_alloc_failed++;
1536                         break;
1537                 }
1538
1539                 rxd = *rxdp;
1540                 nb_hold++;
1541                 rxe = rxq->sw_ring[rx_id];
1542                 rxq->sw_ring[rx_id] = nmb;
1543                 rx_id++;
1544                 if (rx_id == rxq->nb_rx_desc)
1545                         rx_id = 0;
1546
1547                 /* Prefetch next mbuf */
1548                 rte_prefetch0(rxq->sw_ring[rx_id]);
1549
1550                 /* When next RX descriptor is on a cache line boundary,
1551                  * prefetch the next 4 RX descriptors and next 8 pointers
1552                  * to mbufs.
1553                  */
1554                 if ((rx_id & 0x3) == 0) {
1555                         rte_prefetch0(&rx_ring[rx_id]);
1556                         rte_prefetch0(rxq->sw_ring[rx_id]);
1557                 }
1558
1559                 rxm = rxe;
1560                 dma_addr =
1561                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1562
1563                 /* Set data buffer address and data length of the mbuf */
1564                 rxdp->read.hdr_addr = 0;
1565                 rxdp->read.pkt_addr = dma_addr;
1566                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1567                                 IAVF_RX_FLX_DESC_PKT_LEN_M;
1568                 rxm->data_len = rx_packet_len;
1569                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1570
1571                 /* If this is the first buffer of the received packet, set the
1572                  * pointer to the first mbuf of the packet and initialize its
1573                  * context. Otherwise, update the total length and the number
1574                  * of segments of the current scattered packet, and update the
1575                  * pointer to the last mbuf of the current packet.
1576                  */
1577                 if (!first_seg) {
1578                         first_seg = rxm;
1579                         first_seg->nb_segs = 1;
1580                         first_seg->pkt_len = rx_packet_len;
1581                 } else {
1582                         first_seg->pkt_len =
1583                                 (uint16_t)(first_seg->pkt_len +
1584                                                 rx_packet_len);
1585                         first_seg->nb_segs++;
1586                         last_seg->next = rxm;
1587                 }
1588
1589                 /* If this is not the last buffer of the received packet,
1590                  * update the pointer to the last mbuf of the current scattered
1591                  * packet and continue to parse the RX ring.
1592                  */
1593                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
1594                         last_seg = rxm;
1595                         continue;
1596                 }
1597
1598                 /* This is the last buffer of the received packet. If the CRC
1599                  * is not stripped by the hardware:
1600                  *  - Subtract the CRC length from the total packet length.
1601                  *  - If the last buffer only contains the whole CRC or a part
1602                  *  of it, free the mbuf associated to the last buffer. If part
1603                  *  of the CRC is also contained in the previous mbuf, subtract
1604                  *  the length of that CRC part from the data length of the
1605                  *  previous mbuf.
1606                  */
1607                 rxm->next = NULL;
1608                 if (unlikely(rxq->crc_len > 0)) {
1609                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1610                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1611                                 rte_pktmbuf_free_seg(rxm);
1612                                 first_seg->nb_segs--;
1613                                 last_seg->data_len =
1614                                         (uint16_t)(last_seg->data_len -
1615                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1616                                 last_seg->next = NULL;
1617                         } else {
1618                                 rxm->data_len = (uint16_t)(rx_packet_len -
1619                                                         RTE_ETHER_CRC_LEN);
1620                         }
1621                 }
1622
1623                 first_seg->port = rxq->port_id;
1624                 first_seg->ol_flags = 0;
1625                 first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1626                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1627                 iavf_flex_rxd_to_vlan_tci(first_seg, &rxd);
1628                 iavf_flex_rxd_to_ipsec_crypto_status(first_seg, &rxd,
1629                                 &rxq->stats.ipsec_crypto);
1630                 rxq->rxd_to_pkt_fields(rxq, first_seg, &rxd);
1631                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1632
1633                 first_seg->ol_flags |= pkt_flags;
1634
1635                 /* Prefetch data of first segment, if configured to do so. */
1636                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1637                                           first_seg->data_off));
1638                 rx_pkts[nb_rx++] = first_seg;
1639                 first_seg = NULL;
1640         }
1641
1642         /* Record index of the next RX descriptor to probe. */
1643         rxq->rx_tail = rx_id;
1644         rxq->pkt_first_seg = first_seg;
1645         rxq->pkt_last_seg = last_seg;
1646
1647         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1648
1649         return nb_rx;
1650 }
1651
1652 /* implement recv_scattered_pkts  */
1653 uint16_t
1654 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1655                         uint16_t nb_pkts)
1656 {
1657         struct iavf_rx_queue *rxq = rx_queue;
1658         union iavf_rx_desc rxd;
1659         struct rte_mbuf *rxe;
1660         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1661         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1662         struct rte_mbuf *nmb, *rxm;
1663         uint16_t rx_id = rxq->rx_tail;
1664         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1665         struct rte_eth_dev *dev;
1666         uint32_t rx_status;
1667         uint64_t qword1;
1668         uint64_t dma_addr;
1669         uint64_t pkt_flags;
1670
1671         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1672         volatile union iavf_rx_desc *rxdp;
1673         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1674
1675         while (nb_rx < nb_pkts) {
1676                 rxdp = &rx_ring[rx_id];
1677                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1678                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1679                             IAVF_RXD_QW1_STATUS_SHIFT;
1680
1681                 /* Check the DD bit */
1682                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1683                         break;
1684                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1685
1686                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1687                 if (unlikely(!nmb)) {
1688                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1689                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1690                         dev = &rte_eth_devices[rxq->port_id];
1691                         dev->data->rx_mbuf_alloc_failed++;
1692                         break;
1693                 }
1694
1695                 rxd = *rxdp;
1696                 nb_hold++;
1697                 rxe = rxq->sw_ring[rx_id];
1698                 rxq->sw_ring[rx_id] = nmb;
1699                 rx_id++;
1700                 if (rx_id == rxq->nb_rx_desc)
1701                         rx_id = 0;
1702
1703                 /* Prefetch next mbuf */
1704                 rte_prefetch0(rxq->sw_ring[rx_id]);
1705
1706                 /* When next RX descriptor is on a cache line boundary,
1707                  * prefetch the next 4 RX descriptors and next 8 pointers
1708                  * to mbufs.
1709                  */
1710                 if ((rx_id & 0x3) == 0) {
1711                         rte_prefetch0(&rx_ring[rx_id]);
1712                         rte_prefetch0(rxq->sw_ring[rx_id]);
1713                 }
1714
1715                 rxm = rxe;
1716                 dma_addr =
1717                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1718
1719                 /* Set data buffer address and data length of the mbuf */
1720                 rxdp->read.hdr_addr = 0;
1721                 rxdp->read.pkt_addr = dma_addr;
1722                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1723                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1724                 rxm->data_len = rx_packet_len;
1725                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1726
1727                 /* If this is the first buffer of the received packet, set the
1728                  * pointer to the first mbuf of the packet and initialize its
1729                  * context. Otherwise, update the total length and the number
1730                  * of segments of the current scattered packet, and update the
1731                  * pointer to the last mbuf of the current packet.
1732                  */
1733                 if (!first_seg) {
1734                         first_seg = rxm;
1735                         first_seg->nb_segs = 1;
1736                         first_seg->pkt_len = rx_packet_len;
1737                 } else {
1738                         first_seg->pkt_len =
1739                                 (uint16_t)(first_seg->pkt_len +
1740                                                 rx_packet_len);
1741                         first_seg->nb_segs++;
1742                         last_seg->next = rxm;
1743                 }
1744
1745                 /* If this is not the last buffer of the received packet,
1746                  * update the pointer to the last mbuf of the current scattered
1747                  * packet and continue to parse the RX ring.
1748                  */
1749                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1750                         last_seg = rxm;
1751                         continue;
1752                 }
1753
1754                 /* This is the last buffer of the received packet. If the CRC
1755                  * is not stripped by the hardware:
1756                  *  - Subtract the CRC length from the total packet length.
1757                  *  - If the last buffer only contains the whole CRC or a part
1758                  *  of it, free the mbuf associated to the last buffer. If part
1759                  *  of the CRC is also contained in the previous mbuf, subtract
1760                  *  the length of that CRC part from the data length of the
1761                  *  previous mbuf.
1762                  */
1763                 rxm->next = NULL;
1764                 if (unlikely(rxq->crc_len > 0)) {
1765                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1766                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1767                                 rte_pktmbuf_free_seg(rxm);
1768                                 first_seg->nb_segs--;
1769                                 last_seg->data_len =
1770                                         (uint16_t)(last_seg->data_len -
1771                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1772                                 last_seg->next = NULL;
1773                         } else
1774                                 rxm->data_len = (uint16_t)(rx_packet_len -
1775                                                         RTE_ETHER_CRC_LEN);
1776                 }
1777
1778                 first_seg->port = rxq->port_id;
1779                 first_seg->ol_flags = 0;
1780                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1781                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1782                 first_seg->packet_type =
1783                         ptype_tbl[(uint8_t)((qword1 &
1784                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1785
1786                 if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
1787                         first_seg->hash.rss =
1788                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1789
1790                 if (pkt_flags & RTE_MBUF_F_RX_FDIR)
1791                         pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
1792
1793                 first_seg->ol_flags |= pkt_flags;
1794
1795                 /* Prefetch data of first segment, if configured to do so. */
1796                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1797                                           first_seg->data_off));
1798                 rx_pkts[nb_rx++] = first_seg;
1799                 first_seg = NULL;
1800         }
1801
1802         /* Record index of the next RX descriptor to probe. */
1803         rxq->rx_tail = rx_id;
1804         rxq->pkt_first_seg = first_seg;
1805         rxq->pkt_last_seg = last_seg;
1806
1807         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1808
1809         return nb_rx;
1810 }
1811
1812 #define IAVF_LOOK_AHEAD 8
1813 static inline int
1814 iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
1815 {
1816         volatile union iavf_rx_flex_desc *rxdp;
1817         struct rte_mbuf **rxep;
1818         struct rte_mbuf *mb;
1819         uint16_t stat_err0;
1820         uint16_t pkt_len;
1821         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1822         int32_t i, j, nb_rx = 0;
1823         uint64_t pkt_flags;
1824         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1825
1826         rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
1827         rxep = &rxq->sw_ring[rxq->rx_tail];
1828
1829         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1830
1831         /* Make sure there is at least 1 packet to receive */
1832         if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1833                 return 0;
1834
1835         /* Scan LOOK_AHEAD descriptors at a time to determine which
1836          * descriptors reference packets that are ready to be received.
