net/iavf: fix unchecked Tx cleanup error
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30
31 static inline int
32 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
33 {
34         /* The following constraints must be satisfied:
35          *   thresh < rxq->nb_rx_desc
36          */
37         if (thresh >= nb_desc) {
38                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
39                              thresh, nb_desc);
40                 return -EINVAL;
41         }
42         return 0;
43 }
44
45 static inline int
46 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
47                 uint16_t tx_free_thresh)
48 {
49         /* TX descriptors will have their RS bit set after tx_rs_thresh
50          * descriptors have been used. The TX descriptor ring will be cleaned
51          * after tx_free_thresh descriptors are used or if the number of
52          * descriptors required to transmit a packet is greater than the
53          * number of free TX descriptors.
54          *
55          * The following constraints must be satisfied:
56          *  - tx_rs_thresh must be less than the size of the ring minus 2.
57          *  - tx_free_thresh must be less than the size of the ring minus 3.
58          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
59          *  - tx_rs_thresh must be a divisor of the ring size.
60          *
61          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
62          * race condition, hence the maximum threshold constraints. When set
63          * to zero use default values.
64          */
65         if (tx_rs_thresh >= (nb_desc - 2)) {
66                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
67                              "number of TX descriptors (%u) minus 2",
68                              tx_rs_thresh, nb_desc);
69                 return -EINVAL;
70         }
71         if (tx_free_thresh >= (nb_desc - 3)) {
72                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
73                              "number of TX descriptors (%u) minus 3.",
74                              tx_free_thresh, nb_desc);
75                 return -EINVAL;
76         }
77         if (tx_rs_thresh > tx_free_thresh) {
78                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
79                              "equal to tx_free_thresh (%u).",
80                              tx_rs_thresh, tx_free_thresh);
81                 return -EINVAL;
82         }
83         if ((nb_desc % tx_rs_thresh) != 0) {
84                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
85                              "number of TX descriptors (%u).",
86                              tx_rs_thresh, nb_desc);
87                 return -EINVAL;
88         }
89
90         return 0;
91 }
92
93 static inline bool
94 check_rx_vec_allow(struct iavf_rx_queue *rxq)
95 {
96         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
97             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
98                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
99                 return true;
100         }
101
102         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
103         return false;
104 }
105
106 static inline bool
107 check_tx_vec_allow(struct iavf_tx_queue *txq)
108 {
109         if (!(txq->offloads & IAVF_NO_VECTOR_FLAGS) &&
110             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
111             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
112                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
113                 return true;
114         }
115         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
116         return false;
117 }
118
119 static inline bool
120 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
121 {
122         int ret = true;
123
124         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
125                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
126                              "rxq->rx_free_thresh=%d, "
127                              "IAVF_RX_MAX_BURST=%d",
128                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
129                 ret = false;
130         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
131                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
132                              "rxq->nb_rx_desc=%d, "
133                              "rxq->rx_free_thresh=%d",
134                              rxq->nb_rx_desc, rxq->rx_free_thresh);
135                 ret = false;
136         }
137         return ret;
138 }
139
140 static inline void
141 reset_rx_queue(struct iavf_rx_queue *rxq)
142 {
143         uint16_t len;
144         uint32_t i;
145
146         if (!rxq)
147                 return;
148
149         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
150
151         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
152                 ((volatile char *)rxq->rx_ring)[i] = 0;
153
154         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
155
156         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
157                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
158
159         /* for rx bulk */
160         rxq->rx_nb_avail = 0;
161         rxq->rx_next_avail = 0;
162         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
163
164         rxq->rx_tail = 0;
165         rxq->nb_rx_hold = 0;
166         rxq->pkt_first_seg = NULL;
167         rxq->pkt_last_seg = NULL;
168 }
169
170 static inline void
171 reset_tx_queue(struct iavf_tx_queue *txq)
172 {
173         struct iavf_tx_entry *txe;
174         uint32_t i, size;
175         uint16_t prev;
176
177         if (!txq) {
178                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
179                 return;
180         }
181
182         txe = txq->sw_ring;
183         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
184         for (i = 0; i < size; i++)
185                 ((volatile char *)txq->tx_ring)[i] = 0;
186
187         prev = (uint16_t)(txq->nb_tx_desc - 1);
188         for (i = 0; i < txq->nb_tx_desc; i++) {
189                 txq->tx_ring[i].cmd_type_offset_bsz =
190                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
191                 txe[i].mbuf =  NULL;
192                 txe[i].last_id = i;
193                 txe[prev].next_id = i;
194                 prev = i;
195         }
196
197         txq->tx_tail = 0;
198         txq->nb_used = 0;
199
200         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
201         txq->nb_free = txq->nb_tx_desc - 1;
202
203         txq->next_dd = txq->rs_thresh - 1;
204         txq->next_rs = txq->rs_thresh - 1;
205 }
206
207 static int
208 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
209 {
210         volatile union iavf_rx_desc *rxd;
211         struct rte_mbuf *mbuf = NULL;
212         uint64_t dma_addr;
213         uint16_t i;
214
215         for (i = 0; i < rxq->nb_rx_desc; i++) {
216                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
217                 if (unlikely(!mbuf)) {
218                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
219                         return -ENOMEM;
220                 }
221
222                 rte_mbuf_refcnt_set(mbuf, 1);
223                 mbuf->next = NULL;
224                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
225                 mbuf->nb_segs = 1;
226                 mbuf->port = rxq->port_id;
227
228                 dma_addr =
229                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
230
231                 rxd = &rxq->rx_ring[i];
232                 rxd->read.pkt_addr = dma_addr;
233                 rxd->read.hdr_addr = 0;
234 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
235                 rxd->read.rsvd1 = 0;
236                 rxd->read.rsvd2 = 0;
237 #endif
238
239                 rxq->sw_ring[i] = mbuf;
240         }
241
242         return 0;
243 }
244
245 static inline void
246 release_rxq_mbufs(struct iavf_rx_queue *rxq)
247 {
248         uint16_t i;
249
250         if (!rxq->sw_ring)
251                 return;
252
253         for (i = 0; i < rxq->nb_rx_desc; i++) {
254                 if (rxq->sw_ring[i]) {
255                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
256                         rxq->sw_ring[i] = NULL;
257                 }
258         }
259
260         /* for rx bulk */
261         if (rxq->rx_nb_avail == 0)
262                 return;
263         for (i = 0; i < rxq->rx_nb_avail; i++) {
264                 struct rte_mbuf *mbuf;
265
266                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
267                 rte_pktmbuf_free_seg(mbuf);
268         }
269         rxq->rx_nb_avail = 0;
270 }
271
272 static inline void
273 release_txq_mbufs(struct iavf_tx_queue *txq)
274 {
275         uint16_t i;
276
277         if (!txq || !txq->sw_ring) {
278                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
279                 return;
280         }
281
282         for (i = 0; i < txq->nb_tx_desc; i++) {
283                 if (txq->sw_ring[i].mbuf) {
284                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
285                         txq->sw_ring[i].mbuf = NULL;
286                 }
287         }
288 }
289
290 static const struct iavf_rxq_ops def_rxq_ops = {
291         .release_mbufs = release_rxq_mbufs,
292 };
293
294 static const struct iavf_txq_ops def_txq_ops = {
295         .release_mbufs = release_txq_mbufs,
296 };
297
298 int
299 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
300                        uint16_t nb_desc, unsigned int socket_id,
301                        const struct rte_eth_rxconf *rx_conf,
302                        struct rte_mempool *mp)
303 {
304         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
305         struct iavf_adapter *ad =
306                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
307         struct iavf_info *vf =
308                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
309         struct iavf_vsi *vsi = &vf->vsi;
310         struct iavf_rx_queue *rxq;
311         const struct rte_memzone *mz;
312         uint32_t ring_size;
313         uint16_t len;
314         uint16_t rx_free_thresh;
315
316         PMD_INIT_FUNC_TRACE();
317
318         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
319             nb_desc > IAVF_MAX_RING_DESC ||
320             nb_desc < IAVF_MIN_RING_DESC) {
321                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
322                              "invalid", nb_desc);
323                 return -EINVAL;
324         }
325
326         /* Check free threshold */
327         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
328                          IAVF_DEFAULT_RX_FREE_THRESH :
329                          rx_conf->rx_free_thresh;
330         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
331                 return -EINVAL;
332
333         /* Free memory if needed */
334         if (dev->data->rx_queues[queue_idx]) {
335                 iavf_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
336                 dev->data->rx_queues[queue_idx] = NULL;
337         }
338
339         /* Allocate the rx queue data structure */
340         rxq = rte_zmalloc_socket("iavf rxq",
341                                  sizeof(struct iavf_rx_queue),
342                                  RTE_CACHE_LINE_SIZE,
343                                  socket_id);
344         if (!rxq) {
345                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
346                              "rx queue data structure");
347                 return -ENOMEM;
348         }
349
350         if (vf->vf_res->vf_cap_flags &
351             VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC &&
352             vf->supported_rxdid & BIT(IAVF_RXDID_COMMS_OVS_1)) {
353                 rxq->rxdid = IAVF_RXDID_COMMS_OVS_1;
354         } else {
355                 rxq->rxdid = IAVF_RXDID_LEGACY_1;
356         }
357
358         rxq->mp = mp;
359         rxq->nb_rx_desc = nb_desc;
360         rxq->rx_free_thresh = rx_free_thresh;
361         rxq->queue_id = queue_idx;
362         rxq->port_id = dev->data->port_id;
363         rxq->crc_len = 0; /* crc stripping by default */
364         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
365         rxq->rx_hdr_len = 0;
366         rxq->vsi = vsi;
367
368         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
369         rxq->rx_buf_len = RTE_ALIGN(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
370
371         /* Allocate the software ring. */
372         len = nb_desc + IAVF_RX_MAX_BURST;
373         rxq->sw_ring =
374                 rte_zmalloc_socket("iavf rx sw ring",
375                                    sizeof(struct rte_mbuf *) * len,
376                                    RTE_CACHE_LINE_SIZE,
377                                    socket_id);
378         if (!rxq->sw_ring) {
379                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
380                 rte_free(rxq);
381                 return -ENOMEM;
382         }
383
384         /* Allocate the maximun number of RX ring hardware descriptor with
385          * a liitle more to support bulk allocate.
