1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2001-2020 Intel Corporation
5 #include "ice_common.h"
6 #include "ice_flex_pipe.h"
7 #include "ice_protocol_type.h"
10 /* To support tunneling entries by PF, the package will append the PF number to
11 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
13 static const struct ice_tunnel_type_scan tnls[] = {
14 { TNL_VXLAN, "TNL_VXLAN_PF" },
15 { TNL_GENEVE, "TNL_GENEVE_PF" },
19 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
23 ICE_SID_XLT_KEY_BUILDER_SW,
26 ICE_SID_PROFID_TCAM_SW,
27 ICE_SID_PROFID_REDIR_SW,
29 ICE_SID_CDID_KEY_BUILDER_SW,
36 ICE_SID_XLT_KEY_BUILDER_ACL,
39 ICE_SID_PROFID_TCAM_ACL,
40 ICE_SID_PROFID_REDIR_ACL,
42 ICE_SID_CDID_KEY_BUILDER_ACL,
43 ICE_SID_CDID_REDIR_ACL
49 ICE_SID_XLT_KEY_BUILDER_FD,
52 ICE_SID_PROFID_TCAM_FD,
53 ICE_SID_PROFID_REDIR_FD,
55 ICE_SID_CDID_KEY_BUILDER_FD,
62 ICE_SID_XLT_KEY_BUILDER_RSS,
65 ICE_SID_PROFID_TCAM_RSS,
66 ICE_SID_PROFID_REDIR_RSS,
68 ICE_SID_CDID_KEY_BUILDER_RSS,
69 ICE_SID_CDID_REDIR_RSS
75 ICE_SID_XLT_KEY_BUILDER_PE,
78 ICE_SID_PROFID_TCAM_PE,
79 ICE_SID_PROFID_REDIR_PE,
81 ICE_SID_CDID_KEY_BUILDER_PE,
87 * ice_sect_id - returns section ID
91 * This helper function returns the proper section ID given a block type and a
94 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
96 return ice_sect_lkup[blk][sect];
101 * @buf: pointer to the ice buffer
103 * This helper function validates a buffer's header.
105 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
107 struct ice_buf_hdr *hdr;
111 hdr = (struct ice_buf_hdr *)buf->buf;
113 section_count = LE16_TO_CPU(hdr->section_count);
114 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
117 data_end = LE16_TO_CPU(hdr->data_end);
118 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
126 * @ice_seg: pointer to the ice segment
128 * Returns the address of the buffer table within the ice segment.
130 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
132 struct ice_nvm_table *nvms;
134 nvms = (struct ice_nvm_table *)
135 (ice_seg->device_table +
136 LE32_TO_CPU(ice_seg->device_table_count));
138 return (_FORCE_ struct ice_buf_table *)
139 (nvms->vers + LE32_TO_CPU(nvms->table_count));
144 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
145 * @state: pointer to the enum state
147 * This function will enumerate all the buffers in the ice segment. The first
148 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
149 * ice_seg is set to NULL which continues the enumeration. When the function
150 * returns a NULL pointer, then the end of the buffers has been reached, or an
151 * unexpected value has been detected (for example an invalid section count or
152 * an invalid buffer end value).
154 static struct ice_buf_hdr *
155 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
158 state->buf_table = ice_find_buf_table(ice_seg);
159 if (!state->buf_table)
163 return ice_pkg_val_buf(state->buf_table->buf_array);
166 if (++state->buf_idx < LE32_TO_CPU(state->buf_table->buf_count))
167 return ice_pkg_val_buf(state->buf_table->buf_array +
174 * ice_pkg_advance_sect
175 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
176 * @state: pointer to the enum state
178 * This helper function will advance the section within the ice segment,
179 * also advancing the buffer if needed.
182 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
184 if (!ice_seg && !state->buf)
187 if (!ice_seg && state->buf)
188 if (++state->sect_idx < LE16_TO_CPU(state->buf->section_count))
191 state->buf = ice_pkg_enum_buf(ice_seg, state);
195 /* start of new buffer, reset section index */
201 * ice_pkg_enum_section
202 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
203 * @state: pointer to the enum state
204 * @sect_type: section type to enumerate
206 * This function will enumerate all the sections of a particular type in the
207 * ice segment. The first call is made with the ice_seg parameter non-NULL;
208 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
209 * When the function returns a NULL pointer, then the end of the matching
210 * sections has been reached.
213 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
219 state->type = sect_type;
221 if (!ice_pkg_advance_sect(ice_seg, state))
224 /* scan for next matching section */
225 while (state->buf->section_entry[state->sect_idx].type !=
226 CPU_TO_LE32(state->type))
227 if (!ice_pkg_advance_sect(NULL, state))
230 /* validate section */
231 offset = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
232 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
235 size = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].size);
236 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
239 /* make sure the section fits in the buffer */
240 if (offset + size > ICE_PKG_BUF_SIZE)
244 LE32_TO_CPU(state->buf->section_entry[state->sect_idx].type);
246 /* calc pointer to this section */
247 state->sect = ((u8 *)state->buf) +
248 LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
255 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
256 * @state: pointer to the enum state
257 * @sect_type: section type to enumerate
258 * @offset: pointer to variable that receives the offset in the table (optional)
259 * @handler: function that handles access to the entries into the section type
261 * This function will enumerate all the entries in particular section type in
262 * the ice segment. The first call is made with the ice_seg parameter non-NULL;
263 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
264 * When the function returns a NULL pointer, then the end of the entries has
267 * Since each section may have a different header and entry size, the handler
268 * function is needed to determine the number and location entries in each
271 * The offset parameter is optional, but should be used for sections that
272 * contain an offset for each section table. For such cases, the section handler
273 * function must return the appropriate offset + index to give the absolution
274 * offset for each entry. For example, if the base for a section's header
275 * indicates a base offset of 10, and the index for the entry is 2, then
276 * section handler function should set the offset to 10 + 2 = 12.
279 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
280 u32 sect_type, u32 *offset,
281 void *(*handler)(u32 sect_type, void *section,
282 u32 index, u32 *offset))
290 if (!ice_pkg_enum_section(ice_seg, state, sect_type))
293 state->entry_idx = 0;
294 state->handler = handler;
303 entry = state->handler(state->sect_type, state->sect, state->entry_idx,
306 /* end of a section, look for another section of this type */
307 if (!ice_pkg_enum_section(NULL, state, 0))
310 state->entry_idx = 0;
311 entry = state->handler(state->sect_type, state->sect,
312 state->entry_idx, offset);
319 * ice_boost_tcam_handler
320 * @sect_type: section type
321 * @section: pointer to section
322 * @index: index of the boost TCAM entry to be returned
323 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
325 * This is a callback function that can be passed to ice_pkg_enum_entry.
326 * Handles enumeration of individual boost TCAM entries.
329 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
331 struct ice_boost_tcam_section *boost;
336 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
339 if (index > ICE_MAX_BST_TCAMS_IN_BUF)
345 boost = (struct ice_boost_tcam_section *)section;
346 if (index >= LE16_TO_CPU(boost->count))
349 return boost->tcam + index;
353 * ice_find_boost_entry
354 * @ice_seg: pointer to the ice segment (non-NULL)
355 * @addr: Boost TCAM address of entry to search for
356 * @entry: returns pointer to the entry
358 * Finds a particular Boost TCAM entry and returns a pointer to that entry
359 * if it is found. The ice_seg parameter must not be NULL since the first call
360 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
362 static enum ice_status
363 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
364 struct ice_boost_tcam_entry **entry)
366 struct ice_boost_tcam_entry *tcam;
367 struct ice_pkg_enum state;
369 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
372 return ICE_ERR_PARAM;
375 tcam = (struct ice_boost_tcam_entry *)
376 ice_pkg_enum_entry(ice_seg, &state,
377 ICE_SID_RXPARSER_BOOST_TCAM, NULL,
378 ice_boost_tcam_handler);
379 if (tcam && LE16_TO_CPU(tcam->addr) == addr) {
392 * ice_label_enum_handler
393 * @sect_type: section type
394 * @section: pointer to section
395 * @index: index of the label entry to be returned
396 * @offset: pointer to receive absolute offset, always zero for label sections
398 * This is a callback function that can be passed to ice_pkg_enum_entry.
399 * Handles enumeration of individual label entries.
402 ice_label_enum_handler(u32 __ALWAYS_UNUSED sect_type, void *section, u32 index,
405 struct ice_label_section *labels;
410 if (index > ICE_MAX_LABELS_IN_BUF)
416 labels = (struct ice_label_section *)section;
417 if (index >= LE16_TO_CPU(labels->count))
420 return labels->label + index;
425 * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
426 * @type: the section type that will contain the label (0 on subsequent calls)
427 * @state: ice_pkg_enum structure that will hold the state of the enumeration
428 * @value: pointer to a value that will return the label's value if found
430 * Enumerates a list of labels in the package. The caller will call
431 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
432 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
433 * the end of the list has been reached.
436 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
439 struct ice_label *label;
441 /* Check for valid label section on first call */
442 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
445 label = (struct ice_label *)ice_pkg_enum_entry(ice_seg, state, type,
447 ice_label_enum_handler);
451 *value = LE16_TO_CPU(label->value);
457 * @hw: pointer to the HW structure
458 * @ice_seg: pointer to the segment of the package scan (non-NULL)
460 * This function will scan the package and save off relevant information
461 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
462 * since the first call to ice_enum_labels requires a pointer to an actual
465 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
467 struct ice_pkg_enum state;
472 ice_memset(&hw->tnl, 0, sizeof(hw->tnl), ICE_NONDMA_MEM);
473 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
478 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
481 while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
482 for (i = 0; tnls[i].type != TNL_LAST; i++) {
483 size_t len = strlen(tnls[i].label_prefix);
485 /* Look for matching label start, before continuing */
486 if (strncmp(label_name, tnls[i].label_prefix, len))
489 /* Make sure this label matches our PF. Note that the PF
490 * character ('0' - '7') will be located where our
491 * prefix string's null terminator is located.
493 if ((label_name[len] - '0') == hw->pf_id) {
494 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
495 hw->tnl.tbl[hw->tnl.count].valid = false;
496 hw->tnl.tbl[hw->tnl.count].in_use = false;
497 hw->tnl.tbl[hw->tnl.count].marked = false;
498 hw->tnl.tbl[hw->tnl.count].boost_addr = val;
499 hw->tnl.tbl[hw->tnl.count].port = 0;
505 label_name = ice_enum_labels(NULL, 0, &state, &val);
508 /* Cache the appropriate boost TCAM entry pointers */
509 for (i = 0; i < hw->tnl.count; i++) {
510 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
511 &hw->tnl.tbl[i].boost_entry);
512 if (hw->tnl.tbl[i].boost_entry)
513 hw->tnl.tbl[i].valid = true;
519 #define ICE_DC_KEY 0x1 /* don't care */
520 #define ICE_DC_KEYINV 0x1
521 #define ICE_NM_KEY 0x0 /* never match */
522 #define ICE_NM_KEYINV 0x0
523 #define ICE_0_KEY 0x1 /* match 0 */
524 #define ICE_0_KEYINV 0x0
525 #define ICE_1_KEY 0x0 /* match 1 */
526 #define ICE_1_KEYINV 0x1
529 * ice_gen_key_word - generate 16-bits of a key/mask word
531 * @valid: valid bits mask (change only the valid bits)
532 * @dont_care: don't care mask
533 * @nvr_mtch: never match mask
534 * @key: pointer to an array of where the resulting key portion
535 * @key_inv: pointer to an array of where the resulting key invert portion
537 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
538 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
539 * of key and 8 bits of key invert.
541 * '0' = b01, always match a 0 bit
542 * '1' = b10, always match a 1 bit
543 * '?' = b11, don't care bit (always matches)
544 * '~' = b00, never match bit
548 * dont_care: b0 0 1 1 0 0
549 * never_mtch: b0 0 0 0 1 1
550 * ------------------------------
551 * Result: key: b01 10 11 11 00 00
553 static enum ice_status
554 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
557 u8 in_key = *key, in_key_inv = *key_inv;
560 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */
561 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
567 /* encode the 8 bits into 8-bit key and 8-bit key invert */
568 for (i = 0; i < 8; i++) {
572 if (!(valid & 0x1)) { /* change only valid bits */
573 *key |= (in_key & 0x1) << 7;
574 *key_inv |= (in_key_inv & 0x1) << 7;
575 } else if (dont_care & 0x1) { /* don't care bit */
576 *key |= ICE_DC_KEY << 7;
577 *key_inv |= ICE_DC_KEYINV << 7;
578 } else if (nvr_mtch & 0x1) { /* never match bit */
579 *key |= ICE_NM_KEY << 7;
580 *key_inv |= ICE_NM_KEYINV << 7;
581 } else if (val & 0x01) { /* exact 1 match */
582 *key |= ICE_1_KEY << 7;
583 *key_inv |= ICE_1_KEYINV << 7;
584 } else { /* exact 0 match */
585 *key |= ICE_0_KEY << 7;
586 *key_inv |= ICE_0_KEYINV << 7;
601 * ice_bits_max_set - determine if the number of bits set is within a maximum
602 * @mask: pointer to the byte array which is the mask
603 * @size: the number of bytes in the mask
604 * @max: the max number of set bits
606 * This function determines if there are at most 'max' number of bits set in an
607 * array. Returns true if the number for bits set is <= max or will return false
610 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
615 /* check each byte */
616 for (i = 0; i < size; i++) {
617 /* if 0, go to next byte */
621 /* We know there is at least one set bit in this byte because of
622 * the above check; if we already have found 'max' number of
623 * bits set, then we can return failure now.
628 /* count the bits in this byte, checking threshold */
629 count += ice_hweight8(mask[i]);
638 * ice_set_key - generate a variable sized key with multiples of 16-bits
639 * @key: pointer to where the key will be stored
640 * @size: the size of the complete key in bytes (must be even)
641 * @val: array of 8-bit values that makes up the value portion of the key
642 * @upd: array of 8-bit masks that determine what key portion to update
643 * @dc: array of 8-bit masks that make up the don't care mask
644 * @nm: array of 8-bit masks that make up the never match mask
645 * @off: the offset of the first byte in the key to update
646 * @len: the number of bytes in the key update
648 * This function generates a key from a value, a don't care mask and a never
650 * upd, dc, and nm are optional parameters, and can be NULL:
651 * upd == NULL --> upd mask is all 1's (update all bits)
652 * dc == NULL --> dc mask is all 0's (no don't care bits)
653 * nm == NULL --> nm mask is all 0's (no never match bits)
656 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
662 /* size must be a multiple of 2 bytes. */
665 half_size = size / 2;
667 if (off + len > half_size)
670 /* Make sure at most one bit is set in the never match mask. Having more
671 * than one never match mask bit set will cause HW to consume excessive
672 * power otherwise; this is a power management efficiency check.
674 #define ICE_NVR_MTCH_BITS_MAX 1
675 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
678 for (i = 0; i < len; i++)
679 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
680 dc ? dc[i] : 0, nm ? nm[i] : 0,
681 key + off + i, key + half_size + off + i))
688 * ice_acquire_global_cfg_lock
689 * @hw: pointer to the HW structure
690 * @access: access type (read or write)
692 * This function will request ownership of the global config lock for reading
693 * or writing of the package. When attempting to obtain write access, the
694 * caller must check for the following two return values:
696 * ICE_SUCCESS - Means the caller has acquired the global config lock
697 * and can perform writing of the package.
698 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
699 * package or has found that no update was necessary; in
700 * this case, the caller can just skip performing any
701 * update of the package.
703 static enum ice_status
704 ice_acquire_global_cfg_lock(struct ice_hw *hw,
705 enum ice_aq_res_access_type access)
707 enum ice_status status;
709 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
711 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
712 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
714 if (status == ICE_ERR_AQ_NO_WORK)
715 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
721 * ice_release_global_cfg_lock
722 * @hw: pointer to the HW structure
724 * This function will release the global config lock.
726 static void ice_release_global_cfg_lock(struct ice_hw *hw)
728 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
732 * ice_acquire_change_lock
733 * @hw: pointer to the HW structure
734 * @access: access type (read or write)
736 * This function will request ownership of the change lock.
739 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
741 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
743 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
744 ICE_CHANGE_LOCK_TIMEOUT);
748 * ice_release_change_lock
749 * @hw: pointer to the HW structure
751 * This function will release the change lock using the proper Admin Command.
