net/ice/base: move RSS replay list
[dpdk.git] / drivers / net / ice / base / ice_switch.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2019
3  */
4
5 #include "ice_switch.h"
6 #include "ice_flex_type.h"
7 #include "ice_flow.h"
8
9
10 #define ICE_ETH_DA_OFFSET               0
11 #define ICE_ETH_ETHTYPE_OFFSET          12
12 #define ICE_ETH_VLAN_TCI_OFFSET         14
13 #define ICE_MAX_VLAN_ID                 0xFFF
14
15 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
16  * struct to configure any switch filter rules.
17  * {DA (6 bytes), SA(6 bytes),
18  * Ether type (2 bytes for header without VLAN tag) OR
19  * VLAN tag (4 bytes for header with VLAN tag) }
20  *
21  * Word on Hardcoded values
22  * byte 0 = 0x2: to identify it as locally administered DA MAC
23  * byte 6 = 0x2: to identify it as locally administered SA MAC
24  * byte 12 = 0x81 & byte 13 = 0x00:
25  *      In case of VLAN filter first two bytes defines ether type (0x8100)
26  *      and remaining two bytes are placeholder for programming a given VLAN ID
27  *      In case of Ether type filter it is treated as header without VLAN tag
28  *      and byte 12 and 13 is used to program a given Ether type instead
29  */
30 #define DUMMY_ETH_HDR_LEN               16
31 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
32                                                         0x2, 0, 0, 0, 0, 0,
33                                                         0x81, 0, 0, 0};
34
35 #define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE \
36         (sizeof(struct ice_aqc_sw_rules_elem) - \
37          sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
38          sizeof(struct ice_sw_rule_lkup_rx_tx) + DUMMY_ETH_HDR_LEN - 1)
39 #define ICE_SW_RULE_RX_TX_NO_HDR_SIZE \
40         (sizeof(struct ice_aqc_sw_rules_elem) - \
41          sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
42          sizeof(struct ice_sw_rule_lkup_rx_tx) - 1)
43 #define ICE_SW_RULE_LG_ACT_SIZE(n) \
44         (sizeof(struct ice_aqc_sw_rules_elem) - \
45          sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
46          sizeof(struct ice_sw_rule_lg_act) - \
47          sizeof(((struct ice_sw_rule_lg_act *)0)->act) + \
48          ((n) * sizeof(((struct ice_sw_rule_lg_act *)0)->act)))
49 #define ICE_SW_RULE_VSI_LIST_SIZE(n) \
50         (sizeof(struct ice_aqc_sw_rules_elem) - \
51          sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
52          sizeof(struct ice_sw_rule_vsi_list) - \
53          sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi) + \
54          ((n) * sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi)))
55
56 static const
57 u8 dummy_gre_packet[] = { 0, 0, 0, 0,           /* Ether starts */
58                           0, 0, 0, 0,
59                           0, 0, 0, 0,
60                           0x08, 0,              /* Ether ends */
61                           0x45, 0, 0, 0x3E,     /* IP starts */
62                           0, 0, 0, 0,
63                           0, 0x2F, 0, 0,
64                           0, 0, 0, 0,
65                           0, 0, 0, 0,           /* IP ends */
66                           0x80, 0, 0x65, 0x58,  /* GRE starts */
67                           0, 0, 0, 0,           /* GRE ends */
68                           0, 0, 0, 0,           /* Ether starts */
69                           0, 0, 0, 0,
70                           0, 0, 0, 0,
71                           0x08, 0,              /* Ether ends */
72                           0x45, 0, 0, 0x14,     /* IP starts */
73                           0, 0, 0, 0,
74                           0, 0, 0, 0,
75                           0, 0, 0, 0,
76                           0, 0, 0, 0            /* IP ends */
77                         };
78
79 static const u8
80 dummy_udp_tun_packet[] = {0, 0, 0, 0,           /* Ether starts */
81                           0, 0, 0, 0,
82                           0, 0, 0, 0,
83                           0x08, 0,              /* Ether ends */
84                           0x45, 0, 0, 0x32,     /* IP starts */
85                           0, 0, 0, 0,
86                           0, 0x11, 0, 0,
87                           0, 0, 0, 0,
88                           0, 0, 0, 0,           /* IP ends */
89                           0, 0, 0x12, 0xB5,     /* UDP start*/
90                           0, 0x1E, 0, 0,        /* UDP end*/
91                           0, 0, 0, 0,           /* VXLAN start */
92                           0, 0, 0, 0,           /* VXLAN end*/
93                           0, 0, 0, 0,           /* Ether starts */
94                           0, 0, 0, 0,
95                           0, 0, 0, 0,
96                           0, 0                  /* Ether ends */
97                         };
98
99 static const u8
100 dummy_tcp_tun_packet[] = {0, 0, 0, 0,           /* Ether starts */
101                           0, 0, 0, 0,
102                           0, 0, 0, 0,
103                           0x08, 0,              /* Ether ends */
104                           0x45, 0, 0, 0x28,     /* IP starts */
105                           0, 0x01, 0, 0,
106                           0x40, 0x06, 0xF5, 0x69,
107                           0, 0, 0, 0,
108                           0, 0, 0, 0,   /* IP ends */
109                           0, 0, 0, 0,
110                           0, 0, 0, 0,
111                           0, 0, 0, 0,
112                           0x50, 0x02, 0x20,
113                           0, 0x9, 0x79, 0, 0,
114                           0, 0 /* 2 bytes padding for 4 byte alignment*/
115                         };
116
117 /* this is a recipe to profile bitmap association */
118 static ice_declare_bitmap(recipe_to_profile[ICE_MAX_NUM_RECIPES],
119                           ICE_MAX_NUM_PROFILES);
120 static ice_declare_bitmap(available_result_ids, ICE_CHAIN_FV_INDEX_START + 1);
121
122 /**
123  * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
124  * @hw: pointer to hardware structure
125  * @recps: struct that we need to populate
126  * @rid: recipe ID that we are populating
127  *
128  * This function is used to populate all the necessary entries into our
129  * bookkeeping so that we have a current list of all the recipes that are
130  * programmed in the firmware.
131  */
132 static enum ice_status
133 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid)
134 {
135         u16 i, sub_recps, fv_word_idx = 0, result_idx = 0;
136         ice_declare_bitmap(r_bitmap, ICE_MAX_NUM_PROFILES);
137         u16 result_idxs[ICE_MAX_CHAIN_RECIPE] = { 0 };
138         struct ice_aqc_recipe_data_elem *tmp;
139         u16 num_recps = ICE_MAX_NUM_RECIPES;
140         struct ice_prot_lkup_ext *lkup_exts;
141         enum ice_status status;
142
143         /* we need a buffer big enough to accommodate all the recipes */
144         tmp = (struct ice_aqc_recipe_data_elem *)ice_calloc(hw,
145                 ICE_MAX_NUM_RECIPES, sizeof(*tmp));
146         if (!tmp)
147                 return ICE_ERR_NO_MEMORY;
148
149         tmp[0].recipe_indx = rid;
150         status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
151         /* non-zero status meaning recipe doesn't exist */
152         if (status)
153                 goto err_unroll;
154         lkup_exts = &recps[rid].lkup_exts;
155         /* start populating all the entries for recps[rid] based on lkups from
156          * firmware
157          */
158         for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
159                 struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
160                 struct ice_recp_grp_entry *rg_entry;
161                 u8 prof_id, prot = 0;
162                 u16 off = 0;
163
164                 rg_entry = (struct ice_recp_grp_entry *)
165                         ice_malloc(hw, sizeof(*rg_entry));
166                 if (!rg_entry) {
167                         status = ICE_ERR_NO_MEMORY;
168                         goto err_unroll;
169                 }
170                 /* Avoid 8th bit since its result enable bit */
171                 result_idxs[result_idx] = root_bufs.content.result_indx &
172                         ~ICE_AQ_RECIPE_RESULT_EN;
173                 /* Check if result enable bit is set */
174                 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
175                         ice_clear_bit(ICE_CHAIN_FV_INDEX_START -
176                                       result_idxs[result_idx++],
177                                       available_result_ids);
178                 ice_memcpy(r_bitmap,
179                            recipe_to_profile[tmp[sub_recps].recipe_indx],
180                            sizeof(r_bitmap), ICE_NONDMA_TO_NONDMA);
181                 /* get the first profile that is associated with rid */
182                 prof_id = ice_find_first_bit(r_bitmap, ICE_MAX_NUM_PROFILES);
183                 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
184                         u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
185
186                         rg_entry->fv_idx[i] = lkup_indx;
187                         /* If the recipe is a chained recipe then all its
188                          * child recipe's result will have a result index.
189                          * To fill fv_words we should not use those result
190                          * index, we only need the protocol ids and offsets.
191                          * We will skip all the fv_idx which stores result
192                          * index in them. We also need to skip any fv_idx which
193                          * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
194                          * valid offset value.
195                          */
196                         if (result_idxs[0] == rg_entry->fv_idx[i] ||
197                             result_idxs[1] == rg_entry->fv_idx[i] ||
198                             result_idxs[2] == rg_entry->fv_idx[i] ||
199                             result_idxs[3] == rg_entry->fv_idx[i] ||
200                             result_idxs[4] == rg_entry->fv_idx[i] ||
201                             rg_entry->fv_idx[i] == ICE_AQ_RECIPE_LKUP_IGNORE ||
202                             rg_entry->fv_idx[i] == 0)
203                                 continue;
204
205                         ice_find_prot_off(hw, ICE_BLK_SW, prof_id,
206                                           rg_entry->fv_idx[i], &prot, &off);
207                         lkup_exts->fv_words[fv_word_idx].prot_id = prot;
208                         lkup_exts->fv_words[fv_word_idx].off = off;
209                         fv_word_idx++;
210                 }
211                 /* populate rg_list with the data from the child entry of this
212                  * recipe
213                  */
214                 LIST_ADD(&rg_entry->l_entry, &recps[rid].rg_list);
215         }
216         lkup_exts->n_val_words = fv_word_idx;
217         recps[rid].n_grp_count = num_recps;
218         recps[rid].root_buf = (struct ice_aqc_recipe_data_elem *)
219                 ice_calloc(hw, recps[rid].n_grp_count,
220                            sizeof(struct ice_aqc_recipe_data_elem));
221         if (!recps[rid].root_buf)
222                 goto err_unroll;
223
224         ice_memcpy(recps[rid].root_buf, tmp, recps[rid].n_grp_count *
225                    sizeof(*recps[rid].root_buf), ICE_NONDMA_TO_NONDMA);
226         recps[rid].recp_created = true;
227         if (tmp[sub_recps].content.rid & ICE_AQ_RECIPE_ID_IS_ROOT)
228                 recps[rid].root_rid = rid;
229 err_unroll:
230         ice_free(hw, tmp);
231         return status;
232 }
233
234 /**
235  * ice_get_recp_to_prof_map - updates recipe to profile mapping
236  * @hw: pointer to hardware structure
237  *
238  * This function is used to populate recipe_to_profile matrix where index to
239  * this array is the recipe ID and the element is the mapping of which profiles
240  * is this recipe mapped to.
241  */
242 static void
243 ice_get_recp_to_prof_map(struct ice_hw *hw)
244 {
245         ice_declare_bitmap(r_bitmap, ICE_MAX_NUM_RECIPES);
246         u16 i;
247
248         for (i = 0; i < ICE_MAX_NUM_PROFILES; i++) {
249                 u16 j;
250
251                 ice_zero_bitmap(r_bitmap, ICE_MAX_NUM_RECIPES);
252                 if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
253                         continue;
254
255                 for (j = 0; j < ICE_MAX_NUM_RECIPES; j++)
256                         if (ice_is_bit_set(r_bitmap, j))
257                                 ice_set_bit(i, recipe_to_profile[j]);
258         }
259 }
260
261 /**
262  * ice_init_def_sw_recp - initialize the recipe book keeping tables
263  * @hw: pointer to the HW struct
264  *
265  * Allocate memory for the entire recipe table and initialize the structures/
266  * entries corresponding to basic recipes.
267  */
268 enum ice_status ice_init_def_sw_recp(struct ice_hw *hw)
269 {
270         struct ice_sw_recipe *recps;
271         u8 i;
272
273         recps = (struct ice_sw_recipe *)
274                 ice_calloc(hw, ICE_MAX_NUM_RECIPES, sizeof(*recps));
275         if (!recps)
276                 return ICE_ERR_NO_MEMORY;
277
278         for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
279                 recps[i].root_rid = i;
280                 INIT_LIST_HEAD(&recps[i].filt_rules);
281                 INIT_LIST_HEAD(&recps[i].filt_replay_rules);
282                 INIT_LIST_HEAD(&recps[i].rg_list);
283                 ice_init_lock(&recps[i].filt_rule_lock);
284         }
285
286         hw->switch_info->recp_list = recps;
287
288         return ICE_SUCCESS;
289 }
290
291 /**
292  * ice_aq_get_sw_cfg - get switch configuration
293  * @hw: pointer to the hardware structure
294  * @buf: pointer to the result buffer
295  * @buf_size: length of the buffer available for response
296  * @req_desc: pointer to requested descriptor
297  * @num_elems: pointer to number of elements
298  * @cd: pointer to command details structure or NULL
299  *
300  * Get switch configuration (0x0200) to be placed in 'buff'.
301  * This admin command returns information such as initial VSI/port number
302  * and switch ID it belongs to.
303  *
304  * NOTE: *req_desc is both an input/output parameter.
305  * The caller of this function first calls this function with *request_desc set
306  * to 0. If the response from f/w has *req_desc set to 0, all the switch
307  * configuration information has been returned; if non-zero (meaning not all
308  * the information was returned), the caller should call this function again
309  * with *req_desc set to the previous value returned by f/w to get the
310  * next block of switch configuration information.
311  *
312  * *num_elems is output only parameter. This reflects the number of elements
313  * in response buffer. The caller of this function to use *num_elems while
314  * parsing the response buffer.
315  */
316 static enum ice_status
317 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp *buf,
318                   u16 buf_size, u16 *req_desc, u16 *num_elems,
319                   struct ice_sq_cd *cd)
320 {
321         struct ice_aqc_get_sw_cfg *cmd;
322         enum ice_status status;
323         struct ice_aq_desc desc;
324
325         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
326         cmd = &desc.params.get_sw_conf;
327         cmd->element = CPU_TO_LE16(*req_desc);
328
329         status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
330         if (!status) {
331                 *req_desc = LE16_TO_CPU(cmd->element);
332                 *num_elems = LE16_TO_CPU(cmd->num_elems);
333         }
334
335         return status;
336 }
337
338
339 /**
340  * ice_alloc_sw - allocate resources specific to switch
341  * @hw: pointer to the HW struct
342  * @ena_stats: true to turn on VEB stats
343  * @shared_res: true for shared resource, false for dedicated resource
344  * @sw_id: switch ID returned
345  * @counter_id: VEB counter ID returned
346  *
347  * allocates switch resources (SWID and VEB counter) (0x0208)
348  */
349 enum ice_status
350 ice_alloc_sw(struct ice_hw *hw, bool ena_stats, bool shared_res, u16 *sw_id,
351              u16 *counter_id)
352 {
353         struct ice_aqc_alloc_free_res_elem *sw_buf;
354         struct ice_aqc_res_elem *sw_ele;
355         enum ice_status status;
356         u16 buf_len;
357
358         buf_len = sizeof(*sw_buf);
359         sw_buf = (struct ice_aqc_alloc_free_res_elem *)
360                    ice_malloc(hw, buf_len);
361         if (!sw_buf)
362                 return ICE_ERR_NO_MEMORY;
363
364         /* Prepare buffer for switch ID.
365          * The number of resource entries in buffer is passed as 1 since only a
366          * single switch/VEB instance is allocated, and hence a single sw_id
367          * is requested.
368          */
369         sw_buf->num_elems = CPU_TO_LE16(1);
370         sw_buf->res_type =
371                 CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID |
372                             (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
373                             ICE_AQC_RES_TYPE_FLAG_DEDICATED));
374
375         status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
376                                        ice_aqc_opc_alloc_res, NULL);
377
378         if (status)
379                 goto ice_alloc_sw_exit;
380
381         sw_ele = &sw_buf->elem[0];
382         *sw_id = LE16_TO_CPU(sw_ele->e.sw_resp);
383
384         if (ena_stats) {
385                 /* Prepare buffer for VEB Counter */
386                 enum ice_adminq_opc opc = ice_aqc_opc_alloc_res;
387                 struct ice_aqc_alloc_free_res_elem *counter_buf;
388                 struct ice_aqc_res_elem *counter_ele;
389
390                 counter_buf = (struct ice_aqc_alloc_free_res_elem *)
391                                 ice_malloc(hw, buf_len);
392                 if (!counter_buf) {
393                         status = ICE_ERR_NO_MEMORY;
394                         goto ice_alloc_sw_exit;
395                 }
396
397                 /* The number of resource entries in buffer is passed as 1 since
398                  * only a single switch/VEB instance is allocated, and hence a
399                  * single VEB counter is requested.
400                  */
401                 counter_buf->num_elems = CPU_TO_LE16(1);
402                 counter_buf->res_type =
403                         CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER |
404                                     ICE_AQC_RES_TYPE_FLAG_DEDICATED);
405                 status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
406                                                opc, NULL);
407
408                 if (status) {
409                         ice_free(hw, counter_buf);
410                         goto ice_alloc_sw_exit;
411                 }
412                 counter_ele = &counter_buf->elem[0];
413                 *counter_id = LE16_TO_CPU(counter_ele->e.sw_resp);
414                 ice_free(hw, counter_buf);
415         }
416
417 ice_alloc_sw_exit:
418         ice_free(hw, sw_buf);
419         return status;
420 }
421
422 /**
423  * ice_free_sw - free resources specific to switch
424  * @hw: pointer to the HW struct
425  * @sw_id: switch ID returned
426  * @counter_id: VEB counter ID returned
427  *
428  * free switch resources (SWID and VEB counter) (0x0209)
429  *
430  * NOTE: This function frees multiple resources. It continues
431  * releasing other resources even after it encounters error.
432  * The error code returned is the last error it encountered.
433  */
434 enum ice_status ice_free_sw(struct ice_hw *hw, u16 sw_id, u16 counter_id)
435 {
436         struct ice_aqc_alloc_free_res_elem *sw_buf, *counter_buf;
437         enum ice_status status, ret_status;
438         u16 buf_len;
439
440         buf_len = sizeof(*sw_buf);
441         sw_buf = (struct ice_aqc_alloc_free_res_elem *)
442                    ice_malloc(hw, buf_len);
443         if (!sw_buf)
444                 return ICE_ERR_NO_MEMORY;
445
446         /* Prepare buffer to free for switch ID res.
447          * The number of resource entries in buffer is passed as 1 since only a
448          * single switch/VEB instance is freed, and hence a single sw_id
449          * is released.
450          */
451         sw_buf->num_elems = CPU_TO_LE16(1);
452         sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID);
453         sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(sw_id);
454
455         ret_status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
456                                            ice_aqc_opc_free_res, NULL);
457
458         if (ret_status)
459                 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
460
461         /* Prepare buffer to free for VEB Counter resource */
462         counter_buf = (struct ice_aqc_alloc_free_res_elem *)
463                         ice_malloc(hw, buf_len);
464         if (!counter_buf) {
465                 ice_free(hw, sw_buf);
466                 return ICE_ERR_NO_MEMORY;
467         }
468
469         /* The number of resource entries in buffer is passed as 1 since only a
470          * single switch/VEB instance is freed, and hence a single VEB counter
471          * is released
472          */
473         counter_buf->num_elems = CPU_TO_LE16(1);
474         counter_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER);
475         counter_buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
476
477         status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
478                                        ice_aqc_opc_free_res, NULL);
479         if (status) {
480                 ice_debug(hw, ICE_DBG_SW,
481                           "VEB counter resource could not be freed\n");
482                 ret_status = status;
483         }
484
485         ice_free(hw, counter_buf);
486         ice_free(hw, sw_buf);
487         return ret_status;
488 }
489
490 /**
491  * ice_aq_add_vsi
492  * @hw: pointer to the HW struct
493  * @vsi_ctx: pointer to a VSI context struct
494  * @cd: pointer to command details structure or NULL
495  *
496  * Add a VSI context to the hardware (0x0210)
497  */
498 enum ice_status
499 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
500                struct ice_sq_cd *cd)
501 {
502         struct ice_aqc_add_update_free_vsi_resp *res;
503         struct ice_aqc_add_get_update_free_vsi *cmd;
504         struct ice_aq_desc desc;
505         enum ice_status status;
506
507         cmd = &desc.params.vsi_cmd;
508         res = &desc.params.add_update_free_vsi_res;
509
510         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
511
512         if (!vsi_ctx->alloc_from_pool)
513                 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num |
514                                            ICE_AQ_VSI_IS_VALID);
515
516         cmd->vsi_flags = CPU_TO_LE16(vsi_ctx->flags);
517
518         desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
519
520         status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
521                                  sizeof(vsi_ctx->info), cd);
522
523         if (!status) {
524                 vsi_ctx->vsi_num = LE16_TO_CPU(res->vsi_num) & ICE_AQ_VSI_NUM_M;
525                 vsi_ctx->vsis_allocd = LE16_TO_CPU(res->vsi_used);
526                 vsi_ctx->vsis_unallocated = LE16_TO_CPU(res->vsi_free);
527         }
528
529         return status;
530 }
531
532 /**
533  * ice_aq_free_vsi
534  * @hw: pointer to the HW struct
535  * @vsi_ctx: pointer to a VSI context struct
536  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
537  * @cd: pointer to command details structure or NULL
538  *
539  * Free VSI context info from hardware (0x0213)
540  */
541 enum ice_status
542 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
543                 bool keep_vsi_alloc, struct ice_sq_cd *cd)
544 {
545         struct ice_aqc_add_update_free_vsi_resp *resp;
546         struct ice_aqc_add_get_update_free_vsi *cmd;
547         struct ice_aq_desc desc;
548         enum ice_status status;
549
550         cmd = &desc.params.vsi_cmd;
551         resp = &desc.params.add_update_free_vsi_res;
552
553         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
554
555         cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
556         if (keep_vsi_alloc)
557                 cmd->cmd_flags = CPU_TO_LE16(ICE_AQ_VSI_KEEP_ALLOC);
558
559         status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
560         if (!status) {
561                 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
562                 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
563         }
564
565         return status;
566 }
567
568 /**
569  * ice_aq_update_vsi
570  * @hw: pointer to the HW struct
571  * @vsi_ctx: pointer to a VSI context struct
572  * @cd: pointer to command details structure or NULL
573  *
574  * Update VSI context in the hardware (0x0211)
575  */
576 enum ice_status
577 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
578                   struct ice_sq_cd *cd)
579 {
580         struct ice_aqc_add_update_free_vsi_resp *resp;
581         struct ice_aqc_add_get_update_free_vsi *cmd;
582         struct ice_aq_desc desc;
583         enum ice_status status;
584
585         cmd = &desc.params.vsi_cmd;
586         resp = &desc.params.add_update_free_vsi_res;
587
588         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
589
590         cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
591
592         desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
593
594         status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
595                                  sizeof(vsi_ctx->info), cd);
596
597         if (!status) {
598                 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
599                 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
600         }
601
602         return status;
603 }
604
605 /**
606  * ice_is_vsi_valid - check whether the VSI is valid or not
607  * @hw: pointer to the HW struct
608  * @vsi_handle: VSI handle
609  *
610  * check whether the VSI is valid or not
611  */
612 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
613 {
614         return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
615 }
616
617 /**
618  * ice_get_hw_vsi_num - return the HW VSI number
619  * @hw: pointer to the HW struct
620  * @vsi_handle: VSI handle
621  *
622  * return the HW VSI number
623  * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
624  */
625 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
626 {
627         return hw->vsi_ctx[vsi_handle]->vsi_num;
628 }
629
630 /**
631  * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
632  * @hw: pointer to the HW struct
633  * @vsi_handle: VSI handle
634  *
635  * return the VSI context entry for a given VSI handle
636  */
637 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
638 {
639         return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
640 }
641
642 /**
643  * ice_save_vsi_ctx - save the VSI context for a given VSI handle
644  * @hw: pointer to the HW struct
645  * @vsi_handle: VSI handle
646  * @vsi: VSI context pointer
647  *
648  * save the VSI context entry for a given VSI handle
649  */
650 static void
651 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
652 {
653         hw->vsi_ctx[vsi_handle] = vsi;
654 }
655
656 /**
657  * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
658  * @hw: pointer to the HW struct
659  * @vsi_handle: VSI handle
660  */
661 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
662 {
663         struct ice_vsi_ctx *vsi;
664         u8 i;
665
666         vsi = ice_get_vsi_ctx(hw, vsi_handle);
667         if (!vsi)
668                 return;
669         ice_for_each_traffic_class(i) {
670                 if (vsi->lan_q_ctx[i]) {
671                         ice_free(hw, vsi->lan_q_ctx[i]);
672                         vsi->lan_q_ctx[i] = NULL;
673                 }
674         }
675 }
676
677 /**
678  * ice_clear_vsi_ctx - clear the VSI context entry
679  * @hw: pointer to the HW struct
680  * @vsi_handle: VSI handle
681  *
682  * clear the VSI context entry
683  */
684 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
685 {
686         struct ice_vsi_ctx *vsi;
687
688         vsi = ice_get_vsi_ctx(hw, vsi_handle);
689         if (vsi) {
690                 ice_clear_vsi_q_ctx(hw, vsi_handle);
691                 ice_free(hw, vsi);
692                 hw->vsi_ctx[vsi_handle] = NULL;
693         }
694 }
695
696 /**
697  * ice_clear_all_vsi_ctx - clear all the VSI context entries
698  * @hw: pointer to the HW struct
699  */
700 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
701 {
702         u16 i;
703
704         for (i = 0; i < ICE_MAX_VSI; i++)
705                 ice_clear_vsi_ctx(hw, i);
706 }
707
708 /**
709  * ice_add_vsi - add VSI context to the hardware and VSI handle list
710  * @hw: pointer to the HW struct
711  * @vsi_handle: unique VSI handle provided by drivers
712  * @vsi_ctx: pointer to a VSI context struct
713  * @cd: pointer to command details structure or NULL
714  *
715  * Add a VSI context to the hardware also add it into the VSI handle list.
716  * If this function gets called after reset for existing VSIs then update
717  * with the new HW VSI number in the corresponding VSI handle list entry.
718  */
719 enum ice_status
720 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
721             struct ice_sq_cd *cd)
722 {
723         struct ice_vsi_ctx *tmp_vsi_ctx;
724         enum ice_status status;
725
726         if (vsi_handle >= ICE_MAX_VSI)
727                 return ICE_ERR_PARAM;
728         status = ice_aq_add_vsi(hw, vsi_ctx, cd);
729         if (status)
730                 return status;
731         tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
732         if (!tmp_vsi_ctx) {
733                 /* Create a new VSI context */
734                 tmp_vsi_ctx = (struct ice_vsi_ctx *)
735                         ice_malloc(hw, sizeof(*tmp_vsi_ctx));
736                 if (!tmp_vsi_ctx) {
737                         ice_aq_free_vsi(hw, vsi_ctx, false, cd);
738                         return ICE_ERR_NO_MEMORY;
739                 }
740                 *tmp_vsi_ctx = *vsi_ctx;
741
742                 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
743         } else {
744                 /* update with new HW VSI num */
745                 if (tmp_vsi_ctx->vsi_num != vsi_ctx->vsi_num)
746                         tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
747         }
748
749         return ICE_SUCCESS;
750 }
751
752 /**
753  * ice_free_vsi- free VSI context from hardware and VSI handle list
754  * @hw: pointer to the HW struct
755  * @vsi_handle: unique VSI handle
756  * @vsi_ctx: pointer to a VSI context struct
757  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
758  * @cd: pointer to command details structure or NULL
759  *
760  * Free VSI context info from hardware as well as from VSI handle list
761  */
762 enum ice_status
763 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
764              bool keep_vsi_alloc, struct ice_sq_cd *cd)
765 {
766         enum ice_status status;
767
768         if (!ice_is_vsi_valid(hw, vsi_handle))
769                 return ICE_ERR_PARAM;
770         vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
771         status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
772         if (!status)
773                 ice_clear_vsi_ctx(hw, vsi_handle);
774         return status;
775 }
776
777 /**
778  * ice_update_vsi
779  * @hw: pointer to the HW struct
780  * @vsi_handle: unique VSI handle
781  * @vsi_ctx: pointer to a VSI context struct
782  * @cd: pointer to command details structure or NULL
783  *
784  * Update VSI context in the hardware
785  */
786 enum ice_status
787 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
788                struct ice_sq_cd *cd)
789 {
790         if (!ice_is_vsi_valid(hw, vsi_handle))
791                 return ICE_ERR_PARAM;
792         vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
793         return ice_aq_update_vsi(hw, vsi_ctx, cd);
794 }
795
796 /**
797  * ice_aq_get_vsi_params
798  * @hw: pointer to the HW struct
799  * @vsi_ctx: pointer to a VSI context struct
800  * @cd: pointer to command details structure or NULL
801  *
802  * Get VSI context info from hardware (0x0212)
803  */
804 enum ice_status
805 ice_aq_get_vsi_params(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
806                       struct ice_sq_cd *cd)
807 {
808         struct ice_aqc_add_get_update_free_vsi *cmd;
809         struct ice_aqc_get_vsi_resp *resp;
810         struct ice_aq_desc desc;
811         enum ice_status status;
812
813         cmd = &desc.params.vsi_cmd;
814         resp = &desc.params.get_vsi_resp;
815
816         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_vsi_params);
817
818         cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
819
820         status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
821                                  sizeof(vsi_ctx->info), cd);
822         if (!status) {
823                 vsi_ctx->vsi_num = LE16_TO_CPU(resp->vsi_num) &
824                                         ICE_AQ_VSI_NUM_M;
825                 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
826                 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
827         }
828
829         return status;
830 }
831
832 /**
833  * ice_aq_add_update_mir_rule - add/update a mirror rule
834  * @hw: pointer to the HW struct
835  * @rule_type: Rule Type
836  * @dest_vsi: VSI number to which packets will be mirrored
837  * @count: length of the list
838  * @mr_buf: buffer for list of mirrored VSI numbers
839  * @cd: pointer to command details structure or NULL
840  * @rule_id: Rule ID
841  *
842  * Add/Update Mirror Rule (0x260).