386          */
387         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
388         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
389                               IAVF_DMA_MEM_ALIGN);
390         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
391                                       ring_size, IAVF_RING_BASE_ALIGN,
392                                       socket_id);
393         if (!mz) {
394                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
395                 rte_free(rxq->sw_ring);
396                 rte_free(rxq);
397                 return -ENOMEM;
398         }
399         /* Zero all the descriptors in the ring. */
400         memset(mz->addr, 0, ring_size);
401         rxq->rx_ring_phys_addr = mz->iova;
402         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
403
404         rxq->mz = mz;
405         reset_rx_queue(rxq);
406         rxq->q_set = true;
407         dev->data->rx_queues[queue_idx] = rxq;
408         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
409         rxq->ops = &def_rxq_ops;
410
411         if (check_rx_bulk_allow(rxq) == true) {
412                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
413                              "satisfied. Rx Burst Bulk Alloc function will be "
414                              "used on port=%d, queue=%d.",
415                              rxq->port_id, rxq->queue_id);
416         } else {
417                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
418                              "not satisfied, Scattered Rx is requested "
419                              "on port=%d, queue=%d.",
420                              rxq->port_id, rxq->queue_id);
421                 ad->rx_bulk_alloc_allowed = false;
422         }
423
424         if (check_rx_vec_allow(rxq) == false)
425                 ad->rx_vec_allowed = false;
426
427         return 0;
428 }
429
430 int
431 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
432                        uint16_t queue_idx,
433                        uint16_t nb_desc,
434                        unsigned int socket_id,
435                        const struct rte_eth_txconf *tx_conf)
436 {
437         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
438         struct iavf_tx_queue *txq;
439         const struct rte_memzone *mz;
440         uint32_t ring_size;
441         uint16_t tx_rs_thresh, tx_free_thresh;
442         uint64_t offloads;
443
444         PMD_INIT_FUNC_TRACE();
445
446         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
447
448         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
449             nb_desc > IAVF_MAX_RING_DESC ||
450             nb_desc < IAVF_MIN_RING_DESC) {
451                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
452                             "invalid", nb_desc);
453                 return -EINVAL;
454         }
455
456         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
457                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
458         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
459                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
460         check_tx_thresh(nb_desc, tx_rs_thresh, tx_rs_thresh);
461
462         /* Free memory if needed. */
463         if (dev->data->tx_queues[queue_idx]) {
464                 iavf_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
465                 dev->data->tx_queues[queue_idx] = NULL;
466         }
467
468         /* Allocate the TX queue data structure. */
469         txq = rte_zmalloc_socket("iavf txq",
470                                  sizeof(struct iavf_tx_queue),
471                                  RTE_CACHE_LINE_SIZE,
472                                  socket_id);
473         if (!txq) {
474                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
475                              "tx queue structure");
476                 return -ENOMEM;
477         }
478
479         txq->nb_tx_desc = nb_desc;
480         txq->rs_thresh = tx_rs_thresh;
481         txq->free_thresh = tx_free_thresh;
482         txq->queue_id = queue_idx;
483         txq->port_id = dev->data->port_id;
484         txq->offloads = offloads;
485         txq->tx_deferred_start = tx_conf->tx_deferred_start;
486
487         /* Allocate software ring */
488         txq->sw_ring =
489                 rte_zmalloc_socket("iavf tx sw ring",
490                                    sizeof(struct iavf_tx_entry) * nb_desc,
491                                    RTE_CACHE_LINE_SIZE,
492                                    socket_id);
493         if (!txq->sw_ring) {
494                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
495                 rte_free(txq);
496                 return -ENOMEM;
497         }
498
499         /* Allocate TX hardware ring descriptors. */
500         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
501         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
502         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
503                                       ring_size, IAVF_RING_BASE_ALIGN,
504                                       socket_id);
505         if (!mz) {
506                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
507                 rte_free(txq->sw_ring);
508                 rte_free(txq);
509                 return -ENOMEM;
510         }
511         txq->tx_ring_phys_addr = mz->iova;
512         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
513
514         txq->mz = mz;
515         reset_tx_queue(txq);
516         txq->q_set = true;
517         dev->data->tx_queues[queue_idx] = txq;
518         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
519         txq->ops = &def_txq_ops;
520
521         if (check_tx_vec_allow(txq) == false) {
522                 struct iavf_adapter *ad =
523                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
524                 ad->tx_vec_allowed = false;
525         }
526
527         return 0;
528 }
529
530 int
531 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
532 {
533         struct iavf_adapter *adapter =
534                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
535         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
536         struct iavf_rx_queue *rxq;
537         int err = 0;
538
539         PMD_DRV_FUNC_TRACE();
540
541         if (rx_queue_id >= dev->data->nb_rx_queues)
542                 return -EINVAL;
543
544         rxq = dev->data->rx_queues[rx_queue_id];
545
546         err = alloc_rxq_mbufs(rxq);
547         if (err) {
548                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
549                 return err;
550         }
551
552         rte_wmb();
553
554         /* Init the RX tail register. */
555         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
556         IAVF_WRITE_FLUSH(hw);
557
558         /* Ready to switch the queue on */
559         err = iavf_switch_queue(adapter, rx_queue_id, true, true);
560         if (err)
561                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
562                             rx_queue_id);
563         else
564                 dev->data->rx_queue_state[rx_queue_id] =
565                         RTE_ETH_QUEUE_STATE_STARTED;
566
567         return err;
568 }
569
570 int
571 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
572 {
573         struct iavf_adapter *adapter =
574                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
575         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
576         struct iavf_tx_queue *txq;
577         int err = 0;
578
579         PMD_DRV_FUNC_TRACE();
580
581         if (tx_queue_id >= dev->data->nb_tx_queues)
582                 return -EINVAL;
583
584         txq = dev->data->tx_queues[tx_queue_id];
585
586         /* Init the RX tail register. */
587         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
588         IAVF_WRITE_FLUSH(hw);
589
590         /* Ready to switch the queue on */
591         err = iavf_switch_queue(adapter, tx_queue_id, false, true);
592
593         if (err)
594                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
595                             tx_queue_id);
596         else
597                 dev->data->tx_queue_state[tx_queue_id] =
598                         RTE_ETH_QUEUE_STATE_STARTED;
599
600         return err;
601 }
602
603 int
604 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
605 {
606         struct iavf_adapter *adapter =
607                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
608         struct iavf_rx_queue *rxq;
609         int err;
610
611         PMD_DRV_FUNC_TRACE();
612
613         if (rx_queue_id >= dev->data->nb_rx_queues)
614                 return -EINVAL;
615
616         err = iavf_switch_queue(adapter, rx_queue_id, true, false);
617         if (err) {
618                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
619                             rx_queue_id);
620                 return err;
621         }
622
623         rxq = dev->data->rx_queues[rx_queue_id];
624         rxq->ops->release_mbufs(rxq);
625         reset_rx_queue(rxq);
626         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
627
628         return 0;
629 }
630
631 int
632 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
633 {
634         struct iavf_adapter *adapter =
635                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
636         struct iavf_tx_queue *txq;
637         int err;
638
639         PMD_DRV_FUNC_TRACE();
640
641         if (tx_queue_id >= dev->data->nb_tx_queues)
642                 return -EINVAL;
643
644         err = iavf_switch_queue(adapter, tx_queue_id, false, false);
645         if (err) {
646                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
647                             tx_queue_id);
648                 return err;
649         }
650
651         txq = dev->data->tx_queues[tx_queue_id];
652         txq->ops->release_mbufs(txq);
653         reset_tx_queue(txq);
654         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
655
656         return 0;
657 }
658
659 void
660 iavf_dev_rx_queue_release(void *rxq)
661 {
662         struct iavf_rx_queue *q = (struct iavf_rx_queue *)rxq;
663
664         if (!q)
665                 return;
666
667         q->ops->release_mbufs(q);
668         rte_free(q->sw_ring);
669         rte_memzone_free(q->mz);
670         rte_free(q);
671 }
672
673 void
674 iavf_dev_tx_queue_release(void *txq)
675 {
676         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
677
678         if (!q)
679                 return;
680
681         q->ops->release_mbufs(q);
682         rte_free(q->sw_ring);
683         rte_memzone_free(q->mz);
684         rte_free(q);
685 }
686
687 void
688 iavf_stop_queues(struct rte_eth_dev *dev)
689 {
690         struct iavf_adapter *adapter =
691                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
692         struct iavf_rx_queue *rxq;
693         struct iavf_tx_queue *txq;
694         int ret, i;
695
696         /* Stop All queues */
697         ret = iavf_disable_queues(adapter);
698         if (ret)
699                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
700
701         for (i = 0; i < dev->data->nb_tx_queues; i++) {
702                 txq = dev->data->tx_queues[i];
703                 if (!txq)
704                         continue;
705                 txq->ops->release_mbufs(txq);
706                 reset_tx_queue(txq);
707                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
708         }
709         for (i = 0; i < dev->data->nb_rx_queues; i++) {
710                 rxq = dev->data->rx_queues[i];
711                 if (!rxq)
712                         continue;
713                 rxq->ops->release_mbufs(rxq);
714                 reset_rx_queue(rxq);
715                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
716         }
717 }
718
719 static inline void
720 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
721 {
722         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
723                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
724                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
725                 mb->vlan_tci =
726                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
727         } else {
728                 mb->vlan_tci = 0;
729         }
730 }
731
732 static inline void
733 iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
734                           volatile union iavf_rx_flex_desc *rxdp)
735 {
736         if (rte_le_to_cpu_64(rxdp->wb.status_error0) &
737                 (1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
738                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
739                 mb->vlan_tci =
740                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
741         } else {
742                 mb->vlan_tci = 0;
743         }
744 }
745
746 /* Translate the rx descriptor status and error fields to pkt flags */
747 static inline uint64_t
748 iavf_rxd_to_pkt_flags(uint64_t qword)
749 {
750         uint64_t flags;
751         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
752
753 #define IAVF_RX_ERR_BITS 0x3f
754
755         /* Check if RSS_HASH */
756         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
757                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
758                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
759
760         /* Check if FDIR Match */
761         flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
762                                 PKT_RX_FDIR : 0);
763
764         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
765                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
766                 return flags;
767         }
768
769         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
770                 flags |= PKT_RX_IP_CKSUM_BAD;
771         else
772                 flags |= PKT_RX_IP_CKSUM_GOOD;
773
774         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
775                 flags |= PKT_RX_L4_CKSUM_BAD;
776         else
777                 flags |= PKT_RX_L4_CKSUM_GOOD;
778
779         /* TODO: Oversize error bit is not processed here */
780
781         return flags;
782 }
783
784 static inline uint64_t
785 iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
786 {
787         uint64_t flags = 0;
788 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
789         uint16_t flexbh;
790
791         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
792                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
793                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
794
795         if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
796                 mb->hash.fdir.hi =
797                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
798                 flags |= PKT_RX_FDIR_ID;
799         }
800 #else
801         mb->hash.fdir.hi =
802                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
803         flags |= PKT_RX_FDIR_ID;
804 #endif
805         return flags;
806 }
807
808
809 /* Translate the rx flex descriptor status to pkt flags */
810 static inline void
811 iavf_rxd_to_pkt_fields(struct rte_mbuf *mb,
812                        volatile union iavf_rx_flex_desc *rxdp)
813 {
814         volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
815                         (volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
816 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
817         uint16_t stat_err;
818
819         stat_err = rte_le_to_cpu_16(desc->status_error0);
820         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
821                 mb->ol_flags |= PKT_RX_RSS_HASH;
822                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
823         }
824 #endif
825
826         if (desc->flow_id != 0xFFFFFFFF) {
827                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
828                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
829         }
830 }
831
832 #define IAVF_RX_FLEX_ERR0_BITS  \
833         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
834          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
835          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
836          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
837          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
838          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
839
840 /* Rx L3/L4 checksum */
841 static inline uint64_t
842 iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
843 {
844         uint64_t flags = 0;
845
846         /* check if HW has decoded the packet and checksum */
847         if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
848                 return 0;
849
850         if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
851                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
852                 return flags;
853         }
854
855         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
856                 flags |= PKT_RX_IP_CKSUM_BAD;
857         else
858                 flags |= PKT_RX_IP_CKSUM_GOOD;
859
860         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
861                 flags |= PKT_RX_L4_CKSUM_BAD;
862         else
863                 flags |= PKT_RX_L4_CKSUM_GOOD;
864
865         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
866                 flags |= PKT_RX_EIP_CKSUM_BAD;
867
868         return flags;
869 }
870
871 /* If the number of free RX descriptors is greater than the RX free
872  * threshold of the queue, advance the Receive Descriptor Tail (RDT)
873  * register. Update the RDT with the value of the last processed RX
874  * descriptor minus 1, to guarantee that the RDT register is never
875  * equal to the RDH register, which creates a "full" ring situation
876  * from the hardware point of view.