1837          */
1838         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1839              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1840                 /* Read desc statuses backwards to avoid race condition */
1841                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
1842                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1843
1844                 rte_smp_rmb();
1845
1846                 /* Compute how many status bits were set */
1847                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1848                         nb_dd += s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
1849
1850                 nb_rx += nb_dd;
1851
1852                 /* Translate descriptor info to mbuf parameters */
1853                 for (j = 0; j < nb_dd; j++) {
1854                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1855                                           rxq->rx_tail +
1856                                           i * IAVF_LOOK_AHEAD + j);
1857
1858                         mb = rxep[j];
1859                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1860                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1861                         mb->data_len = pkt_len;
1862                         mb->pkt_len = pkt_len;
1863                         mb->ol_flags = 0;
1864
1865                         mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1866                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1867                         iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j]);
1868                         iavf_flex_rxd_to_ipsec_crypto_status(mb, &rxdp[j],
1869                                 &rxq->stats.ipsec_crypto);
1870                         rxq->rxd_to_pkt_fields(rxq, mb, &rxdp[j]);
1871                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1872                         pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
1873
1874                         mb->ol_flags |= pkt_flags;
1875                 }
1876
1877                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1878                         rxq->rx_stage[i + j] = rxep[j];
1879
1880                 if (nb_dd != IAVF_LOOK_AHEAD)
1881                         break;
1882         }
1883
1884         /* Clear software ring entries */
1885         for (i = 0; i < nb_rx; i++)
1886                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1887
1888         return nb_rx;
1889 }
1890
1891 static inline int
1892 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1893 {
1894         volatile union iavf_rx_desc *rxdp;
1895         struct rte_mbuf **rxep;
1896         struct rte_mbuf *mb;
1897         uint16_t pkt_len;
1898         uint64_t qword1;
1899         uint32_t rx_status;
1900         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1901         int32_t i, j, nb_rx = 0;
1902         uint64_t pkt_flags;
1903         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1904
1905         rxdp = &rxq->rx_ring[rxq->rx_tail];
1906         rxep = &rxq->sw_ring[rxq->rx_tail];
1907
1908         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1909         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1910                     IAVF_RXD_QW1_STATUS_SHIFT;
1911
1912         /* Make sure there is at least 1 packet to receive */
1913         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1914                 return 0;
1915
1916         /* Scan LOOK_AHEAD descriptors at a time to determine which
1917          * descriptors reference packets that are ready to be received.
1918          */
1919         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1920              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1921                 /* Read desc statuses backwards to avoid race condition */
1922                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1923                         qword1 = rte_le_to_cpu_64(
1924                                 rxdp[j].wb.qword1.status_error_len);
1925                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1926                                IAVF_RXD_QW1_STATUS_SHIFT;
1927                 }
1928
1929                 rte_smp_rmb();
1930
1931                 /* Compute how many status bits were set */
1932                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1933                         nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1934
1935                 nb_rx += nb_dd;
1936
1937                 /* Translate descriptor info to mbuf parameters */
1938                 for (j = 0; j < nb_dd; j++) {
1939                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1940                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1941
1942                         mb = rxep[j];
1943                         qword1 = rte_le_to_cpu_64
1944                                         (rxdp[j].wb.qword1.status_error_len);
1945                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1946                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1947                         mb->data_len = pkt_len;
1948                         mb->pkt_len = pkt_len;
1949                         mb->ol_flags = 0;
1950                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1951                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1952                         mb->packet_type =
1953                                 ptype_tbl[(uint8_t)((qword1 &
1954                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1955                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
1956
1957                         if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
1958                                 mb->hash.rss = rte_le_to_cpu_32(
1959                                         rxdp[j].wb.qword0.hi_dword.rss);
1960
1961                         if (pkt_flags & RTE_MBUF_F_RX_FDIR)
1962                                 pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
1963
1964                         mb->ol_flags |= pkt_flags;
1965                 }
1966
1967                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1968                         rxq->rx_stage[i + j] = rxep[j];
1969
1970                 if (nb_dd != IAVF_LOOK_AHEAD)
1971                         break;
1972         }
1973
1974         /* Clear software ring entries */
1975         for (i = 0; i < nb_rx; i++)
1976                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1977
1978         return nb_rx;
1979 }
1980
1981 static inline uint16_t
1982 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
1983                        struct rte_mbuf **rx_pkts,
1984                        uint16_t nb_pkts)
1985 {
1986         uint16_t i;
1987         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1988
1989         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1990
1991         for (i = 0; i < nb_pkts; i++)
1992                 rx_pkts[i] = stage[i];
1993
1994         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1995         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1996
1997         return nb_pkts;
1998 }
1999
2000 static inline int
2001 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
2002 {
2003         volatile union iavf_rx_desc *rxdp;
2004         struct rte_mbuf **rxep;
2005         struct rte_mbuf *mb;
2006         uint16_t alloc_idx, i;
2007         uint64_t dma_addr;
2008         int diag;
2009
2010         /* Allocate buffers in bulk */
2011         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
2012                                 (rxq->rx_free_thresh - 1));
2013         rxep = &rxq->sw_ring[alloc_idx];
2014         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
2015                                     rxq->rx_free_thresh);
2016         if (unlikely(diag != 0)) {
2017                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
2018                 return -ENOMEM;
2019         }
2020
2021         rxdp = &rxq->rx_ring[alloc_idx];
2022         for (i = 0; i < rxq->rx_free_thresh; i++) {
2023                 if (likely(i < (rxq->rx_free_thresh - 1)))
2024                         /* Prefetch next mbuf */
2025                         rte_prefetch0(rxep[i + 1]);
2026
2027                 mb = rxep[i];
2028                 rte_mbuf_refcnt_set(mb, 1);
2029                 mb->next = NULL;
2030                 mb->data_off = RTE_PKTMBUF_HEADROOM;
2031                 mb->nb_segs = 1;
2032                 mb->port = rxq->port_id;
2033                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
2034                 rxdp[i].read.hdr_addr = 0;
2035                 rxdp[i].read.pkt_addr = dma_addr;
2036         }
2037
2038         /* Update rx tail register */
2039         rte_wmb();
2040         IAVF_PCI_REG_WC_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
2041
2042         rxq->rx_free_trigger =
2043                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
2044         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
2045                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2046
2047         return 0;
2048 }
2049
2050 static inline uint16_t
2051 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
2052 {
2053         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
2054         uint16_t nb_rx = 0;
2055
2056         if (!nb_pkts)
2057                 return 0;
2058
2059         if (rxq->rx_nb_avail)
2060                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
2061
2062         if (rxq->rxdid >= IAVF_RXDID_FLEX_NIC && rxq->rxdid <= IAVF_RXDID_LAST)
2063                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
2064         else
2065                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
2066         rxq->rx_next_avail = 0;
2067         rxq->rx_nb_avail = nb_rx;
2068         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
2069
2070         if (rxq->rx_tail > rxq->rx_free_trigger) {
2071                 if (iavf_rx_alloc_bufs(rxq) != 0) {
2072                         uint16_t i, j;
2073
2074                         /* TODO: count rx_mbuf_alloc_failed here */
2075
2076                         rxq->rx_nb_avail = 0;
2077                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
2078                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
2079                                 rxq->sw_ring[j] = rxq->rx_stage[i];
2080
2081                         return 0;
2082                 }
2083         }
2084
2085         if (rxq->rx_tail >= rxq->nb_rx_desc)
2086                 rxq->rx_tail = 0;
2087
2088         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
