net/mlx5: add flex parser DevX object management
[dpdk.git] / drivers / net / iavf / iavf_rxtx_vec_sse.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <ethdev_driver.h>
7 #include <rte_malloc.h>
8
9 #include "iavf.h"
10 #include "iavf_rxtx.h"
11 #include "iavf_rxtx_vec_common.h"
12
13 #include <tmmintrin.h>
14
15 #ifndef __INTEL_COMPILER
16 #pragma GCC diagnostic ignored "-Wcast-qual"
17 #endif
18
19 static inline void
20 iavf_rxq_rearm(struct iavf_rx_queue *rxq)
21 {
22         int i;
23         uint16_t rx_id;
24
25         volatile union iavf_rx_desc *rxdp;
26         struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
27         struct rte_mbuf *mb0, *mb1;
28         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
29                         RTE_PKTMBUF_HEADROOM);
30         __m128i dma_addr0, dma_addr1;
31
32         rxdp = rxq->rx_ring + rxq->rxrearm_start;
33
34         /* Pull 'n' more MBUFs into the software ring */
35         if (rte_mempool_get_bulk(rxq->mp, (void *)rxp,
36                                  rxq->rx_free_thresh) < 0) {
37                 if (rxq->rxrearm_nb + rxq->rx_free_thresh >= rxq->nb_rx_desc) {
38                         dma_addr0 = _mm_setzero_si128();
39                         for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
40                                 rxp[i] = &rxq->fake_mbuf;
41                                 _mm_store_si128((__m128i *)&rxdp[i].read,
42                                                 dma_addr0);
43                         }
44                 }
45                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46                         rxq->rx_free_thresh;
47                 return;
48         }
49
50         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
51         for (i = 0; i < rxq->rx_free_thresh; i += 2, rxp += 2) {
52                 __m128i vaddr0, vaddr1;
53
54                 mb0 = rxp[0];
55                 mb1 = rxp[1];
56
57                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
58                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
59                                 offsetof(struct rte_mbuf, buf_addr) + 8);
60                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
61                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
62
63                 /* convert pa to dma_addr hdr/data */
64                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
65                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
66
67                 /* add headroom to pa values */
68                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
69                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
70
71                 /* flush desc with pa dma_addr */
72                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
73                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
74         }
75
76         rxq->rxrearm_start += rxq->rx_free_thresh;
77         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
78                 rxq->rxrearm_start = 0;
79
80         rxq->rxrearm_nb -= rxq->rx_free_thresh;
81
82         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
83                            (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
84
85         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
86                    "rearm_start=%u rearm_nb=%u",
87                    rxq->port_id, rxq->queue_id,
88                    rx_id, rxq->rxrearm_start, rxq->rxrearm_nb);
89
90         /* Update the tail pointer on the NIC */
91         IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
92 }
93
94 static inline void
95 desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
96                   struct rte_mbuf **rx_pkts)
97 {
98         const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
99         __m128i rearm0, rearm1, rearm2, rearm3;
100
101         __m128i vlan0, vlan1, rss, l3_l4e;
102
103         /* mask everything except RSS, flow director and VLAN flags
104          * bit2 is for VLAN tag, bit11 for flow director indication
105          * bit13:12 for RSS indication.
106          */
107         const __m128i rss_vlan_msk = _mm_set_epi32(
108                         0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804);
109
110         const __m128i cksum_mask = _mm_set_epi32(
111                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
112                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
113                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
114                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
115                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
116                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
117                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
118                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
119                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
120                         RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
121                         RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
122                         RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
123
124         /* map rss and vlan type to rss hash and vlan flag */
125         const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
126                         0, 0, 0, 0,
127                         0, 0, 0, RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
128                         0, 0, 0, 0);
129
130         const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
131                         0, 0, 0, 0,
132                         RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR, RTE_MBUF_F_RX_RSS_HASH, 0, 0,
133                         0, 0, RTE_MBUF_F_RX_FDIR, 0);
134
135         const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
136                         /* shift right 1 bit to make sure it not exceed 255 */
137                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
138                          RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
139                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
140                          RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
141                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
142                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
143                         (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
144                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
145                         RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
146                         (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1);
147
148         vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
149         vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
150         vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
151
152         vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
153         vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
154
155         rss = _mm_srli_epi32(vlan1, 11);
156         rss = _mm_shuffle_epi8(rss_flags, rss);
157
158         l3_l4e = _mm_srli_epi32(vlan1, 22);
159         l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
160         /* then we shift left 1 bit */
161         l3_l4e = _mm_slli_epi32(l3_l4e, 1);
162         /* we need to mask out the reduntant bits */
163         l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);
164
165         vlan0 = _mm_or_si128(vlan0, rss);
166         vlan0 = _mm_or_si128(vlan0, l3_l4e);
167
168         /* At this point, we have the 4 sets of flags in the low 16-bits
169          * of each 32-bit value in vlan0.
170          * We want to extract these, and merge them with the mbuf init data
171          * so we can do a single 16-byte write to the mbuf to set the flags
172          * and all the other initialization fields. Extracting the
173          * appropriate flags means that we have to do a shift and blend for
174          * each mbuf before we do the write.