877  */
878 static inline void
879 iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
880 {
881         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
882
883         if (nb_hold > rxq->rx_free_thresh) {
884                 PMD_RX_LOG(DEBUG,
885                            "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
886                            rxq->port_id, rxq->queue_id, rx_id, nb_hold);
887                 rx_id = (uint16_t)((rx_id == 0) ?
888                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
889                 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
890                 nb_hold = 0;
891         }
892         rxq->nb_rx_hold = nb_hold;
893 }
894
895 /* implement recv_pkts */
896 uint16_t
897 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
898 {
899         volatile union iavf_rx_desc *rx_ring;
900         volatile union iavf_rx_desc *rxdp;
901         struct iavf_rx_queue *rxq;
902         union iavf_rx_desc rxd;
903         struct rte_mbuf *rxe;
904         struct rte_eth_dev *dev;
905         struct rte_mbuf *rxm;
906         struct rte_mbuf *nmb;
907         uint16_t nb_rx;
908         uint32_t rx_status;
909         uint64_t qword1;
910         uint16_t rx_packet_len;
911         uint16_t rx_id, nb_hold;
912         uint64_t dma_addr;
913         uint64_t pkt_flags;
914         const uint32_t *ptype_tbl;
915
916         nb_rx = 0;
917         nb_hold = 0;
918         rxq = rx_queue;
919         rx_id = rxq->rx_tail;
920         rx_ring = rxq->rx_ring;
921         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
922
923         while (nb_rx < nb_pkts) {
924                 rxdp = &rx_ring[rx_id];
925                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
926                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
927                             IAVF_RXD_QW1_STATUS_SHIFT;
928
929                 /* Check the DD bit first */
930                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
931                         break;
932                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
933
934                 nmb = rte_mbuf_raw_alloc(rxq->mp);
935                 if (unlikely(!nmb)) {
936                         dev = &rte_eth_devices[rxq->port_id];
937                         dev->data->rx_mbuf_alloc_failed++;
938                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
939                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
940                         break;
941                 }
942
943                 rxd = *rxdp;
944                 nb_hold++;
945                 rxe = rxq->sw_ring[rx_id];
946                 rx_id++;
947                 if (unlikely(rx_id == rxq->nb_rx_desc))
948                         rx_id = 0;
949
950                 /* Prefetch next mbuf */
951                 rte_prefetch0(rxq->sw_ring[rx_id]);
952
953                 /* When next RX descriptor is on a cache line boundary,
954                  * prefetch the next 4 RX descriptors and next 8 pointers
955                  * to mbufs.
956                  */
957                 if ((rx_id & 0x3) == 0) {
958                         rte_prefetch0(&rx_ring[rx_id]);
959                         rte_prefetch0(rxq->sw_ring[rx_id]);
960                 }
961                 rxm = rxe;
962                 dma_addr =
963                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
964                 rxdp->read.hdr_addr = 0;
965                 rxdp->read.pkt_addr = dma_addr;
966
967                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
968                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
969
970                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
971                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
972                 rxm->nb_segs = 1;
973                 rxm->next = NULL;
974                 rxm->pkt_len = rx_packet_len;
975                 rxm->data_len = rx_packet_len;
976                 rxm->port = rxq->port_id;
977                 rxm->ol_flags = 0;
978                 iavf_rxd_to_vlan_tci(rxm, &rxd);
979                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
980                 rxm->packet_type =
981                         ptype_tbl[(uint8_t)((qword1 &
982                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
983
984                 if (pkt_flags & PKT_RX_RSS_HASH)
985                         rxm->hash.rss =
986                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
987
988                 if (pkt_flags & PKT_RX_FDIR)
989                         pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
990
991                 rxm->ol_flags |= pkt_flags;
992
993                 rx_pkts[nb_rx++] = rxm;
994         }
995         rxq->rx_tail = rx_id;
996
997         iavf_update_rx_tail(rxq, nb_hold, rx_id);
998
999         return nb_rx;
1000 }
1001
1002 /* implement recv_pkts for flexible Rx descriptor */
1003 uint16_t
1004 iavf_recv_pkts_flex_rxd(void *rx_queue,
1005                         struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1006 {
1007         volatile union iavf_rx_desc *rx_ring;
1008         volatile union iavf_rx_flex_desc *rxdp;
1009         struct iavf_rx_queue *rxq;
1010         union iavf_rx_flex_desc rxd;
1011         struct rte_mbuf *rxe;
1012         struct rte_eth_dev *dev;
1013         struct rte_mbuf *rxm;
1014         struct rte_mbuf *nmb;
1015         uint16_t nb_rx;
1016         uint16_t rx_stat_err0;
1017         uint16_t rx_packet_len;
1018         uint16_t rx_id, nb_hold;
1019         uint64_t dma_addr;
1020         uint64_t pkt_flags;
1021         const uint32_t *ptype_tbl;
1022
1023         nb_rx = 0;
1024         nb_hold = 0;
1025         rxq = rx_queue;
1026         rx_id = rxq->rx_tail;
1027         rx_ring = rxq->rx_ring;
1028         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1029
1030         while (nb_rx < nb_pkts) {
1031                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1032                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1033
1034                 /* Check the DD bit first */
1035                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1036                         break;
1037                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1038
1039                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1040                 if (unlikely(!nmb)) {
1041                         dev = &rte_eth_devices[rxq->port_id];
1042                         dev->data->rx_mbuf_alloc_failed++;
1043                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1044                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1045                         break;
1046                 }
1047
1048                 rxd = *rxdp;
1049                 nb_hold++;
1050                 rxe = rxq->sw_ring[rx_id];
1051                 rx_id++;
1052                 if (unlikely(rx_id == rxq->nb_rx_desc))
1053                         rx_id = 0;
1054
1055                 /* Prefetch next mbuf */
1056                 rte_prefetch0(rxq->sw_ring[rx_id]);
1057
1058                 /* When next RX descriptor is on a cache line boundary,
1059                  * prefetch the next 4 RX descriptors and next 8 pointers
1060                  * to mbufs.
1061                  */
1062                 if ((rx_id & 0x3) == 0) {
1063                         rte_prefetch0(&rx_ring[rx_id]);
1064                         rte_prefetch0(rxq->sw_ring[rx_id]);
1065                 }
1066                 rxm = rxe;
1067                 dma_addr =
1068                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1069                 rxdp->read.hdr_addr = 0;
1070                 rxdp->read.pkt_addr = dma_addr;
1071
1072                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
1073                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1074
1075                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1076                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1077                 rxm->nb_segs = 1;
1078                 rxm->next = NULL;
1079                 rxm->pkt_len = rx_packet_len;
1080                 rxm->data_len = rx_packet_len;
1081                 rxm->port = rxq->port_id;
1082                 rxm->ol_flags = 0;
1083                 rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1084                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1085                 iavf_flex_rxd_to_vlan_tci(rxm, &rxd);
1086                 iavf_rxd_to_pkt_fields(rxm, &rxd);
1087                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1088                 rxm->ol_flags |= pkt_flags;
1089
1090                 rx_pkts[nb_rx++] = rxm;
1091         }
1092         rxq->rx_tail = rx_id;
1093
1094         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1095
1096         return nb_rx;
1097 }
1098
1099 /* implement recv_scattered_pkts for flexible Rx descriptor */
1100 uint16_t
1101 iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1102                                   uint16_t nb_pkts)
1103 {
1104         struct iavf_rx_queue *rxq = rx_queue;
1105         union iavf_rx_flex_desc rxd;
1106         struct rte_mbuf *rxe;
1107         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1108         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1109         struct rte_mbuf *nmb, *rxm;
1110         uint16_t rx_id = rxq->rx_tail;
1111         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1112         struct rte_eth_dev *dev;
1113         uint16_t rx_stat_err0;
1114         uint64_t dma_addr;
1115         uint64_t pkt_flags;
1116
1117         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1118         volatile union iavf_rx_flex_desc *rxdp;
1119         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1120
1121         while (nb_rx < nb_pkts) {
1122                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1123                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1124
1125                 /* Check the DD bit */
1126                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1127                         break;
1128                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1129
1130                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1131                 if (unlikely(!nmb)) {
1132                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1133                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1134                         dev = &rte_eth_devices[rxq->port_id];
1135                         dev->data->rx_mbuf_alloc_failed++;
1136                         break;
1137                 }
1138
1139                 rxd = *rxdp;
1140                 nb_hold++;
1141                 rxe = rxq->sw_ring[rx_id];
1142                 rx_id++;
1143                 if (rx_id == rxq->nb_rx_desc)
1144                         rx_id = 0;
1145
1146                 /* Prefetch next mbuf */
1147                 rte_prefetch0(rxq->sw_ring[rx_id]);
1148
1149                 /* When next RX descriptor is on a cache line boundary,
1150                  * prefetch the next 4 RX descriptors and next 8 pointers
1151                  * to mbufs.
1152                  */
1153                 if ((rx_id & 0x3) == 0) {
1154                         rte_prefetch0(&rx_ring[rx_id]);
1155                         rte_prefetch0(rxq->sw_ring[rx_id]);
1156                 }
1157
1158                 rxm = rxe;
1159                 dma_addr =
1160                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1161
1162                 /* Set data buffer address and data length of the mbuf */
1163                 rxdp->read.hdr_addr = 0;
1164                 rxdp->read.pkt_addr = dma_addr;
1165                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1166                                 IAVF_RX_FLX_DESC_PKT_LEN_M;
1167                 rxm->data_len = rx_packet_len;
1168                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1169
1170                 /* If this is the first buffer of the received packet, set the
1171                  * pointer to the first mbuf of the packet and initialize its
1172                  * context. Otherwise, update the total length and the number
1173                  * of segments of the current scattered packet, and update the
1174                  * pointer to the last mbuf of the current packet.
1175                  */
1176                 if (!first_seg) {
1177                         first_seg = rxm;
1178                         first_seg->nb_segs = 1;
1179                         first_seg->pkt_len = rx_packet_len;
1180                 } else {
1181                         first_seg->pkt_len =
1182                                 (uint16_t)(first_seg->pkt_len +
1183                                                 rx_packet_len);
1184                         first_seg->nb_segs++;
1185                         last_seg->next = rxm;
1186                 }
1187
1188                 /* If this is not the last buffer of the received packet,
1189                  * update the pointer to the last mbuf of the current scattered
1190                  * packet and continue to parse the RX ring.