843  */
844 enum ice_status
845 ice_aq_add_update_mir_rule(struct ice_hw *hw, u16 rule_type, u16 dest_vsi,
846                            u16 count, struct ice_mir_rule_buf *mr_buf,
847                            struct ice_sq_cd *cd, u16 *rule_id)
848 {
849         struct ice_aqc_add_update_mir_rule *cmd;
850         struct ice_aq_desc desc;
851         enum ice_status status;
852         __le16 *mr_list = NULL;
853         u16 buf_size = 0;
854
855         switch (rule_type) {
856         case ICE_AQC_RULE_TYPE_VPORT_INGRESS:
857         case ICE_AQC_RULE_TYPE_VPORT_EGRESS:
858                 /* Make sure count and mr_buf are set for these rule_types */
859                 if (!(count && mr_buf))
860                         return ICE_ERR_PARAM;
861
862                 buf_size = count * sizeof(__le16);
863                 mr_list = (__le16 *)ice_malloc(hw, buf_size);
864                 if (!mr_list)
865                         return ICE_ERR_NO_MEMORY;
866                 break;
867         case ICE_AQC_RULE_TYPE_PPORT_INGRESS:
868         case ICE_AQC_RULE_TYPE_PPORT_EGRESS:
869                 /* Make sure count and mr_buf are not set for these
870                  * rule_types
871                  */
872                 if (count || mr_buf)
873                         return ICE_ERR_PARAM;
874                 break;
875         default:
876                 ice_debug(hw, ICE_DBG_SW,
877                           "Error due to unsupported rule_type %u\n", rule_type);
878                 return ICE_ERR_OUT_OF_RANGE;
879         }
880
881         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_update_mir_rule);
882
883         /* Pre-process 'mr_buf' items for add/update of virtual port
884          * ingress/egress mirroring (but not physical port ingress/egress
885          * mirroring)
886          */
887         if (mr_buf) {
888                 int i;
889
890                 for (i = 0; i < count; i++) {
891                         u16 id;
892
893                         id = mr_buf[i].vsi_idx & ICE_AQC_RULE_MIRRORED_VSI_M;
894
895                         /* Validate specified VSI number, make sure it is less
896                          * than ICE_MAX_VSI, if not return with error.
897                          */
898                         if (id >= ICE_MAX_VSI) {
899                                 ice_debug(hw, ICE_DBG_SW,
900                                           "Error VSI index (%u) out-of-range\n",
901                                           id);
902                                 ice_free(hw, mr_list);
903                                 return ICE_ERR_OUT_OF_RANGE;
904                         }
905
906                         /* add VSI to mirror rule */
907                         if (mr_buf[i].add)
908                                 mr_list[i] =
909                                         CPU_TO_LE16(id | ICE_AQC_RULE_ACT_M);
910                         else /* remove VSI from mirror rule */
911                                 mr_list[i] = CPU_TO_LE16(id);
912                 }
913         }
914
915         cmd = &desc.params.add_update_rule;
916         if ((*rule_id) != ICE_INVAL_MIRROR_RULE_ID)
917                 cmd->rule_id = CPU_TO_LE16(((*rule_id) & ICE_AQC_RULE_ID_M) |
918                                            ICE_AQC_RULE_ID_VALID_M);
919         cmd->rule_type = CPU_TO_LE16(rule_type & ICE_AQC_RULE_TYPE_M);
920         cmd->num_entries = CPU_TO_LE16(count);
921         cmd->dest = CPU_TO_LE16(dest_vsi);
922
923         status = ice_aq_send_cmd(hw, &desc, mr_list, buf_size, cd);
924         if (!status)
925                 *rule_id = LE16_TO_CPU(cmd->rule_id) & ICE_AQC_RULE_ID_M;
926
927         ice_free(hw, mr_list);
928
929         return status;
930 }
931
932 /**
933  * ice_aq_delete_mir_rule - delete a mirror rule
934  * @hw: pointer to the HW struct
935  * @rule_id: Mirror rule ID (to be deleted)
936  * @keep_allocd: if set, the VSI stays part of the PF allocated res,
937  *               otherwise it is returned to the shared pool
938  * @cd: pointer to command details structure or NULL
939  *
940  * Delete Mirror Rule (0x261).
941  */
942 enum ice_status
943 ice_aq_delete_mir_rule(struct ice_hw *hw, u16 rule_id, bool keep_allocd,
944                        struct ice_sq_cd *cd)
945 {
946         struct ice_aqc_delete_mir_rule *cmd;
947         struct ice_aq_desc desc;
948
949         /* rule_id should be in the range 0...63 */
950         if (rule_id >= ICE_MAX_NUM_MIRROR_RULES)
951                 return ICE_ERR_OUT_OF_RANGE;
952
953         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_del_mir_rule);
954
955         cmd = &desc.params.del_rule;
956         rule_id |= ICE_AQC_RULE_ID_VALID_M;
957         cmd->rule_id = CPU_TO_LE16(rule_id);
958
959         if (keep_allocd)
960                 cmd->flags = CPU_TO_LE16(ICE_AQC_FLAG_KEEP_ALLOCD_M);
961
962         return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
963 }
964
965 /**
966  * ice_aq_alloc_free_vsi_list
967  * @hw: pointer to the HW struct
968  * @vsi_list_id: VSI list ID returned or used for lookup
969  * @lkup_type: switch rule filter lookup type
970  * @opc: switch rules population command type - pass in the command opcode
971  *
972  * allocates or free a VSI list resource
973  */
974 static enum ice_status
975 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
976                            enum ice_sw_lkup_type lkup_type,
977                            enum ice_adminq_opc opc)
978 {
979         struct ice_aqc_alloc_free_res_elem *sw_buf;
980         struct ice_aqc_res_elem *vsi_ele;
981         enum ice_status status;
982         u16 buf_len;
983
984         buf_len = sizeof(*sw_buf);
985         sw_buf = (struct ice_aqc_alloc_free_res_elem *)
986                 ice_malloc(hw, buf_len);
987         if (!sw_buf)
988                 return ICE_ERR_NO_MEMORY;
989         sw_buf->num_elems = CPU_TO_LE16(1);
990
991         if (lkup_type == ICE_SW_LKUP_MAC ||
992             lkup_type == ICE_SW_LKUP_MAC_VLAN ||
993             lkup_type == ICE_SW_LKUP_ETHERTYPE ||
994             lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
995             lkup_type == ICE_SW_LKUP_PROMISC ||
996             lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
997             lkup_type == ICE_SW_LKUP_LAST) {
998                 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
999         } else if (lkup_type == ICE_SW_LKUP_VLAN) {
1000                 sw_buf->res_type =
1001                         CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1002         } else {
1003                 status = ICE_ERR_PARAM;
1004                 goto ice_aq_alloc_free_vsi_list_exit;
1005         }
1006
1007         if (opc == ice_aqc_opc_free_res)
1008                 sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(*vsi_list_id);
1009
1010         status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
1011         if (status)
1012                 goto ice_aq_alloc_free_vsi_list_exit;
1013
1014         if (opc == ice_aqc_opc_alloc_res) {
1015                 vsi_ele = &sw_buf->elem[0];
1016                 *vsi_list_id = LE16_TO_CPU(vsi_ele->e.sw_resp);
1017         }
1018
1019 ice_aq_alloc_free_vsi_list_exit:
1020         ice_free(hw, sw_buf);
1021         return status;
1022 }
1023
1024 /**
1025  * ice_aq_set_storm_ctrl - Sets storm control configuration
1026  * @hw: pointer to the HW struct
1027  * @bcast_thresh: represents the upper threshold for broadcast storm control
1028  * @mcast_thresh: represents the upper threshold for multicast storm control
1029  * @ctl_bitmask: storm control control knobs
1030  *
1031  * Sets the storm control configuration (0x0280)
1032  */
1033 enum ice_status
1034 ice_aq_set_storm_ctrl(struct ice_hw *hw, u32 bcast_thresh, u32 mcast_thresh,
1035                       u32 ctl_bitmask)
1036 {
1037         struct ice_aqc_storm_cfg *cmd;
1038         struct ice_aq_desc desc;
1039
1040         cmd = &desc.params.storm_conf;
1041
1042         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_storm_cfg);
1043
1044         cmd->bcast_thresh_size = CPU_TO_LE32(bcast_thresh & ICE_AQ_THRESHOLD_M);
1045         cmd->mcast_thresh_size = CPU_TO_LE32(mcast_thresh & ICE_AQ_THRESHOLD_M);
1046         cmd->storm_ctrl_ctrl = CPU_TO_LE32(ctl_bitmask);
1047
1048         return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1049 }
1050
1051 /**
1052  * ice_aq_get_storm_ctrl - gets storm control configuration
1053  * @hw: pointer to the HW struct
1054  * @bcast_thresh: represents the upper threshold for broadcast storm control
1055  * @mcast_thresh: represents the upper threshold for multicast storm control
1056  * @ctl_bitmask: storm control control knobs
1057  *
1058  * Gets the storm control configuration (0x0281)
1059  */
1060 enum ice_status
1061 ice_aq_get_storm_ctrl(struct ice_hw *hw, u32 *bcast_thresh, u32 *mcast_thresh,
1062                       u32 *ctl_bitmask)
1063 {
1064         enum ice_status status;
1065         struct ice_aq_desc desc;
1066
1067         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_storm_cfg);
1068
1069         status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1070         if (!status) {
1071                 struct ice_aqc_storm_cfg *resp = &desc.params.storm_conf;
1072
1073                 if (bcast_thresh)
1074                         *bcast_thresh = LE32_TO_CPU(resp->bcast_thresh_size) &
1075                                 ICE_AQ_THRESHOLD_M;
1076                 if (mcast_thresh)
1077                         *mcast_thresh = LE32_TO_CPU(resp->mcast_thresh_size) &
1078                                 ICE_AQ_THRESHOLD_M;
1079                 if (ctl_bitmask)
1080                         *ctl_bitmask = LE32_TO_CPU(resp->storm_ctrl_ctrl);
1081         }
1082
1083         return status;
1084 }
1085
1086 /**
1087  * ice_aq_sw_rules - add/update/remove switch rules
1088  * @hw: pointer to the HW struct
1089  * @rule_list: pointer to switch rule population list
1090  * @rule_list_sz: total size of the rule list in bytes
1091  * @num_rules: number of switch rules in the rule_list
1092  * @opc: switch rules population command type - pass in the command opcode
1093  * @cd: pointer to command details structure or NULL
1094  *
1095  * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1096  */
1097 static enum ice_status
1098 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1099                 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1100 {
1101         struct ice_aq_desc desc;
1102
1103         ice_debug(hw, ICE_DBG_TRACE, "ice_aq_sw_rules");
1104
1105         if (opc != ice_aqc_opc_add_sw_rules &&
1106             opc != ice_aqc_opc_update_sw_rules &&
1107             opc != ice_aqc_opc_remove_sw_rules)
1108                 return ICE_ERR_PARAM;
1109
1110         ice_fill_dflt_direct_cmd_desc(&desc, opc);
1111
1112         desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1113         desc.params.sw_rules.num_rules_fltr_entry_index =
1114                 CPU_TO_LE16(num_rules);
1115         return ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1116 }
1117
1118 /**
1119  * ice_aq_add_recipe - add switch recipe
1120  * @hw: pointer to the HW struct
1121  * @s_recipe_list: pointer to switch rule population list
1122  * @num_recipes: number of switch recipes in the list
1123  * @cd: pointer to command details structure or NULL
1124  *
1125  * Add(0x0290)
1126  */
1127 enum ice_status
1128 ice_aq_add_recipe(struct ice_hw *hw,
1129                   struct ice_aqc_recipe_data_elem *s_recipe_list,
1130                   u16 num_recipes, struct ice_sq_cd *cd)
1131 {
1132         struct ice_aqc_add_get_recipe *cmd;
1133         struct ice_aq_desc desc;
1134         u16 buf_size;
1135
1136         ice_debug(hw, ICE_DBG_TRACE, "ice_aq_add_recipe");
1137         cmd = &desc.params.add_get_recipe;
1138         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1139
1140         cmd->num_sub_recipes = CPU_TO_LE16(num_recipes);
1141         desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1142
1143         buf_size = num_recipes * sizeof(*s_recipe_list);
1144
1145         return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1146 }
1147
1148 /**
1149  * ice_aq_get_recipe - get switch recipe
1150  * @hw: pointer to the HW struct
1151  * @s_recipe_list: pointer to switch rule population list
1152  * @num_recipes: pointer to the number of recipes (input and output)
1153  * @recipe_root: root recipe number of recipe(s) to retrieve
1154  * @cd: pointer to command details structure or NULL
1155  *
1156  * Get(0x0292)
1157  *
1158  * On input, *num_recipes should equal the number of entries in s_recipe_list.
1159  * On output, *num_recipes will equal the number of entries returned in
1160  * s_recipe_list.
1161  *
1162  * The caller must supply enough space in s_recipe_list to hold all possible
1163  * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1164  */
1165 enum ice_status
1166 ice_aq_get_recipe(struct ice_hw *hw,
1167                   struct ice_aqc_recipe_data_elem *s_recipe_list,
1168                   u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1169 {
1170         struct ice_aqc_add_get_recipe *cmd;
1171         struct ice_aq_desc desc;
1172         enum ice_status status;
1173         u16 buf_size;
1174
1175         if (*num_recipes != ICE_MAX_NUM_RECIPES)
1176                 return ICE_ERR_PARAM;
1177
1178         ice_debug(hw, ICE_DBG_TRACE, "ice_aq_get_recipe");
1179         cmd = &desc.params.add_get_recipe;
1180         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1181
1182         cmd->return_index = CPU_TO_LE16(recipe_root);
1183         cmd->num_sub_recipes = 0;
1184
1185         buf_size = *num_recipes * sizeof(*s_recipe_list);
1186
1187         status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1188         /* cppcheck-suppress constArgument */
1189         *num_recipes = LE16_TO_CPU(cmd->num_sub_recipes);
1190
1191         return status;
1192 }
1193
1194 /**
1195  * ice_aq_map_recipe_to_profile - Map recipe to packet profile
1196  * @hw: pointer to the HW struct
1197  * @profile_id: package profile ID to associate the recipe with
1198  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
1199  * @cd: pointer to command details structure or NULL
1200  * Recipe to profile association (0x0291)
1201  */
1202 enum ice_status
1203 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
1204                              struct ice_sq_cd *cd)
1205 {
1206         struct ice_aqc_recipe_to_profile *cmd;
1207         struct ice_aq_desc desc;
1208
1209         ice_debug(hw, ICE_DBG_TRACE, "ice_aq_assoc_recipe_to_prof");
1210         cmd = &desc.params.recipe_to_profile;
1211         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
1212         cmd->profile_id = CPU_TO_LE16(profile_id);
1213         /* Set the recipe ID bit in the bitmask to let the device know which
1214          * profile we are associating the recipe to
1215          */
1216         ice_memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc),
1217                    ICE_NONDMA_TO_NONDMA);
1218
1219         return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1220 }
1221
1222 /**
1223  * ice_aq_get_recipe_to_profile - Map recipe to packet profile
1224  * @hw: pointer to the HW struct
1225  * @profile_id: package profile ID to associate the recipe with
1226  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
1227  * @cd: pointer to command details structure or NULL
1228  * Associate profile ID with given recipe (0x0293)
1229  */
1230 enum ice_status
1231 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
1232                              struct ice_sq_cd *cd)
1233 {
1234         struct ice_aqc_recipe_to_profile *cmd;
1235         struct ice_aq_desc desc;
1236         enum ice_status status;
1237
1238         ice_debug(hw, ICE_DBG_TRACE, "ice_aq_get_recipe_to_prof");
1239         cmd = &desc.params.recipe_to_profile;
1240         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
1241         cmd->profile_id = CPU_TO_LE16(profile_id);
1242
1243         status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1244         if (!status)
1245                 ice_memcpy(r_bitmap, cmd->recipe_assoc,
1246                            sizeof(cmd->recipe_assoc), ICE_NONDMA_TO_NONDMA);
1247
1248         return status;
1249 }
1250
1251 /**
1252  * ice_alloc_recipe - add recipe resource
1253  * @hw: pointer to the hardware structure
1254  * @rid: recipe ID returned as response to AQ call
1255  */
1256 enum ice_status ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
1257 {
1258         struct ice_aqc_alloc_free_res_elem *sw_buf;
1259         enum ice_status status;
1260         u16 buf_len;
1261
1262         buf_len = sizeof(*sw_buf);
1263         sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
1264         if (!sw_buf)
1265                 return ICE_ERR_NO_MEMORY;
1266
1267         sw_buf->num_elems = CPU_TO_LE16(1);
1268         sw_buf->res_type = CPU_TO_LE16((ICE_AQC_RES_TYPE_RECIPE <<
1269                                         ICE_AQC_RES_TYPE_S) |
1270                                         ICE_AQC_RES_TYPE_FLAG_SHARED);
1271         status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
1272                                        ice_aqc_opc_alloc_res, NULL);
1273         if (!status)
1274                 *rid = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
1275         ice_free(hw, sw_buf);
1276
1277         return status;
1278 }
1279
1280 /* ice_init_port_info - Initialize port_info with switch configuration data
1281  * @pi: pointer to port_info
1282  * @vsi_port_num: VSI number or port number
1283  * @type: Type of switch element (port or VSI)
1284  * @swid: switch ID of the switch the element is attached to
1285  * @pf_vf_num: PF or VF number
1286  * @is_vf: true if the element is a VF, false otherwise
1287  */
1288 static void
1289 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
1290                    u16 swid, u16 pf_vf_num, bool is_vf)
1291 {
1292         switch (type) {
1293         case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1294                 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
1295                 pi->sw_id = swid;
1296                 pi->pf_vf_num = pf_vf_num;
1297                 pi->is_vf = is_vf;
1298                 pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL;
1299                 pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL;
1300                 break;
1301         default:
1302                 ice_debug(pi->hw, ICE_DBG_SW,
1303                           "incorrect VSI/port type received\n");
1304                 break;
1305         }
1306 }
1307
1308 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
1309  * @hw: pointer to the hardware structure
1310  */
1311 enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw)
1312 {
1313         struct ice_aqc_get_sw_cfg_resp *rbuf;
1314         enum ice_status status;
1315         u16 num_total_ports;
1316         u16 req_desc = 0;
1317         u16 num_elems;
1318         u16 j = 0;
1319         u16 i;
1320
1321         num_total_ports = 1;
1322
1323         rbuf = (struct ice_aqc_get_sw_cfg_resp *)
1324                 ice_malloc(hw, ICE_SW_CFG_MAX_BUF_LEN);
1325
1326         if (!rbuf)
1327                 return ICE_ERR_NO_MEMORY;
1328
1329         /* Multiple calls to ice_aq_get_sw_cfg may be required
1330          * to get all the switch configuration information. The need
1331          * for additional calls is indicated by ice_aq_get_sw_cfg
1332          * writing a non-zero value in req_desc
1333          */
1334         do {
1335                 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
1336                                            &req_desc, &num_elems, NULL);
1337
1338                 if (status)
1339                         break;
1340
1341                 for (i = 0; i < num_elems; i++) {
1342                         struct ice_aqc_get_sw_cfg_resp_elem *ele;
1343                         u16 pf_vf_num, swid, vsi_port_num;
1344                         bool is_vf = false;
1345                         u8 type;
1346
1347                         ele = rbuf[i].elements;
1348                         vsi_port_num = LE16_TO_CPU(ele->vsi_port_num) &
1349                                 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
1350
1351                         pf_vf_num = LE16_TO_CPU(ele->pf_vf_num) &
1352                                 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
1353
1354                         swid = LE16_TO_CPU(ele->swid);
1355
1356                         if (LE16_TO_CPU(ele->pf_vf_num) &
1357                             ICE_AQC_GET_SW_CONF_RESP_IS_VF)
1358                                 is_vf = true;
1359
1360                         type = LE16_TO_CPU(ele->vsi_port_num) >>
1361                                 ICE_AQC_GET_SW_CONF_RESP_TYPE_S;
1362
1363                         switch (type) {
1364                         case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1365                         case ICE_AQC_GET_SW_CONF_RESP_VIRT_PORT:
1366                                 if (j == num_total_ports) {
1367                                         ice_debug(hw, ICE_DBG_SW,
1368                                                   "more ports than expected\n");
1369                                         status = ICE_ERR_CFG;
1370                                         goto out;
1371                                 }
1372                                 ice_init_port_info(hw->port_info,
1373                                                    vsi_port_num, type, swid,
1374                                                    pf_vf_num, is_vf);
1375                                 j++;
1376                                 break;
1377                         default:
1378                                 break;
1379                         }
1380                 }
1381         } while (req_desc && !status);
1382
1383
1384 out:
1385         ice_free(hw, (void *)rbuf);
1386         return status;
1387 }
1388
1389
1390 /**
1391  * ice_fill_sw_info - Helper function to populate lb_en and lan_en
1392  * @hw: pointer to the hardware structure
1393  * @fi: filter info structure to fill/update
1394  *
1395  * This helper function populates the lb_en and lan_en elements of the provided
1396  * ice_fltr_info struct using the switch's type and characteristics of the
1397  * switch rule being configured.
1398  */
1399 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
1400 {
1401         fi->lb_en = false;
1402         fi->lan_en = false;
1403         if ((fi->flag & ICE_FLTR_TX) &&
1404             (fi->fltr_act == ICE_FWD_TO_VSI ||
1405              fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
1406              fi->fltr_act == ICE_FWD_TO_Q ||
1407              fi->fltr_act == ICE_FWD_TO_QGRP)) {
1408                 /* Setting LB for prune actions will result in replicated
1409                  * packets to the internal switch that will be dropped.
1410                  */
1411                 if (fi->lkup_type != ICE_SW_LKUP_VLAN)
1412                         fi->lb_en = true;
1413
1414                 /* Set lan_en to TRUE if
1415                  * 1. The switch is a VEB AND
1416                  * 2
1417                  * 2.1 The lookup is a directional lookup like ethertype,
1418                  * promiscuous, ethertype-MAC, promiscuous-VLAN
1419                  * and default-port OR
1420                  * 2.2 The lookup is VLAN, OR
1421                  * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
1422                  * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
1423                  *
1424                  * OR
1425                  *
1426                  * The switch is a VEPA.
1427                  *
1428                  * In all other cases, the LAN enable has to be set to false.
1429                  */
1430                 if (hw->evb_veb) {
1431                         if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1432                             fi->lkup_type == ICE_SW_LKUP_PROMISC ||
1433                             fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1434                             fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1435                             fi->lkup_type == ICE_SW_LKUP_DFLT ||
1436                             fi->lkup_type == ICE_SW_LKUP_VLAN ||
1437                             (fi->lkup_type == ICE_SW_LKUP_MAC &&
1438                              !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)) ||
1439                             (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
1440                              !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)))
1441                                 fi->lan_en = true;
1442                 } else {
1443                         fi->lan_en = true;
1444                 }
1445         }
1446 }
1447
1448 /**
1449  * ice_ilog2 - Calculates integer log base 2 of a number
1450  * @n: number on which to perform operation
1451  */
1452 static int ice_ilog2(u64 n)
1453 {
1454         int i;
1455
1456         for (i = 63; i >= 0; i--)
1457                 if (((u64)1 << i) & n)
1458                         return i;
1459
1460         return -1;
1461 }
1462
1463
1464 /**
1465  * ice_fill_sw_rule - Helper function to fill switch rule structure
1466  * @hw: pointer to the hardware structure
1467  * @f_info: entry containing packet forwarding information
1468  * @s_rule: switch rule structure to be filled in based on mac_entry
1469  * @opc: switch rules population command type - pass in the command opcode
1470  */
1471 static void
1472 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
1473                  struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc)
1474 {
1475         u16 vlan_id = ICE_MAX_VLAN_ID + 1;
1476         void *daddr = NULL;
1477         u16 eth_hdr_sz;
1478         u8 *eth_hdr;
1479         u32 act = 0;
1480         __be16 *off;
1481         u8 q_rgn;
1482
1483
1484         if (opc == ice_aqc_opc_remove_sw_rules) {
1485                 s_rule->pdata.lkup_tx_rx.act = 0;
1486                 s_rule->pdata.lkup_tx_rx.index =
1487                         CPU_TO_LE16(f_info->fltr_rule_id);
1488                 s_rule->pdata.lkup_tx_rx.hdr_len = 0;
1489                 return;
1490         }
1491
1492         eth_hdr_sz = sizeof(dummy_eth_header);
1493         eth_hdr = s_rule->pdata.lkup_tx_rx.hdr;
1494
1495         /* initialize the ether header with a dummy header */
1496         ice_memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz, ICE_NONDMA_TO_NONDMA);
1497         ice_fill_sw_info(hw, f_info);
1498
1499         switch (f_info->fltr_act) {
1500         case ICE_FWD_TO_VSI:
1501                 act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
1502                         ICE_SINGLE_ACT_VSI_ID_M;
1503                 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1504                         act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1505                                 ICE_SINGLE_ACT_VALID_BIT;
1506                 break;
1507         case ICE_FWD_TO_VSI_LIST:
1508                 act |= ICE_SINGLE_ACT_VSI_LIST;
1509                 act |= (f_info->fwd_id.vsi_list_id <<
1510                         ICE_SINGLE_ACT_VSI_LIST_ID_S) &
1511                         ICE_SINGLE_ACT_VSI_LIST_ID_M;
1512                 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1513                         act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1514                                 ICE_SINGLE_ACT_VALID_BIT;
1515                 break;
1516         case ICE_FWD_TO_Q:
1517                 act |= ICE_SINGLE_ACT_TO_Q;
1518                 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1519                         ICE_SINGLE_ACT_Q_INDEX_M;
1520                 break;
1521         case ICE_DROP_PACKET:
1522                 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
1523                         ICE_SINGLE_ACT_VALID_BIT;
1524                 break;
1525         case ICE_FWD_TO_QGRP:
1526                 q_rgn = f_info->qgrp_size > 0 ?
1527                         (u8)ice_ilog2(f_info->qgrp_size) : 0;
1528                 act |= ICE_SINGLE_ACT_TO_Q;
1529                 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1530                         ICE_SINGLE_ACT_Q_INDEX_M;
1531                 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
1532                         ICE_SINGLE_ACT_Q_REGION_M;
1533                 break;
1534         default:
1535                 return;
1536         }
1537
1538         if (f_info->lb_en)
1539                 act |= ICE_SINGLE_ACT_LB_ENABLE;
1540         if (f_info->lan_en)
1541                 act |= ICE_SINGLE_ACT_LAN_ENABLE;
1542
1543         switch (f_info->lkup_type) {
1544         case ICE_SW_LKUP_MAC:
1545                 daddr = f_info->l_data.mac.mac_addr;
1546                 break;
1547         case ICE_SW_LKUP_VLAN:
1548                 vlan_id = f_info->l_data.vlan.vlan_id;
1549                 if (f_info->fltr_act == ICE_FWD_TO_VSI ||
1550                     f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
1551                         act |= ICE_SINGLE_ACT_PRUNE;
1552                         act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
1553                 }
1554                 break;
1555         case ICE_SW_LKUP_ETHERTYPE_MAC:
1556                 daddr = f_info->l_data.ethertype_mac.mac_addr;
1557                 /* fall-through */
1558         case ICE_SW_LKUP_ETHERTYPE:
1559                 off = (__be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
1560                 *off = CPU_TO_BE16(f_info->l_data.ethertype_mac.ethertype);
1561                 break;
1562         case ICE_SW_LKUP_MAC_VLAN:
1563                 daddr = f_info->l_data.mac_vlan.mac_addr;
1564                 vlan_id = f_info->l_data.mac_vlan.vlan_id;
1565                 break;
1566         case ICE_SW_LKUP_PROMISC_VLAN:
1567                 vlan_id = f_info->l_data.mac_vlan.vlan_id;
1568                 /* fall-through */
1569         case ICE_SW_LKUP_PROMISC:
1570                 daddr = f_info->l_data.mac_vlan.mac_addr;
1571                 break;
1572         default:
1573                 break;
1574         }
1575
1576         s_rule->type = (f_info->flag & ICE_FLTR_RX) ?
