5a03900ce2da7f7545aafae0989d832f02a07e9d
[dpdk.git] / drivers / net / iavf / iavf_rxtx_vec_sse.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <rte_ethdev_driver.h>
7 #include <rte_malloc.h>
8
9 #include "iavf.h"
10 #include "iavf_rxtx.h"
11 #include "iavf_rxtx_vec_common.h"
12
13 #include <tmmintrin.h>
14
15 #ifndef __INTEL_COMPILER
16 #pragma GCC diagnostic ignored "-Wcast-qual"
17 #endif
18
19 static inline void
20 iavf_rxq_rearm(struct iavf_rx_queue *rxq)
21 {
22         int i;
23         uint16_t rx_id;
24
25         volatile union iavf_rx_desc *rxdp;
26         struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
27         struct rte_mbuf *mb0, *mb1;
28         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
29                         RTE_PKTMBUF_HEADROOM);
30         __m128i dma_addr0, dma_addr1;
31
32         rxdp = rxq->rx_ring + rxq->rxrearm_start;
33
34         /* Pull 'n' more MBUFs into the software ring */
35         if (rte_mempool_get_bulk(rxq->mp, (void *)rxp,
36                                  rxq->rx_free_thresh) < 0) {
37                 if (rxq->rxrearm_nb + rxq->rx_free_thresh >= rxq->nb_rx_desc) {
38                         dma_addr0 = _mm_setzero_si128();
39                         for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
40                                 rxp[i] = &rxq->fake_mbuf;
41                                 _mm_store_si128((__m128i *)&rxdp[i].read,
42                                                 dma_addr0);
43                         }
44                 }
45                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46                         rxq->rx_free_thresh;
47                 return;
48         }
49
50         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
51         for (i = 0; i < rxq->rx_free_thresh; i += 2, rxp += 2) {
52                 __m128i vaddr0, vaddr1;
53
54                 mb0 = rxp[0];
55                 mb1 = rxp[1];
56
57                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
58                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
59                                 offsetof(struct rte_mbuf, buf_addr) + 8);
60                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
61                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
62
63                 /* convert pa to dma_addr hdr/data */
64                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
65                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
66
67                 /* add headroom to pa values */
68                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
69                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
70
71                 /* flush desc with pa dma_addr */
72                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
73                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
74         }
75
76         rxq->rxrearm_start += rxq->rx_free_thresh;
77         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
78                 rxq->rxrearm_start = 0;
79
80         rxq->rxrearm_nb -= rxq->rx_free_thresh;
81
82         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
83                            (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
84
85         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
86                    "rearm_start=%u rearm_nb=%u",
87                    rxq->port_id, rxq->queue_id,
88                    rx_id, rxq->rxrearm_start, rxq->rxrearm_nb);
89
90         /* Update the tail pointer on the NIC */
91         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
92 }
93
94 static inline void
95 desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
96                   struct rte_mbuf **rx_pkts)
97 {
98         const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
99         __m128i rearm0, rearm1, rearm2, rearm3;
100
101         __m128i vlan0, vlan1, rss, l3_l4e;
102
103         /* mask everything except RSS, flow director and VLAN flags
104          * bit2 is for VLAN tag, bit11 for flow director indication
105          * bit13:12 for RSS indication.
106          */
107         const __m128i rss_vlan_msk = _mm_set_epi32(
108                         0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804);
109
110         const __m128i cksum_mask = _mm_set_epi32(
111                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
112                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
113                         PKT_RX_EIP_CKSUM_BAD,
114                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
115                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
116                         PKT_RX_EIP_CKSUM_BAD,
117                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
118                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
119                         PKT_RX_EIP_CKSUM_BAD,
120                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
121                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
122                         PKT_RX_EIP_CKSUM_BAD);
123
124         /* map rss and vlan type to rss hash and vlan flag */
125         const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
126                         0, 0, 0, 0,
127                         0, 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
128                         0, 0, 0, 0);
129
130         const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
131                         0, 0, 0, 0,
132                         PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
133                         0, 0, PKT_RX_FDIR, 0);
134
135         const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
136                         /* shift right 1 bit to make sure it not exceed 255 */
137                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
138                          PKT_RX_IP_CKSUM_BAD) >> 1,
139                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
140                          PKT_RX_L4_CKSUM_BAD) >> 1,
141                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
142                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
143                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
144                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
145                         PKT_RX_IP_CKSUM_BAD >> 1,
146                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
147
148         vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
149         vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
150         vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
151
152         vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
153         vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
154
155         rss = _mm_srli_epi32(vlan1, 11);
156         rss = _mm_shuffle_epi8(rss_flags, rss);
157
158         l3_l4e = _mm_srli_epi32(vlan1, 22);
159         l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
160         /* then we shift left 1 bit */
161         l3_l4e = _mm_slli_epi32(l3_l4e, 1);
162         /* we need to mask out the reduntant bits */
163         l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);
164
165         vlan0 = _mm_or_si128(vlan0, rss);
166         vlan0 = _mm_or_si128(vlan0, l3_l4e);
167
168         /* At this point, we have the 4 sets of flags in the low 16-bits
169          * of each 32-bit value in vlan0.