1191                  */
1192                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
1193                         last_seg = rxm;
1194                         continue;
1195                 }
1196
1197                 /* This is the last buffer of the received packet. If the CRC
1198                  * is not stripped by the hardware:
1199                  *  - Subtract the CRC length from the total packet length.
1200                  *  - If the last buffer only contains the whole CRC or a part
1201                  *  of it, free the mbuf associated to the last buffer. If part
1202                  *  of the CRC is also contained in the previous mbuf, subtract
1203                  *  the length of that CRC part from the data length of the
1204                  *  previous mbuf.
1205                  */
1206                 rxm->next = NULL;
1207                 if (unlikely(rxq->crc_len > 0)) {
1208                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1209                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1210                                 rte_pktmbuf_free_seg(rxm);
1211                                 first_seg->nb_segs--;
1212                                 last_seg->data_len =
1213                                         (uint16_t)(last_seg->data_len -
1214                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1215                                 last_seg->next = NULL;
1216                         } else {
1217                                 rxm->data_len = (uint16_t)(rx_packet_len -
1218                                                         RTE_ETHER_CRC_LEN);
1219                         }
1220                 }
1221
1222                 first_seg->port = rxq->port_id;
1223                 first_seg->ol_flags = 0;
1224                 first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1225                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1226                 iavf_flex_rxd_to_vlan_tci(first_seg, &rxd);
1227                 iavf_rxd_to_pkt_fields(first_seg, &rxd);
1228                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1229
1230                 first_seg->ol_flags |= pkt_flags;
1231
1232                 /* Prefetch data of first segment, if configured to do so. */
1233                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1234                                           first_seg->data_off));
1235                 rx_pkts[nb_rx++] = first_seg;
1236                 first_seg = NULL;
1237         }
1238
1239         /* Record index of the next RX descriptor to probe. */
1240         rxq->rx_tail = rx_id;
1241         rxq->pkt_first_seg = first_seg;
1242         rxq->pkt_last_seg = last_seg;
1243
1244         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1245
1246         return nb_rx;
1247 }
1248
1249 /* implement recv_scattered_pkts  */
1250 uint16_t
1251 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1252                         uint16_t nb_pkts)
1253 {
1254         struct iavf_rx_queue *rxq = rx_queue;
1255         union iavf_rx_desc rxd;
1256         struct rte_mbuf *rxe;
1257         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1258         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1259         struct rte_mbuf *nmb, *rxm;
1260         uint16_t rx_id = rxq->rx_tail;
1261         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1262         struct rte_eth_dev *dev;
1263         uint32_t rx_status;
1264         uint64_t qword1;
1265         uint64_t dma_addr;
1266         uint64_t pkt_flags;
1267
1268         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1269         volatile union iavf_rx_desc *rxdp;
1270         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1271
1272         while (nb_rx < nb_pkts) {
1273                 rxdp = &rx_ring[rx_id];
1274                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1275                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1276                             IAVF_RXD_QW1_STATUS_SHIFT;
1277
1278                 /* Check the DD bit */
1279                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1280                         break;
1281                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1282
1283                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1284                 if (unlikely(!nmb)) {
1285                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1286                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1287                         dev = &rte_eth_devices[rxq->port_id];
1288                         dev->data->rx_mbuf_alloc_failed++;
1289                         break;
1290                 }
1291
1292                 rxd = *rxdp;
1293                 nb_hold++;
1294                 rxe = rxq->sw_ring[rx_id];
1295                 rx_id++;
1296                 if (rx_id == rxq->nb_rx_desc)
1297                         rx_id = 0;
1298
1299                 /* Prefetch next mbuf */
1300                 rte_prefetch0(rxq->sw_ring[rx_id]);
1301
1302                 /* When next RX descriptor is on a cache line boundary,
1303                  * prefetch the next 4 RX descriptors and next 8 pointers
1304                  * to mbufs.
1305                  */
1306                 if ((rx_id & 0x3) == 0) {
1307                         rte_prefetch0(&rx_ring[rx_id]);
1308                         rte_prefetch0(rxq->sw_ring[rx_id]);
1309                 }
1310
1311                 rxm = rxe;
1312                 dma_addr =
1313                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1314
1315                 /* Set data buffer address and data length of the mbuf */
1316                 rxdp->read.hdr_addr = 0;
1317                 rxdp->read.pkt_addr = dma_addr;
1318                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1319                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1320                 rxm->data_len = rx_packet_len;
1321                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1322
1323                 /* If this is the first buffer of the received packet, set the
1324                  * pointer to the first mbuf of the packet and initialize its
1325                  * context. Otherwise, update the total length and the number
1326                  * of segments of the current scattered packet, and update the
1327                  * pointer to the last mbuf of the current packet.
1328                  */
1329                 if (!first_seg) {
1330                         first_seg = rxm;
1331                         first_seg->nb_segs = 1;
1332                         first_seg->pkt_len = rx_packet_len;
1333                 } else {
1334                         first_seg->pkt_len =
1335                                 (uint16_t)(first_seg->pkt_len +
1336                                                 rx_packet_len);
1337                         first_seg->nb_segs++;
1338                         last_seg->next = rxm;
1339                 }
1340
1341                 /* If this is not the last buffer of the received packet,
1342                  * update the pointer to the last mbuf of the current scattered
1343                  * packet and continue to parse the RX ring.
1344                  */
1345                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1346                         last_seg = rxm;
1347                         continue;
1348                 }
1349
1350                 /* This is the last buffer of the received packet. If the CRC
1351                  * is not stripped by the hardware:
1352                  *  - Subtract the CRC length from the total packet length.
1353                  *  - If the last buffer only contains the whole CRC or a part
1354                  *  of it, free the mbuf associated to the last buffer. If part
1355                  *  of the CRC is also contained in the previous mbuf, subtract
1356                  *  the length of that CRC part from the data length of the
1357                  *  previous mbuf.
1358                  */
1359                 rxm->next = NULL;
1360                 if (unlikely(rxq->crc_len > 0)) {
1361                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1362                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1363                                 rte_pktmbuf_free_seg(rxm);
1364                                 first_seg->nb_segs--;
1365                                 last_seg->data_len =
1366                                         (uint16_t)(last_seg->data_len -
1367                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1368                                 last_seg->next = NULL;
1369                         } else
1370                                 rxm->data_len = (uint16_t)(rx_packet_len -
1371                                                         RTE_ETHER_CRC_LEN);
1372                 }
1373
1374                 first_seg->port = rxq->port_id;
1375                 first_seg->ol_flags = 0;
1376                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1377                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1378                 first_seg->packet_type =
1379                         ptype_tbl[(uint8_t)((qword1 &
1380                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1381
1382                 if (pkt_flags & PKT_RX_RSS_HASH)
1383                         first_seg->hash.rss =
1384                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1385
1386                 if (pkt_flags & PKT_RX_FDIR)
1387                         pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
1388
1389                 first_seg->ol_flags |= pkt_flags;
1390
1391                 /* Prefetch data of first segment, if configured to do so. */
1392                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1393                                           first_seg->data_off));
1394                 rx_pkts[nb_rx++] = first_seg;
1395                 first_seg = NULL;
1396         }
1397
1398         /* Record index of the next RX descriptor to probe. */
1399         rxq->rx_tail = rx_id;
1400         rxq->pkt_first_seg = first_seg;
1401         rxq->pkt_last_seg = last_seg;
1402
1403         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1404
1405         return nb_rx;
1406 }
1407
1408 #define IAVF_LOOK_AHEAD 8
1409 static inline int
1410 iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
1411 {
1412         volatile union iavf_rx_flex_desc *rxdp;
1413         struct rte_mbuf **rxep;
1414         struct rte_mbuf *mb;
1415         uint16_t stat_err0;
1416         uint16_t pkt_len;
1417         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1418         int32_t i, j, nb_rx = 0;
1419         uint64_t pkt_flags;
1420         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1421
1422         rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
1423         rxep = &rxq->sw_ring[rxq->rx_tail];
1424
1425         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1426
1427         /* Make sure there is at least 1 packet to receive */
1428         if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1429                 return 0;
1430
1431         /* Scan LOOK_AHEAD descriptors at a time to determine which
1432          * descriptors reference packets that are ready to be received.
1433          */
1434         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1435              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1436                 /* Read desc statuses backwards to avoid race condition */
1437                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
1438                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1439
1440                 rte_smp_rmb();
1441
1442                 /* Compute how many status bits were set */
1443                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1444                         nb_dd += s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
1445
1446                 nb_rx += nb_dd;
1447
1448                 /* Translate descriptor info to mbuf parameters */
1449                 for (j = 0; j < nb_dd; j++) {
1450                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1451                                           rxq->rx_tail +
1452                                           i * IAVF_LOOK_AHEAD + j);
1453
1454                         mb = rxep[j];
1455                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1456                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1457                         mb->data_len = pkt_len;
1458                         mb->pkt_len = pkt_len;
1459                         mb->ol_flags = 0;
1460
1461                         mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1462                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1463                         iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j]);
1464                         iavf_rxd_to_pkt_fields(mb, &rxdp[j]);
1465                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1466                         pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
1467
1468                         mb->ol_flags |= pkt_flags;
1469                 }
1470
1471                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1472                         rxq->rx_stage[i + j] = rxep[j];
1473
1474                 if (nb_dd != IAVF_LOOK_AHEAD)
1475                         break;
1476         }
1477
1478         /* Clear software ring entries */
1479         for (i = 0; i < nb_rx; i++)
1480                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1481
1482         return nb_rx;
1483 }
1484
1485 static inline int
1486 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1487 {
1488         volatile union iavf_rx_desc *rxdp;
1489         struct rte_mbuf **rxep;
1490         struct rte_mbuf *mb;
1491         uint16_t pkt_len;
1492         uint64_t qword1;
1493         uint32_t rx_status;
1494         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1495         int32_t i, j, nb_rx = 0;
1496         uint64_t pkt_flags;
1497         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1498
1499         rxdp = &rxq->rx_ring[rxq->rx_tail];
1500         rxep = &rxq->sw_ring[rxq->rx_tail];
1501
1502         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1503         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1504                     IAVF_RXD_QW1_STATUS_SHIFT;
1505
1506         /* Make sure there is at least 1 packet to receive */
1507         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1508                 return 0;
1509
1510         /* Scan LOOK_AHEAD descriptors at a time to determine which
1511          * descriptors reference packets that are ready to be received.