753 void ice_release_change_lock(struct ice_hw *hw)
755 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
757 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
761 * ice_aq_download_pkg
762 * @hw: pointer to the hardware structure
763 * @pkg_buf: the package buffer to transfer
764 * @buf_size: the size of the package buffer
765 * @last_buf: last buffer indicator
766 * @error_offset: returns error offset
767 * @error_info: returns error information
768 * @cd: pointer to command details structure or NULL
770 * Download Package (0x0C40)
772 static enum ice_status
773 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
774 u16 buf_size, bool last_buf, u32 *error_offset,
775 u32 *error_info, struct ice_sq_cd *cd)
777 struct ice_aqc_download_pkg *cmd;
778 struct ice_aq_desc desc;
779 enum ice_status status;
781 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
788 cmd = &desc.params.download_pkg;
789 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
790 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
793 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
795 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
796 if (status == ICE_ERR_AQ_ERROR) {
797 /* Read error from buffer only when the FW returned an error */
798 struct ice_aqc_download_pkg_resp *resp;
800 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
802 *error_offset = LE32_TO_CPU(resp->error_offset);
804 *error_info = LE32_TO_CPU(resp->error_info);
812 * @hw: pointer to the hardware structure
813 * @pkg_buf: the package cmd buffer
814 * @buf_size: the size of the package cmd buffer
815 * @last_buf: last buffer indicator
816 * @error_offset: returns error offset
817 * @error_info: returns error information
818 * @cd: pointer to command details structure or NULL
820 * Update Package (0x0C42)
822 static enum ice_status
823 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
824 bool last_buf, u32 *error_offset, u32 *error_info,
825 struct ice_sq_cd *cd)
827 struct ice_aqc_download_pkg *cmd;
828 struct ice_aq_desc desc;
829 enum ice_status status;
831 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
838 cmd = &desc.params.download_pkg;
839 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
840 desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
843 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
845 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
846 if (status == ICE_ERR_AQ_ERROR) {
847 /* Read error from buffer only when the FW returned an error */
848 struct ice_aqc_download_pkg_resp *resp;
850 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
852 *error_offset = LE32_TO_CPU(resp->error_offset);
854 *error_info = LE32_TO_CPU(resp->error_info);
861 * ice_find_seg_in_pkg
862 * @hw: pointer to the hardware structure
863 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
864 * @pkg_hdr: pointer to the package header to be searched
866 * This function searches a package file for a particular segment type. On
867 * success it returns a pointer to the segment header, otherwise it will
870 static struct ice_generic_seg_hdr *
871 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
872 struct ice_pkg_hdr *pkg_hdr)
876 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
877 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
878 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
879 pkg_hdr->pkg_format_ver.update,
880 pkg_hdr->pkg_format_ver.draft);
882 /* Search all package segments for the requested segment type */
883 for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) {
884 struct ice_generic_seg_hdr *seg;
886 seg = (struct ice_generic_seg_hdr *)
887 ((u8 *)pkg_hdr + LE32_TO_CPU(pkg_hdr->seg_offset[i]));
889 if (LE32_TO_CPU(seg->seg_type) == seg_type)
898 * @hw: pointer to the hardware structure
899 * @bufs: pointer to an array of buffers
900 * @count: the number of buffers in the array
902 * Obtains change lock and updates package.
905 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
907 enum ice_status status;
910 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
914 for (i = 0; i < count; i++) {
915 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
916 bool last = ((i + 1) == count);
918 status = ice_aq_update_pkg(hw, bh, LE16_TO_CPU(bh->data_end),
919 last, &offset, &info, NULL);
922 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
923 status, offset, info);
928 ice_release_change_lock(hw);
935 * @hw: pointer to the hardware structure
936 * @bufs: pointer to an array of buffers
937 * @count: the number of buffers in the array
939 * Obtains global config lock and downloads the package configuration buffers
940 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
941 * found indicates that the rest of the buffers are all metadata buffers.
943 static enum ice_status
944 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
946 enum ice_status status;
947 struct ice_buf_hdr *bh;
951 return ICE_ERR_PARAM;
953 /* If the first buffer's first section has its metadata bit set
954 * then there are no buffers to be downloaded, and the operation is
955 * considered a success.
957 bh = (struct ice_buf_hdr *)bufs;
958 if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF)
961 /* reset pkg_dwnld_status in case this function is called in the
964 hw->pkg_dwnld_status = ICE_AQ_RC_OK;
966 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
968 if (status == ICE_ERR_AQ_NO_WORK)
969 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
971 hw->pkg_dwnld_status = hw->adminq.sq_last_status;
975 for (i = 0; i < count; i++) {
976 bool last = ((i + 1) == count);
979 /* check next buffer for metadata flag */
980 bh = (struct ice_buf_hdr *)(bufs + i + 1);
982 /* A set metadata flag in the next buffer will signal
983 * that the current buffer will be the last buffer
986 if (LE16_TO_CPU(bh->section_count))
987 if (LE32_TO_CPU(bh->section_entry[0].type) &
992 bh = (struct ice_buf_hdr *)(bufs + i);
994 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
995 &offset, &info, NULL);
997 /* Save AQ status from download package */
998 hw->pkg_dwnld_status = hw->adminq.sq_last_status;
1000 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
1001 status, offset, info);
1009 ice_release_global_cfg_lock(hw);
1015 * ice_aq_get_pkg_info_list
1016 * @hw: pointer to the hardware structure
1017 * @pkg_info: the buffer which will receive the information list
1018 * @buf_size: the size of the pkg_info information buffer
1019 * @cd: pointer to command details structure or NULL
1021 * Get Package Info List (0x0C43)
1023 static enum ice_status
1024 ice_aq_get_pkg_info_list(struct ice_hw *hw,
1025 struct ice_aqc_get_pkg_info_resp *pkg_info,
1026 u16 buf_size, struct ice_sq_cd *cd)
1028 struct ice_aq_desc desc;
1030 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1031 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1033 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1038 * @hw: pointer to the hardware structure
1039 * @ice_seg: pointer to the segment of the package to be downloaded
1041 * Handles the download of a complete package.
1043 static enum ice_status
1044 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1046 struct ice_buf_table *ice_buf_tbl;
1048 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1049 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1050 ice_seg->hdr.seg_format_ver.major,
1051 ice_seg->hdr.seg_format_ver.minor,
1052 ice_seg->hdr.seg_format_ver.update,
1053 ice_seg->hdr.seg_format_ver.draft);
1055 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1056 LE32_TO_CPU(ice_seg->hdr.seg_type),
1057 LE32_TO_CPU(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1059 ice_buf_tbl = ice_find_buf_table(ice_seg);
1061 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1062 LE32_TO_CPU(ice_buf_tbl->buf_count));
1064 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1065 LE32_TO_CPU(ice_buf_tbl->buf_count));
1070 * @hw: pointer to the hardware structure
1071 * @pkg_hdr: pointer to the driver's package hdr
1073 * Saves off the package details into the HW structure.
1075 static enum ice_status
1076 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1078 struct ice_global_metadata_seg *meta_seg;
1079 struct ice_generic_seg_hdr *seg_hdr;
1081 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1083 return ICE_ERR_PARAM;
1085 meta_seg = (struct ice_global_metadata_seg *)
1086 ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr);
1088 hw->pkg_ver = meta_seg->pkg_ver;
1089 ice_memcpy(hw->pkg_name, meta_seg->pkg_name,
1090 sizeof(hw->pkg_name), ICE_NONDMA_TO_NONDMA);
1092 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1093 meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor,
1094 meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft,
1095 meta_seg->pkg_name);
1097 ice_debug(hw, ICE_DBG_INIT, "Did not find metadata segment in driver package\n");
1101 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1103 hw->ice_pkg_ver = seg_hdr->seg_format_ver;
1104 ice_memcpy(hw->ice_pkg_name, seg_hdr->seg_id,
1105 sizeof(hw->ice_pkg_name), ICE_NONDMA_TO_NONDMA);
1107 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1108 seg_hdr->seg_format_ver.major,
1109 seg_hdr->seg_format_ver.minor,
1110 seg_hdr->seg_format_ver.update,
1111 seg_hdr->seg_format_ver.draft,
1114 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
1123 * @hw: pointer to the hardware structure
1125 * Store details of the package currently loaded in HW into the HW structure.
1127 static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
1129 struct ice_aqc_get_pkg_info_resp *pkg_info;
1130 enum ice_status status;
1134 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1136 size = ice_struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1137 pkg_info = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
1139 return ICE_ERR_NO_MEMORY;
1141 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
1143 goto init_pkg_free_alloc;
1145 for (i = 0; i < LE32_TO_CPU(pkg_info->count); i++) {
1146 #define ICE_PKG_FLAG_COUNT 4
1147 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1150 if (pkg_info->pkg_info[i].is_active) {
1151 flags[place++] = 'A';
1152 hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1153 hw->active_track_id =
1154 LE32_TO_CPU(pkg_info->pkg_info[i].track_id);
1155 ice_memcpy(hw->active_pkg_name,
1156 pkg_info->pkg_info[i].name,
1157 sizeof(pkg_info->pkg_info[i].name),
1158 ICE_NONDMA_TO_NONDMA);
1159 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1161 if (pkg_info->pkg_info[i].is_active_at_boot)
1162 flags[place++] = 'B';
1163 if (pkg_info->pkg_info[i].is_modified)
1164 flags[place++] = 'M';
1165 if (pkg_info->pkg_info[i].is_in_nvm)
1166 flags[place++] = 'N';
1168 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1169 i, pkg_info->pkg_info[i].ver.major,
1170 pkg_info->pkg_info[i].ver.minor,
1171 pkg_info->pkg_info[i].ver.update,
1172 pkg_info->pkg_info[i].ver.draft,
1173 pkg_info->pkg_info[i].name, flags);
1176 init_pkg_free_alloc:
1177 ice_free(hw, pkg_info);
1183 * ice_verify_pkg - verify package
1184 * @pkg: pointer to the package buffer
1185 * @len: size of the package buffer
1187 * Verifies various attributes of the package file, including length, format
1188 * version, and the requirement of at least one segment.
1190 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1195 if (len < ice_struct_size(pkg, seg_offset, 1))
1196 return ICE_ERR_BUF_TOO_SHORT;
1198 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1199 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1200 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1201 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1204 /* pkg must have at least one segment */
1205 seg_count = LE32_TO_CPU(pkg->seg_count);
1209 /* make sure segment array fits in package length */
1210 if (len < ice_struct_size(pkg, seg_offset, seg_count))
1211 return ICE_ERR_BUF_TOO_SHORT;
1213 /* all segments must fit within length */
1214 for (i = 0; i < seg_count; i++) {
1215 u32 off = LE32_TO_CPU(pkg->seg_offset[i]);
1216 struct ice_generic_seg_hdr *seg;
1218 /* segment header must fit */
1219 if (len < off + sizeof(*seg))
1220 return ICE_ERR_BUF_TOO_SHORT;
1222 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1224 /* segment body must fit */
1225 if (len < off + LE32_TO_CPU(seg->seg_size))
1226 return ICE_ERR_BUF_TOO_SHORT;
1233 * ice_free_seg - free package segment pointer
1234 * @hw: pointer to the hardware structure
1236 * Frees the package segment pointer in the proper manner, depending on if the
1237 * segment was allocated or just the passed in pointer was stored.
1239 void ice_free_seg(struct ice_hw *hw)
1242 ice_free(hw, hw->pkg_copy);
1243 hw->pkg_copy = NULL;
1250 * ice_init_pkg_regs - initialize additional package registers
1251 * @hw: pointer to the hardware structure
1253 static void ice_init_pkg_regs(struct ice_hw *hw)
1255 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1256 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1257 #define ICE_SW_BLK_IDX 0
1258 if (hw->dcf_enabled)
1261 /* setup Switch block input mask, which is 48-bits in two parts */
1262 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1263 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1267 * ice_chk_pkg_version - check package version for compatibility with driver
1268 * @pkg_ver: pointer to a version structure to check
1270 * Check to make sure that the package about to be downloaded is compatible with
1271 * the driver. To be compatible, the major and minor components of the package
1272 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1275 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1277 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
1278 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
1279 return ICE_ERR_NOT_SUPPORTED;
1285 * ice_chk_pkg_compat
1286 * @hw: pointer to the hardware structure
1287 * @ospkg: pointer to the package hdr
1288 * @seg: pointer to the package segment hdr
1290 * This function checks the package version compatibility with driver and NVM
1292 static enum ice_status
1293 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1294 struct ice_seg **seg)
1296 struct ice_aqc_get_pkg_info_resp *pkg;
1297 enum ice_status status;
1301 ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1303 /* Check package version compatibility */
1304 status = ice_chk_pkg_version(&hw->pkg_ver);
1306 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1310 /* find ICE segment in given package */
1311 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1314 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1318 /* Check if FW is compatible with the OS package */
1319 size = ice_struct_size(pkg, pkg_info, ICE_PKG_CNT);
1320 pkg = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
1322 return ICE_ERR_NO_MEMORY;
1324 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL);
1326 goto fw_ddp_compat_free_alloc;
1328 for (i = 0; i < LE32_TO_CPU(pkg->count); i++) {
1329 /* loop till we find the NVM package */
1330 if (!pkg->pkg_info[i].is_in_nvm)
1332 if ((*seg)->hdr.seg_format_ver.major !=
1333 pkg->pkg_info[i].ver.major ||
1334 (*seg)->hdr.seg_format_ver.minor >
1335 pkg->pkg_info[i].ver.minor) {
1336 status = ICE_ERR_FW_DDP_MISMATCH;
1337 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
1339 /* done processing NVM package so break */
1342 fw_ddp_compat_free_alloc:
1348 * ice_init_pkg - initialize/download package
1349 * @hw: pointer to the hardware structure
1350 * @buf: pointer to the package buffer
1351 * @len: size of the package buffer
1353 * This function initializes a package. The package contains HW tables
1354 * required to do packet processing. First, the function extracts package
1355 * information such as version. Then it finds the ice configuration segment
1356 * within the package; this function then saves a copy of the segment pointer
1357 * within the supplied package buffer. Next, the function will cache any hints
1358 * from the package, followed by downloading the package itself. Note, that if
1359 * a previous PF driver has already downloaded the package successfully, then
1360 * the current driver will not have to download the package again.
1362 * The local package contents will be used to query default behavior and to
1363 * update specific sections of the HW's version of the package (e.g. to update
1364 * the parse graph to understand new protocols).
1366 * This function stores a pointer to the package buffer memory, and it is
1367 * expected that the supplied buffer will not be freed immediately. If the
1368 * package buffer needs to be freed, such as when read from a file, use
1369 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1372 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1374 struct ice_pkg_hdr *pkg;
1375 enum ice_status status;
1376 struct ice_seg *seg;
1379 return ICE_ERR_PARAM;
1381 pkg = (struct ice_pkg_hdr *)buf;
1382 status = ice_verify_pkg(pkg, len);
1384 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1389 /* initialize package info */
1390 status = ice_init_pkg_info(hw, pkg);
1394 /* before downloading the package, check package version for
1395 * compatibility with driver
1397 status = ice_chk_pkg_compat(hw, pkg, &seg);
1401 /* initialize package hints and then download package */
1402 ice_init_pkg_hints(hw, seg);
1403 status = ice_download_pkg(hw, seg);
1404 if (status == ICE_ERR_AQ_NO_WORK) {
1405 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
1406 status = ICE_SUCCESS;
1409 /* Get information on the package currently loaded in HW, then make sure
1410 * the driver is compatible with this version.
1413 status = ice_get_pkg_info(hw);
1415 status = ice_chk_pkg_version(&hw->active_pkg_ver);
1420 /* on successful package download update other required
1421 * registers to support the package and fill HW tables
1422 * with package content.
1424 ice_init_pkg_regs(hw);
1425 ice_fill_blk_tbls(hw);
1427 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1435 * ice_copy_and_init_pkg - initialize/download a copy of the package
1436 * @hw: pointer to the hardware structure
1437 * @buf: pointer to the package buffer
1438 * @len: size of the package buffer
1440 * This function copies the package buffer, and then calls ice_init_pkg() to
1441 * initialize the copied package contents.
1443 * The copying is necessary if the package buffer supplied is constant, or if
1444 * the memory may disappear shortly after calling this function.
1446 * If the package buffer resides in the data segment and can be modified, the
1447 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1449 * However, if the package buffer needs to be copied first, such as when being
1450 * read from a file, the caller should use ice_copy_and_init_pkg().
1452 * This function will first copy the package buffer, before calling
1453 * ice_init_pkg(). The caller is free to immediately destroy the original
1454 * package buffer, as the new copy will be managed by this function and
1457 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1459 enum ice_status status;
1463 return ICE_ERR_PARAM;
1465 buf_copy = (u8 *)ice_memdup(hw, buf, len, ICE_NONDMA_TO_NONDMA);
1467 status = ice_init_pkg(hw, buf_copy, len);
1469 /* Free the copy, since we failed to initialize the package */
1470 ice_free(hw, buf_copy);
1472 /* Track the copied pkg so we can free it later */
1473 hw->pkg_copy = buf_copy;
1482 * @hw: pointer to the HW structure
1484 * Allocates a package buffer and returns a pointer to the buffer header.
1485 * Note: all package contents must be in Little Endian form.
1487 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1489 struct ice_buf_build *bld;
1490 struct ice_buf_hdr *buf;
1492 bld = (struct ice_buf_build *)ice_malloc(hw, sizeof(*bld));
1496 buf = (struct ice_buf_hdr *)bld;
1497 buf->data_end = CPU_TO_LE16(offsetof(struct ice_buf_hdr,
1504 * @sect_type: section type
1505 * @section: pointer to section
1506 * @index: index of the field vector entry to be returned
1507 * @offset: ptr to variable that receives the offset in the field vector table
1509 * This is a callback function that can be passed to ice_pkg_enum_entry.
