net/mlx5: add VLAN push/pop DR commands to glue
[dpdk.git] / drivers / net / ice / ice_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Intel Corporation
3  */
4
5 #include <rte_ethdev_driver.h>
6 #include <rte_net.h>
7
8 #include "ice_rxtx.h"
9
10 #define ICE_TX_CKSUM_OFFLOAD_MASK (              \
11                 PKT_TX_IP_CKSUM |                \
12                 PKT_TX_L4_MASK |                 \
13                 PKT_TX_TCP_SEG |                 \
14                 PKT_TX_OUTER_IP_CKSUM)
15
16 #define ICE_RX_ERR_BITS 0x3f
17
18 static enum ice_status
19 ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
20 {
21         struct ice_vsi *vsi = rxq->vsi;
22         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
23         struct rte_eth_dev *dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
24         struct ice_rlan_ctx rx_ctx;
25         enum ice_status err;
26         uint16_t buf_size, len;
27         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
28         uint32_t regval;
29
30         /**
31          * The kernel driver uses flex descriptor. It sets the register
32          * to flex descriptor mode.
33          * DPDK uses legacy descriptor. It should set the register back
34          * to the default value, then uses legacy descriptor mode.
35          */
36         regval = (0x01 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
37                  QRXFLXP_CNTXT_RXDID_PRIO_M;
38         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
39
40         /* Set buffer size as the head split is disabled. */
41         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
42                               RTE_PKTMBUF_HEADROOM);
43         rxq->rx_hdr_len = 0;
44         rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
45         len = ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len;
46         rxq->max_pkt_len = RTE_MIN(len,
47                                    dev->data->dev_conf.rxmode.max_rx_pkt_len);
48
49         if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
50                 if (rxq->max_pkt_len <= RTE_ETHER_MAX_LEN ||
51                     rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
52                         PMD_DRV_LOG(ERR, "maximum packet length must "
53                                     "be larger than %u and smaller than %u,"
54                                     "as jumbo frame is enabled",
55                                     (uint32_t)RTE_ETHER_MAX_LEN,
56                                     (uint32_t)ICE_FRAME_SIZE_MAX);
57                         return -EINVAL;
58                 }
59         } else {
60                 if (rxq->max_pkt_len < RTE_ETHER_MIN_LEN ||
61                     rxq->max_pkt_len > RTE_ETHER_MAX_LEN) {
62                         PMD_DRV_LOG(ERR, "maximum packet length must be "
63                                     "larger than %u and smaller than %u, "
64                                     "as jumbo frame is disabled",
65                                     (uint32_t)RTE_ETHER_MIN_LEN,
66                                     (uint32_t)RTE_ETHER_MAX_LEN);
67                         return -EINVAL;
68                 }
69         }
70
71         memset(&rx_ctx, 0, sizeof(rx_ctx));
72
73         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
74         rx_ctx.qlen = rxq->nb_rx_desc;
75         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
76         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
77         rx_ctx.dtype = 0; /* No Header Split mode */
78 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
79         rx_ctx.dsize = 1; /* 32B descriptors */
80 #endif
81         rx_ctx.rxmax = rxq->max_pkt_len;
82         /* TPH: Transaction Layer Packet (TLP) processing hints */
83         rx_ctx.tphrdesc_ena = 1;
84         rx_ctx.tphwdesc_ena = 1;
85         rx_ctx.tphdata_ena = 1;
86         rx_ctx.tphhead_ena = 1;
87         /* Low Receive Queue Threshold defined in 64 descriptors units.
88          * When the number of free descriptors goes below the lrxqthresh,
89          * an immediate interrupt is triggered.