170          * We want to extract these, and merge them with the mbuf init data
171          * so we can do a single 16-byte write to the mbuf to set the flags
172          * and all the other initialization fields. Extracting the
173          * appropriate flags means that we have to do a shift and blend for
174          * each mbuf before we do the write.
175          */
176         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
177         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
178         rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
179         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
180
181         /* write the rearm data and the olflags in one write */
182         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
183                         offsetof(struct rte_mbuf, rearm_data) + 8);
184         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
185                         RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
186         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
187         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
188         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
189         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
190 }
191
192 static inline void
193 flex_desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
194                        struct rte_mbuf **rx_pkts)
195 {
196         const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
197         __m128i rearm0, rearm1, rearm2, rearm3;
198
199         __m128i tmp_desc, flags, rss_vlan;
200
201         /* mask everything except checksum, RSS and VLAN flags.
202          * bit6:4 for checksum.
203          * bit12 for RSS indication.
204          * bit13 for VLAN indication.
205          */
206         const __m128i desc_mask = _mm_set_epi32(0x3070, 0x3070,
207                                                 0x3070, 0x3070);
208
209         const __m128i cksum_mask = _mm_set_epi32(PKT_RX_IP_CKSUM_MASK |
210                                                  PKT_RX_L4_CKSUM_MASK |
211                                                  PKT_RX_EIP_CKSUM_BAD,
212                                                  PKT_RX_IP_CKSUM_MASK |
213                                                  PKT_RX_L4_CKSUM_MASK |
214                                                  PKT_RX_EIP_CKSUM_BAD,
215                                                  PKT_RX_IP_CKSUM_MASK |
216                                                  PKT_RX_L4_CKSUM_MASK |
217                                                  PKT_RX_EIP_CKSUM_BAD,
218                                                  PKT_RX_IP_CKSUM_MASK |
219                                                  PKT_RX_L4_CKSUM_MASK |
220                                                  PKT_RX_EIP_CKSUM_BAD);
221
222         /* map the checksum, rss and vlan fields to the checksum, rss
223          * and vlan flag
224          */
225         const __m128i cksum_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
226                         /* shift right 1 bit to make sure it not exceed 255 */
227                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
228                          PKT_RX_IP_CKSUM_BAD) >> 1,
229                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
230                          PKT_RX_IP_CKSUM_GOOD) >> 1,
231                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
232                          PKT_RX_IP_CKSUM_BAD) >> 1,
233                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
234                          PKT_RX_IP_CKSUM_GOOD) >> 1,
235                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
236                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
237                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
238                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
239
240         const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
241                         0, 0, 0, 0,
242                         0, 0, 0, 0,
243                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
244                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
245                         PKT_RX_RSS_HASH, 0);
246
247         /* merge 4 descriptors */
248         flags = _mm_unpackhi_epi32(descs[0], descs[1]);
249         tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
250         tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
251         tmp_desc = _mm_and_si128(flags, desc_mask);
252
253         /* checksum flags */
254         tmp_desc = _mm_srli_epi32(tmp_desc, 4);
255         flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
256         /* then we shift left 1 bit */
257         flags = _mm_slli_epi32(flags, 1);
258         /* we need to mask out the redundant bits introduced by RSS or
259          * VLAN fields.