175          */
176         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
177         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
178         rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
179         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
180
181         /* write the rearm data and the olflags in one write */
182         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
183                         offsetof(struct rte_mbuf, rearm_data) + 8);
184         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
185                         RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
186         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
187         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
188         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
189         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
190 }
191
192 static inline __m128i
193 flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)
194 {
195 #define FDID_MIS_MAGIC 0xFFFFFFFF
196         RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2));
197         RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
198         const __m128i pkt_fdir_bit = _mm_set1_epi32(RTE_MBUF_F_RX_FDIR |
199                         RTE_MBUF_F_RX_FDIR_ID);
200         /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
201         const __m128i fdir_mis_mask = _mm_set1_epi32(FDID_MIS_MAGIC);
202         __m128i fdir_mask = _mm_cmpeq_epi32(fdir_id0_3,
203                         fdir_mis_mask);
204         /* this XOR op results to bit-reverse the fdir_mask */
205         fdir_mask = _mm_xor_si128(fdir_mask, fdir_mis_mask);
206         const __m128i fdir_flags = _mm_and_si128(fdir_mask, pkt_fdir_bit);
207
208         return fdir_flags;
209 }
210
211 static inline void
212 flex_desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
213                        struct rte_mbuf **rx_pkts)
214 {
215         const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
216         __m128i rearm0, rearm1, rearm2, rearm3;
217
218         __m128i tmp_desc, flags, rss_vlan;
219
220         /* mask everything except checksum, RSS and VLAN flags.
221          * bit6:4 for checksum.
222          * bit12 for RSS indication.
223          * bit13 for VLAN indication.
224          */
225         const __m128i desc_mask = _mm_set_epi32(0x3070, 0x3070,
226                                                 0x3070, 0x3070);
227
228         const __m128i cksum_mask = _mm_set_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK |
229                                                  RTE_MBUF_F_RX_L4_CKSUM_MASK |
230                                                  RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
231                                                  RTE_MBUF_F_RX_IP_CKSUM_MASK |
232                                                  RTE_MBUF_F_RX_L4_CKSUM_MASK |
233                                                  RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
234                                                  RTE_MBUF_F_RX_IP_CKSUM_MASK |
235                                                  RTE_MBUF_F_RX_L4_CKSUM_MASK |
236                                                  RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
237                                                  RTE_MBUF_F_RX_IP_CKSUM_MASK |
238                                                  RTE_MBUF_F_RX_L4_CKSUM_MASK |
239                                                  RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD);
240
241         /* map the checksum, rss and vlan fields to the checksum, rss
242          * and vlan flag
243          */
244         const __m128i cksum_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
245                         /* shift right 1 bit to make sure it not exceed 255 */
246                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
247                          RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
248                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
249                          RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
250                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
251                          RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
252                         (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
253                          RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
254                         (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
255                         (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
256                         (RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
257                         (RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
258
259         const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
260                         0, 0, 0, 0,
261                         0, 0, 0, 0,
262                         RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
263                         RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
264                         RTE_MBUF_F_RX_RSS_HASH, 0);
265
266         /* merge 4 descriptors */
267         flags = _mm_unpackhi_epi32(descs[0], descs[1]);
268         tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
269         tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
270         tmp_desc = _mm_and_si128(tmp_desc, desc_mask);
271
272         /* checksum flags */
273         tmp_desc = _mm_srli_epi32(tmp_desc, 4);
274         flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
275         /* then we shift left 1 bit */
276         flags = _mm_slli_epi32(flags, 1);
277         /* we need to mask out the redundant bits introduced by RSS or
278          * VLAN fields.
279          */
280         flags = _mm_and_si128(flags, cksum_mask);
281
282         /* RSS, VLAN flag */
283         tmp_desc = _mm_srli_epi32(tmp_desc, 8);
284         rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);
285
286         /* merge the flags */
287         flags = _mm_or_si128(flags, rss_vlan);
288
289         if (rxq->fdir_enabled) {
290                 const __m128i fdir_id0_1 =
291                         _mm_unpackhi_epi32(descs[0], descs[1]);
292
293                 const __m128i fdir_id2_3 =
294                         _mm_unpackhi_epi32(descs[2], descs[3]);
295
296                 const __m128i fdir_id0_3 =
297                         _mm_unpackhi_epi64(fdir_id0_1, fdir_id2_3);
298
299                 const __m128i fdir_flags =
300                         flex_rxd_to_fdir_flags_vec(fdir_id0_3);
301
302                 /* merge with fdir_flags */
303                 flags = _mm_or_si128(flags, fdir_flags);
304
305                 /* write fdir_id to mbuf */
306                 rx_pkts[0]->hash.fdir.hi =
307                         _mm_extract_epi32(fdir_id0_3, 0);
308
309                 rx_pkts[1]->hash.fdir.hi =
310                         _mm_extract_epi32(fdir_id0_3, 1);
311
312                 rx_pkts[2]->hash.fdir.hi =
313                         _mm_extract_epi32(fdir_id0_3, 2);
314
315                 rx_pkts[3]->hash.fdir.hi =
316                         _mm_extract_epi32(fdir_id0_3, 3);
317         } /* if() on fdir_enabled */
318
319         /**
320          * At this point, we have the 4 sets of flags in the low 16-bits
321          * of each 32-bit value in flags.