90          */
91         rx_ctx.lrxqthresh = 2;
92         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
93         rx_ctx.l2tsel = 1;
94         rx_ctx.showiv = 0;
95         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
96
97         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
98         if (err) {
99                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
100                             rxq->queue_id);
101                 return -EINVAL;
102         }
103         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
104         if (err) {
105                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
106                             rxq->queue_id);
107                 return -EINVAL;
108         }
109
110         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
111                               RTE_PKTMBUF_HEADROOM);
112
113         /* Check if scattered RX needs to be used. */
114         if (rxq->max_pkt_len > buf_size)
115                 dev->data->scattered_rx = 1;
116
117         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
118
119         /* Init the Rx tail register*/
120         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
121
122         return 0;
123 }
124
125 /* Allocate mbufs for all descriptors in rx queue */
126 static int
127 ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
128 {
129         struct ice_rx_entry *rxe = rxq->sw_ring;
130         uint64_t dma_addr;
131         uint16_t i;
132
133         for (i = 0; i < rxq->nb_rx_desc; i++) {
134                 volatile union ice_rx_desc *rxd;
135                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
136
137                 if (unlikely(!mbuf)) {
138                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
139                         return -ENOMEM;
140                 }
141
142                 rte_mbuf_refcnt_set(mbuf, 1);
143                 mbuf->next = NULL;
144                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
145                 mbuf->nb_segs = 1;
146                 mbuf->port = rxq->port_id;
147
148                 dma_addr =
149                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
150
151                 rxd = &rxq->rx_ring[i];
152                 rxd->read.pkt_addr = dma_addr;
153                 rxd->read.hdr_addr = 0;
154 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
155                 rxd->read.rsvd1 = 0;
156                 rxd->read.rsvd2 = 0;
157 #endif
158                 rxe[i].mbuf = mbuf;
159         }
160
161         return 0;
162 }
163
164 /* Free all mbufs for descriptors in rx queue */
165 static void
166 _ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
167 {
168         uint16_t i;
169
170         if (!rxq || !rxq->sw_ring) {
171                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
172                 return;
173         }
174
175         for (i = 0; i < rxq->nb_rx_desc; i++) {
176                 if (rxq->sw_ring[i].mbuf) {
177                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
178                         rxq->sw_ring[i].mbuf = NULL;
179                 }
180         }
181 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
182                 if (rxq->rx_nb_avail == 0)
183                         return;
184                 for (i = 0; i < rxq->rx_nb_avail; i++) {
185                         struct rte_mbuf *mbuf;
186
187                         mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
188                         rte_pktmbuf_free_seg(mbuf);
189                 }
190                 rxq->rx_nb_avail = 0;
191 #endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
192 }
193
194 static void
195 ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
196 {
197         rxq->rx_rel_mbufs(rxq);
198 }
199
200 /* turn on or off rx queue
201  * @q_idx: queue index in pf scope
202  * @on: turn on or off the queue
203  */
204 static int
205 ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
206 {
207         uint32_t reg;
208         uint16_t j;
209
210         /* QRX_CTRL = QRX_ENA */
211         reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
212
213         if (on) {
214                 if (reg & QRX_CTRL_QENA_STAT_M)
215                         return 0; /* Already on, skip */
216                 reg |= QRX_CTRL_QENA_REQ_M;
217         } else {
218                 if (!(reg & QRX_CTRL_QENA_STAT_M))
219                         return 0; /* Already off, skip */
220                 reg &= ~QRX_CTRL_QENA_REQ_M;
221         }
222
223         /* Write the register */
224         ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
225         /* Check the result. It is said that QENA_STAT
226          * follows the QENA_REQ not more than 10 use.
