1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2001-2021 Intel Corporation
5 #include "ice_common.h"
7 #include "ice_adminq_cmd.h"
10 #include "ice_switch.h"
12 #define ICE_PF_RESET_WAIT_COUNT 300
15 * ice_set_mac_type - Sets MAC type
16 * @hw: pointer to the HW structure
18 * This function sets the MAC type of the adapter based on the
19 * vendor ID and device ID stored in the HW structure.
21 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
23 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
25 if (hw->vendor_id != ICE_INTEL_VENDOR_ID)
26 return ICE_ERR_DEVICE_NOT_SUPPORTED;
28 switch (hw->device_id) {
29 case ICE_DEV_ID_E810C_BACKPLANE:
30 case ICE_DEV_ID_E810C_QSFP:
31 case ICE_DEV_ID_E810C_SFP:
32 case ICE_DEV_ID_E810_XXV_BACKPLANE:
33 case ICE_DEV_ID_E810_XXV_QSFP:
34 case ICE_DEV_ID_E810_XXV_SFP:
35 hw->mac_type = ICE_MAC_E810;
37 case ICE_DEV_ID_E822C_10G_BASE_T:
38 case ICE_DEV_ID_E822C_BACKPLANE:
39 case ICE_DEV_ID_E822C_QSFP:
40 case ICE_DEV_ID_E822C_SFP:
41 case ICE_DEV_ID_E822C_SGMII:
42 case ICE_DEV_ID_E822L_10G_BASE_T:
43 case ICE_DEV_ID_E822L_BACKPLANE:
44 case ICE_DEV_ID_E822L_SFP:
45 case ICE_DEV_ID_E822L_SGMII:
46 case ICE_DEV_ID_E823L_10G_BASE_T:
47 case ICE_DEV_ID_E823L_1GBE:
48 case ICE_DEV_ID_E823L_BACKPLANE:
49 case ICE_DEV_ID_E823L_QSFP:
50 case ICE_DEV_ID_E823L_SFP:
51 case ICE_DEV_ID_E823C_10G_BASE_T:
52 case ICE_DEV_ID_E823C_BACKPLANE:
53 case ICE_DEV_ID_E823C_QSFP:
54 case ICE_DEV_ID_E823C_SFP:
55 case ICE_DEV_ID_E823C_SGMII:
56 hw->mac_type = ICE_MAC_GENERIC;
59 hw->mac_type = ICE_MAC_UNKNOWN;
63 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
68 * ice_clear_pf_cfg - Clear PF configuration
69 * @hw: pointer to the hardware structure
71 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
72 * configuration, flow director filters, etc.).
74 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
76 struct ice_aq_desc desc;
78 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
80 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
84 * ice_aq_manage_mac_read - manage MAC address read command
85 * @hw: pointer to the HW struct
86 * @buf: a virtual buffer to hold the manage MAC read response
87 * @buf_size: Size of the virtual buffer
88 * @cd: pointer to command details structure or NULL
90 * This function is used to return per PF station MAC address (0x0107).
91 * NOTE: Upon successful completion of this command, MAC address information
92 * is returned in user specified buffer. Please interpret user specified
93 * buffer as "manage_mac_read" response.
94 * Response such as various MAC addresses are stored in HW struct (port.mac)
95 * ice_discover_dev_caps is expected to be called before this function is
98 static enum ice_status
99 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
100 struct ice_sq_cd *cd)
102 struct ice_aqc_manage_mac_read_resp *resp;
103 struct ice_aqc_manage_mac_read *cmd;
104 struct ice_aq_desc desc;
105 enum ice_status status;
109 cmd = &desc.params.mac_read;
111 if (buf_size < sizeof(*resp))
112 return ICE_ERR_BUF_TOO_SHORT;
114 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
116 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
120 resp = (struct ice_aqc_manage_mac_read_resp *)buf;
121 flags = LE16_TO_CPU(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
123 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
124 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
128 /* A single port can report up to two (LAN and WoL) addresses */
129 for (i = 0; i < cmd->num_addr; i++)
130 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
131 ice_memcpy(hw->port_info->mac.lan_addr,
132 resp[i].mac_addr, ETH_ALEN,
134 ice_memcpy(hw->port_info->mac.perm_addr,
136 ETH_ALEN, ICE_DMA_TO_NONDMA);
143 * ice_aq_get_phy_caps - returns PHY capabilities
144 * @pi: port information structure
145 * @qual_mods: report qualified modules
146 * @report_mode: report mode capabilities
147 * @pcaps: structure for PHY capabilities to be filled
148 * @cd: pointer to command details structure or NULL
150 * Returns the various PHY capabilities supported on the Port (0x0600)
153 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
154 struct ice_aqc_get_phy_caps_data *pcaps,
155 struct ice_sq_cd *cd)
157 struct ice_aqc_get_phy_caps *cmd;
158 u16 pcaps_size = sizeof(*pcaps);
159 struct ice_aq_desc desc;
160 enum ice_status status;
163 cmd = &desc.params.get_phy;
165 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
166 return ICE_ERR_PARAM;
169 if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
170 !ice_fw_supports_report_dflt_cfg(hw))
171 return ICE_ERR_PARAM;
173 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
176 cmd->param0 |= CPU_TO_LE16(ICE_AQC_GET_PHY_RQM);
178 cmd->param0 |= CPU_TO_LE16(report_mode);
179 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
181 ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
183 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
184 (unsigned long long)LE64_TO_CPU(pcaps->phy_type_low));
185 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
186 (unsigned long long)LE64_TO_CPU(pcaps->phy_type_high));
187 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", pcaps->caps);
188 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
189 pcaps->low_power_ctrl_an);
190 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", pcaps->eee_cap);
191 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n",
193 ice_debug(hw, ICE_DBG_LINK, " link_fec_options = 0x%x\n",
194 pcaps->link_fec_options);
195 ice_debug(hw, ICE_DBG_LINK, " module_compliance_enforcement = 0x%x\n",
196 pcaps->module_compliance_enforcement);
197 ice_debug(hw, ICE_DBG_LINK, " extended_compliance_code = 0x%x\n",
198 pcaps->extended_compliance_code);
199 ice_debug(hw, ICE_DBG_LINK, " module_type[0] = 0x%x\n",
200 pcaps->module_type[0]);
201 ice_debug(hw, ICE_DBG_LINK, " module_type[1] = 0x%x\n",
202 pcaps->module_type[1]);
203 ice_debug(hw, ICE_DBG_LINK, " module_type[2] = 0x%x\n",
204 pcaps->module_type[2]);
206 if (status == ICE_SUCCESS && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
207 pi->phy.phy_type_low = LE64_TO_CPU(pcaps->phy_type_low);
208 pi->phy.phy_type_high = LE64_TO_CPU(pcaps->phy_type_high);
209 ice_memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
210 sizeof(pi->phy.link_info.module_type),
211 ICE_NONDMA_TO_NONDMA);
218 * ice_aq_get_link_topo_handle - get link topology node return status
219 * @pi: port information structure
220 * @node_type: requested node type
221 * @cd: pointer to command details structure or NULL
223 * Get link topology node return status for specified node type (0x06E0)
225 * Node type cage can be used to determine if cage is present. If AQC
226 * returns error (ENOENT), then no cage present. If no cage present, then
227 * connection type is backplane or BASE-T.
229 static enum ice_status
230 ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
231 struct ice_sq_cd *cd)
233 struct ice_aqc_get_link_topo *cmd;
234 struct ice_aq_desc desc;
236 cmd = &desc.params.get_link_topo;
238 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
240 cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
241 ICE_AQC_LINK_TOPO_NODE_CTX_S);
244 cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
246 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
250 * ice_is_media_cage_present
251 * @pi: port information structure
253 * Returns true if media cage is present, else false. If no cage, then
254 * media type is backplane or BASE-T.
256 static bool ice_is_media_cage_present(struct ice_port_info *pi)
258 /* Node type cage can be used to determine if cage is present. If AQC
259 * returns error (ENOENT), then no cage present. If no cage present then
260 * connection type is backplane or BASE-T.
262 return !ice_aq_get_link_topo_handle(pi,
263 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
268 * ice_get_media_type - Gets media type
269 * @pi: port information structure
271 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
273 struct ice_link_status *hw_link_info;
276 return ICE_MEDIA_UNKNOWN;
278 hw_link_info = &pi->phy.link_info;
279 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
280 /* If more than one media type is selected, report unknown */
281 return ICE_MEDIA_UNKNOWN;
283 if (hw_link_info->phy_type_low) {
284 /* 1G SGMII is a special case where some DA cable PHYs
285 * may show this as an option when it really shouldn't
286 * be since SGMII is meant to be between a MAC and a PHY
287 * in a backplane. Try to detect this case and handle it
289 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
290 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
291 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
292 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
293 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
296 switch (hw_link_info->phy_type_low) {
297 case ICE_PHY_TYPE_LOW_1000BASE_SX:
298 case ICE_PHY_TYPE_LOW_1000BASE_LX:
299 case ICE_PHY_TYPE_LOW_10GBASE_SR:
300 case ICE_PHY_TYPE_LOW_10GBASE_LR:
301 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
302 case ICE_PHY_TYPE_LOW_25GBASE_SR:
303 case ICE_PHY_TYPE_LOW_25GBASE_LR:
304 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
305 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
306 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
307 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
308 case ICE_PHY_TYPE_LOW_50GBASE_SR:
309 case ICE_PHY_TYPE_LOW_50GBASE_FR:
310 case ICE_PHY_TYPE_LOW_50GBASE_LR:
311 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
312 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
313 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
314 case ICE_PHY_TYPE_LOW_100GBASE_DR:
315 return ICE_MEDIA_FIBER;
316 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
317 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
318 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
319 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
320 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
321 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
322 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
323 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
324 return ICE_MEDIA_FIBER;
325 case ICE_PHY_TYPE_LOW_100BASE_TX:
326 case ICE_PHY_TYPE_LOW_1000BASE_T:
327 case ICE_PHY_TYPE_LOW_2500BASE_T:
328 case ICE_PHY_TYPE_LOW_5GBASE_T:
329 case ICE_PHY_TYPE_LOW_10GBASE_T:
330 case ICE_PHY_TYPE_LOW_25GBASE_T:
331 return ICE_MEDIA_BASET;
332 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
333 case ICE_PHY_TYPE_LOW_25GBASE_CR:
334 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
335 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
336 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
337 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
338 case ICE_PHY_TYPE_LOW_50GBASE_CP:
339 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
340 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
341 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
343 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
344 case ICE_PHY_TYPE_LOW_40G_XLAUI:
345 case ICE_PHY_TYPE_LOW_50G_LAUI2:
346 case ICE_PHY_TYPE_LOW_50G_AUI2:
347 case ICE_PHY_TYPE_LOW_50G_AUI1:
348 case ICE_PHY_TYPE_LOW_100G_AUI4:
349 case ICE_PHY_TYPE_LOW_100G_CAUI4:
350 if (ice_is_media_cage_present(pi))
351 return ICE_MEDIA_AUI;
353 case ICE_PHY_TYPE_LOW_1000BASE_KX:
354 case ICE_PHY_TYPE_LOW_2500BASE_KX:
355 case ICE_PHY_TYPE_LOW_2500BASE_X:
356 case ICE_PHY_TYPE_LOW_5GBASE_KR:
357 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
358 case ICE_PHY_TYPE_LOW_25GBASE_KR:
359 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
360 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
361 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
362 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
363 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
364 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
365 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
366 return ICE_MEDIA_BACKPLANE;
369 switch (hw_link_info->phy_type_high) {
370 case ICE_PHY_TYPE_HIGH_100G_AUI2:
371 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
372 if (ice_is_media_cage_present(pi))
373 return ICE_MEDIA_AUI;
375 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
376 return ICE_MEDIA_BACKPLANE;
377 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
378 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
379 return ICE_MEDIA_FIBER;
382 return ICE_MEDIA_UNKNOWN;
386 * ice_aq_get_link_info
387 * @pi: port information structure
388 * @ena_lse: enable/disable LinkStatusEvent reporting
389 * @link: pointer to link status structure - optional
390 * @cd: pointer to command details structure or NULL
392 * Get Link Status (0x607). Returns the link status of the adapter.
395 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
396 struct ice_link_status *link, struct ice_sq_cd *cd)
398 struct ice_aqc_get_link_status_data link_data = { 0 };
399 struct ice_aqc_get_link_status *resp;
400 struct ice_link_status *li_old, *li;
401 enum ice_media_type *hw_media_type;
402 struct ice_fc_info *hw_fc_info;
403 bool tx_pause, rx_pause;
404 struct ice_aq_desc desc;
405 enum ice_status status;
410 return ICE_ERR_PARAM;
412 li_old = &pi->phy.link_info_old;
413 hw_media_type = &pi->phy.media_type;
414 li = &pi->phy.link_info;
415 hw_fc_info = &pi->fc;
417 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
418 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
419 resp = &desc.params.get_link_status;
420 resp->cmd_flags = CPU_TO_LE16(cmd_flags);
421 resp->lport_num = pi->lport;
423 status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
425 if (status != ICE_SUCCESS)
428 /* save off old link status information */
431 /* update current link status information */
432 li->link_speed = LE16_TO_CPU(link_data.link_speed);
433 li->phy_type_low = LE64_TO_CPU(link_data.phy_type_low);
434 li->phy_type_high = LE64_TO_CPU(link_data.phy_type_high);
435 *hw_media_type = ice_get_media_type(pi);
436 li->link_info = link_data.link_info;
437 li->link_cfg_err = link_data.link_cfg_err;
438 li->an_info = link_data.an_info;
439 li->ext_info = link_data.ext_info;
440 li->max_frame_size = LE16_TO_CPU(link_data.max_frame_size);
441 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
442 li->topo_media_conflict = link_data.topo_media_conflict;
443 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
444 ICE_AQ_CFG_PACING_TYPE_M);
447 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
448 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
449 if (tx_pause && rx_pause)
450 hw_fc_info->current_mode = ICE_FC_FULL;
452 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
454 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
456 hw_fc_info->current_mode = ICE_FC_NONE;
458 li->lse_ena = !!(resp->cmd_flags & CPU_TO_LE16(ICE_AQ_LSE_IS_ENABLED));
460 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
461 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
462 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
463 (unsigned long long)li->phy_type_low);
464 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
465 (unsigned long long)li->phy_type_high);
466 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
467 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
468 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
469 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
470 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
471 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
472 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
473 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
475 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
477 /* save link status information */
481 /* flag cleared so calling functions don't call AQ again */
482 pi->phy.get_link_info = false;
488 * ice_fill_tx_timer_and_fc_thresh
489 * @hw: pointer to the HW struct
490 * @cmd: pointer to MAC cfg structure
492 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
496 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
497 struct ice_aqc_set_mac_cfg *cmd)
499 u16 fc_thres_val, tx_timer_val;
502 /* We read back the transmit timer and fc threshold value of
503 * LFC. Thus, we will use index =
504 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
506 * Also, because we are opearating on transmit timer and fc
507 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
509 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
511 /* Retrieve the transmit timer */
512 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
514 PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
515 cmd->tx_tmr_value = CPU_TO_LE16(tx_timer_val);
517 /* Retrieve the fc threshold */
518 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
519 fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
521 cmd->fc_refresh_threshold = CPU_TO_LE16(fc_thres_val);
526 * @hw: pointer to the HW struct
527 * @max_frame_size: Maximum Frame Size to be supported
528 * @cd: pointer to command details structure or NULL
530 * Set MAC configuration (0x0603)
533 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
535 struct ice_aqc_set_mac_cfg *cmd;
536 struct ice_aq_desc desc;
538 cmd = &desc.params.set_mac_cfg;
540 if (max_frame_size == 0)
541 return ICE_ERR_PARAM;
543 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
545 cmd->max_frame_size = CPU_TO_LE16(max_frame_size);
547 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
549 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
553 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
554 * @hw: pointer to the HW struct
556 enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
558 struct ice_switch_info *sw;
559 enum ice_status status;
561 hw->switch_info = (struct ice_switch_info *)
562 ice_malloc(hw, sizeof(*hw->switch_info));
564 sw = hw->switch_info;
567 return ICE_ERR_NO_MEMORY;
569 INIT_LIST_HEAD(&sw->vsi_list_map_head);
570 sw->prof_res_bm_init = 0;
572 status = ice_init_def_sw_recp(hw, &hw->switch_info->recp_list);
574 ice_free(hw, hw->switch_info);
581 * ice_cleanup_fltr_mgmt_single - clears single filter mngt struct
582 * @hw: pointer to the HW struct
583 * @sw: pointer to switch info struct for which function clears filters
586 ice_cleanup_fltr_mgmt_single(struct ice_hw *hw, struct ice_switch_info *sw)
588 struct ice_vsi_list_map_info *v_pos_map;
589 struct ice_vsi_list_map_info *v_tmp_map;
590 struct ice_sw_recipe *recps;
596 LIST_FOR_EACH_ENTRY_SAFE(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
597 ice_vsi_list_map_info, list_entry) {
598 LIST_DEL(&v_pos_map->list_entry);
599 ice_free(hw, v_pos_map);
601 recps = sw->recp_list;
602 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
603 struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
605 recps[i].root_rid = i;
606 LIST_FOR_EACH_ENTRY_SAFE(rg_entry, tmprg_entry,
607 &recps[i].rg_list, ice_recp_grp_entry,
609 LIST_DEL(&rg_entry->l_entry);
610 ice_free(hw, rg_entry);
613 if (recps[i].adv_rule) {
614 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
615 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
617 ice_destroy_lock(&recps[i].filt_rule_lock);
618 LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
619 &recps[i].filt_rules,
620 ice_adv_fltr_mgmt_list_entry,
622 LIST_DEL(&lst_itr->list_entry);
623 ice_free(hw, lst_itr->lkups);
624 ice_free(hw, lst_itr);
627 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
629 ice_destroy_lock(&recps[i].filt_rule_lock);
630 LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
631 &recps[i].filt_rules,
632 ice_fltr_mgmt_list_entry,
634 LIST_DEL(&lst_itr->list_entry);
635 ice_free(hw, lst_itr);
638 if (recps[i].root_buf)
639 ice_free(hw, recps[i].root_buf);
641 ice_rm_sw_replay_rule_info(hw, sw);
642 ice_free(hw, sw->recp_list);
647 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
648 * @hw: pointer to the HW struct
650 void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
652 ice_cleanup_fltr_mgmt_single(hw, hw->switch_info);
656 * ice_get_itr_intrl_gran
657 * @hw: pointer to the HW struct
659 * Determines the ITR/INTRL granularities based on the maximum aggregate
660 * bandwidth according to the device's configuration during power-on.