322          * We want to extract these, and merge them with the mbuf init data
323          * so we can do a single 16-byte write to the mbuf to set the flags
324          * and all the other initialization fields. Extracting the
325          * appropriate flags means that we have to do a shift and blend for
326          * each mbuf before we do the write.
327          */
328         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x10);
329         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x10);
330         rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x10);
331         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x10);
332
333         /* write the rearm data and the olflags in one write */
334         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
335                          offsetof(struct rte_mbuf, rearm_data) + 8);
336         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
337                          RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
338         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
339         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
340         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
341         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
342 }
343
344 #define PKTLEN_SHIFT     10
345
346 static inline void
347 desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
348                 const uint32_t *type_table)
349 {
350         __m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
351         __m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
352
353         ptype0 = _mm_srli_epi64(ptype0, 30);
354         ptype1 = _mm_srli_epi64(ptype1, 30);
355
356         rx_pkts[0]->packet_type = type_table[_mm_extract_epi8(ptype0, 0)];
357         rx_pkts[1]->packet_type = type_table[_mm_extract_epi8(ptype0, 8)];
358         rx_pkts[2]->packet_type = type_table[_mm_extract_epi8(ptype1, 0)];
359         rx_pkts[3]->packet_type = type_table[_mm_extract_epi8(ptype1, 8)];
360 }
361
362 static inline void
363 flex_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
364                      const uint32_t *type_table)
365 {
366         const __m128i ptype_mask =
367                         _mm_set_epi16(IAVF_RX_FLEX_DESC_PTYPE_M, 0x0,
368                                 IAVF_RX_FLEX_DESC_PTYPE_M, 0x0,
369                                 IAVF_RX_FLEX_DESC_PTYPE_M, 0x0,
370                                 IAVF_RX_FLEX_DESC_PTYPE_M, 0x0);
371
372         __m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
373         __m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
374         __m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);
375
376         ptype_all = _mm_and_si128(ptype_all, ptype_mask);
377
378         rx_pkts[0]->packet_type = type_table[_mm_extract_epi16(ptype_all, 1)];
379         rx_pkts[1]->packet_type = type_table[_mm_extract_epi16(ptype_all, 3)];
380         rx_pkts[2]->packet_type = type_table[_mm_extract_epi16(ptype_all, 5)];
381         rx_pkts[3]->packet_type = type_table[_mm_extract_epi16(ptype_all, 7)];
382 }
383
384 /**
385  * vPMD raw receive routine, only accept(nb_pkts >= IAVF_VPMD_DESCS_PER_LOOP)
386  *
387  * Notice:
388  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
389  * - floor align nb_pkts to a IAVF_VPMD_DESCS_PER_LOOP power-of-two
390  */
391 static inline uint16_t
392 _recv_raw_pkts_vec(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_pkts,
393                    uint16_t nb_pkts, uint8_t *split_packet)
394 {
395         volatile union iavf_rx_desc *rxdp;
396         struct rte_mbuf **sw_ring;
397         uint16_t nb_pkts_recd;
398         int pos;
399         uint64_t var;
400         __m128i shuf_msk;
401         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
402
403         __m128i crc_adjust = _mm_set_epi16(
404                                 0, 0, 0,    /* ignore non-length fields */
405                                 -rxq->crc_len, /* sub crc on data_len */
406                                 0,          /* ignore high-16bits of pkt_len */
407                                 -rxq->crc_len, /* sub crc on pkt_len */
408                                 0, 0            /* ignore pkt_type field */
409                         );
410         /* compile-time check the above crc_adjust layout is correct.
411          * NOTE: the first field (lowest address) is given last in set_epi16
412          * call above.
413          */
414         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
415                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
416         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
417                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
418         __m128i dd_check, eop_check;
419
420         /* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
421         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
422
423         /* Just the act of getting into the function from the application is
424          * going to cost about 7 cycles
425          */
426         rxdp = rxq->rx_ring + rxq->rx_tail;
427
428         rte_prefetch0(rxdp);
429
430         /* See if we need to rearm the RX queue - gives the prefetch a bit
431          * of time to act
432          */
433         if (rxq->rxrearm_nb > rxq->rx_free_thresh)
434                 iavf_rxq_rearm(rxq);
435
436         /* Before we start moving massive data around, check to see if
437          * there is actually a packet available
438          */
439         if (!(rxdp->wb.qword1.status_error_len &
440               rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
441                 return 0;
442
443         /* 4 packets DD mask */
444         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
445
446         /* 4 packets EOP mask */
447         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
448
449         /* mask to shuffle from desc. to mbuf */
450         shuf_msk = _mm_set_epi8(
451                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
452                 3, 2,        /* octet 2~3, low 16 bits vlan_macip */
453                 15, 14,      /* octet 15~14, 16 bits data_len */
454                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
455                 15, 14,      /* octet 15~14, low 16 bits pkt_len */
456                 0xFF, 0xFF, 0xFF, 0xFF /* pkt_type set as unknown */
457                 );
458         /* Compile-time verify the shuffle mask
459          * NOTE: some field positions already verified above, but duplicated
460          * here for completeness in case of future modifications.