260          */
261         flags = _mm_and_si128(flags, cksum_mask);
262
263         /* RSS, VLAN flag */
264         tmp_desc = _mm_srli_epi32(tmp_desc, 8);
265         rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);
266
267         /* merge the flags */
268         flags = _mm_or_si128(flags, rss_vlan);
269
270         /**
271          * At this point, we have the 4 sets of flags in the low 16-bits
272          * of each 32-bit value in flags.
273          * We want to extract these, and merge them with the mbuf init data
274          * so we can do a single 16-byte write to the mbuf to set the flags
275          * and all the other initialization fields. Extracting the
276          * appropriate flags means that we have to do a shift and blend for
277          * each mbuf before we do the write.
278          */
279         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x10);
280         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x10);
281         rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x10);
282         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x10);
283
284         /* write the rearm data and the olflags in one write */
285         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
286                          offsetof(struct rte_mbuf, rearm_data) + 8);
287         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
288                          RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
289         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
290         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
291         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
292         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
293 }
294
295 #define PKTLEN_SHIFT     10
296
297 static inline void
298 desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
299                 const uint32_t *type_table)
300 {
301         __m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
302         __m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
303
304         ptype0 = _mm_srli_epi64(ptype0, 30);
305         ptype1 = _mm_srli_epi64(ptype1, 30);
306
307         rx_pkts[0]->packet_type = type_table[_mm_extract_epi8(ptype0, 0)];
308         rx_pkts[1]->packet_type = type_table[_mm_extract_epi8(ptype0, 8)];
309         rx_pkts[2]->packet_type = type_table[_mm_extract_epi8(ptype1, 0)];
310         rx_pkts[3]->packet_type = type_table[_mm_extract_epi8(ptype1, 8)];
311 }
312
313 static inline void
314 flex_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
315                      const uint32_t *type_table)
316 {
317         const __m128i ptype_mask = _mm_set_epi16(0, IAVF_RX_FLEX_DESC_PTYPE_M,
318                                                  0, IAVF_RX_FLEX_DESC_PTYPE_M,
319                                                  0, IAVF_RX_FLEX_DESC_PTYPE_M,
320                                                  0, IAVF_RX_FLEX_DESC_PTYPE_M);
321         __m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
322         __m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
323         __m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);
324
325         ptype_all = _mm_and_si128(ptype_all, ptype_mask);
326
327         rx_pkts[0]->packet_type = type_table[_mm_extract_epi16(ptype_all, 1)];
328         rx_pkts[1]->packet_type = type_table[_mm_extract_epi16(ptype_all, 3)];
329         rx_pkts[2]->packet_type = type_table[_mm_extract_epi16(ptype_all, 5)];
330         rx_pkts[3]->packet_type = type_table[_mm_extract_epi16(ptype_all, 7)];
331 }
332
333 /* Notice:
334  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
335  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
336  *   numbers of DD bits
337  */
338 static inline uint16_t
339 _recv_raw_pkts_vec(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_pkts,
340                    uint16_t nb_pkts, uint8_t *split_packet)
341 {
342         volatile union iavf_rx_desc *rxdp;
343         struct rte_mbuf **sw_ring;
344         uint16_t nb_pkts_recd;
345         int pos;
346         uint64_t var;
347         __m128i shuf_msk;
348         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
349
350         __m128i crc_adjust = _mm_set_epi16(
351                                 0, 0, 0,    /* ignore non-length fields */
352                                 -rxq->crc_len, /* sub crc on data_len */
353                                 0,          /* ignore high-16bits of pkt_len */
354                                 -rxq->crc_len, /* sub crc on pkt_len */
355                                 0, 0            /* ignore pkt_type field */
356                         );
357         /* compile-time check the above crc_adjust layout is correct.
358          * NOTE: the first field (lowest address) is given last in set_epi16
359          * call above.