662 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
664 u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
665 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
666 GL_PWR_MODE_CTL_CAR_MAX_BW_S;
668 switch (max_agg_bw) {
669 case ICE_MAX_AGG_BW_200G:
670 case ICE_MAX_AGG_BW_100G:
671 case ICE_MAX_AGG_BW_50G:
672 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
673 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
675 case ICE_MAX_AGG_BW_25G:
676 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
677 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
683 * ice_print_rollback_msg - print FW rollback message
684 * @hw: pointer to the hardware structure
686 void ice_print_rollback_msg(struct ice_hw *hw)
688 char nvm_str[ICE_NVM_VER_LEN] = { 0 };
689 struct ice_orom_info *orom;
690 struct ice_nvm_info *nvm;
692 orom = &hw->flash.orom;
693 nvm = &hw->flash.nvm;
695 SNPRINTF(nvm_str, sizeof(nvm_str), "%x.%02x 0x%x %d.%d.%d",
696 nvm->major, nvm->minor, nvm->eetrack, orom->major,
697 orom->build, orom->patch);
699 "Firmware rollback mode detected. Current version is NVM: %s, FW: %d.%d. Device may exhibit limited functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware rollback mode\n",
700 nvm_str, hw->fw_maj_ver, hw->fw_min_ver);
704 * ice_init_hw - main hardware initialization routine
705 * @hw: pointer to the hardware structure
707 enum ice_status ice_init_hw(struct ice_hw *hw)
709 struct ice_aqc_get_phy_caps_data *pcaps;
710 enum ice_status status;
714 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
716 /* Set MAC type based on DeviceID */
717 status = ice_set_mac_type(hw);
721 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
722 PF_FUNC_RID_FUNCTION_NUMBER_M) >>
723 PF_FUNC_RID_FUNCTION_NUMBER_S;
725 status = ice_reset(hw, ICE_RESET_PFR);
729 ice_get_itr_intrl_gran(hw);
731 status = ice_create_all_ctrlq(hw);
733 goto err_unroll_cqinit;
735 status = ice_init_nvm(hw);
737 goto err_unroll_cqinit;
739 if (ice_get_fw_mode(hw) == ICE_FW_MODE_ROLLBACK)
740 ice_print_rollback_msg(hw);
742 status = ice_clear_pf_cfg(hw);
744 goto err_unroll_cqinit;
746 /* Set bit to enable Flow Director filters */
747 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
748 INIT_LIST_HEAD(&hw->fdir_list_head);
750 ice_clear_pxe_mode(hw);
752 status = ice_get_caps(hw);
754 goto err_unroll_cqinit;
756 hw->port_info = (struct ice_port_info *)
757 ice_malloc(hw, sizeof(*hw->port_info));
758 if (!hw->port_info) {
759 status = ICE_ERR_NO_MEMORY;
760 goto err_unroll_cqinit;
763 /* set the back pointer to HW */
764 hw->port_info->hw = hw;
766 /* Initialize port_info struct with switch configuration data */
767 status = ice_get_initial_sw_cfg(hw);
769 goto err_unroll_alloc;
772 /* Query the allocated resources for Tx scheduler */
773 status = ice_sched_query_res_alloc(hw);
775 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
776 goto err_unroll_alloc;
778 ice_sched_get_psm_clk_freq(hw);
780 /* Initialize port_info struct with scheduler data */
781 status = ice_sched_init_port(hw->port_info);
783 goto err_unroll_sched;
784 pcaps = (struct ice_aqc_get_phy_caps_data *)
785 ice_malloc(hw, sizeof(*pcaps));
787 status = ICE_ERR_NO_MEMORY;
788 goto err_unroll_sched;
791 /* Initialize port_info struct with PHY capabilities */
792 status = ice_aq_get_phy_caps(hw->port_info, false,
793 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps, NULL);
796 ice_warn(hw, "Get PHY capabilities failed status = %d, continuing anyway\n",
799 /* Initialize port_info struct with link information */
800 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
802 goto err_unroll_sched;
803 /* need a valid SW entry point to build a Tx tree */
804 if (!hw->sw_entry_point_layer) {
805 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
806 status = ICE_ERR_CFG;
807 goto err_unroll_sched;
809 INIT_LIST_HEAD(&hw->agg_list);
810 /* Initialize max burst size */
811 if (!hw->max_burst_size)
812 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
813 status = ice_init_fltr_mgmt_struct(hw);
815 goto err_unroll_sched;
817 /* Get MAC information */
818 /* A single port can report up to two (LAN and WoL) addresses */
819 mac_buf = ice_calloc(hw, 2,
820 sizeof(struct ice_aqc_manage_mac_read_resp));
821 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
824 status = ICE_ERR_NO_MEMORY;
825 goto err_unroll_fltr_mgmt_struct;
828 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
829 ice_free(hw, mac_buf);
832 goto err_unroll_fltr_mgmt_struct;
833 /* enable jumbo frame support at MAC level */
834 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
836 goto err_unroll_fltr_mgmt_struct;
837 /* Obtain counter base index which would be used by flow director */
838 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
840 goto err_unroll_fltr_mgmt_struct;
841 status = ice_init_hw_tbls(hw);
843 goto err_unroll_fltr_mgmt_struct;
844 ice_init_lock(&hw->tnl_lock);
848 err_unroll_fltr_mgmt_struct:
849 ice_cleanup_fltr_mgmt_struct(hw);
851 ice_sched_cleanup_all(hw);
853 ice_free(hw, hw->port_info);
854 hw->port_info = NULL;
856 ice_destroy_all_ctrlq(hw);
861 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
862 * @hw: pointer to the hardware structure
864 * This should be called only during nominal operation, not as a result of
865 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
866 * applicable initializations if it fails for any reason.
868 void ice_deinit_hw(struct ice_hw *hw)
870 ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
871 ice_cleanup_fltr_mgmt_struct(hw);
873 ice_sched_cleanup_all(hw);
874 ice_sched_clear_agg(hw);
876 ice_free_hw_tbls(hw);
877 ice_destroy_lock(&hw->tnl_lock);
880 ice_free(hw, hw->port_info);
881 hw->port_info = NULL;
884 ice_destroy_all_ctrlq(hw);
886 /* Clear VSI contexts if not already cleared */
887 ice_clear_all_vsi_ctx(hw);
891 * ice_check_reset - Check to see if a global reset is complete
892 * @hw: pointer to the hardware structure
894 enum ice_status ice_check_reset(struct ice_hw *hw)
896 u32 cnt, reg = 0, grst_timeout, uld_mask;
898 /* Poll for Device Active state in case a recent CORER, GLOBR,
899 * or EMPR has occurred. The grst delay value is in 100ms units.
900 * Add 1sec for outstanding AQ commands that can take a long time.
902 grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
903 GLGEN_RSTCTL_GRSTDEL_S) + 10;
905 for (cnt = 0; cnt < grst_timeout; cnt++) {
906 ice_msec_delay(100, true);
907 reg = rd32(hw, GLGEN_RSTAT);
908 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
912 if (cnt == grst_timeout) {
913 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
914 return ICE_ERR_RESET_FAILED;
917 #define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
918 GLNVM_ULD_PCIER_DONE_1_M |\
919 GLNVM_ULD_CORER_DONE_M |\
920 GLNVM_ULD_GLOBR_DONE_M |\
921 GLNVM_ULD_POR_DONE_M |\
922 GLNVM_ULD_POR_DONE_1_M |\
923 GLNVM_ULD_PCIER_DONE_2_M)
925 uld_mask = ICE_RESET_DONE_MASK;
927 /* Device is Active; check Global Reset processes are done */
928 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
929 reg = rd32(hw, GLNVM_ULD) & uld_mask;
930 if (reg == uld_mask) {
931 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
934 ice_msec_delay(10, true);
937 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
938 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
940 return ICE_ERR_RESET_FAILED;
947 * ice_pf_reset - Reset the PF
948 * @hw: pointer to the hardware structure
950 * If a global reset has been triggered, this function checks
951 * for its completion and then issues the PF reset
953 static enum ice_status ice_pf_reset(struct ice_hw *hw)
957 /* If at function entry a global reset was already in progress, i.e.
958 * state is not 'device active' or any of the reset done bits are not
959 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
960 * global reset is done.
962 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
963 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
964 /* poll on global reset currently in progress until done */
965 if (ice_check_reset(hw))
966 return ICE_ERR_RESET_FAILED;
972 reg = rd32(hw, PFGEN_CTRL);
974 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
976 /* Wait for the PFR to complete. The wait time is the global config lock
977 * timeout plus the PFR timeout which will account for a possible reset
978 * that is occurring during a download package operation.
980 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
981 ICE_PF_RESET_WAIT_COUNT; cnt++) {
982 reg = rd32(hw, PFGEN_CTRL);
983 if (!(reg & PFGEN_CTRL_PFSWR_M))
986 ice_msec_delay(1, true);
989 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
990 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
991 return ICE_ERR_RESET_FAILED;
998 * ice_reset - Perform different types of reset
999 * @hw: pointer to the hardware structure
1000 * @req: reset request
1002 * This function triggers a reset as specified by the req parameter.
1005 * If anything other than a PF reset is triggered, PXE mode is restored.
1006 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1007 * interface has been restored in the rebuild flow.