2089                    rxq->port_id, rxq->queue_id,
2090                    rxq->rx_tail, nb_rx);
2091
2092         if (rxq->rx_nb_avail)
2093                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
2094
2095         return 0;
2096 }
2097
2098 static uint16_t
2099 iavf_recv_pkts_bulk_alloc(void *rx_queue,
2100                          struct rte_mbuf **rx_pkts,
2101                          uint16_t nb_pkts)
2102 {
2103         uint16_t nb_rx = 0, n, count;
2104
2105         if (unlikely(nb_pkts == 0))
2106                 return 0;
2107
2108         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
2109                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
2110
2111         while (nb_pkts) {
2112                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
2113                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
2114                 nb_rx = (uint16_t)(nb_rx + count);
2115                 nb_pkts = (uint16_t)(nb_pkts - count);
2116                 if (count < n)
2117                         break;
2118         }
2119
2120         return nb_rx;
2121 }
2122
2123 static inline int
2124 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
2125 {
2126         struct iavf_tx_entry *sw_ring = txq->sw_ring;
2127         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2128         uint16_t nb_tx_desc = txq->nb_tx_desc;
2129         uint16_t desc_to_clean_to;
2130         uint16_t nb_tx_to_clean;
2131
2132         volatile struct iavf_tx_desc *txd = txq->tx_ring;
2133
2134         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
2135         if (desc_to_clean_to >= nb_tx_desc)
2136                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2137
2138         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2139         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
2140                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
2141                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
2142                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2143                            "(port=%d queue=%d)", desc_to_clean_to,
2144                            txq->port_id, txq->queue_id);
2145                 return -1;
2146         }
2147
2148         if (last_desc_cleaned > desc_to_clean_to)
2149                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2150                                                         desc_to_clean_to);
2151         else
2152                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2153                                         last_desc_cleaned);
2154
2155         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2156
2157         txq->last_desc_cleaned = desc_to_clean_to;
2158         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
2159
2160         return 0;
2161 }
2162
2163 /* Check if the context descriptor is needed for TX offloading */
2164 static inline uint16_t
2165 iavf_calc_context_desc(uint64_t flags, uint8_t vlan_flag)
2166 {
2167         if (flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG |
2168                         RTE_MBUF_F_TX_TUNNEL_MASK))
2169                 return 1;
2170         if (flags & RTE_MBUF_F_TX_VLAN &&
2171             vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
2172                 return 1;
2173         return 0;
2174 }
2175
2176 static inline void
2177 iavf_fill_ctx_desc_cmd_field(volatile uint64_t *field, struct rte_mbuf *m,
2178                 uint8_t vlan_flag)
2179 {
2180         uint64_t cmd = 0;
2181
2182         /* TSO enabled */
2183         if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG))
2184                 cmd = IAVF_TX_CTX_DESC_TSO << IAVF_TXD_CTX_QW1_CMD_SHIFT;
2185
2186         if (m->ol_flags & RTE_MBUF_F_TX_VLAN &&
2187                         vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2) {
2188                 cmd |= IAVF_TX_CTX_DESC_IL2TAG2
2189                         << IAVF_TXD_CTX_QW1_CMD_SHIFT;
2190         }
2191
2192         *field |= cmd;
2193 }
2194
2195 static inline void
2196 iavf_fill_ctx_desc_ipsec_field(volatile uint64_t *field,
2197         struct iavf_ipsec_crypto_pkt_metadata *ipsec_md)
2198 {
2199         uint64_t ipsec_field =
2200                 (uint64_t)ipsec_md->ctx_desc_ipsec_params <<
2201                         IAVF_TXD_CTX_QW1_IPSEC_PARAMS_CIPHERBLK_SHIFT;
2202
2203         *field |= ipsec_field;
2204 }
2205
2206
2207 static inline void
2208 iavf_fill_ctx_desc_tunnelling_field(volatile uint64_t *qw0,
2209                 const struct rte_mbuf *m)
2210 {
2211         uint64_t eip_typ = IAVF_TX_CTX_DESC_EIPT_NONE;
2212         uint64_t eip_len = 0;
2213         uint64_t eip_noinc = 0;
2214         /* Default - IP_ID is increment in each segment of LSO */
2215
2216         switch (m->ol_flags & (RTE_MBUF_F_TX_OUTER_IPV4 |
2217                         RTE_MBUF_F_TX_OUTER_IPV6 |
2218                         RTE_MBUF_F_TX_OUTER_IP_CKSUM)) {
2219         case RTE_MBUF_F_TX_OUTER_IPV4:
2220                 eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV4_NO_CHECKSUM_OFFLOAD;
2221                 eip_len = m->outer_l3_len >> 2;
2222         break;
2223         case RTE_MBUF_F_TX_OUTER_IPV4 | RTE_MBUF_F_TX_OUTER_IP_CKSUM:
2224                 eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV4_CHECKSUM_OFFLOAD;
2225                 eip_len = m->outer_l3_len >> 2;
2226         break;
2227         case RTE_MBUF_F_TX_OUTER_IPV6:
2228                 eip_typ = IAVF_TX_CTX_DESC_EIPT_IPV6;
2229                 eip_len = m->outer_l3_len >> 2;
2230         break;
2231         }
2232
2233         *qw0 = eip_typ << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIPT_SHIFT |
2234                 eip_len << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIPLEN_SHIFT |
2235                 eip_noinc << IAVF_TXD_CTX_QW0_TUN_PARAMS_EIP_NOINC_SHIFT;
2236 }
2237
2238 static inline uint16_t
2239 iavf_fill_ctx_desc_segmentation_field(volatile uint64_t *field,
2240         struct rte_mbuf *m, struct iavf_ipsec_crypto_pkt_metadata *ipsec_md)
2241 {
2242         uint64_t segmentation_field = 0;
2243         uint64_t total_length = 0;
2244
2245         if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD) {
2246                 total_length = ipsec_md->l4_payload_len;
2247         } else {
2248                 total_length = m->pkt_len - (m->l2_len + m->l3_len + m->l4_len);
2249
2250                 if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2251                         total_length -= m->outer_l3_len;
2252         }
2253
2254 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
2255         if (!m->l4_len || !m->tso_segsz)
2256                 PMD_TX_LOG(DEBUG, "L4 length %d, LSO Segment size %d",
2257                          m->l4_len, m->tso_segsz);
2258         if (m->tso_segsz < 88)
2259                 PMD_TX_LOG(DEBUG, "LSO Segment size %d is less than minimum %d",
2260                         m->tso_segsz, 88);
2261 #endif
2262         segmentation_field =
2263                 (((uint64_t)total_length << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) &
2264                                 IAVF_TXD_CTX_QW1_TSO_LEN_MASK) |
2265                 (((uint64_t)m->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT) &
2266                                 IAVF_TXD_CTX_QW1_MSS_MASK);
2267
2268         *field |= segmentation_field;
2269
2270         return total_length;
2271 }
2272
2273
2274 struct iavf_tx_context_desc_qws {
2275         __le64 qw0;
2276         __le64 qw1;
2277 };
2278
2279 static inline void
2280 iavf_fill_context_desc(volatile struct iavf_tx_context_desc *desc,
2281         struct rte_mbuf *m, struct iavf_ipsec_crypto_pkt_metadata *ipsec_md,
2282         uint16_t *tlen, uint8_t vlan_flag)
2283 {
2284         volatile struct iavf_tx_context_desc_qws *desc_qws =
2285                         (volatile struct iavf_tx_context_desc_qws *)desc;
2286         /* fill descriptor type field */
2287         desc_qws->qw1 = IAVF_TX_DESC_DTYPE_CONTEXT;
2288
2289         /* fill command field */
2290         iavf_fill_ctx_desc_cmd_field(&desc_qws->qw1, m, vlan_flag);
2291
2292         /* fill segmentation field */
2293         if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) {
2294                 /* fill IPsec field */
2295                 if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
2296                         iavf_fill_ctx_desc_ipsec_field(&desc_qws->qw1,
2297                                 ipsec_md);
2298
2299                 *tlen = iavf_fill_ctx_desc_segmentation_field(&desc_qws->qw1,
2300                                 m, ipsec_md);
2301         }
2302
2303         /* fill tunnelling field */
2304         if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2305                 iavf_fill_ctx_desc_tunnelling_field(&desc_qws->qw0, m);
2306         else
2307                 desc_qws->qw0 = 0;
2308
2309         desc_qws->qw0 = rte_cpu_to_le_64(desc_qws->qw0);
2310         desc_qws->qw1 = rte_cpu_to_le_64(desc_qws->qw1);
2311
2312         if (vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
2313                 desc->l2tag2 = m->vlan_tci;
2314 }
2315
2316
2317 static inline void
2318 iavf_fill_ipsec_desc(volatile struct iavf_tx_ipsec_desc *desc,
2319         const struct iavf_ipsec_crypto_pkt_metadata *md, uint16_t *ipsec_len)
2320 {
2321         desc->qw0 = rte_cpu_to_le_64(((uint64_t)md->l4_payload_len <<
2322                 IAVF_IPSEC_TX_DESC_QW0_L4PAYLEN_SHIFT) |
2323                 ((uint64_t)md->esn << IAVF_IPSEC_TX_DESC_QW0_IPSECESN_SHIFT) |
2324                 ((uint64_t)md->esp_trailer_len <<
2325                                 IAVF_IPSEC_TX_DESC_QW0_TRAILERLEN_SHIFT));
2326
2327         desc->qw1 = rte_cpu_to_le_64(((uint64_t)md->sa_idx <<
2328                 IAVF_IPSEC_TX_DESC_QW1_IPSECSA_SHIFT) |
2329                 ((uint64_t)md->next_proto <<
2330                                 IAVF_IPSEC_TX_DESC_QW1_IPSECNH_SHIFT) |
2331                 ((uint64_t)(md->len_iv & 0x3) <<
2332                                 IAVF_IPSEC_TX_DESC_QW1_IVLEN_SHIFT) |
2333                 ((uint64_t)(md->ol_flags & IAVF_IPSEC_CRYPTO_OL_FLAGS_NATT ?
2334                                 1ULL : 0ULL) <<
2335                                 IAVF_IPSEC_TX_DESC_QW1_UDP_SHIFT) |
2336                 (uint64_t)IAVF_TX_DESC_DTYPE_IPSEC);
2337
2338         /**
2339          * TODO: Pre-calculate this in the Session initialization
2340          *
2341          * Calculate IPsec length required in data descriptor func when TSO
2342          * offload is enabled
2343          */
2344         *ipsec_len = sizeof(struct rte_esp_hdr) + (md->len_iv >> 2) +
2345                         (md->ol_flags & IAVF_IPSEC_CRYPTO_OL_FLAGS_NATT ?