360          */
361         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
362                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
363         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
364                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
365         __m128i dd_check, eop_check;
366
367         /* nb_pkts shall be less equal than IAVF_VPMD_RX_MAX_BURST */
368         nb_pkts = RTE_MIN(nb_pkts, IAVF_VPMD_RX_MAX_BURST);
369
370         /* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
371         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
372
373         /* Just the act of getting into the function from the application is
374          * going to cost about 7 cycles
375          */
376         rxdp = rxq->rx_ring + rxq->rx_tail;
377
378         rte_prefetch0(rxdp);
379
380         /* See if we need to rearm the RX queue - gives the prefetch a bit
381          * of time to act
382          */
383         if (rxq->rxrearm_nb > rxq->rx_free_thresh)
384                 iavf_rxq_rearm(rxq);
385
386         /* Before we start moving massive data around, check to see if
387          * there is actually a packet available
388          */
389         if (!(rxdp->wb.qword1.status_error_len &
390               rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
391                 return 0;
392
393         /* 4 packets DD mask */
394         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
395
396         /* 4 packets EOP mask */
397         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
398
399         /* mask to shuffle from desc. to mbuf */
400         shuf_msk = _mm_set_epi8(
401                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
402                 3, 2,        /* octet 2~3, low 16 bits vlan_macip */
403                 15, 14,      /* octet 15~14, 16 bits data_len */
404                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
405                 15, 14,      /* octet 15~14, low 16 bits pkt_len */
406                 0xFF, 0xFF, 0xFF, 0xFF /* pkt_type set as unknown */
407                 );
408         /* Compile-time verify the shuffle mask
409          * NOTE: some field positions already verified above, but duplicated
410          * here for completeness in case of future modifications.
411          */
412         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
413                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
414         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
415                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
416         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
417                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
418         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
419                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
420
421         /* Cache is empty -> need to scan the buffer rings, but first move
422          * the next 'n' mbufs into the cache
423          */
424         sw_ring = &rxq->sw_ring[rxq->rx_tail];
425
426         /* A. load 4 packet in one loop
427          * [A*. mask out 4 unused dirty field in desc]
428          * B. copy 4 mbuf point from swring to rx_pkts
429          * C. calc the number of DD bits among the 4 packets
430          * [C*. extract the end-of-packet bit, if requested]
431          * D. fill info. from desc to mbuf
432          */
433
434         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
435              pos += IAVF_VPMD_DESCS_PER_LOOP,
436              rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
437                 __m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
438                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
439                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
440                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
441                 __m128i mbp1;
442 #if defined(RTE_ARCH_X86_64)
443                 __m128i mbp2;
444 #endif
445
446                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
447                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
448                 /* Read desc statuses backwards to avoid race condition */
449                 /* A.1 load 4 pkts desc */
450                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
451                 rte_compiler_barrier();
452
453                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
454                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
455
456 #if defined(RTE_ARCH_X86_64)
457                 /* B.1 load 2 64 bit mbuf points */
458                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
459 #endif
460
461                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
462                 rte_compiler_barrier();
463                 /* B.1 load 2 mbuf point */
464                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
465                 rte_compiler_barrier();
466                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
467
468 #if defined(RTE_ARCH_X86_64)
469                 /* B.2 copy 2 mbuf point into rx_pkts  */
470                 _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
471 #endif
472
473                 if (split_packet) {
474                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
475                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
476                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
477                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
478                 }
479
480                 /* avoid compiler reorder optimization */
481                 rte_compiler_barrier();
482
483                 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
484                 const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
485                 const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
486
487                 /* merge the now-aligned packet length fields back in */
488                 descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
489                 descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
490
491                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
492                 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
493                 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
494
495                 /* C.1 4=>2 status err info only */
496                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
497                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
498
499                 desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
500
501                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
502                 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
503                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
504
505                 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
506                 const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
507                 const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
508
509                 /* merge the now-aligned packet length fields back in */
510                 descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
511                 descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
512
513                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
514                 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
515                 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
516
517                 /* C.2 get 4 pkts status err value  */