1009 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1015 return ice_pf_reset(hw);
1016 case ICE_RESET_CORER:
1017 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1018 val = GLGEN_RTRIG_CORER_M;
1020 case ICE_RESET_GLOBR:
1021 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1022 val = GLGEN_RTRIG_GLOBR_M;
1025 return ICE_ERR_PARAM;
1028 val |= rd32(hw, GLGEN_RTRIG);
1029 wr32(hw, GLGEN_RTRIG, val);
1032 /* wait for the FW to be ready */
1033 return ice_check_reset(hw);
1037 * ice_copy_rxq_ctx_to_hw
1038 * @hw: pointer to the hardware structure
1039 * @ice_rxq_ctx: pointer to the rxq context
1040 * @rxq_index: the index of the Rx queue
1042 * Copies rxq context from dense structure to HW register space
1044 static enum ice_status
1045 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1050 return ICE_ERR_BAD_PTR;
1052 if (rxq_index > QRX_CTRL_MAX_INDEX)
1053 return ICE_ERR_PARAM;
1055 /* Copy each dword separately to HW */
1056 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1057 wr32(hw, QRX_CONTEXT(i, rxq_index),
1058 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1060 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1061 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1067 /* LAN Rx Queue Context */
1068 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1069 /* Field Width LSB */
1070 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1071 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1072 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1073 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1074 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1075 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1076 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1077 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1078 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1079 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1080 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1081 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1082 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1083 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1084 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1085 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1086 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1087 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1088 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1089 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1095 * @hw: pointer to the hardware structure
1096 * @rlan_ctx: pointer to the rxq context
1097 * @rxq_index: the index of the Rx queue
1099 * Converts rxq context from sparse to dense structure and then writes
1100 * it to HW register space and enables the hardware to prefetch descriptors
1101 * instead of only fetching them on demand
1104 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1107 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1110 return ICE_ERR_BAD_PTR;
1112 rlan_ctx->prefena = 1;
1114 ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1115 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1120 * @hw: pointer to the hardware structure
1121 * @rxq_index: the index of the Rx queue to clear
1123 * Clears rxq context in HW register space
1125 enum ice_status ice_clear_rxq_ctx(struct ice_hw *hw, u32 rxq_index)
1129 if (rxq_index > QRX_CTRL_MAX_INDEX)
1130 return ICE_ERR_PARAM;
1132 /* Clear each dword register separately */
1133 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++)
1134 wr32(hw, QRX_CONTEXT(i, rxq_index), 0);
1139 /* LAN Tx Queue Context */
1140 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1141 /* Field Width LSB */
1142 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1143 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1144 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1145 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1146 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1147 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1148 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1149 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1150 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1151 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1152 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1153 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1154 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1155 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1156 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1157 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1158 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1159 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1160 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1161 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1162 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1163 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1164 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1165 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1166 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1167 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1168 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1169 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
1174 * ice_copy_tx_cmpltnq_ctx_to_hw
1175 * @hw: pointer to the hardware structure
1176 * @ice_tx_cmpltnq_ctx: pointer to the Tx completion queue context
1177 * @tx_cmpltnq_index: the index of the completion queue
1179 * Copies Tx completion queue context from dense structure to HW register space
1181 static enum ice_status
1182 ice_copy_tx_cmpltnq_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_cmpltnq_ctx,
1183 u32 tx_cmpltnq_index)
1187 if (!ice_tx_cmpltnq_ctx)
1188 return ICE_ERR_BAD_PTR;
1190 if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1191 return ICE_ERR_PARAM;
1193 /* Copy each dword separately to HW */
1194 for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++) {
1195 wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index),
1196 *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1198 ice_debug(hw, ICE_DBG_QCTX, "cmpltnqdata[%d]: %08X\n", i,
1199 *((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
1205 /* LAN Tx Completion Queue Context */
1206 static const struct ice_ctx_ele ice_tx_cmpltnq_ctx_info[] = {
1207 /* Field Width LSB */
1208 ICE_CTX_STORE(ice_tx_cmpltnq_ctx, base, 57, 0),
1209 ICE_CTX_STORE(ice_tx_cmpltnq_ctx, q_len, 18, 64),
1210 ICE_CTX_STORE(ice_tx_cmpltnq_ctx, generation, 1, 96),
1211 ICE_CTX_STORE(ice_tx_cmpltnq_ctx, wrt_ptr, 22, 97),
1212 ICE_CTX_STORE(ice_tx_cmpltnq_ctx, pf_num, 3, 128),
1213 ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_num, 10, 131),
1214 ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_type, 2, 141),
1215 ICE_CTX_STORE(ice_tx_cmpltnq_ctx, tph_desc_wr, 1, 160),
1216 ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cpuid, 8, 161),
1217 ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cmpltn_cache, 512, 192),
1222 * ice_write_tx_cmpltnq_ctx
1223 * @hw: pointer to the hardware structure
1224 * @tx_cmpltnq_ctx: pointer to the completion queue context
1225 * @tx_cmpltnq_index: the index of the completion queue
1227 * Converts completion queue context from sparse to dense structure and then
1228 * writes it to HW register space
1231 ice_write_tx_cmpltnq_ctx(struct ice_hw *hw,
1232 struct ice_tx_cmpltnq_ctx *tx_cmpltnq_ctx,
1233 u32 tx_cmpltnq_index)
1235 u8 ctx_buf[ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1237 ice_set_ctx(hw, (u8 *)tx_cmpltnq_ctx, ctx_buf, ice_tx_cmpltnq_ctx_info);
1238 return ice_copy_tx_cmpltnq_ctx_to_hw(hw, ctx_buf, tx_cmpltnq_index);
1242 * ice_clear_tx_cmpltnq_ctx
1243 * @hw: pointer to the hardware structure
1244 * @tx_cmpltnq_index: the index of the completion queue to clear
1246 * Clears Tx completion queue context in HW register space
1249 ice_clear_tx_cmpltnq_ctx(struct ice_hw *hw, u32 tx_cmpltnq_index)
1253 if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
1254 return ICE_ERR_PARAM;
1256 /* Clear each dword register separately */
1257 for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++)
1258 wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index), 0);
1264 * ice_copy_tx_drbell_q_ctx_to_hw
1265 * @hw: pointer to the hardware structure
1266 * @ice_tx_drbell_q_ctx: pointer to the doorbell queue context
1267 * @tx_drbell_q_index: the index of the doorbell queue
1269 * Copies doorbell queue context from dense structure to HW register space
1271 static enum ice_status
1272 ice_copy_tx_drbell_q_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_drbell_q_ctx,
1273 u32 tx_drbell_q_index)
1277 if (!ice_tx_drbell_q_ctx)
1278 return ICE_ERR_BAD_PTR;
1280 if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1281 return ICE_ERR_PARAM;
1283 /* Copy each dword separately to HW */
1284 for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++) {
1285 wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index),
1286 *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1288 ice_debug(hw, ICE_DBG_QCTX, "tx_drbell_qdata[%d]: %08X\n", i,
1289 *((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
1295 /* LAN Tx Doorbell Queue Context info */
1296 static const struct ice_ctx_ele ice_tx_drbell_q_ctx_info[] = {
1297 /* Field Width LSB */
1298 ICE_CTX_STORE(ice_tx_drbell_q_ctx, base, 57, 0),
1299 ICE_CTX_STORE(ice_tx_drbell_q_ctx, ring_len, 13, 64),
1300 ICE_CTX_STORE(ice_tx_drbell_q_ctx, pf_num, 3, 80),
1301 ICE_CTX_STORE(ice_tx_drbell_q_ctx, vf_num, 8, 84),
1302 ICE_CTX_STORE(ice_tx_drbell_q_ctx, vmvf_type, 2, 94),
1303 ICE_CTX_STORE(ice_tx_drbell_q_ctx, cpuid, 8, 96),
1304 ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_rd, 1, 104),
1305 ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_wr, 1, 108),
1306 ICE_CTX_STORE(ice_tx_drbell_q_ctx, db_q_en, 1, 112),
1307 ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_head, 13, 128),
1308 ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_tail, 13, 144),
1313 * ice_write_tx_drbell_q_ctx
1314 * @hw: pointer to the hardware structure
1315 * @tx_drbell_q_ctx: pointer to the doorbell queue context
1316 * @tx_drbell_q_index: the index of the doorbell queue
1318 * Converts doorbell queue context from sparse to dense structure and then
1319 * writes it to HW register space
1322 ice_write_tx_drbell_q_ctx(struct ice_hw *hw,
1323 struct ice_tx_drbell_q_ctx *tx_drbell_q_ctx,
1324 u32 tx_drbell_q_index)
1326 u8 ctx_buf[ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
1328 ice_set_ctx(hw, (u8 *)tx_drbell_q_ctx, ctx_buf,
1329 ice_tx_drbell_q_ctx_info);
1330 return ice_copy_tx_drbell_q_ctx_to_hw(hw, ctx_buf, tx_drbell_q_index);
1334 * ice_clear_tx_drbell_q_ctx
1335 * @hw: pointer to the hardware structure
1336 * @tx_drbell_q_index: the index of the doorbell queue to clear
1338 * Clears doorbell queue context in HW register space
1341 ice_clear_tx_drbell_q_ctx(struct ice_hw *hw, u32 tx_drbell_q_index)
1345 if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
1346 return ICE_ERR_PARAM;
1348 /* Clear each dword register separately */
1349 for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++)
1350 wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index), 0);
1355 /* FW Admin Queue command wrappers */
1358 * ice_should_retry_sq_send_cmd
1359 * @opcode: AQ opcode
1361 * Decide if we should retry the send command routine for the ATQ, depending
1364 static bool ice_should_retry_sq_send_cmd(u16 opcode)
1367 case ice_aqc_opc_get_link_topo:
1368 case ice_aqc_opc_lldp_stop:
1369 case ice_aqc_opc_lldp_start:
1370 case ice_aqc_opc_lldp_filter_ctrl:
1378 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1379 * @hw: pointer to the HW struct
1380 * @cq: pointer to the specific Control queue
1381 * @desc: prefilled descriptor describing the command
1382 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1383 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1384 * @cd: pointer to command details structure
1386 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1387 * Queue if the EBUSY AQ error is returned.
1389 static enum ice_status
1390 ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1391 struct ice_aq_desc *desc, void *buf, u16 buf_size,
1392 struct ice_sq_cd *cd)
1394 struct ice_aq_desc desc_cpy;
1395 enum ice_status status;
1396 bool is_cmd_for_retry;
1401 opcode = LE16_TO_CPU(desc->opcode);
1402 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1403 ice_memset(&desc_cpy, 0, sizeof(desc_cpy), ICE_NONDMA_MEM);
1405 if (is_cmd_for_retry) {
1407 buf_cpy = (u8 *)ice_malloc(hw, buf_size);
1409 return ICE_ERR_NO_MEMORY;
1412 ice_memcpy(&desc_cpy, desc, sizeof(desc_cpy),
1413 ICE_NONDMA_TO_NONDMA);
1417 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1419 if (!is_cmd_for_retry || status == ICE_SUCCESS ||
1420 hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1424 ice_memcpy(buf, buf_cpy, buf_size,
1425 ICE_NONDMA_TO_NONDMA);
1427 ice_memcpy(desc, &desc_cpy, sizeof(desc_cpy),
1428 ICE_NONDMA_TO_NONDMA);
1430 ice_msec_delay(ICE_SQ_SEND_DELAY_TIME_MS, false);
1432 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1435 ice_free(hw, buf_cpy);
1441 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1442 * @hw: pointer to the HW struct
1443 * @desc: descriptor describing the command
1444 * @buf: buffer to use for indirect commands (NULL for direct commands)
1445 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1446 * @cd: pointer to command details structure
1448 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1451 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1452 u16 buf_size, struct ice_sq_cd *cd)
1454 if (hw->aq_send_cmd_fn) {
1455 enum ice_status status = ICE_ERR_NOT_READY;
1456 u16 retval = ICE_AQ_RC_OK;
1458 ice_acquire_lock(&hw->adminq.sq_lock);
1459 if (!hw->aq_send_cmd_fn(hw->aq_send_cmd_param, desc,
1461 retval = LE16_TO_CPU(desc->retval);
1462 /* strip off FW internal code */
1465 if (retval == ICE_AQ_RC_OK)
1466 status = ICE_SUCCESS;
1468 status = ICE_ERR_AQ_ERROR;
1471 hw->adminq.sq_last_status = (enum ice_aq_err)retval;
1472 ice_release_lock(&hw->adminq.sq_lock);
1476 return ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1481 * @hw: pointer to the HW struct
1482 * @cd: pointer to command details structure or NULL
1484 * Get the firmware version (0x0001) from the admin queue commands
1486 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1488 struct ice_aqc_get_ver *resp;
1489 struct ice_aq_desc desc;
1490 enum ice_status status;
1492 resp = &desc.params.get_ver;
1494 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1496 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1499 hw->fw_branch = resp->fw_branch;
1500 hw->fw_maj_ver = resp->fw_major;
1501 hw->fw_min_ver = resp->fw_minor;
1502 hw->fw_patch = resp->fw_patch;
1503 hw->fw_build = LE32_TO_CPU(resp->fw_build);
1504 hw->api_branch = resp->api_branch;
1505 hw->api_maj_ver = resp->api_major;
1506 hw->api_min_ver = resp->api_minor;
1507 hw->api_patch = resp->api_patch;
1514 * ice_aq_send_driver_ver
1515 * @hw: pointer to the HW struct
1516 * @dv: driver's major, minor version
1517 * @cd: pointer to command details structure or NULL
1519 * Send the driver version (0x0002) to the firmware
1522 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1523 struct ice_sq_cd *cd)
1525 struct ice_aqc_driver_ver *cmd;
1526 struct ice_aq_desc desc;
1529 cmd = &desc.params.driver_ver;
1532 return ICE_ERR_PARAM;
1534 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1536 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1537 cmd->major_ver = dv->major_ver;
1538 cmd->minor_ver = dv->minor_ver;
1539 cmd->build_ver = dv->build_ver;
1540 cmd->subbuild_ver = dv->subbuild_ver;
1543 while (len < sizeof(dv->driver_string) &&
1544 IS_ASCII(dv->driver_string[len]) && dv->driver_string[len])
1547 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1552 * @hw: pointer to the HW struct
1553 * @unloading: is the driver unloading itself
1555 * Tell the Firmware that we're shutting down the AdminQ and whether
1556 * or not the driver is unloading as well (0x0003).
1558 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1560 struct ice_aqc_q_shutdown *cmd;
1561 struct ice_aq_desc desc;
1563 cmd = &desc.params.q_shutdown;
1565 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1568 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1570 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1575 * @hw: pointer to the HW struct
1577 * @access: access type
1578 * @sdp_number: resource number
1579 * @timeout: the maximum time in ms that the driver may hold the resource
1580 * @cd: pointer to command details structure or NULL
1582 * Requests common resource using the admin queue commands (0x0008).
1583 * When attempting to acquire the Global Config Lock, the driver can
1584 * learn of three states:
1585 * 1) ICE_SUCCESS - acquired lock, and can perform download package
1586 * 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
1587 * 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1588 * successfully downloaded the package; the driver does
1589 * not have to download the package and can continue
1592 * Note that if the caller is in an acquire lock, perform action, release lock
1593 * phase of operation, it is possible that the FW may detect a timeout and issue
1594 * a CORER. In this case, the driver will receive a CORER interrupt and will
1595 * have to determine its cause. The calling thread that is handling this flow
1596 * will likely get an error propagated back to it indicating the Download
1597 * Package, Update Package or the Release Resource AQ commands timed out.
1599 static enum ice_status
1600 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1601 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1602 struct ice_sq_cd *cd)
1604 struct ice_aqc_req_res *cmd_resp;
1605 struct ice_aq_desc desc;
1606 enum ice_status status;
1608 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1610 cmd_resp = &desc.params.res_owner;
1612 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1614 cmd_resp->res_id = CPU_TO_LE16(res);
1615 cmd_resp->access_type = CPU_TO_LE16(access);
1616 cmd_resp->res_number = CPU_TO_LE32(sdp_number);
1617 cmd_resp->timeout = CPU_TO_LE32(*timeout);
1620 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1622 /* The completion specifies the maximum time in ms that the driver
1623 * may hold the resource in the Timeout field.
1626 /* Global config lock response utilizes an additional status field.
1628 * If the Global config lock resource is held by some other driver, the
1629 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1630 * and the timeout field indicates the maximum time the current owner
1631 * of the resource has to free it.
1633 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1634 if (LE16_TO_CPU(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1635 *timeout = LE32_TO_CPU(cmd_resp->timeout);
1637 } else if (LE16_TO_CPU(cmd_resp->status) ==
1638 ICE_AQ_RES_GLBL_IN_PROG) {
1639 *timeout = LE32_TO_CPU(cmd_resp->timeout);
1640 return ICE_ERR_AQ_ERROR;
1641 } else if (LE16_TO_CPU(cmd_resp->status) ==
1642 ICE_AQ_RES_GLBL_DONE) {
1643 return ICE_ERR_AQ_NO_WORK;
1646 /* invalid FW response, force a timeout immediately */
1648 return ICE_ERR_AQ_ERROR;
1651 /* If the resource is held by some other driver, the command completes
1652 * with a busy return value and the timeout field indicates the maximum
1653 * time the current owner of the resource has to free it.
1655 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1656 *timeout = LE32_TO_CPU(cmd_resp->timeout);
1662 * ice_aq_release_res
1663 * @hw: pointer to the HW struct
1665 * @sdp_number: resource number
1666 * @cd: pointer to command details structure or NULL
1668 * release common resource using the admin queue commands (0x0009)
1670 static enum ice_status
1671 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1672 struct ice_sq_cd *cd)
1674 struct ice_aqc_req_res *cmd;
1675 struct ice_aq_desc desc;
1677 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1679 cmd = &desc.params.res_owner;
1681 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1683 cmd->res_id = CPU_TO_LE16(res);
1684 cmd->res_number = CPU_TO_LE32(sdp_number);
1686 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1691 * @hw: pointer to the HW structure
1693 * @access: access type (read or write)
1694 * @timeout: timeout in milliseconds
1696 * This function will attempt to acquire the ownership of a resource.
1699 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1700 enum ice_aq_res_access_type access, u32 timeout)
1702 #define ICE_RES_POLLING_DELAY_MS 10
1703 u32 delay = ICE_RES_POLLING_DELAY_MS;
1704 u32 time_left = timeout;
1705 enum ice_status status;
1707 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1709 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1711 /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1712 * previously acquired the resource and performed any necessary updates;
1713 * in this case the caller does not obtain the resource and has no
1714 * further work to do.
1716 if (status == ICE_ERR_AQ_NO_WORK)
1717 goto ice_acquire_res_exit;
1720 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1722 /* If necessary, poll until the current lock owner timeouts */
1723 timeout = time_left;
1724 while (status && timeout && time_left) {
1725 ice_msec_delay(delay, true);
1726 timeout = (timeout > delay) ? timeout - delay : 0;
1727 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1729 if (status == ICE_ERR_AQ_NO_WORK)
1730 /* lock free, but no work to do */
1737 if (status && status != ICE_ERR_AQ_NO_WORK)
1738 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1740 ice_acquire_res_exit:
1741 if (status == ICE_ERR_AQ_NO_WORK) {
1742 if (access == ICE_RES_WRITE)
1743 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1745 ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1752 * @hw: pointer to the HW structure
1755 * This function will release a resource using the proper Admin Command.