2346                         sizeof(struct rte_udp_hdr) : 0);
2347 }
2348
2349 static inline void
2350 iavf_build_data_desc_cmd_offset_fields(volatile uint64_t *qw1,
2351                 struct rte_mbuf *m, uint8_t vlan_flag)
2352 {
2353         uint64_t command = 0;
2354         uint64_t offset = 0;
2355         uint64_t l2tag1 = 0;
2356
2357         *qw1 = IAVF_TX_DESC_DTYPE_DATA;
2358
2359         command = (uint64_t)IAVF_TX_DESC_CMD_ICRC;
2360
2361         /* Descriptor based VLAN insertion */
2362         if ((vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1) &&
2363                         m->ol_flags & RTE_MBUF_F_TX_VLAN) {
2364                 command |= (uint64_t)IAVF_TX_DESC_CMD_IL2TAG1;
2365                 l2tag1 |= m->vlan_tci;
2366         }
2367
2368         /* Set MACLEN */
2369         offset |= (m->l2_len >> 1) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
2370
2371         /* Enable L3 checksum offloading inner */
2372         if (m->ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4)) {
2373                 command |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
2374                 offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2375         } else if (m->ol_flags & RTE_MBUF_F_TX_IPV4) {
2376                 command |= IAVF_TX_DESC_CMD_IIPT_IPV4;
2377                 offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2378         } else if (m->ol_flags & RTE_MBUF_F_TX_IPV6) {
2379                 command |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2380                 offset |= (m->l3_len >> 2) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2381         }
2382
2383         if (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2384                 command |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2385                 offset |= (m->l4_len >> 2) <<
2386                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2387         }
2388
2389         /* Enable L4 checksum offloads */
2390         switch (m->ol_flags & RTE_MBUF_F_TX_L4_MASK) {
2391         case RTE_MBUF_F_TX_TCP_CKSUM:
2392                 command |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2393                 offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2394                                 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2395                 break;
2396         case RTE_MBUF_F_TX_SCTP_CKSUM:
2397                 command |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2398                 offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2399                                 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2400                 break;
2401         case RTE_MBUF_F_TX_UDP_CKSUM:
2402                 command |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2403                 offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2404                                 IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2405                 break;
2406         }
2407
2408         *qw1 = rte_cpu_to_le_64((((uint64_t)command <<
2409                 IAVF_TXD_DATA_QW1_CMD_SHIFT) & IAVF_TXD_DATA_QW1_CMD_MASK) |
2410                 (((uint64_t)offset << IAVF_TXD_DATA_QW1_OFFSET_SHIFT) &
2411                 IAVF_TXD_DATA_QW1_OFFSET_MASK) |
2412                 ((uint64_t)l2tag1 << IAVF_TXD_DATA_QW1_L2TAG1_SHIFT));
2413 }
2414
2415 static inline void
2416 iavf_fill_data_desc(volatile struct iavf_tx_desc *desc,
2417         struct rte_mbuf *m, uint64_t desc_template,
2418         uint16_t tlen, uint16_t ipseclen)
2419 {
2420         uint32_t hdrlen = m->l2_len;
2421         uint32_t bufsz = 0;
2422
2423         /* fill data descriptor qw1 from template */
2424         desc->cmd_type_offset_bsz = desc_template;
2425
2426         /* set data buffer address */
2427         desc->buffer_addr = rte_mbuf_data_iova(m);
2428
2429         /* calculate data buffer size less set header lengths */
2430         if (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | RTE_MBUF_F_TX_UDP_SEG)) {
2431                 if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2432                         hdrlen += m->outer_l3_len;
2433                 if (m->ol_flags & RTE_MBUF_F_TX_L4_MASK)
2434                         hdrlen += m->l3_len + m->l4_len;
2435                 else
2436                         hdrlen += m->l3_len;
2437                 if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
2438                         hdrlen += ipseclen;
2439                 bufsz = hdrlen + tlen;
2440         } else {
2441                 bufsz = m->data_len;
2442         }
2443
2444         /* set data buffer size */
2445         desc->cmd_type_offset_bsz |=
2446                 (((uint64_t)bufsz << IAVF_TXD_DATA_QW1_TX_BUF_SZ_SHIFT) &
2447                 IAVF_TXD_DATA_QW1_TX_BUF_SZ_MASK);
2448
2449         desc->buffer_addr = rte_cpu_to_le_64(desc->buffer_addr);
2450         desc->cmd_type_offset_bsz = rte_cpu_to_le_64(desc->cmd_type_offset_bsz);
2451 }
2452
2453
2454 static struct iavf_ipsec_crypto_pkt_metadata *
2455 iavf_ipsec_crypto_get_pkt_metadata(const struct iavf_tx_queue *txq,
2456                 struct rte_mbuf *m)
2457 {
2458         if (m->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD)
2459                 return RTE_MBUF_DYNFIELD(m, txq->ipsec_crypto_pkt_md_offset,
2460                                 struct iavf_ipsec_crypto_pkt_metadata *);
2461
2462         return NULL;
2463 }
2464
2465 /* TX function */
2466 uint16_t
2467 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2468 {
2469         struct iavf_tx_queue *txq = tx_queue;
2470         volatile struct iavf_tx_desc *txr = txq->tx_ring;
2471         struct iavf_tx_entry *txe_ring = txq->sw_ring;
2472         struct iavf_tx_entry *txe, *txn;
2473         struct rte_mbuf *mb, *mb_seg;
2474         uint16_t desc_idx, desc_idx_last;
2475         uint16_t idx;
2476
2477
2478         /* Check if the descriptor ring needs to be cleaned. */
2479         if (txq->nb_free < txq->free_thresh)
2480                 iavf_xmit_cleanup(txq);
2481
2482         desc_idx = txq->tx_tail;
2483         txe = &txe_ring[desc_idx];
2484
2485 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_DESC_RING
2486                 iavf_dump_tx_entry_ring(txq);
2487                 iavf_dump_tx_desc_ring(txq);
2488 #endif
2489
2490
2491         for (idx = 0; idx < nb_pkts; idx++) {
2492                 volatile struct iavf_tx_desc *ddesc;
2493                 struct iavf_ipsec_crypto_pkt_metadata *ipsec_md;
2494
2495                 uint16_t nb_desc_ctx, nb_desc_ipsec;
2496                 uint16_t nb_desc_data, nb_desc_required;
2497                 uint16_t tlen = 0, ipseclen = 0;
2498                 uint64_t ddesc_template = 0;
2499                 uint64_t ddesc_cmd = 0;
2500
2501                 mb = tx_pkts[idx];
2502
2503                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
2504
2505                 /**
2506                  * Get metadata for ipsec crypto from mbuf dynamic fields if
2507                  * security offload is specified.
2508                  */
2509                 ipsec_md = iavf_ipsec_crypto_get_pkt_metadata(txq, mb);
2510
2511                 nb_desc_data = mb->nb_segs;
2512                 nb_desc_ctx =
2513                         iavf_calc_context_desc(mb->ol_flags, txq->vlan_flag);
2514                 nb_desc_ipsec = !!(mb->ol_flags & RTE_MBUF_F_TX_SEC_OFFLOAD);
2515
2516                 /**
2517                  * The number of descriptors that must be allocated for
2518                  * a packet equals to the number of the segments of that
2519                  * packet plus the context and ipsec descriptors if needed.
2520                  */
2521                 nb_desc_required = nb_desc_data + nb_desc_ctx + nb_desc_ipsec;
2522
2523                 desc_idx_last = (uint16_t)(desc_idx + nb_desc_required - 1);
2524
2525                 /* wrap descriptor ring */
2526                 if (desc_idx_last >= txq->nb_tx_desc)
2527                         desc_idx_last =
2528                                 (uint16_t)(desc_idx_last - txq->nb_tx_desc);
2529
2530                 PMD_TX_LOG(DEBUG,
2531                         "port_id=%u queue_id=%u tx_first=%u tx_last=%u",
2532                         txq->port_id, txq->queue_id, desc_idx, desc_idx_last);
2533
2534                 if (nb_desc_required > txq->nb_free) {
2535                         if (iavf_xmit_cleanup(txq)) {
2536                                 if (idx == 0)
2537                                         return 0;
2538                                 goto end_of_tx;
2539                         }
2540                         if (unlikely(nb_desc_required > txq->rs_thresh)) {
2541                                 while (nb_desc_required > txq->nb_free) {
2542                                         if (iavf_xmit_cleanup(txq)) {
2543                                                 if (idx == 0)
2544                                                         return 0;
2545                                                 goto end_of_tx;
2546                                         }
2547                                 }
2548                         }
2549                 }
2550
2551                 iavf_build_data_desc_cmd_offset_fields(&ddesc_template, mb,
2552                         txq->vlan_flag);
2553
2554                         /* Setup TX context descriptor if required */
2555                 if (nb_desc_ctx) {
2556                         volatile struct iavf_tx_context_desc *ctx_desc =
2557                                 (volatile struct iavf_tx_context_desc *)
2558                                         &txr[desc_idx];
2559
2560                         /* clear QW0 or the previous writeback value
2561                          * may impact next write
2562                          */
2563                         *(volatile uint64_t *)ctx_desc = 0;
2564
2565                         txn = &txe_ring[txe->next_id];
2566                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2567
2568                         if (txe->mbuf) {
2569                                 rte_pktmbuf_free_seg(txe->mbuf);
2570                                 txe->mbuf = NULL;
2571                         }
2572
2573                         iavf_fill_context_desc(ctx_desc, mb, ipsec_md, &tlen,
2574                                 txq->vlan_flag);
2575                         IAVF_DUMP_TX_DESC(txq, ctx_desc, desc_idx);
2576
2577                         txe->last_id = desc_idx_last;
2578                         desc_idx = txe->next_id;
2579                         txe = txn;
2580                         }
2581
2582                 if (nb_desc_ipsec) {
2583                         volatile struct iavf_tx_ipsec_desc *ipsec_desc =
2584                                 (volatile struct iavf_tx_ipsec_desc *)
2585                                         &txr[desc_idx];
2586
2587                         txn = &txe_ring[txe->next_id];
2588                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2589
2590                         if (txe->mbuf) {
2591                                 rte_pktmbuf_free_seg(txe->mbuf);
2592                                 txe->mbuf = NULL;
2593                 }
2594
2595                         iavf_fill_ipsec_desc(ipsec_desc, ipsec_md, &ipseclen);
2596
2597                         IAVF_DUMP_TX_DESC(txq, ipsec_desc, desc_idx);
2598
2599                         txe->last_id = desc_idx_last;
2600                         desc_idx = txe->next_id;
2601                         txe = txn;
2602                 }
2603
2604                 mb_seg = mb;
2605
2606                 do {
2607                         ddesc = (volatile struct iavf_tx_desc *)
2608                                         &txr[desc_idx];
2609
2610                         txn = &txe_ring[txe->next_id];
2611                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2612
2613                         if (txe->mbuf)
2614                                 rte_pktmbuf_free_seg(txe->mbuf);
2615
2616                         txe->mbuf = mb_seg;
2617                         iavf_fill_data_desc(ddesc, mb_seg,
2618                                         ddesc_template, tlen, ipseclen);
2619
2620                         IAVF_DUMP_TX_DESC(txq, ddesc, desc_idx);
2621
2622                         txe->last_id = desc_idx_last;
2623                         desc_idx = txe->next_id;
2624                         txe = txn;
2625                         mb_seg = mb_seg->next;
2626                 } while (mb_seg);
2627
2628                 /* The last packet data descriptor needs End Of Packet (EOP) */
2629                 ddesc_cmd = IAVF_TX_DESC_CMD_EOP;
2630
2631                 txq->nb_used = (uint16_t)(txq->nb_used + nb_desc_required);
2632                 txq->nb_free = (uint16_t)(txq->nb_free - nb_desc_required);
2633
2634                 if (txq->nb_used >= txq->rs_thresh) {
2635                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
2636                                    "%4u (port=%d queue=%d)",
2637                                    desc_idx_last, txq->port_id, txq->queue_id);
2638
2639                         ddesc_cmd |= IAVF_TX_DESC_CMD_RS;
2640
2641                         /* Update txq RS bit counters */
2642                         txq->nb_used = 0;
2643                 }
2644
2645                 ddesc->cmd_type_offset_bsz |= rte_cpu_to_le_64(ddesc_cmd <<
2646                                 IAVF_TXD_DATA_QW1_CMD_SHIFT);
2647
2648                 IAVF_DUMP_TX_DESC(txq, ddesc, desc_idx - 1);
2649         }
2650
2651 end_of_tx:
2652         rte_wmb();
2653
2654         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2655                    txq->port_id, txq->queue_id, desc_idx, idx);
2656
2657         IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, desc_idx);
2658         txq->tx_tail = desc_idx;
2659
2660         return idx;
2661 }
2662
2663 /* Check if the packet with vlan user priority is transmitted in the
2664  * correct queue.