461          */
462         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
463                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
464         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
465                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
466         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
467                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
468         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
469                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
470
471         /* Cache is empty -> need to scan the buffer rings, but first move
472          * the next 'n' mbufs into the cache
473          */
474         sw_ring = &rxq->sw_ring[rxq->rx_tail];
475
476         /* A. load 4 packet in one loop
477          * [A*. mask out 4 unused dirty field in desc]
478          * B. copy 4 mbuf point from swring to rx_pkts
479          * C. calc the number of DD bits among the 4 packets
480          * [C*. extract the end-of-packet bit, if requested]
481          * D. fill info. from desc to mbuf
482          */
483
484         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
485              pos += IAVF_VPMD_DESCS_PER_LOOP,
486              rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
487                 __m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
488                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
489                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
490                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
491                 __m128i mbp1;
492 #if defined(RTE_ARCH_X86_64)
493                 __m128i mbp2;
494 #endif
495
496                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
497                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
498                 /* Read desc statuses backwards to avoid race condition */
499                 /* A.1 load desc[3] */
500                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
501                 rte_compiler_barrier();
502
503                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
504                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
505
506 #if defined(RTE_ARCH_X86_64)
507                 /* B.1 load 2 64 bit mbuf points */
508                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
509 #endif
510
511                 /* A.1 load desc[2-0] */
512                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
513                 rte_compiler_barrier();
514                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
515                 rte_compiler_barrier();
516                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
517
518 #if defined(RTE_ARCH_X86_64)
519                 /* B.2 copy 2 mbuf point into rx_pkts  */
520                 _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
521 #endif
522
523                 if (split_packet) {
524                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
525                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
526                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
527                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
528                 }
529
530                 /* avoid compiler reorder optimization */
531                 rte_compiler_barrier();
532
533                 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
534                 const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
535                 const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
536
537                 /* merge the now-aligned packet length fields back in */
538                 descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
539                 descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
540
541                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
542                 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
543                 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
544
545                 /* C.1 4=>2 status err info only */
546                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
547                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
548
549                 desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
550
551                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
552                 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
553                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
554
555                 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
556                 const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
557                 const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
558
559                 /* merge the now-aligned packet length fields back in */
560                 descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
561                 descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
562
563                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
564                 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
565                 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
566
567                 /* C.2 get 4 pkts status err value  */
568                 zero = _mm_xor_si128(dd_check, dd_check);
569                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
570
571                 /* D.3 copy final 3,4 data to rx_pkts */
572                 _mm_storeu_si128(
573                         (void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
574                         pkt_mb4);
575                 _mm_storeu_si128(
576                         (void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
577                         pkt_mb3);
578
579                 /* D.2 pkt 1,2 remove crc */
580                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
581                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
582
583                 /* C* extract and record EOP bit */
584                 if (split_packet) {
585                         __m128i eop_shuf_mask = _mm_set_epi8(
586                                         0xFF, 0xFF, 0xFF, 0xFF,
587                                         0xFF, 0xFF, 0xFF, 0xFF,
588                                         0xFF, 0xFF, 0xFF, 0xFF,
589                                         0x04, 0x0C, 0x00, 0x08
590                                         );
591
592                         /* and with mask to extract bits, flipping 1-0 */
593                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
594                         /* the staterr values are not in order, as the count
595                          * of dd bits doesn't care. However, for end of
596                          * packet tracking, we do care, so shuffle. This also
597                          * compresses the 32-bit values to 8-bit
598                          */
599                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
600                         /* store the resulting 32-bit value */
601                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
602                         split_packet += IAVF_VPMD_DESCS_PER_LOOP;
603                 }
604
605                 /* C.3 calc available number of desc */
606                 staterr = _mm_and_si128(staterr, dd_check);
607                 staterr = _mm_packs_epi32(staterr, zero);
608
609                 /* D.3 copy final 1,2 data to rx_pkts */
610                 _mm_storeu_si128(
611                         (void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
612                         pkt_mb2);
613                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
614                                  pkt_mb1);
615                 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
616                 /* C.4 calc avaialbe number of desc */
617                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
618                 nb_pkts_recd += var;
619                 if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
620                         break;
621         }
622
623         /* Update our internal tail pointer */
624         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
625         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
626         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
627
628         return nb_pkts_recd;
629 }
630
631 /**
632  * vPMD raw receive routine for flex RxD,
633  * only accept(nb_pkts >= IAVF_VPMD_DESCS_PER_LOOP)
634  *
635  * Notice:
636  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
637  * - floor align nb_pkts to a IAVF_VPMD_DESCS_PER_LOOP power-of-two
638  */
639 static inline uint16_t
640 _recv_raw_pkts_vec_flex_rxd(struct iavf_rx_queue *rxq,
641                             struct rte_mbuf **rx_pkts,
642                             uint16_t nb_pkts, uint8_t *split_packet)