1757 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1759 enum ice_status status;
1760 u32 total_delay = 0;
1762 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1764 status = ice_aq_release_res(hw, res, 0, NULL);
1766 /* there are some rare cases when trying to release the resource
1767 * results in an admin queue timeout, so handle them correctly
1769 while ((status == ICE_ERR_AQ_TIMEOUT) &&
1770 (total_delay < hw->adminq.sq_cmd_timeout)) {
1771 ice_msec_delay(1, true);
1772 status = ice_aq_release_res(hw, res, 0, NULL);
1778 * ice_aq_alloc_free_res - command to allocate/free resources
1779 * @hw: pointer to the HW struct
1780 * @num_entries: number of resource entries in buffer
1781 * @buf: Indirect buffer to hold data parameters and response
1782 * @buf_size: size of buffer for indirect commands
1783 * @opc: pass in the command opcode
1784 * @cd: pointer to command details structure or NULL
1786 * Helper function to allocate/free resources using the admin queue commands
1789 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1790 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1791 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1793 struct ice_aqc_alloc_free_res_cmd *cmd;
1794 struct ice_aq_desc desc;
1796 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1798 cmd = &desc.params.sw_res_ctrl;
1801 return ICE_ERR_PARAM;
1803 if (buf_size < FLEX_ARRAY_SIZE(buf, elem, num_entries))
1804 return ICE_ERR_PARAM;
1806 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1808 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1810 cmd->num_entries = CPU_TO_LE16(num_entries);
1812 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1816 * ice_alloc_hw_res - allocate resource
1817 * @hw: pointer to the HW struct
1818 * @type: type of resource
1819 * @num: number of resources to allocate
1820 * @btm: allocate from bottom
1821 * @res: pointer to array that will receive the resources
1824 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1826 struct ice_aqc_alloc_free_res_elem *buf;
1827 enum ice_status status;
1830 buf_len = ice_struct_size(buf, elem, num);
1831 buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
1833 return ICE_ERR_NO_MEMORY;
1835 /* Prepare buffer to allocate resource. */
1836 buf->num_elems = CPU_TO_LE16(num);
1837 buf->res_type = CPU_TO_LE16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1838 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1840 buf->res_type |= CPU_TO_LE16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1842 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1843 ice_aqc_opc_alloc_res, NULL);
1845 goto ice_alloc_res_exit;
1847 ice_memcpy(res, buf->elem, sizeof(*buf->elem) * num,
1848 ICE_NONDMA_TO_NONDMA);
1856 * ice_free_hw_res - free allocated HW resource
1857 * @hw: pointer to the HW struct
1858 * @type: type of resource to free
1859 * @num: number of resources
1860 * @res: pointer to array that contains the resources to free
1862 enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1864 struct ice_aqc_alloc_free_res_elem *buf;
1865 enum ice_status status;
1868 buf_len = ice_struct_size(buf, elem, num);
1869 buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
1871 return ICE_ERR_NO_MEMORY;
1873 /* Prepare buffer to free resource. */
1874 buf->num_elems = CPU_TO_LE16(num);
1875 buf->res_type = CPU_TO_LE16(type);
1876 ice_memcpy(buf->elem, res, sizeof(*buf->elem) * num,
1877 ICE_NONDMA_TO_NONDMA);
1879 status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1880 ice_aqc_opc_free_res, NULL);
1882 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1889 * ice_get_num_per_func - determine number of resources per PF
1890 * @hw: pointer to the HW structure
1891 * @max: value to be evenly split between each PF
1893 * Determine the number of valid functions by going through the bitmap returned
1894 * from parsing capabilities and use this to calculate the number of resources
1895 * per PF based on the max value passed in.
1897 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1901 #define ICE_CAPS_VALID_FUNCS_M 0xFF
1902 funcs = ice_hweight8(hw->dev_caps.common_cap.valid_functions &
1903 ICE_CAPS_VALID_FUNCS_M);
1912 * ice_parse_common_caps - parse common device/function capabilities
1913 * @hw: pointer to the HW struct
1914 * @caps: pointer to common capabilities structure
1915 * @elem: the capability element to parse
1916 * @prefix: message prefix for tracing capabilities
1918 * Given a capability element, extract relevant details into the common
1919 * capability structure.
1921 * Returns: true if the capability matches one of the common capability ids,
1925 ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1926 struct ice_aqc_list_caps_elem *elem, const char *prefix)
1928 u32 logical_id = LE32_TO_CPU(elem->logical_id);
1929 u32 phys_id = LE32_TO_CPU(elem->phys_id);
1930 u32 number = LE32_TO_CPU(elem->number);
1931 u16 cap = LE16_TO_CPU(elem->cap);
1935 case ICE_AQC_CAPS_VALID_FUNCTIONS:
1936 caps->valid_functions = number;
1937 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
1938 caps->valid_functions);
1940 case ICE_AQC_CAPS_DCB:
1941 caps->dcb = (number == 1);
1942 caps->active_tc_bitmap = logical_id;
1943 caps->maxtc = phys_id;
1944 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
1945 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
1946 caps->active_tc_bitmap);
1947 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
1949 case ICE_AQC_CAPS_RSS:
1950 caps->rss_table_size = number;
1951 caps->rss_table_entry_width = logical_id;
1952 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
1953 caps->rss_table_size);
1954 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
1955 caps->rss_table_entry_width);
1957 case ICE_AQC_CAPS_RXQS:
1958 caps->num_rxq = number;
1959 caps->rxq_first_id = phys_id;
1960 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
1962 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
1963 caps->rxq_first_id);
1965 case ICE_AQC_CAPS_TXQS:
1966 caps->num_txq = number;
1967 caps->txq_first_id = phys_id;
1968 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
1970 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
1971 caps->txq_first_id);
1973 case ICE_AQC_CAPS_MSIX:
1974 caps->num_msix_vectors = number;
1975 caps->msix_vector_first_id = phys_id;
1976 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
1977 caps->num_msix_vectors);
1978 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
1979 caps->msix_vector_first_id);
1981 case ICE_AQC_CAPS_NVM_MGMT:
1982 caps->sec_rev_disabled =
1983 (number & ICE_NVM_MGMT_SEC_REV_DISABLED) ?
1985 ice_debug(hw, ICE_DBG_INIT, "%s: sec_rev_disabled = %d\n", prefix,
1986 caps->sec_rev_disabled);
1987 caps->update_disabled =
1988 (number & ICE_NVM_MGMT_UPDATE_DISABLED) ?
1990 ice_debug(hw, ICE_DBG_INIT, "%s: update_disabled = %d\n", prefix,
1991 caps->update_disabled);
1992 caps->nvm_unified_update =
1993 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
1995 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
1996 caps->nvm_unified_update);
1998 case ICE_AQC_CAPS_MAX_MTU:
1999 caps->max_mtu = number;
2000 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2001 prefix, caps->max_mtu);
2004 /* Not one of the recognized common capabilities */
2012 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2013 * @hw: pointer to the HW structure
2014 * @caps: pointer to capabilities structure to fix
2016 * Re-calculate the capabilities that are dependent on the number of physical
2017 * ports; i.e. some features are not supported or function differently on
2018 * devices with more than 4 ports.
2021 ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2023 /* This assumes device capabilities are always scanned before function
2024 * capabilities during the initialization flow.
2026 if (hw->dev_caps.num_funcs > 4) {
2027 /* Max 4 TCs per port */
2029 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2035 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2036 * @hw: pointer to the HW struct
2037 * @func_p: pointer to function capabilities structure
2038 * @cap: pointer to the capability element to parse
2040 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2043 ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2044 struct ice_aqc_list_caps_elem *cap)
2046 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2047 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2048 LE32_TO_CPU(cap->number));
2049 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2050 func_p->guar_num_vsi);
2054 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2055 * @hw: pointer to the HW struct
2056 * @func_p: pointer to function capabilities structure
2058 * Extract function capabilities for ICE_AQC_CAPS_FD.
2061 ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2065 if (hw->dcf_enabled)
2067 reg_val = rd32(hw, GLQF_FD_SIZE);
2068 val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2069 GLQF_FD_SIZE_FD_GSIZE_S;
2070 func_p->fd_fltr_guar =
2071 ice_get_num_per_func(hw, val);
2072 val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2073 GLQF_FD_SIZE_FD_BSIZE_S;
2074 func_p->fd_fltr_best_effort = val;
2076 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2077 func_p->fd_fltr_guar);
2078 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2079 func_p->fd_fltr_best_effort);
2083 * ice_parse_func_caps - Parse function capabilities
2084 * @hw: pointer to the HW struct
2085 * @func_p: pointer to function capabilities structure
2086 * @buf: buffer containing the function capability records
2087 * @cap_count: the number of capabilities
2089 * Helper function to parse function (0x000A) capabilities list. For
2090 * capabilities shared between device and function, this relies on
2091 * ice_parse_common_caps.
2093 * Loop through the list of provided capabilities and extract the relevant
2094 * data into the function capabilities structured.
2097 ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2098 void *buf, u32 cap_count)
2100 struct ice_aqc_list_caps_elem *cap_resp;
2103 cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2105 ice_memset(func_p, 0, sizeof(*func_p), ICE_NONDMA_MEM);
2107 for (i = 0; i < cap_count; i++) {
2108 u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2111 found = ice_parse_common_caps(hw, &func_p->common_cap,
2112 &cap_resp[i], "func caps");
2115 case ICE_AQC_CAPS_VSI:
2116 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2118 case ICE_AQC_CAPS_FD:
2119 ice_parse_fdir_func_caps(hw, func_p);
2122 /* Don't list common capabilities as unknown */
2124 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2130 ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2134 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2135 * @hw: pointer to the HW struct
2136 * @dev_p: pointer to device capabilities structure
2137 * @cap: capability element to parse
2139 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2142 ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2143 struct ice_aqc_list_caps_elem *cap)
2145 u32 number = LE32_TO_CPU(cap->number);
2147 dev_p->num_funcs = ice_hweight32(number);
2148 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2153 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2154 * @hw: pointer to the HW struct
2155 * @dev_p: pointer to device capabilities structure
2156 * @cap: capability element to parse
2158 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2161 ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2162 struct ice_aqc_list_caps_elem *cap)
2164 u32 number = LE32_TO_CPU(cap->number);
2166 dev_p->num_vsi_allocd_to_host = number;
2167 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2168 dev_p->num_vsi_allocd_to_host);
2172 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2173 * @hw: pointer to the HW struct
2174 * @dev_p: pointer to device capabilities structure
2175 * @cap: capability element to parse
2177 * Parse ICE_AQC_CAPS_FD for device capabilities.
2180 ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2181 struct ice_aqc_list_caps_elem *cap)
2183 u32 number = LE32_TO_CPU(cap->number);
2185 dev_p->num_flow_director_fltr = number;
2186 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2187 dev_p->num_flow_director_fltr);
2191 * ice_parse_dev_caps - Parse device capabilities
2192 * @hw: pointer to the HW struct
2193 * @dev_p: pointer to device capabilities structure
2194 * @buf: buffer containing the device capability records
2195 * @cap_count: the number of capabilities
2197 * Helper device to parse device (0x000B) capabilities list. For
2198 * capabilities shared between device and function, this relies on
2199 * ice_parse_common_caps.
2201 * Loop through the list of provided capabilities and extract the relevant
2202 * data into the device capabilities structured.
2205 ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2206 void *buf, u32 cap_count)
2208 struct ice_aqc_list_caps_elem *cap_resp;
2211 cap_resp = (struct ice_aqc_list_caps_elem *)buf;
2213 ice_memset(dev_p, 0, sizeof(*dev_p), ICE_NONDMA_MEM);
2215 for (i = 0; i < cap_count; i++) {
2216 u16 cap = LE16_TO_CPU(cap_resp[i].cap);
2219 found = ice_parse_common_caps(hw, &dev_p->common_cap,
2220 &cap_resp[i], "dev caps");
2223 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2224 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2226 case ICE_AQC_CAPS_VSI:
2227 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2229 case ICE_AQC_CAPS_FD:
2230 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2233 /* Don't list common capabilities as unknown */
2235 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2241 ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2245 * ice_aq_list_caps - query function/device capabilities
2246 * @hw: pointer to the HW struct
2247 * @buf: a buffer to hold the capabilities
2248 * @buf_size: size of the buffer
2249 * @cap_count: if not NULL, set to the number of capabilities reported
2250 * @opc: capabilities type to discover, device or function
2251 * @cd: pointer to command details structure or NULL
2253 * Get the function (0x000A) or device (0x000B) capabilities description from
2254 * firmware and store it in the buffer.
2256 * If the cap_count pointer is not NULL, then it is set to the number of
2257 * capabilities firmware will report. Note that if the buffer size is too
2258 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2259 * cap_count will still be updated in this case. It is recommended that the
2260 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2261 * firmware could return) to avoid this.
2263 static enum ice_status
2264 ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2265 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2267 struct ice_aqc_list_caps *cmd;
2268 struct ice_aq_desc desc;
2269 enum ice_status status;
2271 cmd = &desc.params.get_cap;
2273 if (opc != ice_aqc_opc_list_func_caps &&
2274 opc != ice_aqc_opc_list_dev_caps)
2275 return ICE_ERR_PARAM;
2277 ice_fill_dflt_direct_cmd_desc(&desc, opc);
2278 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2281 *cap_count = LE32_TO_CPU(cmd->count);
2287 * ice_discover_dev_caps - Read and extract device capabilities
2288 * @hw: pointer to the hardware structure
2289 * @dev_caps: pointer to device capabilities structure
2291 * Read the device capabilities and extract them into the dev_caps structure
2294 static enum ice_status
2295 ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2297 enum ice_status status;
2301 cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2303 return ICE_ERR_NO_MEMORY;
2305 /* Although the driver doesn't know the number of capabilities the
2306 * device will return, we can simply send a 4KB buffer, the maximum
2307 * possible size that firmware can return.
2309 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2311 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2312 ice_aqc_opc_list_dev_caps, NULL);
2314 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2321 * ice_discover_func_caps - Read and extract function capabilities
2322 * @hw: pointer to the hardware structure
2323 * @func_caps: pointer to function capabilities structure
2325 * Read the function capabilities and extract them into the func_caps structure
2328 static enum ice_status
2329 ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2331 enum ice_status status;
2335 cbuf = ice_malloc(hw, ICE_AQ_MAX_BUF_LEN);
2337 return ICE_ERR_NO_MEMORY;
2339 /* Although the driver doesn't know the number of capabilities the
2340 * device will return, we can simply send a 4KB buffer, the maximum
2341 * possible size that firmware can return.
2343 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2345 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2346 ice_aqc_opc_list_func_caps, NULL);
2348 ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2355 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2356 * @hw: pointer to the hardware structure
2358 void ice_set_safe_mode_caps(struct ice_hw *hw)
2360 struct ice_hw_func_caps *func_caps = &hw->func_caps;
2361 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2362 struct ice_hw_common_caps cached_caps;
2365 /* cache some func_caps values that should be restored after memset */
2366 cached_caps = func_caps->common_cap;
2368 /* unset func capabilities */
2369 memset(func_caps, 0, sizeof(*func_caps));
2371 #define ICE_RESTORE_FUNC_CAP(name) \
2372 func_caps->common_cap.name = cached_caps.name
2374 /* restore cached values */
2375 ICE_RESTORE_FUNC_CAP(valid_functions);
2376 ICE_RESTORE_FUNC_CAP(txq_first_id);
2377 ICE_RESTORE_FUNC_CAP(rxq_first_id);
2378 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2379 ICE_RESTORE_FUNC_CAP(max_mtu);
2380 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2382 /* one Tx and one Rx queue in safe mode */
2383 func_caps->common_cap.num_rxq = 1;
2384 func_caps->common_cap.num_txq = 1;
2386 /* two MSIX vectors, one for traffic and one for misc causes */
2387 func_caps->common_cap.num_msix_vectors = 2;
2388 func_caps->guar_num_vsi = 1;
2390 /* cache some dev_caps values that should be restored after memset */
2391 cached_caps = dev_caps->common_cap;
2392 num_funcs = dev_caps->num_funcs;
2394 /* unset dev capabilities */
2395 memset(dev_caps, 0, sizeof(*dev_caps));
2397 #define ICE_RESTORE_DEV_CAP(name) \
2398 dev_caps->common_cap.name = cached_caps.name
2400 /* restore cached values */
2401 ICE_RESTORE_DEV_CAP(valid_functions);
2402 ICE_RESTORE_DEV_CAP(txq_first_id);
2403 ICE_RESTORE_DEV_CAP(rxq_first_id);
2404 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2405 ICE_RESTORE_DEV_CAP(max_mtu);
2406 ICE_RESTORE_DEV_CAP(nvm_unified_update);
2407 dev_caps->num_funcs = num_funcs;
2409 /* one Tx and one Rx queue per function in safe mode */
2410 dev_caps->common_cap.num_rxq = num_funcs;
2411 dev_caps->common_cap.num_txq = num_funcs;
2413 /* two MSIX vectors per function */
2414 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2418 * ice_get_caps - get info about the HW
2419 * @hw: pointer to the hardware structure
2421 enum ice_status ice_get_caps(struct ice_hw *hw)
2423 enum ice_status status;
2425 status = ice_discover_dev_caps(hw, &hw->dev_caps);
2429 return ice_discover_func_caps(hw, &hw->func_caps);
2433 * ice_aq_manage_mac_write - manage MAC address write command
2434 * @hw: pointer to the HW struct
2435 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2436 * @flags: flags to control write behavior
2437 * @cd: pointer to command details structure or NULL
2439 * This function is used to write MAC address to the NVM (0x0108).