227          * TODO: need to change the wait counter later
228          */
229         for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
230                 rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
231                 reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
232                 if (on) {
233                         if ((reg & QRX_CTRL_QENA_REQ_M) &&
234                             (reg & QRX_CTRL_QENA_STAT_M))
235                                 break;
236                 } else {
237                         if (!(reg & QRX_CTRL_QENA_REQ_M) &&
238                             !(reg & QRX_CTRL_QENA_STAT_M))
239                                 break;
240                 }
241         }
242
243         /* Check if it is timeout */
244         if (j >= ICE_CHK_Q_ENA_COUNT) {
245                 PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
246                             (on ? "enable" : "disable"), q_idx);
247                 return -ETIMEDOUT;
248         }
249
250         return 0;
251 }
252
253 static inline int
254 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
255 ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
256 #else
257 ice_check_rx_burst_bulk_alloc_preconditions
258         (__rte_unused struct ice_rx_queue *rxq)
259 #endif
260 {
261         int ret = 0;
262
263 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
264         if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
265                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
266                              "rxq->rx_free_thresh=%d, "
267                              "ICE_RX_MAX_BURST=%d",
268                              rxq->rx_free_thresh, ICE_RX_MAX_BURST);
269                 ret = -EINVAL;
270         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
271                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
272                              "rxq->rx_free_thresh=%d, "
273                              "rxq->nb_rx_desc=%d",
274                              rxq->rx_free_thresh, rxq->nb_rx_desc);
275                 ret = -EINVAL;
276         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
277                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
278                              "rxq->nb_rx_desc=%d, "
279                              "rxq->rx_free_thresh=%d",
280                              rxq->nb_rx_desc, rxq->rx_free_thresh);
281                 ret = -EINVAL;
282         }
283 #else
284         ret = -EINVAL;
285 #endif
286
287         return ret;
288 }
289
290 /* reset fields in ice_rx_queue back to default */
291 static void
292 ice_reset_rx_queue(struct ice_rx_queue *rxq)
293 {
294         unsigned int i;
295         uint16_t len;
296
297         if (!rxq) {
298                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
299                 return;
300         }
301
302 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
303         if (ice_check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
304                 len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
305         else
306 #endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
307                 len = rxq->nb_rx_desc;
308
309         for (i = 0; i < len * sizeof(union ice_rx_desc); i++)
310                 ((volatile char *)rxq->rx_ring)[i] = 0;
311
312 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
313         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
314         for (i = 0; i < ICE_RX_MAX_BURST; ++i)
315                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
316
317         rxq->rx_nb_avail = 0;
318         rxq->rx_next_avail = 0;
319         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
320 #endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
321
322         rxq->rx_tail = 0;
323         rxq->nb_rx_hold = 0;
324         rxq->pkt_first_seg = NULL;
325         rxq->pkt_last_seg = NULL;
326
327         rxq->rxrearm_start = 0;
328         rxq->rxrearm_nb = 0;
329 }
330
331 int
332 ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
333 {
334         struct ice_rx_queue *rxq;
335         int err;
336         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
337
338         PMD_INIT_FUNC_TRACE();
339
340         if (rx_queue_id >= dev->data->nb_rx_queues) {
341                 PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
342                             rx_queue_id, dev->data->nb_rx_queues);
343                 return -EINVAL;
344         }
345
346         rxq = dev->data->rx_queues[rx_queue_id];
347         if (!rxq || !rxq->q_set) {
348                 PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
349                             rx_queue_id);
350                 return -EINVAL;
351         }
352
353         err = ice_program_hw_rx_queue(rxq);
354         if (err) {
355                 PMD_DRV_LOG(ERR, "fail to program RX queue %u",
356                             rx_queue_id);
357                 return -EIO;
358         }
359
360         err = ice_alloc_rx_queue_mbufs(rxq);
361         if (err) {
362                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