643 {
644         volatile union iavf_rx_flex_desc *rxdp;
645         struct rte_mbuf **sw_ring;
646         uint16_t nb_pkts_recd;
647         int pos;
648         uint64_t var;
649         struct iavf_adapter *adapter = rxq->vsi->adapter;
650         uint64_t offloads = adapter->dev_data->dev_conf.rxmode.offloads;
651         const uint32_t *ptype_tbl = adapter->ptype_tbl;
652         __m128i crc_adjust = _mm_set_epi16
653                                 (0, 0, 0,       /* ignore non-length fields */
654                                  -rxq->crc_len, /* sub crc on data_len */
655                                  0,          /* ignore high-16bits of pkt_len */
656                                  -rxq->crc_len, /* sub crc on pkt_len */
657                                  0, 0           /* ignore pkt_type field */
658                                 );
659         const __m128i zero = _mm_setzero_si128();
660         /* mask to shuffle from desc. to mbuf */
661         const __m128i shuf_msk = _mm_set_epi8
662                         (0xFF, 0xFF,
663                          0xFF, 0xFF,  /* rss hash parsed separately */
664                          11, 10,      /* octet 10~11, 16 bits vlan_macip */
665                          5, 4,        /* octet 4~5, 16 bits data_len */
666                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
667                          5, 4,        /* octet 4~5, low 16 bits pkt_len */
668                          0xFF, 0xFF,  /* pkt_type set as unknown */
669                          0xFF, 0xFF   /* pkt_type set as unknown */
670                         );
671         const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
672                                                    0xFF, 0xFF,
673                                                    0xFF, 0xFF,
674                                                    0xFF, 0xFF,
675                                                    0xFF, 0xFF,
676                                                    0xFF, 0xFF,
677                                                    0x04, 0x0C,
678                                                    0x00, 0x08);
679
680         /**
681          * compile-time check the above crc_adjust layout is correct.
682          * NOTE: the first field (lowest address) is given last in set_epi16
683          * call above.
684          */
685         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
686                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
687         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
688                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
689
690         /* 4 packets DD mask */
691         const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
692                                                 0x0000000100000001LL);
693         /* 4 packets EOP mask */
694         const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
695                                                  0x0000000200000002LL);
696
697         /* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
698         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
699
700         /* Just the act of getting into the function from the application is
701          * going to cost about 7 cycles
702          */
703         rxdp = (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
704
705         rte_prefetch0(rxdp);
706
707         /* See if we need to rearm the RX queue - gives the prefetch a bit
708          * of time to act
709          */
710         if (rxq->rxrearm_nb > rxq->rx_free_thresh)
711                 iavf_rxq_rearm(rxq);
712
713         /* Before we start moving massive data around, check to see if
714          * there is actually a packet available
715          */
716         if (!(rxdp->wb.status_error0 &
717               rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
718                 return 0;
719
720         /**
721          * Compile-time verify the shuffle mask
722          * NOTE: some field positions already verified above, but duplicated
723          * here for completeness in case of future modifications.
724          */
725         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
726                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
727         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
728                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
729         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
730                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
731         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
732                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
733
734         /* Cache is empty -> need to scan the buffer rings, but first move
735          * the next 'n' mbufs into the cache
736          */
737         sw_ring = &rxq->sw_ring[rxq->rx_tail];
738
739         /* A. load 4 packet in one loop
740          * [A*. mask out 4 unused dirty field in desc]
741          * B. copy 4 mbuf point from swring to rx_pkts
742          * C. calc the number of DD bits among the 4 packets
743          * [C*. extract the end-of-packet bit, if requested]
744          * D. fill info. from desc to mbuf
745          */
746
747         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
748              pos += IAVF_VPMD_DESCS_PER_LOOP,
749              rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
750                 __m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
751                 __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
752                 __m128i staterr, sterr_tmp1, sterr_tmp2;
753                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
754                 __m128i mbp1;
755 #if defined(RTE_ARCH_X86_64)
756                 __m128i mbp2;
757 #endif
758
759                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
760                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
761                 /* Read desc statuses backwards to avoid race condition */
762                 /* A.1 load desc[3] */
763                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
764                 rte_compiler_barrier();
765
766                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
767                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
768
769 #if defined(RTE_ARCH_X86_64)
770                 /* B.1 load 2 64 bit mbuf points */
771                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
772 #endif
773
774                 /* A.1 load desc[2-0] */
775                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
776                 rte_compiler_barrier();
777                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
778                 rte_compiler_barrier();
779                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
780
781 #if defined(RTE_ARCH_X86_64)
782                 /* B.2 copy 2 mbuf point into rx_pkts  */
783                 _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
784 #endif
785
786                 if (split_packet) {
787                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
788                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
789                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
790                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
791                 }
792
793                 /* avoid compiler reorder optimization */
794                 rte_compiler_barrier();
795
796                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
797                 pkt_mb3 = _mm_shuffle_epi8(descs[3], shuf_msk);
798                 pkt_mb2 = _mm_shuffle_epi8(descs[2], shuf_msk);
799
800                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
801                 pkt_mb1 = _mm_shuffle_epi8(descs[1], shuf_msk);
802                 pkt_mb0 = _mm_shuffle_epi8(descs[0], shuf_msk);
803
804                 /* C.1 4=>2 filter staterr info only */
805                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
806                 /* C.1 4=>2 filter staterr info only */
807                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
808
809                 flex_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
810
811                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
812                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
813                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
814
815                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
816                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
817                 pkt_mb0 = _mm_add_epi16(pkt_mb0, crc_adjust);
818
819 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
820                 /**
821                  * needs to load 2nd 16B of each desc for RSS hash parsing,
822                  * will cause performance drop to get into this context.