1512          */
1513         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1514              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1515                 /* Read desc statuses backwards to avoid race condition */
1516                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1517                         qword1 = rte_le_to_cpu_64(
1518                                 rxdp[j].wb.qword1.status_error_len);
1519                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1520                                IAVF_RXD_QW1_STATUS_SHIFT;
1521                 }
1522
1523                 rte_smp_rmb();
1524
1525                 /* Compute how many status bits were set */
1526                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1527                         nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1528
1529                 nb_rx += nb_dd;
1530
1531                 /* Translate descriptor info to mbuf parameters */
1532                 for (j = 0; j < nb_dd; j++) {
1533                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1534                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1535
1536                         mb = rxep[j];
1537                         qword1 = rte_le_to_cpu_64
1538                                         (rxdp[j].wb.qword1.status_error_len);
1539                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1540                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1541                         mb->data_len = pkt_len;
1542                         mb->pkt_len = pkt_len;
1543                         mb->ol_flags = 0;
1544                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1545                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1546                         mb->packet_type =
1547                                 ptype_tbl[(uint8_t)((qword1 &
1548                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1549                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
1550
1551                         if (pkt_flags & PKT_RX_RSS_HASH)
1552                                 mb->hash.rss = rte_le_to_cpu_32(
1553                                         rxdp[j].wb.qword0.hi_dword.rss);
1554
1555                         if (pkt_flags & PKT_RX_FDIR)
1556                                 pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
1557
1558                         mb->ol_flags |= pkt_flags;
1559                 }
1560
1561                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1562                         rxq->rx_stage[i + j] = rxep[j];
1563
1564                 if (nb_dd != IAVF_LOOK_AHEAD)
1565                         break;
1566         }
1567
1568         /* Clear software ring entries */
1569         for (i = 0; i < nb_rx; i++)
1570                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1571
1572         return nb_rx;
1573 }
1574
1575 static inline uint16_t
1576 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
1577                        struct rte_mbuf **rx_pkts,
1578                        uint16_t nb_pkts)
1579 {
1580         uint16_t i;
1581         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1582
1583         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1584
1585         for (i = 0; i < nb_pkts; i++)
1586                 rx_pkts[i] = stage[i];
1587
1588         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1589         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1590
1591         return nb_pkts;
1592 }
1593
1594 static inline int
1595 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
1596 {
1597         volatile union iavf_rx_desc *rxdp;
1598         struct rte_mbuf **rxep;
1599         struct rte_mbuf *mb;
1600         uint16_t alloc_idx, i;
1601         uint64_t dma_addr;
1602         int diag;
1603
1604         /* Allocate buffers in bulk */
1605         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1606                                 (rxq->rx_free_thresh - 1));
1607         rxep = &rxq->sw_ring[alloc_idx];
1608         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1609                                     rxq->rx_free_thresh);
1610         if (unlikely(diag != 0)) {
1611                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1612                 return -ENOMEM;
1613         }
1614
1615         rxdp = &rxq->rx_ring[alloc_idx];
1616         for (i = 0; i < rxq->rx_free_thresh; i++) {
1617                 if (likely(i < (rxq->rx_free_thresh - 1)))
1618                         /* Prefetch next mbuf */
1619                         rte_prefetch0(rxep[i + 1]);
1620
1621                 mb = rxep[i];
1622                 rte_mbuf_refcnt_set(mb, 1);
1623                 mb->next = NULL;
1624                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1625                 mb->nb_segs = 1;
1626                 mb->port = rxq->port_id;
1627                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1628                 rxdp[i].read.hdr_addr = 0;
1629                 rxdp[i].read.pkt_addr = dma_addr;
1630         }
1631
1632         /* Update rx tail register */
1633         rte_wmb();
1634         IAVF_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
1635
1636         rxq->rx_free_trigger =
1637                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1638         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1639                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1640
1641         return 0;
1642 }
1643
1644 static inline uint16_t
1645 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1646 {
1647         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
1648         uint16_t nb_rx = 0;
1649
1650         if (!nb_pkts)
1651                 return 0;
1652
1653         if (rxq->rx_nb_avail)
1654                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1655
1656         if (rxq->rxdid == IAVF_RXDID_COMMS_OVS_1)
1657                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
1658         else
1659                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
1660         rxq->rx_next_avail = 0;
1661         rxq->rx_nb_avail = nb_rx;
1662         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1663
1664         if (rxq->rx_tail > rxq->rx_free_trigger) {
1665                 if (iavf_rx_alloc_bufs(rxq) != 0) {
1666                         uint16_t i, j;
1667
1668                         /* TODO: count rx_mbuf_alloc_failed here */
1669
1670                         rxq->rx_nb_avail = 0;
1671                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1672                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1673                                 rxq->sw_ring[j] = rxq->rx_stage[i];
1674
1675                         return 0;
1676                 }
1677         }
1678
1679         if (rxq->rx_tail >= rxq->nb_rx_desc)
1680                 rxq->rx_tail = 0;
1681
1682         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
1683                    rxq->port_id, rxq->queue_id,
1684                    rxq->rx_tail, nb_rx);
1685
1686         if (rxq->rx_nb_avail)
1687                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1688
1689         return 0;
1690 }
1691
1692 static uint16_t
1693 iavf_recv_pkts_bulk_alloc(void *rx_queue,
1694                          struct rte_mbuf **rx_pkts,
1695                          uint16_t nb_pkts)
1696 {
1697         uint16_t nb_rx = 0, n, count;
1698
1699         if (unlikely(nb_pkts == 0))
1700                 return 0;
1701
1702         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
1703                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1704
1705         while (nb_pkts) {
1706                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
1707                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1708                 nb_rx = (uint16_t)(nb_rx + count);
1709                 nb_pkts = (uint16_t)(nb_pkts - count);
1710                 if (count < n)
1711                         break;
1712         }
1713
1714         return nb_rx;
1715 }
1716
1717 static inline int
1718 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
1719 {
1720         struct iavf_tx_entry *sw_ring = txq->sw_ring;
1721         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
1722         uint16_t nb_tx_desc = txq->nb_tx_desc;
1723         uint16_t desc_to_clean_to;
1724         uint16_t nb_tx_to_clean;
1725
1726         volatile struct iavf_tx_desc *txd = txq->tx_ring;
1727
1728         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
1729         if (desc_to_clean_to >= nb_tx_desc)
1730                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
1731
1732         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
1733         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
1734                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
1735                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
1736                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
1737                                 "(port=%d queue=%d)", desc_to_clean_to,
1738                                 txq->port_id, txq->queue_id);
1739                 return -1;
1740         }
1741
1742         if (last_desc_cleaned > desc_to_clean_to)
1743                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
1744                                                         desc_to_clean_to);
1745         else
1746                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
1747                                         last_desc_cleaned);
1748
1749         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
1750
1751         txq->last_desc_cleaned = desc_to_clean_to;
1752         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
1753
1754         return 0;
1755 }
1756
1757 /* Check if the context descriptor is needed for TX offloading */
1758 static inline uint16_t
1759 iavf_calc_context_desc(uint64_t flags)
1760 {
1761         static uint64_t mask = PKT_TX_TCP_SEG;
1762
1763         return (flags & mask) ? 1 : 0;
1764 }
1765
1766 static inline void
1767 iavf_txd_enable_checksum(uint64_t ol_flags,
1768                         uint32_t *td_cmd,
1769                         uint32_t *td_offset,
1770                         union iavf_tx_offload tx_offload)
1771 {
1772         /* Set MACLEN */
1773         *td_offset |= (tx_offload.l2_len >> 1) <<
1774                       IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1775
1776         /* Enable L3 checksum offloads */
1777         if (ol_flags & PKT_TX_IP_CKSUM) {
1778                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
1779                 *td_offset |= (tx_offload.l3_len >> 2) <<
1780                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1781         } else if (ol_flags & PKT_TX_IPV4) {
1782                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
1783                 *td_offset |= (tx_offload.l3_len >> 2) <<
1784                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1785         } else if (ol_flags & PKT_TX_IPV6) {
1786                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
1787                 *td_offset |= (tx_offload.l3_len >> 2) <<
1788                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1789         }
1790
1791         if (ol_flags & PKT_TX_TCP_SEG) {
1792                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1793                 *td_offset |= (tx_offload.l4_len >> 2) <<
1794                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1795                 return;
1796         }
1797
1798         /* Enable L4 checksum offloads */
1799         switch (ol_flags & PKT_TX_L4_MASK) {
1800         case PKT_TX_TCP_CKSUM:
1801                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1802                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
1803                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1804                 break;
1805         case PKT_TX_SCTP_CKSUM:
1806                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
1807                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
1808                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1809                 break;
1810         case PKT_TX_UDP_CKSUM:
1811                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
1812                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
1813                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1814                 break;
1815         default:
1816                 break;
1817         }
1818 }
1819
1820 /* set TSO context descriptor
1821  * support IP -> L4 and IP -> IP -> L4
1822  */
1823 static inline uint64_t
1824 iavf_set_tso_ctx(struct rte_mbuf *mbuf, union iavf_tx_offload tx_offload)
1825 {
1826         uint64_t ctx_desc = 0;
1827         uint32_t cd_cmd, hdr_len, cd_tso_len;
1828
1829         if (!tx_offload.l4_len) {
1830                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
1831                 return ctx_desc;
1832         }
1833
1834         hdr_len = tx_offload.l2_len +
1835                   tx_offload.l3_len +
1836                   tx_offload.l4_len;
1837
1838         cd_cmd = IAVF_TX_CTX_DESC_TSO;
1839         cd_tso_len = mbuf->pkt_len - hdr_len;
1840         ctx_desc |= ((uint64_t)cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1841                      ((uint64_t)cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1842                      ((uint64_t)mbuf->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1843
1844         return ctx_desc;
1845 }
1846
1847 /* Construct the tx flags */
1848 static inline uint64_t
1849 iavf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
1850                uint32_t td_tag)
1851 {
1852         return rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DATA |
1853                                 ((uint64_t)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
1854                                 ((uint64_t)td_offset <<
1855                                  IAVF_TXD_QW1_OFFSET_SHIFT) |
1856                                 ((uint64_t)size  <<
1857                                  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
1858                                 ((uint64_t)td_tag  <<
1859                                  IAVF_TXD_QW1_L2TAG1_SHIFT));
1860 }
1861
1862 /* TX function */
1863 uint16_t
1864 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1865 {
1866         volatile struct iavf_tx_desc *txd;
1867         volatile struct iavf_tx_desc *txr;
1868         struct iavf_tx_queue *txq;
1869         struct iavf_tx_entry *sw_ring;
1870         struct iavf_tx_entry *txe, *txn;
1871         struct rte_mbuf *tx_pkt;
1872         struct rte_mbuf *m_seg;
1873         uint16_t tx_id;
1874         uint16_t nb_tx;
1875         uint32_t td_cmd;
1876         uint32_t td_offset;
1877         uint32_t td_tag;
1878         uint64_t ol_flags;
1879         uint16_t nb_used;
1880         uint16_t nb_ctx;
1881         uint16_t tx_last;
1882         uint16_t slen;
1883         uint64_t buf_dma_addr;
1884         union iavf_tx_offload tx_offload = {0};
1885
1886         txq = tx_queue;
1887         sw_ring = txq->sw_ring;
1888         txr = txq->tx_ring;
1889         tx_id = txq->tx_tail;
1890         txe = &sw_ring[tx_id];
1891
1892         /* Check if the descriptor ring needs to be cleaned. */
1893         if (txq->nb_free < txq->free_thresh)
1894                 (void)iavf_xmit_cleanup(txq);
1895
1896         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1897                 td_cmd = 0;
1898                 td_tag = 0;
1899                 td_offset = 0;
1900
1901                 tx_pkt = *tx_pkts++;
1902                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1903
1904                 ol_flags = tx_pkt->ol_flags;
1905                 tx_offload.l2_len = tx_pkt->l2_len;
1906                 tx_offload.l3_len = tx_pkt->l3_len;
1907                 tx_offload.l4_len = tx_pkt->l4_len;
1908                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1909                 /* Calculate the number of context descriptors needed. */
1910                 nb_ctx = iavf_calc_context_desc(ol_flags);
1911
1912                 /* The number of descriptors that must be allocated for
1913                  * a packet equals to the number of the segments of that
1914                  * packet plus 1 context descriptor if needed.