1510 * This function treats the given section as of type ice_sw_fv_section and
1511 * enumerates offset field. "offset" is an index into the field vector
1515 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
1517 struct ice_sw_fv_section *fv_section =
1518 (struct ice_sw_fv_section *)section;
1520 if (!section || sect_type != ICE_SID_FLD_VEC_SW)
1522 if (index >= LE16_TO_CPU(fv_section->count))
1525 /* "index" passed in to this function is relative to a given
1526 * 4k block. To get to the true index into the field vector
1527 * table need to add the relative index to the base_offset
1528 * field of this section
1530 *offset = LE16_TO_CPU(fv_section->base_offset) + index;
1531 return fv_section->fv + index;
1535 * ice_get_sw_prof_type - determine switch profile type
1536 * @hw: pointer to the HW structure
1537 * @fv: pointer to the switch field vector
1539 static enum ice_prof_type
1540 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv)
1544 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
1545 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */
1546 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
1547 fv->ew[i].off == ICE_VNI_OFFSET)
1548 return ICE_PROF_TUN_UDP;
1550 /* GRE tunnel will have GRE protocol */
1551 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
1552 return ICE_PROF_TUN_GRE;
1554 /* PPPOE tunnel will have PPPOE protocol */
1555 if (fv->ew[i].prot_id == (u8)ICE_PROT_PPPOE)
1556 return ICE_PROF_TUN_PPPOE;
1559 return ICE_PROF_NON_TUN;
1563 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
1564 * @hw: pointer to hardware structure
1565 * @req_profs: type of profiles requested
1566 * @bm: pointer to memory for returning the bitmap of field vectors
1569 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
1572 struct ice_pkg_enum state;
1573 struct ice_seg *ice_seg;
1576 if (req_profs == ICE_PROF_ALL) {
1577 ice_bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
1581 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1582 ice_zero_bitmap(bm, ICE_MAX_NUM_PROFILES);
1585 enum ice_prof_type prof_type;
1588 fv = (struct ice_fv *)
1589 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1590 &offset, ice_sw_fv_handler);
1594 /* Determine field vector type */
1595 prof_type = ice_get_sw_prof_type(hw, fv);
1597 if (req_profs & prof_type)
1598 ice_set_bit((u16)offset, bm);
1604 * ice_get_sw_fv_list
1605 * @hw: pointer to the HW structure
1606 * @prot_ids: field vector to search for with a given protocol ID
1607 * @ids_cnt: lookup/protocol count
1608 * @bm: bitmap of field vectors to consider
1609 * @fv_list: Head of a list
1611 * Finds all the field vector entries from switch block that contain
1612 * a given protocol ID and returns a list of structures of type
1613 * "ice_sw_fv_list_entry". Every structure in the list has a field vector
1614 * definition and profile ID information
1615 * NOTE: The caller of the function is responsible for freeing the memory
1616 * allocated for every list entry.
1619 ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt,
1620 ice_bitmap_t *bm, struct LIST_HEAD_TYPE *fv_list)
1622 struct ice_sw_fv_list_entry *fvl;
1623 struct ice_sw_fv_list_entry *tmp;
1624 struct ice_pkg_enum state;
1625 struct ice_seg *ice_seg;
1629 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1631 if (!ids_cnt || !hw->seg)
1632 return ICE_ERR_PARAM;
1638 fv = (struct ice_fv *)
1639 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1640 &offset, ice_sw_fv_handler);
1645 /* If field vector is not in the bitmap list, then skip this
1648 if (!ice_is_bit_set(bm, (u16)offset))
1651 for (i = 0; i < ids_cnt; i++) {
1654 /* This code assumes that if a switch field vector line
1655 * has a matching protocol, then this line will contain
1656 * the entries necessary to represent every field in
1657 * that protocol header.
1659 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1660 if (fv->ew[j].prot_id == prot_ids[i])
1662 if (j >= hw->blk[ICE_BLK_SW].es.fvw)
1664 if (i + 1 == ids_cnt) {
1665 fvl = (struct ice_sw_fv_list_entry *)
1666 ice_malloc(hw, sizeof(*fvl));
1670 fvl->profile_id = offset;
1671 LIST_ADD(&fvl->list_entry, fv_list);
1676 if (LIST_EMPTY(fv_list))
1681 LIST_FOR_EACH_ENTRY_SAFE(fvl, tmp, fv_list, ice_sw_fv_list_entry,
1683 LIST_DEL(&fvl->list_entry);
1687 return ICE_ERR_NO_MEMORY;
1691 * ice_init_prof_result_bm - Initialize the profile result index bitmap
1692 * @hw: pointer to hardware structure
1694 void ice_init_prof_result_bm(struct ice_hw *hw)
1696 struct ice_pkg_enum state;
1697 struct ice_seg *ice_seg;
1700 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1710 fv = (struct ice_fv *)
1711 ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1712 &off, ice_sw_fv_handler);
1717 ice_zero_bitmap(hw->switch_info->prof_res_bm[off],
1720 /* Determine empty field vector indices, these can be
1721 * used for recipe results. Skip index 0, since it is
1722 * always used for Switch ID.
1724 for (i = 1; i < ICE_MAX_FV_WORDS; i++)
1725 if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
1726 fv->ew[i].off == ICE_FV_OFFSET_INVAL)
1728 hw->switch_info->prof_res_bm[off]);
1734 * @hw: pointer to the HW structure
1735 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1737 * Frees a package buffer
1739 static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
1745 * ice_pkg_buf_reserve_section
1746 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1747 * @count: the number of sections to reserve
1749 * Reserves one or more section table entries in a package buffer. This routine
1750 * can be called multiple times as long as they are made before calling
1751 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1752 * is called once, the number of sections that can be allocated will not be able
1753 * to be increased; not using all reserved sections is fine, but this will
1754 * result in some wasted space in the buffer.
1755 * Note: all package contents must be in Little Endian form.
1757 static enum ice_status
1758 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
1760 struct ice_buf_hdr *buf;
1765 return ICE_ERR_PARAM;
1767 buf = (struct ice_buf_hdr *)&bld->buf;
1769 /* already an active section, can't increase table size */
1770 section_count = LE16_TO_CPU(buf->section_count);
1771 if (section_count > 0)
1774 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
1776 bld->reserved_section_table_entries += count;
1778 data_end = LE16_TO_CPU(buf->data_end) +
1779 (count * sizeof(buf->section_entry[0]));
1780 buf->data_end = CPU_TO_LE16(data_end);
1786 * ice_pkg_buf_alloc_section
1787 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1788 * @type: the section type value
1789 * @size: the size of the section to reserve (in bytes)
1791 * Reserves memory in the buffer for a section's content and updates the
1792 * buffers' status accordingly. This routine returns a pointer to the first
1793 * byte of the section start within the buffer, which is used to fill in the
1795 * Note: all package contents must be in Little Endian form.
1798 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
1800 struct ice_buf_hdr *buf;
1804 if (!bld || !type || !size)
1807 buf = (struct ice_buf_hdr *)&bld->buf;
1809 /* check for enough space left in buffer */
1810 data_end = LE16_TO_CPU(buf->data_end);
1812 /* section start must align on 4 byte boundary */
1813 data_end = ICE_ALIGN(data_end, 4);
1815 if ((data_end + size) > ICE_MAX_S_DATA_END)
1818 /* check for more available section table entries */
1819 sect_count = LE16_TO_CPU(buf->section_count);
1820 if (sect_count < bld->reserved_section_table_entries) {
1821 void *section_ptr = ((u8 *)buf) + data_end;
1823 buf->section_entry[sect_count].offset = CPU_TO_LE16(data_end);
1824 buf->section_entry[sect_count].size = CPU_TO_LE16(size);
1825 buf->section_entry[sect_count].type = CPU_TO_LE32(type);
1828 buf->data_end = CPU_TO_LE16(data_end);
1830 buf->section_count = CPU_TO_LE16(sect_count + 1);
1834 /* no free section table entries */
1839 * ice_pkg_buf_get_active_sections
1840 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1842 * Returns the number of active sections. Before using the package buffer
1843 * in an update package command, the caller should make sure that there is at
1844 * least one active section - otherwise, the buffer is not legal and should
1846 * Note: all package contents must be in Little Endian form.
1848 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
1850 struct ice_buf_hdr *buf;
1855 buf = (struct ice_buf_hdr *)&bld->buf;
1856 return LE16_TO_CPU(buf->section_count);
1861 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1863 * Return a pointer to the buffer's header
1865 static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
1874 * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage
1875 * @hw: pointer to the HW structure
1876 * @port: port to search for
1877 * @index: optionally returns index
1879 * Returns whether a port is already in use as a tunnel, and optionally its
1882 static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index)
1886 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1887 if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
1897 * ice_tunnel_port_in_use
1898 * @hw: pointer to the HW structure
1899 * @port: port to search for
1900 * @index: optionally returns index
1902 * Returns whether a port is already in use as a tunnel, and optionally its
1905 bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index)
1909 ice_acquire_lock(&hw->tnl_lock);
1910 res = ice_tunnel_port_in_use_hlpr(hw, port, index);
1911 ice_release_lock(&hw->tnl_lock);
1917 * ice_tunnel_get_type
1918 * @hw: pointer to the HW structure
1919 * @port: port to search for
1920 * @type: returns tunnel index
1922 * For a given port number, will return the type of tunnel.
1925 ice_tunnel_get_type(struct ice_hw *hw, u16 port, enum ice_tunnel_type *type)
1930 ice_acquire_lock(&hw->tnl_lock);
1932 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1933 if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
1934 *type = hw->tnl.tbl[i].type;
1939 ice_release_lock(&hw->tnl_lock);
1945 * ice_find_free_tunnel_entry
1946 * @hw: pointer to the HW structure
1947 * @type: tunnel type
1948 * @index: optionally returns index
1950 * Returns whether there is a free tunnel entry, and optionally its index
1953 ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type,
1958 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1959 if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use &&
1960 hw->tnl.tbl[i].type == type) {
1970 * ice_get_open_tunnel_port - retrieve an open tunnel port
1971 * @hw: pointer to the HW structure
1972 * @type: tunnel type (TNL_ALL will return any open port)
1973 * @port: returns open port
1976 ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type,
1982 ice_acquire_lock(&hw->tnl_lock);
1984 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1985 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
1986 (type == TNL_ALL || hw->tnl.tbl[i].type == type)) {
1987 *port = hw->tnl.tbl[i].port;
1992 ice_release_lock(&hw->tnl_lock);
1999 * @hw: pointer to the HW structure
2000 * @type: type of tunnel
2001 * @port: port of tunnel to create
2003 * Create a tunnel by updating the parse graph in the parser. We do that by
2004 * creating a package buffer with the tunnel info and issuing an update package
2008 ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port)
2010 struct ice_boost_tcam_section *sect_rx, *sect_tx;
2011 enum ice_status status = ICE_ERR_MAX_LIMIT;
2012 struct ice_buf_build *bld;
2015 ice_acquire_lock(&hw->tnl_lock);
2017 if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) {
2018 hw->tnl.tbl[index].ref++;
2019 status = ICE_SUCCESS;
2020 goto ice_create_tunnel_end;
2023 if (!ice_find_free_tunnel_entry(hw, type, &index)) {
2024 status = ICE_ERR_OUT_OF_RANGE;
2025 goto ice_create_tunnel_end;
2028 bld = ice_pkg_buf_alloc(hw);
2030 status = ICE_ERR_NO_MEMORY;
2031 goto ice_create_tunnel_end;
2034 /* allocate 2 sections, one for Rx parser, one for Tx parser */
2035 if (ice_pkg_buf_reserve_section(bld, 2))
2036 goto ice_create_tunnel_err;
2038 sect_rx = (struct ice_boost_tcam_section *)
2039 ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2040 ice_struct_size(sect_rx, tcam, 1));
2042 goto ice_create_tunnel_err;
2043 sect_rx->count = CPU_TO_LE16(1);
2045 sect_tx = (struct ice_boost_tcam_section *)
2046 ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2047 ice_struct_size(sect_tx, tcam, 1));
2049 goto ice_create_tunnel_err;
2050 sect_tx->count = CPU_TO_LE16(1);
2052 /* copy original boost entry to update package buffer */
2053 ice_memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2054 sizeof(*sect_rx->tcam), ICE_NONDMA_TO_NONDMA);
2056 /* over-write the never-match dest port key bits with the encoded port
2059 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2060 (u8 *)&port, NULL, NULL, NULL,
2061 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
2062 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
2064 /* exact copy of entry to Tx section entry */
2065 ice_memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam),
2066 ICE_NONDMA_TO_NONDMA);
2068 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2070 hw->tnl.tbl[index].port = port;
2071 hw->tnl.tbl[index].in_use = true;
2072 hw->tnl.tbl[index].ref = 1;
2075 ice_create_tunnel_err:
2076 ice_pkg_buf_free(hw, bld);
2078 ice_create_tunnel_end:
2079 ice_release_lock(&hw->tnl_lock);
2085 * ice_destroy_tunnel
2086 * @hw: pointer to the HW structure
2087 * @port: port of tunnel to destroy (ignored if the all parameter is true)
2088 * @all: flag that states to destroy all tunnels
2090 * Destroys a tunnel or all tunnels by creating an update package buffer
2091 * targeting the specific updates requested and then performing an update
2094 enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all)
2096 struct ice_boost_tcam_section *sect_rx, *sect_tx;
2097 enum ice_status status = ICE_ERR_MAX_LIMIT;
2098 struct ice_buf_build *bld;
2104 ice_acquire_lock(&hw->tnl_lock);
2106 if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index))
2107 if (hw->tnl.tbl[index].ref > 1) {
2108 hw->tnl.tbl[index].ref--;
2109 status = ICE_SUCCESS;
2110 goto ice_destroy_tunnel_end;
2113 /* determine count */
2114 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2115 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2116 (all || hw->tnl.tbl[i].port == port))
2120 status = ICE_ERR_PARAM;
2121 goto ice_destroy_tunnel_end;
2124 /* size of section - there is at least one entry */
2125 size = ice_struct_size(sect_rx, tcam, count);
2127 bld = ice_pkg_buf_alloc(hw);
2129 status = ICE_ERR_NO_MEMORY;
2130 goto ice_destroy_tunnel_end;
2133 /* allocate 2 sections, one for Rx parser, one for Tx parser */
2134 if (ice_pkg_buf_reserve_section(bld, 2))
2135 goto ice_destroy_tunnel_err;
2137 sect_rx = (struct ice_boost_tcam_section *)
2138 ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2141 goto ice_destroy_tunnel_err;
2142 sect_rx->count = CPU_TO_LE16(1);
2144 sect_tx = (struct ice_boost_tcam_section *)
2145 ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2148 goto ice_destroy_tunnel_err;
2149 sect_tx->count = CPU_TO_LE16(1);
2151 /* copy original boost entry to update package buffer, one copy to Rx
2152 * section, another copy to the Tx section
2154 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2155 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2156 (all || hw->tnl.tbl[i].port == port)) {
2157 ice_memcpy(sect_rx->tcam + i,
2158 hw->tnl.tbl[i].boost_entry,
2159 sizeof(*sect_rx->tcam),
2160 ICE_NONDMA_TO_NONDMA);
2161 ice_memcpy(sect_tx->tcam + i,
2162 hw->tnl.tbl[i].boost_entry,
2163 sizeof(*sect_tx->tcam),
2164 ICE_NONDMA_TO_NONDMA);
2165 hw->tnl.tbl[i].marked = true;
2168 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2170 for (i = 0; i < hw->tnl.count &&
2171 i < ICE_TUNNEL_MAX_ENTRIES; i++)
2172 if (hw->tnl.tbl[i].marked) {
2173 hw->tnl.tbl[i].ref = 0;
2174 hw->tnl.tbl[i].port = 0;
2175 hw->tnl.tbl[i].in_use = false;
2176 hw->tnl.tbl[i].marked = false;
2179 ice_destroy_tunnel_err:
2180 ice_pkg_buf_free(hw, bld);
2182 ice_destroy_tunnel_end:
2183 ice_release_lock(&hw->tnl_lock);
2189 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
2190 * @hw: pointer to the hardware structure
2191 * @blk: hardware block
2193 * @fv_idx: field vector word index
2194 * @prot: variable to receive the protocol ID
2195 * @off: variable to receive the protocol offset
2198 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
2201 struct ice_fv_word *fv_ext;
2203 if (prof >= hw->blk[blk].es.count)
2204 return ICE_ERR_PARAM;
2206 if (fv_idx >= hw->blk[blk].es.fvw)
2207 return ICE_ERR_PARAM;
2209 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
2211 *prot = fv_ext[fv_idx].prot_id;
2212 *off = fv_ext[fv_idx].off;
2217 /* PTG Management */
2220 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
2221 * @hw: pointer to the hardware structure
2223 * @ptype: the ptype to search for
2224 * @ptg: pointer to variable that receives the PTG
2226 * This function will search the PTGs for a particular ptype, returning the
2227 * PTG ID that contains it through the PTG parameter, with the value of
2228 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
2230 static enum ice_status
2231 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
2233 if (ptype >= ICE_XLT1_CNT || !ptg)
2234 return ICE_ERR_PARAM;
2236 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
2241 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
2242 * @hw: pointer to the hardware structure
2244 * @ptg: the PTG to allocate
2246 * This function allocates a given packet type group ID specified by the PTG
2249 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2251 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
2255 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
2256 * @hw: pointer to the hardware structure
2258 * @ptype: the ptype to remove
2259 * @ptg: the PTG to remove the ptype from
2261 * This function will remove the ptype from the specific PTG, and move it to
2262 * the default PTG (ICE_DEFAULT_PTG).