823                  */
824                 if (offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH) {
825                         /* load bottom half of every 32B desc */
826                         const __m128i raw_desc_bh3 =
827                                 _mm_load_si128
828                                         ((void *)(&rxdp[3].wb.status_error1));
829                         rte_compiler_barrier();
830                         const __m128i raw_desc_bh2 =
831                                 _mm_load_si128
832                                         ((void *)(&rxdp[2].wb.status_error1));
833                         rte_compiler_barrier();
834                         const __m128i raw_desc_bh1 =
835                                 _mm_load_si128
836                                         ((void *)(&rxdp[1].wb.status_error1));
837                         rte_compiler_barrier();
838                         const __m128i raw_desc_bh0 =
839                                 _mm_load_si128
840                                         ((void *)(&rxdp[0].wb.status_error1));
841
842                         /**
843                          * to shift the 32b RSS hash value to the
844                          * highest 32b of each 128b before mask
845                          */
846                         __m128i rss_hash3 =
847                                 _mm_slli_epi64(raw_desc_bh3, 32);
848                         __m128i rss_hash2 =
849                                 _mm_slli_epi64(raw_desc_bh2, 32);
850                         __m128i rss_hash1 =
851                                 _mm_slli_epi64(raw_desc_bh1, 32);
852                         __m128i rss_hash0 =
853                                 _mm_slli_epi64(raw_desc_bh0, 32);
854
855                         __m128i rss_hash_msk =
856                                 _mm_set_epi32(0xFFFFFFFF, 0, 0, 0);
857
858                         rss_hash3 = _mm_and_si128
859                                         (rss_hash3, rss_hash_msk);
860                         rss_hash2 = _mm_and_si128
861                                         (rss_hash2, rss_hash_msk);
862                         rss_hash1 = _mm_and_si128
863                                         (rss_hash1, rss_hash_msk);
864                         rss_hash0 = _mm_and_si128
865                                         (rss_hash0, rss_hash_msk);
866
867                         pkt_mb3 = _mm_or_si128(pkt_mb3, rss_hash3);
868                         pkt_mb2 = _mm_or_si128(pkt_mb2, rss_hash2);
869                         pkt_mb1 = _mm_or_si128(pkt_mb1, rss_hash1);
870                         pkt_mb0 = _mm_or_si128(pkt_mb0, rss_hash0);
871                 } /* if() on RSS hash parsing */
872 #endif
873
874                 /* C.2 get 4 pkts staterr value  */
875                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
876
877                 /* D.3 copy final 3,4 data to rx_pkts */
878                 _mm_storeu_si128
879                         ((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
880                          pkt_mb3);
881                 _mm_storeu_si128
882                         ((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
883                          pkt_mb2);
884
885                 /* C* extract and record EOP bit */
886                 if (split_packet) {
887                         /* and with mask to extract bits, flipping 1-0 */
888                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
889                         /* the staterr values are not in order, as the count
890                          * of dd bits doesn't care. However, for end of
891                          * packet tracking, we do care, so shuffle. This also
892                          * compresses the 32-bit values to 8-bit
893                          */
894                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
895                         /* store the resulting 32-bit value */
896                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
897                         split_packet += IAVF_VPMD_DESCS_PER_LOOP;
898                 }
899
900                 /* C.3 calc available number of desc */
901                 staterr = _mm_and_si128(staterr, dd_check);
902                 staterr = _mm_packs_epi32(staterr, zero);
903
904                 /* D.3 copy final 1,2 data to rx_pkts */
905                 _mm_storeu_si128
906                         ((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
907                          pkt_mb1);
908                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
909                                  pkt_mb0);
910                 flex_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
911                 /* C.4 calc available number of desc */
912                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
913                 nb_pkts_recd += var;
914                 if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
915                         break;
916         }
917
918         /* Update our internal tail pointer */
919         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
920         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
921         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
922
923         return nb_pkts_recd;
924 }
925
926 /* Notice:
927  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
928  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
929  *   numbers of DD bits
930  */
931 uint16_t
932 iavf_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
933                   uint16_t nb_pkts)
934 {
935         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
936 }
937
938 /* Notice:
939  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
940  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
941  *   numbers of DD bits
942  */
943 uint16_t
944 iavf_recv_pkts_vec_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
945                             uint16_t nb_pkts)
946 {
947         return _recv_raw_pkts_vec_flex_rxd(rx_queue, rx_pkts, nb_pkts, NULL);
948 }
949
950 /**
951  * vPMD receive routine that reassembles single burst of 32 scattered packets
952  *
953  * Notice:
954  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
955  */
956 static uint16_t
957 iavf_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
958                               uint16_t nb_pkts)
959 {
960         struct iavf_rx_queue *rxq = rx_queue;
961         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
962         unsigned int i = 0;
963
964         /* get some new buffers */
965         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
966                                               split_flags);
967         if (nb_bufs == 0)
968                 return 0;
969
970         /* happy day case, full burst + no packets to be joined */
971         const uint64_t *split_fl64 = (uint64_t *)split_flags;
972
973         if (!rxq->pkt_first_seg &&
974             split_fl64[0] == 0 && split_fl64[1] == 0 &&
975             split_fl64[2] == 0 && split_fl64[3] == 0)
976                 return nb_bufs;
977
978         /* reassemble any packets that need reassembly*/
979         if (!rxq->pkt_first_seg) {
980                 /* find the first split flag, and only reassemble then*/
981                 while (i < nb_bufs && !split_flags[i])
982                         i++;
983                 if (i == nb_bufs)
984                         return nb_bufs;
985                 rxq->pkt_first_seg = rx_pkts[i];
986         }
987         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
988                 &split_flags[i]);
989 }
990
991 /**
992  * vPMD receive routine that reassembles scattered packets.