518                 zero = _mm_xor_si128(dd_check, dd_check);
519                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
520
521                 /* D.3 copy final 3,4 data to rx_pkts */
522                 _mm_storeu_si128(
523                         (void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
524                         pkt_mb4);
525                 _mm_storeu_si128(
526                         (void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
527                         pkt_mb3);
528
529                 /* D.2 pkt 1,2 remove crc */
530                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
531                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
532
533                 /* C* extract and record EOP bit */
534                 if (split_packet) {
535                         __m128i eop_shuf_mask = _mm_set_epi8(
536                                         0xFF, 0xFF, 0xFF, 0xFF,
537                                         0xFF, 0xFF, 0xFF, 0xFF,
538                                         0xFF, 0xFF, 0xFF, 0xFF,
539                                         0x04, 0x0C, 0x00, 0x08
540                                         );
541
542                         /* and with mask to extract bits, flipping 1-0 */
543                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
544                         /* the staterr values are not in order, as the count
545                          * count of dd bits doesn't care. However, for end of
546                          * packet tracking, we do care, so shuffle. This also
547                          * compresses the 32-bit values to 8-bit
548                          */
549                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
550                         /* store the resulting 32-bit value */
551                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
552                         split_packet += IAVF_VPMD_DESCS_PER_LOOP;
553                 }
554
555                 /* C.3 calc available number of desc */
556                 staterr = _mm_and_si128(staterr, dd_check);
557                 staterr = _mm_packs_epi32(staterr, zero);
558
559                 /* D.3 copy final 1,2 data to rx_pkts */
560                 _mm_storeu_si128(
561                         (void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
562                         pkt_mb2);
563                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
564                                  pkt_mb1);
565                 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
566                 /* C.4 calc avaialbe number of desc */
567                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
568                 nb_pkts_recd += var;
569                 if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
570                         break;
571         }
572
573         /* Update our internal tail pointer */
574         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
575         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
576         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
577
578         return nb_pkts_recd;
579 }
580
581 /* Notice:
582  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
583  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
584  *   numbers of DD bits
585  */
586 static inline uint16_t
587 _recv_raw_pkts_vec_flex_rxd(struct iavf_rx_queue *rxq,
588                             struct rte_mbuf **rx_pkts,
589                             uint16_t nb_pkts, uint8_t *split_packet)
590 {
591         volatile union iavf_rx_flex_desc *rxdp;
592         struct rte_mbuf **sw_ring;
593         uint16_t nb_pkts_recd;
594         int pos;
595         uint64_t var;
596         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
597         __m128i crc_adjust = _mm_set_epi16
598                                 (0, 0, 0,       /* ignore non-length fields */
599                                  -rxq->crc_len, /* sub crc on data_len */
600                                  0,          /* ignore high-16bits of pkt_len */
601                                  -rxq->crc_len, /* sub crc on pkt_len */
602                                  0, 0           /* ignore pkt_type field */
603                                 );
604         const __m128i zero = _mm_setzero_si128();
605         /* mask to shuffle from desc. to mbuf */
606         const __m128i shuf_msk = _mm_set_epi8
607                         (15, 14, 13, 12,  /* octet 12~15, 32 bits rss */
608                          11, 10,      /* octet 10~11, 16 bits vlan_macip */
609                          5, 4,        /* octet 4~5, 16 bits data_len */
610                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
611                          5, 4,        /* octet 4~5, low 16 bits pkt_len */
612                          0xFF, 0xFF,  /* pkt_type set as unknown */
613                          0xFF, 0xFF   /* pkt_type set as unknown */
614                         );
615         const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
616                                                    0xFF, 0xFF,
617                                                    0xFF, 0xFF,
618                                                    0xFF, 0xFF,
619                                                    0xFF, 0xFF,
620                                                    0xFF, 0xFF,
621                                                    0x04, 0x0C,
622                                                    0x00, 0x08);
623
624         /**
625          * compile-time check the above crc_adjust layout is correct.
626          * NOTE: the first field (lowest address) is given last in set_epi16
627          * call above.
628          */
629         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
630                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
631         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
632                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
633
634         /* 4 packets DD mask */
635         const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
636                                                 0x0000000100000001LL);
637         /* 4 packets EOP mask */
638         const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
639                                                  0x0000000200000002LL);
640
641         /* nb_pkts shall be less equal than IAVF_VPMD_RX_MAX_BURST */
642         nb_pkts = RTE_MIN(nb_pkts, IAVF_VPMD_RX_MAX_BURST);
643
644         /* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
645         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
646
647         /* Just the act of getting into the function from the application is
648          * going to cost about 7 cycles
649          */
650         rxdp = (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
651
652         rte_prefetch0(rxdp);
653
654         /* See if we need to rearm the RX queue - gives the prefetch a bit
655          * of time to act
656          */
657         if (rxq->rxrearm_nb > rxq->rx_free_thresh)
658                 iavf_rxq_rearm(rxq);
659
660         /* Before we start moving massive data around, check to see if
661          * there is actually a packet available
662          */
663         if (!(rxdp->wb.status_error0 &
664               rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
665                 return 0;
666
667         /**
668          * Compile-time verify the shuffle mask
669          * NOTE: some field positions already verified above, but duplicated
670          * here for completeness in case of future modifications.