2264 static enum ice_status
2265 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2267 struct ice_ptg_ptype **ch;
2268 struct ice_ptg_ptype *p;
2270 if (ptype > ICE_XLT1_CNT - 1)
2271 return ICE_ERR_PARAM;
2273 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
2274 return ICE_ERR_DOES_NOT_EXIST;
2276 /* Should not happen if .in_use is set, bad config */
2277 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
2280 /* find the ptype within this PTG, and bypass the link over it */
2281 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2282 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2284 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
2285 *ch = p->next_ptype;
2289 ch = &p->next_ptype;
2293 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
2294 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
2300 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
2301 * @hw: pointer to the hardware structure
2303 * @ptype: the ptype to add or move
2304 * @ptg: the PTG to add or move the ptype to
2306 * This function will either add or move a ptype to a particular PTG depending
2307 * on if the ptype is already part of another group. Note that using a
2308 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
2311 static enum ice_status
2312 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2314 enum ice_status status;
2317 if (ptype > ICE_XLT1_CNT - 1)
2318 return ICE_ERR_PARAM;
2320 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
2321 return ICE_ERR_DOES_NOT_EXIST;
2323 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
2327 /* Is ptype already in the correct PTG? */
2328 if (original_ptg == ptg)
2331 /* Remove from original PTG and move back to the default PTG */
2332 if (original_ptg != ICE_DEFAULT_PTG)
2333 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2335 /* Moving to default PTG? Then we're done with this request */
2336 if (ptg == ICE_DEFAULT_PTG)
2339 /* Add ptype to PTG at beginning of list */
2340 hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2341 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2342 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2343 &hw->blk[blk].xlt1.ptypes[ptype];
2345 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2346 hw->blk[blk].xlt1.t[ptype] = ptg;
2351 /* Block / table size info */
2352 struct ice_blk_size_details {
2353 u16 xlt1; /* # XLT1 entries */
2354 u16 xlt2; /* # XLT2 entries */
2355 u16 prof_tcam; /* # profile ID TCAM entries */
2356 u16 prof_id; /* # profile IDs */
2357 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */
2358 u16 prof_redir; /* # profile redirection entries */
2359 u16 es; /* # extraction sequence entries */
2360 u16 fvw; /* # field vector words */
2361 u8 overwrite; /* overwrite existing entries allowed */
2362 u8 reverse; /* reverse FV order */
2365 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2368 * XLT1 - Number of entries in XLT1 table
2369 * XLT2 - Number of entries in XLT2 table
2370 * TCAM - Number of entries Profile ID TCAM table
2371 * CDID - Control Domain ID of the hardware block
2372 * PRED - Number of entries in the Profile Redirection Table
2373 * FV - Number of entries in the Field Vector
2374 * FVW - Width (in WORDs) of the Field Vector
2375 * OVR - Overwrite existing table entries
2378 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
2379 /* Overwrite , Reverse FV */
2380 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
2382 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
2384 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
2386 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
2388 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
2393 ICE_SID_XLT1_OFF = 0,
2396 ICE_SID_PR_REDIR_OFF,
2401 /* Characteristic handling */
2404 * ice_match_prop_lst - determine if properties of two lists match
2405 * @list1: first properties list
2406 * @list2: second properties list
2408 * Count, cookies and the order must match in order to be considered equivalent.
2411 ice_match_prop_lst(struct LIST_HEAD_TYPE *list1, struct LIST_HEAD_TYPE *list2)
2413 struct ice_vsig_prof *tmp1;
2414 struct ice_vsig_prof *tmp2;
2418 /* compare counts */
2419 LIST_FOR_EACH_ENTRY(tmp1, list1, ice_vsig_prof, list)
2421 LIST_FOR_EACH_ENTRY(tmp2, list2, ice_vsig_prof, list)
2423 if (!count || count != chk_count)
2426 tmp1 = LIST_FIRST_ENTRY(list1, struct ice_vsig_prof, list);
2427 tmp2 = LIST_FIRST_ENTRY(list2, struct ice_vsig_prof, list);
2429 /* profile cookies must compare, and in the exact same order to take
2430 * into account priority
2433 if (tmp2->profile_cookie != tmp1->profile_cookie)
2436 tmp1 = LIST_NEXT_ENTRY(tmp1, struct ice_vsig_prof, list);
2437 tmp2 = LIST_NEXT_ENTRY(tmp2, struct ice_vsig_prof, list);
2443 /* VSIG Management */
2446 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2447 * @hw: pointer to the hardware structure
2449 * @vsi: VSI of interest
2450 * @vsig: pointer to receive the VSI group
2452 * This function will lookup the VSI entry in the XLT2 list and return
2453 * the VSI group its associated with.
2456 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2458 if (!vsig || vsi >= ICE_MAX_VSI)
2459 return ICE_ERR_PARAM;
2461 /* As long as there's a default or valid VSIG associated with the input
2462 * VSI, the functions returns a success. Any handling of VSIG will be
2463 * done by the following add, update or remove functions.
2465 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2471 * ice_vsig_alloc_val - allocate a new VSIG by value
2472 * @hw: pointer to the hardware structure
2474 * @vsig: the VSIG to allocate
2476 * This function will allocate a given VSIG specified by the VSIG parameter.
2478 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2480 u16 idx = vsig & ICE_VSIG_IDX_M;
2482 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2483 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2484 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2487 return ICE_VSIG_VALUE(idx, hw->pf_id);
2491 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2492 * @hw: pointer to the hardware structure
2495 * This function will iterate through the VSIG list and mark the first
2496 * unused entry for the new VSIG entry as used and return that value.
2498 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2502 for (i = 1; i < ICE_MAX_VSIGS; i++)
2503 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2504 return ice_vsig_alloc_val(hw, blk, i);
2506 return ICE_DEFAULT_VSIG;
2510 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2511 * @hw: pointer to the hardware structure
2513 * @chs: characteristic list
2514 * @vsig: returns the VSIG with the matching profiles, if found
2516 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2517 * a group have the same characteristic set. To check if there exists a VSIG
2518 * which has the same characteristics as the input characteristics; this
2519 * function will iterate through the XLT2 list and return the VSIG that has a
2520 * matching configuration. In order to make sure that priorities are accounted
2521 * for, the list must match exactly, including the order in which the
2522 * characteristics are listed.
2524 static enum ice_status
2525 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2526 struct LIST_HEAD_TYPE *chs, u16 *vsig)
2528 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2531 for (i = 0; i < xlt2->count; i++)
2532 if (xlt2->vsig_tbl[i].in_use &&
2533 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2534 *vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2538 return ICE_ERR_DOES_NOT_EXIST;
2542 * ice_vsig_free - free VSI group
2543 * @hw: pointer to the hardware structure
2545 * @vsig: VSIG to remove
2547 * The function will remove all VSIs associated with the input VSIG and move
2548 * them to the DEFAULT_VSIG and mark the VSIG available.
2550 static enum ice_status
2551 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2553 struct ice_vsig_prof *dtmp, *del;
2554 struct ice_vsig_vsi *vsi_cur;
2557 idx = vsig & ICE_VSIG_IDX_M;
2558 if (idx >= ICE_MAX_VSIGS)
2559 return ICE_ERR_PARAM;
2561 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2562 return ICE_ERR_DOES_NOT_EXIST;
2564 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2566 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2567 /* If the VSIG has at least 1 VSI then iterate through the
2568 * list and remove the VSIs before deleting the group.
2571 /* remove all vsis associated with this VSIG XLT2 entry */
2573 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2575 vsi_cur->vsig = ICE_DEFAULT_VSIG;
2576 vsi_cur->changed = 1;
2577 vsi_cur->next_vsi = NULL;
2581 /* NULL terminate head of VSI list */
2582 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2585 /* free characteristic list */
2586 LIST_FOR_EACH_ENTRY_SAFE(del, dtmp,
2587 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2588 ice_vsig_prof, list) {
2589 LIST_DEL(&del->list);
2593 /* if VSIG characteristic list was cleared for reset
2594 * re-initialize the list head
2596 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2602 * ice_vsig_remove_vsi - remove VSI from VSIG
2603 * @hw: pointer to the hardware structure
2605 * @vsi: VSI to remove
2606 * @vsig: VSI group to remove from
2608 * The function will remove the input VSI from its VSI group and move it
2609 * to the DEFAULT_VSIG.
2611 static enum ice_status
2612 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2614 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
2617 idx = vsig & ICE_VSIG_IDX_M;
2619 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2620 return ICE_ERR_PARAM;
2622 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2623 return ICE_ERR_DOES_NOT_EXIST;
2625 /* entry already in default VSIG, don't have to remove */
2626 if (idx == ICE_DEFAULT_VSIG)
2629 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2633 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
2634 vsi_cur = (*vsi_head);
2636 /* iterate the VSI list, skip over the entry to be removed */
2638 if (vsi_tgt == vsi_cur) {
2639 (*vsi_head) = vsi_cur->next_vsi;
2642 vsi_head = &vsi_cur->next_vsi;
2643 vsi_cur = vsi_cur->next_vsi;
2646 /* verify if VSI was removed from group list */
2648 return ICE_ERR_DOES_NOT_EXIST;
2650 vsi_cur->vsig = ICE_DEFAULT_VSIG;
2651 vsi_cur->changed = 1;
2652 vsi_cur->next_vsi = NULL;
2658 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
2659 * @hw: pointer to the hardware structure
2662 * @vsig: destination VSI group
2664 * This function will move or add the input VSI to the target VSIG.
2665 * The function will find the original VSIG the VSI belongs to and
2666 * move the entry to the DEFAULT_VSIG, update the original VSIG and
2667 * then move entry to the new VSIG.
2669 static enum ice_status
2670 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2672 struct ice_vsig_vsi *tmp;
2673 enum ice_status status;
2676 idx = vsig & ICE_VSIG_IDX_M;
2678 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2679 return ICE_ERR_PARAM;
2681 /* if VSIG not in use and VSIG is not default type this VSIG
2684 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
2685 vsig != ICE_DEFAULT_VSIG)
2686 return ICE_ERR_DOES_NOT_EXIST;
2688 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
2692 /* no update required if vsigs match */
2693 if (orig_vsig == vsig)
2696 if (orig_vsig != ICE_DEFAULT_VSIG) {
2697 /* remove entry from orig_vsig and add to default VSIG */
2698 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
2703 if (idx == ICE_DEFAULT_VSIG)
2706 /* Create VSI entry and add VSIG and prop_mask values */
2707 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
2708 hw->blk[blk].xlt2.vsis[vsi].changed = 1;
2710 /* Add new entry to the head of the VSIG list */
2711 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2712 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
2713 &hw->blk[blk].xlt2.vsis[vsi];
2714 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
2715 hw->blk[blk].xlt2.t[vsi] = vsig;
2721 * ice_prof_has_mask_idx - determine if profile index masking is identical
2722 * @hw: pointer to the hardware structure
2724 * @prof: profile to check
2725 * @idx: profile index to check
2726 * @mask: mask to match
2729 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
2732 bool expect_no_mask = false;
2737 /* If mask is 0x0000 or 0xffff, then there is no masking */
2738 if (mask == 0 || mask == 0xffff)
2739 expect_no_mask = true;
2741 /* Scan the enabled masks on this profile, for the specified idx */
2742 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
2743 hw->blk[blk].masks.count; i++)
2744 if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
2745 if (hw->blk[blk].masks.masks[i].in_use &&
2746 hw->blk[blk].masks.masks[i].idx == idx) {
2748 if (hw->blk[blk].masks.masks[i].mask == mask)
2753 if (expect_no_mask) {
2765 * ice_prof_has_mask - determine if profile masking is identical
2766 * @hw: pointer to the hardware structure
2768 * @prof: profile to check
2769 * @masks: masks to match
2772 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
2776 /* es->mask_ena[prof] will have the mask */
2777 for (i = 0; i < hw->blk[blk].es.fvw; i++)
2778 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
2785 * ice_find_prof_id_with_mask - find profile ID for a given field vector
2786 * @hw: pointer to the hardware structure
2788 * @fv: field vector to search for
2789 * @masks: masks for fv
2790 * @prof_id: receives the profile ID
2792 static enum ice_status
2793 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
2794 struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
2796 struct ice_es *es = &hw->blk[blk].es;
2799 /* For FD and RSS, we don't want to re-use an existed profile with the
2800 * same field vector and mask. This will cause rule interference.
2802 if (blk == ICE_BLK_FD || blk == ICE_BLK_RSS)
2803 return ICE_ERR_DOES_NOT_EXIST;
2805 for (i = 0; i < (u8)es->count; i++) {
2806 u16 off = i * es->fvw;
2808 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
2811 /* check if masks settings are the same for this profile */
2812 if (masks && !ice_prof_has_mask(hw, blk, i, masks))
2819 return ICE_ERR_DOES_NOT_EXIST;
2823 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
2824 * @blk: the block type
2825 * @rsrc_type: pointer to variable to receive the resource type
2827 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2831 *rsrc_type = ICE_AQC_RES_TYPE_SWITCH_PROF_BLDR_PROFID;
2834 *rsrc_type = ICE_AQC_RES_TYPE_ACL_PROF_BLDR_PROFID;
2837 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
2840 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
2843 *rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_PROFID;
2852 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
2853 * @blk: the block type
2854 * @rsrc_type: pointer to variable to receive the resource type
2856 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2860 *rsrc_type = ICE_AQC_RES_TYPE_SWITCH_PROF_BLDR_TCAM;
2863 *rsrc_type = ICE_AQC_RES_TYPE_ACL_PROF_BLDR_TCAM;
2866 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
2869 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
2872 *rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_TCAM;
2881 * ice_alloc_tcam_ent - allocate hardware TCAM entry
2882 * @hw: pointer to the HW struct
2883 * @blk: the block to allocate the TCAM for
2884 * @btm: true to allocate from bottom of table, false to allocate from top
2885 * @tcam_idx: pointer to variable to receive the TCAM entry
2887 * This function allocates a new entry in a Profile ID TCAM for a specific
2890 static enum ice_status
2891 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
2896 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2897 return ICE_ERR_PARAM;
2899 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
2903 * ice_free_tcam_ent - free hardware TCAM entry
2904 * @hw: pointer to the HW struct
2905 * @blk: the block from which to free the TCAM entry
2906 * @tcam_idx: the TCAM entry to free
2908 * This function frees an entry in a Profile ID TCAM for a specific block.
2910 static enum ice_status
2911 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
2915 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2916 return ICE_ERR_PARAM;
2918 return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
2922 * ice_alloc_prof_id - allocate profile ID
2923 * @hw: pointer to the HW struct
2924 * @blk: the block to allocate the profile ID for
2925 * @prof_id: pointer to variable to receive the profile ID
2927 * This function allocates a new profile ID, which also corresponds to a Field
2928 * Vector (Extraction Sequence) entry.
2930 static enum ice_status
2931 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
2933 enum ice_status status;
2937 if (!ice_prof_id_rsrc_type(blk, &res_type))
2938 return ICE_ERR_PARAM;
2940 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
2942 *prof_id = (u8)get_prof;
2948 * ice_free_prof_id - free profile ID
2949 * @hw: pointer to the HW struct
2950 * @blk: the block from which to free the profile ID
2951 * @prof_id: the profile ID to free
2953 * This function frees a profile ID, which also corresponds to a Field Vector.