2665  */
2666 static int
2667 iavf_check_vlan_up2tc(struct iavf_tx_queue *txq, struct rte_mbuf *m)
2668 {
2669         struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
2670         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2671         uint16_t up;
2672
2673         up = m->vlan_tci >> IAVF_VLAN_TAG_PCP_OFFSET;
2674
2675         if (!(vf->qos_cap->cap[txq->tc].tc_prio & BIT(up))) {
2676                 PMD_TX_LOG(ERR, "packet with vlan pcp %u cannot transmit in queue %u\n",
2677                         up, txq->queue_id);
2678                 return -1;
2679         } else {
2680                 return 0;
2681         }
2682 }
2683
2684 /* TX prep functions */
2685 uint16_t
2686 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2687               uint16_t nb_pkts)
2688 {
2689         int i, ret;
2690         uint64_t ol_flags;
2691         struct rte_mbuf *m;
2692         struct iavf_tx_queue *txq = tx_queue;
2693         struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
2694         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2695
2696         for (i = 0; i < nb_pkts; i++) {
2697                 m = tx_pkts[i];
2698                 ol_flags = m->ol_flags;
2699
2700                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
2701                 if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG)) {
2702                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
2703                                 rte_errno = EINVAL;
2704                                 return i;
2705                         }
2706                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
2707                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
2708                         /* MSS outside the range are considered malicious */
2709                         rte_errno = EINVAL;
2710                         return i;
2711                 }
2712
2713                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
2714                         rte_errno = ENOTSUP;
2715                         return i;
2716                 }
2717
2718 #ifdef RTE_ETHDEV_DEBUG_TX
2719                 ret = rte_validate_tx_offload(m);
2720                 if (ret != 0) {
2721                         rte_errno = -ret;
2722                         return i;
2723                 }
2724 #endif
2725                 ret = rte_net_intel_cksum_prepare(m);
2726                 if (ret != 0) {
2727                         rte_errno = -ret;
2728                         return i;
2729                 }
2730
2731                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
2732                     ol_flags & (RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN)) {
2733                         ret = iavf_check_vlan_up2tc(txq, m);
2734                         if (ret != 0) {
2735                                 rte_errno = -ret;
2736                                 return i;
2737                         }
2738                 }
2739         }
2740
2741         return i;
2742 }
2743
2744 /* choose rx function*/
2745 void
2746 iavf_set_rx_function(struct rte_eth_dev *dev)
2747 {
2748         struct iavf_adapter *adapter =
2749                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2750         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2751
2752 #ifdef RTE_ARCH_X86
2753         struct iavf_rx_queue *rxq;
2754         int i;
2755         int check_ret;
2756         bool use_avx2 = false;
2757         bool use_avx512 = false;
2758         bool use_flex = false;
2759
2760         check_ret = iavf_rx_vec_dev_check(dev);
2761         if (check_ret >= 0 &&
2762             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2763                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2764                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2765                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2766                         use_avx2 = true;
2767
2768 #ifdef CC_AVX512_SUPPORT
2769                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2770                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2771                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2772                         use_avx512 = true;
2773 #endif
2774
2775                 if (vf->vf_res->vf_cap_flags &
2776                         VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2777                         use_flex = true;
2778
2779                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2780                         rxq = dev->data->rx_queues[i];
2781                         (void)iavf_rxq_vec_setup(rxq);
2782                 }
2783
2784                 if (dev->data->scattered_rx) {
2785                         if (!use_avx512) {
2786                                 PMD_DRV_LOG(DEBUG,
2787                                             "Using %sVector Scattered Rx (port %d).",
2788                                             use_avx2 ? "avx2 " : "",
2789                                             dev->data->port_id);
2790                         } else {
2791                                 if (check_ret == IAVF_VECTOR_PATH)
2792                                         PMD_DRV_LOG(DEBUG,
2793                                                     "Using AVX512 Vector Scattered Rx (port %d).",
2794                                                     dev->data->port_id);
2795                                 else
2796                                         PMD_DRV_LOG(DEBUG,
2797                                                     "Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
2798                                                     dev->data->port_id);
2799                         }
2800                         if (use_flex) {
2801                                 dev->rx_pkt_burst = use_avx2 ?
2802                                         iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
2803                                         iavf_recv_scattered_pkts_vec_flex_rxd;
2804 #ifdef CC_AVX512_SUPPORT
2805                                 if (use_avx512) {
2806                                         if (check_ret == IAVF_VECTOR_PATH)
2807                                                 dev->rx_pkt_burst =
2808                                                         iavf_recv_scattered_pkts_vec_avx512_flex_rxd;
2809                                         else
2810                                                 dev->rx_pkt_burst =
2811                                                         iavf_recv_scattered_pkts_vec_avx512_flex_rxd_offload;
2812                                 }
2813 #endif
2814                         } else {
2815                                 dev->rx_pkt_burst = use_avx2 ?
2816                                         iavf_recv_scattered_pkts_vec_avx2 :
2817                                         iavf_recv_scattered_pkts_vec;
2818 #ifdef CC_AVX512_SUPPORT
2819                                 if (use_avx512) {
2820                                         if (check_ret == IAVF_VECTOR_PATH)
2821                                                 dev->rx_pkt_burst =
2822                                                         iavf_recv_scattered_pkts_vec_avx512;
2823                                         else
2824                                                 dev->rx_pkt_burst =
2825                                                         iavf_recv_scattered_pkts_vec_avx512_offload;
2826                                 }
2827 #endif
2828                         }
2829                 } else {
2830                         if (!use_avx512) {
2831                                 PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2832                                             use_avx2 ? "avx2 " : "",
2833                                             dev->data->port_id);
2834                         } else {
2835                                 if (check_ret == IAVF_VECTOR_PATH)
2836                                         PMD_DRV_LOG(DEBUG,
2837                                                     "Using AVX512 Vector Rx (port %d).",
2838                                                     dev->data->port_id);
2839                                 else
2840                                         PMD_DRV_LOG(DEBUG,
2841                                                     "Using AVX512 OFFLOAD Vector Rx (port %d).",
2842                                                     dev->data->port_id);
2843                         }
2844                         if (use_flex) {
2845                                 dev->rx_pkt_burst = use_avx2 ?
2846                                         iavf_recv_pkts_vec_avx2_flex_rxd :
2847                                         iavf_recv_pkts_vec_flex_rxd;
2848 #ifdef CC_AVX512_SUPPORT
2849                                 if (use_avx512) {
2850                                         if (check_ret == IAVF_VECTOR_PATH)
2851                                                 dev->rx_pkt_burst =
2852                                                         iavf_recv_pkts_vec_avx512_flex_rxd;
2853                                         else
2854                                                 dev->rx_pkt_burst =
2855                                                         iavf_recv_pkts_vec_avx512_flex_rxd_offload;
2856                                 }
2857 #endif
2858                         } else {
2859                                 dev->rx_pkt_burst = use_avx2 ?