363                 return -ENOMEM;
364         }
365
366         rte_wmb();
367
368         /* Init the RX tail register. */
369         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
370
371         err = ice_switch_rx_queue(hw, rxq->reg_idx, TRUE);
372         if (err) {
373                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
374                             rx_queue_id);
375
376                 ice_rx_queue_release_mbufs(rxq);
377                 ice_reset_rx_queue(rxq);
378                 return -EINVAL;
379         }
380
381         dev->data->rx_queue_state[rx_queue_id] =
382                 RTE_ETH_QUEUE_STATE_STARTED;
383
384         return 0;
385 }
386
387 int
388 ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
389 {
390         struct ice_rx_queue *rxq;
391         int err;
392         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
393
394         if (rx_queue_id < dev->data->nb_rx_queues) {
395                 rxq = dev->data->rx_queues[rx_queue_id];
396
397                 err = ice_switch_rx_queue(hw, rxq->reg_idx, FALSE);
398                 if (err) {
399                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
400                                     rx_queue_id);
401                         return -EINVAL;
402                 }
403                 ice_rx_queue_release_mbufs(rxq);
404                 ice_reset_rx_queue(rxq);
405                 dev->data->rx_queue_state[rx_queue_id] =
406                         RTE_ETH_QUEUE_STATE_STOPPED;
407         }
408
409         return 0;
410 }
411
412 int
413 ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
414 {
415         struct ice_tx_queue *txq;
416         int err;
417         struct ice_vsi *vsi;
418         struct ice_hw *hw;
419         struct ice_aqc_add_tx_qgrp txq_elem;
420         struct ice_tlan_ctx tx_ctx;
421
422         PMD_INIT_FUNC_TRACE();
423
424         if (tx_queue_id >= dev->data->nb_tx_queues) {
425                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
426                             tx_queue_id, dev->data->nb_tx_queues);
427                 return -EINVAL;
428         }
429
430         txq = dev->data->tx_queues[tx_queue_id];
431         if (!txq || !txq->q_set) {
432                 PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
433                             tx_queue_id);
434                 return -EINVAL;
435         }
436
437         vsi = txq->vsi;
438         hw = ICE_VSI_TO_HW(vsi);
439
440         memset(&txq_elem, 0, sizeof(txq_elem));
441         memset(&tx_ctx, 0, sizeof(tx_ctx));
442         txq_elem.num_txqs = 1;
443         txq_elem.txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
444
445         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
446         tx_ctx.qlen = txq->nb_tx_desc;
447         tx_ctx.pf_num = hw->pf_id;
448         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
449         tx_ctx.src_vsi = vsi->vsi_id;
450         tx_ctx.port_num = hw->port_info->lport;
451         tx_ctx.tso_ena = 1; /* tso enable */
452         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
453         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
454
455         ice_set_ctx((uint8_t *)&tx_ctx, txq_elem.txqs[0].txq_ctx,
456                     ice_tlan_ctx_info);
457
458         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
459
460         /* Init the Tx tail register*/
461         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
462
463         /* Fix me, we assume TC always 0 here */
464         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
465                         &txq_elem, sizeof(txq_elem), NULL);
466         if (err) {
467                 PMD_DRV_LOG(ERR, "Failed to add lan txq");
468                 return -EIO;
469         }
470         /* store the schedule node id */
471         txq->q_teid = txq_elem.txqs[0].q_teid;
472
473         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
474         return 0;
475 }
476
477 /* Free all mbufs for descriptors in tx queue */
478 static void
479 _ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
480 {
481         uint16_t i;
482
483         if (!txq || !txq->sw_ring) {
484                 PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
485                 return;
486         }
487
488         for (i = 0; i < txq->nb_tx_desc; i++) {
489                 if (txq->sw_ring[i].mbuf) {
490                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
491                         txq->sw_ring[i].mbuf = NULL;
492                 }
493         }
494 }
495 static void
496 ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
497 {
498         txq->tx_rel_mbufs(txq);
499 }
500
501 static void
502 ice_reset_tx_queue(struct ice_tx_queue *txq)
503 {
504         struct ice_tx_entry *txe;
505         uint16_t i, prev, size;
506
507         if (!txq) {
508                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
509                 return;
510         }
511
512         txe = txq->sw_ring;
513         size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