2442 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2443 struct ice_sq_cd *cd)
2445 struct ice_aqc_manage_mac_write *cmd;
2446 struct ice_aq_desc desc;
2448 cmd = &desc.params.mac_write;
2449 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2452 ice_memcpy(cmd->mac_addr, mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA);
2454 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2458 * ice_aq_clear_pxe_mode
2459 * @hw: pointer to the HW struct
2461 * Tell the firmware that the driver is taking over from PXE (0x0110).
2463 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2465 struct ice_aq_desc desc;
2467 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2468 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2470 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2474 * ice_clear_pxe_mode - clear pxe operations mode
2475 * @hw: pointer to the HW struct
2477 * Make sure all PXE mode settings are cleared, including things
2478 * like descriptor fetch/write-back mode.
2480 void ice_clear_pxe_mode(struct ice_hw *hw)
2482 if (ice_check_sq_alive(hw, &hw->adminq))
2483 ice_aq_clear_pxe_mode(hw);
2487 * ice_aq_set_port_params - set physical port parameters.
2488 * @pi: pointer to the port info struct
2489 * @bad_frame_vsi: defines the VSI to which bad frames are forwarded
2490 * @save_bad_pac: if set packets with errors are forwarded to the bad frames VSI
2491 * @pad_short_pac: if set transmit packets smaller than 60 bytes are padded
2492 * @double_vlan: if set double VLAN is enabled
2493 * @cd: pointer to command details structure or NULL
2495 * Set Physical port parameters (0x0203)
2498 ice_aq_set_port_params(struct ice_port_info *pi, u16 bad_frame_vsi,
2499 bool save_bad_pac, bool pad_short_pac, bool double_vlan,
2500 struct ice_sq_cd *cd)
2503 struct ice_aqc_set_port_params *cmd;
2504 struct ice_hw *hw = pi->hw;
2505 struct ice_aq_desc desc;
2508 cmd = &desc.params.set_port_params;
2510 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2511 cmd->bad_frame_vsi = CPU_TO_LE16(bad_frame_vsi);
2513 cmd_flags |= ICE_AQC_SET_P_PARAMS_SAVE_BAD_PACKETS;
2515 cmd_flags |= ICE_AQC_SET_P_PARAMS_PAD_SHORT_PACKETS;
2517 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2518 cmd->cmd_flags = CPU_TO_LE16(cmd_flags);
2520 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2524 * ice_get_link_speed_based_on_phy_type - returns link speed
2525 * @phy_type_low: lower part of phy_type
2526 * @phy_type_high: higher part of phy_type
2528 * This helper function will convert an entry in PHY type structure
2529 * [phy_type_low, phy_type_high] to its corresponding link speed.
2530 * Note: In the structure of [phy_type_low, phy_type_high], there should
2531 * be one bit set, as this function will convert one PHY type to its
2533 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2534 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2537 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2539 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2540 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2542 switch (phy_type_low) {
2543 case ICE_PHY_TYPE_LOW_100BASE_TX:
2544 case ICE_PHY_TYPE_LOW_100M_SGMII:
2545 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2547 case ICE_PHY_TYPE_LOW_1000BASE_T:
2548 case ICE_PHY_TYPE_LOW_1000BASE_SX:
2549 case ICE_PHY_TYPE_LOW_1000BASE_LX:
2550 case ICE_PHY_TYPE_LOW_1000BASE_KX:
2551 case ICE_PHY_TYPE_LOW_1G_SGMII:
2552 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2554 case ICE_PHY_TYPE_LOW_2500BASE_T:
2555 case ICE_PHY_TYPE_LOW_2500BASE_X:
2556 case ICE_PHY_TYPE_LOW_2500BASE_KX:
2557 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2559 case ICE_PHY_TYPE_LOW_5GBASE_T:
2560 case ICE_PHY_TYPE_LOW_5GBASE_KR:
2561 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2563 case ICE_PHY_TYPE_LOW_10GBASE_T:
2564 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2565 case ICE_PHY_TYPE_LOW_10GBASE_SR:
2566 case ICE_PHY_TYPE_LOW_10GBASE_LR:
2567 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2568 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2569 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2570 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2572 case ICE_PHY_TYPE_LOW_25GBASE_T:
2573 case ICE_PHY_TYPE_LOW_25GBASE_CR:
2574 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2575 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2576 case ICE_PHY_TYPE_LOW_25GBASE_SR:
2577 case ICE_PHY_TYPE_LOW_25GBASE_LR:
2578 case ICE_PHY_TYPE_LOW_25GBASE_KR:
2579 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2580 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2581 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2582 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2583 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2585 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2586 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2587 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2588 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2589 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2590 case ICE_PHY_TYPE_LOW_40G_XLAUI:
2591 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2593 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2594 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2595 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2596 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2597 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2598 case ICE_PHY_TYPE_LOW_50G_LAUI2:
2599 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2600 case ICE_PHY_TYPE_LOW_50G_AUI2:
2601 case ICE_PHY_TYPE_LOW_50GBASE_CP:
2602 case ICE_PHY_TYPE_LOW_50GBASE_SR:
2603 case ICE_PHY_TYPE_LOW_50GBASE_FR:
2604 case ICE_PHY_TYPE_LOW_50GBASE_LR:
2605 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2606 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2607 case ICE_PHY_TYPE_LOW_50G_AUI1:
2608 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2610 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2611 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2612 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2613 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2614 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2615 case ICE_PHY_TYPE_LOW_100G_CAUI4:
2616 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2617 case ICE_PHY_TYPE_LOW_100G_AUI4:
2618 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2619 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2620 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2621 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2622 case ICE_PHY_TYPE_LOW_100GBASE_DR:
2623 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2626 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2630 switch (phy_type_high) {
2631 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2632 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2633 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2634 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2635 case ICE_PHY_TYPE_HIGH_100G_AUI2:
2636 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2639 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2643 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2644 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2645 return ICE_AQ_LINK_SPEED_UNKNOWN;
2646 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2647 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2648 return ICE_AQ_LINK_SPEED_UNKNOWN;
2649 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2650 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2651 return speed_phy_type_low;
2653 return speed_phy_type_high;
2657 * ice_update_phy_type
2658 * @phy_type_low: pointer to the lower part of phy_type
2659 * @phy_type_high: pointer to the higher part of phy_type
2660 * @link_speeds_bitmap: targeted link speeds bitmap
2662 * Note: For the link_speeds_bitmap structure, you can check it at
2663 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2664 * link_speeds_bitmap include multiple speeds.
2666 * Each entry in this [phy_type_low, phy_type_high] structure will
2667 * present a certain link speed. This helper function will turn on bits
2668 * in [phy_type_low, phy_type_high] structure based on the value of
2669 * link_speeds_bitmap input parameter.
2672 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2673 u16 link_speeds_bitmap)
2680 /* We first check with low part of phy_type */
2681 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2682 pt_low = BIT_ULL(index);
2683 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2685 if (link_speeds_bitmap & speed)
2686 *phy_type_low |= BIT_ULL(index);
2689 /* We then check with high part of phy_type */
2690 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2691 pt_high = BIT_ULL(index);
2692 speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2694 if (link_speeds_bitmap & speed)
2695 *phy_type_high |= BIT_ULL(index);
2700 * ice_aq_set_phy_cfg
2701 * @hw: pointer to the HW struct
2702 * @pi: port info structure of the interested logical port
2703 * @cfg: structure with PHY configuration data to be set
2704 * @cd: pointer to command details structure or NULL
2706 * Set the various PHY configuration parameters supported on the Port.
2707 * One or more of the Set PHY config parameters may be ignored in an MFP
2708 * mode as the PF may not have the privilege to set some of the PHY Config
2709 * parameters. This status will be indicated by the command response (0x0601).
2712 ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2713 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2715 struct ice_aq_desc desc;
2716 enum ice_status status;
2719 return ICE_ERR_PARAM;
2721 /* Ensure that only valid bits of cfg->caps can be turned on. */
2722 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2723 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2726 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2729 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2730 desc.params.set_phy.lport_num = pi->lport;
2731 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
2733 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2734 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
2735 (unsigned long long)LE64_TO_CPU(cfg->phy_type_low));
2736 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
2737 (unsigned long long)LE64_TO_CPU(cfg->phy_type_high));
2738 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
2739 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
2740 cfg->low_power_ctrl_an);
2741 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
2742 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
2743 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
2746 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2748 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2749 status = ICE_SUCCESS;
2752 pi->phy.curr_user_phy_cfg = *cfg;
2758 * ice_update_link_info - update status of the HW network link
2759 * @pi: port info structure of the interested logical port
2761 enum ice_status ice_update_link_info(struct ice_port_info *pi)
2763 struct ice_link_status *li;
2764 enum ice_status status;
2767 return ICE_ERR_PARAM;
2769 li = &pi->phy.link_info;
2771 status = ice_aq_get_link_info(pi, true, NULL, NULL);
2775 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2776 struct ice_aqc_get_phy_caps_data *pcaps;
2780 pcaps = (struct ice_aqc_get_phy_caps_data *)
2781 ice_malloc(hw, sizeof(*pcaps));
2783 return ICE_ERR_NO_MEMORY;
2785 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2788 if (status == ICE_SUCCESS)
2789 ice_memcpy(li->module_type, &pcaps->module_type,
2790 sizeof(li->module_type),
2791 ICE_NONDMA_TO_NONDMA);
2793 ice_free(hw, pcaps);
2800 * ice_cache_phy_user_req
2801 * @pi: port information structure
2802 * @cache_data: PHY logging data
2803 * @cache_mode: PHY logging mode
2805 * Log the user request on (FC, FEC, SPEED) for later user.
2808 ice_cache_phy_user_req(struct ice_port_info *pi,
2809 struct ice_phy_cache_mode_data cache_data,
2810 enum ice_phy_cache_mode cache_mode)
2815 switch (cache_mode) {
2817 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
2819 case ICE_SPEED_MODE:
2820 pi->phy.curr_user_speed_req =
2821 cache_data.data.curr_user_speed_req;
2824 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
2832 * ice_caps_to_fc_mode
2833 * @caps: PHY capabilities
2835 * Convert PHY FC capabilities to ice FC mode
2837 enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
2839 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
2840 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2843 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
2844 return ICE_FC_TX_PAUSE;
2846 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2847 return ICE_FC_RX_PAUSE;
2853 * ice_caps_to_fec_mode
2854 * @caps: PHY capabilities
2855 * @fec_options: Link FEC options
2857 * Convert PHY FEC capabilities to ice FEC mode
2859 enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
2861 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
2862 return ICE_FEC_AUTO;
2864 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2865 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2866 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
2867 ICE_AQC_PHY_FEC_25G_KR_REQ))
2868 return ICE_FEC_BASER;
2870 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2871 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
2872 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
2875 return ICE_FEC_NONE;
2879 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
2880 * @pi: port information structure
2881 * @cfg: PHY configuration data to set FC mode
2882 * @req_mode: FC mode to configure
2884 static enum ice_status
2885 ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
2886 enum ice_fc_mode req_mode)
2888 struct ice_phy_cache_mode_data cache_data;
2889 u8 pause_mask = 0x0;
2892 return ICE_ERR_BAD_PTR;
2897 struct ice_aqc_get_phy_caps_data *pcaps;
2898 enum ice_status status;
2900 pcaps = (struct ice_aqc_get_phy_caps_data *)
2901 ice_malloc(pi->hw, sizeof(*pcaps));
2903 return ICE_ERR_NO_MEMORY;
2905 /* Query the value of FC that both the NIC and attached media
2908 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2911 ice_free(pi->hw, pcaps);
2915 pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2916 pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2918 ice_free(pi->hw, pcaps);
2922 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2923 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2925 case ICE_FC_RX_PAUSE:
2926 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2928 case ICE_FC_TX_PAUSE:
2929 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2935 /* clear the old pause settings */
2936 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2937 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2939 /* set the new capabilities */
2940 cfg->caps |= pause_mask;
2942 /* Cache user FC request */
2943 cache_data.data.curr_user_fc_req = req_mode;
2944 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
2951 * @pi: port information structure
2952 * @aq_failures: pointer to status code, specific to ice_set_fc routine
2953 * @ena_auto_link_update: enable automatic link update
2955 * Set the requested flow control mode.
2958 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
2960 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2961 struct ice_aqc_get_phy_caps_data *pcaps;
2962 enum ice_status status;
2965 if (!pi || !aq_failures)
2966 return ICE_ERR_BAD_PTR;
2971 pcaps = (struct ice_aqc_get_phy_caps_data *)
2972 ice_malloc(hw, sizeof(*pcaps));
2974 return ICE_ERR_NO_MEMORY;
2976 /* Get the current PHY config */
2977 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
2981 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2985 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
2987 /* Configure the set PHY data */
2988 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
2990 if (status != ICE_ERR_BAD_PTR)
2991 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2996 /* If the capabilities have changed, then set the new config */
2997 if (cfg.caps != pcaps->caps) {
2998 int retry_count, retry_max = 10;
3000 /* Auto restart link so settings take effect */
3001 if (ena_auto_link_update)
3002 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3004 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3006 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3010 /* Update the link info
3011 * It sometimes takes a really long time for link to
3012 * come back from the atomic reset. Thus, we wait a
3015 for (retry_count = 0; retry_count < retry_max; retry_count++) {
3016 status = ice_update_link_info(pi);
3018 if (status == ICE_SUCCESS)
3021 ice_msec_delay(100, true);
3025 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3029 ice_free(hw, pcaps);
3034 * ice_phy_caps_equals_cfg
3035 * @phy_caps: PHY capabilities
3036 * @phy_cfg: PHY configuration
3038 * Helper function to determine if PHY capabilities matches PHY
3042 ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3043 struct ice_aqc_set_phy_cfg_data *phy_cfg)
3045 u8 caps_mask, cfg_mask;
3047 if (!phy_caps || !phy_cfg)
3050 /* These bits are not common between capabilities and configuration.
3051 * Do not use them to determine equality.
3053 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3054 ICE_AQC_PHY_EN_MOD_QUAL);
3055 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3057 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3058 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3059 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3060 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3061 phy_caps->eee_cap != phy_cfg->eee_cap ||
3062 phy_caps->eeer_value != phy_cfg->eeer_value ||
3063 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3070 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3071 * @pi: port information structure
3072 * @caps: PHY ability structure to copy date from
3073 * @cfg: PHY configuration structure to copy data to
3075 * Helper function to copy AQC PHY get ability data to PHY set configuration
3079 ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3080 struct ice_aqc_get_phy_caps_data *caps,
3081 struct ice_aqc_set_phy_cfg_data *cfg)
3083 if (!pi || !caps || !cfg)
3086 ice_memset(cfg, 0, sizeof(*cfg), ICE_NONDMA_MEM);
3087 cfg->phy_type_low = caps->phy_type_low;
3088 cfg->phy_type_high = caps->phy_type_high;
3089 cfg->caps = caps->caps;
3090 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3091 cfg->eee_cap = caps->eee_cap;
3092 cfg->eeer_value = caps->eeer_value;
3093 cfg->link_fec_opt = caps->link_fec_options;
3094 cfg->module_compliance_enforcement =
3095 caps->module_compliance_enforcement;
3099 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3100 * @pi: port information structure
3101 * @cfg: PHY configuration data to set FEC mode
3102 * @fec: FEC mode to configure
3105 ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3106 enum ice_fec_mode fec)
3108 struct ice_aqc_get_phy_caps_data *pcaps;
3109 enum ice_status status = ICE_SUCCESS;
3113 return ICE_ERR_BAD_PTR;
3117 pcaps = (struct ice_aqc_get_phy_caps_data *)
3118 ice_malloc(hw, sizeof(*pcaps));
3120 return ICE_ERR_NO_MEMORY;
3122 status = ice_aq_get_phy_caps(pi, false,
3123 (ice_fw_supports_report_dflt_cfg(hw) ?