2955 static enum ice_status
2956 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2958 u16 tmp_prof_id = (u16)prof_id;
2961 if (!ice_prof_id_rsrc_type(blk, &res_type))
2962 return ICE_ERR_PARAM;
2964 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
2968 * ice_prof_inc_ref - increment reference count for profile
2969 * @hw: pointer to the HW struct
2970 * @blk: the block from which to free the profile ID
2971 * @prof_id: the profile ID for which to increment the reference count
2973 static enum ice_status
2974 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2976 if (prof_id > hw->blk[blk].es.count)
2977 return ICE_ERR_PARAM;
2979 hw->blk[blk].es.ref_count[prof_id]++;
2985 * ice_write_prof_mask_reg - write profile mask register
2986 * @hw: pointer to the HW struct
2987 * @blk: hardware block
2988 * @mask_idx: mask index
2989 * @idx: index of the FV which will use the mask
2990 * @mask: the 16-bit mask
2993 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
3001 offset = GLQF_HMASK(mask_idx);
3002 val = (idx << GLQF_HMASK_MSK_INDEX_S) &
3003 GLQF_HMASK_MSK_INDEX_M;
3004 val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
3007 offset = GLQF_FDMASK(mask_idx);
3008 val = (idx << GLQF_FDMASK_MSK_INDEX_S) &
3009 GLQF_FDMASK_MSK_INDEX_M;
3010 val |= (mask << GLQF_FDMASK_MASK_S) &
3014 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3019 wr32(hw, offset, val);
3020 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
3021 blk, idx, offset, val);
3025 * ice_write_prof_mask_enable_res - write profile mask enable register
3026 * @hw: pointer to the HW struct
3027 * @blk: hardware block
3028 * @prof_id: profile ID
3029 * @enable_mask: enable mask
3032 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
3033 u16 prof_id, u32 enable_mask)
3039 offset = GLQF_HMASK_SEL(prof_id);
3042 offset = GLQF_FDMASK_SEL(prof_id);
3045 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3050 wr32(hw, offset, enable_mask);
3051 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
3052 blk, prof_id, offset, enable_mask);
3056 * ice_init_prof_masks - initial prof masks
3057 * @hw: pointer to the HW struct
3058 * @blk: hardware block
3060 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
3065 ice_init_lock(&hw->blk[blk].masks.lock);
3067 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
3069 hw->blk[blk].masks.count = per_pf;
3070 hw->blk[blk].masks.first = hw->pf_id * per_pf;
3072 ice_memset(hw->blk[blk].masks.masks, 0,
3073 sizeof(hw->blk[blk].masks.masks), ICE_NONDMA_MEM);
3075 for (i = hw->blk[blk].masks.first;
3076 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3077 ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3081 * ice_init_all_prof_masks - initial all prof masks
3082 * @hw: pointer to the HW struct
3084 void ice_init_all_prof_masks(struct ice_hw *hw)
3086 ice_init_prof_masks(hw, ICE_BLK_RSS);
3087 ice_init_prof_masks(hw, ICE_BLK_FD);
3091 * ice_alloc_prof_mask - allocate profile mask
3092 * @hw: pointer to the HW struct
3093 * @blk: hardware block
3094 * @idx: index of FV which will use the mask
3095 * @mask: the 16-bit mask
3096 * @mask_idx: variable to receive the mask index
3098 static enum ice_status
3099 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
3102 bool found_unused = false, found_copy = false;
3103 enum ice_status status = ICE_ERR_MAX_LIMIT;
3104 u16 unused_idx = 0, copy_idx = 0;
3107 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3108 return ICE_ERR_PARAM;
3110 ice_acquire_lock(&hw->blk[blk].masks.lock);
3112 for (i = hw->blk[blk].masks.first;
3113 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3114 if (hw->blk[blk].masks.masks[i].in_use) {
3115 /* if mask is in use and it exactly duplicates the
3116 * desired mask and index, then in can be reused
3118 if (hw->blk[blk].masks.masks[i].mask == mask &&
3119 hw->blk[blk].masks.masks[i].idx == idx) {
3125 /* save off unused index, but keep searching in case
3126 * there is an exact match later on
3128 if (!found_unused) {
3129 found_unused = true;
3136 else if (found_unused)
3139 goto err_ice_alloc_prof_mask;
3141 /* update mask for a new entry */
3143 hw->blk[blk].masks.masks[i].in_use = true;
3144 hw->blk[blk].masks.masks[i].mask = mask;
3145 hw->blk[blk].masks.masks[i].idx = idx;
3146 hw->blk[blk].masks.masks[i].ref = 0;
3147 ice_write_prof_mask_reg(hw, blk, i, idx, mask);
3150 hw->blk[blk].masks.masks[i].ref++;
3152 status = ICE_SUCCESS;
3154 err_ice_alloc_prof_mask:
3155 ice_release_lock(&hw->blk[blk].masks.lock);
3161 * ice_free_prof_mask - free profile mask
3162 * @hw: pointer to the HW struct
3163 * @blk: hardware block
3164 * @mask_idx: index of mask
3166 static enum ice_status
3167 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
3169 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3170 return ICE_ERR_PARAM;
3172 if (!(mask_idx >= hw->blk[blk].masks.first &&
3173 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
3174 return ICE_ERR_DOES_NOT_EXIST;
3176 ice_acquire_lock(&hw->blk[blk].masks.lock);
3178 if (!hw->blk[blk].masks.masks[mask_idx].in_use)
3179 goto exit_ice_free_prof_mask;
3181 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
3182 hw->blk[blk].masks.masks[mask_idx].ref--;
3183 goto exit_ice_free_prof_mask;
3187 hw->blk[blk].masks.masks[mask_idx].in_use = false;
3188 hw->blk[blk].masks.masks[mask_idx].mask = 0;
3189 hw->blk[blk].masks.masks[mask_idx].idx = 0;
3191 /* update mask as unused entry */
3192 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
3194 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
3196 exit_ice_free_prof_mask:
3197 ice_release_lock(&hw->blk[blk].masks.lock);
3203 * ice_free_prof_masks - free all profile masks for a profile
3204 * @hw: pointer to the HW struct
3205 * @blk: hardware block
3206 * @prof_id: profile ID
3208 static enum ice_status
3209 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
3214 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3215 return ICE_ERR_PARAM;
3217 mask_bm = hw->blk[blk].es.mask_ena[prof_id];
3218 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
3219 if (mask_bm & BIT(i))
3220 ice_free_prof_mask(hw, blk, i);
3226 * ice_shutdown_prof_masks - releases lock for masking
3227 * @hw: pointer to the HW struct
3228 * @blk: hardware block
3230 * This should be called before unloading the driver
3232 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
3236 ice_acquire_lock(&hw->blk[blk].masks.lock);
3238 for (i = hw->blk[blk].masks.first;
3239 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
3240 ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3242 hw->blk[blk].masks.masks[i].in_use = false;
3243 hw->blk[blk].masks.masks[i].idx = 0;
3244 hw->blk[blk].masks.masks[i].mask = 0;
3247 ice_release_lock(&hw->blk[blk].masks.lock);
3248 ice_destroy_lock(&hw->blk[blk].masks.lock);
3252 * ice_shutdown_all_prof_masks - releases all locks for masking
3253 * @hw: pointer to the HW struct
3255 * This should be called before unloading the driver
3257 void ice_shutdown_all_prof_masks(struct ice_hw *hw)
3259 ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
3260 ice_shutdown_prof_masks(hw, ICE_BLK_FD);
3264 * ice_update_prof_masking - set registers according to masking
3265 * @hw: pointer to the HW struct
3266 * @blk: hardware block
3267 * @prof_id: profile ID
3270 static enum ice_status
3271 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
3279 /* Only support FD and RSS masking, otherwise nothing to be done */
3280 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3283 for (i = 0; i < hw->blk[blk].es.fvw; i++)
3284 if (masks[i] && masks[i] != 0xFFFF) {
3285 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
3286 ena_mask |= BIT(idx);
3288 /* not enough bitmaps */
3295 /* free any bitmaps we have allocated */
3296 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
3297 if (ena_mask & BIT(i))
3298 ice_free_prof_mask(hw, blk, i);
3300 return ICE_ERR_OUT_OF_RANGE;
3303 /* enable the masks for this profile */
3304 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
3306 /* store enabled masks with profile so that they can be freed later */
3307 hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
3313 * ice_write_es - write an extraction sequence to hardware
3314 * @hw: pointer to the HW struct
3315 * @blk: the block in which to write the extraction sequence
3316 * @prof_id: the profile ID to write
3317 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
3320 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
3321 struct ice_fv_word *fv)
3325 off = prof_id * hw->blk[blk].es.fvw;
3327 ice_memset(&hw->blk[blk].es.t[off], 0, hw->blk[blk].es.fvw *
3328 sizeof(*fv), ICE_NONDMA_MEM);
3329 hw->blk[blk].es.written[prof_id] = false;
3331 ice_memcpy(&hw->blk[blk].es.t[off], fv, hw->blk[blk].es.fvw *
3332 sizeof(*fv), ICE_NONDMA_TO_NONDMA);
3337 * ice_prof_dec_ref - decrement reference count for profile
3338 * @hw: pointer to the HW struct
3339 * @blk: the block from which to free the profile ID
3340 * @prof_id: the profile ID for which to decrement the reference count
3342 static enum ice_status
3343 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3345 if (prof_id > hw->blk[blk].es.count)
3346 return ICE_ERR_PARAM;
3348 if (hw->blk[blk].es.ref_count[prof_id] > 0) {
3349 if (!--hw->blk[blk].es.ref_count[prof_id]) {
3350 ice_write_es(hw, blk, prof_id, NULL);
3351 ice_free_prof_masks(hw, blk, prof_id);
3352 return ice_free_prof_id(hw, blk, prof_id);
3359 /* Block / table section IDs */
3360 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
3364 ICE_SID_PROFID_TCAM_SW,
3365 ICE_SID_PROFID_REDIR_SW,
3372 ICE_SID_PROFID_TCAM_ACL,
3373 ICE_SID_PROFID_REDIR_ACL,
3380 ICE_SID_PROFID_TCAM_FD,
3381 ICE_SID_PROFID_REDIR_FD,
3388 ICE_SID_PROFID_TCAM_RSS,
3389 ICE_SID_PROFID_REDIR_RSS,
3396 ICE_SID_PROFID_TCAM_PE,
3397 ICE_SID_PROFID_REDIR_PE,
3403 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
3404 * @hw: pointer to the hardware structure
3405 * @blk: the HW block to initialize
3407 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
3411 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3414 ptg = hw->blk[blk].xlt1.t[pt];
3415 if (ptg != ICE_DEFAULT_PTG) {
3416 ice_ptg_alloc_val(hw, blk, ptg);
3417 ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3423 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3424 * @hw: pointer to the hardware structure
3425 * @blk: the HW block to initialize
3427 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3431 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3434 vsig = hw->blk[blk].xlt2.t[vsi];
3436 ice_vsig_alloc_val(hw, blk, vsig);
3437 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3438 /* no changes at this time, since this has been
3439 * initialized from the original package
3441 hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3447 * ice_init_sw_db - init software database from HW tables
3448 * @hw: pointer to the hardware structure
3450 static void ice_init_sw_db(struct ice_hw *hw)
3454 for (i = 0; i < ICE_BLK_COUNT; i++) {
3455 ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3456 ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3461 * ice_fill_tbl - Reads content of a single table type into database
3462 * @hw: pointer to the hardware structure
3463 * @block_id: Block ID of the table to copy
3464 * @sid: Section ID of the table to copy
3466 * Will attempt to read the entire content of a given table of a single block
3467 * into the driver database. We assume that the buffer will always
3468 * be as large or larger than the data contained in the package. If
3469 * this condition is not met, there is most likely an error in the package
3472 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
3474 u32 dst_len, sect_len, offset = 0;
3475 struct ice_prof_redir_section *pr;
3476 struct ice_prof_id_section *pid;
3477 struct ice_xlt1_section *xlt1;
3478 struct ice_xlt2_section *xlt2;
3479 struct ice_sw_fv_section *es;
3480 struct ice_pkg_enum state;
3484 /* if the HW segment pointer is null then the first iteration of
3485 * ice_pkg_enum_section() will fail. In this case the HW tables will
3486 * not be filled and return success.
3489 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
3493 ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
3495 sect = ice_pkg_enum_section(hw->seg, &state, sid);
3499 case ICE_SID_XLT1_SW:
3500 case ICE_SID_XLT1_FD:
3501 case ICE_SID_XLT1_RSS:
3502 case ICE_SID_XLT1_ACL:
3503 case ICE_SID_XLT1_PE:
3504 xlt1 = (struct ice_xlt1_section *)sect;
3506 sect_len = LE16_TO_CPU(xlt1->count) *
3507 sizeof(*hw->blk[block_id].xlt1.t);
3508 dst = hw->blk[block_id].xlt1.t;
3509 dst_len = hw->blk[block_id].xlt1.count *
3510 sizeof(*hw->blk[block_id].xlt1.t);
3512 case ICE_SID_XLT2_SW:
3513 case ICE_SID_XLT2_FD:
3514 case ICE_SID_XLT2_RSS:
3515 case ICE_SID_XLT2_ACL:
3516 case ICE_SID_XLT2_PE:
3517 xlt2 = (struct ice_xlt2_section *)sect;
3518 src = (_FORCE_ u8 *)xlt2->value;
3519 sect_len = LE16_TO_CPU(xlt2->count) *
3520 sizeof(*hw->blk[block_id].xlt2.t);
3521 dst = (u8 *)hw->blk[block_id].xlt2.t;
3522 dst_len = hw->blk[block_id].xlt2.count *
3523 sizeof(*hw->blk[block_id].xlt2.t);
3525 case ICE_SID_PROFID_TCAM_SW:
3526 case ICE_SID_PROFID_TCAM_FD:
3527 case ICE_SID_PROFID_TCAM_RSS:
3528 case ICE_SID_PROFID_TCAM_ACL:
3529 case ICE_SID_PROFID_TCAM_PE:
3530 pid = (struct ice_prof_id_section *)sect;
3531 src = (u8 *)pid->entry;
3532 sect_len = LE16_TO_CPU(pid->count) *
3533 sizeof(*hw->blk[block_id].prof.t);
3534 dst = (u8 *)hw->blk[block_id].prof.t;
3535 dst_len = hw->blk[block_id].prof.count *
3536 sizeof(*hw->blk[block_id].prof.t);
3538 case ICE_SID_PROFID_REDIR_SW:
3539 case ICE_SID_PROFID_REDIR_FD:
3540 case ICE_SID_PROFID_REDIR_RSS:
3541 case ICE_SID_PROFID_REDIR_ACL:
3542 case ICE_SID_PROFID_REDIR_PE:
3543 pr = (struct ice_prof_redir_section *)sect;
3544 src = pr->redir_value;
3545 sect_len = LE16_TO_CPU(pr->count) *
3546 sizeof(*hw->blk[block_id].prof_redir.t);
3547 dst = hw->blk[block_id].prof_redir.t;
3548 dst_len = hw->blk[block_id].prof_redir.count *
3549 sizeof(*hw->blk[block_id].prof_redir.t);
3551 case ICE_SID_FLD_VEC_SW:
3552 case ICE_SID_FLD_VEC_FD:
3553 case ICE_SID_FLD_VEC_RSS:
3554 case ICE_SID_FLD_VEC_ACL:
3555 case ICE_SID_FLD_VEC_PE:
3556 es = (struct ice_sw_fv_section *)sect;
3558 sect_len = (u32)(LE16_TO_CPU(es->count) *
3559 hw->blk[block_id].es.fvw) *
3560 sizeof(*hw->blk[block_id].es.t);
3561 dst = (u8 *)hw->blk[block_id].es.t;
3562 dst_len = (u32)(hw->blk[block_id].es.count *
3563 hw->blk[block_id].es.fvw) *
3564 sizeof(*hw->blk[block_id].es.t);
3570 /* if the section offset exceeds destination length, terminate
3573 if (offset > dst_len)
3576 /* if the sum of section size and offset exceed destination size
3577 * then we are out of bounds of the HW table size for that PF.
3578 * Changing section length to fill the remaining table space
3581 if ((offset + sect_len) > dst_len)
3582 sect_len = dst_len - offset;
3584 ice_memcpy(dst + offset, src, sect_len, ICE_NONDMA_TO_NONDMA);
3586 sect = ice_pkg_enum_section(NULL, &state, sid);
3591 * ice_fill_blk_tbls - Read package context for tables
3592 * @hw: pointer to the hardware structure
3594 * Reads the current package contents and populates the driver
3595 * database with the data iteratively for all advanced feature
3596 * blocks. Assume that the HW tables have been allocated.