2860                                         iavf_recv_pkts_vec_avx2 :
2861                                         iavf_recv_pkts_vec;
2862 #ifdef CC_AVX512_SUPPORT
2863                                 if (use_avx512) {
2864                                         if (check_ret == IAVF_VECTOR_PATH)
2865                                                 dev->rx_pkt_burst =
2866                                                         iavf_recv_pkts_vec_avx512;
2867                                         else
2868                                                 dev->rx_pkt_burst =
2869                                                         iavf_recv_pkts_vec_avx512_offload;
2870                                 }
2871 #endif
2872                         }
2873                 }
2874
2875                 return;
2876         }
2877
2878 #endif
2879         if (dev->data->scattered_rx) {
2880                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
2881                             dev->data->port_id);
2882                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2883                         dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
2884                 else
2885                         dev->rx_pkt_burst = iavf_recv_scattered_pkts;
2886         } else if (adapter->rx_bulk_alloc_allowed) {
2887                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
2888                             dev->data->port_id);
2889                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
2890         } else {
2891                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
2892                             dev->data->port_id);
2893                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2894                         dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
2895                 else
2896                         dev->rx_pkt_burst = iavf_recv_pkts;
2897         }
2898 }
2899
2900 /* choose tx function*/
2901 void
2902 iavf_set_tx_function(struct rte_eth_dev *dev)
2903 {
2904 #ifdef RTE_ARCH_X86
2905         struct iavf_tx_queue *txq;
2906         int i;
2907         int check_ret;
2908         bool use_sse = false;
2909         bool use_avx2 = false;
2910         bool use_avx512 = false;
2911
2912         check_ret = iavf_tx_vec_dev_check(dev);
2913
2914         if (check_ret >= 0 &&
2915             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2916                 /* SSE and AVX2 not support offload path yet. */
2917                 if (check_ret == IAVF_VECTOR_PATH) {
2918                         use_sse = true;
2919                         if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2920                              rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2921                             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2922                                 use_avx2 = true;
2923                 }
2924 #ifdef CC_AVX512_SUPPORT
2925                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2926                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2927                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2928                         use_avx512 = true;
2929 #endif
2930
2931                 if (!use_sse && !use_avx2 && !use_avx512)
2932                         goto normal;
2933
2934                 if (!use_avx512) {
2935                         PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2936                                     use_avx2 ? "avx2 " : "",
2937                                     dev->data->port_id);
2938                         dev->tx_pkt_burst = use_avx2 ?
2939                                             iavf_xmit_pkts_vec_avx2 :
2940                                             iavf_xmit_pkts_vec;
2941                 }
2942                 dev->tx_pkt_prepare = NULL;
2943 #ifdef CC_AVX512_SUPPORT
2944                 if (use_avx512) {
2945                         if (check_ret == IAVF_VECTOR_PATH) {
2946                                 dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512;
2947                                 PMD_DRV_LOG(DEBUG, "Using AVX512 Vector Tx (port %d).",
2948                                             dev->data->port_id);
2949                         } else {
2950                                 dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512_offload;
2951                                 dev->tx_pkt_prepare = iavf_prep_pkts;
2952                                 PMD_DRV_LOG(DEBUG, "Using AVX512 OFFLOAD Vector Tx (port %d).",
2953                                             dev->data->port_id);
2954                         }
2955                 }
2956 #endif
2957
2958                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2959                         txq = dev->data->tx_queues[i];
2960                         if (!txq)
2961                                 continue;
2962 #ifdef CC_AVX512_SUPPORT
2963                         if (use_avx512)
2964                                 iavf_txq_vec_setup_avx512(txq);
2965                         else
2966                                 iavf_txq_vec_setup(txq);
2967 #else
2968                         iavf_txq_vec_setup(txq);
2969 #endif
2970                 }
2971
2972                 return;
2973         }
2974
2975 normal:
2976 #endif
2977         PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
2978                     dev->data->port_id);
2979         dev->tx_pkt_burst = iavf_xmit_pkts;
2980         dev->tx_pkt_prepare = iavf_prep_pkts;
2981 }
2982
2983 static int
2984 iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
2985                         uint32_t free_cnt)
2986 {
2987         struct iavf_tx_entry *swr_ring = txq->sw_ring;
2988         uint16_t i, tx_last, tx_id;
2989         uint16_t nb_tx_free_last;
2990         uint16_t nb_tx_to_clean;
2991         uint32_t pkt_cnt;
2992
2993         /* Start free mbuf from the next of tx_tail */
2994         tx_last = txq->tx_tail;
2995         tx_id  = swr_ring[tx_last].next_id;
2996
2997         if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
2998                 return 0;
2999
3000         nb_tx_to_clean = txq->nb_free;
3001         nb_tx_free_last = txq->nb_free;
3002         if (!free_cnt)
3003                 free_cnt = txq->nb_tx_desc;
3004
3005         /* Loop through swr_ring to count the amount of
3006          * freeable mubfs and packets.
3007          */
3008         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
3009                 for (i = 0; i < nb_tx_to_clean &&
3010                         pkt_cnt < free_cnt &&
3011                         tx_id != tx_last; i++) {
3012                         if (swr_ring[tx_id].mbuf != NULL) {
3013                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
3014                                 swr_ring[tx_id].mbuf = NULL;
3015
3016                                 /*
3017                                  * last segment in the packet,
3018                                  * increment packet count
3019                                  */
3020                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
3021                         }
3022
3023                         tx_id = swr_ring[tx_id].next_id;
3024                 }
3025
3026                 if (txq->rs_thresh > txq->nb_tx_desc -
3027                         txq->nb_free || tx_id == tx_last)
3028                         break;
3029
3030                 if (pkt_cnt < free_cnt) {
3031                         if (iavf_xmit_cleanup(txq))
3032                                 break;
3033
3034                         nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
3035                         nb_tx_free_last = txq->nb_free;
3036                 }
3037         }
3038
3039         return (int)pkt_cnt;
3040 }
3041
3042 int
3043 iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
3044 {
3045         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
3046
3047         return iavf_tx_done_cleanup_full(q, free_cnt);
3048 }
3049
3050 void
3051 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3052                      struct rte_eth_rxq_info *qinfo)
3053 {
3054         struct iavf_rx_queue *rxq;
3055
3056         rxq = dev->data->rx_queues[queue_id];
3057
3058         qinfo->mp = rxq->mp;
3059         qinfo->scattered_rx = dev->data->scattered_rx;
3060         qinfo->nb_desc = rxq->nb_rx_desc;
3061
3062         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
3063         qinfo->conf.rx_drop_en = true;
3064         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
3065 }
3066
3067 void
3068 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3069                      struct rte_eth_txq_info *qinfo)
3070 {
3071         struct iavf_tx_queue *txq;
3072
3073         txq = dev->data->tx_queues[queue_id];
3074
3075         qinfo->nb_desc = txq->nb_tx_desc;
3076
3077         qinfo->conf.tx_free_thresh = txq->free_thresh;
3078         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
3079         qinfo->conf.offloads = txq->offloads;
3080         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
3081 }
3082
3083 /* Get the number of used descriptors of a rx queue */
3084 uint32_t
3085 iavf_dev_rxq_count(void *rx_queue)
3086 {
3087 #define IAVF_RXQ_SCAN_INTERVAL 4
3088         volatile union iavf_rx_desc *rxdp;
3089         struct iavf_rx_queue *rxq;
3090         uint16_t desc = 0;
3091
3092         rxq = rx_queue;
3093         rxdp = &rxq->rx_ring[rxq->rx_tail];
3094
3095         while ((desc < rxq->nb_rx_desc) &&
3096                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
3097                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
3098                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
3099                 /* Check the DD bit of a rx descriptor of each 4 in a group,
3100                  * to avoid checking too frequently and downgrading performance
3101                  * too much.