671          */
672         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
673                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
674         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
675                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
676         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
677                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
678         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
679                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
680
681         /* Cache is empty -> need to scan the buffer rings, but first move
682          * the next 'n' mbufs into the cache
683          */
684         sw_ring = &rxq->sw_ring[rxq->rx_tail];
685
686         /* A. load 4 packet in one loop
687          * [A*. mask out 4 unused dirty field in desc]
688          * B. copy 4 mbuf point from swring to rx_pkts
689          * C. calc the number of DD bits among the 4 packets
690          * [C*. extract the end-of-packet bit, if requested]
691          * D. fill info. from desc to mbuf
692          */
693
694         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
695              pos += IAVF_VPMD_DESCS_PER_LOOP,
696              rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
697                 __m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
698                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
699                 __m128i staterr, sterr_tmp1, sterr_tmp2;
700                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
701                 __m128i mbp1;
702 #if defined(RTE_ARCH_X86_64)
703                 __m128i mbp2;
704 #endif
705
706                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
707                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
708                 /* Read desc statuses backwards to avoid race condition */
709                 /* A.1 load 4 pkts desc */
710                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
711                 rte_compiler_barrier();
712
713                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
714                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
715
716 #if defined(RTE_ARCH_X86_64)
717                 /* B.1 load 2 64 bit mbuf points */
718                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
719 #endif
720
721                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
722                 rte_compiler_barrier();
723                 /* B.1 load 2 mbuf point */
724                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
725                 rte_compiler_barrier();
726                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
727
728 #if defined(RTE_ARCH_X86_64)
729                 /* B.2 copy 2 mbuf point into rx_pkts  */
730                 _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
731 #endif
732
733                 if (split_packet) {
734                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
735                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
736                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
737                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
738                 }
739
740                 /* avoid compiler reorder optimization */
741                 rte_compiler_barrier();
742
743                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
744                 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
745                 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
746
747                 /* C.1 4=>2 filter staterr info only */
748                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
749                 /* C.1 4=>2 filter staterr info only */
750                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
751
752                 flex_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
753
754                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
755                 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
756                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
757
758                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
759                 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
760                 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
761
762                 /* C.2 get 4 pkts staterr value  */
763                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
764
765                 /* D.3 copy final 3,4 data to rx_pkts */
766                 _mm_storeu_si128
767                         ((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
768                          pkt_mb4);
769                 _mm_storeu_si128
770                         ((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
771                          pkt_mb3);
772
773                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
774                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
775                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
776
777                 /* C* extract and record EOP bit */
778                 if (split_packet) {
779                         /* and with mask to extract bits, flipping 1-0 */
780                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
781                         /* the staterr values are not in order, as the count
782                          * count of dd bits doesn't care. However, for end of