3124 ICE_AQC_REPORT_DFLT_CFG :
3125 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3130 cfg->caps |= (pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC);
3131 cfg->link_fec_opt = pcaps->link_fec_options;
3135 /* Clear RS bits, and AND BASE-R ability
3136 * bits and OR request bits.
3138 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3139 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3140 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3141 ICE_AQC_PHY_FEC_25G_KR_REQ;
3144 /* Clear BASE-R bits, and AND RS ability
3145 * bits and OR request bits.
3147 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3148 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3149 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3152 /* Clear all FEC option bits. */
3153 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3156 /* AND auto FEC bit, and all caps bits. */
3157 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3158 cfg->link_fec_opt |= pcaps->link_fec_options;
3161 status = ICE_ERR_PARAM;
3165 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw) &&
3166 !ice_fw_supports_report_dflt_cfg(pi->hw)) {
3167 struct ice_link_default_override_tlv tlv;
3169 if (ice_get_link_default_override(&tlv, pi))
3172 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3173 (tlv.options & ICE_LINK_OVERRIDE_EN))
3174 cfg->link_fec_opt = tlv.fec_options;
3178 ice_free(hw, pcaps);
3184 * ice_get_link_status - get status of the HW network link
3185 * @pi: port information structure
3186 * @link_up: pointer to bool (true/false = linkup/linkdown)
3188 * Variable link_up is true if link is up, false if link is down.
3189 * The variable link_up is invalid if status is non zero. As a
3190 * result of this call, link status reporting becomes enabled
3192 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3194 struct ice_phy_info *phy_info;
3195 enum ice_status status = ICE_SUCCESS;
3197 if (!pi || !link_up)
3198 return ICE_ERR_PARAM;
3200 phy_info = &pi->phy;
3202 if (phy_info->get_link_info) {
3203 status = ice_update_link_info(pi);
3206 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3210 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3216 * ice_aq_set_link_restart_an
3217 * @pi: pointer to the port information structure
3218 * @ena_link: if true: enable link, if false: disable link
3219 * @cd: pointer to command details structure or NULL
3221 * Sets up the link and restarts the Auto-Negotiation over the link.
3224 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3225 struct ice_sq_cd *cd)
3227 struct ice_aqc_restart_an *cmd;
3228 struct ice_aq_desc desc;
3230 cmd = &desc.params.restart_an;
3232 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3234 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3235 cmd->lport_num = pi->lport;
3237 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3239 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3241 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3245 * ice_aq_set_event_mask
3246 * @hw: pointer to the HW struct
3247 * @port_num: port number of the physical function
3248 * @mask: event mask to be set
3249 * @cd: pointer to command details structure or NULL
3251 * Set event mask (0x0613)
3254 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3255 struct ice_sq_cd *cd)
3257 struct ice_aqc_set_event_mask *cmd;
3258 struct ice_aq_desc desc;
3260 cmd = &desc.params.set_event_mask;
3262 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3264 cmd->lport_num = port_num;
3266 cmd->event_mask = CPU_TO_LE16(mask);
3267 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3271 * ice_aq_set_mac_loopback
3272 * @hw: pointer to the HW struct
3273 * @ena_lpbk: Enable or Disable loopback
3274 * @cd: pointer to command details structure or NULL
3276 * Enable/disable loopback on a given port
3279 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3281 struct ice_aqc_set_mac_lb *cmd;
3282 struct ice_aq_desc desc;
3284 cmd = &desc.params.set_mac_lb;
3286 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3288 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3290 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3294 * ice_aq_set_port_id_led
3295 * @pi: pointer to the port information
3296 * @is_orig_mode: is this LED set to original mode (by the net-list)
3297 * @cd: pointer to command details structure or NULL
3299 * Set LED value for the given port (0x06e9)
3302 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3303 struct ice_sq_cd *cd)
3305 struct ice_aqc_set_port_id_led *cmd;
3306 struct ice_hw *hw = pi->hw;
3307 struct ice_aq_desc desc;
3309 cmd = &desc.params.set_port_id_led;
3311 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3314 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3316 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3318 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3323 * @hw: pointer to the HW struct
3324 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3325 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3326 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3328 * @set_page: set or ignore the page
3329 * @data: pointer to data buffer to be read/written to the I2C device.
3330 * @length: 1-16 for read, 1 for write.
3331 * @write: 0 read, 1 for write.
3332 * @cd: pointer to command details structure or NULL
3334 * Read/Write SFF EEPROM (0x06EE)
3337 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3338 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3339 bool write, struct ice_sq_cd *cd)
3341 struct ice_aqc_sff_eeprom *cmd;
3342 struct ice_aq_desc desc;
3343 enum ice_status status;
3345 if (!data || (mem_addr & 0xff00))
3346 return ICE_ERR_PARAM;
3348 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3349 cmd = &desc.params.read_write_sff_param;
3350 desc.flags = CPU_TO_LE16(ICE_AQ_FLAG_RD);
3351 cmd->lport_num = (u8)(lport & 0xff);
3352 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3353 cmd->i2c_bus_addr = CPU_TO_LE16(((bus_addr >> 1) &
3354 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3356 ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3357 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3358 cmd->i2c_mem_addr = CPU_TO_LE16(mem_addr & 0xff);
3359 cmd->eeprom_page = CPU_TO_LE16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3361 cmd->i2c_bus_addr |= CPU_TO_LE16(ICE_AQC_SFF_IS_WRITE);
3363 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3368 * __ice_aq_get_set_rss_lut
3369 * @hw: pointer to the hardware structure
3370 * @params: RSS LUT parameters
3371 * @set: set true to set the table, false to get the table
3373 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3375 static enum ice_status
3376 __ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3378 u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3379 struct ice_aqc_get_set_rss_lut *cmd_resp;
3380 struct ice_aq_desc desc;
3381 enum ice_status status;
3385 return ICE_ERR_PARAM;
3387 vsi_handle = params->vsi_handle;
3390 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3391 return ICE_ERR_PARAM;
3393 lut_size = params->lut_size;
3394 lut_type = params->lut_type;
3395 glob_lut_idx = params->global_lut_id;
3396 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3398 cmd_resp = &desc.params.get_set_rss_lut;
3401 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3402 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3404 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3407 cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
3408 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3409 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3410 ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3413 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3414 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3415 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3416 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3417 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3420 status = ICE_ERR_PARAM;
3421 goto ice_aq_get_set_rss_lut_exit;
3424 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3425 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3426 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3429 goto ice_aq_get_set_rss_lut_send;
3430 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3432 goto ice_aq_get_set_rss_lut_send;
3434 goto ice_aq_get_set_rss_lut_send;
3437 /* LUT size is only valid for Global and PF table types */
3439 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3440 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128_FLAG <<
3441 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3442 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3444 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3445 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3446 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3447 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3449 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3450 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3451 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3452 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3453 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3458 status = ICE_ERR_PARAM;
3459 goto ice_aq_get_set_rss_lut_exit;
3462 ice_aq_get_set_rss_lut_send:
3463 cmd_resp->flags = CPU_TO_LE16(flags);
3464 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3466 ice_aq_get_set_rss_lut_exit:
3471 * ice_aq_get_rss_lut
3472 * @hw: pointer to the hardware structure
3473 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3475 * get the RSS lookup table, PF or VSI type
3478 ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3480 return __ice_aq_get_set_rss_lut(hw, get_params, false);
3484 * ice_aq_set_rss_lut
3485 * @hw: pointer to the hardware structure
3486 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3488 * set the RSS lookup table, PF or VSI type
3491 ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3493 return __ice_aq_get_set_rss_lut(hw, set_params, true);
3497 * __ice_aq_get_set_rss_key
3498 * @hw: pointer to the HW struct
3499 * @vsi_id: VSI FW index
3500 * @key: pointer to key info struct
3501 * @set: set true to set the key, false to get the key
3503 * get (0x0B04) or set (0x0B02) the RSS key per VSI
3506 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3507 struct ice_aqc_get_set_rss_keys *key,
3510 struct ice_aqc_get_set_rss_key *cmd_resp;
3511 u16 key_size = sizeof(*key);
3512 struct ice_aq_desc desc;
3514 cmd_resp = &desc.params.get_set_rss_key;
3517 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3518 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3520 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3523 cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
3524 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3525 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3526 ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3528 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3532 * ice_aq_get_rss_key
3533 * @hw: pointer to the HW struct
3534 * @vsi_handle: software VSI handle
3535 * @key: pointer to key info struct
3537 * get the RSS key per VSI
3540 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3541 struct ice_aqc_get_set_rss_keys *key)
3543 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3544 return ICE_ERR_PARAM;
3546 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3551 * ice_aq_set_rss_key
3552 * @hw: pointer to the HW struct
3553 * @vsi_handle: software VSI handle
3554 * @keys: pointer to key info struct
3556 * set the RSS key per VSI
3559 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3560 struct ice_aqc_get_set_rss_keys *keys)
3562 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3563 return ICE_ERR_PARAM;
3565 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3570 * ice_aq_add_lan_txq
3571 * @hw: pointer to the hardware structure
3572 * @num_qgrps: Number of added queue groups
3573 * @qg_list: list of queue groups to be added
3574 * @buf_size: size of buffer for indirect command
3575 * @cd: pointer to command details structure or NULL
3577 * Add Tx LAN queue (0x0C30)
3580 * Prior to calling add Tx LAN queue:
3581 * Initialize the following as part of the Tx queue context:
3582 * Completion queue ID if the queue uses Completion queue, Quanta profile,
3583 * Cache profile and Packet shaper profile.
3585 * After add Tx LAN queue AQ command is completed:
3586 * Interrupts should be associated with specific queues,
3587 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3591 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3592 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3593 struct ice_sq_cd *cd)
3595 struct ice_aqc_add_tx_qgrp *list;
3596 struct ice_aqc_add_txqs *cmd;
3597 struct ice_aq_desc desc;
3598 u16 i, sum_size = 0;
3600 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3602 cmd = &desc.params.add_txqs;
3604 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3607 return ICE_ERR_PARAM;
3609 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3610 return ICE_ERR_PARAM;
3612 for (i = 0, list = qg_list; i < num_qgrps; i++) {
3613 sum_size += ice_struct_size(list, txqs, list->num_txqs);
3614 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3618 if (buf_size != sum_size)
3619 return ICE_ERR_PARAM;
3621 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3623 cmd->num_qgrps = num_qgrps;
3625 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3629 * ice_aq_dis_lan_txq
3630 * @hw: pointer to the hardware structure
3631 * @num_qgrps: number of groups in the list
3632 * @qg_list: the list of groups to disable
3633 * @buf_size: the total size of the qg_list buffer in bytes
3634 * @rst_src: if called due to reset, specifies the reset source
3635 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3636 * @cd: pointer to command details structure or NULL
3638 * Disable LAN Tx queue (0x0C31)
3640 static enum ice_status
3641 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3642 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3643 enum ice_disq_rst_src rst_src, u16 vmvf_num,
3644 struct ice_sq_cd *cd)
3646 struct ice_aqc_dis_txq_item *item;
3647 struct ice_aqc_dis_txqs *cmd;
3648 struct ice_aq_desc desc;
3649 enum ice_status status;
3652 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
3653 cmd = &desc.params.dis_txqs;
3654 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3656 /* qg_list can be NULL only in VM/VF reset flow */
3657 if (!qg_list && !rst_src)
3658 return ICE_ERR_PARAM;
3660 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3661 return ICE_ERR_PARAM;
3663 cmd->num_entries = num_qgrps;
3665 cmd->vmvf_and_timeout = CPU_TO_LE16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3666 ICE_AQC_Q_DIS_TIMEOUT_M);
3670 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3671 cmd->vmvf_and_timeout |=
3672 CPU_TO_LE16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3679 /* flush pipe on time out */
3680 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3681 /* If no queue group info, we are in a reset flow. Issue the AQ */
3685 /* set RD bit to indicate that command buffer is provided by the driver
3686 * and it needs to be read by the firmware
3688 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3690 for (i = 0, item = qg_list; i < num_qgrps; i++) {
3691 u16 item_size = ice_struct_size(item, q_id, item->num_qs);
3693 /* If the num of queues is even, add 2 bytes of padding */
3694 if ((item->num_qs % 2) == 0)
3699 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3703 return ICE_ERR_PARAM;
3706 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3709 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3710 vmvf_num, hw->adminq.sq_last_status);
3712 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3713 LE16_TO_CPU(qg_list[0].q_id[0]),
3714 hw->adminq.sq_last_status);
3720 * ice_aq_move_recfg_lan_txq
3721 * @hw: pointer to the hardware structure
3722 * @num_qs: number of queues to move/reconfigure
3723 * @is_move: true if this operation involves node movement
3724 * @is_tc_change: true if this operation involves a TC change
3725 * @subseq_call: true if this operation is a subsequent call
3726 * @flush_pipe: on timeout, true to flush pipe, false to return EAGAIN
3727 * @timeout: timeout in units of 100 usec (valid values 0-50)
3728 * @blocked_cgds: out param, bitmap of CGDs that timed out if returning EAGAIN
3729 * @buf: struct containing src/dest TEID and per-queue info
3730 * @buf_size: size of buffer for indirect command
3731 * @txqs_moved: out param, number of queues successfully moved
3732 * @cd: pointer to command details structure or NULL
3734 * Move / Reconfigure Tx LAN queues (0x0C32)
3737 ice_aq_move_recfg_lan_txq(struct ice_hw *hw, u8 num_qs, bool is_move,
3738 bool is_tc_change, bool subseq_call, bool flush_pipe,
3739 u8 timeout, u32 *blocked_cgds,
3740 struct ice_aqc_move_txqs_data *buf, u16 buf_size,
3741 u8 *txqs_moved, struct ice_sq_cd *cd)
3743 struct ice_aqc_move_txqs *cmd;
3744 struct ice_aq_desc desc;
3745 enum ice_status status;
3747 cmd = &desc.params.move_txqs;
3748 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_move_recfg_txqs);
3750 #define ICE_LAN_TXQ_MOVE_TIMEOUT_MAX 50
3751 if (timeout > ICE_LAN_TXQ_MOVE_TIMEOUT_MAX)
3752 return ICE_ERR_PARAM;
3754 if (is_tc_change && !flush_pipe && !blocked_cgds)
3755 return ICE_ERR_PARAM;
3757 if (!is_move && !is_tc_change)
3758 return ICE_ERR_PARAM;
3760 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
3763 cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_MOVE;
3766 cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_TC_CHANGE;
3769 cmd->cmd_type |= ICE_AQC_Q_CMD_SUBSEQ_CALL;