3102                  */
3103                 desc += IAVF_RXQ_SCAN_INTERVAL;
3104                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
3105                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
3106                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
3107                                         desc - rxq->nb_rx_desc]);
3108         }
3109
3110         return desc;
3111 }
3112
3113 int
3114 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
3115 {
3116         struct iavf_rx_queue *rxq = rx_queue;
3117         volatile uint64_t *status;
3118         uint64_t mask;
3119         uint32_t desc;
3120
3121         if (unlikely(offset >= rxq->nb_rx_desc))
3122                 return -EINVAL;
3123
3124         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
3125                 return RTE_ETH_RX_DESC_UNAVAIL;
3126
3127         desc = rxq->rx_tail + offset;
3128         if (desc >= rxq->nb_rx_desc)
3129                 desc -= rxq->nb_rx_desc;
3130
3131         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
3132         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
3133                 << IAVF_RXD_QW1_STATUS_SHIFT);
3134         if (*status & mask)
3135                 return RTE_ETH_RX_DESC_DONE;
3136
3137         return RTE_ETH_RX_DESC_AVAIL;
3138 }
3139
3140 int
3141 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
3142 {
3143         struct iavf_tx_queue *txq = tx_queue;
3144         volatile uint64_t *status;
3145         uint64_t mask, expect;
3146         uint32_t desc;
3147
3148         if (unlikely(offset >= txq->nb_tx_desc))
3149                 return -EINVAL;
3150
3151         desc = txq->tx_tail + offset;
3152         /* go to next desc that has the RS bit */
3153         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
3154                 txq->rs_thresh;
3155         if (desc >= txq->nb_tx_desc) {
3156                 desc -= txq->nb_tx_desc;
3157                 if (desc >= txq->nb_tx_desc)
3158                         desc -= txq->nb_tx_desc;
3159         }
3160
3161         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
3162         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
3163         expect = rte_cpu_to_le_64(
3164                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
3165         if ((*status & mask) == expect)
3166                 return RTE_ETH_TX_DESC_DONE;
3167
3168         return RTE_ETH_TX_DESC_FULL;
3169 }
3170
3171 static inline uint32_t
3172 iavf_get_default_ptype(uint16_t ptype)
3173 {
3174         static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
3175                 __rte_cache_aligned = {
3176                 /* L2 types */
3177                 /* [0] reserved */
3178                 [1] = RTE_PTYPE_L2_ETHER,
3179                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
3180                 /* [3] - [5] reserved */
3181                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
3182                 /* [7] - [10] reserved */
3183                 [11] = RTE_PTYPE_L2_ETHER_ARP,
3184                 /* [12] - [21] reserved */
3185
3186                 /* Non tunneled IPv4 */
3187                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3188                        RTE_PTYPE_L4_FRAG,
3189                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3190                        RTE_PTYPE_L4_NONFRAG,
3191                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3192                        RTE_PTYPE_L4_UDP,
3193                 /* [25] reserved */
3194                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3195                        RTE_PTYPE_L4_TCP,
3196                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3197                        RTE_PTYPE_L4_SCTP,
3198                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3199                        RTE_PTYPE_L4_ICMP,
3200
3201                 /* IPv4 --> IPv4 */
3202                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3203                        RTE_PTYPE_TUNNEL_IP |
3204                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3205                        RTE_PTYPE_INNER_L4_FRAG,
3206                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3207                        RTE_PTYPE_TUNNEL_IP |
3208                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3209                        RTE_PTYPE_INNER_L4_NONFRAG,
3210                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3211                        RTE_PTYPE_TUNNEL_IP |
3212                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3213                        RTE_PTYPE_INNER_L4_UDP,
3214                 /* [32] reserved */
3215                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3216                        RTE_PTYPE_TUNNEL_IP |
3217                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3218                        RTE_PTYPE_INNER_L4_TCP,
3219                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3220                        RTE_PTYPE_TUNNEL_IP |
3221                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3222                        RTE_PTYPE_INNER_L4_SCTP,
3223                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3224                        RTE_PTYPE_TUNNEL_IP |
3225                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3226                        RTE_PTYPE_INNER_L4_ICMP,
3227
3228                 /* IPv4 --> IPv6 */
3229                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3230                        RTE_PTYPE_TUNNEL_IP |
3231                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3232                        RTE_PTYPE_INNER_L4_FRAG,
3233                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3234                        RTE_PTYPE_TUNNEL_IP |
3235                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3236                        RTE_PTYPE_INNER_L4_NONFRAG,
3237                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3238                        RTE_PTYPE_TUNNEL_IP |
3239                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3240                        RTE_PTYPE_INNER_L4_UDP,
3241                 /* [39] reserved */
3242                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3243                        RTE_PTYPE_TUNNEL_IP |
3244                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3245                        RTE_PTYPE_INNER_L4_TCP,
3246                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3247                        RTE_PTYPE_TUNNEL_IP |
3248                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3249                        RTE_PTYPE_INNER_L4_SCTP,
3250                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3251                        RTE_PTYPE_TUNNEL_IP |
3252                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3253                        RTE_PTYPE_INNER_L4_ICMP,
3254
3255                 /* IPv4 --> GRE/Teredo/VXLAN */
3256                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3257                        RTE_PTYPE_TUNNEL_GRENAT,
3258
3259                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
3260                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3261                        RTE_PTYPE_TUNNEL_GRENAT |
3262                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3263                        RTE_PTYPE_INNER_L4_FRAG,
3264                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3265                        RTE_PTYPE_TUNNEL_GRENAT |
3266                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3267                        RTE_PTYPE_INNER_L4_NONFRAG,
3268                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3269                        RTE_PTYPE_TUNNEL_GRENAT |
3270                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3271                        RTE_PTYPE_INNER_L4_UDP,
3272                 /* [47] reserved */
3273                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3274                        RTE_PTYPE_TUNNEL_GRENAT |
3275                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3276                        RTE_PTYPE_INNER_L4_TCP,
3277                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3278                        RTE_PTYPE_TUNNEL_GRENAT |
3279                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3280                        RTE_PTYPE_INNER_L4_SCTP,
3281                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3282                        RTE_PTYPE_TUNNEL_GRENAT |
3283                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3284                        RTE_PTYPE_INNER_L4_ICMP,
3285
3286                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
3287                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3288                        RTE_PTYPE_TUNNEL_GRENAT |
3289                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3290                        RTE_PTYPE_INNER_L4_FRAG,
3291                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3292                        RTE_PTYPE_TUNNEL_GRENAT |
3293                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3294                        RTE_PTYPE_INNER_L4_NONFRAG,
3295                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3296                        RTE_PTYPE_TUNNEL_GRENAT |
3297                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3298                        RTE_PTYPE_INNER_L4_UDP,
3299                 /* [54] reserved */
3300                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3301                        RTE_PTYPE_TUNNEL_GRENAT |
3302                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3303                        RTE_PTYPE_INNER_L4_TCP,
3304                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3305                        RTE_PTYPE_TUNNEL_GRENAT |
3306                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3307                        RTE_PTYPE_INNER_L4_SCTP,
3308                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3309                        RTE_PTYPE_TUNNEL_GRENAT |
3310                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3311                        RTE_PTYPE_INNER_L4_ICMP,
3312
3313                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
3314                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3315                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3316
3317                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3318                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3319                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3320                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3321                        RTE_PTYPE_INNER_L4_FRAG,
3322                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3323                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3324                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3325                        RTE_PTYPE_INNER_L4_NONFRAG,
3326                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3327                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3328                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3329                        RTE_PTYPE_INNER_L4_UDP,
3330                 /* [62] reserved */
3331                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3332                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3333                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3334                        RTE_PTYPE_INNER_L4_TCP,
3335                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3336                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3337                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3338                        RTE_PTYPE_INNER_L4_SCTP,
3339                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3340                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3341                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3342                        RTE_PTYPE_INNER_L4_ICMP,
3343
3344                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3345                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3346                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3347                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3348                        RTE_PTYPE_INNER_L4_FRAG,
3349                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3350                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3351                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3352                        RTE_PTYPE_INNER_L4_NONFRAG,
3353                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3354                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3355                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3356                        RTE_PTYPE_INNER_L4_UDP,
3357                 /* [69] reserved */
3358                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3359                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3360                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3361                        RTE_PTYPE_INNER_L4_TCP,
3362                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3363                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3364                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3365                        RTE_PTYPE_INNER_L4_SCTP,
3366                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3367                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3368                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3369                        RTE_PTYPE_INNER_L4_ICMP,
3370                 /* [73] - [87] reserved */
3371
3372                 /* Non tunneled IPv6 */
3373                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3374                        RTE_PTYPE_L4_FRAG,
3375                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3376                        RTE_PTYPE_L4_NONFRAG,
3377                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3378                        RTE_PTYPE_L4_UDP,
3379                 /* [91] reserved */
3380                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3381                        RTE_PTYPE_L4_TCP,
3382                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3383                        RTE_PTYPE_L4_SCTP,
3384                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3385                        RTE_PTYPE_L4_ICMP,
3386
3387                 /* IPv6 --> IPv4 */
3388                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3389                        RTE_PTYPE_TUNNEL_IP |
3390                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3391                        RTE_PTYPE_INNER_L4_FRAG,
3392                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3393                        RTE_PTYPE_TUNNEL_IP |
3394                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3395                        RTE_PTYPE_INNER_L4_NONFRAG,
3396                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3397                        RTE_PTYPE_TUNNEL_IP |
3398                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3399                        RTE_PTYPE_INNER_L4_UDP,
3400                 /* [98] reserved */
3401                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3402                        RTE_PTYPE_TUNNEL_IP |
3403                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3404                        RTE_PTYPE_INNER_L4_TCP,
3405                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3406                         RTE_PTYPE_TUNNEL_IP |
3407                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3408                         RTE_PTYPE_INNER_L4_SCTP,
3409                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3410                         RTE_PTYPE_TUNNEL_IP |
3411                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3412                         RTE_PTYPE_INNER_L4_ICMP,
3413
3414                 /* IPv6 --> IPv6 */
3415                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3416                         RTE_PTYPE_TUNNEL_IP |
3417                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3418                         RTE_PTYPE_INNER_L4_FRAG,
3419                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3420                         RTE_PTYPE_TUNNEL_IP |
3421                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3422                         RTE_PTYPE_INNER_L4_NONFRAG,
3423                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3424                         RTE_PTYPE_TUNNEL_IP |
3425                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3426                         RTE_PTYPE_INNER_L4_UDP,
3427                 /* [105] reserved */
3428                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3429                         RTE_PTYPE_TUNNEL_IP |
3430                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3431                         RTE_PTYPE_INNER_L4_TCP,
3432                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3433                         RTE_PTYPE_TUNNEL_IP |
3434                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3435                         RTE_PTYPE_INNER_L4_SCTP,
3436                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3437                         RTE_PTYPE_TUNNEL_IP |
3438                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3439                         RTE_PTYPE_INNER_L4_ICMP,
3440
3441                 /* IPv6 --> GRE/Teredo/VXLAN */
3442                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3443                         RTE_PTYPE_TUNNEL_GRENAT,
3444
3445                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3446                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3447                         RTE_PTYPE_TUNNEL_GRENAT |