1577                 CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX) :
1578                 CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX);
1579
1580         /* Recipe set depending on lookup type */
1581         s_rule->pdata.lkup_tx_rx.recipe_id = CPU_TO_LE16(f_info->lkup_type);
1582         s_rule->pdata.lkup_tx_rx.src = CPU_TO_LE16(f_info->src);
1583         s_rule->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
1584
1585         if (daddr)
1586                 ice_memcpy(eth_hdr + ICE_ETH_DA_OFFSET, daddr, ETH_ALEN,
1587                            ICE_NONDMA_TO_NONDMA);
1588
1589         if (!(vlan_id > ICE_MAX_VLAN_ID)) {
1590                 off = (__be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
1591                 *off = CPU_TO_BE16(vlan_id);
1592         }
1593
1594         /* Create the switch rule with the final dummy Ethernet header */
1595         if (opc != ice_aqc_opc_update_sw_rules)
1596                 s_rule->pdata.lkup_tx_rx.hdr_len = CPU_TO_LE16(eth_hdr_sz);
1597 }
1598
1599 /**
1600  * ice_add_marker_act
1601  * @hw: pointer to the hardware structure
1602  * @m_ent: the management entry for which sw marker needs to be added
1603  * @sw_marker: sw marker to tag the Rx descriptor with
1604  * @l_id: large action resource ID
1605  *
1606  * Create a large action to hold software marker and update the switch rule
1607  * entry pointed by m_ent with newly created large action
1608  */
1609 static enum ice_status
1610 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1611                    u16 sw_marker, u16 l_id)
1612 {
1613         struct ice_aqc_sw_rules_elem *lg_act, *rx_tx;
1614         /* For software marker we need 3 large actions
1615          * 1. FWD action: FWD TO VSI or VSI LIST
1616          * 2. GENERIC VALUE action to hold the profile ID
1617          * 3. GENERIC VALUE action to hold the software marker ID
1618          */
1619         const u16 num_lg_acts = 3;
1620         enum ice_status status;
1621         u16 lg_act_size;
1622         u16 rules_size;
1623         u32 act;
1624         u16 id;
1625
1626         if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1627                 return ICE_ERR_PARAM;
1628
1629         /* Create two back-to-back switch rules and submit them to the HW using
1630          * one memory buffer:
1631          *    1. Large Action
1632          *    2. Look up Tx Rx
1633          */
1634         lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts);
1635         rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
1636         lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rules_size);
1637         if (!lg_act)
1638                 return ICE_ERR_NO_MEMORY;
1639
1640         rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size);
1641
1642         /* Fill in the first switch rule i.e. large action */
1643         lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1644         lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id);
1645         lg_act->pdata.lg_act.size = CPU_TO_LE16(num_lg_acts);
1646
1647         /* First action VSI forwarding or VSI list forwarding depending on how
1648          * many VSIs
1649          */
1650         id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
1651                 m_ent->fltr_info.fwd_id.hw_vsi_id;
1652
1653         act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1654         act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) &
1655                 ICE_LG_ACT_VSI_LIST_ID_M;
1656         if (m_ent->vsi_count > 1)
1657                 act |= ICE_LG_ACT_VSI_LIST;
1658         lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act);
1659
1660         /* Second action descriptor type */
1661         act = ICE_LG_ACT_GENERIC;
1662
1663         act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
1664         lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act);
1665
1666         act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
1667                ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
1668
1669         /* Third action Marker value */
1670         act |= ICE_LG_ACT_GENERIC;
1671         act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
1672                 ICE_LG_ACT_GENERIC_VALUE_M;
1673
1674         lg_act->pdata.lg_act.act[2] = CPU_TO_LE32(act);
1675
1676         /* call the fill switch rule to fill the lookup Tx Rx structure */
1677         ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1678                          ice_aqc_opc_update_sw_rules);
1679
1680         /* Update the action to point to the large action ID */
1681         rx_tx->pdata.lkup_tx_rx.act =
1682                 CPU_TO_LE32(ICE_SINGLE_ACT_PTR |
1683                             ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
1684                              ICE_SINGLE_ACT_PTR_VAL_M));
1685
1686         /* Use the filter rule ID of the previously created rule with single
1687          * act. Once the update happens, hardware will treat this as large
1688          * action
1689          */
1690         rx_tx->pdata.lkup_tx_rx.index =
1691                 CPU_TO_LE16(m_ent->fltr_info.fltr_rule_id);
1692
1693         status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1694                                  ice_aqc_opc_update_sw_rules, NULL);
1695         if (!status) {
1696                 m_ent->lg_act_idx = l_id;
1697                 m_ent->sw_marker_id = sw_marker;
1698         }
1699
1700         ice_free(hw, lg_act);
1701         return status;
1702 }
1703
1704 /**
1705  * ice_add_counter_act - add/update filter rule with counter action
1706  * @hw: pointer to the hardware structure
1707  * @m_ent: the management entry for which counter needs to be added
1708  * @counter_id: VLAN counter ID returned as part of allocate resource
1709  * @l_id: large action resource ID
1710  */
1711 static enum ice_status
1712 ice_add_counter_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1713                     u16 counter_id, u16 l_id)
1714 {
1715         struct ice_aqc_sw_rules_elem *lg_act;
1716         struct ice_aqc_sw_rules_elem *rx_tx;
1717         enum ice_status status;
1718         /* 2 actions will be added while adding a large action counter */
1719         const int num_acts = 2;
1720         u16 lg_act_size;
1721         u16 rules_size;
1722         u16 f_rule_id;
1723         u32 act;
1724         u16 id;
1725
1726         if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1727                 return ICE_ERR_PARAM;
1728
1729         /* Create two back-to-back switch rules and submit them to the HW using
1730          * one memory buffer:
1731          * 1. Large Action
1732          * 2. Look up Tx Rx
1733          */
1734         lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_acts);
1735         rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
1736         lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw,
1737                                                                  rules_size);
1738         if (!lg_act)
1739                 return ICE_ERR_NO_MEMORY;
1740
1741         rx_tx = (struct ice_aqc_sw_rules_elem *)
1742                 ((u8 *)lg_act + lg_act_size);
1743
1744         /* Fill in the first switch rule i.e. large action */
1745         lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1746         lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id);
1747         lg_act->pdata.lg_act.size = CPU_TO_LE16(num_acts);
1748
1749         /* First action VSI forwarding or VSI list forwarding depending on how
1750          * many VSIs
1751          */
1752         id = (m_ent->vsi_count > 1) ?  m_ent->fltr_info.fwd_id.vsi_list_id :
1753                 m_ent->fltr_info.fwd_id.hw_vsi_id;
1754
1755         act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1756         act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) &
1757                 ICE_LG_ACT_VSI_LIST_ID_M;
1758         if (m_ent->vsi_count > 1)
1759                 act |= ICE_LG_ACT_VSI_LIST;
1760         lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act);
1761
1762         /* Second action counter ID */
1763         act = ICE_LG_ACT_STAT_COUNT;
1764         act |= (counter_id << ICE_LG_ACT_STAT_COUNT_S) &
1765                 ICE_LG_ACT_STAT_COUNT_M;
1766         lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act);
1767
1768         /* call the fill switch rule to fill the lookup Tx Rx structure */
1769         ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1770                          ice_aqc_opc_update_sw_rules);
1771
1772         act = ICE_SINGLE_ACT_PTR;
1773         act |= (l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M;
1774         rx_tx->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
1775
1776         /* Use the filter rule ID of the previously created rule with single
1777          * act. Once the update happens, hardware will treat this as large
1778          * action
1779          */
1780         f_rule_id = m_ent->fltr_info.fltr_rule_id;
1781         rx_tx->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_rule_id);
1782
1783         status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1784                                  ice_aqc_opc_update_sw_rules, NULL);
1785         if (!status) {
1786                 m_ent->lg_act_idx = l_id;
1787                 m_ent->counter_index = counter_id;
1788         }
1789
1790         ice_free(hw, lg_act);
1791         return status;
1792 }
1793
1794 /**
1795  * ice_create_vsi_list_map
1796  * @hw: pointer to the hardware structure
1797  * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
1798  * @num_vsi: number of VSI handles in the array
1799  * @vsi_list_id: VSI list ID generated as part of allocate resource
1800  *
1801  * Helper function to create a new entry of VSI list ID to VSI mapping
1802  * using the given VSI list ID
1803  */
1804 static struct ice_vsi_list_map_info *
1805 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1806                         u16 vsi_list_id)
1807 {
1808         struct ice_switch_info *sw = hw->switch_info;
1809         struct ice_vsi_list_map_info *v_map;
1810         int i;
1811
1812         v_map = (struct ice_vsi_list_map_info *)ice_calloc(hw, 1,
1813                 sizeof(*v_map));
1814         if (!v_map)
1815                 return NULL;
1816
1817         v_map->vsi_list_id = vsi_list_id;
1818         v_map->ref_cnt = 1;
1819         for (i = 0; i < num_vsi; i++)
1820                 ice_set_bit(vsi_handle_arr[i], v_map->vsi_map);
1821
1822         LIST_ADD(&v_map->list_entry, &sw->vsi_list_map_head);
1823         return v_map;
1824 }
1825
1826 /**
1827  * ice_update_vsi_list_rule
1828  * @hw: pointer to the hardware structure
1829  * @vsi_handle_arr: array of VSI handles to form a VSI list
1830  * @num_vsi: number of VSI handles in the array
1831  * @vsi_list_id: VSI list ID generated as part of allocate resource
1832  * @remove: Boolean value to indicate if this is a remove action
1833  * @opc: switch rules population command type - pass in the command opcode
1834  * @lkup_type: lookup type of the filter
1835  *
1836  * Call AQ command to add a new switch rule or update existing switch rule
1837  * using the given VSI list ID
1838  */
1839 static enum ice_status
1840 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1841                          u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
1842                          enum ice_sw_lkup_type lkup_type)
1843 {
1844         struct ice_aqc_sw_rules_elem *s_rule;
1845         enum ice_status status;
1846         u16 s_rule_size;
1847         u16 type;
1848         int i;
1849
1850         if (!num_vsi)
1851                 return ICE_ERR_PARAM;
1852
1853         if (lkup_type == ICE_SW_LKUP_MAC ||
1854             lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1855             lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1856             lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1857             lkup_type == ICE_SW_LKUP_PROMISC ||
1858             lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1859             lkup_type == ICE_SW_LKUP_LAST)
1860                 type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
1861                                 ICE_AQC_SW_RULES_T_VSI_LIST_SET;
1862         else if (lkup_type == ICE_SW_LKUP_VLAN)
1863                 type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
1864                                 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
1865         else
1866                 return ICE_ERR_PARAM;
1867
1868         s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi);
1869         s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
1870         if (!s_rule)
1871                 return ICE_ERR_NO_MEMORY;
1872         for (i = 0; i < num_vsi; i++) {
1873                 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
1874                         status = ICE_ERR_PARAM;
1875                         goto exit;
1876                 }
1877                 /* AQ call requires hw_vsi_id(s) */
1878                 s_rule->pdata.vsi_list.vsi[i] =
1879                         CPU_TO_LE16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
1880         }
1881
1882         s_rule->type = CPU_TO_LE16(type);
1883         s_rule->pdata.vsi_list.number_vsi = CPU_TO_LE16(num_vsi);
1884         s_rule->pdata.vsi_list.index = CPU_TO_LE16(vsi_list_id);
1885
1886         status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
1887
1888 exit:
1889         ice_free(hw, s_rule);
1890         return status;
1891 }
1892
1893 /**
1894  * ice_create_vsi_list_rule - Creates and populates a VSI list rule
1895  * @hw: pointer to the HW struct
1896  * @vsi_handle_arr: array of VSI handles to form a VSI list
1897  * @num_vsi: number of VSI handles in the array
1898  * @vsi_list_id: stores the ID of the VSI list to be created
1899  * @lkup_type: switch rule filter's lookup type
1900  */
1901 static enum ice_status
1902 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1903                          u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
1904 {
1905         enum ice_status status;
1906
1907         status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
1908                                             ice_aqc_opc_alloc_res);
1909         if (status)
1910                 return status;
1911
1912         /* Update the newly created VSI list to include the specified VSIs */
1913         return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
1914                                         *vsi_list_id, false,
1915                                         ice_aqc_opc_add_sw_rules, lkup_type);
1916 }
1917
1918 /**
1919  * ice_create_pkt_fwd_rule
1920  * @hw: pointer to the hardware structure
1921  * @f_entry: entry containing packet forwarding information
1922  *
1923  * Create switch rule with given filter information and add an entry
1924  * to the corresponding filter management list to track this switch rule
1925  * and VSI mapping
1926  */
1927 static enum ice_status
1928 ice_create_pkt_fwd_rule(struct ice_hw *hw,
1929                         struct ice_fltr_list_entry *f_entry)
1930 {
1931         struct ice_fltr_mgmt_list_entry *fm_entry;
1932         struct ice_aqc_sw_rules_elem *s_rule;
1933         enum ice_sw_lkup_type l_type;
1934         struct ice_sw_recipe *recp;
1935         enum ice_status status;
1936
1937         s_rule = (struct ice_aqc_sw_rules_elem *)
1938                 ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE);
1939         if (!s_rule)
1940                 return ICE_ERR_NO_MEMORY;
1941         fm_entry = (struct ice_fltr_mgmt_list_entry *)
1942                    ice_malloc(hw, sizeof(*fm_entry));
1943         if (!fm_entry) {
1944                 status = ICE_ERR_NO_MEMORY;
1945                 goto ice_create_pkt_fwd_rule_exit;
1946         }
1947
1948         fm_entry->fltr_info = f_entry->fltr_info;
1949
1950         /* Initialize all the fields for the management entry */
1951         fm_entry->vsi_count = 1;
1952         fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
1953         fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
1954         fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
1955
1956         ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
1957                          ice_aqc_opc_add_sw_rules);
1958
1959         status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
1960                                  ice_aqc_opc_add_sw_rules, NULL);
1961         if (status) {
1962                 ice_free(hw, fm_entry);
1963                 goto ice_create_pkt_fwd_rule_exit;
1964         }
1965
1966         f_entry->fltr_info.fltr_rule_id =
1967                 LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
1968         fm_entry->fltr_info.fltr_rule_id =
1969                 LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
1970
1971         /* The book keeping entries will get removed when base driver
1972          * calls remove filter AQ command
1973          */
1974         l_type = fm_entry->fltr_info.lkup_type;
1975         recp = &hw->switch_info->recp_list[l_type];
1976         LIST_ADD(&fm_entry->list_entry, &recp->filt_rules);
1977
1978 ice_create_pkt_fwd_rule_exit:
1979         ice_free(hw, s_rule);
1980         return status;
1981 }
1982
1983 /**
1984  * ice_update_pkt_fwd_rule
1985  * @hw: pointer to the hardware structure
1986  * @f_info: filter information for switch rule
1987  *
1988  * Call AQ command to update a previously created switch rule with a
1989  * VSI list ID
1990  */
1991 static enum ice_status
1992 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
1993 {
1994         struct ice_aqc_sw_rules_elem *s_rule;
1995         enum ice_status status;
1996
1997         s_rule = (struct ice_aqc_sw_rules_elem *)
1998                 ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE);
1999         if (!s_rule)
2000                 return ICE_ERR_NO_MEMORY;
2001
2002         ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2003
2004         s_rule->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_info->fltr_rule_id);
2005
2006         /* Update switch rule with new rule set to forward VSI list */
2007         status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
2008                                  ice_aqc_opc_update_sw_rules, NULL);
2009
2010         ice_free(hw, s_rule);
2011         return status;
2012 }
2013
2014 /**
2015  * ice_update_sw_rule_bridge_mode
2016  * @hw: pointer to the HW struct
2017  *
2018  * Updates unicast switch filter rules based on VEB/VEPA mode
2019  */
2020 enum ice_status ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2021 {
2022         struct ice_switch_info *sw = hw->switch_info;
2023         struct ice_fltr_mgmt_list_entry *fm_entry;
2024         enum ice_status status = ICE_SUCCESS;
2025         struct LIST_HEAD_TYPE *rule_head;
2026         struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2027
2028         rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2029         rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2030
2031         ice_acquire_lock(rule_lock);
2032         LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry,
2033                             list_entry) {
2034                 struct ice_fltr_info *fi = &fm_entry->fltr_info;
2035                 u8 *addr = fi->l_data.mac.mac_addr;
2036
2037                 /* Update unicast Tx rules to reflect the selected
2038                  * VEB/VEPA mode
2039                  */
2040                 if ((fi->flag & ICE_FLTR_TX) && IS_UNICAST_ETHER_ADDR(addr) &&
2041                     (fi->fltr_act == ICE_FWD_TO_VSI ||
2042                      fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2043                      fi->fltr_act == ICE_FWD_TO_Q ||
2044                      fi->fltr_act == ICE_FWD_TO_QGRP)) {
2045                         status = ice_update_pkt_fwd_rule(hw, fi);
2046                         if (status)
2047                                 break;
2048                 }
2049         }
2050
2051         ice_release_lock(rule_lock);
2052
2053         return status;
2054 }
2055
2056 /**
2057  * ice_add_update_vsi_list
2058  * @hw: pointer to the hardware structure
2059  * @m_entry: pointer to current filter management list entry
2060  * @cur_fltr: filter information from the book keeping entry
2061  * @new_fltr: filter information with the new VSI to be added
2062  *
2063  * Call AQ command to add or update previously created VSI list with new VSI.
2064  *
2065  * Helper function to do book keeping associated with adding filter information
2066  * The algorithm to do the book keeping is described below :
2067  * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2068  *      if only one VSI has been added till now
2069  *              Allocate a new VSI list and add two VSIs
2070  *              to this list using switch rule command
2071  *              Update the previously created switch rule with the
2072  *              newly created VSI list ID
2073  *      if a VSI list was previously created
2074  *              Add the new VSI to the previously created VSI list set
2075  *              using the update switch rule command
2076  */
2077 static enum ice_status
2078 ice_add_update_vsi_list(struct ice_hw *hw,
2079                         struct ice_fltr_mgmt_list_entry *m_entry,
2080                         struct ice_fltr_info *cur_fltr,
2081                         struct ice_fltr_info *new_fltr)
2082 {
2083         enum ice_status status = ICE_SUCCESS;
2084         u16 vsi_list_id = 0;
2085
2086         if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2087              cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2088                 return ICE_ERR_NOT_IMPL;
2089
2090         if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2091              new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2092             (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2093              cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2094                 return ICE_ERR_NOT_IMPL;
2095
2096         if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
2097                 /* Only one entry existed in the mapping and it was not already
2098                  * a part of a VSI list. So, create a VSI list with the old and
2099                  * new VSIs.
2100                  */
2101                 struct ice_fltr_info tmp_fltr;
2102                 u16 vsi_handle_arr[2];
2103
2104                 /* A rule already exists with the new VSI being added */
2105                 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
2106                         return ICE_ERR_ALREADY_EXISTS;
2107
2108                 vsi_handle_arr[0] = cur_fltr->vsi_handle;
2109                 vsi_handle_arr[1] = new_fltr->vsi_handle;
2110                 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
2111                                                   &vsi_list_id,
2112                                                   new_fltr->lkup_type);
2113                 if (status)
2114                         return status;
2115
2116                 tmp_fltr = *new_fltr;
2117                 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
2118                 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
2119                 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
2120                 /* Update the previous switch rule of "MAC forward to VSI" to
2121                  * "MAC fwd to VSI list"
2122                  */
2123                 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
2124                 if (status)
2125                         return status;
2126
2127                 cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
2128                 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
2129                 m_entry->vsi_list_info =
2130                         ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
2131                                                 vsi_list_id);
2132
2133                 /* If this entry was large action then the large action needs
2134                  * to be updated to point to FWD to VSI list
2135                  */
2136                 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
2137                         status =
2138                             ice_add_marker_act(hw, m_entry,
2139                                                m_entry->sw_marker_id,
2140                                                m_entry->lg_act_idx);
2141         } else {
2142                 u16 vsi_handle = new_fltr->vsi_handle;
2143                 enum ice_adminq_opc opcode;
2144
2145                 if (!m_entry->vsi_list_info)
2146                         return ICE_ERR_CFG;
2147
2148                 /* A rule already exists with the new VSI being added */
2149                 if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
2150                         return ICE_SUCCESS;
2151
2152                 /* Update the previously created VSI list set with
2153                  * the new VSI ID passed in
2154                  */
2155                 vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
2156                 opcode = ice_aqc_opc_update_sw_rules;
2157
2158                 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
2159                                                   vsi_list_id, false, opcode,
2160                                                   new_fltr->lkup_type);
2161                 /* update VSI list mapping info with new VSI ID */
2162                 if (!status)
2163                         ice_set_bit(vsi_handle,
2164                                     m_entry->vsi_list_info->vsi_map);
2165         }
2166         if (!status)
2167                 m_entry->vsi_count++;
2168         return status;
2169 }
2170
2171 /**
2172  * ice_find_rule_entry - Search a rule entry
2173  * @hw: pointer to the hardware structure
2174  * @recp_id: lookup type for which the specified rule needs to be searched
2175  * @f_info: rule information
2176  *
2177  * Helper function to search for a given rule entry
2178  * Returns pointer to entry storing the rule if found
2179  */
2180 static struct ice_fltr_mgmt_list_entry *
2181 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
2182 {
2183         struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
2184         struct ice_switch_info *sw = hw->switch_info;
2185         struct LIST_HEAD_TYPE *list_head;
2186
2187         list_head = &sw->recp_list[recp_id].filt_rules;
2188         LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
2189                             list_entry) {
2190                 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
2191                             sizeof(f_info->l_data)) &&
2192                     f_info->flag == list_itr->fltr_info.flag) {
2193                         ret = list_itr;
2194                         break;
2195                 }
2196         }
2197         return ret;
2198 }
2199
2200 /**
2201  * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
2202  * @hw: pointer to the hardware structure
2203  * @recp_id: lookup type for which VSI lists needs to be searched
2204  * @vsi_handle: VSI handle to be found in VSI list
2205  * @vsi_list_id: VSI list ID found containing vsi_handle
2206  *
2207  * Helper function to search a VSI list with single entry containing given VSI
2208  * handle element. This can be extended further to search VSI list with more
2209  * than 1 vsi_count. Returns pointer to VSI list entry if found.
2210  */
2211 static struct ice_vsi_list_map_info *
2212 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
2213                         u16 *vsi_list_id)
2214 {
2215         struct ice_vsi_list_map_info *map_info = NULL;
2216         struct ice_switch_info *sw = hw->switch_info;
2217         struct LIST_HEAD_TYPE *list_head;
2218
2219         list_head = &sw->recp_list[recp_id].filt_rules;
2220         if (sw->recp_list[recp_id].adv_rule) {
2221                 struct ice_adv_fltr_mgmt_list_entry *list_itr;
2222
2223                 LIST_FOR_EACH_ENTRY(list_itr, list_head,
2224                                     ice_adv_fltr_mgmt_list_entry,
2225                                     list_entry) {
2226                         if (list_itr->vsi_list_info) {
2227                                 map_info = list_itr->vsi_list_info;
2228                                 if (ice_is_bit_set(map_info->vsi_map,
2229                                                    vsi_handle)) {
2230                                         *vsi_list_id = map_info->vsi_list_id;
2231                                         return map_info;
2232                                 }
2233                         }
2234                 }
2235         } else {
2236                 struct ice_fltr_mgmt_list_entry *list_itr;
2237
2238                 LIST_FOR_EACH_ENTRY(list_itr, list_head,
2239                                     ice_fltr_mgmt_list_entry,
2240                                     list_entry) {
2241                         if (list_itr->vsi_count == 1 &&
2242                             list_itr->vsi_list_info) {
2243                                 map_info = list_itr->vsi_list_info;
2244                                 if (ice_is_bit_set(map_info->vsi_map,
2245                                                    vsi_handle)) {
2246                                         *vsi_list_id = map_info->vsi_list_id;
2247                                         return map_info;
2248                                 }
2249                         }
2250                 }
2251         }
2252         return NULL;
2253 }
2254
2255 /**
2256  * ice_add_rule_internal - add rule for a given lookup type
2257  * @hw: pointer to the hardware structure
2258  * @recp_id: lookup type (recipe ID) for which rule has to be added
2259  * @f_entry: structure containing MAC forwarding information
2260  *
2261  * Adds or updates the rule lists for a given recipe
2262  */
2263 static enum ice_status
2264 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
2265                       struct ice_fltr_list_entry *f_entry)
2266 {
2267         struct ice_switch_info *sw = hw->switch_info;
2268         struct ice_fltr_info *new_fltr, *cur_fltr;
2269         struct ice_fltr_mgmt_list_entry *m_entry;
2270         struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2271         enum ice_status status = ICE_SUCCESS;
2272
2273         if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2274                 return ICE_ERR_PARAM;
2275
2276         /* Load the hw_vsi_id only if the fwd action is fwd to VSI */
2277         if (f_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI)
2278                 f_entry->fltr_info.fwd_id.hw_vsi_id =
2279                         ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2280
2281         rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
2282
2283         ice_acquire_lock(rule_lock);
2284         new_fltr = &f_entry->fltr_info;
2285         if (new_fltr->flag & ICE_FLTR_RX)
2286                 new_fltr->src = hw->port_info->lport;
2287         else if (new_fltr->flag & ICE_FLTR_TX)
2288                 new_fltr->src =
2289                         ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2290
2291         m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
2292         if (!m_entry) {
2293                 ice_release_lock(rule_lock);
2294                 return ice_create_pkt_fwd_rule(hw, f_entry);
2295         }
2296
2297         cur_fltr = &m_entry->fltr_info;
2298         status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
2299         ice_release_lock(rule_lock);
2300
2301         return status;
2302 }
2303
2304 /**
2305  * ice_remove_vsi_list_rule
2306  * @hw: pointer to the hardware structure
2307  * @vsi_list_id: VSI list ID generated as part of allocate resource
2308  * @lkup_type: switch rule filter lookup type
2309  *
2310  * The VSI list should be emptied before this function is called to remove the
2311  * VSI list.
2312  */
2313 static enum ice_status
2314 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
2315                          enum ice_sw_lkup_type lkup_type)
2316 {
2317         struct ice_aqc_sw_rules_elem *s_rule;
2318         enum ice_status status;
2319         u16 s_rule_size;
2320
2321         s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(0);
2322         s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
2323         if (!s_rule)
2324                 return ICE_ERR_NO_MEMORY;
2325
2326         s_rule->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
2327         s_rule->pdata.vsi_list.index = CPU_TO_LE16(vsi_list_id);
2328
2329         /* Free the vsi_list resource that we allocated. It is assumed that the
2330          * list is empty at this point.