3772 cmd->cmd_type |= ICE_AQC_Q_CMD_FLUSH_PIPE;
3774 cmd->num_qs = num_qs;
3775 cmd->timeout = ((timeout << ICE_AQC_Q_CMD_TIMEOUT_S) &
3776 ICE_AQC_Q_CMD_TIMEOUT_M);
3778 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
3780 if (!status && txqs_moved)
3781 *txqs_moved = cmd->num_qs;
3783 if (hw->adminq.sq_last_status == ICE_AQ_RC_EAGAIN &&
3784 is_tc_change && !flush_pipe)
3785 *blocked_cgds = LE32_TO_CPU(cmd->blocked_cgds);
3790 /* End of FW Admin Queue command wrappers */
3793 * ice_write_byte - write a byte to a packed context structure
3794 * @src_ctx: the context structure to read from
3795 * @dest_ctx: the context to be written to
3796 * @ce_info: a description of the struct to be filled
3799 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3801 u8 src_byte, dest_byte, mask;
3805 /* copy from the next struct field */
3806 from = src_ctx + ce_info->offset;
3808 /* prepare the bits and mask */
3809 shift_width = ce_info->lsb % 8;
3810 mask = (u8)(BIT(ce_info->width) - 1);
3815 /* shift to correct alignment */
3816 mask <<= shift_width;
3817 src_byte <<= shift_width;
3819 /* get the current bits from the target bit string */
3820 dest = dest_ctx + (ce_info->lsb / 8);
3822 ice_memcpy(&dest_byte, dest, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
3824 dest_byte &= ~mask; /* get the bits not changing */
3825 dest_byte |= src_byte; /* add in the new bits */
3827 /* put it all back */
3828 ice_memcpy(dest, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
3832 * ice_write_word - write a word to a packed context structure
3833 * @src_ctx: the context structure to read from
3834 * @dest_ctx: the context to be written to
3835 * @ce_info: a description of the struct to be filled
3838 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3845 /* copy from the next struct field */
3846 from = src_ctx + ce_info->offset;
3848 /* prepare the bits and mask */
3849 shift_width = ce_info->lsb % 8;
3850 mask = BIT(ce_info->width) - 1;
3852 /* don't swizzle the bits until after the mask because the mask bits
3853 * will be in a different bit position on big endian machines
3855 src_word = *(u16 *)from;
3858 /* shift to correct alignment */
3859 mask <<= shift_width;
3860 src_word <<= shift_width;
3862 /* get the current bits from the target bit string */
3863 dest = dest_ctx + (ce_info->lsb / 8);
3865 ice_memcpy(&dest_word, dest, sizeof(dest_word), ICE_DMA_TO_NONDMA);
3867 dest_word &= ~(CPU_TO_LE16(mask)); /* get the bits not changing */
3868 dest_word |= CPU_TO_LE16(src_word); /* add in the new bits */
3870 /* put it all back */
3871 ice_memcpy(dest, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
3875 * ice_write_dword - write a dword to a packed context structure
3876 * @src_ctx: the context structure to read from
3877 * @dest_ctx: the context to be written to
3878 * @ce_info: a description of the struct to be filled
3881 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3883 u32 src_dword, mask;
3888 /* copy from the next struct field */
3889 from = src_ctx + ce_info->offset;
3891 /* prepare the bits and mask */
3892 shift_width = ce_info->lsb % 8;
3894 /* if the field width is exactly 32 on an x86 machine, then the shift
3895 * operation will not work because the SHL instructions count is masked
3896 * to 5 bits so the shift will do nothing
3898 if (ce_info->width < 32)
3899 mask = BIT(ce_info->width) - 1;
3903 /* don't swizzle the bits until after the mask because the mask bits
3904 * will be in a different bit position on big endian machines
3906 src_dword = *(u32 *)from;
3909 /* shift to correct alignment */
3910 mask <<= shift_width;
3911 src_dword <<= shift_width;
3913 /* get the current bits from the target bit string */
3914 dest = dest_ctx + (ce_info->lsb / 8);
3916 ice_memcpy(&dest_dword, dest, sizeof(dest_dword), ICE_DMA_TO_NONDMA);
3918 dest_dword &= ~(CPU_TO_LE32(mask)); /* get the bits not changing */
3919 dest_dword |= CPU_TO_LE32(src_dword); /* add in the new bits */
3921 /* put it all back */
3922 ice_memcpy(dest, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
3926 * ice_write_qword - write a qword to a packed context structure
3927 * @src_ctx: the context structure to read from
3928 * @dest_ctx: the context to be written to
3929 * @ce_info: a description of the struct to be filled
3932 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3934 u64 src_qword, mask;
3939 /* copy from the next struct field */
3940 from = src_ctx + ce_info->offset;
3942 /* prepare the bits and mask */
3943 shift_width = ce_info->lsb % 8;
3945 /* if the field width is exactly 64 on an x86 machine, then the shift
3946 * operation will not work because the SHL instructions count is masked
3947 * to 6 bits so the shift will do nothing
3949 if (ce_info->width < 64)
3950 mask = BIT_ULL(ce_info->width) - 1;
3954 /* don't swizzle the bits until after the mask because the mask bits
3955 * will be in a different bit position on big endian machines
3957 src_qword = *(u64 *)from;
3960 /* shift to correct alignment */
3961 mask <<= shift_width;
3962 src_qword <<= shift_width;
3964 /* get the current bits from the target bit string */
3965 dest = dest_ctx + (ce_info->lsb / 8);
3967 ice_memcpy(&dest_qword, dest, sizeof(dest_qword), ICE_DMA_TO_NONDMA);
3969 dest_qword &= ~(CPU_TO_LE64(mask)); /* get the bits not changing */
3970 dest_qword |= CPU_TO_LE64(src_qword); /* add in the new bits */
3972 /* put it all back */
3973 ice_memcpy(dest, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
3977 * ice_set_ctx - set context bits in packed structure
3978 * @hw: pointer to the hardware structure
3979 * @src_ctx: pointer to a generic non-packed context structure
3980 * @dest_ctx: pointer to memory for the packed structure
3981 * @ce_info: a description of the structure to be transformed
3984 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
3985 const struct ice_ctx_ele *ce_info)
3989 for (f = 0; ce_info[f].width; f++) {
3990 /* We have to deal with each element of the FW response
3991 * using the correct size so that we are correct regardless
3992 * of the endianness of the machine.
3994 if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
3995 ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
3996 f, ce_info[f].width, ce_info[f].size_of);
3999 switch (ce_info[f].size_of) {
4001 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4004 ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4007 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4010 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4013 return ICE_ERR_INVAL_SIZE;
4021 * ice_read_byte - read context byte into struct
4022 * @src_ctx: the context structure to read from
4023 * @dest_ctx: the context to be written to
4024 * @ce_info: a description of the struct to be filled
4027 ice_read_byte(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4033 /* prepare the bits and mask */
4034 shift_width = ce_info->lsb % 8;
4035 mask = (u8)(BIT(ce_info->width) - 1);
4037 /* shift to correct alignment */
4038 mask <<= shift_width;
4040 /* get the current bits from the src bit string */
4041 src = src_ctx + (ce_info->lsb / 8);
4043 ice_memcpy(&dest_byte, src, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
4045 dest_byte &= ~(mask);
4047 dest_byte >>= shift_width;
4049 /* get the address from the struct field */
4050 target = dest_ctx + ce_info->offset;
4052 /* put it back in the struct */
4053 ice_memcpy(target, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
4057 * ice_read_word - read context word into struct
4058 * @src_ctx: the context structure to read from
4059 * @dest_ctx: the context to be written to
4060 * @ce_info: a description of the struct to be filled
4063 ice_read_word(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4065 u16 dest_word, mask;
4070 /* prepare the bits and mask */
4071 shift_width = ce_info->lsb % 8;
4072 mask = BIT(ce_info->width) - 1;
4074 /* shift to correct alignment */
4075 mask <<= shift_width;
4077 /* get the current bits from the src bit string */
4078 src = src_ctx + (ce_info->lsb / 8);
4080 ice_memcpy(&src_word, src, sizeof(src_word), ICE_DMA_TO_NONDMA);
4082 /* the data in the memory is stored as little endian so mask it
4085 src_word &= ~(CPU_TO_LE16(mask));
4087 /* get the data back into host order before shifting */
4088 dest_word = LE16_TO_CPU(src_word);
4090 dest_word >>= shift_width;
4092 /* get the address from the struct field */
4093 target = dest_ctx + ce_info->offset;
4095 /* put it back in the struct */
4096 ice_memcpy(target, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
4100 * ice_read_dword - read context dword into struct
4101 * @src_ctx: the context structure to read from
4102 * @dest_ctx: the context to be written to
4103 * @ce_info: a description of the struct to be filled
4106 ice_read_dword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4108 u32 dest_dword, mask;
4113 /* prepare the bits and mask */
4114 shift_width = ce_info->lsb % 8;
4116 /* if the field width is exactly 32 on an x86 machine, then the shift
4117 * operation will not work because the SHL instructions count is masked
4118 * to 5 bits so the shift will do nothing
4120 if (ce_info->width < 32)
4121 mask = BIT(ce_info->width) - 1;
4125 /* shift to correct alignment */
4126 mask <<= shift_width;
4128 /* get the current bits from the src bit string */
4129 src = src_ctx + (ce_info->lsb / 8);
4131 ice_memcpy(&src_dword, src, sizeof(src_dword), ICE_DMA_TO_NONDMA);
4133 /* the data in the memory is stored as little endian so mask it
4136 src_dword &= ~(CPU_TO_LE32(mask));
4138 /* get the data back into host order before shifting */
4139 dest_dword = LE32_TO_CPU(src_dword);
4141 dest_dword >>= shift_width;
4143 /* get the address from the struct field */
4144 target = dest_ctx + ce_info->offset;
4146 /* put it back in the struct */
4147 ice_memcpy(target, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
4151 * ice_read_qword - read context qword into struct
4152 * @src_ctx: the context structure to read from
4153 * @dest_ctx: the context to be written to
4154 * @ce_info: a description of the struct to be filled
4157 ice_read_qword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4159 u64 dest_qword, mask;
4164 /* prepare the bits and mask */
4165 shift_width = ce_info->lsb % 8;
4167 /* if the field width is exactly 64 on an x86 machine, then the shift
4168 * operation will not work because the SHL instructions count is masked
4169 * to 6 bits so the shift will do nothing
4171 if (ce_info->width < 64)
4172 mask = BIT_ULL(ce_info->width) - 1;
4176 /* shift to correct alignment */
4177 mask <<= shift_width;
4179 /* get the current bits from the src bit string */
4180 src = src_ctx + (ce_info->lsb / 8);
4182 ice_memcpy(&src_qword, src, sizeof(src_qword), ICE_DMA_TO_NONDMA);
4184 /* the data in the memory is stored as little endian so mask it
4187 src_qword &= ~(CPU_TO_LE64(mask));
4189 /* get the data back into host order before shifting */
4190 dest_qword = LE64_TO_CPU(src_qword);
4192 dest_qword >>= shift_width;
4194 /* get the address from the struct field */
4195 target = dest_ctx + ce_info->offset;
4197 /* put it back in the struct */
4198 ice_memcpy(target, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
4202 * ice_get_ctx - extract context bits from a packed structure
4203 * @src_ctx: pointer to a generic packed context structure
4204 * @dest_ctx: pointer to a generic non-packed context structure
4205 * @ce_info: a description of the structure to be read from
4208 ice_get_ctx(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
4212 for (f = 0; ce_info[f].width; f++) {
4213 switch (ce_info[f].size_of) {
4215 ice_read_byte(src_ctx, dest_ctx, &ce_info[f]);
4218 ice_read_word(src_ctx, dest_ctx, &ce_info[f]);
4221 ice_read_dword(src_ctx, dest_ctx, &ce_info[f]);
4224 ice_read_qword(src_ctx, dest_ctx, &ce_info[f]);
4227 /* nothing to do, just keep going */
4236 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4237 * @hw: pointer to the HW struct
4238 * @vsi_handle: software VSI handle
4240 * @q_handle: software queue handle
4243 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4245 struct ice_vsi_ctx *vsi;
4246 struct ice_q_ctx *q_ctx;
4248 vsi = ice_get_vsi_ctx(hw, vsi_handle);
4251 if (q_handle >= vsi->num_lan_q_entries[tc])
4253 if (!vsi->lan_q_ctx[tc])
4255 q_ctx = vsi->lan_q_ctx[tc];
4256 return &q_ctx[q_handle];
4261 * @pi: port information structure
4262 * @vsi_handle: software VSI handle
4264 * @q_handle: software queue handle
4265 * @num_qgrps: Number of added queue groups
4266 * @buf: list of queue groups to be added
4267 * @buf_size: size of buffer for indirect command
4268 * @cd: pointer to command details structure or NULL
4270 * This function adds one LAN queue
4273 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4274 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4275 struct ice_sq_cd *cd)
4277 struct ice_aqc_txsched_elem_data node = { 0 };
4278 struct ice_sched_node *parent;
4279 struct ice_q_ctx *q_ctx;
4280 enum ice_status status;
4283 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4286 if (num_qgrps > 1 || buf->num_txqs > 1)
4287 return ICE_ERR_MAX_LIMIT;
4291 if (!ice_is_vsi_valid(hw, vsi_handle))
4292 return ICE_ERR_PARAM;
4294 ice_acquire_lock(&pi->sched_lock);
4296 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4298 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4300 status = ICE_ERR_PARAM;
4304 /* find a parent node */
4305 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4306 ICE_SCHED_NODE_OWNER_LAN);
4308 status = ICE_ERR_PARAM;
4312 buf->parent_teid = parent->info.node_teid;
4313 node.parent_teid = parent->info.node_teid;
4314 /* Mark that the values in the "generic" section as valid. The default
4315 * value in the "generic" section is zero. This means that :
4316 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4317 * - 0 priority among siblings, indicated by Bit 1-3.
4318 * - WFQ, indicated by Bit 4.
4319 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4321 * - Bit 7 is reserved.
4322 * Without setting the generic section as valid in valid_sections, the
4323 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4325 buf->txqs[0].info.valid_sections =
4326 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4327 ICE_AQC_ELEM_VALID_EIR;
4328 buf->txqs[0].info.generic = 0;
4329 buf->txqs[0].info.cir_bw.bw_profile_idx =
4330 CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
4331 buf->txqs[0].info.cir_bw.bw_alloc =
4332 CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
4333 buf->txqs[0].info.eir_bw.bw_profile_idx =
4334 CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
4335 buf->txqs[0].info.eir_bw.bw_alloc =
4336 CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
4338 /* add the LAN queue */
4339 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4340 if (status != ICE_SUCCESS) {
4341 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4342 LE16_TO_CPU(buf->txqs[0].txq_id),
4343 hw->adminq.sq_last_status);
4347 node.node_teid = buf->txqs[0].q_teid;
4348 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4349 q_ctx->q_handle = q_handle;
4350 q_ctx->q_teid = LE32_TO_CPU(node.node_teid);
4352 /* add a leaf node into scheduler tree queue layer */
4353 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
4355 status = ice_sched_replay_q_bw(pi, q_ctx);
4358 ice_release_lock(&pi->sched_lock);
4364 * @pi: port information structure
4365 * @vsi_handle: software VSI handle
4367 * @num_queues: number of queues
4368 * @q_handles: pointer to software queue handle array
4369 * @q_ids: pointer to the q_id array
4370 * @q_teids: pointer to queue node teids
4371 * @rst_src: if called due to reset, specifies the reset source
4372 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4373 * @cd: pointer to command details structure or NULL
4375 * This function removes queues and their corresponding nodes in SW DB
4378 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4379 u16 *q_handles, u16 *q_ids, u32 *q_teids,
4380 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4381 struct ice_sq_cd *cd)
4383 enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4384 struct ice_aqc_dis_txq_item *qg_list;
4385 struct ice_q_ctx *q_ctx;
4389 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4395 /* if queue is disabled already yet the disable queue command
4396 * has to be sent to complete the VF reset, then call
4397 * ice_aq_dis_lan_txq without any queue information
4400 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4405 buf_size = ice_struct_size(qg_list, q_id, 1);
4406 qg_list = (struct ice_aqc_dis_txq_item *)ice_malloc(hw, buf_size);
4408 return ICE_ERR_NO_MEMORY;
4410 ice_acquire_lock(&pi->sched_lock);
4412 for (i = 0; i < num_queues; i++) {
4413 struct ice_sched_node *node;
4415 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4418 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4420 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4424 if (q_ctx->q_handle != q_handles[i]) {
4425 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4426 q_ctx->q_handle, q_handles[i]);
4429 qg_list->parent_teid = node->info.parent_teid;
4430 qg_list->num_qs = 1;
4431 qg_list->q_id[0] = CPU_TO_LE16(q_ids[i]);
4432 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4435 if (status != ICE_SUCCESS)
4437 ice_free_sched_node(pi, node);
4438 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4440 ice_release_lock(&pi->sched_lock);
4441 ice_free(hw, qg_list);
4446 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4447 * @pi: port information structure
4448 * @vsi_handle: software VSI handle
4449 * @tc_bitmap: TC bitmap
4450 * @maxqs: max queues array per TC
4451 * @owner: LAN or RDMA
4453 * This function adds/updates the VSI queues per TC.