783                          * packet tracking, we do care, so shuffle. This also
784                          * compresses the 32-bit values to 8-bit
785                          */
786                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
787                         /* store the resulting 32-bit value */
788                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
789                         split_packet += IAVF_VPMD_DESCS_PER_LOOP;
790                 }
791
792                 /* C.3 calc available number of desc */
793                 staterr = _mm_and_si128(staterr, dd_check);
794                 staterr = _mm_packs_epi32(staterr, zero);
795
796                 /* D.3 copy final 1,2 data to rx_pkts */
797                 _mm_storeu_si128
798                         ((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
799                          pkt_mb2);
800                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
801                                  pkt_mb1);
802                 flex_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
803                 /* C.4 calc available number of desc */
804                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
805                 nb_pkts_recd += var;
806                 if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
807                         break;
808         }
809
810         /* Update our internal tail pointer */
811         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
812         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
813         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
814
815         return nb_pkts_recd;
816 }
817
818 /* Notice:
819  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
820  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
821  *   numbers of DD bits
822  */
823 uint16_t
824 iavf_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
825                   uint16_t nb_pkts)
826 {
827         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
828 }
829
830 /* Notice:
831  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
832  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
833  *   numbers of DD bits
834  */
835 uint16_t
836 iavf_recv_pkts_vec_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
837                             uint16_t nb_pkts)
838 {
839         return _recv_raw_pkts_vec_flex_rxd(rx_queue, rx_pkts, nb_pkts, NULL);
840 }
841
842 /* vPMD receive routine that reassembles scattered packets
843  * Notice:
844  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
845  * - nb_pkts > VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
846  *   numbers of DD bits
847  */
848 uint16_t
849 iavf_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
850                             uint16_t nb_pkts)
851 {
852         struct iavf_rx_queue *rxq = rx_queue;
853         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
854         unsigned int i = 0;
855
856         /* get some new buffers */
857         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
858                                               split_flags);
859         if (nb_bufs == 0)
860                 return 0;
861
862         /* happy day case, full burst + no packets to be joined */
863         const uint64_t *split_fl64 = (uint64_t *)split_flags;
864
865         if (!rxq->pkt_first_seg &&
866             split_fl64[0] == 0 && split_fl64[1] == 0 &&
867             split_fl64[2] == 0 && split_fl64[3] == 0)
868                 return nb_bufs;
869
870         /* reassemble any packets that need reassembly*/
871         if (!rxq->pkt_first_seg) {
872                 /* find the first split flag, and only reassemble then*/
873                 while (i < nb_bufs && !split_flags[i])
874                         i++;
875                 if (i == nb_bufs)
876                         return nb_bufs;
877                 rxq->pkt_first_seg = rx_pkts[i];
878         }
879         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
880                 &split_flags[i]);
881 }
882
883 /* vPMD receive routine that reassembles scattered packets for flex RxD
884  * Notice:
885  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
886  * - nb_pkts > VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
887  *   numbers of DD bits
888  */
889 uint16_t
890 iavf_recv_scattered_pkts_vec_flex_rxd(void *rx_queue,
891                                       struct rte_mbuf **rx_pkts,
892                                       uint16_t nb_pkts)
893 {
894         struct iavf_rx_queue *rxq = rx_queue;
895         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
896         unsigned int i = 0;
897
898         /* get some new buffers */
899         uint16_t nb_bufs = _recv_raw_pkts_vec_flex_rxd(rxq, rx_pkts, nb_pkts,
900                                               split_flags);
901         if (nb_bufs == 0)
902                 return 0;
903
904         /* happy day case, full burst + no packets to be joined */
905         const uint64_t *split_fl64 = (uint64_t *)split_flags;
906
907         if (!rxq->pkt_first_seg &&
908             split_fl64[0] == 0 && split_fl64[1] == 0 &&
909             split_fl64[2] == 0 && split_fl64[3] == 0)
910                 return nb_bufs;
911
912         /* reassemble any packets that need reassembly*/
913         if (!rxq->pkt_first_seg) {
914                 /* find the first split flag, and only reassemble then*/
915                 while (i < nb_bufs && !split_flags[i])
916                         i++;
917                 if (i == nb_bufs)
918                         return nb_bufs;