2331          */
2332         status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
2333                                             ice_aqc_opc_free_res);
2334
2335         ice_free(hw, s_rule);
2336         return status;
2337 }
2338
2339 /**
2340  * ice_rem_update_vsi_list
2341  * @hw: pointer to the hardware structure
2342  * @vsi_handle: VSI handle of the VSI to remove
2343  * @fm_list: filter management entry for which the VSI list management needs to
2344  *           be done
2345  */
2346 static enum ice_status
2347 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
2348                         struct ice_fltr_mgmt_list_entry *fm_list)
2349 {
2350         enum ice_sw_lkup_type lkup_type;
2351         enum ice_status status = ICE_SUCCESS;
2352         u16 vsi_list_id;
2353
2354         if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
2355             fm_list->vsi_count == 0)
2356                 return ICE_ERR_PARAM;
2357
2358         /* A rule with the VSI being removed does not exist */
2359         if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
2360                 return ICE_ERR_DOES_NOT_EXIST;
2361
2362         lkup_type = fm_list->fltr_info.lkup_type;
2363         vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
2364         status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
2365                                           ice_aqc_opc_update_sw_rules,
2366                                           lkup_type);
2367         if (status)
2368                 return status;
2369
2370         fm_list->vsi_count--;
2371         ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
2372
2373         if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
2374                 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
2375                 struct ice_vsi_list_map_info *vsi_list_info =
2376                         fm_list->vsi_list_info;
2377                 u16 rem_vsi_handle;
2378
2379                 rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
2380                                                     ICE_MAX_VSI);
2381                 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
2382                         return ICE_ERR_OUT_OF_RANGE;
2383
2384                 /* Make sure VSI list is empty before removing it below */
2385                 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
2386                                                   vsi_list_id, true,
2387                                                   ice_aqc_opc_update_sw_rules,
2388                                                   lkup_type);
2389                 if (status)
2390                         return status;
2391
2392                 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
2393                 tmp_fltr_info.fwd_id.hw_vsi_id =
2394                         ice_get_hw_vsi_num(hw, rem_vsi_handle);
2395                 tmp_fltr_info.vsi_handle = rem_vsi_handle;
2396                 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
2397                 if (status) {
2398                         ice_debug(hw, ICE_DBG_SW,
2399                                   "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
2400                                   tmp_fltr_info.fwd_id.hw_vsi_id, status);
2401                         return status;
2402                 }
2403
2404                 fm_list->fltr_info = tmp_fltr_info;
2405         }
2406
2407         if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
2408             (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
2409                 struct ice_vsi_list_map_info *vsi_list_info =
2410                         fm_list->vsi_list_info;
2411
2412                 /* Remove the VSI list since it is no longer used */
2413                 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
2414                 if (status) {
2415                         ice_debug(hw, ICE_DBG_SW,
2416                                   "Failed to remove VSI list %d, error %d\n",
2417                                   vsi_list_id, status);
2418                         return status;
2419                 }
2420
2421                 LIST_DEL(&vsi_list_info->list_entry);
2422                 ice_free(hw, vsi_list_info);
2423                 fm_list->vsi_list_info = NULL;
2424         }
2425
2426         return status;
2427 }
2428
2429 /**
2430  * ice_remove_rule_internal - Remove a filter rule of a given type
2431  *
2432  * @hw: pointer to the hardware structure
2433  * @recp_id: recipe ID for which the rule needs to removed
2434  * @f_entry: rule entry containing filter information
2435  */
2436 static enum ice_status
2437 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
2438                          struct ice_fltr_list_entry *f_entry)
2439 {
2440         struct ice_switch_info *sw = hw->switch_info;
2441         struct ice_fltr_mgmt_list_entry *list_elem;
2442         struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2443         enum ice_status status = ICE_SUCCESS;
2444         bool remove_rule = false;
2445         u16 vsi_handle;
2446
2447         if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2448                 return ICE_ERR_PARAM;
2449         f_entry->fltr_info.fwd_id.hw_vsi_id =
2450                 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2451
2452         rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
2453         ice_acquire_lock(rule_lock);
2454         list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
2455         if (!list_elem) {
2456                 status = ICE_ERR_DOES_NOT_EXIST;
2457                 goto exit;
2458         }
2459
2460         if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
2461                 remove_rule = true;
2462         } else if (!list_elem->vsi_list_info) {
2463                 status = ICE_ERR_DOES_NOT_EXIST;
2464                 goto exit;
2465         } else if (list_elem->vsi_list_info->ref_cnt > 1) {
2466                 /* a ref_cnt > 1 indicates that the vsi_list is being
2467                  * shared by multiple rules. Decrement the ref_cnt and
2468                  * remove this rule, but do not modify the list, as it
2469                  * is in-use by other rules.
2470                  */
2471                 list_elem->vsi_list_info->ref_cnt--;
2472                 remove_rule = true;
2473         } else {
2474                 /* a ref_cnt of 1 indicates the vsi_list is only used
2475                  * by one rule. However, the original removal request is only
2476                  * for a single VSI. Update the vsi_list first, and only
2477                  * remove the rule if there are no further VSIs in this list.
2478                  */
2479                 vsi_handle = f_entry->fltr_info.vsi_handle;
2480                 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
2481                 if (status)
2482                         goto exit;
2483                 /* if VSI count goes to zero after updating the VSI list */
2484                 if (list_elem->vsi_count == 0)
2485                         remove_rule = true;
2486         }
2487
2488         if (remove_rule) {
2489                 /* Remove the lookup rule */
2490                 struct ice_aqc_sw_rules_elem *s_rule;
2491
2492                 s_rule = (struct ice_aqc_sw_rules_elem *)
2493                         ice_malloc(hw, ICE_SW_RULE_RX_TX_NO_HDR_SIZE);
2494                 if (!s_rule) {
2495                         status = ICE_ERR_NO_MEMORY;
2496                         goto exit;
2497                 }
2498
2499                 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
2500                                  ice_aqc_opc_remove_sw_rules);
2501
2502                 status = ice_aq_sw_rules(hw, s_rule,
2503                                          ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1,
2504                                          ice_aqc_opc_remove_sw_rules, NULL);
2505                 if (status)
2506                         goto exit;
2507
2508                 /* Remove a book keeping from the list */
2509                 ice_free(hw, s_rule);
2510
2511                 LIST_DEL(&list_elem->list_entry);
2512                 ice_free(hw, list_elem);
2513         }
2514 exit:
2515         ice_release_lock(rule_lock);
2516         return status;
2517 }
2518
2519 /**
2520  * ice_aq_get_res_alloc - get allocated resources
2521  * @hw: pointer to the HW struct
2522  * @num_entries: pointer to u16 to store the number of resource entries returned
2523  * @buf: pointer to user-supplied buffer
2524  * @buf_size: size of buff
2525  * @cd: pointer to command details structure or NULL
2526  *
2527  * The user-supplied buffer must be large enough to store the resource
2528  * information for all resource types. Each resource type is an
2529  * ice_aqc_get_res_resp_data_elem structure.
2530  */
2531 enum ice_status
2532 ice_aq_get_res_alloc(struct ice_hw *hw, u16 *num_entries, void *buf,
2533                      u16 buf_size, struct ice_sq_cd *cd)
2534 {
2535         struct ice_aqc_get_res_alloc *resp;
2536         enum ice_status status;
2537         struct ice_aq_desc desc;
2538
2539         if (!buf)
2540                 return ICE_ERR_BAD_PTR;
2541
2542         if (buf_size < ICE_AQ_GET_RES_ALLOC_BUF_LEN)
2543                 return ICE_ERR_INVAL_SIZE;
2544
2545         resp = &desc.params.get_res;
2546
2547         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_res_alloc);
2548         status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2549
2550         if (!status && num_entries)
2551                 *num_entries = LE16_TO_CPU(resp->resp_elem_num);
2552
2553         return status;
2554 }
2555
2556 /**
2557  * ice_aq_get_res_descs - get allocated resource descriptors
2558  * @hw: pointer to the hardware structure
2559  * @num_entries: number of resource entries in buffer
2560  * @buf: Indirect buffer to hold data parameters and response
2561  * @buf_size: size of buffer for indirect commands
2562  * @res_type: resource type
2563  * @res_shared: is resource shared
2564  * @desc_id: input - first desc ID to start; output - next desc ID
2565  * @cd: pointer to command details structure or NULL
2566  */
2567 enum ice_status
2568 ice_aq_get_res_descs(struct ice_hw *hw, u16 num_entries,
2569                      struct ice_aqc_get_allocd_res_desc_resp *buf,
2570                      u16 buf_size, u16 res_type, bool res_shared, u16 *desc_id,
2571                      struct ice_sq_cd *cd)
2572 {
2573         struct ice_aqc_get_allocd_res_desc *cmd;
2574         struct ice_aq_desc desc;
2575         enum ice_status status;
2576
2577         ice_debug(hw, ICE_DBG_TRACE, "ice_aq_get_res_descs");
2578
2579         cmd = &desc.params.get_res_desc;
2580
2581         if (!buf)
2582                 return ICE_ERR_PARAM;
2583
2584         if (buf_size != (num_entries * sizeof(*buf)))
2585                 return ICE_ERR_PARAM;
2586
2587         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_allocd_res_desc);
2588
2589         cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) &
2590                                          ICE_AQC_RES_TYPE_M) | (res_shared ?
2591                                         ICE_AQC_RES_TYPE_FLAG_SHARED : 0));
2592         cmd->ops.cmd.first_desc = CPU_TO_LE16(*desc_id);
2593
2594         desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
2595
2596         status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2597         if (!status)
2598                 *desc_id = LE16_TO_CPU(cmd->ops.resp.next_desc);
2599
2600         return status;
2601 }
2602
2603 /**
2604  * ice_add_mac - Add a MAC address based filter rule
2605  * @hw: pointer to the hardware structure
2606  * @m_list: list of MAC addresses and forwarding information
2607  *
2608  * IMPORTANT: When the ucast_shared flag is set to false and m_list has
2609  * multiple unicast addresses, the function assumes that all the
2610  * addresses are unique in a given add_mac call. It doesn't
2611  * check for duplicates in this case, removing duplicates from a given
2612  * list should be taken care of in the caller of this function.
2613  */
2614 enum ice_status
2615 ice_add_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
2616 {
2617         struct ice_aqc_sw_rules_elem *s_rule, *r_iter;
2618         struct ice_fltr_list_entry *m_list_itr;
2619         struct LIST_HEAD_TYPE *rule_head;
2620         u16 elem_sent, total_elem_left;
2621         struct ice_switch_info *sw;
2622         struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2623         enum ice_status status = ICE_SUCCESS;
2624         u16 num_unicast = 0;
2625         u16 s_rule_size;
2626
2627         if (!m_list || !hw)
2628                 return ICE_ERR_PARAM;
2629         s_rule = NULL;
2630         sw = hw->switch_info;
2631         rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2632         LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2633                             list_entry) {
2634                 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
2635                 u16 vsi_handle;
2636                 u16 hw_vsi_id;
2637
2638                 m_list_itr->fltr_info.flag = ICE_FLTR_TX;
2639                 vsi_handle = m_list_itr->fltr_info.vsi_handle;
2640                 if (!ice_is_vsi_valid(hw, vsi_handle))
2641                         return ICE_ERR_PARAM;
2642                 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
2643                 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
2644                 /* update the src in case it is VSI num */
2645                 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
2646                         return ICE_ERR_PARAM;
2647                 m_list_itr->fltr_info.src = hw_vsi_id;
2648                 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
2649                     IS_ZERO_ETHER_ADDR(add))
2650                         return ICE_ERR_PARAM;
2651                 if (IS_UNICAST_ETHER_ADDR(add) && !hw->ucast_shared) {
2652                         /* Don't overwrite the unicast address */
2653                         ice_acquire_lock(rule_lock);
2654                         if (ice_find_rule_entry(hw, ICE_SW_LKUP_MAC,
2655                                                 &m_list_itr->fltr_info)) {
2656                                 ice_release_lock(rule_lock);
2657                                 return ICE_ERR_ALREADY_EXISTS;
2658                         }
2659                         ice_release_lock(rule_lock);
2660                         num_unicast++;
2661                 } else if (IS_MULTICAST_ETHER_ADDR(add) ||
2662                            (IS_UNICAST_ETHER_ADDR(add) && hw->ucast_shared)) {
2663                         m_list_itr->status =
2664                                 ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
2665                                                       m_list_itr);
2666                         if (m_list_itr->status)
2667                                 return m_list_itr->status;
2668                 }
2669         }
2670
2671         ice_acquire_lock(rule_lock);
2672         /* Exit if no suitable entries were found for adding bulk switch rule */
2673         if (!num_unicast) {
2674                 status = ICE_SUCCESS;
2675                 goto ice_add_mac_exit;
2676         }
2677
2678         rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2679
2680         /* Allocate switch rule buffer for the bulk update for unicast */
2681         s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
2682         s_rule = (struct ice_aqc_sw_rules_elem *)
2683                 ice_calloc(hw, num_unicast, s_rule_size);
2684         if (!s_rule) {
2685                 status = ICE_ERR_NO_MEMORY;
2686                 goto ice_add_mac_exit;
2687         }
2688
2689         r_iter = s_rule;
2690         LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2691                             list_entry) {
2692                 struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2693                 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2694
2695                 if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2696                         ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter,
2697                                          ice_aqc_opc_add_sw_rules);
2698                         r_iter = (struct ice_aqc_sw_rules_elem *)
2699                                 ((u8 *)r_iter + s_rule_size);
2700                 }
2701         }
2702
2703         /* Call AQ bulk switch rule update for all unicast addresses */
2704         r_iter = s_rule;
2705         /* Call AQ switch rule in AQ_MAX chunk */
2706         for (total_elem_left = num_unicast; total_elem_left > 0;
2707              total_elem_left -= elem_sent) {
2708                 struct ice_aqc_sw_rules_elem *entry = r_iter;
2709
2710                 elem_sent = min(total_elem_left,
2711                                 (u16)(ICE_AQ_MAX_BUF_LEN / s_rule_size));
2712                 status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
2713                                          elem_sent, ice_aqc_opc_add_sw_rules,
2714                                          NULL);
2715                 if (status)
2716                         goto ice_add_mac_exit;
2717                 r_iter = (struct ice_aqc_sw_rules_elem *)
2718                         ((u8 *)r_iter + (elem_sent * s_rule_size));
2719         }
2720
2721         /* Fill up rule ID based on the value returned from FW */
2722         r_iter = s_rule;
2723         LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2724                             list_entry) {
2725                 struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2726                 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2727                 struct ice_fltr_mgmt_list_entry *fm_entry;
2728
2729                 if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2730                         f_info->fltr_rule_id =
2731                                 LE16_TO_CPU(r_iter->pdata.lkup_tx_rx.index);
2732                         f_info->fltr_act = ICE_FWD_TO_VSI;
2733                         /* Create an entry to track this MAC address */
2734                         fm_entry = (struct ice_fltr_mgmt_list_entry *)
2735                                 ice_malloc(hw, sizeof(*fm_entry));
2736                         if (!fm_entry) {
2737                                 status = ICE_ERR_NO_MEMORY;
2738                                 goto ice_add_mac_exit;
2739                         }
2740                         fm_entry->fltr_info = *f_info;
2741                         fm_entry->vsi_count = 1;
2742                         /* The book keeping entries will get removed when
2743                          * base driver calls remove filter AQ command
2744                          */
2745
2746                         LIST_ADD(&fm_entry->list_entry, rule_head);
2747                         r_iter = (struct ice_aqc_sw_rules_elem *)
2748                                 ((u8 *)r_iter + s_rule_size);
2749                 }
2750         }
2751
2752 ice_add_mac_exit:
2753         ice_release_lock(rule_lock);
2754         if (s_rule)
2755                 ice_free(hw, s_rule);
2756         return status;
2757 }
2758
2759 /**
2760  * ice_add_vlan_internal - Add one VLAN based filter rule
2761  * @hw: pointer to the hardware structure
2762  * @f_entry: filter entry containing one VLAN information
2763  */
2764 static enum ice_status
2765 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
2766 {
2767         struct ice_switch_info *sw = hw->switch_info;
2768         struct ice_fltr_mgmt_list_entry *v_list_itr;
2769         struct ice_fltr_info *new_fltr, *cur_fltr;
2770         enum ice_sw_lkup_type lkup_type;
2771         u16 vsi_list_id = 0, vsi_handle;
2772         struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2773         enum ice_status status = ICE_SUCCESS;
2774
2775         if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2776                 return ICE_ERR_PARAM;
2777
2778         f_entry->fltr_info.fwd_id.hw_vsi_id =
2779                 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2780         new_fltr = &f_entry->fltr_info;
2781
2782         /* VLAN ID should only be 12 bits */
2783         if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
2784                 return ICE_ERR_PARAM;
2785
2786         if (new_fltr->src_id != ICE_SRC_ID_VSI)
2787                 return ICE_ERR_PARAM;
2788
2789         new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
2790         lkup_type = new_fltr->lkup_type;
2791         vsi_handle = new_fltr->vsi_handle;
2792         rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
2793         ice_acquire_lock(rule_lock);
2794         v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
2795         if (!v_list_itr) {
2796                 struct ice_vsi_list_map_info *map_info = NULL;
2797
2798                 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
2799                         /* All VLAN pruning rules use a VSI list. Check if
2800                          * there is already a VSI list containing VSI that we
2801                          * want to add. If found, use the same vsi_list_id for
2802                          * this new VLAN rule or else create a new list.
2803                          */
2804                         map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
2805                                                            vsi_handle,
2806                                                            &vsi_list_id);
2807                         if (!map_info) {
2808                                 status = ice_create_vsi_list_rule(hw,
2809                                                                   &vsi_handle,
2810                                                                   1,
2811                                                                   &vsi_list_id,
2812                                                                   lkup_type);
2813                                 if (status)
2814                                         goto exit;
2815                         }
2816                         /* Convert the action to forwarding to a VSI list. */
2817                         new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
2818                         new_fltr->fwd_id.vsi_list_id = vsi_list_id;
2819                 }
2820
2821                 status = ice_create_pkt_fwd_rule(hw, f_entry);
2822                 if (!status) {
2823                         v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
2824                                                          new_fltr);
2825                         if (!v_list_itr) {
2826                                 status = ICE_ERR_DOES_NOT_EXIST;
2827                                 goto exit;
2828                         }
2829                         /* reuse VSI list for new rule and increment ref_cnt */
2830                         if (map_info) {
2831                                 v_list_itr->vsi_list_info = map_info;
2832                                 map_info->ref_cnt++;
2833                         } else {
2834                                 v_list_itr->vsi_list_info =
2835                                         ice_create_vsi_list_map(hw, &vsi_handle,
2836                                                                 1, vsi_list_id);
2837                         }
2838                 }
2839         } else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
2840                 /* Update existing VSI list to add new VSI ID only if it used
2841                  * by one VLAN rule.
2842                  */
2843                 cur_fltr = &v_list_itr->fltr_info;
2844                 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
2845                                                  new_fltr);
2846         } else {
2847                 /* If VLAN rule exists and VSI list being used by this rule is
2848                  * referenced by more than 1 VLAN rule. Then create a new VSI
2849                  * list appending previous VSI with new VSI and update existing
2850                  * VLAN rule to point to new VSI list ID
2851                  */
2852                 struct ice_fltr_info tmp_fltr;
2853                 u16 vsi_handle_arr[2];
2854                 u16 cur_handle;
2855
2856                 /* Current implementation only supports reusing VSI list with
2857                  * one VSI count. We should never hit below condition
2858                  */
2859                 if (v_list_itr->vsi_count > 1 &&
2860                     v_list_itr->vsi_list_info->ref_cnt > 1) {
2861                         ice_debug(hw, ICE_DBG_SW,
2862                                   "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
2863                         status = ICE_ERR_CFG;
2864                         goto exit;
2865                 }
2866
2867                 cur_handle =
2868                         ice_find_first_bit(v_list_itr->vsi_list_info->vsi_map,
2869                                            ICE_MAX_VSI);
2870
2871                 /* A rule already exists with the new VSI being added */
2872                 if (cur_handle == vsi_handle) {
2873                         status = ICE_ERR_ALREADY_EXISTS;
2874                         goto exit;
2875                 }
2876
2877                 vsi_handle_arr[0] = cur_handle;
2878                 vsi_handle_arr[1] = vsi_handle;
2879                 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
2880                                                   &vsi_list_id, lkup_type);
2881                 if (status)
2882                         goto exit;
2883
2884                 tmp_fltr = v_list_itr->fltr_info;
2885                 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
2886                 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
2887                 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
2888                 /* Update the previous switch rule to a new VSI list which
2889                  * includes current VSI that is requested
2890                  */
2891                 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
2892                 if (status)
2893                         goto exit;
2894
2895                 /* before overriding VSI list map info. decrement ref_cnt of
2896                  * previous VSI list
2897                  */
2898                 v_list_itr->vsi_list_info->ref_cnt--;
2899
2900                 /* now update to newly created list */
2901                 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
2902                 v_list_itr->vsi_list_info =
2903                         ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
2904                                                 vsi_list_id);
2905                 v_list_itr->vsi_count++;
2906         }
2907
2908 exit:
2909         ice_release_lock(rule_lock);
2910         return status;
2911 }
2912
2913 /**
2914  * ice_add_vlan - Add VLAN based filter rule
2915  * @hw: pointer to the hardware structure
2916  * @v_list: list of VLAN entries and forwarding information
2917  */
2918 enum ice_status
2919 ice_add_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
2920 {
2921         struct ice_fltr_list_entry *v_list_itr;
2922
2923         if (!v_list || !hw)
2924                 return ICE_ERR_PARAM;
2925
2926         LIST_FOR_EACH_ENTRY(v_list_itr, v_list, ice_fltr_list_entry,
2927                             list_entry) {
2928                 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
2929                         return ICE_ERR_PARAM;
2930                 v_list_itr->fltr_info.flag = ICE_FLTR_TX;
2931                 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
2932                 if (v_list_itr->status)
2933                         return v_list_itr->status;
2934         }
2935         return ICE_SUCCESS;
2936 }
2937
2938 #ifndef NO_MACVLAN_SUPPORT
2939 /**
2940  * ice_add_mac_vlan - Add MAC and VLAN pair based filter rule
2941  * @hw: pointer to the hardware structure
2942  * @mv_list: list of MAC and VLAN filters
2943  *
2944  * If the VSI on which the MAC-VLAN pair has to be added has Rx and Tx VLAN
2945  * pruning bits enabled, then it is the responsibility of the caller to make
2946  * sure to add a VLAN only filter on the same VSI. Packets belonging to that
2947  * VLAN won't be received on that VSI otherwise.
2948  */
2949 enum ice_status
2950 ice_add_mac_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *mv_list)
2951 {
2952         struct ice_fltr_list_entry *mv_list_itr;
2953
2954         if (!mv_list || !hw)
2955                 return ICE_ERR_PARAM;
2956
2957         LIST_FOR_EACH_ENTRY(mv_list_itr, mv_list, ice_fltr_list_entry,
2958                             list_entry) {
2959                 enum ice_sw_lkup_type l_type =
2960                         mv_list_itr->fltr_info.lkup_type;
2961
2962                 if (l_type != ICE_SW_LKUP_MAC_VLAN)
2963                         return ICE_ERR_PARAM;
2964                 mv_list_itr->fltr_info.flag = ICE_FLTR_TX;
2965                 mv_list_itr->status =
2966                         ice_add_rule_internal(hw, ICE_SW_LKUP_MAC_VLAN,
2967                                               mv_list_itr);
2968                 if (mv_list_itr->status)
2969                         return mv_list_itr->status;
2970         }
2971         return ICE_SUCCESS;
2972 }
2973 #endif
2974
2975 /**
2976  * ice_add_eth_mac - Add ethertype and MAC based filter rule
2977  * @hw: pointer to the hardware structure
2978  * @em_list: list of ether type MAC filter, MAC is optional
2979  */
2980 enum ice_status
2981 ice_add_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
2982 {
2983         struct ice_fltr_list_entry *em_list_itr;
2984
2985         LIST_FOR_EACH_ENTRY(em_list_itr, em_list, ice_fltr_list_entry,
2986                             list_entry) {
2987                 enum ice_sw_lkup_type l_type =
2988                         em_list_itr->fltr_info.lkup_type;
2989
2990                 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
2991                     l_type != ICE_SW_LKUP_ETHERTYPE)
2992                         return ICE_ERR_PARAM;
2993
2994                 em_list_itr->fltr_info.flag = ICE_FLTR_TX;
2995                 em_list_itr->status = ice_add_rule_internal(hw, l_type,
2996                                                             em_list_itr);
2997                 if (em_list_itr->status)
2998                         return em_list_itr->status;
2999         }
3000         return ICE_SUCCESS;
3001 }
3002
3003 /**
3004  * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3005  * @hw: pointer to the hardware structure
3006  * @em_list: list of ethertype or ethertype MAC entries
3007  */
3008 enum ice_status
3009 ice_remove_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
3010 {
3011         struct ice_fltr_list_entry *em_list_itr, *tmp;
3012
3013         if (!em_list || !hw)
3014                 return ICE_ERR_PARAM;
3015
3016         LIST_FOR_EACH_ENTRY_SAFE(em_list_itr, tmp, em_list, ice_fltr_list_entry,
3017                                  list_entry) {
3018                 enum ice_sw_lkup_type l_type =
3019                         em_list_itr->fltr_info.lkup_type;
3020
3021                 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3022                     l_type != ICE_SW_LKUP_ETHERTYPE)
3023                         return ICE_ERR_PARAM;
3024
3025                 em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3026                                                                em_list_itr);
3027                 if (em_list_itr->status)
3028                         return em_list_itr->status;
3029         }
3030         return ICE_SUCCESS;
3031 }
3032
3033
3034 /**
3035  * ice_rem_sw_rule_info
3036  * @hw: pointer to the hardware structure
3037  * @rule_head: pointer to the switch list structure that we want to delete
3038  */
3039 static void
3040 ice_rem_sw_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head)
3041 {
3042         if (!LIST_EMPTY(rule_head)) {
3043                 struct ice_fltr_mgmt_list_entry *entry;
3044                 struct ice_fltr_mgmt_list_entry *tmp;
3045
3046                 LIST_FOR_EACH_ENTRY_SAFE(entry, tmp, rule_head,
3047                                          ice_fltr_mgmt_list_entry, list_entry) {
3048                         LIST_DEL(&entry->list_entry);
3049                         ice_free(hw, entry);
3050                 }
3051         }
3052 }
3053
3054 /**
3055  * ice_rem_adv_rule_info
3056  * @hw: pointer to the hardware structure
3057  * @rule_head: pointer to the switch list structure that we want to delete
3058  */
3059 static void
3060 ice_rem_adv_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head)
3061 {
3062         struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3063         struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3064
3065         if (LIST_EMPTY(rule_head))
3066                 return;
3067
3068         LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry, rule_head,
3069                                  ice_adv_fltr_mgmt_list_entry, list_entry) {
3070                 LIST_DEL(&lst_itr->list_entry);
3071                 ice_free(hw, lst_itr->lkups);
3072                 ice_free(hw, lst_itr);
3073         }
3074 }
3075
3076 /**
3077  * ice_rem_all_sw_rules_info
3078  * @hw: pointer to the hardware structure
3079  */
3080 void ice_rem_all_sw_rules_info(struct ice_hw *hw)
3081 {
3082         struct ice_switch_info *sw = hw->switch_info;
3083         u8 i;
3084
3085         for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
3086                 struct LIST_HEAD_TYPE *rule_head;
3087
3088                 rule_head = &sw->recp_list[i].filt_rules;
3089                 if (!sw->recp_list[i].adv_rule)
3090                         ice_rem_sw_rule_info(hw, rule_head);
3091                 else
3092                         ice_rem_adv_rule_info(hw, rule_head);
3093         }
3094 }
3095
3096 /**
3097  * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3098  * @pi: pointer to the port_info structure
3099  * @vsi_handle: VSI handle to set as default
3100  * @set: true to add the above mentioned switch rule, false to remove it
3101  * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3102  *
3103  * add filter rule to set/unset given VSI as default VSI for the switch
3104  * (represented by swid)
3105  */
3106 enum ice_status
3107 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3108                  u8 direction)
3109 {
3110         struct ice_aqc_sw_rules_elem *s_rule;
3111         struct ice_fltr_info f_info;
3112         struct ice_hw *hw = pi->hw;
3113         enum ice_adminq_opc opcode;
3114         enum ice_status status;
3115         u16 s_rule_size;
3116         u16 hw_vsi_id;
3117
3118         if (!ice_is_vsi_valid(hw, vsi_handle))
3119                 return ICE_ERR_PARAM;
3120         hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3121
3122         s_rule_size = set ? ICE_SW_RULE_RX_TX_ETH_HDR_SIZE :
3123                             ICE_SW_RULE_RX_TX_NO_HDR_SIZE;
3124         s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
3125         if (!s_rule)
3126                 return ICE_ERR_NO_MEMORY;
3127
3128         ice_memset(&f_info, 0, sizeof(f_info), ICE_NONDMA_MEM);
3129
3130         f_info.lkup_type = ICE_SW_LKUP_DFLT;
3131         f_info.flag = direction;
3132         f_info.fltr_act = ICE_FWD_TO_VSI;
3133         f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3134
3135         if (f_info.flag & ICE_FLTR_RX) {
3136                 f_info.src = pi->lport;
3137                 f_info.src_id = ICE_SRC_ID_LPORT;
3138                 if (!set)
3139                         f_info.fltr_rule_id =
3140                                 pi->dflt_rx_vsi_rule_id;
3141         } else if (f_info.flag & ICE_FLTR_TX) {
3142                 f_info.src_id = ICE_SRC_ID_VSI;
3143                 f_info.src = hw_vsi_id;
3144                 if (!set)
3145                         f_info.fltr_rule_id =
3146                                 pi->dflt_tx_vsi_rule_id;
3147         }
3148
3149         if (set)
3150                 opcode = ice_aqc_opc_add_sw_rules;
3151         else
3152                 opcode = ice_aqc_opc_remove_sw_rules;
3153
3154         ice_fill_sw_rule(hw, &f_info, s_rule, opcode);
3155
3156         status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opcode, NULL);
3157         if (status || !(f_info.flag & ICE_FLTR_TX_RX))
3158                 goto out;
3159         if (set) {
3160                 u16 index = LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
3161
3162                 if (f_info.flag & ICE_FLTR_TX) {
3163                         pi->dflt_tx_vsi_num = hw_vsi_id;
3164                         pi->dflt_tx_vsi_rule_id = index;
3165                 } else if (f_info.flag & ICE_FLTR_RX) {
3166                         pi->dflt_rx_vsi_num = hw_vsi_id;
3167                         pi->dflt_rx_vsi_rule_id = index;
3168                 }
3169         } else {
3170                 if (f_info.flag & ICE_FLTR_TX) {
3171                         pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL;
3172                         pi->dflt_tx_vsi_rule_id = ICE_INVAL_ACT;
3173                 } else if (f_info.flag & ICE_FLTR_RX) {
3174                         pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL;
3175                         pi->dflt_rx_vsi_rule_id = ICE_INVAL_ACT;
3176                 }
3177         }
3178
3179 out:
3180         ice_free(hw, s_rule);
3181         return status;
3182 }
3183
3184 /**
3185  * ice_remove_mac - remove a MAC address based filter rule
3186  * @hw: pointer to the hardware structure
3187  * @m_list: list of MAC addresses and forwarding information
3188  *
3189  * This function removes either a MAC filter rule or a specific VSI from a
3190  * VSI list for a multicast MAC address.