993  */
994 uint16_t
995 iavf_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
996                              uint16_t nb_pkts)
997 {
998         uint16_t retval = 0;
999
1000         while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
1001                 uint16_t burst;
1002
1003                 burst = iavf_recv_scattered_burst_vec(rx_queue,
1004                                                       rx_pkts + retval,
1005                                                       IAVF_VPMD_RX_MAX_BURST);
1006                 retval += burst;
1007                 nb_pkts -= burst;
1008                 if (burst < IAVF_VPMD_RX_MAX_BURST)
1009                         return retval;
1010         }
1011
1012         return retval + iavf_recv_scattered_burst_vec(rx_queue,
1013                                                       rx_pkts + retval,
1014                                                       nb_pkts);
1015 }
1016
1017 /**
1018  * vPMD receive routine that reassembles single burst of 32 scattered packets
1019  * for flex RxD
1020  *
1021  * Notice:
1022  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
1023  */
1024 static uint16_t
1025 iavf_recv_scattered_burst_vec_flex_rxd(void *rx_queue,
1026                                        struct rte_mbuf **rx_pkts,
1027                                        uint16_t nb_pkts)
1028 {
1029         struct iavf_rx_queue *rxq = rx_queue;
1030         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
1031         unsigned int i = 0;
1032
1033         /* get some new buffers */
1034         uint16_t nb_bufs = _recv_raw_pkts_vec_flex_rxd(rxq, rx_pkts, nb_pkts,
1035                                               split_flags);
1036         if (nb_bufs == 0)
1037                 return 0;
1038
1039         /* happy day case, full burst + no packets to be joined */
1040         const uint64_t *split_fl64 = (uint64_t *)split_flags;
1041
1042         if (!rxq->pkt_first_seg &&
1043             split_fl64[0] == 0 && split_fl64[1] == 0 &&
1044             split_fl64[2] == 0 && split_fl64[3] == 0)
1045                 return nb_bufs;
1046
1047         /* reassemble any packets that need reassembly*/
1048         if (!rxq->pkt_first_seg) {
1049                 /* find the first split flag, and only reassemble then*/
1050                 while (i < nb_bufs && !split_flags[i])
1051                         i++;
1052                 if (i == nb_bufs)
1053                         return nb_bufs;
1054                 rxq->pkt_first_seg = rx_pkts[i];
1055         }
1056         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
1057                 &split_flags[i]);
1058 }
1059
1060 /**
1061  * vPMD receive routine that reassembles scattered packets for flex RxD
1062  */
1063 uint16_t
1064 iavf_recv_scattered_pkts_vec_flex_rxd(void *rx_queue,
1065                                       struct rte_mbuf **rx_pkts,
1066                                       uint16_t nb_pkts)
1067 {
1068         uint16_t retval = 0;
1069
1070         while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
1071                 uint16_t burst;
1072
1073                 burst = iavf_recv_scattered_burst_vec_flex_rxd(rx_queue,
1074                                                 rx_pkts + retval,
1075                                                 IAVF_VPMD_RX_MAX_BURST);
1076                 retval += burst;
1077                 nb_pkts -= burst;
1078                 if (burst < IAVF_VPMD_RX_MAX_BURST)
1079                         return retval;
1080         }
1081
1082         return retval + iavf_recv_scattered_burst_vec_flex_rxd(rx_queue,
1083                                                       rx_pkts + retval,
1084                                                       nb_pkts);
1085 }
1086
1087 static inline void
1088 vtx1(volatile struct iavf_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags)
1089 {
1090         uint64_t high_qw =
1091                         (IAVF_TX_DESC_DTYPE_DATA |
1092                          ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
1093                          ((uint64_t)pkt->data_len <<
1094                           IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
1095
1096         __m128i descriptor = _mm_set_epi64x(high_qw,
1097                                             pkt->buf_iova + pkt->data_off);
1098         _mm_store_si128((__m128i *)txdp, descriptor);
1099 }
1100
1101 static inline void
1102 iavf_vtx(volatile struct iavf_tx_desc *txdp, struct rte_mbuf **pkt,
1103         uint16_t nb_pkts,  uint64_t flags)
1104 {
1105         int i;
1106
1107         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