1915                  */
1916                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1917                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1918
1919                 /* Circular ring */
1920                 if (tx_last >= txq->nb_tx_desc)
1921                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1922
1923                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
1924                            " tx_first=%u tx_last=%u",
1925                            txq->port_id, txq->queue_id, tx_id, tx_last);
1926
1927                 if (nb_used > txq->nb_free) {
1928                         if (iavf_xmit_cleanup(txq)) {
1929                                 if (nb_tx == 0)
1930                                         return 0;
1931                                 goto end_of_tx;
1932                         }
1933                         if (unlikely(nb_used > txq->rs_thresh)) {
1934                                 while (nb_used > txq->nb_free) {
1935                                         if (iavf_xmit_cleanup(txq)) {
1936                                                 if (nb_tx == 0)
1937                                                         return 0;
1938                                                 goto end_of_tx;
1939                                         }
1940                                 }
1941                         }
1942                 }
1943
1944                 /* Descriptor based VLAN insertion */
1945                 if (ol_flags & PKT_TX_VLAN_PKT) {
1946                         td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
1947                         td_tag = tx_pkt->vlan_tci;
1948                 }
1949
1950                 /* According to datasheet, the bit2 is reserved and must be
1951                  * set to 1.
1952                  */
1953                 td_cmd |= 0x04;
1954
1955                 /* Enable checksum offloading */
1956                 if (ol_flags & IAVF_TX_CKSUM_OFFLOAD_MASK)
1957                         iavf_txd_enable_checksum(ol_flags, &td_cmd,
1958                                                 &td_offset, tx_offload);
1959
1960                 if (nb_ctx) {
1961                         /* Setup TX context descriptor if required */
1962                         uint64_t cd_type_cmd_tso_mss =
1963                                 IAVF_TX_DESC_DTYPE_CONTEXT;
1964                         volatile struct iavf_tx_context_desc *ctx_txd =
1965                                 (volatile struct iavf_tx_context_desc *)
1966                                                         &txr[tx_id];
1967
1968                         txn = &sw_ring[txe->next_id];
1969                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1970                         if (txe->mbuf) {
1971                                 rte_pktmbuf_free_seg(txe->mbuf);
1972                                 txe->mbuf = NULL;
1973                         }
1974
1975                         /* TSO enabled */
1976                         if (ol_flags & PKT_TX_TCP_SEG)
1977                                 cd_type_cmd_tso_mss |=
1978                                         iavf_set_tso_ctx(tx_pkt, tx_offload);
1979
1980                         ctx_txd->type_cmd_tso_mss =
1981                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1982
1983                         IAVF_DUMP_TX_DESC(txq, &txr[tx_id], tx_id);
1984                         txe->last_id = tx_last;
1985                         tx_id = txe->next_id;
1986                         txe = txn;
1987                 }
1988
1989                 m_seg = tx_pkt;
1990                 do {
1991                         txd = &txr[tx_id];
1992                         txn = &sw_ring[txe->next_id];
1993
1994                         if (txe->mbuf)
1995                                 rte_pktmbuf_free_seg(txe->mbuf);
1996                         txe->mbuf = m_seg;
1997
1998                         /* Setup TX Descriptor */
1999                         slen = m_seg->data_len;
2000                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2001                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
2002                         txd->cmd_type_offset_bsz = iavf_build_ctob(td_cmd,
2003                                                                   td_offset,
2004                                                                   slen,
2005                                                                   td_tag);
2006
2007                         IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2008                         txe->last_id = tx_last;
2009                         tx_id = txe->next_id;
2010                         txe = txn;
2011                         m_seg = m_seg->next;
2012                 } while (m_seg);
2013
2014                 /* The last packet data descriptor needs End Of Packet (EOP) */
2015                 td_cmd |= IAVF_TX_DESC_CMD_EOP;
2016                 txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
2017                 txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
2018
2019                 if (txq->nb_used >= txq->rs_thresh) {
2020                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
2021                                    "%4u (port=%d queue=%d)",
2022                                    tx_last, txq->port_id, txq->queue_id);
2023
2024                         td_cmd |= IAVF_TX_DESC_CMD_RS;
2025
2026                         /* Update txq RS bit counters */
2027                         txq->nb_used = 0;
2028                 }
2029
2030                 txd->cmd_type_offset_bsz |=
2031                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2032                                          IAVF_TXD_QW1_CMD_SHIFT);
2033                 IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2034         }
2035
2036 end_of_tx:
2037         rte_wmb();
2038
2039         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2040                    txq->port_id, txq->queue_id, tx_id, nb_tx);
2041
2042         IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
2043         txq->tx_tail = tx_id;
2044
2045         return nb_tx;
2046 }
2047
2048 /* TX prep functions */
2049 uint16_t
2050 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2051               uint16_t nb_pkts)
2052 {
2053         int i, ret;
2054         uint64_t ol_flags;
2055         struct rte_mbuf *m;
2056
2057         for (i = 0; i < nb_pkts; i++) {
2058                 m = tx_pkts[i];
2059                 ol_flags = m->ol_flags;
2060
2061                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
2062                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
2063                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
2064                                 rte_errno = EINVAL;
2065                                 return i;
2066                         }
2067                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
2068                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
2069                         /* MSS outside the range are considered malicious */
2070                         rte_errno = EINVAL;
2071                         return i;
2072                 }
2073
2074                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
2075                         rte_errno = ENOTSUP;
2076                         return i;
2077                 }
2078
2079 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2080                 ret = rte_validate_tx_offload(m);
2081                 if (ret != 0) {
2082                         rte_errno = -ret;
2083                         return i;
2084                 }
2085 #endif
2086                 ret = rte_net_intel_cksum_prepare(m);
2087                 if (ret != 0) {
2088                         rte_errno = -ret;
2089                         return i;
2090                 }
2091         }
2092
2093         return i;
2094 }
2095
2096 /* choose rx function*/
2097 void
2098 iavf_set_rx_function(struct rte_eth_dev *dev)
2099 {
2100         struct iavf_adapter *adapter =
2101                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2102         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2103 #ifdef RTE_ARCH_X86
2104         struct iavf_rx_queue *rxq;
2105         int i;
2106         bool use_avx2 = false;
2107
2108         if (!iavf_rx_vec_dev_check(dev) &&
2109                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2110                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2111                         rxq = dev->data->rx_queues[i];
2112                         (void)iavf_rxq_vec_setup(rxq);
2113                 }
2114
2115                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2116                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2117                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2118                         use_avx2 = true;
2119
2120                 if (dev->data->scattered_rx) {
2121                         PMD_DRV_LOG(DEBUG,
2122                                     "Using %sVector Scattered Rx (port %d).",
2123                                     use_avx2 ? "avx2 " : "",
2124                                     dev->data->port_id);
2125                         if (vf->vf_res->vf_cap_flags &
2126                                 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2127                                 dev->rx_pkt_burst = use_avx2 ?
2128                                         iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
2129                                         iavf_recv_scattered_pkts_vec_flex_rxd;
2130                         else
2131                                 dev->rx_pkt_burst = use_avx2 ?
2132                                         iavf_recv_scattered_pkts_vec_avx2 :
2133                                         iavf_recv_scattered_pkts_vec;
2134                 } else {
2135                         PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2136                                     use_avx2 ? "avx2 " : "",
2137                                     dev->data->port_id);
2138                         if (vf->vf_res->vf_cap_flags &
2139                                 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2140                                 dev->rx_pkt_burst = use_avx2 ?
2141                                         iavf_recv_pkts_vec_avx2_flex_rxd :
2142                                         iavf_recv_pkts_vec_flex_rxd;
2143                         else
2144                                 dev->rx_pkt_burst = use_avx2 ?
2145                                         iavf_recv_pkts_vec_avx2 :
2146                                         iavf_recv_pkts_vec;
2147                 }
2148
2149                 return;
2150         }
2151 #endif
2152
2153         if (dev->data->scattered_rx) {
2154                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
2155                             dev->data->port_id);
2156                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2157                         dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
2158                 else
2159                         dev->rx_pkt_burst = iavf_recv_scattered_pkts;
2160         } else if (adapter->rx_bulk_alloc_allowed) {
2161                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
2162                             dev->data->port_id);
2163                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
2164         } else {
2165                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
2166                             dev->data->port_id);
2167                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2168                         dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
2169                 else
2170                         dev->rx_pkt_burst = iavf_recv_pkts;
2171         }
2172 }
2173
2174 /* choose tx function*/
2175 void
2176 iavf_set_tx_function(struct rte_eth_dev *dev)
2177 {
2178 #ifdef RTE_ARCH_X86
2179         struct iavf_tx_queue *txq;
2180         int i;
2181         bool use_avx2 = false;
2182
2183         if (!iavf_tx_vec_dev_check(dev) &&
2184                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2185                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2186                         txq = dev->data->tx_queues[i];
2187                         if (!txq)
2188                                 continue;
2189                         iavf_txq_vec_setup(txq);
2190                 }
2191
2192                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2193                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2194                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2195                         use_avx2 = true;
2196
2197                 PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2198                             use_avx2 ? "avx2 " : "",
2199                             dev->data->port_id);
2200                 dev->tx_pkt_burst = use_avx2 ?
2201                                     iavf_xmit_pkts_vec_avx2 :
2202                                     iavf_xmit_pkts_vec;
2203                 dev->tx_pkt_prepare = NULL;
2204
2205                 return;
2206         }
2207 #endif
2208
2209         PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
2210                     dev->data->port_id);
2211         dev->tx_pkt_burst = iavf_xmit_pkts;
2212         dev->tx_pkt_prepare = iavf_prep_pkts;
2213 }
2214
2215 static int
2216 iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
2217                         uint32_t free_cnt)
2218 {
2219         struct iavf_tx_entry *swr_ring = txq->sw_ring;
2220         uint16_t i, tx_last, tx_id;
2221         uint16_t nb_tx_free_last;
2222         uint16_t nb_tx_to_clean;
2223         uint32_t pkt_cnt;
2224
2225         /* Start free mbuf from the next of tx_tail */
2226         tx_last = txq->tx_tail;
2227         tx_id  = swr_ring[tx_last].next_id;
2228
2229         if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
2230                 return 0;
2231
2232         nb_tx_to_clean = txq->nb_free;
2233         nb_tx_free_last = txq->nb_free;
2234         if (!free_cnt)
2235                 free_cnt = txq->nb_tx_desc;
2236
2237         /* Loop through swr_ring to count the amount of
2238          * freeable mubfs and packets.