3598 void ice_fill_blk_tbls(struct ice_hw *hw)
3602 for (i = 0; i < ICE_BLK_COUNT; i++) {
3603 enum ice_block blk_id = (enum ice_block)i;
3605 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
3606 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
3607 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
3608 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
3609 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
3616 * ice_free_prof_map - free profile map
3617 * @hw: pointer to the hardware structure
3618 * @blk_idx: HW block index
3620 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
3622 struct ice_es *es = &hw->blk[blk_idx].es;
3623 struct ice_prof_map *del, *tmp;
3625 ice_acquire_lock(&es->prof_map_lock);
3626 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &es->prof_map,
3627 ice_prof_map, list) {
3628 LIST_DEL(&del->list);
3631 INIT_LIST_HEAD(&es->prof_map);
3632 ice_release_lock(&es->prof_map_lock);
3636 * ice_free_flow_profs - free flow profile entries
3637 * @hw: pointer to the hardware structure
3638 * @blk_idx: HW block index
3640 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
3642 struct ice_flow_prof *p, *tmp;
3644 ice_acquire_lock(&hw->fl_profs_locks[blk_idx]);
3645 LIST_FOR_EACH_ENTRY_SAFE(p, tmp, &hw->fl_profs[blk_idx],
3646 ice_flow_prof, l_entry) {
3647 struct ice_flow_entry *e, *t;
3649 LIST_FOR_EACH_ENTRY_SAFE(e, t, &p->entries,
3650 ice_flow_entry, l_entry)
3651 ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
3652 ICE_FLOW_ENTRY_HNDL(e));
3654 LIST_DEL(&p->l_entry);
3656 ice_free(hw, p->acts);
3658 ice_destroy_lock(&p->entries_lock);
3661 ice_release_lock(&hw->fl_profs_locks[blk_idx]);
3663 /* if driver is in reset and tables are being cleared
3664 * re-initialize the flow profile list heads
3666 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3670 * ice_free_vsig_tbl - free complete VSIG table entries
3671 * @hw: pointer to the hardware structure
3672 * @blk: the HW block on which to free the VSIG table entries
3674 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
3678 if (!hw->blk[blk].xlt2.vsig_tbl)
3681 for (i = 1; i < ICE_MAX_VSIGS; i++)
3682 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
3683 ice_vsig_free(hw, blk, i);
3687 * ice_free_hw_tbls - free hardware table memory
3688 * @hw: pointer to the hardware structure
3690 void ice_free_hw_tbls(struct ice_hw *hw)
3692 struct ice_rss_cfg *r, *rt;
3695 for (i = 0; i < ICE_BLK_COUNT; i++) {
3696 if (hw->blk[i].is_list_init) {
3697 struct ice_es *es = &hw->blk[i].es;
3699 ice_free_prof_map(hw, i);
3700 ice_destroy_lock(&es->prof_map_lock);
3701 ice_free_flow_profs(hw, i);
3702 ice_destroy_lock(&hw->fl_profs_locks[i]);
3704 hw->blk[i].is_list_init = false;
3706 ice_free_vsig_tbl(hw, (enum ice_block)i);
3707 ice_free(hw, hw->blk[i].xlt1.ptypes);
3708 ice_free(hw, hw->blk[i].xlt1.ptg_tbl);
3709 ice_free(hw, hw->blk[i].xlt1.t);
3710 ice_free(hw, hw->blk[i].xlt2.t);
3711 ice_free(hw, hw->blk[i].xlt2.vsig_tbl);
3712 ice_free(hw, hw->blk[i].xlt2.vsis);
3713 ice_free(hw, hw->blk[i].prof.t);
3714 ice_free(hw, hw->blk[i].prof_redir.t);
3715 ice_free(hw, hw->blk[i].es.t);
3716 ice_free(hw, hw->blk[i].es.ref_count);
3717 ice_free(hw, hw->blk[i].es.written);
3718 ice_free(hw, hw->blk[i].es.mask_ena);
3721 LIST_FOR_EACH_ENTRY_SAFE(r, rt, &hw->rss_list_head,
3722 ice_rss_cfg, l_entry) {
3723 LIST_DEL(&r->l_entry);
3726 ice_destroy_lock(&hw->rss_locks);
3727 if (!hw->dcf_enabled)
3728 ice_shutdown_all_prof_masks(hw);
3729 ice_memset(hw->blk, 0, sizeof(hw->blk), ICE_NONDMA_MEM);
3733 * ice_init_flow_profs - init flow profile locks and list heads
3734 * @hw: pointer to the hardware structure
3735 * @blk_idx: HW block index
3737 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
3739 ice_init_lock(&hw->fl_profs_locks[blk_idx]);
3740 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3744 * ice_clear_hw_tbls - clear HW tables and flow profiles
3745 * @hw: pointer to the hardware structure
3747 void ice_clear_hw_tbls(struct ice_hw *hw)
3751 for (i = 0; i < ICE_BLK_COUNT; i++) {
3752 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3753 struct ice_prof_tcam *prof = &hw->blk[i].prof;
3754 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3755 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3756 struct ice_es *es = &hw->blk[i].es;
3758 if (hw->blk[i].is_list_init) {
3759 ice_free_prof_map(hw, i);
3760 ice_free_flow_profs(hw, i);
3763 ice_free_vsig_tbl(hw, (enum ice_block)i);
3765 ice_memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes),
3767 ice_memset(xlt1->ptg_tbl, 0,
3768 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl),
3770 ice_memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t),
3773 ice_memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis),
3775 ice_memset(xlt2->vsig_tbl, 0,
3776 xlt2->count * sizeof(*xlt2->vsig_tbl),
3778 ice_memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t),
3781 ice_memset(prof->t, 0, prof->count * sizeof(*prof->t),
3783 ice_memset(prof_redir->t, 0,
3784 prof_redir->count * sizeof(*prof_redir->t),
3787 ice_memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw,
3789 ice_memset(es->ref_count, 0, es->count * sizeof(*es->ref_count),
3791 ice_memset(es->written, 0, es->count * sizeof(*es->written),
3793 ice_memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena),
3799 * ice_init_hw_tbls - init hardware table memory
3800 * @hw: pointer to the hardware structure
3802 enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
3806 ice_init_lock(&hw->rss_locks);
3807 INIT_LIST_HEAD(&hw->rss_list_head);
3808 if (!hw->dcf_enabled)
3809 ice_init_all_prof_masks(hw);
3810 for (i = 0; i < ICE_BLK_COUNT; i++) {
3811 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3812 struct ice_prof_tcam *prof = &hw->blk[i].prof;
3813 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3814 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3815 struct ice_es *es = &hw->blk[i].es;
3818 if (hw->blk[i].is_list_init)
3821 ice_init_flow_profs(hw, i);
3822 ice_init_lock(&es->prof_map_lock);
3823 INIT_LIST_HEAD(&es->prof_map);
3824 hw->blk[i].is_list_init = true;
3826 hw->blk[i].overwrite = blk_sizes[i].overwrite;
3827 es->reverse = blk_sizes[i].reverse;
3829 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
3830 xlt1->count = blk_sizes[i].xlt1;
3832 xlt1->ptypes = (struct ice_ptg_ptype *)
3833 ice_calloc(hw, xlt1->count, sizeof(*xlt1->ptypes));
3838 xlt1->ptg_tbl = (struct ice_ptg_entry *)
3839 ice_calloc(hw, ICE_MAX_PTGS, sizeof(*xlt1->ptg_tbl));
3844 xlt1->t = (u8 *)ice_calloc(hw, xlt1->count, sizeof(*xlt1->t));
3848 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
3849 xlt2->count = blk_sizes[i].xlt2;
3851 xlt2->vsis = (struct ice_vsig_vsi *)
3852 ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsis));
3857 xlt2->vsig_tbl = (struct ice_vsig_entry *)
3858 ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsig_tbl));
3859 if (!xlt2->vsig_tbl)
3862 for (j = 0; j < xlt2->count; j++)
3863 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
3865 xlt2->t = (u16 *)ice_calloc(hw, xlt2->count, sizeof(*xlt2->t));
3869 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
3870 prof->count = blk_sizes[i].prof_tcam;
3871 prof->max_prof_id = blk_sizes[i].prof_id;
3872 prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
3873 prof->t = (struct ice_prof_tcam_entry *)
3874 ice_calloc(hw, prof->count, sizeof(*prof->t));
3879 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
3880 prof_redir->count = blk_sizes[i].prof_redir;
3881 prof_redir->t = (u8 *)ice_calloc(hw, prof_redir->count,
3882 sizeof(*prof_redir->t));
3887 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
3888 es->count = blk_sizes[i].es;
3889 es->fvw = blk_sizes[i].fvw;
3890 es->t = (struct ice_fv_word *)
3891 ice_calloc(hw, (u32)(es->count * es->fvw),
3896 es->ref_count = (u16 *)
3897 ice_calloc(hw, es->count, sizeof(*es->ref_count));
3902 es->written = (u8 *)
3903 ice_calloc(hw, es->count, sizeof(*es->written));
3908 es->mask_ena = (u32 *)
3909 ice_calloc(hw, es->count, sizeof(*es->mask_ena));
3917 ice_free_hw_tbls(hw);
3918 return ICE_ERR_NO_MEMORY;
3922 * ice_prof_gen_key - generate profile ID key
3923 * @hw: pointer to the HW struct
3924 * @blk: the block in which to write profile ID to
3925 * @ptg: packet type group (PTG) portion of key
3926 * @vsig: VSIG portion of key
3927 * @cdid: CDID portion of key
3928 * @flags: flag portion of key
3929 * @vl_msk: valid mask
3930 * @dc_msk: don't care mask
3931 * @nm_msk: never match mask
3932 * @key: output of profile ID key
3934 static enum ice_status
3935 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
3936 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3937 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
3938 u8 key[ICE_TCAM_KEY_SZ])
3940 struct ice_prof_id_key inkey;
3943 inkey.xlt2_cdid = CPU_TO_LE16(vsig);
3944 inkey.flags = CPU_TO_LE16(flags);
3946 switch (hw->blk[blk].prof.cdid_bits) {
3950 #define ICE_CD_2_M 0xC000U
3951 #define ICE_CD_2_S 14
3952 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_2_M);
3953 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_2_S);
3956 #define ICE_CD_4_M 0xF000U
3957 #define ICE_CD_4_S 12
3958 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_4_M);
3959 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_4_S);
3962 #define ICE_CD_8_M 0xFF00U
3963 #define ICE_CD_8_S 16
3964 inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_8_M);
3965 inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_8_S);
3968 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
3972 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
3973 nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
3977 * ice_tcam_write_entry - write TCAM entry
3978 * @hw: pointer to the HW struct
3979 * @blk: the block in which to write profile ID to
3980 * @idx: the entry index to write to
3981 * @prof_id: profile ID
3982 * @ptg: packet type group (PTG) portion of key
3983 * @vsig: VSIG portion of key
3984 * @cdid: CDID portion of key
3985 * @flags: flag portion of key
3986 * @vl_msk: valid mask
3987 * @dc_msk: don't care mask
3988 * @nm_msk: never match mask
3990 static enum ice_status
3991 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
3992 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
3993 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3994 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
3995 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
3997 struct ice_prof_tcam_entry;
3998 enum ice_status status;
4000 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
4001 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
4003 hw->blk[blk].prof.t[idx].addr = CPU_TO_LE16(idx);
4004 hw->blk[blk].prof.t[idx].prof_id = prof_id;
4011 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
4012 * @hw: pointer to the hardware structure
4014 * @vsig: VSIG to query
4015 * @refs: pointer to variable to receive the reference count
4017 static enum ice_status
4018 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
4020 u16 idx = vsig & ICE_VSIG_IDX_M;
4021 struct ice_vsig_vsi *ptr;
4025 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
4026 return ICE_ERR_DOES_NOT_EXIST;
4028 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4031 ptr = ptr->next_vsi;
4038 * ice_has_prof_vsig - check to see if VSIG has a specific profile
4039 * @hw: pointer to the hardware structure
4041 * @vsig: VSIG to check against
4042 * @hdl: profile handle
4045 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
4047 u16 idx = vsig & ICE_VSIG_IDX_M;
4048 struct ice_vsig_prof *ent;
4050 LIST_FOR_EACH_ENTRY(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4051 ice_vsig_prof, list)
4052 if (ent->profile_cookie == hdl)
4055 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
4061 * ice_prof_bld_es - build profile ID extraction sequence changes
4062 * @hw: pointer to the HW struct
4063 * @blk: hardware block
4064 * @bld: the update package buffer build to add to
4065 * @chgs: the list of changes to make in hardware
4067 static enum ice_status
4068 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
4069 struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
4071 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
4072 struct ice_chs_chg *tmp;
4074 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4075 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
4076 u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
4077 struct ice_pkg_es *p;
4080 id = ice_sect_id(blk, ICE_VEC_TBL);
4081 p = (struct ice_pkg_es *)
4082 ice_pkg_buf_alloc_section(bld, id,
4083 ice_struct_size(p, es,
4089 return ICE_ERR_MAX_LIMIT;
4091 p->count = CPU_TO_LE16(1);
4092 p->offset = CPU_TO_LE16(tmp->prof_id);
4094 ice_memcpy(p->es, &hw->blk[blk].es.t[off], vec_size,
4095 ICE_NONDMA_TO_NONDMA);
4102 * ice_prof_bld_tcam - build profile ID TCAM changes
4103 * @hw: pointer to the HW struct
4104 * @blk: hardware block
4105 * @bld: the update package buffer build to add to
4106 * @chgs: the list of changes to make in hardware
4108 static enum ice_status
4109 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
4110 struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
4112 struct ice_chs_chg *tmp;
4114 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4115 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
4116 struct ice_prof_id_section *p;
4119 id = ice_sect_id(blk, ICE_PROF_TCAM);
4120 p = (struct ice_prof_id_section *)
4121 ice_pkg_buf_alloc_section(bld, id,
4127 return ICE_ERR_MAX_LIMIT;
4129 p->count = CPU_TO_LE16(1);
4130 p->entry[0].addr = CPU_TO_LE16(tmp->tcam_idx);
4131 p->entry[0].prof_id = tmp->prof_id;
4133 ice_memcpy(p->entry[0].key,
4134 &hw->blk[blk].prof.t[tmp->tcam_idx].key,
4135 sizeof(hw->blk[blk].prof.t->key),
4136 ICE_NONDMA_TO_NONDMA);
4143 * ice_prof_bld_xlt1 - build XLT1 changes
4144 * @blk: hardware block
4145 * @bld: the update package buffer build to add to
4146 * @chgs: the list of changes to make in hardware
4148 static enum ice_status
4149 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
4150 struct LIST_HEAD_TYPE *chgs)
4152 struct ice_chs_chg *tmp;
4154 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4155 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
4156 struct ice_xlt1_section *p;
4159 id = ice_sect_id(blk, ICE_XLT1);
4160 p = (struct ice_xlt1_section *)
4161 ice_pkg_buf_alloc_section(bld, id,
4167 return ICE_ERR_MAX_LIMIT;
4169 p->count = CPU_TO_LE16(1);
4170 p->offset = CPU_TO_LE16(tmp->ptype);
4171 p->value[0] = tmp->ptg;
4178 * ice_prof_bld_xlt2 - build XLT2 changes
4179 * @blk: hardware block
4180 * @bld: the update package buffer build to add to
4181 * @chgs: the list of changes to make in hardware
4183 static enum ice_status
4184 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
4185 struct LIST_HEAD_TYPE *chgs)
4187 struct ice_chs_chg *tmp;
4189 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
4190 struct ice_xlt2_section *p;
4193 switch (tmp->type) {
4197 id = ice_sect_id(blk, ICE_XLT2);
4198 p = (struct ice_xlt2_section *)
4199 ice_pkg_buf_alloc_section(bld, id,
4205 return ICE_ERR_MAX_LIMIT;
4207 p->count = CPU_TO_LE16(1);
4208 p->offset = CPU_TO_LE16(tmp->vsi);
4209 p->value[0] = CPU_TO_LE16(tmp->vsig);
4220 * ice_upd_prof_hw - update hardware using the change list
4221 * @hw: pointer to the HW struct
4222 * @blk: hardware block
4223 * @chgs: the list of changes to make in hardware
4225 static enum ice_status
4226 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
4227 struct LIST_HEAD_TYPE *chgs)
4229 struct ice_buf_build *b;
4230 struct ice_chs_chg *tmp;
4231 enum ice_status status;
4239 /* count number of sections we need */
4240 LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
4241 switch (tmp->type) {
4242 case ICE_PTG_ES_ADD:
4260 sects = xlt1 + xlt2 + tcam + es;
4265 /* Build update package buffer */
4266 b = ice_pkg_buf_alloc(hw);
4268 return ICE_ERR_NO_MEMORY;
4270 status = ice_pkg_buf_reserve_section(b, sects);
4274 /* Preserve order of table update: ES, TCAM, PTG, VSIG */
4276 status = ice_prof_bld_es(hw, blk, b, chgs);
4282 status = ice_prof_bld_tcam(hw, blk, b, chgs);
4288 status = ice_prof_bld_xlt1(blk, b, chgs);
4294 status = ice_prof_bld_xlt2(blk, b, chgs);
4299 /* After package buffer build check if the section count in buffer is
4300 * non-zero and matches the number of sections detected for package
4303 pkg_sects = ice_pkg_buf_get_active_sections(b);
4304 if (!pkg_sects || pkg_sects != sects) {
4305 status = ICE_ERR_INVAL_SIZE;
4309 /* update package */
4310 status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
4311 if (status == ICE_ERR_AQ_ERROR)
4312 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
4315 ice_pkg_buf_free(hw, b);
4320 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
4321 * @hw: pointer to the HW struct
4322 * @prof_id: profile ID
4323 * @mask_sel: mask select
4325 * This function enable any of the masks selected by the mask select parameter
4326 * for the profile specified.
4328 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
4330 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
4332 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
4333 GLQF_FDMASK_SEL(prof_id), mask_sel);
4336 struct ice_fd_src_dst_pair {
4342 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
4343 /* These are defined in pairs */
4344 { ICE_PROT_IPV4_OF_OR_S, 2, 12 },
4345 { ICE_PROT_IPV4_OF_OR_S, 2, 16 },
4347 { ICE_PROT_IPV4_IL, 2, 12 },
4348 { ICE_PROT_IPV4_IL, 2, 16 },
4350 { ICE_PROT_IPV6_OF_OR_S, 8, 8 },
4351 { ICE_PROT_IPV6_OF_OR_S, 8, 24 },
4353 { ICE_PROT_IPV6_IL, 8, 8 },
4354 { ICE_PROT_IPV6_IL, 8, 24 },
4356 { ICE_PROT_TCP_IL, 1, 0 },
4357 { ICE_PROT_TCP_IL, 1, 2 },
4359 { ICE_PROT_UDP_OF, 1, 0 },
4360 { ICE_PROT_UDP_OF, 1, 2 },
4362 { ICE_PROT_UDP_IL_OR_S, 1, 0 },
4363 { ICE_PROT_UDP_IL_OR_S, 1, 2 },
4365 { ICE_PROT_SCTP_IL, 1, 0 },
4366 { ICE_PROT_SCTP_IL, 1, 2 }
4369 #define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs)
4372 * ice_update_fd_swap - set register appropriately for a FD FV extraction
4373 * @hw: pointer to the HW struct
4374 * @prof_id: profile ID
4375 * @es: extraction sequence (length of array is determined by the block)
4377 static enum ice_status
4378 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
4380 ice_declare_bitmap(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4381 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
4382 #define ICE_FD_FV_NOT_FOUND (-2)
4383 s8 first_free = ICE_FD_FV_NOT_FOUND;
4384 u8 used[ICE_MAX_FV_WORDS] = { 0 };
4389 ice_zero_bitmap(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4391 /* This code assumes that the Flow Director field vectors are assigned
4392 * from the end of the FV indexes working towards the zero index, that
4393 * only complete fields will be included and will be consecutive, and
4394 * that there are no gaps between valid indexes.
4397 /* Determine swap fields present */
4398 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
4399 /* Find the first free entry, assuming right to left population.
4400 * This is where we can start adding additional pairs if needed.
4402 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
4406 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4407 if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
4408 es[i].off == ice_fd_pairs[j].off) {
4409 ice_set_bit(j, pair_list);
4414 orig_free = first_free;
4416 /* determine missing swap fields that need to be added */
4417 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
4418 u8 bit1 = ice_is_bit_set(pair_list, i + 1);
4419 u8 bit0 = ice_is_bit_set(pair_list, i);
4424 /* add the appropriate 'paired' entry */
4430 /* check for room */
4431 if (first_free + 1 < (s8)ice_fd_pairs[index].count)
4432 return ICE_ERR_MAX_LIMIT;
4434 /* place in extraction sequence */
4435 for (k = 0; k < ice_fd_pairs[index].count; k++) {
4436 es[first_free - k].prot_id =
4437 ice_fd_pairs[index].prot_id;
4438 es[first_free - k].off =
4439 ice_fd_pairs[index].off + (k * 2);
4442 return ICE_ERR_OUT_OF_RANGE;
4444 /* keep track of non-relevant fields */
4445 mask_sel |= BIT(first_free - k);
4448 pair_start[index] = first_free;
4449 first_free -= ice_fd_pairs[index].count;
4453 /* fill in the swap array */
4454 si = hw->blk[ICE_BLK_FD].es.fvw - 1;
4456 u8 indexes_used = 1;
4458 /* assume flat at this index */
4459 #define ICE_SWAP_VALID 0x80
4460 used[si] = si | ICE_SWAP_VALID;
4462 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
4467 /* check for a swap location */
4468 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4469 if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
4470 es[si].off == ice_fd_pairs[j].off) {
4473 /* determine the appropriate matching field */
4474 idx = j + ((j % 2) ? -1 : 1);
4476 indexes_used = ice_fd_pairs[idx].count;
4477 for (k = 0; k < indexes_used; k++) {
4478 used[si - k] = (pair_start[idx] - k) |
4488 /* for each set of 4 swap and 4 inset indexes, write the appropriate
4491 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
4495 for (k = 0; k < 4; k++) {
4499 if (used[idx] && !(mask_sel & BIT(idx))) {
4500 raw_swap |= used[idx] << (k * BITS_PER_BYTE);
4501 #define ICE_INSET_DFLT 0x9f
4502 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
4506 /* write the appropriate swap register set */
4507 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
4509 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
4510 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
4512 /* write the appropriate inset register set */
4513 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
4515 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
4516 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
4519 /* initially clear the mask select for this profile */
4520 ice_update_fd_mask(hw, prof_id, 0);
4525 /* The entries here needs to match the order of enum ice_ptype_attrib */
4526 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
4527 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK },
4528 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK },
4529 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK },
4530 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK },
4534 * ice_get_ptype_attrib_info - get ptype attribute information
4535 * @type: attribute type
4536 * @info: pointer to variable to the attribute information
4539 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
4540 struct ice_ptype_attrib_info *info)
4542 *info = ice_ptype_attributes[type];
4546 * ice_add_prof_attrib - add any PTG with attributes to profile
4547 * @prof: pointer to the profile to which PTG entries will be added
4548 * @ptg: PTG to be added
4549 * @ptype: PTYPE that needs to be looked up
4550 * @attr: array of attributes that will be considered
4551 * @attr_cnt: number of elements in the attribute array
4553 static enum ice_status
4554 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
4555 const struct ice_ptype_attributes *attr, u16 attr_cnt)
4560 for (i = 0; i < attr_cnt; i++) {
4561 if (attr[i].ptype == ptype) {
4564 prof->ptg[prof->ptg_cnt] = ptg;
4565 ice_get_ptype_attrib_info(attr[i].attrib,
4566 &prof->attr[prof->ptg_cnt]);
4568 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
4569 return ICE_ERR_MAX_LIMIT;
4574 return ICE_ERR_DOES_NOT_EXIST;
4580 * ice_add_prof - add profile
4581 * @hw: pointer to the HW struct
4582 * @blk: hardware block
4583 * @id: profile tracking ID
4584 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
4585 * @attr: array of attributes
4586 * @attr_cnt: number of elements in attrib array
4587 * @es: extraction sequence (length of array is determined by the block)
4588 * @masks: mask for extraction sequence
4590 * This function registers a profile, which matches a set of PTYPES with a
4591 * particular extraction sequence. While the hardware profile is allocated
4592 * it will not be written until the first call to ice_add_flow that specifies
4593 * the ID value used here.