1108                 vtx1(txdp, *pkt, flags);
1109 }
1110
1111 uint16_t
1112 iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1113                          uint16_t nb_pkts)
1114 {
1115         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1116         volatile struct iavf_tx_desc *txdp;
1117         struct iavf_tx_entry *txep;
1118         uint16_t n, nb_commit, tx_id;
1119         uint64_t flags = IAVF_TX_DESC_CMD_EOP | 0x04;  /* bit 2 must be set */
1120         uint64_t rs = IAVF_TX_DESC_CMD_RS | flags;
1121         int i;
1122
1123         /* cross rx_thresh boundary is not allowed */
1124         nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
1125
1126         if (txq->nb_free < txq->free_thresh)
1127                 iavf_tx_free_bufs(txq);
1128
1129         nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
1130         if (unlikely(nb_pkts == 0))
1131                 return 0;
1132         nb_commit = nb_pkts;
1133
1134         tx_id = txq->tx_tail;
1135         txdp = &txq->tx_ring[tx_id];
1136         txep = &txq->sw_ring[tx_id];
1137
1138         txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
1139
1140         n = (uint16_t)(txq->nb_tx_desc - tx_id);
1141         if (nb_commit >= n) {
1142                 tx_backlog_entry(txep, tx_pkts, n);
1143
1144                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
1145                         vtx1(txdp, *tx_pkts, flags);
1146
1147                 vtx1(txdp, *tx_pkts++, rs);
1148
1149                 nb_commit = (uint16_t)(nb_commit - n);
1150
1151                 tx_id = 0;
1152                 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
1153
1154                 /* avoid reach the end of ring */
1155                 txdp = &txq->tx_ring[tx_id];
1156                 txep = &txq->sw_ring[tx_id];
1157         }
1158
1159         tx_backlog_entry(txep, tx_pkts, nb_commit);
1160
1161         iavf_vtx(txdp, tx_pkts, nb_commit, flags);
1162
1163         tx_id = (uint16_t)(tx_id + nb_commit);
1164         if (tx_id > txq->next_rs) {
1165                 txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
1166                         rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
1167                                          IAVF_TXD_QW1_CMD_SHIFT);
1168                 txq->next_rs =
1169                         (uint16_t)(txq->next_rs + txq->rs_thresh);
1170         }
1171
1172         txq->tx_tail = tx_id;
1173
1174         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_pkts=%u",
1175                    txq->port_id, txq->queue_id, tx_id, nb_pkts);
1176
1177         IAVF_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1178
1179         return nb_pkts;
1180 }
1181
1182 uint16_t
1183 iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1184                    uint16_t nb_pkts)
1185 {
1186         uint16_t nb_tx = 0;
1187         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1188
1189         while (nb_pkts) {
1190                 uint16_t ret, num;
1191
1192                 num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
1193                 ret = iavf_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
1194                 nb_tx += ret;
1195                 nb_pkts -= ret;
1196                 if (ret < num)
1197                         break;
1198         }
1199
1200         return nb_tx;
1201 }
1202
1203 static void __rte_cold
1204 iavf_rx_queue_release_mbufs_sse(struct iavf_rx_queue *rxq)
1205 {
1206         _iavf_rx_queue_release_mbufs_vec(rxq);
1207 }
1208
1209 static void __rte_cold
1210 iavf_tx_queue_release_mbufs_sse(struct iavf_tx_queue *txq)
1211 {
1212         _iavf_tx_queue_release_mbufs_vec(txq);
1213 }
1214
1215 static const struct iavf_rxq_ops sse_vec_rxq_ops = {
1216         .release_mbufs = iavf_rx_queue_release_mbufs_sse,
1217 };
1218
1219 static const struct iavf_txq_ops sse_vec_txq_ops = {
1220         .release_mbufs = iavf_tx_queue_release_mbufs_sse,
1221 };
1222
1223 int __rte_cold
1224 iavf_txq_vec_setup(struct iavf_tx_queue *txq)
1225 {
1226         txq->ops = &sse_vec_txq_ops;
1227         return 0;
1228 }
1229
1230 int __rte_cold
1231 iavf_rxq_vec_setup(struct iavf_rx_queue *rxq)
1232 {
1233         rxq->ops = &sse_vec_rxq_ops;
1234         return iavf_rxq_vec_setup_default(rxq);
1235 }
1236
1237 int __rte_cold
1238 iavf_rx_vec_dev_check(struct rte_eth_dev *dev)
1239 {
1240         return iavf_rx_vec_dev_check_default(dev);
1241 }
1242
1243 int __rte_cold
1244 iavf_tx_vec_dev_check(struct rte_eth_dev *dev)
1245 {
1246         return iavf_tx_vec_dev_check_default(dev);
1247 }