3191  *
3192  * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by
3193  * ice_add_mac. Caller should be aware that this call will only work if all
3194  * the entries passed into m_list were added previously. It will not attempt to
3195  * do a partial remove of entries that were found.
3196  */
3197 enum ice_status
3198 ice_remove_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
3199 {
3200         struct ice_fltr_list_entry *list_itr, *tmp;
3201
3202         if (!m_list)
3203                 return ICE_ERR_PARAM;
3204
3205         LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, m_list, ice_fltr_list_entry,
3206                                  list_entry) {
3207                 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3208
3209                 if (l_type != ICE_SW_LKUP_MAC)
3210                         return ICE_ERR_PARAM;
3211                 list_itr->status = ice_remove_rule_internal(hw,
3212                                                             ICE_SW_LKUP_MAC,
3213                                                             list_itr);
3214                 if (list_itr->status)
3215                         return list_itr->status;
3216         }
3217         return ICE_SUCCESS;
3218 }
3219
3220 /**
3221  * ice_remove_vlan - Remove VLAN based filter rule
3222  * @hw: pointer to the hardware structure
3223  * @v_list: list of VLAN entries and forwarding information
3224  */
3225 enum ice_status
3226 ice_remove_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
3227 {
3228         struct ice_fltr_list_entry *v_list_itr, *tmp;
3229
3230         if (!v_list || !hw)
3231                 return ICE_ERR_PARAM;
3232
3233         LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3234                                  list_entry) {
3235                 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3236
3237                 if (l_type != ICE_SW_LKUP_VLAN)
3238                         return ICE_ERR_PARAM;
3239                 v_list_itr->status = ice_remove_rule_internal(hw,
3240                                                               ICE_SW_LKUP_VLAN,
3241                                                               v_list_itr);
3242                 if (v_list_itr->status)
3243                         return v_list_itr->status;
3244         }
3245         return ICE_SUCCESS;
3246 }
3247
3248 #ifndef NO_MACVLAN_SUPPORT
3249 /**
3250  * ice_remove_mac_vlan - Remove MAC VLAN based filter rule
3251  * @hw: pointer to the hardware structure
3252  * @v_list: list of MAC VLAN entries and forwarding information
3253  */
3254 enum ice_status
3255 ice_remove_mac_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
3256 {
3257         struct ice_fltr_list_entry *v_list_itr, *tmp;
3258
3259         if (!v_list || !hw)
3260                 return ICE_ERR_PARAM;
3261
3262         LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3263                                  list_entry) {
3264                 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3265
3266                 if (l_type != ICE_SW_LKUP_MAC_VLAN)
3267                         return ICE_ERR_PARAM;
3268                 v_list_itr->status =
3269                         ice_remove_rule_internal(hw, ICE_SW_LKUP_MAC_VLAN,
3270                                                  v_list_itr);
3271                 if (v_list_itr->status)
3272                         return v_list_itr->status;
3273         }
3274         return ICE_SUCCESS;
3275 }
3276 #endif /* !NO_MACVLAN_SUPPORT */
3277
3278 /**
3279  * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3280  * @fm_entry: filter entry to inspect
3281  * @vsi_handle: VSI handle to compare with filter info
3282  */
3283 static bool
3284 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3285 {
3286         return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3287                  fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3288                 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3289                  (ice_is_bit_set(fm_entry->vsi_list_info->vsi_map,
3290                                  vsi_handle))));
3291 }
3292
3293 /**
3294  * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3295  * @hw: pointer to the hardware structure
3296  * @vsi_handle: VSI handle to remove filters from
3297  * @vsi_list_head: pointer to the list to add entry to
3298  * @fi: pointer to fltr_info of filter entry to copy & add
3299  *
3300  * Helper function, used when creating a list of filters to remove from
3301  * a specific VSI. The entry added to vsi_list_head is a COPY of the
3302  * original filter entry, with the exception of fltr_info.fltr_act and
3303  * fltr_info.fwd_id fields. These are set such that later logic can
3304  * extract which VSI to remove the fltr from, and pass on that information.
3305  */
3306 static enum ice_status
3307 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3308                                struct LIST_HEAD_TYPE *vsi_list_head,
3309                                struct ice_fltr_info *fi)
3310 {
3311         struct ice_fltr_list_entry *tmp;
3312
3313         /* this memory is freed up in the caller function
3314          * once filters for this VSI are removed
3315          */
3316         tmp = (struct ice_fltr_list_entry *)ice_malloc(hw, sizeof(*tmp));
3317         if (!tmp)
3318                 return ICE_ERR_NO_MEMORY;
3319
3320         tmp->fltr_info = *fi;
3321
3322         /* Overwrite these fields to indicate which VSI to remove filter from,
3323          * so find and remove logic can extract the information from the
3324          * list entries. Note that original entries will still have proper
3325          * values.
3326          */
3327         tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3328         tmp->fltr_info.vsi_handle = vsi_handle;
3329         tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3330
3331         LIST_ADD(&tmp->list_entry, vsi_list_head);
3332
3333         return ICE_SUCCESS;
3334 }
3335
3336 /**
3337  * ice_add_to_vsi_fltr_list - Add VSI filters to the list
3338  * @hw: pointer to the hardware structure
3339  * @vsi_handle: VSI handle to remove filters from
3340  * @lkup_list_head: pointer to the list that has certain lookup type filters
3341  * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
3342  *
3343  * Locates all filters in lkup_list_head that are used by the given VSI,
3344  * and adds COPIES of those entries to vsi_list_head (intended to be used
3345  * to remove the listed filters).
3346  * Note that this means all entries in vsi_list_head must be explicitly
3347  * deallocated by the caller when done with list.
3348  */
3349 static enum ice_status
3350 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3351                          struct LIST_HEAD_TYPE *lkup_list_head,
3352                          struct LIST_HEAD_TYPE *vsi_list_head)
3353 {
3354         struct ice_fltr_mgmt_list_entry *fm_entry;
3355         enum ice_status status = ICE_SUCCESS;
3356
3357         /* check to make sure VSI ID is valid and within boundary */
3358         if (!ice_is_vsi_valid(hw, vsi_handle))
3359                 return ICE_ERR_PARAM;
3360
3361         LIST_FOR_EACH_ENTRY(fm_entry, lkup_list_head,
3362                             ice_fltr_mgmt_list_entry, list_entry) {
3363                 struct ice_fltr_info *fi;
3364
3365                 fi = &fm_entry->fltr_info;
3366                 if (!fi || !ice_vsi_uses_fltr(fm_entry, vsi_handle))
3367                         continue;
3368
3369                 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3370                                                         vsi_list_head, fi);
3371                 if (status)
3372                         return status;
3373         }
3374         return status;
3375 }
3376
3377
3378 /**
3379  * ice_determine_promisc_mask
3380  * @fi: filter info to parse
3381  *
3382  * Helper function to determine which ICE_PROMISC_ mask corresponds
3383  * to given filter into.
3384  */
3385 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
3386 {
3387         u16 vid = fi->l_data.mac_vlan.vlan_id;
3388         u8 *macaddr = fi->l_data.mac.mac_addr;
3389         bool is_tx_fltr = false;
3390         u8 promisc_mask = 0;
3391
3392         if (fi->flag == ICE_FLTR_TX)
3393                 is_tx_fltr = true;
3394
3395         if (IS_BROADCAST_ETHER_ADDR(macaddr))
3396                 promisc_mask |= is_tx_fltr ?
3397                         ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
3398         else if (IS_MULTICAST_ETHER_ADDR(macaddr))
3399                 promisc_mask |= is_tx_fltr ?
3400                         ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
3401         else if (IS_UNICAST_ETHER_ADDR(macaddr))
3402                 promisc_mask |= is_tx_fltr ?
3403                         ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
3404         if (vid)
3405                 promisc_mask |= is_tx_fltr ?
3406                         ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
3407
3408         return promisc_mask;
3409 }
3410
3411 /**
3412  * ice_get_vsi_promisc - get promiscuous mode of given VSI
3413  * @hw: pointer to the hardware structure
3414  * @vsi_handle: VSI handle to retrieve info from
3415  * @promisc_mask: pointer to mask to be filled in
3416  * @vid: VLAN ID of promisc VLAN VSI
3417  */
3418 enum ice_status
3419 ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
3420                     u16 *vid)
3421 {
3422         struct ice_switch_info *sw = hw->switch_info;
3423         struct ice_fltr_mgmt_list_entry *itr;
3424         struct LIST_HEAD_TYPE *rule_head;
3425         struct ice_lock *rule_lock;     /* Lock to protect filter rule list */
3426
3427         if (!ice_is_vsi_valid(hw, vsi_handle))
3428                 return ICE_ERR_PARAM;
3429
3430         *vid = 0;
3431         *promisc_mask = 0;
3432         rule_head = &sw->recp_list[ICE_SW_LKUP_PROMISC].filt_rules;
3433         rule_lock = &sw->recp_list[ICE_SW_LKUP_PROMISC].filt_rule_lock;
3434
3435         ice_acquire_lock(rule_lock);
3436         LIST_FOR_EACH_ENTRY(itr, rule_head,
3437                             ice_fltr_mgmt_list_entry, list_entry) {
3438                 /* Continue if this filter doesn't apply to this VSI or the
3439                  * VSI ID is not in the VSI map for this filter
3440                  */
3441                 if (!ice_vsi_uses_fltr(itr, vsi_handle))
3442                         continue;
3443
3444                 *promisc_mask |= ice_determine_promisc_mask(&itr->fltr_info);
3445         }
3446         ice_release_lock(rule_lock);
3447
3448         return ICE_SUCCESS;
3449 }
3450
3451 /**
3452  * ice_get_vsi_vlan_promisc - get VLAN promiscuous mode of given VSI
3453  * @hw: pointer to the hardware structure
3454  * @vsi_handle: VSI handle to retrieve info from
3455  * @promisc_mask: pointer to mask to be filled in
3456  * @vid: VLAN ID of promisc VLAN VSI
3457  */
3458 enum ice_status
3459 ice_get_vsi_vlan_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
3460                          u16 *vid)
3461 {
3462         struct ice_switch_info *sw = hw->switch_info;
3463         struct ice_fltr_mgmt_list_entry *itr;
3464         struct LIST_HEAD_TYPE *rule_head;
3465         struct ice_lock *rule_lock;     /* Lock to protect filter rule list */
3466
3467         if (!ice_is_vsi_valid(hw, vsi_handle))
3468                 return ICE_ERR_PARAM;
3469
3470         *vid = 0;
3471         *promisc_mask = 0;
3472         rule_head = &sw->recp_list[ICE_SW_LKUP_PROMISC_VLAN].filt_rules;
3473         rule_lock = &sw->recp_list[ICE_SW_LKUP_PROMISC_VLAN].filt_rule_lock;
3474
3475         ice_acquire_lock(rule_lock);
3476         LIST_FOR_EACH_ENTRY(itr, rule_head, ice_fltr_mgmt_list_entry,
3477                             list_entry) {
3478                 /* Continue if this filter doesn't apply to this VSI or the
3479                  * VSI ID is not in the VSI map for this filter
3480                  */
3481                 if (!ice_vsi_uses_fltr(itr, vsi_handle))
3482                         continue;
3483
3484                 *promisc_mask |= ice_determine_promisc_mask(&itr->fltr_info);
3485         }
3486         ice_release_lock(rule_lock);
3487
3488         return ICE_SUCCESS;
3489 }
3490
3491 /**
3492  * ice_remove_promisc - Remove promisc based filter rules
3493  * @hw: pointer to the hardware structure
3494  * @recp_id: recipe ID for which the rule needs to removed
3495  * @v_list: list of promisc entries
3496  */
3497 static enum ice_status
3498 ice_remove_promisc(struct ice_hw *hw, u8 recp_id,
3499                    struct LIST_HEAD_TYPE *v_list)
3500 {
3501         struct ice_fltr_list_entry *v_list_itr, *tmp;
3502
3503         LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3504                                  list_entry) {
3505                 v_list_itr->status =
3506                         ice_remove_rule_internal(hw, recp_id, v_list_itr);
3507                 if (v_list_itr->status)
3508                         return v_list_itr->status;
3509         }
3510         return ICE_SUCCESS;
3511 }
3512
3513 /**
3514  * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
3515  * @hw: pointer to the hardware structure
3516  * @vsi_handle: VSI handle to clear mode
3517  * @promisc_mask: mask of promiscuous config bits to clear
3518  * @vid: VLAN ID to clear VLAN promiscuous
3519  */
3520 enum ice_status
3521 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3522                       u16 vid)
3523 {
3524         struct ice_switch_info *sw = hw->switch_info;
3525         struct ice_fltr_list_entry *fm_entry, *tmp;
3526         struct LIST_HEAD_TYPE remove_list_head;
3527         struct ice_fltr_mgmt_list_entry *itr;
3528         struct LIST_HEAD_TYPE *rule_head;
3529         struct ice_lock *rule_lock;     /* Lock to protect filter rule list */
3530         enum ice_status status = ICE_SUCCESS;
3531         u8 recipe_id;
3532
3533         if (!ice_is_vsi_valid(hw, vsi_handle))
3534                 return ICE_ERR_PARAM;
3535
3536         if (vid)
3537                 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3538         else
3539                 recipe_id = ICE_SW_LKUP_PROMISC;
3540
3541         rule_head = &sw->recp_list[recipe_id].filt_rules;
3542         rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
3543
3544         INIT_LIST_HEAD(&remove_list_head);
3545
3546         ice_acquire_lock(rule_lock);
3547         LIST_FOR_EACH_ENTRY(itr, rule_head,
3548                             ice_fltr_mgmt_list_entry, list_entry) {
3549                 u8 fltr_promisc_mask = 0;
3550
3551                 if (!ice_vsi_uses_fltr(itr, vsi_handle))
3552                         continue;
3553
3554                 fltr_promisc_mask |=
3555                         ice_determine_promisc_mask(&itr->fltr_info);
3556
3557                 /* Skip if filter is not completely specified by given mask */
3558                 if (fltr_promisc_mask & ~promisc_mask)
3559                         continue;
3560
3561                 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3562                                                         &remove_list_head,
3563                                                         &itr->fltr_info);
3564                 if (status) {
3565                         ice_release_lock(rule_lock);
3566                         goto free_fltr_list;
3567                 }
3568         }
3569         ice_release_lock(rule_lock);
3570
3571         status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
3572
3573 free_fltr_list:
3574         LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3575                                  ice_fltr_list_entry, list_entry) {
3576                 LIST_DEL(&fm_entry->list_entry);
3577                 ice_free(hw, fm_entry);
3578         }
3579
3580         return status;
3581 }
3582
3583 /**
3584  * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
3585  * @hw: pointer to the hardware structure
3586  * @vsi_handle: VSI handle to configure
3587  * @promisc_mask: mask of promiscuous config bits
3588  * @vid: VLAN ID to set VLAN promiscuous
3589  */
3590 enum ice_status
3591 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
3592 {
3593         enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
3594         struct ice_fltr_list_entry f_list_entry;
3595         struct ice_fltr_info new_fltr;
3596         enum ice_status status = ICE_SUCCESS;
3597         bool is_tx_fltr;
3598         u16 hw_vsi_id;
3599         int pkt_type;
3600         u8 recipe_id;
3601
3602         ice_debug(hw, ICE_DBG_TRACE, "ice_set_vsi_promisc\n");
3603
3604         if (!ice_is_vsi_valid(hw, vsi_handle))
3605                 return ICE_ERR_PARAM;
3606         hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3607
3608         ice_memset(&new_fltr, 0, sizeof(new_fltr), ICE_NONDMA_MEM);
3609
3610         if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
3611                 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
3612                 new_fltr.l_data.mac_vlan.vlan_id = vid;
3613                 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3614         } else {
3615                 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
3616                 recipe_id = ICE_SW_LKUP_PROMISC;
3617         }
3618
3619         /* Separate filters must be set for each direction/packet type
3620          * combination, so we will loop over the mask value, store the
3621          * individual type, and clear it out in the input mask as it
3622          * is found.
3623          */
3624         while (promisc_mask) {
3625                 u8 *mac_addr;
3626
3627                 pkt_type = 0;
3628                 is_tx_fltr = false;
3629
3630                 if (promisc_mask & ICE_PROMISC_UCAST_RX) {
3631                         promisc_mask &= ~ICE_PROMISC_UCAST_RX;
3632                         pkt_type = UCAST_FLTR;
3633                 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
3634                         promisc_mask &= ~ICE_PROMISC_UCAST_TX;
3635                         pkt_type = UCAST_FLTR;
3636                         is_tx_fltr = true;
3637                 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
3638                         promisc_mask &= ~ICE_PROMISC_MCAST_RX;
3639                         pkt_type = MCAST_FLTR;
3640                 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
3641                         promisc_mask &= ~ICE_PROMISC_MCAST_TX;
3642                         pkt_type = MCAST_FLTR;
3643                         is_tx_fltr = true;
3644                 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
3645                         promisc_mask &= ~ICE_PROMISC_BCAST_RX;
3646                         pkt_type = BCAST_FLTR;
3647                 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
3648                         promisc_mask &= ~ICE_PROMISC_BCAST_TX;
3649                         pkt_type = BCAST_FLTR;
3650                         is_tx_fltr = true;
3651                 }
3652
3653                 /* Check for VLAN promiscuous flag */
3654                 if (promisc_mask & ICE_PROMISC_VLAN_RX) {
3655                         promisc_mask &= ~ICE_PROMISC_VLAN_RX;
3656                 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
3657                         promisc_mask &= ~ICE_PROMISC_VLAN_TX;
3658                         is_tx_fltr = true;
3659                 }
3660
3661                 /* Set filter DA based on packet type */
3662                 mac_addr = new_fltr.l_data.mac.mac_addr;
3663                 if (pkt_type == BCAST_FLTR) {
3664                         ice_memset(mac_addr, 0xff, ETH_ALEN, ICE_NONDMA_MEM);
3665                 } else if (pkt_type == MCAST_FLTR ||
3666                            pkt_type == UCAST_FLTR) {
3667                         /* Use the dummy ether header DA */
3668                         ice_memcpy(mac_addr, dummy_eth_header, ETH_ALEN,
3669                                    ICE_NONDMA_TO_NONDMA);
3670                         if (pkt_type == MCAST_FLTR)
3671                                 mac_addr[0] |= 0x1;     /* Set multicast bit */
3672                 }
3673
3674                 /* Need to reset this to zero for all iterations */
3675                 new_fltr.flag = 0;
3676                 if (is_tx_fltr) {
3677                         new_fltr.flag |= ICE_FLTR_TX;
3678                         new_fltr.src = hw_vsi_id;
3679                 } else {
3680                         new_fltr.flag |= ICE_FLTR_RX;
3681                         new_fltr.src = hw->port_info->lport;
3682                 }
3683
3684                 new_fltr.fltr_act = ICE_FWD_TO_VSI;
3685                 new_fltr.vsi_handle = vsi_handle;
3686                 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
3687                 f_list_entry.fltr_info = new_fltr;
3688
3689                 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
3690                 if (status != ICE_SUCCESS)
3691                         goto set_promisc_exit;
3692         }
3693
3694 set_promisc_exit:
3695         return status;
3696 }
3697
3698 /**
3699  * ice_set_vlan_vsi_promisc
3700  * @hw: pointer to the hardware structure
3701  * @vsi_handle: VSI handle to configure
3702  * @promisc_mask: mask of promiscuous config bits
3703  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
3704  *
3705  * Configure VSI with all associated VLANs to given promiscuous mode(s)
3706  */
3707 enum ice_status
3708 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3709                          bool rm_vlan_promisc)
3710 {
3711         struct ice_switch_info *sw = hw->switch_info;
3712         struct ice_fltr_list_entry *list_itr, *tmp;
3713         struct LIST_HEAD_TYPE vsi_list_head;
3714         struct LIST_HEAD_TYPE *vlan_head;
3715         struct ice_lock *vlan_lock; /* Lock to protect filter rule list */
3716         enum ice_status status;
3717         u16 vlan_id;
3718
3719         INIT_LIST_HEAD(&vsi_list_head);
3720         vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3721         vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3722         ice_acquire_lock(vlan_lock);
3723         status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
3724                                           &vsi_list_head);
3725         ice_release_lock(vlan_lock);
3726         if (status)
3727                 goto free_fltr_list;
3728
3729         LIST_FOR_EACH_ENTRY(list_itr, &vsi_list_head, ice_fltr_list_entry,
3730                             list_entry) {
3731                 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
3732                 if (rm_vlan_promisc)
3733                         status = ice_clear_vsi_promisc(hw, vsi_handle,
3734                                                        promisc_mask, vlan_id);
3735                 else
3736                         status = ice_set_vsi_promisc(hw, vsi_handle,
3737                                                      promisc_mask, vlan_id);
3738                 if (status)
3739                         break;
3740         }
3741
3742 free_fltr_list:
3743         LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, &vsi_list_head,
3744                                  ice_fltr_list_entry, list_entry) {
3745                 LIST_DEL(&list_itr->list_entry);
3746                 ice_free(hw, list_itr);
3747         }
3748         return status;
3749 }
3750
3751 /**
3752  * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
3753  * @hw: pointer to the hardware structure
3754  * @vsi_handle: VSI handle to remove filters from
3755  * @lkup: switch rule filter lookup type
3756  */
3757 static void
3758 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
3759                          enum ice_sw_lkup_type lkup)
3760 {
3761         struct ice_switch_info *sw = hw->switch_info;
3762         struct ice_fltr_list_entry *fm_entry;
3763         struct LIST_HEAD_TYPE remove_list_head;
3764         struct LIST_HEAD_TYPE *rule_head;
3765         struct ice_fltr_list_entry *tmp;
3766         struct ice_lock *rule_lock;     /* Lock to protect filter rule list */
3767         enum ice_status status;
3768
3769         INIT_LIST_HEAD(&remove_list_head);
3770         rule_lock = &sw->recp_list[lkup].filt_rule_lock;
3771         rule_head = &sw->recp_list[lkup].filt_rules;
3772         ice_acquire_lock(rule_lock);
3773         status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
3774                                           &remove_list_head);
3775         ice_release_lock(rule_lock);
3776         if (status)
3777                 return;
3778
3779         switch (lkup) {
3780         case ICE_SW_LKUP_MAC:
3781                 ice_remove_mac(hw, &remove_list_head);
3782                 break;
3783         case ICE_SW_LKUP_VLAN:
3784                 ice_remove_vlan(hw, &remove_list_head);
3785                 break;
3786         case ICE_SW_LKUP_PROMISC:
3787         case ICE_SW_LKUP_PROMISC_VLAN:
3788                 ice_remove_promisc(hw, lkup, &remove_list_head);
3789                 break;
3790         case ICE_SW_LKUP_MAC_VLAN:
3791 #ifndef NO_MACVLAN_SUPPORT
3792                 ice_remove_mac_vlan(hw, &remove_list_head);
3793 #else
3794                 ice_debug(hw, ICE_DBG_SW, "MAC VLAN look up is not supported yet\n");
3795 #endif /* !NO_MACVLAN_SUPPORT */
3796                 break;
3797         case ICE_SW_LKUP_ETHERTYPE:
3798         case ICE_SW_LKUP_ETHERTYPE_MAC:
3799                 ice_remove_eth_mac(hw, &remove_list_head);
3800                 break;
3801         case ICE_SW_LKUP_DFLT:
3802                 ice_debug(hw, ICE_DBG_SW,
3803                           "Remove filters for this lookup type hasn't been implemented yet\n");
3804                 break;
3805         case ICE_SW_LKUP_LAST:
3806                 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type\n");
3807                 break;
3808         }
3809
3810         LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3811                                  ice_fltr_list_entry, list_entry) {
3812                 LIST_DEL(&fm_entry->list_entry);
3813                 ice_free(hw, fm_entry);
3814         }
3815 }
3816
3817 /**
3818  * ice_remove_vsi_fltr - Remove all filters for a VSI
3819  * @hw: pointer to the hardware structure
3820  * @vsi_handle: VSI handle to remove filters from
3821  */
3822 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
3823 {
3824         ice_debug(hw, ICE_DBG_TRACE, "ice_remove_vsi_fltr\n");
3825
3826         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
3827         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
3828         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
3829         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
3830         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
3831         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
3832         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
3833         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
3834 }
3835
3836 /**
3837  * ice_alloc_res_cntr - allocating resource counter
3838  * @hw: pointer to the hardware structure
3839  * @type: type of resource
3840  * @alloc_shared: if set it is shared else dedicated
3841  * @num_items: number of entries requested for FD resource type
3842  * @counter_id: counter index returned by AQ call
3843  */
3844 enum ice_status
3845 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3846                    u16 *counter_id)
3847 {
3848         struct ice_aqc_alloc_free_res_elem *buf;
3849         enum ice_status status;
3850         u16 buf_len;
3851
3852         /* Allocate resource */
3853         buf_len = sizeof(*buf);
3854         buf = (struct ice_aqc_alloc_free_res_elem *)
3855                 ice_malloc(hw, buf_len);
3856         if (!buf)
3857                 return ICE_ERR_NO_MEMORY;
3858
3859         buf->num_elems = CPU_TO_LE16(num_items);
3860         buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3861                                       ICE_AQC_RES_TYPE_M) | alloc_shared);
3862
3863         status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3864                                        ice_aqc_opc_alloc_res, NULL);
3865         if (status)
3866                 goto exit;
3867
3868         *counter_id = LE16_TO_CPU(buf->elem[0].e.sw_resp);
3869
3870 exit:
3871         ice_free(hw, buf);
3872         return status;
3873 }
3874
3875 /**
3876  * ice_free_res_cntr - free resource counter
3877  * @hw: pointer to the hardware structure
3878  * @type: type of resource
3879  * @alloc_shared: if set it is shared else dedicated
3880  * @num_items: number of entries to be freed for FD resource type
3881  * @counter_id: counter ID resource which needs to be freed
3882  */
3883 enum ice_status
3884 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3885                   u16 counter_id)
3886 {
3887         struct ice_aqc_alloc_free_res_elem *buf;
3888         enum ice_status status;
3889         u16 buf_len;
3890
3891         /* Free resource */
3892         buf_len = sizeof(*buf);
3893         buf = (struct ice_aqc_alloc_free_res_elem *)
3894                 ice_malloc(hw, buf_len);
3895         if (!buf)
3896                 return ICE_ERR_NO_MEMORY;
3897
3898         buf->num_elems = CPU_TO_LE16(num_items);
3899         buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3900                                       ICE_AQC_RES_TYPE_M) | alloc_shared);
3901         buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
3902
3903         status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3904                                        ice_aqc_opc_free_res, NULL);
3905         if (status)
3906                 ice_debug(hw, ICE_DBG_SW,
3907                           "counter resource could not be freed\n");
3908
3909         ice_free(hw, buf);
3910         return status;
3911 }
3912
3913 /**
3914  * ice_alloc_vlan_res_counter - obtain counter resource for VLAN type
3915  * @hw: pointer to the hardware structure
3916  * @counter_id: returns counter index
3917  */
3918 enum ice_status ice_alloc_vlan_res_counter(struct ice_hw *hw, u16 *counter_id)
3919 {
3920         return ice_alloc_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3921                                   ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3922                                   counter_id);
3923 }
3924
3925 /**
3926  * ice_free_vlan_res_counter - Free counter resource for VLAN type
3927  * @hw: pointer to the hardware structure
3928  * @counter_id: counter index to be freed
3929  */
3930 enum ice_status ice_free_vlan_res_counter(struct ice_hw *hw, u16 counter_id)
3931 {
3932         return ice_free_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3933                                  ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3934                                  counter_id);
3935 }
3936
3937 /**
3938  * ice_alloc_res_lg_act - add large action resource
3939  * @hw: pointer to the hardware structure
3940  * @l_id: large action ID to fill it in
3941  * @num_acts: number of actions to hold with a large action entry
3942  */
3943 static enum ice_status
3944 ice_alloc_res_lg_act(struct ice_hw *hw, u16 *l_id, u16 num_acts)
3945 {
3946         struct ice_aqc_alloc_free_res_elem *sw_buf;
3947         enum ice_status status;
3948         u16 buf_len;
3949
3950         if (num_acts > ICE_MAX_LG_ACT || num_acts == 0)
3951                 return ICE_ERR_PARAM;
3952
3953         /* Allocate resource for large action */
3954         buf_len = sizeof(*sw_buf);
3955         sw_buf = (struct ice_aqc_alloc_free_res_elem *)
3956                 ice_malloc(hw, buf_len);
3957         if (!sw_buf)
3958                 return ICE_ERR_NO_MEMORY;
3959
3960         sw_buf->num_elems = CPU_TO_LE16(1);
3961
3962         /* If num_acts is 1, use ICE_AQC_RES_TYPE_WIDE_TABLE_1.