4596 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
4597 const struct ice_ptype_attributes *attr, u16 attr_cnt,
4598 struct ice_fv_word *es, u16 *masks)
4600 u32 bytes = DIVIDE_AND_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
4601 ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
4602 struct ice_prof_map *prof;
4603 enum ice_status status;
4607 ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
4609 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4611 /* search for existing profile */
4612 status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id);
4614 /* allocate profile ID */
4615 status = ice_alloc_prof_id(hw, blk, &prof_id);
4617 goto err_ice_add_prof;
4618 if (blk == ICE_BLK_FD) {
4619 /* For Flow Director block, the extraction sequence may
4620 * need to be altered in the case where there are paired
4621 * fields that have no match. This is necessary because
4622 * for Flow Director, src and dest fields need to paired
4623 * for filter programming and these values are swapped
4626 status = ice_update_fd_swap(hw, prof_id, es);
4628 goto err_ice_add_prof;
4630 status = ice_update_prof_masking(hw, blk, prof_id, masks);
4632 goto err_ice_add_prof;
4634 /* and write new es */
4635 ice_write_es(hw, blk, prof_id, es);
4638 ice_prof_inc_ref(hw, blk, prof_id);
4640 /* add profile info */
4642 prof = (struct ice_prof_map *)ice_malloc(hw, sizeof(*prof));
4644 goto err_ice_add_prof;
4646 prof->profile_cookie = id;
4647 prof->prof_id = prof_id;
4651 /* build list of ptgs */
4652 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
4655 if (!ptypes[byte]) {
4661 /* Examine 8 bits per byte */
4662 ice_for_each_set_bit(bit, (ice_bitmap_t *)&ptypes[byte],
4667 ptype = byte * BITS_PER_BYTE + bit;
4669 /* The package should place all ptypes in a non-zero
4670 * PTG, so the following call should never fail.
4672 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
4675 /* If PTG is already added, skip and continue */
4676 if (ice_is_bit_set(ptgs_used, ptg))
4679 ice_set_bit(ptg, ptgs_used);
4680 /* Check to see there are any attributes for this
4681 * ptype, and add them if found.
4683 status = ice_add_prof_attrib(prof, ptg, ptype, attr,
4685 if (status == ICE_ERR_MAX_LIMIT)
4688 /* This is simple a ptype/PTG with no
4691 prof->ptg[prof->ptg_cnt] = ptg;
4692 prof->attr[prof->ptg_cnt].flags = 0;
4693 prof->attr[prof->ptg_cnt].mask = 0;
4695 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
4704 LIST_ADD(&prof->list, &hw->blk[blk].es.prof_map);
4705 status = ICE_SUCCESS;
4708 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4713 * ice_search_prof_id - Search for a profile tracking ID
4714 * @hw: pointer to the HW struct
4715 * @blk: hardware block
4716 * @id: profile tracking ID
4718 * This will search for a profile tracking ID which was previously added.
4719 * The profile map lock should be held before calling this function.
4721 struct ice_prof_map *
4722 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
4724 struct ice_prof_map *entry = NULL;
4725 struct ice_prof_map *map;
4727 LIST_FOR_EACH_ENTRY(map, &hw->blk[blk].es.prof_map, ice_prof_map, list)
4728 if (map->profile_cookie == id) {
4737 * ice_vsig_prof_id_count - count profiles in a VSIG
4738 * @hw: pointer to the HW struct
4739 * @blk: hardware block
4740 * @vsig: VSIG to remove the profile from
4743 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
4745 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
4746 struct ice_vsig_prof *p;
4748 LIST_FOR_EACH_ENTRY(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4749 ice_vsig_prof, list)
4756 * ice_rel_tcam_idx - release a TCAM index
4757 * @hw: pointer to the HW struct
4758 * @blk: hardware block
4759 * @idx: the index to release
4761 static enum ice_status
4762 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
4764 /* Masks to invoke a never match entry */
4765 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4766 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
4767 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
4768 enum ice_status status;
4770 /* write the TCAM entry */
4771 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
4776 /* release the TCAM entry */
4777 status = ice_free_tcam_ent(hw, blk, idx);
4783 * ice_rem_prof_id - remove one profile from a VSIG
4784 * @hw: pointer to the HW struct
4785 * @blk: hardware block
4786 * @prof: pointer to profile structure to remove
4788 static enum ice_status
4789 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
4790 struct ice_vsig_prof *prof)
4792 enum ice_status status;
4795 for (i = 0; i < prof->tcam_count; i++)
4796 if (prof->tcam[i].in_use) {
4797 prof->tcam[i].in_use = false;
4798 status = ice_rel_tcam_idx(hw, blk,
4799 prof->tcam[i].tcam_idx);
4801 return ICE_ERR_HW_TABLE;
4808 * ice_rem_vsig - remove VSIG
4809 * @hw: pointer to the HW struct
4810 * @blk: hardware block
4811 * @vsig: the VSIG to remove
4812 * @chg: the change list
4814 static enum ice_status
4815 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4816 struct LIST_HEAD_TYPE *chg)
4818 u16 idx = vsig & ICE_VSIG_IDX_M;
4819 struct ice_vsig_vsi *vsi_cur;
4820 struct ice_vsig_prof *d, *t;
4821 enum ice_status status;
4823 /* remove TCAM entries */
4824 LIST_FOR_EACH_ENTRY_SAFE(d, t,
4825 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4826 ice_vsig_prof, list) {
4827 status = ice_rem_prof_id(hw, blk, d);
4835 /* Move all VSIS associated with this VSIG to the default VSIG */
4836 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4837 /* If the VSIG has at least 1 VSI then iterate through the list
4838 * and remove the VSIs before deleting the group.
4842 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
4843 struct ice_chs_chg *p;
4845 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
4847 return ICE_ERR_NO_MEMORY;
4849 p->type = ICE_VSIG_REM;
4850 p->orig_vsig = vsig;
4851 p->vsig = ICE_DEFAULT_VSIG;
4852 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
4854 LIST_ADD(&p->list_entry, chg);
4859 return ice_vsig_free(hw, blk, vsig);
4863 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
4864 * @hw: pointer to the HW struct
4865 * @blk: hardware block
4866 * @vsig: VSIG to remove the profile from
4867 * @hdl: profile handle indicating which profile to remove
4868 * @chg: list to receive a record of changes
4870 static enum ice_status
4871 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4872 struct LIST_HEAD_TYPE *chg)
4874 u16 idx = vsig & ICE_VSIG_IDX_M;
4875 struct ice_vsig_prof *p, *t;
4876 enum ice_status status;
4878 LIST_FOR_EACH_ENTRY_SAFE(p, t,
4879 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4880 ice_vsig_prof, list)
4881 if (p->profile_cookie == hdl) {
4882 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
4883 /* this is the last profile, remove the VSIG */
4884 return ice_rem_vsig(hw, blk, vsig, chg);
4886 status = ice_rem_prof_id(hw, blk, p);
4894 return ICE_ERR_DOES_NOT_EXIST;
4898 * ice_rem_flow_all - remove all flows with a particular profile
4899 * @hw: pointer to the HW struct
4900 * @blk: hardware block
4901 * @id: profile tracking ID
4903 static enum ice_status
4904 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
4906 struct ice_chs_chg *del, *tmp;
4907 struct LIST_HEAD_TYPE chg;
4908 enum ice_status status;
4911 INIT_LIST_HEAD(&chg);
4913 for (i = 1; i < ICE_MAX_VSIGS; i++)
4914 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
4915 if (ice_has_prof_vsig(hw, blk, i, id)) {
4916 status = ice_rem_prof_id_vsig(hw, blk, i, id,
4919 goto err_ice_rem_flow_all;
4923 status = ice_upd_prof_hw(hw, blk, &chg);
4925 err_ice_rem_flow_all:
4926 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
4927 LIST_DEL(&del->list_entry);
4935 * ice_rem_prof - remove profile
4936 * @hw: pointer to the HW struct
4937 * @blk: hardware block
4938 * @id: profile tracking ID
4940 * This will remove the profile specified by the ID parameter, which was
4941 * previously created through ice_add_prof. If any existing entries
4942 * are associated with this profile, they will be removed as well.
4944 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
4946 struct ice_prof_map *pmap;
4947 enum ice_status status;
4949 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4951 pmap = ice_search_prof_id(hw, blk, id);
4953 status = ICE_ERR_DOES_NOT_EXIST;
4954 goto err_ice_rem_prof;
4957 /* remove all flows with this profile */
4958 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
4960 goto err_ice_rem_prof;
4962 /* dereference profile, and possibly remove */
4963 ice_prof_dec_ref(hw, blk, pmap->prof_id);
4965 LIST_DEL(&pmap->list);
4969 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
4974 * ice_get_prof - get profile
4975 * @hw: pointer to the HW struct
4976 * @blk: hardware block
4977 * @hdl: profile handle
4980 static enum ice_status
4981 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
4982 struct LIST_HEAD_TYPE *chg)
4984 enum ice_status status = ICE_SUCCESS;
4985 struct ice_prof_map *map;
4986 struct ice_chs_chg *p;
4989 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
4990 /* Get the details on the profile specified by the handle ID */
4991 map = ice_search_prof_id(hw, blk, hdl);
4993 status = ICE_ERR_DOES_NOT_EXIST;
4994 goto err_ice_get_prof;
4997 for (i = 0; i < map->ptg_cnt; i++)
4998 if (!hw->blk[blk].es.written[map->prof_id]) {
4999 /* add ES to change list */
5000 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5002 status = ICE_ERR_NO_MEMORY;
5003 goto err_ice_get_prof;
5006 p->type = ICE_PTG_ES_ADD;
5008 p->ptg = map->ptg[i];
5009 p->attr = map->attr[i];
5013 p->prof_id = map->prof_id;
5015 hw->blk[blk].es.written[map->prof_id] = true;
5017 LIST_ADD(&p->list_entry, chg);
5021 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5022 /* let caller clean up the change list */
5027 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
5028 * @hw: pointer to the HW struct
5029 * @blk: hardware block
5030 * @vsig: VSIG from which to copy the list
5033 * This routine makes a copy of the list of profiles in the specified VSIG.
5035 static enum ice_status
5036 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5037 struct LIST_HEAD_TYPE *lst)
5039 struct ice_vsig_prof *ent1, *ent2;
5040 u16 idx = vsig & ICE_VSIG_IDX_M;
5042 LIST_FOR_EACH_ENTRY(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5043 ice_vsig_prof, list) {
5044 struct ice_vsig_prof *p;
5046 /* copy to the input list */
5047 p = (struct ice_vsig_prof *)ice_memdup(hw, ent1, sizeof(*p),
5048 ICE_NONDMA_TO_NONDMA);
5050 goto err_ice_get_profs_vsig;
5052 LIST_ADD_TAIL(&p->list, lst);
5057 err_ice_get_profs_vsig:
5058 LIST_FOR_EACH_ENTRY_SAFE(ent1, ent2, lst, ice_vsig_prof, list) {
5059 LIST_DEL(&ent1->list);
5063 return ICE_ERR_NO_MEMORY;
5067 * ice_add_prof_to_lst - add profile entry to a list
5068 * @hw: pointer to the HW struct
5069 * @blk: hardware block
5070 * @lst: the list to be added to
5071 * @hdl: profile handle of entry to add
5073 static enum ice_status
5074 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
5075 struct LIST_HEAD_TYPE *lst, u64 hdl)
5077 enum ice_status status = ICE_SUCCESS;
5078 struct ice_prof_map *map;
5079 struct ice_vsig_prof *p;
5082 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
5083 map = ice_search_prof_id(hw, blk, hdl);
5085 status = ICE_ERR_DOES_NOT_EXIST;
5086 goto err_ice_add_prof_to_lst;
5089 p = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*p));
5091 status = ICE_ERR_NO_MEMORY;
5092 goto err_ice_add_prof_to_lst;
5095 p->profile_cookie = map->profile_cookie;
5096 p->prof_id = map->prof_id;
5097 p->tcam_count = map->ptg_cnt;
5099 for (i = 0; i < map->ptg_cnt; i++) {
5100 p->tcam[i].prof_id = map->prof_id;
5101 p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
5102 p->tcam[i].ptg = map->ptg[i];
5103 p->tcam[i].attr = map->attr[i];
5106 LIST_ADD(&p->list, lst);
5108 err_ice_add_prof_to_lst:
5109 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5114 * ice_move_vsi - move VSI to another VSIG
5115 * @hw: pointer to the HW struct
5116 * @blk: hardware block
5117 * @vsi: the VSI to move
5118 * @vsig: the VSIG to move the VSI to
5119 * @chg: the change list
5121 static enum ice_status
5122 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
5123 struct LIST_HEAD_TYPE *chg)
5125 enum ice_status status;
5126 struct ice_chs_chg *p;
5129 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5131 return ICE_ERR_NO_MEMORY;
5133 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
5135 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
5142 p->type = ICE_VSI_MOVE;
5144 p->orig_vsig = orig_vsig;
5147 LIST_ADD(&p->list_entry, chg);
5153 * ice_set_tcam_flags - set TCAM flag don't care mask
5154 * @mask: mask for flags
5155 * @dc_mask: pointer to the don't care mask
5157 static void ice_set_tcam_flags(u16 mask, u8 dc_mask[ICE_TCAM_KEY_VAL_SZ])
5161 /* flags are lowest u16 */
5162 flag_word = (u16 *)dc_mask;
5167 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
5168 * @hw: pointer to the HW struct
5169 * @idx: the index of the TCAM entry to remove
5170 * @chg: the list of change structures to search
5173 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct LIST_HEAD_TYPE *chg)
5175 struct ice_chs_chg *pos, *tmp;
5177 LIST_FOR_EACH_ENTRY_SAFE(tmp, pos, chg, ice_chs_chg, list_entry)
5178 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
5179 LIST_DEL(&tmp->list_entry);
5185 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
5186 * @hw: pointer to the HW struct
5187 * @blk: hardware block
5188 * @enable: true to enable, false to disable
5189 * @vsig: the VSIG of the TCAM entry
5190 * @tcam: pointer the TCAM info structure of the TCAM to disable
5191 * @chg: the change list
5193 * This function appends an enable or disable TCAM entry in the change log
5195 static enum ice_status
5196 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
5197 u16 vsig, struct ice_tcam_inf *tcam,
5198 struct LIST_HEAD_TYPE *chg)
5200 enum ice_status status;
5201 struct ice_chs_chg *p;
5203 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5204 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5205 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5207 /* if disabling, free the TCAM */
5209 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
5211 /* if we have already created a change for this TCAM entry, then
5212 * we need to remove that entry, in order to prevent writing to
5213 * a TCAM entry we no longer will have ownership of.