2239          */
2240         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2241                 for (i = 0; i < nb_tx_to_clean &&
2242                         pkt_cnt < free_cnt &&
2243                         tx_id != tx_last; i++) {
2244                         if (swr_ring[tx_id].mbuf != NULL) {
2245                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2246                                 swr_ring[tx_id].mbuf = NULL;
2247
2248                                 /*
2249                                  * last segment in the packet,
2250                                  * increment packet count
2251                                  */
2252                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2253                         }
2254
2255                         tx_id = swr_ring[tx_id].next_id;
2256                 }
2257
2258                 if (txq->rs_thresh > txq->nb_tx_desc -
2259                         txq->nb_free || tx_id == tx_last)
2260                         break;
2261
2262                 if (pkt_cnt < free_cnt) {
2263                         if (iavf_xmit_cleanup(txq))
2264                                 break;
2265
2266                         nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
2267                         nb_tx_free_last = txq->nb_free;
2268                 }
2269         }
2270
2271         return (int)pkt_cnt;
2272 }
2273
2274 int
2275 iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
2276 {
2277         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
2278
2279         return iavf_tx_done_cleanup_full(q, free_cnt);
2280 }
2281
2282 void
2283 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2284                      struct rte_eth_rxq_info *qinfo)
2285 {
2286         struct iavf_rx_queue *rxq;
2287
2288         rxq = dev->data->rx_queues[queue_id];
2289
2290         qinfo->mp = rxq->mp;
2291         qinfo->scattered_rx = dev->data->scattered_rx;
2292         qinfo->nb_desc = rxq->nb_rx_desc;
2293
2294         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2295         qinfo->conf.rx_drop_en = true;
2296         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2297 }
2298
2299 void
2300 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2301                      struct rte_eth_txq_info *qinfo)
2302 {
2303         struct iavf_tx_queue *txq;
2304
2305         txq = dev->data->tx_queues[queue_id];
2306
2307         qinfo->nb_desc = txq->nb_tx_desc;
2308
2309         qinfo->conf.tx_free_thresh = txq->free_thresh;
2310         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
2311         qinfo->conf.offloads = txq->offloads;
2312         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2313 }
2314
2315 /* Get the number of used descriptors of a rx queue */
2316 uint32_t
2317 iavf_dev_rxq_count(struct rte_eth_dev *dev, uint16_t queue_id)
2318 {
2319 #define IAVF_RXQ_SCAN_INTERVAL 4
2320         volatile union iavf_rx_desc *rxdp;
2321         struct iavf_rx_queue *rxq;
2322         uint16_t desc = 0;
2323
2324         rxq = dev->data->rx_queues[queue_id];
2325         rxdp = &rxq->rx_ring[rxq->rx_tail];
2326
2327         while ((desc < rxq->nb_rx_desc) &&
2328                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2329                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
2330                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
2331                 /* Check the DD bit of a rx descriptor of each 4 in a group,
2332                  * to avoid checking too frequently and downgrading performance
2333                  * too much.
2334                  */
2335                 desc += IAVF_RXQ_SCAN_INTERVAL;
2336                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
2337                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2338                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2339                                         desc - rxq->nb_rx_desc]);
2340         }
2341
2342         return desc;
2343 }
2344
2345 int
2346 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
2347 {
2348         struct iavf_rx_queue *rxq = rx_queue;
2349         volatile uint64_t *status;
2350         uint64_t mask;
2351         uint32_t desc;
2352
2353         if (unlikely(offset >= rxq->nb_rx_desc))
2354                 return -EINVAL;
2355
2356         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2357                 return RTE_ETH_RX_DESC_UNAVAIL;
2358
2359         desc = rxq->rx_tail + offset;
2360         if (desc >= rxq->nb_rx_desc)
2361                 desc -= rxq->nb_rx_desc;
2362
2363         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2364         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
2365                 << IAVF_RXD_QW1_STATUS_SHIFT);
2366         if (*status & mask)
2367                 return RTE_ETH_RX_DESC_DONE;
2368
2369         return RTE_ETH_RX_DESC_AVAIL;
2370 }
2371
2372 int
2373 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
2374 {
2375         struct iavf_tx_queue *txq = tx_queue;
2376         volatile uint64_t *status;
2377         uint64_t mask, expect;
2378         uint32_t desc;
2379
2380         if (unlikely(offset >= txq->nb_tx_desc))
2381                 return -EINVAL;
2382
2383         desc = txq->tx_tail + offset;
2384         /* go to next desc that has the RS bit */
2385         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
2386                 txq->rs_thresh;
2387         if (desc >= txq->nb_tx_desc) {
2388                 desc -= txq->nb_tx_desc;
2389                 if (desc >= txq->nb_tx_desc)
2390                         desc -= txq->nb_tx_desc;
2391         }
2392
2393         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2394         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
2395         expect = rte_cpu_to_le_64(
2396                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
2397         if ((*status & mask) == expect)
2398                 return RTE_ETH_TX_DESC_DONE;
2399
2400         return RTE_ETH_TX_DESC_FULL;
2401 }
2402
2403 const uint32_t *
2404 iavf_get_default_ptype_table(void)
2405 {
2406         static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
2407                 __rte_cache_aligned = {
2408                 /* L2 types */
2409                 /* [0] reserved */
2410                 [1] = RTE_PTYPE_L2_ETHER,
2411                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
2412                 /* [3] - [5] reserved */
2413                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
2414                 /* [7] - [10] reserved */
2415                 [11] = RTE_PTYPE_L2_ETHER_ARP,
2416                 /* [12] - [21] reserved */
2417
2418                 /* Non tunneled IPv4 */
2419                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2420                        RTE_PTYPE_L4_FRAG,
2421                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2422                        RTE_PTYPE_L4_NONFRAG,
2423                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2424                        RTE_PTYPE_L4_UDP,
2425                 /* [25] reserved */
2426                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2427                        RTE_PTYPE_L4_TCP,
2428                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2429                        RTE_PTYPE_L4_SCTP,
2430                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2431                        RTE_PTYPE_L4_ICMP,
2432
2433                 /* IPv4 --> IPv4 */
2434                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2435                        RTE_PTYPE_TUNNEL_IP |
2436                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2437                        RTE_PTYPE_INNER_L4_FRAG,
2438                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2439                        RTE_PTYPE_TUNNEL_IP |
2440                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2441                        RTE_PTYPE_INNER_L4_NONFRAG,
2442                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2443                        RTE_PTYPE_TUNNEL_IP |
2444                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2445                        RTE_PTYPE_INNER_L4_UDP,
2446                 /* [32] reserved */
2447                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2448                        RTE_PTYPE_TUNNEL_IP |
2449                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2450                        RTE_PTYPE_INNER_L4_TCP,
2451                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2452                        RTE_PTYPE_TUNNEL_IP |
2453                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2454                        RTE_PTYPE_INNER_L4_SCTP,
2455                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2456                        RTE_PTYPE_TUNNEL_IP |
2457                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2458                        RTE_PTYPE_INNER_L4_ICMP,
2459
2460                 /* IPv4 --> IPv6 */
2461                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2462                        RTE_PTYPE_TUNNEL_IP |
2463                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2464                        RTE_PTYPE_INNER_L4_FRAG,
2465                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2466                        RTE_PTYPE_TUNNEL_IP |
2467                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2468                        RTE_PTYPE_INNER_L4_NONFRAG,
2469                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2470                        RTE_PTYPE_TUNNEL_IP |
2471                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2472                        RTE_PTYPE_INNER_L4_UDP,
2473                 /* [39] reserved */
2474                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2475                        RTE_PTYPE_TUNNEL_IP |
2476                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2477                        RTE_PTYPE_INNER_L4_TCP,
2478                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2479                        RTE_PTYPE_TUNNEL_IP |
2480                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2481                        RTE_PTYPE_INNER_L4_SCTP,
2482                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2483                        RTE_PTYPE_TUNNEL_IP |
2484                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2485                        RTE_PTYPE_INNER_L4_ICMP,
2486
2487                 /* IPv4 --> GRE/Teredo/VXLAN */
2488                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2489                        RTE_PTYPE_TUNNEL_GRENAT,
2490
2491                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
2492                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2493                        RTE_PTYPE_TUNNEL_GRENAT |
2494                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2495                        RTE_PTYPE_INNER_L4_FRAG,
2496                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2497                        RTE_PTYPE_TUNNEL_GRENAT |
2498                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2499                        RTE_PTYPE_INNER_L4_NONFRAG,
2500                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2501                        RTE_PTYPE_TUNNEL_GRENAT |
2502                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2503                        RTE_PTYPE_INNER_L4_UDP,
2504                 /* [47] reserved */
2505                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2506                        RTE_PTYPE_TUNNEL_GRENAT |
2507                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2508                        RTE_PTYPE_INNER_L4_TCP,
2509                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2510                        RTE_PTYPE_TUNNEL_GRENAT |
2511                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2512                        RTE_PTYPE_INNER_L4_SCTP,
2513                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2514                        RTE_PTYPE_TUNNEL_GRENAT |
2515                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2516                        RTE_PTYPE_INNER_L4_ICMP,
2517
2518                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
2519                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2520                        RTE_PTYPE_TUNNEL_GRENAT |
2521                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2522                        RTE_PTYPE_INNER_L4_FRAG,
2523                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2524                        RTE_PTYPE_TUNNEL_GRENAT |
2525                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2526                        RTE_PTYPE_INNER_L4_NONFRAG,
2527                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2528                        RTE_PTYPE_TUNNEL_GRENAT |
2529                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2530                        RTE_PTYPE_INNER_L4_UDP,
2531                 /* [54] reserved */
2532                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2533                        RTE_PTYPE_TUNNEL_GRENAT |
2534                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2535                        RTE_PTYPE_INNER_L4_TCP,
2536                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2537                        RTE_PTYPE_TUNNEL_GRENAT |
2538                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2539                        RTE_PTYPE_INNER_L4_SCTP,
2540                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2541                        RTE_PTYPE_TUNNEL_GRENAT |
2542                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2543                        RTE_PTYPE_INNER_L4_ICMP,
2544
2545                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2546                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2547                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2548
2549                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2550                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2551                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2552                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2553                        RTE_PTYPE_INNER_L4_FRAG,
2554                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2555                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2556                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2557                        RTE_PTYPE_INNER_L4_NONFRAG,
2558                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2559                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2560                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2561                        RTE_PTYPE_INNER_L4_UDP,
2562                 /* [62] reserved */
2563                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2564                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2565                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2566                        RTE_PTYPE_INNER_L4_TCP,
2567                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2568                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2569                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2570                        RTE_PTYPE_INNER_L4_SCTP,
2571                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2572                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2573                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2574                        RTE_PTYPE_INNER_L4_ICMP,
2575
2576                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2577                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2578                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2579                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2580                        RTE_PTYPE_INNER_L4_FRAG,
2581                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2582                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2583                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2584                        RTE_PTYPE_INNER_L4_NONFRAG,
2585                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2586                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2587                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2588                        RTE_PTYPE_INNER_L4_UDP,
2589                 /* [69] reserved */
2590                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2591                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2592                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2593                        RTE_PTYPE_INNER_L4_TCP,
2594                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2595                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2596                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2597                        RTE_PTYPE_INNER_L4_SCTP,
2598                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2599                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2600                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2601                        RTE_PTYPE_INNER_L4_ICMP,
2602                 /* [73] - [87] reserved */
2603
2604                 /* Non tunneled IPv6 */
2605                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2606                        RTE_PTYPE_L4_FRAG,
2607                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2608                        RTE_PTYPE_L4_NONFRAG,
2609                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2610                        RTE_PTYPE_L4_UDP,
2611                 /* [91] reserved */
2612                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2613                        RTE_PTYPE_L4_TCP,
2614                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2615                        RTE_PTYPE_L4_SCTP,
2616                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2617                        RTE_PTYPE_L4_ICMP,
2618
2619                 /* IPv6 --> IPv4 */
2620                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2621                        RTE_PTYPE_TUNNEL_IP |
2622                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2623                        RTE_PTYPE_INNER_L4_FRAG,