4455 static enum ice_status
4456 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4457 u16 *maxqs, u8 owner)
4459 enum ice_status status = ICE_SUCCESS;
4462 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4465 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4466 return ICE_ERR_PARAM;
4468 ice_acquire_lock(&pi->sched_lock);
4470 ice_for_each_traffic_class(i) {
4471 /* configuration is possible only if TC node is present */
4472 if (!ice_sched_get_tc_node(pi, i))
4475 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4476 ice_is_tc_ena(tc_bitmap, i));
4481 ice_release_lock(&pi->sched_lock);
4486 * ice_cfg_vsi_lan - configure VSI LAN queues
4487 * @pi: port information structure
4488 * @vsi_handle: software VSI handle
4489 * @tc_bitmap: TC bitmap
4490 * @max_lanqs: max LAN queues array per TC
4492 * This function adds/updates the VSI LAN queues per TC.
4495 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4498 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4499 ICE_SCHED_NODE_OWNER_LAN);
4503 * ice_is_main_vsi - checks whether the VSI is main VSI
4504 * @hw: pointer to the HW struct
4505 * @vsi_handle: VSI handle
4507 * Checks whether the VSI is the main VSI (the first PF VSI created on
4510 static bool ice_is_main_vsi(struct ice_hw *hw, u16 vsi_handle)
4512 return vsi_handle == ICE_MAIN_VSI_HANDLE && hw->vsi_ctx[vsi_handle];
4516 * ice_replay_pre_init - replay pre initialization
4517 * @hw: pointer to the HW struct
4518 * @sw: pointer to switch info struct for which function initializes filters
4520 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4522 static enum ice_status
4523 ice_replay_pre_init(struct ice_hw *hw, struct ice_switch_info *sw)
4525 enum ice_status status;
4528 /* Delete old entries from replay filter list head if there is any */
4529 ice_rm_sw_replay_rule_info(hw, sw);
4530 /* In start of replay, move entries into replay_rules list, it
4531 * will allow adding rules entries back to filt_rules list,
4532 * which is operational list.
4534 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
4535 LIST_REPLACE_INIT(&sw->recp_list[i].filt_rules,
4536 &sw->recp_list[i].filt_replay_rules);
4537 ice_sched_replay_agg_vsi_preinit(hw);
4539 status = ice_sched_replay_root_node_bw(hw->port_info);
4543 return ice_sched_replay_tc_node_bw(hw->port_info);
4547 * ice_replay_vsi - replay VSI configuration
4548 * @hw: pointer to the HW struct
4549 * @vsi_handle: driver VSI handle
4551 * Restore all VSI configuration after reset. It is required to call this
4552 * function with main VSI first.
4554 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4556 struct ice_switch_info *sw = hw->switch_info;
4557 struct ice_port_info *pi = hw->port_info;
4558 enum ice_status status;
4560 if (!ice_is_vsi_valid(hw, vsi_handle))
4561 return ICE_ERR_PARAM;
4563 /* Replay pre-initialization if there is any */
4564 if (ice_is_main_vsi(hw, vsi_handle)) {
4565 status = ice_replay_pre_init(hw, sw);
4569 /* Replay per VSI all RSS configurations */
4570 status = ice_replay_rss_cfg(hw, vsi_handle);
4573 /* Replay per VSI all filters */
4574 status = ice_replay_vsi_all_fltr(hw, pi, vsi_handle);
4576 status = ice_replay_vsi_agg(hw, vsi_handle);
4581 * ice_replay_post - post replay configuration cleanup
4582 * @hw: pointer to the HW struct
4584 * Post replay cleanup.
4586 void ice_replay_post(struct ice_hw *hw)
4588 /* Delete old entries from replay filter list head */
4589 ice_rm_all_sw_replay_rule_info(hw);
4590 ice_sched_replay_agg(hw);
4594 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4595 * @hw: ptr to the hardware info
4596 * @reg: offset of 64 bit HW register to read from
4597 * @prev_stat_loaded: bool to specify if previous stats are loaded
4598 * @prev_stat: ptr to previous loaded stat value
4599 * @cur_stat: ptr to current stat value
4602 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4603 u64 *prev_stat, u64 *cur_stat)
4605 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4607 /* device stats are not reset at PFR, they likely will not be zeroed
4608 * when the driver starts. Thus, save the value from the first read
4609 * without adding to the statistic value so that we report stats which
4610 * count up from zero.
4612 if (!prev_stat_loaded) {
4613 *prev_stat = new_data;
4617 /* Calculate the difference between the new and old values, and then
4618 * add it to the software stat value.
4620 if (new_data >= *prev_stat)
4621 *cur_stat += new_data - *prev_stat;
4623 /* to manage the potential roll-over */
4624 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4626 /* Update the previously stored value to prepare for next read */
4627 *prev_stat = new_data;
4631 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4632 * @hw: ptr to the hardware info
4633 * @reg: offset of HW register to read from
4634 * @prev_stat_loaded: bool to specify if previous stats are loaded
4635 * @prev_stat: ptr to previous loaded stat value
4636 * @cur_stat: ptr to current stat value
4639 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4640 u64 *prev_stat, u64 *cur_stat)
4644 new_data = rd32(hw, reg);
4646 /* device stats are not reset at PFR, they likely will not be zeroed
4647 * when the driver starts. Thus, save the value from the first read
4648 * without adding to the statistic value so that we report stats which
4649 * count up from zero.
4651 if (!prev_stat_loaded) {
4652 *prev_stat = new_data;
4656 /* Calculate the difference between the new and old values, and then
4657 * add it to the software stat value.
4659 if (new_data >= *prev_stat)
4660 *cur_stat += new_data - *prev_stat;
4662 /* to manage the potential roll-over */
4663 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4665 /* Update the previously stored value to prepare for next read */
4666 *prev_stat = new_data;
4670 * ice_stat_update_repc - read GLV_REPC stats from chip and update stat values
4671 * @hw: ptr to the hardware info
4672 * @vsi_handle: VSI handle
4673 * @prev_stat_loaded: bool to specify if the previous stat values are loaded
4674 * @cur_stats: ptr to current stats structure
4676 * The GLV_REPC statistic register actually tracks two 16bit statistics, and
4677 * thus cannot be read using the normal ice_stat_update32 function.
4679 * Read the GLV_REPC register associated with the given VSI, and update the
4680 * rx_no_desc and rx_error values in the ice_eth_stats structure.
4682 * Because the statistics in GLV_REPC stick at 0xFFFF, the register must be
4683 * cleared each time it's read.
4685 * Note that the GLV_RDPC register also counts the causes that would trigger
4686 * GLV_REPC. However, it does not give the finer grained detail about why the
4687 * packets are being dropped. The GLV_REPC values can be used to distinguish
4688 * whether Rx packets are dropped due to errors or due to no available
4692 ice_stat_update_repc(struct ice_hw *hw, u16 vsi_handle, bool prev_stat_loaded,
4693 struct ice_eth_stats *cur_stats)
4695 u16 vsi_num, no_desc, error_cnt;
4698 if (!ice_is_vsi_valid(hw, vsi_handle))
4701 vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
4703 /* If we haven't loaded stats yet, just clear the current value */
4704 if (!prev_stat_loaded) {
4705 wr32(hw, GLV_REPC(vsi_num), 0);
4709 repc = rd32(hw, GLV_REPC(vsi_num));
4710 no_desc = (repc & GLV_REPC_NO_DESC_CNT_M) >> GLV_REPC_NO_DESC_CNT_S;
4711 error_cnt = (repc & GLV_REPC_ERROR_CNT_M) >> GLV_REPC_ERROR_CNT_S;
4713 /* Clear the count by writing to the stats register */
4714 wr32(hw, GLV_REPC(vsi_num), 0);
4716 cur_stats->rx_no_desc += no_desc;
4717 cur_stats->rx_errors += error_cnt;
4721 * ice_sched_query_elem - query element information from HW
4722 * @hw: pointer to the HW struct
4723 * @node_teid: node TEID to be queried
4724 * @buf: buffer to element information
4726 * This function queries HW element information
4729 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4730 struct ice_aqc_txsched_elem_data *buf)
4732 u16 buf_size, num_elem_ret = 0;
4733 enum ice_status status;
4735 buf_size = sizeof(*buf);
4736 ice_memset(buf, 0, buf_size, ICE_NONDMA_MEM);
4737 buf->node_teid = CPU_TO_LE32(node_teid);
4738 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4740 if (status != ICE_SUCCESS || num_elem_ret != 1)
4741 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4746 * ice_get_fw_mode - returns FW mode
4747 * @hw: pointer to the HW struct
4749 enum ice_fw_modes ice_get_fw_mode(struct ice_hw *hw)
4751 #define ICE_FW_MODE_DBG_M BIT(0)
4752 #define ICE_FW_MODE_REC_M BIT(1)
4753 #define ICE_FW_MODE_ROLLBACK_M BIT(2)
4756 /* check the current FW mode */
4757 fw_mode = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_MODES_M;
4759 if (fw_mode & ICE_FW_MODE_DBG_M)
4760 return ICE_FW_MODE_DBG;
4761 else if (fw_mode & ICE_FW_MODE_REC_M)
4762 return ICE_FW_MODE_REC;
4763 else if (fw_mode & ICE_FW_MODE_ROLLBACK_M)
4764 return ICE_FW_MODE_ROLLBACK;
4766 return ICE_FW_MODE_NORMAL;
4771 * @hw: pointer to the hw struct
4772 * @topo_addr: topology address for a device to communicate with
4773 * @bus_addr: 7-bit I2C bus address
4774 * @addr: I2C memory address (I2C offset) with up to 16 bits
4775 * @params: I2C parameters: bit [7] - Repeated start, bits [6:5] data offset size,
4776 * bit [4] - I2C address type, bits [3:0] - data size to read (0-16 bytes)
4777 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
4778 * @cd: pointer to command details structure or NULL
4783 ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
4784 u16 bus_addr, __le16 addr, u8 params, u8 *data,
4785 struct ice_sq_cd *cd)
4787 struct ice_aq_desc desc = { 0 };
4788 struct ice_aqc_i2c *cmd;
4789 enum ice_status status;
4792 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
4793 cmd = &desc.params.read_write_i2c;
4796 return ICE_ERR_PARAM;
4798 data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
4800 cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
4801 cmd->topo_addr = topo_addr;
4802 cmd->i2c_params = params;
4803 cmd->i2c_addr = addr;
4805 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4807 struct ice_aqc_read_i2c_resp *resp;
4810 resp = &desc.params.read_i2c_resp;
4811 for (i = 0; i < data_size; i++) {
4812 *data = resp->i2c_data[i];
4822 * @hw: pointer to the hw struct
4823 * @topo_addr: topology address for a device to communicate with
4824 * @bus_addr: 7-bit I2C bus address
4825 * @addr: I2C memory address (I2C offset) with up to 16 bits
4826 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
4827 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
4828 * @cd: pointer to command details structure or NULL
4830 * Write I2C (0x06E3)
4833 ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
4834 u16 bus_addr, __le16 addr, u8 params, u8 *data,
4835 struct ice_sq_cd *cd)
4837 struct ice_aq_desc desc = { 0 };
4838 struct ice_aqc_i2c *cmd;
4841 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
4842 cmd = &desc.params.read_write_i2c;
4844 data_size = (params & ICE_AQC_I2C_DATA_SIZE_M) >> ICE_AQC_I2C_DATA_SIZE_S;
4846 /* data_size limited to 4 */
4848 return ICE_ERR_PARAM;
4850 cmd->i2c_bus_addr = CPU_TO_LE16(bus_addr);
4851 cmd->topo_addr = topo_addr;
4852 cmd->i2c_params = params;
4853 cmd->i2c_addr = addr;
4855 for (i = 0; i < data_size; i++) {
4856 cmd->i2c_data[i] = *data;
4860 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4864 * ice_fw_supports_link_override
4865 * @hw: pointer to the hardware structure
4867 * Checks if the firmware supports link override
4869 bool ice_fw_supports_link_override(struct ice_hw *hw)
4871 if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4872 if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4874 if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4875 hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4877 } else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
4885 * ice_get_link_default_override
4886 * @ldo: pointer to the link default override struct
4887 * @pi: pointer to the port info struct
4889 * Gets the link default override for a port
4892 ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
4893 struct ice_port_info *pi)
4895 u16 i, tlv, tlv_len, tlv_start, buf, offset;
4896 struct ice_hw *hw = pi->hw;
4897 enum ice_status status;
4899 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
4900 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
4902 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
4906 /* Each port has its own config; calculate for our port */
4907 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
4908 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
4910 /* link options first */
4911 status = ice_read_sr_word(hw, tlv_start, &buf);
4913 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4916 ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
4917 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
4918 ICE_LINK_OVERRIDE_PHY_CFG_S;
4920 /* link PHY config */
4921 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
4922 status = ice_read_sr_word(hw, offset, &buf);
4924 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
4927 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
4930 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
4931 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4932 status = ice_read_sr_word(hw, (offset + i), &buf);
4934 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4937 /* shift 16 bits at a time to fill 64 bits */
4938 ldo->phy_type_low |= ((u64)buf << (i * 16));
4941 /* PHY types high */
4942 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
4943 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
4944 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4945 status = ice_read_sr_word(hw, (offset + i), &buf);
4947 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4950 /* shift 16 bits at a time to fill 64 bits */
4951 ldo->phy_type_high |= ((u64)buf << (i * 16));
4958 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
4959 * @caps: get PHY capability data
4961 bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
4963 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
4964 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
4965 ICE_AQC_PHY_AN_EN_CLAUSE73 |
4966 ICE_AQC_PHY_AN_EN_CLAUSE37))
4973 * ice_aq_set_lldp_mib - Set the LLDP MIB
4974 * @hw: pointer to the HW struct
4975 * @mib_type: Local, Remote or both Local and Remote MIBs
4976 * @buf: pointer to the caller-supplied buffer to store the MIB block
4977 * @buf_size: size of the buffer (in bytes)
4978 * @cd: pointer to command details structure or NULL
4980 * Set the LLDP MIB. (0x0A08)
4983 ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
4984 struct ice_sq_cd *cd)
4986 struct ice_aqc_lldp_set_local_mib *cmd;
4987 struct ice_aq_desc desc;
4989 cmd = &desc.params.lldp_set_mib;
4991 if (buf_size == 0 || !buf)
4992 return ICE_ERR_PARAM;
4994 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
4996 desc.flags |= CPU_TO_LE16((u16)ICE_AQ_FLAG_RD);
4997 desc.datalen = CPU_TO_LE16(buf_size);
4999 cmd->type = mib_type;
5000 cmd->length = CPU_TO_LE16(buf_size);
5002 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5006 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5007 * @hw: pointer to HW struct
5009 bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5011 if (hw->mac_type != ICE_MAC_E810)
5014 if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
5015 if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
5017 if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
5018 hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
5020 } else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
5027 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5028 * @hw: pointer to HW struct
5029 * @vsi_num: absolute HW index for VSI
5030 * @add: boolean for if adding or removing a filter
5033 ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5035 struct ice_aqc_lldp_filter_ctrl *cmd;
5036 struct ice_aq_desc desc;
5038 cmd = &desc.params.lldp_filter_ctrl;
5040 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5043 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5045 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5047 cmd->vsi_num = CPU_TO_LE16(vsi_num);
5049 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5053 * ice_fw_supports_report_dflt_cfg
5054 * @hw: pointer to the hardware structure
5056 * Checks if the firmware supports report default configuration
5058 bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5060 if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
5061 if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN)
5063 if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN &&
5064 hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH)
5066 } else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) {