5215 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
5221 /* for re-enabling, reallocate a TCAM */
5222 /* for entries with empty attribute masks, allocate entry from
5223 * the bottom of the TCAM table; otherwise, allocate from the
5224 * top of the table in order to give it higher priority
5226 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
5231 /* add TCAM to change list */
5232 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5234 return ICE_ERR_NO_MEMORY;
5236 /* set don't care masks for TCAM flags */
5237 ice_set_tcam_flags(tcam->attr.mask, dc_msk);
5239 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
5240 tcam->ptg, vsig, 0, tcam->attr.flags,
5241 vl_msk, dc_msk, nm_msk);
5243 goto err_ice_prof_tcam_ena_dis;
5247 p->type = ICE_TCAM_ADD;
5248 p->add_tcam_idx = true;
5249 p->prof_id = tcam->prof_id;
5252 p->tcam_idx = tcam->tcam_idx;
5255 LIST_ADD(&p->list_entry, chg);
5259 err_ice_prof_tcam_ena_dis:
5265 * ice_ptg_attr_in_use - determine if PTG and attribute pair is in use
5266 * @ptg_attr: pointer to the PTG and attribute pair to check
5267 * @ptgs_used: bitmap that denotes which PTGs are in use
5268 * @attr_used: array of PTG and attributes pairs already used
5269 * @attr_cnt: count of entries in the attr_used array
5272 ice_ptg_attr_in_use(struct ice_tcam_inf *ptg_attr, ice_bitmap_t *ptgs_used,
5273 struct ice_tcam_inf *attr_used[], u16 attr_cnt)
5277 if (!ice_is_bit_set(ptgs_used, ptg_attr->ptg))
5280 /* the PTG is used, so now look for correct attributes */
5281 for (i = 0; i < attr_cnt; i++)
5282 if (attr_used[i]->ptg == ptg_attr->ptg &&
5283 attr_used[i]->attr.flags == ptg_attr->attr.flags &&
5284 attr_used[i]->attr.mask == ptg_attr->attr.mask)
5291 * ice_adj_prof_priorities - adjust profile based on priorities
5292 * @hw: pointer to the HW struct
5293 * @blk: hardware block
5294 * @vsig: the VSIG for which to adjust profile priorities
5295 * @chg: the change list
5297 static enum ice_status
5298 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5299 struct LIST_HEAD_TYPE *chg)
5301 ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
5302 struct ice_tcam_inf **attr_used;
5303 enum ice_status status = ICE_SUCCESS;
5304 struct ice_vsig_prof *t;
5305 u16 attr_used_cnt = 0;
5308 #define ICE_MAX_PTG_ATTRS 1024
5309 attr_used = (struct ice_tcam_inf **)ice_calloc(hw, ICE_MAX_PTG_ATTRS,
5310 sizeof(*attr_used));
5312 return ICE_ERR_NO_MEMORY;
5314 ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
5315 idx = vsig & ICE_VSIG_IDX_M;
5317 /* Priority is based on the order in which the profiles are added. The
5318 * newest added profile has highest priority and the oldest added
5319 * profile has the lowest priority. Since the profile property list for
5320 * a VSIG is sorted from newest to oldest, this code traverses the list
5321 * in order and enables the first of each PTG that it finds (that is not
5322 * already enabled); it also disables any duplicate PTGs that it finds
5323 * in the older profiles (that are currently enabled).
5326 LIST_FOR_EACH_ENTRY(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5327 ice_vsig_prof, list) {
5330 for (i = 0; i < t->tcam_count; i++) {
5333 /* Scan the priorities from newest to oldest.
5334 * Make sure that the newest profiles take priority.
5336 used = ice_ptg_attr_in_use(&t->tcam[i], ptgs_used,
5337 attr_used, attr_used_cnt);
5339 if (used && t->tcam[i].in_use) {
5340 /* need to mark this PTG as never match, as it
5341 * was already in use and therefore duplicate
5342 * (and lower priority)
5344 status = ice_prof_tcam_ena_dis(hw, blk, false,
5349 goto err_ice_adj_prof_priorities;
5350 } else if (!used && !t->tcam[i].in_use) {
5351 /* need to enable this PTG, as it in not in use
5352 * and not enabled (highest priority)
5354 status = ice_prof_tcam_ena_dis(hw, blk, true,
5359 goto err_ice_adj_prof_priorities;
5362 /* keep track of used ptgs */
5363 ice_set_bit(t->tcam[i].ptg, ptgs_used);
5364 if (attr_used_cnt < ICE_MAX_PTG_ATTRS)
5365 attr_used[attr_used_cnt++] = &t->tcam[i];
5367 ice_debug(hw, ICE_DBG_INIT, "Warn: ICE_MAX_PTG_ATTRS exceeded\n");
5371 err_ice_adj_prof_priorities:
5372 ice_free(hw, attr_used);
5377 * ice_add_prof_id_vsig - add profile to VSIG
5378 * @hw: pointer to the HW struct
5379 * @blk: hardware block
5380 * @vsig: the VSIG to which this profile is to be added
5381 * @hdl: the profile handle indicating the profile to add
5382 * @rev: true to add entries to the end of the list
5383 * @chg: the change list
5385 static enum ice_status
5386 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5387 bool rev, struct LIST_HEAD_TYPE *chg)
5389 /* Masks that ignore flags */
5390 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5391 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5392 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5393 enum ice_status status = ICE_SUCCESS;
5394 struct ice_prof_map *map;
5395 struct ice_vsig_prof *t;
5396 struct ice_chs_chg *p;
5399 /* Error, if this VSIG already has this profile */
5400 if (ice_has_prof_vsig(hw, blk, vsig, hdl))
5401 return ICE_ERR_ALREADY_EXISTS;
5403 /* new VSIG profile structure */
5404 t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
5406 return ICE_ERR_NO_MEMORY;
5408 ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
5409 /* Get the details on the profile specified by the handle ID */
5410 map = ice_search_prof_id(hw, blk, hdl);
5412 status = ICE_ERR_DOES_NOT_EXIST;
5413 goto err_ice_add_prof_id_vsig;
5416 t->profile_cookie = map->profile_cookie;
5417 t->prof_id = map->prof_id;
5418 t->tcam_count = map->ptg_cnt;
5420 /* create TCAM entries */
5421 for (i = 0; i < map->ptg_cnt; i++) {
5424 /* add TCAM to change list */
5425 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5427 status = ICE_ERR_NO_MEMORY;
5428 goto err_ice_add_prof_id_vsig;
5431 /* allocate the TCAM entry index */
5432 /* for entries with empty attribute masks, allocate entry from
5433 * the bottom of the TCAM table; otherwise, allocate from the
5434 * top of the table in order to give it higher priority
5436 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
5440 goto err_ice_add_prof_id_vsig;
5443 t->tcam[i].ptg = map->ptg[i];
5444 t->tcam[i].prof_id = map->prof_id;
5445 t->tcam[i].tcam_idx = tcam_idx;
5446 t->tcam[i].attr = map->attr[i];
5447 t->tcam[i].in_use = true;
5449 p->type = ICE_TCAM_ADD;
5450 p->add_tcam_idx = true;
5451 p->prof_id = t->tcam[i].prof_id;
5452 p->ptg = t->tcam[i].ptg;
5454 p->tcam_idx = t->tcam[i].tcam_idx;
5456 /* set don't care masks for TCAM flags */
5457 ice_set_tcam_flags(t->tcam[i].attr.mask, dc_msk);
5459 /* write the TCAM entry */
5460 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
5462 t->tcam[i].ptg, vsig, 0,
5463 t->tcam[i].attr.flags, vl_msk,
5467 goto err_ice_add_prof_id_vsig;
5471 LIST_ADD(&p->list_entry, chg);
5474 /* add profile to VSIG */
5475 vsig_idx = vsig & ICE_VSIG_IDX_M;
5477 LIST_ADD_TAIL(&t->list,
5478 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5481 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5483 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5486 err_ice_add_prof_id_vsig:
5487 ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5488 /* let caller clean up the change list */
5494 * ice_create_prof_id_vsig - add a new VSIG with a single profile
5495 * @hw: pointer to the HW struct
5496 * @blk: hardware block
5497 * @vsi: the initial VSI that will be in VSIG
5498 * @hdl: the profile handle of the profile that will be added to the VSIG
5499 * @chg: the change list
5501 static enum ice_status
5502 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
5503 struct LIST_HEAD_TYPE *chg)
5505 enum ice_status status;
5506 struct ice_chs_chg *p;
5509 p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5511 return ICE_ERR_NO_MEMORY;
5513 new_vsig = ice_vsig_alloc(hw, blk);
5515 status = ICE_ERR_HW_TABLE;
5516 goto err_ice_create_prof_id_vsig;
5519 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
5521 goto err_ice_create_prof_id_vsig;
5523 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
5525 goto err_ice_create_prof_id_vsig;
5527 p->type = ICE_VSIG_ADD;
5529 p->orig_vsig = ICE_DEFAULT_VSIG;
5532 LIST_ADD(&p->list_entry, chg);
5536 err_ice_create_prof_id_vsig:
5537 /* let caller clean up the change list */
5543 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
5544 * @hw: pointer to the HW struct
5545 * @blk: hardware block
5546 * @vsi: the initial VSI that will be in VSIG
5547 * @lst: the list of profile that will be added to the VSIG
5548 * @new_vsig: return of new VSIG
5549 * @chg: the change list
5551 static enum ice_status
5552 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
5553 struct LIST_HEAD_TYPE *lst, u16 *new_vsig,
5554 struct LIST_HEAD_TYPE *chg)
5556 struct ice_vsig_prof *t;
5557 enum ice_status status;
5560 vsig = ice_vsig_alloc(hw, blk);
5562 return ICE_ERR_HW_TABLE;
5564 status = ice_move_vsi(hw, blk, vsi, vsig, chg);
5568 LIST_FOR_EACH_ENTRY(t, lst, ice_vsig_prof, list) {
5569 /* Reverse the order here since we are copying the list */
5570 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
5582 * ice_find_prof_vsig - find a VSIG with a specific profile handle
5583 * @hw: pointer to the HW struct
5584 * @blk: hardware block
5585 * @hdl: the profile handle of the profile to search for
5586 * @vsig: returns the VSIG with the matching profile
5589 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
5591 struct ice_vsig_prof *t;
5592 struct LIST_HEAD_TYPE lst;
5593 enum ice_status status;
5595 INIT_LIST_HEAD(&lst);
5597 t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
5601 t->profile_cookie = hdl;
5602 LIST_ADD(&t->list, &lst);
5604 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
5609 return status == ICE_SUCCESS;
5613 * ice_add_vsi_flow - add VSI flow
5614 * @hw: pointer to the HW struct
5615 * @blk: hardware block
5617 * @vsig: target VSIG to include the input VSI
5619 * Calling this function will add the VSI to a given VSIG and
5620 * update the HW tables accordingly. This call can be used to
5621 * add multiple VSIs to a VSIG if we know beforehand that those
5622 * VSIs have the same characteristics of the VSIG. This will
5623 * save time in generating a new VSIG and TCAMs till a match is
5624 * found and subsequent rollback when a matching VSIG is found.
5627 ice_add_vsi_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
5629 struct ice_chs_chg *tmp, *del;
5630 struct LIST_HEAD_TYPE chg;
5631 enum ice_status status;
5633 /* if target VSIG is default the move is invalid */
5634 if ((vsig & ICE_VSIG_IDX_M) == ICE_DEFAULT_VSIG)
5635 return ICE_ERR_PARAM;
5637 INIT_LIST_HEAD(&chg);
5639 /* move VSI to the VSIG that matches */
5640 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5641 /* update hardware if success */
5643 status = ice_upd_prof_hw(hw, blk, &chg);
5645 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5646 LIST_DEL(&del->list_entry);
5654 * ice_add_prof_id_flow - add profile flow
5655 * @hw: pointer to the HW struct
5656 * @blk: hardware block
5657 * @vsi: the VSI to enable with the profile specified by ID
5658 * @hdl: profile handle
5660 * Calling this function will update the hardware tables to enable the
5661 * profile indicated by the ID parameter for the VSIs specified in the VSI
5662 * array. Once successfully called, the flow will be enabled.
5665 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5667 struct ice_vsig_prof *tmp1, *del1;
5668 struct LIST_HEAD_TYPE union_lst;
5669 struct ice_chs_chg *tmp, *del;
5670 struct LIST_HEAD_TYPE chg;
5671 enum ice_status status;
5674 INIT_LIST_HEAD(&union_lst);
5675 INIT_LIST_HEAD(&chg);
5678 status = ice_get_prof(hw, blk, hdl, &chg);
5682 /* determine if VSI is already part of a VSIG */
5683 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5684 if (!status && vsig) {
5692 /* make sure that there is no overlap/conflict between the new
5693 * characteristics and the existing ones; we don't support that
5696 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
5697 status = ICE_ERR_ALREADY_EXISTS;
5698 goto err_ice_add_prof_id_flow;
5701 /* last VSI in the VSIG? */
5702 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5704 goto err_ice_add_prof_id_flow;
5705 only_vsi = (ref == 1);
5707 /* create a union of the current profiles and the one being
5710 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
5712 goto err_ice_add_prof_id_flow;
5714 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
5716 goto err_ice_add_prof_id_flow;
5718 /* search for an existing VSIG with an exact charc match */
5719 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
5721 /* move VSI to the VSIG that matches */
5722 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5724 goto err_ice_add_prof_id_flow;
5726 /* VSI has been moved out of or_vsig. If the or_vsig had
5727 * only that VSI it is now empty and can be removed.
5730 status = ice_rem_vsig(hw, blk, or_vsig, &chg);
5732 goto err_ice_add_prof_id_flow;
5734 } else if (only_vsi) {
5735 /* If the original VSIG only contains one VSI, then it
5736 * will be the requesting VSI. In this case the VSI is
5737 * not sharing entries and we can simply add the new
5738 * profile to the VSIG.
5740 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
5743 goto err_ice_add_prof_id_flow;
5745 /* Adjust priorities */
5746 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5748 goto err_ice_add_prof_id_flow;
5750 /* No match, so we need a new VSIG */
5751 status = ice_create_vsig_from_lst(hw, blk, vsi,
5755 goto err_ice_add_prof_id_flow;
5757 /* Adjust priorities */
5758 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5760 goto err_ice_add_prof_id_flow;
5763 /* need to find or add a VSIG */
5764 /* search for an existing VSIG with an exact charc match */
5765 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
5766 /* found an exact match */
5767 /* add or move VSI to the VSIG that matches */
5768 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5770 goto err_ice_add_prof_id_flow;
5772 /* we did not find an exact match */
5773 /* we need to add a VSIG */
5774 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
5777 goto err_ice_add_prof_id_flow;
5781 /* update hardware */
5783 status = ice_upd_prof_hw(hw, blk, &chg);
5785 err_ice_add_prof_id_flow:
5786 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5787 LIST_DEL(&del->list_entry);
5791 LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &union_lst, ice_vsig_prof, list) {
5792 LIST_DEL(&del1->list);
5800 * ice_rem_prof_from_list - remove a profile from list
5801 * @hw: pointer to the HW struct
5802 * @lst: list to remove the profile from
5803 * @hdl: the profile handle indicating the profile to remove
5805 static enum ice_status
5806 ice_rem_prof_from_list(struct ice_hw *hw, struct LIST_HEAD_TYPE *lst, u64 hdl)
5808 struct ice_vsig_prof *ent, *tmp;
5810 LIST_FOR_EACH_ENTRY_SAFE(ent, tmp, lst, ice_vsig_prof, list)
5811 if (ent->profile_cookie == hdl) {
5812 LIST_DEL(&ent->list);
5817 return ICE_ERR_DOES_NOT_EXIST;
5821 * ice_rem_prof_id_flow - remove flow
5822 * @hw: pointer to the HW struct
5823 * @blk: hardware block
5824 * @vsi: the VSI from which to remove the profile specified by ID
5825 * @hdl: profile tracking handle
5827 * Calling this function will update the hardware tables to remove the
5828 * profile indicated by the ID parameter for the VSIs specified in the VSI
5829 * array. Once successfully called, the flow will be disabled.
5832 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5834 struct ice_vsig_prof *tmp1, *del1;
5835 struct LIST_HEAD_TYPE chg, copy;
5836 struct ice_chs_chg *tmp, *del;
5837 enum ice_status status;
5840 INIT_LIST_HEAD(©);
5841 INIT_LIST_HEAD(&chg);
5843 /* determine if VSI is already part of a VSIG */
5844 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5845 if (!status && vsig) {
5851 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
5852 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5854 goto err_ice_rem_prof_id_flow;
5855 only_vsi = (ref == 1);
5858 /* If the original VSIG only contains one reference,
5859 * which will be the requesting VSI, then the VSI is not
5860 * sharing entries and we can simply remove the specific
5861 * characteristics from the VSIG.
5865 /* If there are no profiles left for this VSIG,
5866 * then simply remove the VSIG.
5868 status = ice_rem_vsig(hw, blk, vsig, &chg);
5870 goto err_ice_rem_prof_id_flow;
5872 status = ice_rem_prof_id_vsig(hw, blk, vsig,
5875 goto err_ice_rem_prof_id_flow;
5877 /* Adjust priorities */
5878 status = ice_adj_prof_priorities(hw, blk, vsig,
5881 goto err_ice_rem_prof_id_flow;
5885 /* Make a copy of the VSIG's list of Profiles */
5886 status = ice_get_profs_vsig(hw, blk, vsig, ©);
5888 goto err_ice_rem_prof_id_flow;
5890 /* Remove specified profile entry from the list */
5891 status = ice_rem_prof_from_list(hw, ©, hdl);
5893 goto err_ice_rem_prof_id_flow;
5895 if (LIST_EMPTY(©)) {
5896 status = ice_move_vsi(hw, blk, vsi,
5897 ICE_DEFAULT_VSIG, &chg);
5899 goto err_ice_rem_prof_id_flow;
5901 } else if (!ice_find_dup_props_vsig(hw, blk, ©,
5903 /* found an exact match */
5904 /* add or move VSI to the VSIG that matches */
5905 /* Search for a VSIG with a matching profile
5909 /* Found match, move VSI to the matching VSIG */
5910 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5912 goto err_ice_rem_prof_id_flow;
5914 /* since no existing VSIG supports this
5915 * characteristic pattern, we need to create a
5916 * new VSIG and TCAM entries
5918 status = ice_create_vsig_from_lst(hw, blk, vsi,
5922 goto err_ice_rem_prof_id_flow;
5924 /* Adjust priorities */
5925 status = ice_adj_prof_priorities(hw, blk, vsig,
5928 goto err_ice_rem_prof_id_flow;
5932 status = ICE_ERR_DOES_NOT_EXIST;
5935 /* update hardware tables */
5937 status = ice_upd_prof_hw(hw, blk, &chg);
5939 err_ice_rem_prof_id_flow:
5940 LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5941 LIST_DEL(&del->list_entry);
5945 LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, ©, ice_vsig_prof, list) {
5946 LIST_DEL(&del1->list);