3963          * If num_acts is 2, use ICE_AQC_RES_TYPE_WIDE_TABLE_3.
3964          * If num_acts is greater than 2, then use
3965          * ICE_AQC_RES_TYPE_WIDE_TABLE_4.
3966          * The num_acts cannot exceed 4. This was ensured at the
3967          * beginning of the function.
3968          */
3969         if (num_acts == 1)
3970                 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_1);
3971         else if (num_acts == 2)
3972                 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_2);
3973         else
3974                 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_4);
3975
3976         status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
3977                                        ice_aqc_opc_alloc_res, NULL);
3978         if (!status)
3979                 *l_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
3980
3981         ice_free(hw, sw_buf);
3982         return status;
3983 }
3984
3985 /**
3986  * ice_add_mac_with_sw_marker - add filter with sw marker
3987  * @hw: pointer to the hardware structure
3988  * @f_info: filter info structure containing the MAC filter information
3989  * @sw_marker: sw marker to tag the Rx descriptor with
3990  */
3991 enum ice_status
3992 ice_add_mac_with_sw_marker(struct ice_hw *hw, struct ice_fltr_info *f_info,
3993                            u16 sw_marker)
3994 {
3995         struct ice_switch_info *sw = hw->switch_info;
3996         struct ice_fltr_mgmt_list_entry *m_entry;
3997         struct ice_fltr_list_entry fl_info;
3998         struct LIST_HEAD_TYPE l_head;
3999         struct ice_lock *rule_lock;     /* Lock to protect filter rule list */
4000         enum ice_status ret;
4001         bool entry_exists;
4002         u16 lg_act_id;
4003
4004         if (f_info->fltr_act != ICE_FWD_TO_VSI)
4005                 return ICE_ERR_PARAM;
4006
4007         if (f_info->lkup_type != ICE_SW_LKUP_MAC)
4008                 return ICE_ERR_PARAM;
4009
4010         if (sw_marker == ICE_INVAL_SW_MARKER_ID)
4011                 return ICE_ERR_PARAM;
4012
4013         if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
4014                 return ICE_ERR_PARAM;
4015         f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
4016
4017         /* Add filter if it doesn't exist so then the adding of large
4018          * action always results in update
4019          */
4020
4021         INIT_LIST_HEAD(&l_head);
4022         fl_info.fltr_info = *f_info;
4023         LIST_ADD(&fl_info.list_entry, &l_head);
4024
4025         entry_exists = false;
4026         ret = ice_add_mac(hw, &l_head);
4027         if (ret == ICE_ERR_ALREADY_EXISTS)
4028                 entry_exists = true;
4029         else if (ret)
4030                 return ret;
4031
4032         rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
4033         ice_acquire_lock(rule_lock);
4034         /* Get the book keeping entry for the filter */
4035         m_entry = ice_find_rule_entry(hw, ICE_SW_LKUP_MAC, f_info);
4036         if (!m_entry)
4037                 goto exit_error;
4038
4039         /* If counter action was enabled for this rule then don't enable
4040          * sw marker large action
4041          */
4042         if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
4043                 ret = ICE_ERR_PARAM;
4044                 goto exit_error;
4045         }
4046
4047         /* if same marker was added before */
4048         if (m_entry->sw_marker_id == sw_marker) {
4049                 ret = ICE_ERR_ALREADY_EXISTS;
4050                 goto exit_error;
4051         }
4052
4053         /* Allocate a hardware table entry to hold large act. Three actions
4054          * for marker based large action
4055          */
4056         ret = ice_alloc_res_lg_act(hw, &lg_act_id, 3);
4057         if (ret)
4058                 goto exit_error;
4059
4060         if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
4061                 goto exit_error;
4062
4063         /* Update the switch rule to add the marker action */
4064         ret = ice_add_marker_act(hw, m_entry, sw_marker, lg_act_id);
4065         if (!ret) {
4066                 ice_release_lock(rule_lock);
4067                 return ret;
4068         }
4069
4070 exit_error:
4071         ice_release_lock(rule_lock);
4072         /* only remove entry if it did not exist previously */
4073         if (!entry_exists)
4074                 ret = ice_remove_mac(hw, &l_head);
4075
4076         return ret;
4077 }
4078
4079 /**
4080  * ice_add_mac_with_counter - add filter with counter enabled
4081  * @hw: pointer to the hardware structure
4082  * @f_info: pointer to filter info structure containing the MAC filter
4083  *          information
4084  */
4085 enum ice_status
4086 ice_add_mac_with_counter(struct ice_hw *hw, struct ice_fltr_info *f_info)
4087 {
4088         struct ice_switch_info *sw = hw->switch_info;
4089         struct ice_fltr_mgmt_list_entry *m_entry;
4090         struct ice_fltr_list_entry fl_info;
4091         struct LIST_HEAD_TYPE l_head;
4092         struct ice_lock *rule_lock;     /* Lock to protect filter rule list */
4093         enum ice_status ret;
4094         bool entry_exist;
4095         u16 counter_id;
4096         u16 lg_act_id;
4097
4098         if (f_info->fltr_act != ICE_FWD_TO_VSI)
4099                 return ICE_ERR_PARAM;
4100
4101         if (f_info->lkup_type != ICE_SW_LKUP_MAC)
4102                 return ICE_ERR_PARAM;
4103
4104         if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
4105                 return ICE_ERR_PARAM;
4106         f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
4107
4108         entry_exist = false;
4109
4110         rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
4111
4112         /* Add filter if it doesn't exist so then the adding of large
4113          * action always results in update
4114          */
4115         INIT_LIST_HEAD(&l_head);
4116
4117         fl_info.fltr_info = *f_info;
4118         LIST_ADD(&fl_info.list_entry, &l_head);
4119
4120         ret = ice_add_mac(hw, &l_head);
4121         if (ret == ICE_ERR_ALREADY_EXISTS)
4122                 entry_exist = true;
4123         else if (ret)
4124                 return ret;
4125
4126         ice_acquire_lock(rule_lock);
4127         m_entry = ice_find_rule_entry(hw, ICE_SW_LKUP_MAC, f_info);
4128         if (!m_entry) {
4129                 ret = ICE_ERR_BAD_PTR;
4130                 goto exit_error;
4131         }
4132
4133         /* Don't enable counter for a filter for which sw marker was enabled */
4134         if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) {
4135                 ret = ICE_ERR_PARAM;
4136                 goto exit_error;
4137         }
4138
4139         /* If a counter was already enabled then don't need to add again */
4140         if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
4141                 ret = ICE_ERR_ALREADY_EXISTS;
4142                 goto exit_error;
4143         }
4144
4145         /* Allocate a hardware table entry to VLAN counter */
4146         ret = ice_alloc_vlan_res_counter(hw, &counter_id);
4147         if (ret)
4148                 goto exit_error;
4149
4150         /* Allocate a hardware table entry to hold large act. Two actions for
4151          * counter based large action
4152          */
4153         ret = ice_alloc_res_lg_act(hw, &lg_act_id, 2);
4154         if (ret)
4155                 goto exit_error;
4156
4157         if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
4158                 goto exit_error;
4159
4160         /* Update the switch rule to add the counter action */
4161         ret = ice_add_counter_act(hw, m_entry, counter_id, lg_act_id);
4162         if (!ret) {
4163                 ice_release_lock(rule_lock);
4164                 return ret;
4165         }
4166
4167 exit_error:
4168         ice_release_lock(rule_lock);
4169         /* only remove entry if it did not exist previously */
4170         if (!entry_exist)
4171                 ret = ice_remove_mac(hw, &l_head);
4172
4173         return ret;
4174 }
4175
4176 /* This is mapping table entry that maps every word within a given protocol
4177  * structure to the real byte offset as per the specification of that
4178  * protocol header.
4179  * for example dst address is 3 words in ethertype header and corresponding
4180  * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4181  * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4182  * matching entry describing its field. This needs to be updated if new
4183  * structure is added to that union.
4184  */
4185 static const struct ice_prot_ext_tbl_entry ice_prot_ext[] = {
4186         { ICE_MAC_OFOS,         { 0, 2, 4, 6, 8, 10, 12 } },
4187         { ICE_MAC_IL,           { 0, 2, 4, 6, 8, 10, 12 } },
4188         { ICE_IPV4_OFOS,        { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4189         { ICE_IPV4_IL,          { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4190         { ICE_IPV6_IL,          { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4191                                  26, 28, 30, 32, 34, 36, 38 } },
4192         { ICE_IPV6_OFOS,        { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4193                                  26, 28, 30, 32, 34, 36, 38 } },
4194         { ICE_TCP_IL,           { 0, 2 } },
4195         { ICE_UDP_ILOS,         { 0, 2 } },
4196         { ICE_SCTP_IL,          { 0, 2 } },
4197         { ICE_VXLAN,            { 8, 10, 12 } },
4198         { ICE_GENEVE,           { 8, 10, 12 } },
4199         { ICE_VXLAN_GPE,        { 0, 2, 4 } },
4200         { ICE_NVGRE,            { 0, 2 } },
4201         { ICE_PROTOCOL_LAST,    { 0 } }
4202 };
4203
4204 /* The following table describes preferred grouping of recipes.
4205  * If a recipe that needs to be programmed is a superset or matches one of the
4206  * following combinations, then the recipe needs to be chained as per the
4207  * following policy.
4208  */
4209 static const struct ice_pref_recipe_group ice_recipe_pack[] = {
4210         {3, { { ICE_MAC_OFOS_HW, 0, 0 }, { ICE_MAC_OFOS_HW, 2, 0 },
4211               { ICE_MAC_OFOS_HW, 4, 0 } } },
4212         {4, { { ICE_MAC_IL_HW, 0, 0 }, { ICE_MAC_IL_HW, 2, 0 },
4213               { ICE_MAC_IL_HW, 4, 0 }, { ICE_META_DATA_ID_HW, 44, 0 } } },
4214         {2, { { ICE_IPV4_IL_HW, 0, 0 }, { ICE_IPV4_IL_HW, 2, 0 } } },
4215         {2, { { ICE_IPV4_IL_HW, 12, 0 }, { ICE_IPV4_IL_HW, 14, 0 } } },
4216 };
4217
4218 static const struct ice_protocol_entry ice_prot_id_tbl[] = {
4219         { ICE_MAC_OFOS,         ICE_MAC_OFOS_HW },
4220         { ICE_MAC_IL,           ICE_MAC_IL_HW },
4221         { ICE_IPV4_OFOS,        ICE_IPV4_OFOS_HW },
4222         { ICE_IPV4_IL,          ICE_IPV4_IL_HW },
4223         { ICE_IPV6_OFOS,        ICE_IPV6_OFOS_HW },
4224         { ICE_IPV6_IL,          ICE_IPV6_IL_HW },
4225         { ICE_TCP_IL,           ICE_TCP_IL_HW },
4226         { ICE_UDP_ILOS,         ICE_UDP_ILOS_HW },
4227         { ICE_SCTP_IL,          ICE_SCTP_IL_HW },
4228         { ICE_VXLAN,            ICE_UDP_OF_HW },
4229         { ICE_GENEVE,           ICE_UDP_OF_HW },
4230         { ICE_VXLAN_GPE,        ICE_UDP_OF_HW },
4231         { ICE_NVGRE,            ICE_GRE_OF_HW },
4232         { ICE_PROTOCOL_LAST,    0 }
4233 };
4234
4235 /**
4236  * ice_find_recp - find a recipe
4237  * @hw: pointer to the hardware structure
4238  * @lkup_exts: extension sequence to match
4239  *
4240  * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4241  */
4242 static u16 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts)
4243 {
4244         struct ice_sw_recipe *recp;
4245         u16 i;
4246
4247         ice_get_recp_to_prof_map(hw);
4248         /* Initialize available_result_ids which tracks available result idx */
4249         for (i = 0; i <= ICE_CHAIN_FV_INDEX_START; i++)
4250                 ice_set_bit(ICE_CHAIN_FV_INDEX_START - i,
4251                             available_result_ids);
4252
4253         /* Walk through existing recipes to find a match */
4254         recp = hw->switch_info->recp_list;
4255         for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4256                 /* If recipe was not created for this ID, in SW bookkeeping,
4257                  * check if FW has an entry for this recipe. If the FW has an
4258                  * entry update it in our SW bookkeeping and continue with the
4259                  * matching.
4260                  */
4261                 if (!recp[i].recp_created)
4262                         if (ice_get_recp_frm_fw(hw,
4263                                                 hw->switch_info->recp_list, i))
4264                                 continue;
4265
4266                 /* if number of words we are looking for match */
4267                 if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4268                         struct ice_fv_word *a = lkup_exts->fv_words;
4269                         struct ice_fv_word *b = recp[i].lkup_exts.fv_words;
4270                         bool found = true;
4271                         u8 p, q;
4272
4273                         for (p = 0; p < lkup_exts->n_val_words; p++) {
4274                                 for (q = 0; q < recp[i].lkup_exts.n_val_words;
4275                                      q++) {
4276                                         if (a[p].off == b[q].off &&
4277                                             a[p].prot_id == b[q].prot_id)
4278                                                 /* Found the "p"th word in the
4279                                                  * given recipe
4280                                                  */
4281                                                 break;
4282                                 }
4283                                 /* After walking through all the words in the
4284                                  * "i"th recipe if "p"th word was not found then
4285                                  * this recipe is not what we are looking for.
4286                                  * So break out from this loop and try the next
4287                                  * recipe
4288                                  */
4289                                 if (q >= recp[i].lkup_exts.n_val_words) {
4290                                         found = false;
4291                                         break;
4292                                 }
4293                         }
4294                         /* If for "i"th recipe the found was never set to false
4295                          * then it means we found our match
4296                          */
4297                         if (found)
4298                                 return i; /* Return the recipe ID */
4299                 }
4300         }
4301         return ICE_MAX_NUM_RECIPES;
4302 }
4303
4304 /**
4305  * ice_prot_type_to_id - get protocol ID from protocol type
4306  * @type: protocol type
4307  * @id: pointer to variable that will receive the ID
4308  *
4309  * Returns true if found, false otherwise
4310  */
4311 static bool ice_prot_type_to_id(enum ice_protocol_type type, u16 *id)
4312 {
4313         u16 i;
4314
4315         for (i = 0; ice_prot_id_tbl[i].type != ICE_PROTOCOL_LAST; i++)
4316                 if (ice_prot_id_tbl[i].type == type) {
4317                         *id = ice_prot_id_tbl[i].protocol_id;
4318                         return true;
4319                 }
4320         return false;
4321 }
4322
4323 /**
4324  * ice_find_valid_words - count valid words
4325  * @rule: advanced rule with lookup information
4326  * @lkup_exts: byte offset extractions of the words that are valid
4327  *
4328  * calculate valid words in a lookup rule using mask value
4329  */
4330 static u16
4331 ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4332                      struct ice_prot_lkup_ext *lkup_exts)
4333 {
4334         u16 j, word = 0;
4335         u16 prot_id;
4336         u16 ret_val;
4337
4338         if (!ice_prot_type_to_id(rule->type, &prot_id))
4339                 return 0;
4340
4341         word = lkup_exts->n_val_words;
4342
4343         for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4344                 if (((u16 *)&rule->m_u)[j] == 0xffff &&
4345                     rule->type < ARRAY_SIZE(ice_prot_ext)) {
4346                         /* No more space to accommodate */
4347                         if (word >= ICE_MAX_CHAIN_WORDS)
4348                                 return 0;
4349                         lkup_exts->fv_words[word].off =
4350                                 ice_prot_ext[rule->type].offs[j];
4351                         lkup_exts->fv_words[word].prot_id =
4352                                 ice_prot_id_tbl[rule->type].protocol_id;
4353                         word++;
4354                 }
4355
4356         ret_val = word - lkup_exts->n_val_words;
4357         lkup_exts->n_val_words = word;
4358
4359         return ret_val;
4360 }
4361
4362 /**
4363  * ice_find_prot_off_ind - check for specific ID and offset in rule
4364  * @lkup_exts: an array of protocol header extractions
4365  * @prot_type: protocol type to check
4366  * @off: expected offset of the extraction
4367  *
4368  * Check if the prot_ext has given protocol ID and offset
4369  */
4370 static u8
4371 ice_find_prot_off_ind(struct ice_prot_lkup_ext *lkup_exts, u8 prot_type,
4372                       u16 off)
4373 {
4374         u8 j;
4375
4376         for (j = 0; j < lkup_exts->n_val_words; j++)
4377                 if (lkup_exts->fv_words[j].off == off &&
4378                     lkup_exts->fv_words[j].prot_id == prot_type)
4379                         return j;
4380
4381         return ICE_MAX_CHAIN_WORDS;
4382 }
4383
4384 /**
4385  * ice_is_recipe_subset - check if recipe group policy is a subset of lookup
4386  * @lkup_exts: an array of protocol header extractions
4387  * @r_policy: preferred recipe grouping policy
4388  *
4389  * Helper function to check if given recipe group is subset we need to check if
4390  * all the words described by the given recipe group exist in the advanced rule
4391  * look up information
4392  */
4393 static bool
4394 ice_is_recipe_subset(struct ice_prot_lkup_ext *lkup_exts,
4395                      const struct ice_pref_recipe_group *r_policy)
4396 {
4397         u8 ind[ICE_NUM_WORDS_RECIPE];
4398         u8 count = 0;
4399         u8 i;
4400
4401         /* check if everything in the r_policy is part of the entire rule */
4402         for (i = 0; i < r_policy->n_val_pairs; i++) {
4403                 u8 j;
4404
4405                 j = ice_find_prot_off_ind(lkup_exts, r_policy->pairs[i].prot_id,
4406                                           r_policy->pairs[i].off);
4407                 if (j >= ICE_MAX_CHAIN_WORDS)
4408                         return false;
4409
4410                 /* store the indexes temporarily found by the find function
4411                  * this will be used to mark the words as 'done'
4412                  */
4413                 ind[count++] = j;
4414         }
4415
4416         /* If the entire policy recipe was a true match, then mark the fields
4417          * that are covered by the recipe as 'done' meaning that these words
4418          * will be clumped together in one recipe.
4419          * "Done" here means in our searching if certain recipe group
4420          * matches or is subset of the given rule, then we mark all
4421          * the corresponding offsets as found. So the remaining recipes should
4422          * be created with whatever words that were left.
4423          */
4424         for (i = 0; i < count; i++) {
4425                 u8 in = ind[i];
4426
4427                 ice_set_bit(in, lkup_exts->done);
4428         }
4429         return true;
4430 }
4431
4432 /**
4433  * ice_create_first_fit_recp_def - Create a recipe grouping
4434  * @hw: pointer to the hardware structure
4435  * @lkup_exts: an array of protocol header extractions
4436  * @rg_list: pointer to a list that stores new recipe groups
4437  * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4438  *
4439  * Using first fit algorithm, take all the words that are still not done
4440  * and start grouping them in 4-word groups. Each group makes up one
4441  * recipe.
4442  */
4443 static enum ice_status
4444 ice_create_first_fit_recp_def(struct ice_hw *hw,
4445                               struct ice_prot_lkup_ext *lkup_exts,
4446                               struct LIST_HEAD_TYPE *rg_list,
4447                               u8 *recp_cnt)
4448 {
4449         struct ice_pref_recipe_group *grp = NULL;
4450         u8 j;
4451
4452         *recp_cnt = 0;
4453
4454         /* Walk through every word in the rule to check if it is not done. If so
4455          * then this word needs to be part of a new recipe.
4456          */
4457         for (j = 0; j < lkup_exts->n_val_words; j++)
4458                 if (!ice_is_bit_set(lkup_exts->done, j)) {
4459                         if (!grp ||
4460                             grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4461                                 struct ice_recp_grp_entry *entry;
4462
4463                                 entry = (struct ice_recp_grp_entry *)
4464                                         ice_malloc(hw, sizeof(*entry));
4465                                 if (!entry)
4466                                         return ICE_ERR_NO_MEMORY;
4467                                 LIST_ADD(&entry->l_entry, rg_list);
4468                                 grp = &entry->r_group;
4469                                 (*recp_cnt)++;
4470                         }
4471
4472                         grp->pairs[grp->n_val_pairs].prot_id =
4473                                 lkup_exts->fv_words[j].prot_id;
4474                         grp->pairs[grp->n_val_pairs].off =
4475                                 lkup_exts->fv_words[j].off;
4476                         grp->n_val_pairs++;
4477                 }
4478
4479         return ICE_SUCCESS;
4480 }
4481
4482 /**
4483  * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4484  * @hw: pointer to the hardware structure
4485  * @fv_list: field vector with the extraction sequence information
4486  * @rg_list: recipe groupings with protocol-offset pairs
4487  *
4488  * Helper function to fill in the field vector indices for protocol-offset
4489  * pairs. These indexes are then ultimately programmed into a recipe.
4490  */
4491 static void
4492 ice_fill_fv_word_index(struct ice_hw *hw, struct LIST_HEAD_TYPE *fv_list,
4493                        struct LIST_HEAD_TYPE *rg_list)
4494 {
4495         struct ice_sw_fv_list_entry *fv;
4496         struct ice_recp_grp_entry *rg;
4497         struct ice_fv_word *fv_ext;
4498
4499         if (LIST_EMPTY(fv_list))
4500                 return;
4501
4502         fv = LIST_FIRST_ENTRY(fv_list, struct ice_sw_fv_list_entry, list_entry);
4503         fv_ext = fv->fv_ptr->ew;
4504
4505         LIST_FOR_EACH_ENTRY(rg, rg_list, ice_recp_grp_entry, l_entry) {
4506                 u8 i;
4507
4508                 for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4509                         struct ice_fv_word *pr;
4510                         u8 j;
4511
4512                         pr = &rg->r_group.pairs[i];
4513                         for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4514                                 if (fv_ext[j].prot_id == pr->prot_id &&
4515                                     fv_ext[j].off == pr->off) {
4516                                         /* Store index of field vector */
4517                                         rg->fv_idx[i] = j;
4518                                         break;
4519                                 }
4520                 }
4521         }
4522 }
4523
4524 /**
4525  * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4526  * @hw: pointer to hardware structure
4527  * @rm: recipe management list entry
4528  * @match_tun: if field vector index for tunnel needs to be programmed
4529  */
4530 static enum ice_status
4531 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4532                   bool match_tun)
4533 {
4534         struct ice_aqc_recipe_data_elem *tmp;
4535         struct ice_aqc_recipe_data_elem *buf;
4536         struct ice_recp_grp_entry *entry;
4537         enum ice_status status;
4538         u16 recipe_count;
4539         u8 chain_idx;
4540         u8 recps = 0;
4541
4542         /* When more than one recipe are required, another recipe is needed to
4543          * chain them together. Matching a tunnel metadata ID takes up one of
4544          * the match fields in the chaining recipe reducing the number of
4545          * chained recipes by one.
4546          */
4547         if (rm->n_grp_count > 1)
4548                 rm->n_grp_count++;
4549         if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE ||
4550             (match_tun && rm->n_grp_count > (ICE_MAX_CHAIN_RECIPE - 1)))
4551                 return ICE_ERR_MAX_LIMIT;
4552
4553         tmp = (struct ice_aqc_recipe_data_elem *)ice_calloc(hw,
4554                                                             ICE_MAX_NUM_RECIPES,
4555                                                             sizeof(*tmp));
4556         if (!tmp)
4557                 return ICE_ERR_NO_MEMORY;
4558
4559         buf = (struct ice_aqc_recipe_data_elem *)
4560                 ice_calloc(hw, rm->n_grp_count, sizeof(*buf));
4561         if (!buf) {
4562                 status = ICE_ERR_NO_MEMORY;
4563                 goto err_mem;
4564         }
4565
4566         ice_zero_bitmap(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4567         recipe_count = ICE_MAX_NUM_RECIPES;
4568         status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4569                                    NULL);
4570         if (status || recipe_count == 0)
4571                 goto err_unroll;
4572
4573         /* Allocate the recipe resources, and configure them according to the
4574          * match fields from protocol headers and extracted field vectors.
4575          */
4576         chain_idx = ICE_CHAIN_FV_INDEX_START -
4577                 ice_find_first_bit(available_result_ids,
4578                                    ICE_CHAIN_FV_INDEX_START + 1);
4579         LIST_FOR_EACH_ENTRY(entry, &rm->rg_list, ice_recp_grp_entry, l_entry) {
4580                 u8 i;
4581
4582                 status = ice_alloc_recipe(hw, &entry->rid);
4583                 if (status)
4584                         goto err_unroll;
4585
4586                 /* Clear the result index of the located recipe, as this will be
4587                  * updated, if needed, later in the recipe creation process.
4588                  */
4589                 tmp[0].content.result_indx = 0;
4590
4591                 buf[recps] = tmp[0];
4592                 buf[recps].recipe_indx = (u8)entry->rid;
4593                 /* if the recipe is a non-root recipe RID should be programmed
4594                  * as 0 for the rules to be applied correctly.
4595                  */
4596                 buf[recps].content.rid = 0;
4597                 ice_memset(&buf[recps].content.lkup_indx, 0,
4598                            sizeof(buf[recps].content.lkup_indx),
4599                            ICE_NONDMA_MEM);
4600
4601                 /* All recipes use look-up index 0 to match switch ID. */
4602                 buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4603                 buf[recps].content.mask[0] =
4604                         CPU_TO_LE16(ICE_AQ_SW_ID_LKUP_MASK);
4605                 /* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
4606                  * to be 0
4607                  */
4608                 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
4609                         buf[recps].content.lkup_indx[i] = 0x80;
4610                         buf[recps].content.mask[i] = 0;
4611                 }
4612
4613                 for (i = 0; i < entry->r_group.n_val_pairs; i++) {
4614                         buf[recps].content.lkup_indx[i + 1] = entry->fv_idx[i];
4615                         buf[recps].content.mask[i + 1] = CPU_TO_LE16(0xFFFF);
4616                 }
4617
4618                 if (rm->n_grp_count > 1) {
4619                         entry->chain_idx = chain_idx;
4620                         buf[recps].content.result_indx =
4621                                 ICE_AQ_RECIPE_RESULT_EN |
4622                                 ((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) &
4623                                  ICE_AQ_RECIPE_RESULT_DATA_M);
4624                         ice_clear_bit(ICE_CHAIN_FV_INDEX_START - chain_idx,
4625                                       available_result_ids);
4626                         chain_idx = ICE_CHAIN_FV_INDEX_START -
4627                                 ice_find_first_bit(available_result_ids,
4628                                                    ICE_CHAIN_FV_INDEX_START +
4629                                                    1);
4630                 }
4631
4632                 /* fill recipe dependencies */
4633                 ice_zero_bitmap((ice_bitmap_t *)buf[recps].recipe_bitmap,
4634                                 ICE_MAX_NUM_RECIPES);
4635                 ice_set_bit(buf[recps].recipe_indx,
4636                             (ice_bitmap_t *)buf[recps].recipe_bitmap);
4637                 buf[recps].content.act_ctrl_fwd_priority = rm->priority;
4638                 recps++;
4639         }
4640
4641         if (rm->n_grp_count == 1) {
4642                 rm->root_rid = buf[0].recipe_indx;
4643                 ice_set_bit(buf[0].recipe_indx, rm->r_bitmap);
4644                 buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
4645                 if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
4646                         ice_memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
4647                                    sizeof(buf[0].recipe_bitmap),
4648                                    ICE_NONDMA_TO_NONDMA);
4649                 } else {
4650                         status = ICE_ERR_BAD_PTR;
4651                         goto err_unroll;
4652                 }
4653                 /* Applicable only for ROOT_RECIPE, set the fwd_priority for
4654                  * the recipe which is getting created if specified
4655                  * by user. Usually any advanced switch filter, which results
4656                  * into new extraction sequence, ended up creating a new recipe
4657                  * of type ROOT and usually recipes are associated with profiles
4658                  * Switch rule referreing newly created recipe, needs to have
4659                  * either/or 'fwd' or 'join' priority, otherwise switch rule
4660                  * evaluation will not happen correctly. In other words, if
4661                  * switch rule to be evaluated on priority basis, then recipe
4662                  * needs to have priority, otherwise it will be evaluated last.