2624                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2625                        RTE_PTYPE_TUNNEL_IP |
2626                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2627                        RTE_PTYPE_INNER_L4_NONFRAG,
2628                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2629                        RTE_PTYPE_TUNNEL_IP |
2630                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2631                        RTE_PTYPE_INNER_L4_UDP,
2632                 /* [98] reserved */
2633                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2634                        RTE_PTYPE_TUNNEL_IP |
2635                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2636                        RTE_PTYPE_INNER_L4_TCP,
2637                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2638                         RTE_PTYPE_TUNNEL_IP |
2639                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2640                         RTE_PTYPE_INNER_L4_SCTP,
2641                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2642                         RTE_PTYPE_TUNNEL_IP |
2643                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2644                         RTE_PTYPE_INNER_L4_ICMP,
2645
2646                 /* IPv6 --> IPv6 */
2647                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2648                         RTE_PTYPE_TUNNEL_IP |
2649                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2650                         RTE_PTYPE_INNER_L4_FRAG,
2651                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2652                         RTE_PTYPE_TUNNEL_IP |
2653                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2654                         RTE_PTYPE_INNER_L4_NONFRAG,
2655                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2656                         RTE_PTYPE_TUNNEL_IP |
2657                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2658                         RTE_PTYPE_INNER_L4_UDP,
2659                 /* [105] reserved */
2660                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2661                         RTE_PTYPE_TUNNEL_IP |
2662                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2663                         RTE_PTYPE_INNER_L4_TCP,
2664                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2665                         RTE_PTYPE_TUNNEL_IP |
2666                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2667                         RTE_PTYPE_INNER_L4_SCTP,
2668                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2669                         RTE_PTYPE_TUNNEL_IP |
2670                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2671                         RTE_PTYPE_INNER_L4_ICMP,
2672
2673                 /* IPv6 --> GRE/Teredo/VXLAN */
2674                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2675                         RTE_PTYPE_TUNNEL_GRENAT,
2676
2677                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
2678                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2679                         RTE_PTYPE_TUNNEL_GRENAT |
2680                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2681                         RTE_PTYPE_INNER_L4_FRAG,
2682                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2683                         RTE_PTYPE_TUNNEL_GRENAT |
2684                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2685                         RTE_PTYPE_INNER_L4_NONFRAG,
2686                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2687                         RTE_PTYPE_TUNNEL_GRENAT |
2688                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2689                         RTE_PTYPE_INNER_L4_UDP,
2690                 /* [113] reserved */
2691                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2692                         RTE_PTYPE_TUNNEL_GRENAT |
2693                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2694                         RTE_PTYPE_INNER_L4_TCP,
2695                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2696                         RTE_PTYPE_TUNNEL_GRENAT |
2697                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2698                         RTE_PTYPE_INNER_L4_SCTP,
2699                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2700                         RTE_PTYPE_TUNNEL_GRENAT |
2701                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2702                         RTE_PTYPE_INNER_L4_ICMP,
2703
2704                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
2705                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2706                         RTE_PTYPE_TUNNEL_GRENAT |
2707                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2708                         RTE_PTYPE_INNER_L4_FRAG,
2709                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2710                         RTE_PTYPE_TUNNEL_GRENAT |
2711                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2712                         RTE_PTYPE_INNER_L4_NONFRAG,
2713                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2714                         RTE_PTYPE_TUNNEL_GRENAT |
2715                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2716                         RTE_PTYPE_INNER_L4_UDP,
2717                 /* [120] reserved */
2718                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2719                         RTE_PTYPE_TUNNEL_GRENAT |
2720                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2721                         RTE_PTYPE_INNER_L4_TCP,
2722                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2723                         RTE_PTYPE_TUNNEL_GRENAT |
2724                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2725                         RTE_PTYPE_INNER_L4_SCTP,
2726                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2727                         RTE_PTYPE_TUNNEL_GRENAT |
2728                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2729                         RTE_PTYPE_INNER_L4_ICMP,
2730
2731                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
2732                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2733                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2734
2735                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2736                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2737                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2738                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2739                         RTE_PTYPE_INNER_L4_FRAG,
2740                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2741                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2742                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2743                         RTE_PTYPE_INNER_L4_NONFRAG,
2744                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2745                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2746                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2747                         RTE_PTYPE_INNER_L4_UDP,
2748                 /* [128] reserved */
2749                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2750                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2751                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2752                         RTE_PTYPE_INNER_L4_TCP,
2753                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2754                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2755                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2756                         RTE_PTYPE_INNER_L4_SCTP,
2757                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2758                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2759                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2760                         RTE_PTYPE_INNER_L4_ICMP,
2761
2762                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2763                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2764                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2765                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2766                         RTE_PTYPE_INNER_L4_FRAG,
2767                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2768                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2769                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2770                         RTE_PTYPE_INNER_L4_NONFRAG,
2771                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2772                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2773                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2774                         RTE_PTYPE_INNER_L4_UDP,
2775                 /* [135] reserved */
2776                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2777                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2778                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2779                         RTE_PTYPE_INNER_L4_TCP,
2780                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2781                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2782                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2783                         RTE_PTYPE_INNER_L4_SCTP,
2784                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2785                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2786                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2787                         RTE_PTYPE_INNER_L4_ICMP,
2788                 /* [139] - [299] reserved */
2789
2790                 /* PPPoE */
2791                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
2792                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
2793
2794                 /* PPPoE --> IPv4 */
2795                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
2796                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2797                         RTE_PTYPE_L4_FRAG,
2798                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
2799                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2800                         RTE_PTYPE_L4_NONFRAG,
2801                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
2802                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2803                         RTE_PTYPE_L4_UDP,
2804                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
2805                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2806                         RTE_PTYPE_L4_TCP,
2807                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
2808                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2809                         RTE_PTYPE_L4_SCTP,
2810                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
2811                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2812                         RTE_PTYPE_L4_ICMP,
2813
2814                 /* PPPoE --> IPv6 */
2815                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
2816                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2817                         RTE_PTYPE_L4_FRAG,
2818                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
2819                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2820                         RTE_PTYPE_L4_NONFRAG,
2821                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
2822                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2823                         RTE_PTYPE_L4_UDP,
2824                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
2825                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2826                         RTE_PTYPE_L4_TCP,
2827                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
2828                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2829                         RTE_PTYPE_L4_SCTP,
2830                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
2831                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2832                         RTE_PTYPE_L4_ICMP,
2833                 /* [314] - [324] reserved */
2834
2835                 /* IPv4/IPv6 --> GTPC/GTPU */
2836                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2837                         RTE_PTYPE_TUNNEL_GTPC,
2838                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2839                         RTE_PTYPE_TUNNEL_GTPC,
2840                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2841                         RTE_PTYPE_TUNNEL_GTPC,
2842                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2843                         RTE_PTYPE_TUNNEL_GTPC,
2844                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2845                         RTE_PTYPE_TUNNEL_GTPU,
2846                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2847                         RTE_PTYPE_TUNNEL_GTPU,
2848
2849                 /* IPv4 --> GTPU --> IPv4 */
2850                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2851                         RTE_PTYPE_TUNNEL_GTPU |
2852                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2853                         RTE_PTYPE_INNER_L4_FRAG,
2854                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2855                         RTE_PTYPE_TUNNEL_GTPU |
2856                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2857                         RTE_PTYPE_INNER_L4_NONFRAG,
2858                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2859                         RTE_PTYPE_TUNNEL_GTPU |
2860                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2861                         RTE_PTYPE_INNER_L4_UDP,
2862                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2863                         RTE_PTYPE_TUNNEL_GTPU |
2864                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2865                         RTE_PTYPE_INNER_L4_TCP,
2866                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2867                         RTE_PTYPE_TUNNEL_GTPU |
2868                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2869                         RTE_PTYPE_INNER_L4_ICMP,
2870
2871                 /* IPv6 --> GTPU --> IPv4 */
2872                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2873                         RTE_PTYPE_TUNNEL_GTPU |
2874                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2875                         RTE_PTYPE_INNER_L4_FRAG,
2876                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2877                         RTE_PTYPE_TUNNEL_GTPU |
2878                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2879                         RTE_PTYPE_INNER_L4_NONFRAG,
2880                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2881                         RTE_PTYPE_TUNNEL_GTPU |
2882                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2883                         RTE_PTYPE_INNER_L4_UDP,
2884                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2885                         RTE_PTYPE_TUNNEL_GTPU |
2886                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2887                         RTE_PTYPE_INNER_L4_TCP,
2888                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2889                         RTE_PTYPE_TUNNEL_GTPU |
2890                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2891                         RTE_PTYPE_INNER_L4_ICMP,
2892
2893                 /* IPv4 --> GTPU --> IPv6 */
2894                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2895                         RTE_PTYPE_TUNNEL_GTPU |
2896                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2897                         RTE_PTYPE_INNER_L4_FRAG,
2898                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2899                         RTE_PTYPE_TUNNEL_GTPU |
2900                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2901                         RTE_PTYPE_INNER_L4_NONFRAG,
2902                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2903                         RTE_PTYPE_TUNNEL_GTPU |
2904                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2905                         RTE_PTYPE_INNER_L4_UDP,
2906                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2907                         RTE_PTYPE_TUNNEL_GTPU |
2908                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2909                         RTE_PTYPE_INNER_L4_TCP,
2910                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2911                         RTE_PTYPE_TUNNEL_GTPU |
2912                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2913                         RTE_PTYPE_INNER_L4_ICMP,
2914
2915                 /* IPv6 --> GTPU --> IPv6 */
2916                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2917                         RTE_PTYPE_TUNNEL_GTPU |
2918                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2919                         RTE_PTYPE_INNER_L4_FRAG,
2920                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2921                         RTE_PTYPE_TUNNEL_GTPU |
2922                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2923                         RTE_PTYPE_INNER_L4_NONFRAG,
2924                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2925                         RTE_PTYPE_TUNNEL_GTPU |
2926                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2927                         RTE_PTYPE_INNER_L4_UDP,
2928                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2929                         RTE_PTYPE_TUNNEL_GTPU |
2930                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2931                         RTE_PTYPE_INNER_L4_TCP,
2932                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2933                         RTE_PTYPE_TUNNEL_GTPU |
2934                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2935                         RTE_PTYPE_INNER_L4_ICMP,
2936                 /* All others reserved */
2937         };
2938
2939         return ptype_tbl;
2940 }