514         for (i = 0; i < size; i++)
515                 ((volatile char *)txq->tx_ring)[i] = 0;
516
517         prev = (uint16_t)(txq->nb_tx_desc - 1);
518         for (i = 0; i < txq->nb_tx_desc; i++) {
519                 volatile struct ice_tx_desc *txd = &txq->tx_ring[i];
520
521                 txd->cmd_type_offset_bsz =
522                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
523                 txe[i].mbuf =  NULL;
524                 txe[i].last_id = i;
525                 txe[prev].next_id = i;
526                 prev = i;
527         }
528
529         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
530         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
531
532         txq->tx_tail = 0;
533         txq->nb_tx_used = 0;
534
535         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
536         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
537 }
538
539 int
540 ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
541 {
542         struct ice_tx_queue *txq;
543         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
544         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
545         struct ice_vsi *vsi = pf->main_vsi;
546         enum ice_status status;
547         uint16_t q_ids[1];
548         uint32_t q_teids[1];
549         uint16_t q_handle = tx_queue_id;
550
551         if (tx_queue_id >= dev->data->nb_tx_queues) {
552                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
553                             tx_queue_id, dev->data->nb_tx_queues);
554                 return -EINVAL;
555         }
556
557         txq = dev->data->tx_queues[tx_queue_id];
558         if (!txq) {
559                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
560                             tx_queue_id);
561                 return -EINVAL;
562         }
563
564         q_ids[0] = txq->reg_idx;
565         q_teids[0] = txq->q_teid;
566
567         /* Fix me, we assume TC always 0 here */
568         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
569                                 q_ids, q_teids, ICE_NO_RESET, 0, NULL);
570         if (status != ICE_SUCCESS) {
571                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
572                 return -EINVAL;
573         }
574
575         ice_tx_queue_release_mbufs(txq);
576         ice_reset_tx_queue(txq);
577         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
578
579         return 0;
580 }
581
582 int
583 ice_rx_queue_setup(struct rte_eth_dev *dev,
584                    uint16_t queue_idx,
585                    uint16_t nb_desc,
586                    unsigned int socket_id,
587                    const struct rte_eth_rxconf *rx_conf,
588                    struct rte_mempool *mp)
589 {
590         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
591         struct ice_adapter *ad =
592                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
593         struct ice_vsi *vsi = pf->main_vsi;
594         struct ice_rx_queue *rxq;
595         const struct rte_memzone *rz;
596         uint32_t ring_size;
597         uint16_t len;
598         int use_def_burst_func = 1;
599
600         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
601             nb_desc > ICE_MAX_RING_DESC ||
602             nb_desc < ICE_MIN_RING_DESC) {
603                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
604                              "invalid", nb_desc);
605                 return -EINVAL;
606         }
607
608         /* Free memory if needed */
609         if (dev->data->rx_queues[queue_idx]) {
610                 ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
611                 dev->data->rx_queues[queue_idx] = NULL;
612         }
613
614         /* Allocate the rx queue data structure */
615         rxq = rte_zmalloc_socket(NULL,
616                                  sizeof(struct ice_rx_queue),
617                                  RTE_CACHE_LINE_SIZE,
618                                  socket_id);
619         if (!rxq) {
620                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
621                              "rx queue data structure");
622                 return -ENOMEM;
623         }
624         rxq->mp = mp;
625         rxq->nb_rx_desc = nb_desc;
626         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
627         rxq->queue_id = queue_idx;
628
629         rxq->reg_idx = vsi->base_queue + queue_idx;
630         rxq->port_id = dev->data->port_id;
631         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
632                 rxq->crc_len = RTE_ETHER_CRC_LEN;
633         else
634                 rxq->crc_len = 0;
635
636         rxq->drop_en = rx_conf->rx_drop_en;
637         rxq->vsi = vsi;
638         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
639
640         /* Allocate the maximun number of RX ring hardware descriptor. */
641         len = ICE_MAX_RING_DESC;
642
643 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
644         /**
645          * Allocating a little more memory because vectorized/bulk_alloc Rx
646          * functions doesn't check boundaries each time.