4663                  */
4664                 buf[0].content.act_ctrl_fwd_priority = rm->priority;
4665         } else {
4666                 struct ice_recp_grp_entry *last_chain_entry;
4667                 u16 rid, i;
4668
4669                 /* Allocate the last recipe that will chain the outcomes of the
4670                  * other recipes together
4671                  */
4672                 status = ice_alloc_recipe(hw, &rid);
4673                 if (status)
4674                         goto err_unroll;
4675
4676                 buf[recps].recipe_indx = (u8)rid;
4677                 buf[recps].content.rid = (u8)rid;
4678                 buf[recps].content.rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
4679                 /* the new entry created should also be part of rg_list to
4680                  * make sure we have complete recipe
4681                  */
4682                 last_chain_entry = (struct ice_recp_grp_entry *)ice_malloc(hw,
4683                         sizeof(*last_chain_entry));
4684                 if (!last_chain_entry) {
4685                         status = ICE_ERR_NO_MEMORY;
4686                         goto err_unroll;
4687                 }
4688                 last_chain_entry->rid = rid;
4689                 ice_memset(&buf[recps].content.lkup_indx, 0,
4690                            sizeof(buf[recps].content.lkup_indx),
4691                            ICE_NONDMA_MEM);
4692                 /* All recipes use look-up index 0 to match switch ID. */
4693                 buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4694                 buf[recps].content.mask[0] =
4695                         CPU_TO_LE16(ICE_AQ_SW_ID_LKUP_MASK);
4696                 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
4697                         buf[recps].content.lkup_indx[i] =
4698                                 ICE_AQ_RECIPE_LKUP_IGNORE;
4699                         buf[recps].content.mask[i] = 0;
4700                 }
4701
4702                 i = 1;
4703                 /* update r_bitmap with the recp that is used for chaining */
4704                 ice_set_bit(rid, rm->r_bitmap);
4705                 /* this is the recipe that chains all the other recipes so it
4706                  * should not have a chaining ID to indicate the same
4707                  */
4708                 last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
4709                 LIST_FOR_EACH_ENTRY(entry, &rm->rg_list, ice_recp_grp_entry,
4710                                     l_entry) {
4711                         last_chain_entry->fv_idx[i] = entry->chain_idx;
4712                         buf[recps].content.lkup_indx[i] = entry->chain_idx;
4713                         buf[recps].content.mask[i++] = CPU_TO_LE16(0xFFFF);
4714                         ice_set_bit(entry->rid, rm->r_bitmap);
4715                 }
4716                 LIST_ADD(&last_chain_entry->l_entry, &rm->rg_list);
4717                 if (sizeof(buf[recps].recipe_bitmap) >=
4718                     sizeof(rm->r_bitmap)) {
4719                         ice_memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
4720                                    sizeof(buf[recps].recipe_bitmap),
4721                                    ICE_NONDMA_TO_NONDMA);
4722                 } else {
4723                         status = ICE_ERR_BAD_PTR;
4724                         goto err_unroll;
4725                 }
4726                 buf[recps].content.act_ctrl_fwd_priority = rm->priority;
4727
4728                 /* To differentiate among different UDP tunnels, a meta data ID
4729                  * flag is used.
4730                  */
4731                 if (match_tun) {
4732                         buf[recps].content.lkup_indx[i] = ICE_TUN_FLAG_FV_IND;
4733                         buf[recps].content.mask[i] =
4734                                 CPU_TO_LE16(ICE_TUN_FLAG_MASK);
4735                 }
4736
4737                 recps++;
4738                 rm->root_rid = (u8)rid;
4739         }
4740         status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
4741         if (status)
4742                 goto err_unroll;
4743
4744         status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
4745         ice_release_change_lock(hw);
4746         if (status)
4747                 goto err_unroll;
4748
4749         /* Every recipe that just got created add it to the recipe
4750          * book keeping list
4751          */
4752         LIST_FOR_EACH_ENTRY(entry, &rm->rg_list, ice_recp_grp_entry, l_entry) {
4753                 struct ice_switch_info *sw = hw->switch_info;
4754                 struct ice_sw_recipe *recp;
4755
4756                 recp = &sw->recp_list[entry->rid];
4757                 recp->root_rid = entry->rid;
4758                 ice_memcpy(&recp->ext_words, entry->r_group.pairs,
4759                            entry->r_group.n_val_pairs *
4760                            sizeof(struct ice_fv_word),
4761                            ICE_NONDMA_TO_NONDMA);
4762
4763                 recp->n_ext_words = entry->r_group.n_val_pairs;
4764                 recp->chain_idx = entry->chain_idx;
4765                 recp->recp_created = true;
4766                 recp->big_recp = false;
4767         }
4768         rm->root_buf = buf;
4769         ice_free(hw, tmp);
4770         return status;
4771
4772 err_unroll:
4773 err_mem:
4774         ice_free(hw, tmp);
4775         ice_free(hw, buf);
4776         return status;
4777 }
4778
4779 /**
4780  * ice_create_recipe_group - creates recipe group
4781  * @hw: pointer to hardware structure
4782  * @rm: recipe management list entry
4783  * @lkup_exts: lookup elements
4784  */
4785 static enum ice_status
4786 ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
4787                         struct ice_prot_lkup_ext *lkup_exts)
4788 {
4789         struct ice_recp_grp_entry *entry;
4790         struct ice_recp_grp_entry *tmp;
4791         enum ice_status status;
4792         u8 recp_count = 0;
4793         u16 groups, i;
4794
4795         rm->n_grp_count = 0;
4796
4797         /* Each switch recipe can match up to 5 words or metadata. One word in
4798          * each recipe is used to match the switch ID. Four words are left for
4799          * matching other values. If the new advanced recipe requires more than
4800          * 4 words, it needs to be split into multiple recipes which are chained
4801          * together using the intermediate result that each produces as input to
4802          * the other recipes in the sequence.
4803          */
4804         groups = ARRAY_SIZE(ice_recipe_pack);
4805
4806         /* Check if any of the preferred recipes from the grouping policy
4807          * matches.
4808          */
4809         for (i = 0; i < groups; i++)
4810                 /* Check if the recipe from the preferred grouping matches
4811                  * or is a subset of the fields that needs to be looked up.
4812                  */
4813                 if (ice_is_recipe_subset(lkup_exts, &ice_recipe_pack[i])) {
4814                         /* This recipe can be used by itself or grouped with
4815                          * other recipes.
4816                          */
4817                         entry = (struct ice_recp_grp_entry *)
4818                                 ice_malloc(hw, sizeof(*entry));
4819                         if (!entry) {
4820                                 status = ICE_ERR_NO_MEMORY;
4821                                 goto err_unroll;
4822                         }
4823                         entry->r_group = ice_recipe_pack[i];
4824                         LIST_ADD(&entry->l_entry, &rm->rg_list);
4825                         rm->n_grp_count++;
4826                 }
4827
4828         /* Create recipes for words that are marked not done by packing them
4829          * as best fit.
4830          */
4831         status = ice_create_first_fit_recp_def(hw, lkup_exts,
4832                                                &rm->rg_list, &recp_count);
4833         if (!status) {
4834                 rm->n_grp_count += recp_count;
4835                 rm->n_ext_words = lkup_exts->n_val_words;
4836                 ice_memcpy(&rm->ext_words, lkup_exts->fv_words,
4837                            sizeof(rm->ext_words), ICE_NONDMA_TO_NONDMA);
4838                 goto out;
4839         }
4840
4841 err_unroll:
4842         LIST_FOR_EACH_ENTRY_SAFE(entry, tmp, &rm->rg_list, ice_recp_grp_entry,
4843                                  l_entry) {
4844                 LIST_DEL(&entry->l_entry);
4845                 ice_free(hw, entry);
4846         }
4847
4848 out:
4849         return status;
4850 }
4851
4852 /**
4853  * ice_get_fv - get field vectors/extraction sequences for spec. lookup types
4854  * @hw: pointer to hardware structure
4855  * @lkups: lookup elements or match criteria for the advanced recipe, one
4856  *         structure per protocol header
4857  * @lkups_cnt: number of protocols
4858  * @fv_list: pointer to a list that holds the returned field vectors
4859  */
4860 static enum ice_status
4861 ice_get_fv(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
4862            struct LIST_HEAD_TYPE *fv_list)
4863 {
4864         enum ice_status status;
4865         u16 *prot_ids;
4866         u16 i;
4867
4868         prot_ids = (u16 *)ice_calloc(hw, lkups_cnt, sizeof(*prot_ids));
4869         if (!prot_ids)
4870                 return ICE_ERR_NO_MEMORY;
4871
4872         for (i = 0; i < lkups_cnt; i++)
4873                 if (!ice_prot_type_to_id(lkups[i].type, &prot_ids[i])) {
4874                         status = ICE_ERR_CFG;
4875                         goto free_mem;
4876                 }
4877
4878         /* Find field vectors that include all specified protocol types */
4879         status = ice_get_sw_fv_list(hw, prot_ids, lkups_cnt, fv_list);
4880
4881 free_mem:
4882         ice_free(hw, prot_ids);
4883         return status;
4884 }
4885
4886 /**
4887  * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
4888  * @hw: pointer to hardware structure
4889  * @lkups: lookup elements or match criteria for the advanced recipe, one
4890  *  structure per protocol header
4891  * @lkups_cnt: number of protocols
4892  * @rinfo: other information regarding the rule e.g. priority and action info
4893  * @rid: return the recipe ID of the recipe created
4894  */
4895 static enum ice_status
4896 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
4897                    u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
4898 {
4899         struct ice_prot_lkup_ext *lkup_exts;
4900         struct ice_recp_grp_entry *r_entry;
4901         struct ice_sw_fv_list_entry *fvit;
4902         struct ice_recp_grp_entry *r_tmp;
4903         struct ice_sw_fv_list_entry *tmp;
4904         enum ice_status status = ICE_SUCCESS;
4905         struct ice_sw_recipe *rm;
4906         bool match_tun = false;
4907         u8 i;
4908
4909         if (!lkups_cnt)
4910                 return ICE_ERR_PARAM;
4911
4912         lkup_exts = (struct ice_prot_lkup_ext *)
4913                 ice_malloc(hw, sizeof(*lkup_exts));
4914         if (!lkup_exts)
4915                 return ICE_ERR_NO_MEMORY;
4916
4917         /* Determine the number of words to be matched and if it exceeds a
4918          * recipe's restrictions
4919          */
4920         for (i = 0; i < lkups_cnt; i++) {
4921                 u16 count;
4922
4923                 if (lkups[i].type >= ICE_PROTOCOL_LAST) {
4924                         status = ICE_ERR_CFG;
4925                         goto err_free_lkup_exts;
4926                 }
4927
4928                 count = ice_fill_valid_words(&lkups[i], lkup_exts);
4929                 if (!count) {
4930                         status = ICE_ERR_CFG;
4931                         goto err_free_lkup_exts;
4932                 }
4933         }
4934
4935         *rid = ice_find_recp(hw, lkup_exts);
4936         if (*rid < ICE_MAX_NUM_RECIPES)
4937                 /* Success if found a recipe that match the existing criteria */
4938                 goto err_free_lkup_exts;
4939
4940         /* Recipe we need does not exist, add a recipe */
4941
4942         rm = (struct ice_sw_recipe *)ice_malloc(hw, sizeof(*rm));
4943         if (!rm) {
4944                 status = ICE_ERR_NO_MEMORY;
4945                 goto err_free_lkup_exts;
4946         }
4947
4948         /* Get field vectors that contain fields extracted from all the protocol
4949          * headers being programmed.
4950          */
4951         INIT_LIST_HEAD(&rm->fv_list);
4952         INIT_LIST_HEAD(&rm->rg_list);
4953
4954         status = ice_get_fv(hw, lkups, lkups_cnt, &rm->fv_list);
4955         if (status)
4956                 goto err_unroll;
4957
4958         /* Group match words into recipes using preferred recipe grouping
4959          * criteria.
4960          */
4961         status = ice_create_recipe_group(hw, rm, lkup_exts);
4962         if (status)
4963                 goto err_unroll;
4964
4965         /* There is only profile for UDP tunnels. So, it is necessary to use a
4966          * metadata ID flag to differentiate different tunnel types. A separate
4967          * recipe needs to be used for the metadata.
4968          */
4969         if ((rinfo->tun_type == ICE_SW_TUN_VXLAN_GPE ||
4970              rinfo->tun_type == ICE_SW_TUN_GENEVE ||
4971              rinfo->tun_type == ICE_SW_TUN_VXLAN) && rm->n_grp_count > 1)
4972                 match_tun = true;
4973
4974         /* set the recipe priority if specified */
4975         rm->priority = rinfo->priority ? rinfo->priority : 0;
4976
4977         /* Find offsets from the field vector. Pick the first one for all the
4978          * recipes.
4979          */
4980         ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
4981         status = ice_add_sw_recipe(hw, rm, match_tun);
4982         if (status)
4983                 goto err_unroll;
4984
4985         /* Associate all the recipes created with all the profiles in the
4986          * common field vector.
4987          */
4988         LIST_FOR_EACH_ENTRY(fvit, &rm->fv_list, ice_sw_fv_list_entry,
4989                             list_entry) {
4990                 ice_declare_bitmap(r_bitmap, ICE_MAX_NUM_RECIPES);
4991
4992                 status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
4993                                                       (u8 *)r_bitmap, NULL);
4994                 if (status)
4995                         goto err_unroll;
4996
4997                 ice_or_bitmap(rm->r_bitmap, r_bitmap, rm->r_bitmap,
4998                               ICE_MAX_NUM_RECIPES);
4999                 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5000                 if (status)
5001                         goto err_unroll;
5002
5003                 status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5004                                                       (u8 *)rm->r_bitmap,
5005                                                       NULL);
5006                 ice_release_change_lock(hw);
5007
5008                 if (status)
5009                         goto err_unroll;
5010         }
5011
5012         *rid = rm->root_rid;
5013         ice_memcpy(&hw->switch_info->recp_list[*rid].lkup_exts,
5014                    lkup_exts, sizeof(*lkup_exts), ICE_NONDMA_TO_NONDMA);
5015 err_unroll:
5016         LIST_FOR_EACH_ENTRY_SAFE(r_entry, r_tmp, &rm->rg_list,
5017                                  ice_recp_grp_entry, l_entry) {
5018                 LIST_DEL(&r_entry->l_entry);
5019                 ice_free(hw, r_entry);
5020         }
5021
5022         LIST_FOR_EACH_ENTRY_SAFE(fvit, tmp, &rm->fv_list, ice_sw_fv_list_entry,
5023                                  list_entry) {
5024                 LIST_DEL(&fvit->list_entry);
5025                 ice_free(hw, fvit);
5026         }
5027
5028         if (rm->root_buf)
5029                 ice_free(hw, rm->root_buf);
5030
5031         ice_free(hw, rm);
5032
5033 err_free_lkup_exts:
5034         ice_free(hw, lkup_exts);
5035
5036         return status;
5037 }
5038
5039 #define ICE_MAC_HDR_OFFSET      0
5040 #define ICE_IP_HDR_OFFSET       14
5041 #define ICE_GRE_HDR_OFFSET      34
5042 #define ICE_MAC_IL_HDR_OFFSET   42
5043 #define ICE_IP_IL_HDR_OFFSET    56
5044 #define ICE_L4_HDR_OFFSET       34
5045 #define ICE_UDP_TUN_HDR_OFFSET  42
5046
5047 /**
5048  * ice_find_dummy_packet - find dummy packet with given match criteria
5049  *
5050  * @lkups: lookup elements or match criteria for the advanced recipe, one
5051  *         structure per protocol header
5052  * @lkups_cnt: number of protocols
5053  * @tun_type: tunnel type from the match criteria
5054  * @pkt: dummy packet to fill according to filter match criteria
5055  * @pkt_len: packet length of dummy packet
5056  */
5057 static void
5058 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5059                       enum ice_sw_tunnel_type tun_type, const u8 **pkt,
5060                       u16 *pkt_len)
5061 {
5062         u16 i;
5063
5064         if (tun_type == ICE_SW_TUN_NVGRE || tun_type == ICE_ALL_TUNNELS) {
5065                 *pkt = dummy_gre_packet;
5066                 *pkt_len = sizeof(dummy_gre_packet);
5067                 return;
5068         }
5069
5070         if (tun_type == ICE_SW_TUN_VXLAN || tun_type == ICE_SW_TUN_GENEVE ||
5071             tun_type == ICE_SW_TUN_VXLAN_GPE) {
5072                 *pkt = dummy_udp_tun_packet;
5073                 *pkt_len = sizeof(dummy_udp_tun_packet);
5074                 return;
5075         }
5076
5077         for (i = 0; i < lkups_cnt; i++) {
5078                 if (lkups[i].type == ICE_UDP_ILOS) {
5079                         *pkt = dummy_udp_tun_packet;
5080                         *pkt_len = sizeof(dummy_udp_tun_packet);
5081                         return;
5082                 }
5083         }
5084
5085         *pkt = dummy_tcp_tun_packet;
5086         *pkt_len = sizeof(dummy_tcp_tun_packet);
5087 }
5088
5089 /**
5090  * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5091  *
5092  * @lkups: lookup elements or match criteria for the advanced recipe, one
5093  *         structure per protocol header
5094  * @lkups_cnt: number of protocols
5095  * @tun_type: to know if the dummy packet is supposed to be tunnel packet
5096  * @s_rule: stores rule information from the match criteria
5097  * @dummy_pkt: dummy packet to fill according to filter match criteria
5098  * @pkt_len: packet length of dummy packet
5099  */
5100 static void
5101 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5102                           enum ice_sw_tunnel_type tun_type,
5103                           struct ice_aqc_sw_rules_elem *s_rule,
5104                           const u8 *dummy_pkt, u16 pkt_len)
5105 {
5106         u8 *pkt;
5107         u16 i;
5108
5109         /* Start with a packet with a pre-defined/dummy content. Then, fill
5110          * in the header values to be looked up or matched.
5111          */
5112         pkt = s_rule->pdata.lkup_tx_rx.hdr;
5113
5114         ice_memcpy(pkt, dummy_pkt, pkt_len, ICE_NONDMA_TO_NONDMA);
5115
5116         for (i = 0; i < lkups_cnt; i++) {
5117                 u32 len, pkt_off, hdr_size, field_off;
5118
5119                 switch (lkups[i].type) {
5120                 case ICE_MAC_OFOS:
5121                 case ICE_MAC_IL:
5122                         pkt_off = offsetof(struct ice_ether_hdr, dst_addr) +
5123                                 ((lkups[i].type == ICE_MAC_IL) ?
5124                                  ICE_MAC_IL_HDR_OFFSET : 0);
5125                         len = sizeof(lkups[i].h_u.eth_hdr.dst_addr);
5126                         if ((tun_type == ICE_SW_TUN_VXLAN ||
5127                              tun_type == ICE_SW_TUN_GENEVE ||
5128                              tun_type == ICE_SW_TUN_VXLAN_GPE) &&
5129                              lkups[i].type == ICE_MAC_IL) {
5130                                 pkt_off += sizeof(struct ice_udp_tnl_hdr);
5131                         }
5132
5133                         ice_memcpy(&pkt[pkt_off],
5134                                    &lkups[i].h_u.eth_hdr.dst_addr, len,
5135                                    ICE_NONDMA_TO_NONDMA);
5136                         pkt_off = offsetof(struct ice_ether_hdr, src_addr) +
5137                                 ((lkups[i].type == ICE_MAC_IL) ?
5138                                  ICE_MAC_IL_HDR_OFFSET : 0);
5139                         len = sizeof(lkups[i].h_u.eth_hdr.src_addr);
5140                         if ((tun_type == ICE_SW_TUN_VXLAN ||
5141                              tun_type == ICE_SW_TUN_GENEVE ||
5142                              tun_type == ICE_SW_TUN_VXLAN_GPE) &&
5143                              lkups[i].type == ICE_MAC_IL) {
5144                                 pkt_off += sizeof(struct ice_udp_tnl_hdr);
5145                         }
5146                         ice_memcpy(&pkt[pkt_off],
5147                                    &lkups[i].h_u.eth_hdr.src_addr, len,
5148                                    ICE_NONDMA_TO_NONDMA);
5149                         if (lkups[i].h_u.eth_hdr.ethtype_id) {
5150                                 pkt_off = offsetof(struct ice_ether_hdr,
5151                                                    ethtype_id) +
5152                                         ((lkups[i].type == ICE_MAC_IL) ?
5153                                          ICE_MAC_IL_HDR_OFFSET : 0);
5154                                 len = sizeof(lkups[i].h_u.eth_hdr.ethtype_id);
5155                                 if ((tun_type == ICE_SW_TUN_VXLAN ||
5156                                      tun_type == ICE_SW_TUN_GENEVE ||
5157                                      tun_type == ICE_SW_TUN_VXLAN_GPE) &&
5158                                      lkups[i].type == ICE_MAC_IL) {
5159                                         pkt_off +=
5160                                                 sizeof(struct ice_udp_tnl_hdr);
5161                                 }
5162                                 ice_memcpy(&pkt[pkt_off],
5163                                            &lkups[i].h_u.eth_hdr.ethtype_id,
5164                                            len, ICE_NONDMA_TO_NONDMA);
5165                         }
5166                         break;
5167                 case ICE_IPV4_OFOS:
5168                         hdr_size = sizeof(struct ice_ipv4_hdr);
5169                         if (lkups[i].h_u.ipv4_hdr.dst_addr) {
5170                                 pkt_off = ICE_IP_HDR_OFFSET +
5171                                            offsetof(struct ice_ipv4_hdr,
5172                                                     dst_addr);
5173                                 field_off = offsetof(struct ice_ipv4_hdr,
5174                                                      dst_addr);
5175                                 len = hdr_size - field_off;
5176                                 ice_memcpy(&pkt[pkt_off],
5177                                            &lkups[i].h_u.ipv4_hdr.dst_addr,
5178                                            len, ICE_NONDMA_TO_NONDMA);
5179                         }
5180                         if (lkups[i].h_u.ipv4_hdr.src_addr) {
5181                                 pkt_off = ICE_IP_HDR_OFFSET +
5182                                            offsetof(struct ice_ipv4_hdr,
5183                                                     src_addr);
5184                                 field_off = offsetof(struct ice_ipv4_hdr,
5185                                                      src_addr);
5186                                 len = hdr_size - field_off;
5187                                 ice_memcpy(&pkt[pkt_off],
5188                                            &lkups[i].h_u.ipv4_hdr.src_addr,
5189                                            len, ICE_NONDMA_TO_NONDMA);
5190                         }
5191                         break;
5192                 case ICE_IPV4_IL:
5193                         break;
5194                 case ICE_TCP_IL:
5195                 case ICE_UDP_ILOS:
5196                 case ICE_SCTP_IL:
5197                         hdr_size = sizeof(struct ice_udp_tnl_hdr);
5198                         if (lkups[i].h_u.l4_hdr.dst_port) {
5199                                 pkt_off = ICE_L4_HDR_OFFSET +
5200                                            offsetof(struct ice_l4_hdr,
5201                                                     dst_port);
5202                                 field_off = offsetof(struct ice_l4_hdr,
5203                                                      dst_port);
5204                                 len =  hdr_size - field_off;
5205                                 ice_memcpy(&pkt[pkt_off],
5206                                            &lkups[i].h_u.l4_hdr.dst_port,
5207                                            len, ICE_NONDMA_TO_NONDMA);
5208                         }
5209                         if (lkups[i].h_u.l4_hdr.src_port) {
5210                                 pkt_off = ICE_L4_HDR_OFFSET +
5211                                         offsetof(struct ice_l4_hdr, src_port);
5212                                 field_off = offsetof(struct ice_l4_hdr,
5213                                                      src_port);
5214                                 len =  hdr_size - field_off;
5215                                 ice_memcpy(&pkt[pkt_off],
5216                                            &lkups[i].h_u.l4_hdr.src_port,
5217                                            len, ICE_NONDMA_TO_NONDMA);
5218                         }
5219                         break;
5220                 case ICE_VXLAN:
5221                 case ICE_GENEVE:
5222                 case ICE_VXLAN_GPE:
5223                         pkt_off = ICE_UDP_TUN_HDR_OFFSET +
5224                                    offsetof(struct ice_udp_tnl_hdr, vni);
5225                         field_off = offsetof(struct ice_udp_tnl_hdr, vni);
5226                         len =  sizeof(struct ice_udp_tnl_hdr) - field_off;
5227                         ice_memcpy(&pkt[pkt_off], &lkups[i].h_u.tnl_hdr.vni,
5228                                    len, ICE_NONDMA_TO_NONDMA);
5229                         break;
5230                 default:
5231                         break;
5232                 }
5233         }
5234         s_rule->pdata.lkup_tx_rx.hdr_len = CPU_TO_LE16(pkt_len);
5235 }
5236
5237 /**
5238  * ice_find_adv_rule_entry - Search a rule entry
5239  * @hw: pointer to the hardware structure
5240  * @lkups: lookup elements or match criteria for the advanced recipe, one
5241  *         structure per protocol header
5242  * @lkups_cnt: number of protocols
5243  * @recp_id: recipe ID for which we are finding the rule
5244  * @rinfo: other information regarding the rule e.g. priority and action info
5245  *
5246  * Helper function to search for a given advance rule entry
5247  * Returns pointer to entry storing the rule if found
5248  */
5249 static struct ice_adv_fltr_mgmt_list_entry *
5250 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5251                         u16 lkups_cnt, u8 recp_id,
5252                         struct ice_adv_rule_info *rinfo)
5253 {
5254         struct ice_adv_fltr_mgmt_list_entry *list_itr;
5255         struct ice_switch_info *sw = hw->switch_info;
5256         int i;
5257
5258         LIST_FOR_EACH_ENTRY(list_itr, &sw->recp_list[recp_id].filt_rules,
5259                             ice_adv_fltr_mgmt_list_entry, list_entry) {
5260                 bool lkups_matched = true;
5261
5262                 if (lkups_cnt != list_itr->lkups_cnt)
5263                         continue;
5264                 for (i = 0; i < list_itr->lkups_cnt; i++)
5265                         if (memcmp(&list_itr->lkups[i], &lkups[i],
5266                                    sizeof(*lkups))) {
5267                                 lkups_matched = false;
5268                                 break;
5269                         }
5270                 if (rinfo->sw_act.flag == list_itr->rule_info.sw_act.flag &&
5271                     rinfo->tun_type == list_itr->rule_info.tun_type &&
5272                     lkups_matched)
5273                         return list_itr;
5274         }
5275         return NULL;
5276 }
5277
5278 /**
5279  * ice_adv_add_update_vsi_list
5280  * @hw: pointer to the hardware structure
5281  * @m_entry: pointer to current adv filter management list entry
5282  * @cur_fltr: filter information from the book keeping entry
5283  * @new_fltr: filter information with the new VSI to be added
5284  *
5285  * Call AQ command to add or update previously created VSI list with new VSI.
5286  *
5287  * Helper function to do book keeping associated with adding filter information
5288  * The algorithm to do the booking keeping is described below :
5289  * When a VSI needs to subscribe to a given advanced filter
5290  *      if only one VSI has been added till now
5291  *              Allocate a new VSI list and add two VSIs
5292  *              to this list using switch rule command
5293  *              Update the previously created switch rule with the
5294  *              newly created VSI list ID
5295  *      if a VSI list was previously created
5296  *              Add the new VSI to the previously created VSI list set
5297  *              using the update switch rule command
5298  */
5299 static enum ice_status
5300 ice_adv_add_update_vsi_list(struct ice_hw *hw,
5301                             struct ice_adv_fltr_mgmt_list_entry *m_entry,
5302                             struct ice_adv_rule_info *cur_fltr,
5303                             struct ice_adv_rule_info *new_fltr)
5304 {
5305         enum ice_status status;
5306         u16 vsi_list_id = 0;
5307
5308         if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5309             cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP)
5310                 return ICE_ERR_NOT_IMPL;
5311
5312         if (cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET &&
5313             new_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5314                 return ICE_ERR_ALREADY_EXISTS;
5315
5316         if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5317              new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5318             (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5319              cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5320                 return ICE_ERR_NOT_IMPL;
5321
5322         if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5323                  /* Only one entry existed in the mapping and it was not already
5324                   * a part of a VSI list. So, create a VSI list with the old and
5325                   * new VSIs.