3448                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3449                         RTE_PTYPE_INNER_L4_FRAG,
3450                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3451                         RTE_PTYPE_TUNNEL_GRENAT |
3452                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3453                         RTE_PTYPE_INNER_L4_NONFRAG,
3454                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3455                         RTE_PTYPE_TUNNEL_GRENAT |
3456                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3457                         RTE_PTYPE_INNER_L4_UDP,
3458                 /* [113] reserved */
3459                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3460                         RTE_PTYPE_TUNNEL_GRENAT |
3461                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3462                         RTE_PTYPE_INNER_L4_TCP,
3463                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3464                         RTE_PTYPE_TUNNEL_GRENAT |
3465                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3466                         RTE_PTYPE_INNER_L4_SCTP,
3467                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3468                         RTE_PTYPE_TUNNEL_GRENAT |
3469                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3470                         RTE_PTYPE_INNER_L4_ICMP,
3471
3472                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3473                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3474                         RTE_PTYPE_TUNNEL_GRENAT |
3475                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3476                         RTE_PTYPE_INNER_L4_FRAG,
3477                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3478                         RTE_PTYPE_TUNNEL_GRENAT |
3479                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3480                         RTE_PTYPE_INNER_L4_NONFRAG,
3481                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3482                         RTE_PTYPE_TUNNEL_GRENAT |
3483                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3484                         RTE_PTYPE_INNER_L4_UDP,
3485                 /* [120] reserved */
3486                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3487                         RTE_PTYPE_TUNNEL_GRENAT |
3488                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3489                         RTE_PTYPE_INNER_L4_TCP,
3490                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3491                         RTE_PTYPE_TUNNEL_GRENAT |
3492                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3493                         RTE_PTYPE_INNER_L4_SCTP,
3494                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3495                         RTE_PTYPE_TUNNEL_GRENAT |
3496                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3497                         RTE_PTYPE_INNER_L4_ICMP,
3498
3499                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3500                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3501                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3502
3503                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3504                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3505                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3506                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3507                         RTE_PTYPE_INNER_L4_FRAG,
3508                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3509                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3510                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3511                         RTE_PTYPE_INNER_L4_NONFRAG,
3512                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3513                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3514                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3515                         RTE_PTYPE_INNER_L4_UDP,
3516                 /* [128] reserved */
3517                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3518                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3519                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3520                         RTE_PTYPE_INNER_L4_TCP,
3521                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3522                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3523                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3524                         RTE_PTYPE_INNER_L4_SCTP,
3525                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3526                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3527                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3528                         RTE_PTYPE_INNER_L4_ICMP,
3529
3530                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3531                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3532                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3533                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3534                         RTE_PTYPE_INNER_L4_FRAG,
3535                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3536                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3537                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3538                         RTE_PTYPE_INNER_L4_NONFRAG,
3539                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3540                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3541                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3542                         RTE_PTYPE_INNER_L4_UDP,
3543                 /* [135] reserved */
3544                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3545                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3546                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3547                         RTE_PTYPE_INNER_L4_TCP,
3548                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3549                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3550                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3551                         RTE_PTYPE_INNER_L4_SCTP,
3552                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3553                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3554                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3555                         RTE_PTYPE_INNER_L4_ICMP,
3556                 /* [139] - [299] reserved */
3557
3558                 /* PPPoE */
3559                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3560                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3561
3562                 /* PPPoE --> IPv4 */
3563                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3564                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3565                         RTE_PTYPE_L4_FRAG,
3566                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3567                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3568                         RTE_PTYPE_L4_NONFRAG,
3569                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
3570                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3571                         RTE_PTYPE_L4_UDP,
3572                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
3573                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3574                         RTE_PTYPE_L4_TCP,
3575                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
3576                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3577                         RTE_PTYPE_L4_SCTP,
3578                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
3579                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3580                         RTE_PTYPE_L4_ICMP,
3581
3582                 /* PPPoE --> IPv6 */
3583                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
3584                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3585                         RTE_PTYPE_L4_FRAG,
3586                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
3587                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3588                         RTE_PTYPE_L4_NONFRAG,
3589                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
3590                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3591                         RTE_PTYPE_L4_UDP,
3592                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
3593                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3594                         RTE_PTYPE_L4_TCP,
3595                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
3596                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3597                         RTE_PTYPE_L4_SCTP,
3598                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
3599                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3600                         RTE_PTYPE_L4_ICMP,
3601                 /* [314] - [324] reserved */
3602
3603                 /* IPv4/IPv6 --> GTPC/GTPU */
3604                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3605                         RTE_PTYPE_TUNNEL_GTPC,
3606                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3607                         RTE_PTYPE_TUNNEL_GTPC,
3608                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3609                         RTE_PTYPE_TUNNEL_GTPC,
3610                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3611                         RTE_PTYPE_TUNNEL_GTPC,
3612                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3613                         RTE_PTYPE_TUNNEL_GTPU,
3614                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3615                         RTE_PTYPE_TUNNEL_GTPU,
3616
3617                 /* IPv4 --> GTPU --> IPv4 */
3618                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3619                         RTE_PTYPE_TUNNEL_GTPU |
3620                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3621                         RTE_PTYPE_INNER_L4_FRAG,
3622                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3623                         RTE_PTYPE_TUNNEL_GTPU |
3624                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3625                         RTE_PTYPE_INNER_L4_NONFRAG,
3626                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3627                         RTE_PTYPE_TUNNEL_GTPU |
3628                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3629                         RTE_PTYPE_INNER_L4_UDP,
3630                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3631                         RTE_PTYPE_TUNNEL_GTPU |
3632                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3633                         RTE_PTYPE_INNER_L4_TCP,
3634                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3635                         RTE_PTYPE_TUNNEL_GTPU |
3636                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3637                         RTE_PTYPE_INNER_L4_ICMP,
3638
3639                 /* IPv6 --> GTPU --> IPv4 */
3640                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3641                         RTE_PTYPE_TUNNEL_GTPU |
3642                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3643                         RTE_PTYPE_INNER_L4_FRAG,
3644                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3645                         RTE_PTYPE_TUNNEL_GTPU |
3646                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3647                         RTE_PTYPE_INNER_L4_NONFRAG,
3648                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3649                         RTE_PTYPE_TUNNEL_GTPU |
3650                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3651                         RTE_PTYPE_INNER_L4_UDP,
3652                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3653                         RTE_PTYPE_TUNNEL_GTPU |
3654                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3655                         RTE_PTYPE_INNER_L4_TCP,
3656                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3657                         RTE_PTYPE_TUNNEL_GTPU |
3658                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3659                         RTE_PTYPE_INNER_L4_ICMP,
3660
3661                 /* IPv4 --> GTPU --> IPv6 */
3662                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3663                         RTE_PTYPE_TUNNEL_GTPU |
3664                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3665                         RTE_PTYPE_INNER_L4_FRAG,
3666                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3667                         RTE_PTYPE_TUNNEL_GTPU |
3668                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3669                         RTE_PTYPE_INNER_L4_NONFRAG,
3670                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3671                         RTE_PTYPE_TUNNEL_GTPU |
3672                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3673                         RTE_PTYPE_INNER_L4_UDP,
3674                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3675                         RTE_PTYPE_TUNNEL_GTPU |
3676                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3677                         RTE_PTYPE_INNER_L4_TCP,
3678                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3679                         RTE_PTYPE_TUNNEL_GTPU |
3680                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3681                         RTE_PTYPE_INNER_L4_ICMP,
3682
3683                 /* IPv6 --> GTPU --> IPv6 */
3684                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3685                         RTE_PTYPE_TUNNEL_GTPU |
3686                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3687                         RTE_PTYPE_INNER_L4_FRAG,
3688                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3689                         RTE_PTYPE_TUNNEL_GTPU |
3690                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3691                         RTE_PTYPE_INNER_L4_NONFRAG,
3692                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3693                         RTE_PTYPE_TUNNEL_GTPU |
3694                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3695                         RTE_PTYPE_INNER_L4_UDP,
3696                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3697                         RTE_PTYPE_TUNNEL_GTPU |
3698                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3699                         RTE_PTYPE_INNER_L4_TCP,
3700                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3701                         RTE_PTYPE_TUNNEL_GTPU |
3702                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3703                         RTE_PTYPE_INNER_L4_ICMP,
3704
3705                 /* IPv4 --> UDP ECPRI */
3706                 [372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3707                         RTE_PTYPE_L4_UDP,
3708                 [373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3709                         RTE_PTYPE_L4_UDP,
3710                 [374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3711                         RTE_PTYPE_L4_UDP,
3712                 [375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3713                         RTE_PTYPE_L4_UDP,
3714                 [376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3715                         RTE_PTYPE_L4_UDP,
3716                 [377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3717                         RTE_PTYPE_L4_UDP,
3718                 [378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3719                         RTE_PTYPE_L4_UDP,
3720                 [379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3721                         RTE_PTYPE_L4_UDP,
3722                 [380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3723                         RTE_PTYPE_L4_UDP,
3724                 [381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3725                         RTE_PTYPE_L4_UDP,
3726
3727                 /* IPV6 --> UDP ECPRI */
3728                 [382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3729                         RTE_PTYPE_L4_UDP,
3730                 [383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3731                         RTE_PTYPE_L4_UDP,
3732                 [384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3733                         RTE_PTYPE_L4_UDP,
3734                 [385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3735                         RTE_PTYPE_L4_UDP,
3736                 [386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3737                         RTE_PTYPE_L4_UDP,
3738                 [387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3739                         RTE_PTYPE_L4_UDP,
3740                 [388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3741                         RTE_PTYPE_L4_UDP,
3742                 [389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3743                         RTE_PTYPE_L4_UDP,
3744                 [390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3745                         RTE_PTYPE_L4_UDP,
3746                 [391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3747                         RTE_PTYPE_L4_UDP,
3748                 /* All others reserved */
3749         };
3750
3751         return ptype_tbl[ptype];
3752 }
3753
3754 void __rte_cold
3755 iavf_set_default_ptype_table(struct rte_eth_dev *dev)
3756 {
3757         struct iavf_adapter *ad =
3758                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3759         int i;
3760
3761         for (i = 0; i < IAVF_MAX_PKT_TYPE; i++)
3762                 ad->ptype_tbl[i] = iavf_get_default_ptype(i);
3763 }