919                 rxq->pkt_first_seg = rx_pkts[i];
920         }
921         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
922                 &split_flags[i]);
923 }
924
925 static inline void
926 vtx1(volatile struct iavf_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags)
927 {
928         uint64_t high_qw =
929                         (IAVF_TX_DESC_DTYPE_DATA |
930                          ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
931                          ((uint64_t)pkt->data_len <<
932                           IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
933
934         __m128i descriptor = _mm_set_epi64x(high_qw,
935                                             pkt->buf_iova + pkt->data_off);
936         _mm_store_si128((__m128i *)txdp, descriptor);
937 }
938
939 static inline void
940 iavf_vtx(volatile struct iavf_tx_desc *txdp, struct rte_mbuf **pkt,
941         uint16_t nb_pkts,  uint64_t flags)
942 {
943         int i;
944
945         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
946                 vtx1(txdp, *pkt, flags);
947 }
948
949 uint16_t
950 iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
951                          uint16_t nb_pkts)
952 {
953         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
954         volatile struct iavf_tx_desc *txdp;
955         struct iavf_tx_entry *txep;
956         uint16_t n, nb_commit, tx_id;
957         uint64_t flags = IAVF_TX_DESC_CMD_EOP | 0x04;  /* bit 2 must be set */
958         uint64_t rs = IAVF_TX_DESC_CMD_RS | flags;
959         int i;
960
961         /* cross rx_thresh boundary is not allowed */
962         nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
963
964         if (txq->nb_free < txq->free_thresh)
965                 iavf_tx_free_bufs(txq);
966
967         nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
968         if (unlikely(nb_pkts == 0))
969                 return 0;
970         nb_commit = nb_pkts;
971
972         tx_id = txq->tx_tail;
973         txdp = &txq->tx_ring[tx_id];
974         txep = &txq->sw_ring[tx_id];
975
976         txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
977
978         n = (uint16_t)(txq->nb_tx_desc - tx_id);
979         if (nb_commit >= n) {
980                 tx_backlog_entry(txep, tx_pkts, n);
981
982                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
983                         vtx1(txdp, *tx_pkts, flags);
984
985                 vtx1(txdp, *tx_pkts++, rs);
986
987                 nb_commit = (uint16_t)(nb_commit - n);
988
989                 tx_id = 0;
990                 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
991
992                 /* avoid reach the end of ring */
993                 txdp = &txq->tx_ring[tx_id];
994                 txep = &txq->sw_ring[tx_id];
995         }
996
997         tx_backlog_entry(txep, tx_pkts, nb_commit);
998
999         iavf_vtx(txdp, tx_pkts, nb_commit, flags);
1000
1001         tx_id = (uint16_t)(tx_id + nb_commit);
1002         if (tx_id > txq->next_rs) {
1003                 txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
1004                         rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
1005                                          IAVF_TXD_QW1_CMD_SHIFT);
1006                 txq->next_rs =
1007                         (uint16_t)(txq->next_rs + txq->rs_thresh);
1008         }
1009
1010         txq->tx_tail = tx_id;
1011
1012         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_pkts=%u",
1013                    txq->port_id, txq->queue_id, tx_id, nb_pkts);
1014
1015         IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
1016
1017         return nb_pkts;
1018 }
1019
1020 uint16_t
1021 iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1022                    uint16_t nb_pkts)
1023 {
1024         uint16_t nb_tx = 0;
1025         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1026
1027         while (nb_pkts) {
1028                 uint16_t ret, num;
1029
1030                 num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
1031                 ret = iavf_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
1032                 nb_tx += ret;
1033                 nb_pkts -= ret;
1034                 if (ret < num)
1035                         break;
1036         }
1037
1038         return nb_tx;
1039 }
1040
1041 static void __rte_cold
1042 iavf_rx_queue_release_mbufs_sse(struct iavf_rx_queue *rxq)
1043 {
1044         _iavf_rx_queue_release_mbufs_vec(rxq);
1045 }
1046
1047 static void __rte_cold
1048 iavf_tx_queue_release_mbufs_sse(struct iavf_tx_queue *txq)
1049 {
1050         _iavf_tx_queue_release_mbufs_vec(txq);
1051 }
1052
1053 static const struct iavf_rxq_ops sse_vec_rxq_ops = {
1054         .release_mbufs = iavf_rx_queue_release_mbufs_sse,
1055 };
1056
1057 static const struct iavf_txq_ops sse_vec_txq_ops = {
1058         .release_mbufs = iavf_tx_queue_release_mbufs_sse,
1059 };
1060
1061 int __rte_cold
1062 iavf_txq_vec_setup(struct iavf_tx_queue *txq)
1063 {
1064         txq->ops = &sse_vec_txq_ops;
1065         return 0;
1066 }
1067
1068 int __rte_cold
1069 iavf_rxq_vec_setup(struct iavf_rx_queue *rxq)
1070 {
1071         rxq->ops = &sse_vec_rxq_ops;
1072         return iavf_rxq_vec_setup_default(rxq);
1073 }
1074
1075 int __rte_cold
1076 iavf_rx_vec_dev_check(struct rte_eth_dev *dev)
1077 {
1078         return iavf_rx_vec_dev_check_default(dev);
1079 }
1080
1081 int __rte_cold
1082 iavf_tx_vec_dev_check(struct rte_eth_dev *dev)
1083 {
1084         return iavf_tx_vec_dev_check_default(dev);
1085 }