5326                   */
5327                 struct ice_fltr_info tmp_fltr;
5328                 u16 vsi_handle_arr[2];
5329
5330                 /* A rule already exists with the new VSI being added */
5331                 if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5332                     new_fltr->sw_act.fwd_id.hw_vsi_id)
5333                         return ICE_ERR_ALREADY_EXISTS;
5334
5335                 vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5336                 vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5337                 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5338                                                   &vsi_list_id,
5339                                                   ICE_SW_LKUP_LAST);
5340                 if (status)
5341                         return status;
5342
5343                 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5344                 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5345                 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5346                 /* Update the previous switch rule of "forward to VSI" to
5347                  * "fwd to VSI list"
5348                  */
5349                 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5350                 if (status)
5351                         return status;
5352
5353                 cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5354                 cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5355                 m_entry->vsi_list_info =
5356                         ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5357                                                 vsi_list_id);
5358         } else {
5359                 u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5360
5361                 if (!m_entry->vsi_list_info)
5362                         return ICE_ERR_CFG;
5363
5364                 /* A rule already exists with the new VSI being added */
5365                 if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
5366                         return ICE_SUCCESS;
5367
5368                 /* Update the previously created VSI list set with
5369                  * the new VSI ID passed in
5370                  */
5371                 vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5372
5373                 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5374                                                   vsi_list_id, false,
5375                                                   ice_aqc_opc_update_sw_rules,
5376                                                   ICE_SW_LKUP_LAST);
5377                 /* update VSI list mapping info with new VSI ID */
5378                 if (!status)
5379                         ice_set_bit(vsi_handle,
5380                                     m_entry->vsi_list_info->vsi_map);
5381         }
5382         if (!status)
5383                 m_entry->vsi_count++;
5384         return status;
5385 }
5386
5387 /**
5388  * ice_add_adv_rule - create an advanced switch rule
5389  * @hw: pointer to the hardware structure
5390  * @lkups: information on the words that needs to be looked up. All words
5391  * together makes one recipe
5392  * @lkups_cnt: num of entries in the lkups array
5393  * @rinfo: other information related to the rule that needs to be programmed
5394  * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
5395  *               ignored is case of error.
5396  *
5397  * This function can program only 1 rule at a time. The lkups is used to
5398  * describe the all the words that forms the "lookup" portion of the recipe.
5399  * These words can span multiple protocols. Callers to this function need to
5400  * pass in a list of protocol headers with lookup information along and mask
5401  * that determines which words are valid from the given protocol header.
5402  * rinfo describes other information related to this rule such as forwarding
5403  * IDs, priority of this rule, etc.
5404  */
5405 enum ice_status
5406 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5407                  u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
5408                  struct ice_rule_query_data *added_entry)
5409 {
5410         struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
5411         u16 rid = 0, i, pkt_len, rule_buf_sz, vsi_handle;
5412         struct ice_aqc_sw_rules_elem *s_rule;
5413         struct LIST_HEAD_TYPE *rule_head;
5414         struct ice_switch_info *sw;
5415         enum ice_status status;
5416         const u8 *pkt = NULL;
5417         u32 act = 0;
5418
5419         if (!lkups_cnt)
5420                 return ICE_ERR_PARAM;
5421
5422         for (i = 0; i < lkups_cnt; i++) {
5423                 u16 j, *ptr;
5424
5425                 /* Validate match masks to make sure they match complete 16-bit
5426                  * words.
5427                  */
5428                 ptr = (u16 *)&lkups->m_u;
5429                 for (j = 0; j < sizeof(lkups->m_u) / sizeof(u16); j++)
5430                         if (ptr[j] != 0 && ptr[j] != 0xffff)
5431                                 return ICE_ERR_PARAM;
5432         }
5433
5434         if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5435               rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
5436               rinfo->sw_act.fltr_act == ICE_DROP_PACKET))
5437                 return ICE_ERR_CFG;
5438
5439         vsi_handle = rinfo->sw_act.vsi_handle;
5440         if (!ice_is_vsi_valid(hw, vsi_handle))
5441                 return ICE_ERR_PARAM;
5442
5443         if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
5444                 rinfo->sw_act.fwd_id.hw_vsi_id =
5445                         ice_get_hw_vsi_num(hw, vsi_handle);
5446         if (rinfo->sw_act.flag & ICE_FLTR_TX)
5447                 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
5448
5449         status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
5450         if (status)
5451                 return status;
5452         m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
5453         if (m_entry) {
5454                 /* we have to add VSI to VSI_LIST and increment vsi_count.
5455                  * Also Update VSI list so that we can change forwarding rule
5456                  * if the rule already exists, we will check if it exists with
5457                  * same vsi_id, if not then add it to the VSI list if it already
5458                  * exists if not then create a VSI list and add the existing VSI
5459                  * ID and the new VSI ID to the list
5460                  * We will add that VSI to the list
5461                  */
5462                 status = ice_adv_add_update_vsi_list(hw, m_entry,
5463                                                      &m_entry->rule_info,
5464                                                      rinfo);
5465                 if (added_entry) {
5466                         added_entry->rid = rid;
5467                         added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
5468                         added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
5469                 }
5470                 return status;
5471         }
5472         ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type, &pkt,
5473                               &pkt_len);
5474         rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE + pkt_len;
5475         s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rule_buf_sz);
5476         if (!s_rule)
5477                 return ICE_ERR_NO_MEMORY;
5478         act |= ICE_SINGLE_ACT_LB_ENABLE | ICE_SINGLE_ACT_LAN_ENABLE;
5479         switch (rinfo->sw_act.fltr_act) {
5480         case ICE_FWD_TO_VSI:
5481                 act |= (rinfo->sw_act.fwd_id.hw_vsi_id <<
5482                         ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M;
5483                 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
5484                 break;
5485         case ICE_FWD_TO_Q:
5486                 act |= ICE_SINGLE_ACT_TO_Q;
5487                 act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
5488                        ICE_SINGLE_ACT_Q_INDEX_M;
5489                 break;
5490         case ICE_DROP_PACKET:
5491                 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
5492                        ICE_SINGLE_ACT_VALID_BIT;
5493                 break;
5494         default:
5495                 status = ICE_ERR_CFG;
5496                 goto err_ice_add_adv_rule;
5497         }
5498
5499         /* set the rule LOOKUP type based on caller specified 'RX'
5500          * instead of hardcoding it to be either LOOKUP_TX/RX
5501          *
5502          * for 'RX' set the source to be the port number
5503          * for 'TX' set the source to be the source HW VSI number (determined
5504          * by caller)
5505          */
5506         if (rinfo->rx) {
5507                 s_rule->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX);
5508                 s_rule->pdata.lkup_tx_rx.src =
5509                         CPU_TO_LE16(hw->port_info->lport);
5510         } else {
5511                 s_rule->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX);
5512                 s_rule->pdata.lkup_tx_rx.src = CPU_TO_LE16(rinfo->sw_act.src);
5513         }
5514
5515         s_rule->pdata.lkup_tx_rx.recipe_id = CPU_TO_LE16(rid);
5516         s_rule->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
5517
5518         ice_fill_adv_dummy_packet(lkups, lkups_cnt, rinfo->tun_type, s_rule,
5519                                   pkt, pkt_len);
5520
5521         status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
5522                                  rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
5523                                  NULL);
5524         if (status)
5525                 goto err_ice_add_adv_rule;
5526         adv_fltr = (struct ice_adv_fltr_mgmt_list_entry *)
5527                 ice_malloc(hw, sizeof(struct ice_adv_fltr_mgmt_list_entry));
5528         if (!adv_fltr) {
5529                 status = ICE_ERR_NO_MEMORY;
5530                 goto err_ice_add_adv_rule;
5531         }
5532
5533         adv_fltr->lkups = (struct ice_adv_lkup_elem *)
5534                 ice_memdup(hw, lkups, lkups_cnt * sizeof(*lkups),
5535                            ICE_NONDMA_TO_NONDMA);
5536         if (!adv_fltr->lkups) {
5537                 status = ICE_ERR_NO_MEMORY;
5538                 goto err_ice_add_adv_rule;
5539         }
5540
5541         adv_fltr->lkups_cnt = lkups_cnt;
5542         adv_fltr->rule_info = *rinfo;
5543         adv_fltr->rule_info.fltr_rule_id =
5544                 LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
5545         sw = hw->switch_info;
5546         sw->recp_list[rid].adv_rule = true;
5547         rule_head = &sw->recp_list[rid].filt_rules;
5548
5549         if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI) {
5550                 struct ice_fltr_info tmp_fltr;
5551
5552                 tmp_fltr.fltr_rule_id =
5553                         LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
5554                 tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
5555                 tmp_fltr.fwd_id.hw_vsi_id =
5556                         ice_get_hw_vsi_num(hw, vsi_handle);
5557                 tmp_fltr.vsi_handle = vsi_handle;
5558                 /* Update the previous switch rule of "forward to VSI" to
5559                  * "fwd to VSI list"
5560                  */
5561                 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5562                 if (status)
5563                         goto err_ice_add_adv_rule;
5564                 adv_fltr->vsi_count = 1;
5565         }
5566
5567         /* Add rule entry to book keeping list */
5568         LIST_ADD(&adv_fltr->list_entry, rule_head);
5569         if (added_entry) {
5570                 added_entry->rid = rid;
5571                 added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
5572                 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
5573         }
5574 err_ice_add_adv_rule:
5575         if (status && adv_fltr) {
5576                 ice_free(hw, adv_fltr->lkups);
5577                 ice_free(hw, adv_fltr);
5578         }
5579
5580         ice_free(hw, s_rule);
5581
5582         return status;
5583 }
5584
5585 /**
5586  * ice_adv_rem_update_vsi_list
5587  * @hw: pointer to the hardware structure
5588  * @vsi_handle: VSI handle of the VSI to remove
5589  * @fm_list: filter management entry for which the VSI list management needs to
5590  *           be done
5591  */
5592 static enum ice_status
5593 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
5594                             struct ice_adv_fltr_mgmt_list_entry *fm_list)
5595 {
5596         struct ice_vsi_list_map_info *vsi_list_info;
5597         enum ice_sw_lkup_type lkup_type;
5598         enum ice_status status;
5599         u16 vsi_list_id;
5600
5601         if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
5602             fm_list->vsi_count == 0)
5603                 return ICE_ERR_PARAM;
5604
5605         /* A rule with the VSI being removed does not exist */
5606         if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
5607                 return ICE_ERR_DOES_NOT_EXIST;
5608
5609         lkup_type = ICE_SW_LKUP_LAST;
5610         vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
5611         status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
5612                                           ice_aqc_opc_update_sw_rules,
5613                                           lkup_type);
5614         if (status)
5615                 return status;
5616
5617         fm_list->vsi_count--;
5618         ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
5619         vsi_list_info = fm_list->vsi_list_info;
5620         if (fm_list->vsi_count == 1) {
5621                 struct ice_fltr_info tmp_fltr;
5622                 u16 rem_vsi_handle;
5623
5624                 rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
5625                                                     ICE_MAX_VSI);
5626                 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
5627                         return ICE_ERR_OUT_OF_RANGE;
5628
5629                 /* Make sure VSI list is empty before removing it below */
5630                 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
5631                                                   vsi_list_id, true,
5632                                                   ice_aqc_opc_update_sw_rules,
5633                                                   lkup_type);
5634                 if (status)
5635                         return status;
5636                 tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
5637                 fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
5638                 tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
5639                 tmp_fltr.fwd_id.hw_vsi_id =
5640                         ice_get_hw_vsi_num(hw, rem_vsi_handle);
5641                 fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
5642                         ice_get_hw_vsi_num(hw, rem_vsi_handle);
5643
5644                 /* Update the previous switch rule of "MAC forward to VSI" to
5645                  * "MAC fwd to VSI list"
5646                  */
5647                 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5648                 if (status) {
5649                         ice_debug(hw, ICE_DBG_SW,
5650                                   "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
5651                                   tmp_fltr.fwd_id.hw_vsi_id, status);
5652                         return status;
5653                 }
5654         }
5655
5656         if (fm_list->vsi_count == 1) {
5657                 /* Remove the VSI list since it is no longer used */
5658                 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
5659                 if (status) {
5660                         ice_debug(hw, ICE_DBG_SW,
5661                                   "Failed to remove VSI list %d, error %d\n",
5662                                   vsi_list_id, status);
5663                         return status;
5664                 }
5665
5666                 LIST_DEL(&vsi_list_info->list_entry);
5667                 ice_free(hw, vsi_list_info);
5668                 fm_list->vsi_list_info = NULL;
5669         }
5670
5671         return status;
5672 }
5673
5674 /**
5675  * ice_rem_adv_rule - removes existing advanced switch rule
5676  * @hw: pointer to the hardware structure
5677  * @lkups: information on the words that needs to be looked up. All words
5678  *         together makes one recipe
5679  * @lkups_cnt: num of entries in the lkups array
5680  * @rinfo: Its the pointer to the rule information for the rule
5681  *
5682  * This function can be used to remove 1 rule at a time. The lkups is
5683  * used to describe all the words that forms the "lookup" portion of the
5684  * rule. These words can span multiple protocols. Callers to this function
5685  * need to pass in a list of protocol headers with lookup information along
5686  * and mask that determines which words are valid from the given protocol
5687  * header. rinfo describes other information related to this rule such as
5688  * forwarding IDs, priority of this rule, etc.
5689  */
5690 enum ice_status
5691 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5692                  u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
5693 {
5694         struct ice_adv_fltr_mgmt_list_entry *list_elem;
5695         struct ice_prot_lkup_ext lkup_exts;
5696         u16 rule_buf_sz, pkt_len, i, rid;
5697         enum ice_status status = ICE_SUCCESS;
5698         bool remove_rule = false;
5699         struct ice_lock *rule_lock; /* Lock to protect filter rule list */
5700         const u8 *pkt = NULL;
5701         u16 vsi_handle;
5702
5703         ice_memset(&lkup_exts, 0, sizeof(lkup_exts), ICE_NONDMA_MEM);
5704         for (i = 0; i < lkups_cnt; i++) {
5705                 u16 count;
5706
5707                 if (lkups[i].type >= ICE_PROTOCOL_LAST)
5708                         return ICE_ERR_CFG;
5709
5710                 count = ice_fill_valid_words(&lkups[i], &lkup_exts);
5711                 if (!count)
5712                         return ICE_ERR_CFG;
5713         }
5714         rid = ice_find_recp(hw, &lkup_exts);
5715         /* If did not find a recipe that match the existing criteria */
5716         if (rid == ICE_MAX_NUM_RECIPES)
5717                 return ICE_ERR_PARAM;
5718
5719         rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
5720         list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
5721         /* the rule is already removed */
5722         if (!list_elem)
5723                 return ICE_SUCCESS;
5724         ice_acquire_lock(rule_lock);
5725         if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
5726                 remove_rule = true;
5727         } else if (list_elem->vsi_count > 1) {
5728                 list_elem->vsi_list_info->ref_cnt--;
5729                 remove_rule = false;
5730                 vsi_handle = rinfo->sw_act.vsi_handle;
5731                 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
5732         } else {
5733                 vsi_handle = rinfo->sw_act.vsi_handle;
5734                 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
5735                 if (status) {
5736                         ice_release_lock(rule_lock);
5737                         return status;
5738                 }
5739                 if (list_elem->vsi_count == 0)
5740                         remove_rule = true;
5741         }
5742         ice_release_lock(rule_lock);
5743         if (remove_rule) {
5744                 struct ice_aqc_sw_rules_elem *s_rule;
5745
5746                 ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type, &pkt,
5747                                       &pkt_len);
5748                 rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE + pkt_len;
5749                 s_rule =
5750                         (struct ice_aqc_sw_rules_elem *)ice_malloc(hw,
5751                                                                    rule_buf_sz);
5752                 if (!s_rule)
5753                         return ICE_ERR_NO_MEMORY;
5754                 s_rule->pdata.lkup_tx_rx.act = 0;
5755                 s_rule->pdata.lkup_tx_rx.index =
5756                         CPU_TO_LE16(list_elem->rule_info.fltr_rule_id);
5757                 s_rule->pdata.lkup_tx_rx.hdr_len = 0;
5758                 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
5759                                          rule_buf_sz, 1,
5760                                          ice_aqc_opc_remove_sw_rules, NULL);
5761                 if (status == ICE_SUCCESS) {
5762                         ice_acquire_lock(rule_lock);
5763                         LIST_DEL(&list_elem->list_entry);
5764                         ice_free(hw, list_elem->lkups);
5765                         ice_free(hw, list_elem);
5766                         ice_release_lock(rule_lock);
5767                 }
5768                 ice_free(hw, s_rule);
5769         }
5770         return status;
5771 }
5772
5773 /**
5774  * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
5775  * @hw: pointer to the hardware structure
5776  * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
5777  *
5778  * This function is used to remove 1 rule at a time. The removal is based on
5779  * the remove_entry parameter. This function will remove rule for a given
5780  * vsi_handle with a given rule_id which is passed as parameter in remove_entry
5781  */
5782 enum ice_status
5783 ice_rem_adv_rule_by_id(struct ice_hw *hw,
5784                        struct ice_rule_query_data *remove_entry)
5785 {
5786         struct ice_adv_fltr_mgmt_list_entry *list_itr;
5787         struct LIST_HEAD_TYPE *list_head;
5788         struct ice_adv_rule_info rinfo;
5789         struct ice_switch_info *sw;
5790
5791         sw = hw->switch_info;
5792         if (!sw->recp_list[remove_entry->rid].recp_created)
5793                 return ICE_ERR_PARAM;
5794         list_head = &sw->recp_list[remove_entry->rid].filt_rules;
5795         LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_adv_fltr_mgmt_list_entry,
5796                             list_entry) {
5797                 if (list_itr->rule_info.fltr_rule_id ==
5798                     remove_entry->rule_id) {
5799                         rinfo = list_itr->rule_info;
5800                         rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
5801                         return ice_rem_adv_rule(hw, list_itr->lkups,
5802                                                 list_itr->lkups_cnt, &rinfo);
5803                 }
5804         }
5805         return ICE_ERR_PARAM;
5806 }
5807
5808 /**
5809  * ice_rem_adv_for_vsi - removes existing advanced switch rules for a
5810  *                       given VSI handle
5811  * @hw: pointer to the hardware structure
5812  * @vsi_handle: VSI handle for which we are supposed to remove all the rules.
5813  *
5814  * This function is used to remove all the rules for a given VSI and as soon
5815  * as removing a rule fails, it will return immediately with the error code,
5816  * else it will return ICE_SUCCESS
5817  */
5818 enum ice_status
5819 ice_rem_adv_rule_for_vsi(struct ice_hw *hw, u16 vsi_handle)
5820 {
5821         struct ice_adv_fltr_mgmt_list_entry *list_itr;
5822         struct ice_vsi_list_map_info *map_info;
5823         struct LIST_HEAD_TYPE *list_head;
5824         struct ice_adv_rule_info rinfo;
5825         struct ice_switch_info *sw;
5826         enum ice_status status;
5827         u16 vsi_list_id = 0;
5828         u8 rid;
5829
5830         sw = hw->switch_info;
5831         for (rid = 0; rid < ICE_MAX_NUM_RECIPES; rid++) {
5832                 if (!sw->recp_list[rid].recp_created)
5833                         continue;
5834                 if (!sw->recp_list[rid].adv_rule)
5835                         continue;
5836                 list_head = &sw->recp_list[rid].filt_rules;
5837                 map_info = NULL;
5838                 LIST_FOR_EACH_ENTRY(list_itr, list_head,
5839                                     ice_adv_fltr_mgmt_list_entry, list_entry) {
5840                         map_info = ice_find_vsi_list_entry(hw, rid, vsi_handle,
5841                                                            &vsi_list_id);
5842                         if (!map_info)
5843                                 continue;
5844                         rinfo = list_itr->rule_info;
5845                         rinfo.sw_act.vsi_handle = vsi_handle;
5846                         status = ice_rem_adv_rule(hw, list_itr->lkups,
5847                                                   list_itr->lkups_cnt, &rinfo);
5848                         if (status)
5849                                 return status;
5850                         map_info = NULL;
5851                 }
5852         }
5853         return ICE_SUCCESS;
5854 }
5855
5856 /**
5857  * ice_replay_fltr - Replay all the filters stored by a specific list head
5858  * @hw: pointer to the hardware structure
5859  * @list_head: list for which filters needs to be replayed
5860  * @recp_id: Recipe ID for which rules need to be replayed
5861  */
5862 static enum ice_status
5863 ice_replay_fltr(struct ice_hw *hw, u8 recp_id, struct LIST_HEAD_TYPE *list_head)
5864 {
5865         struct ice_fltr_mgmt_list_entry *itr;
5866         struct LIST_HEAD_TYPE l_head;
5867         enum ice_status status = ICE_SUCCESS;
5868
5869         if (LIST_EMPTY(list_head))
5870                 return status;
5871
5872         /* Move entries from the given list_head to a temporary l_head so that
5873          * they can be replayed. Otherwise when trying to re-add the same
5874          * filter, the function will return already exists
5875          */
5876         LIST_REPLACE_INIT(list_head, &l_head);
5877
5878         /* Mark the given list_head empty by reinitializing it so filters
5879          * could be added again by *handler
5880          */
5881         LIST_FOR_EACH_ENTRY(itr, &l_head, ice_fltr_mgmt_list_entry,
5882                             list_entry) {
5883                 struct ice_fltr_list_entry f_entry;
5884
5885                 f_entry.fltr_info = itr->fltr_info;
5886                 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN) {
5887                         status = ice_add_rule_internal(hw, recp_id, &f_entry);
5888                         if (status != ICE_SUCCESS)
5889                                 goto end;
5890                         continue;
5891                 }
5892
5893                 /* Add a filter per VSI separately */
5894                 while (1) {
5895                         u16 vsi_handle;
5896
5897                         vsi_handle =
5898                                 ice_find_first_bit(itr->vsi_list_info->vsi_map,
5899                                                    ICE_MAX_VSI);
5900                         if (!ice_is_vsi_valid(hw, vsi_handle))
5901                                 break;
5902
5903                         ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
5904                         f_entry.fltr_info.vsi_handle = vsi_handle;
5905                         f_entry.fltr_info.fwd_id.hw_vsi_id =
5906                                 ice_get_hw_vsi_num(hw, vsi_handle);
5907                         f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
5908                         if (recp_id == ICE_SW_LKUP_VLAN)
5909                                 status = ice_add_vlan_internal(hw, &f_entry);
5910                         else
5911                                 status = ice_add_rule_internal(hw, recp_id,
5912                                                                &f_entry);
5913                         if (status != ICE_SUCCESS)
5914                                 goto end;
5915                 }
5916         }
5917 end:
5918         /* Clear the filter management list */
5919         ice_rem_sw_rule_info(hw, &l_head);
5920         return status;
5921 }
5922
5923 /**
5924  * ice_replay_all_fltr - replay all filters stored in bookkeeping lists
5925  * @hw: pointer to the hardware structure
5926  *
5927  * NOTE: This function does not clean up partially added filters on error.
5928  * It is up to caller of the function to issue a reset or fail early.
5929  */
5930 enum ice_status ice_replay_all_fltr(struct ice_hw *hw)
5931 {
5932         struct ice_switch_info *sw = hw->switch_info;
5933         enum ice_status status = ICE_SUCCESS;
5934         u8 i;
5935
5936         for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
5937                 struct LIST_HEAD_TYPE *head = &sw->recp_list[i].filt_rules;
5938
5939                 status = ice_replay_fltr(hw, i, head);
5940                 if (status != ICE_SUCCESS)
5941                         return status;
5942         }
5943         return status;
5944 }
5945
5946 /**
5947  * ice_replay_vsi_fltr - Replay filters for requested VSI
5948  * @hw: pointer to the hardware structure
5949  * @vsi_handle: driver VSI handle
5950  * @recp_id: Recipe ID for which rules need to be replayed
5951  * @list_head: list for which filters need to be replayed
5952  *
5953  * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
5954  * It is required to pass valid VSI handle.
5955  */
5956 static enum ice_status
5957 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
5958                     struct LIST_HEAD_TYPE *list_head)
5959 {
5960         struct ice_fltr_mgmt_list_entry *itr;
5961         enum ice_status status = ICE_SUCCESS;
5962         u16 hw_vsi_id;
5963
5964         if (LIST_EMPTY(list_head))
5965                 return status;
5966         hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
5967
5968         LIST_FOR_EACH_ENTRY(itr, list_head, ice_fltr_mgmt_list_entry,
5969                             list_entry) {
5970                 struct ice_fltr_list_entry f_entry;
5971
5972                 f_entry.fltr_info = itr->fltr_info;
5973                 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
5974                     itr->fltr_info.vsi_handle == vsi_handle) {
5975                         /* update the src in case it is VSI num */
5976                         if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
5977                                 f_entry.fltr_info.src = hw_vsi_id;
5978                         status = ice_add_rule_internal(hw, recp_id, &f_entry);
5979                         if (status != ICE_SUCCESS)
5980                                 goto end;
5981                         continue;
5982                 }
5983                 if (!itr->vsi_list_info ||
5984                     !ice_is_bit_set(itr->vsi_list_info->vsi_map, vsi_handle))
5985                         continue;
5986                 /* Clearing it so that the logic can add it back */
5987                 ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
5988                 f_entry.fltr_info.vsi_handle = vsi_handle;
5989                 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
5990                 /* update the src in case it is VSI num */
5991                 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
5992                         f_entry.fltr_info.src = hw_vsi_id;
5993                 if (recp_id == ICE_SW_LKUP_VLAN)
5994                         status = ice_add_vlan_internal(hw, &f_entry);
5995                 else
5996                         status = ice_add_rule_internal(hw, recp_id, &f_entry);
5997                 if (status != ICE_SUCCESS)
5998                         goto end;
5999         }
6000 end:
6001         return status;
6002 }
6003
6004 /**
6005  * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6006  * @hw: pointer to the hardware structure
6007  * @vsi_handle: driver VSI handle
6008  * @list_head: list for which filters need to be replayed
6009  *
6010  * Replay the advanced rule for the given VSI.
6011  */
6012 static enum ice_status
6013 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6014                         struct LIST_HEAD_TYPE *list_head)
6015 {
6016         struct ice_rule_query_data added_entry = { 0 };
6017         struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6018         enum ice_status status = ICE_SUCCESS;
6019
6020         if (LIST_EMPTY(list_head))
6021                 return status;
6022         LIST_FOR_EACH_ENTRY(adv_fltr, list_head, ice_adv_fltr_mgmt_list_entry,
6023                             list_entry) {
6024                 struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6025                 u16 lk_cnt = adv_fltr->lkups_cnt;
6026
6027                 if (vsi_handle != rinfo->sw_act.vsi_handle)
6028                         continue;
6029                 status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6030                                           &added_entry);
6031                 if (status)
6032                         break;
6033         }
6034         return status;
6035 }
6036
6037 /**
6038  * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6039  * @hw: pointer to the hardware structure
6040  * @vsi_handle: driver VSI handle
6041  *
6042  * Replays filters for requested VSI via vsi_handle.
6043  */
6044 enum ice_status ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6045 {
6046         struct ice_switch_info *sw = hw->switch_info;
6047         enum ice_status status;
6048         u8 i;
6049
6050         /* Update the recipes that were created */
6051         for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6052                 struct LIST_HEAD_TYPE *head;
6053
6054                 head = &sw->recp_list[i].filt_replay_rules;
6055                 if (!sw->recp_list[i].adv_rule)
6056                         status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6057                 else
6058                         status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6059                 if (status != ICE_SUCCESS)
6060                         return status;
6061         }
6062
6063         return ICE_SUCCESS;
6064 }
6065
6066 /**
6067  * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6068  * @hw: pointer to the HW struct
6069  *
6070  * Deletes the filter replay rules.
6071  */
6072 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6073 {
6074         struct ice_switch_info *sw = hw->switch_info;
6075         u8 i;
6076
6077         if (!sw)
6078                 return;
6079
6080         for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6081                 if (!LIST_EMPTY(&sw->recp_list[i].filt_replay_rules)) {
6082                         struct LIST_HEAD_TYPE *l_head;
6083
6084                         l_head = &sw->recp_list[i].filt_replay_rules;
6085                         if (!sw->recp_list[i].adv_rule)
6086                                 ice_rem_sw_rule_info(hw, l_head);
6087                         else
6088                                 ice_rem_adv_rule_info(hw, l_head);
6089                 }
6090         }
6091 }