647          */
648         len += ICE_RX_MAX_BURST;
649 #endif
650
651         /* Allocate the maximum number of RX ring hardware descriptor. */
652         ring_size = sizeof(union ice_rx_desc) * len;
653         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
654         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
655                                       ring_size, ICE_RING_BASE_ALIGN,
656                                       socket_id);
657         if (!rz) {
658                 ice_rx_queue_release(rxq);
659                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
660                 return -ENOMEM;
661         }
662
663         /* Zero all the descriptors in the ring. */
664         memset(rz->addr, 0, ring_size);
665
666         rxq->rx_ring_dma = rz->iova;
667         rxq->rx_ring = rz->addr;
668
669 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
670         len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
671 #else
672         len = nb_desc;
673 #endif
674
675         /* Allocate the software ring. */
676         rxq->sw_ring = rte_zmalloc_socket(NULL,
677                                           sizeof(struct ice_rx_entry) * len,
678                                           RTE_CACHE_LINE_SIZE,
679                                           socket_id);
680         if (!rxq->sw_ring) {
681                 ice_rx_queue_release(rxq);
682                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
683                 return -ENOMEM;
684         }
685
686         ice_reset_rx_queue(rxq);
687         rxq->q_set = TRUE;
688         dev->data->rx_queues[queue_idx] = rxq;
689         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
690
691         use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
692
693         if (!use_def_burst_func) {
694 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
695                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
696                              "satisfied. Rx Burst Bulk Alloc function will be "
697                              "used on port=%d, queue=%d.",
698                              rxq->port_id, rxq->queue_id);
699 #endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
700         } else {
701                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
702                              "not satisfied, Scattered Rx is requested, "
703                              "or RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC is "
704                              "not enabled on port=%d, queue=%d.",
705                              rxq->port_id, rxq->queue_id);
706                 ad->rx_bulk_alloc_allowed = false;
707         }
708
709         return 0;
710 }
711
712 void
713 ice_rx_queue_release(void *rxq)
714 {
715         struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
716
717         if (!q) {
718                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
719                 return;
720         }
721
722         ice_rx_queue_release_mbufs(q);
723         rte_free(q->sw_ring);
724         rte_free(q);
725 }
726
727 int
728 ice_tx_queue_setup(struct rte_eth_dev *dev,
729                    uint16_t queue_idx,
730                    uint16_t nb_desc,
731                    unsigned int socket_id,
732                    const struct rte_eth_txconf *tx_conf)
733 {
734         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
735         struct ice_vsi *vsi = pf->main_vsi;
736         struct ice_tx_queue *txq;
737         const struct rte_memzone *tz;
738         uint32_t ring_size;
739         uint16_t tx_rs_thresh, tx_free_thresh;
740         uint64_t offloads;
741
742         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
743
744         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
745             nb_desc > ICE_MAX_RING_DESC ||
746             nb_desc < ICE_MIN_RING_DESC) {
747                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
748                              "invalid", nb_desc);
749                 return -EINVAL;
750         }
751
752         /**
753          * The following two parameters control the setting of the RS bit on
754          * transmit descriptors. TX descriptors will have their RS bit set
755          * after txq->tx_rs_thresh descriptors have been used. The TX
756          * descriptor ring will be cleaned after txq->tx_free_thresh
757          * descriptors are used or if the number of descriptors required to
758          * transmit a packet is greater than the number of free TX descriptors.
759          *
760          * The following constraints must be satisfied:
761          *  - tx_rs_thresh must be greater than 0.
762          *  - tx_rs_thresh must be less than the size of the ring minus 2.
763          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
764          *  - tx_rs_thresh must be a divisor of the ring size.
765          *  - tx_free_thresh must be greater than 0.
766          *  - tx_free_thresh must be less than the size of the ring minus 3.
767          *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
768          *
769          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
770          * race condition, hence the maximum threshold constraints. When set
771          * to zero use default values.
772          */
773         tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
774                                     tx_conf->tx_free_thresh :
775                                     ICE_DEFAULT_TX_FREE_THRESH);
776         /* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
777         tx_rs_thresh =
778                 (ICE_DEFAULT_TX_RSBIT_THRESH + tx_free_thresh > nb_desc) ?
779                         nb_desc - tx_free_thresh : ICE_DEFAULT_TX_RSBIT_THRESH;
780         if (tx_conf->tx_rs_thresh)
781                 tx_rs_thresh = tx_conf->tx_rs_thresh;
782         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
783                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
784                                 "exceed nb_desc. (tx_rs_thresh=%u "
785                                 "tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
786                                 (unsigned int)tx_rs_thresh,
787                                 (unsigned int)tx_free_thresh,
788                                 (unsigned int)nb_desc,
789                                 (int)dev->data->port_id,
790                                 (int)queue_idx);
791                 return -EINVAL;
792         }
793         if (tx_rs_thresh >= (nb_desc - 2)) {
794                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
795                              "number of TX descriptors minus 2. "
796                              "(tx_rs_thresh=%u port=%d queue=%d)",
797                              (unsigned int)tx_rs_thresh,
798                              (int)dev->data->port_id,
799                              (int)queue_idx);
800                 return -EINVAL;
801         }
802         if (tx_free_thresh >= (nb_desc - 3)) {
803                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
804                              "tx_free_thresh must be less than the "
805                              "number of TX descriptors minus 3. "
806                              "(tx_free_thresh=%u port=%d queue=%d)",
807                              (unsigned int)tx_free_thresh,
808                              (int)dev->data->port_id,
809                              (int)queue_idx);
810                 return -EINVAL;
811         }
812         if (tx_rs_thresh > tx_free_thresh) {
813                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
814                              "equal to tx_free_thresh. (tx_free_thresh=%u"
815                              " tx_rs_thresh=%u port=%d queue=%d)",
816                              (unsigned int)tx_free_thresh,
817                              (unsigned int)tx_rs_thresh,
818                              (int)dev->data->port_id,
819                              (int)queue_idx);
820                 return -EINVAL;
821         }
822         if ((nb_desc % tx_rs_thresh) != 0) {
823                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
824                              "number of TX descriptors. (tx_rs_thresh=%u"
825                              " port=%d queue=%d)",
826                              (unsigned int)tx_rs_thresh,
827                              (int)dev->data->port_id,
828                              (int)queue_idx);
829                 return -EINVAL;
830         }
831         if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
832                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
833                              "tx_rs_thresh is greater than 1. "
834                              "(tx_rs_thresh=%u port=%d queue=%d)",
835                              (unsigned int)tx_rs_thresh,
836                              (int)dev->data->port_id,
837                              (int)queue_idx);
838                 return -EINVAL;
839         }
840
841         /* Free memory if needed. */
842         if (dev->data->tx_queues[queue_idx]) {
843                 ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
844                 dev->data->tx_queues[queue_idx] = NULL;
845         }
846
847         /* Allocate the TX queue data structure. */
848         txq = rte_zmalloc_socket(NULL,
849                                  sizeof(struct ice_tx_queue),
850                                  RTE_CACHE_LINE_SIZE,
851                                  socket_id);
852         if (!txq) {
853                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
854                              "tx queue structure");
855                 return -ENOMEM;
856         }
857
858         /* Allocate TX hardware ring descriptors. */
859         ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
860         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
861         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
862                                       ring_size, ICE_RING_BASE_ALIGN,
863                                       socket_id);
864         if (!tz) {
865                 ice_tx_queue_release(txq);
866                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
867                 return -ENOMEM;
868         }
869
870         txq->nb_tx_desc = nb_desc;
871         txq->tx_rs_thresh = tx_rs_thresh;
872         txq->tx_free_thresh = tx_free_thresh;
873         txq->pthresh = tx_conf->tx_thresh.pthresh;
874         txq->hthresh = tx_conf->tx_thresh.hthresh;
875         txq->wthresh = tx_conf->tx_thresh.wthresh;
876         txq->queue_id = queue_idx;
877
878         txq->reg_idx = vsi->base_queue + queue_idx;
879         txq->port_id = dev->data->port_id;
880         txq->offloads = offloads;
881         txq->vsi = vsi;
882         txq->tx_deferred_start = tx_conf->tx_deferred_start;
883
884         txq->tx_ring_dma = tz->iova;
885         txq->tx_ring = tz->addr;
886
887         /* Allocate software ring */
888         txq->sw_ring =
889                 rte_zmalloc_socket(NULL,
890                                    sizeof(struct ice_tx_entry) * nb_desc,
891                                    RTE_CACHE_LINE_SIZE,
892                                    socket_id);
893         if (!txq->sw_ring) {
894                 ice_tx_queue_release(txq);
895                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
896                 return -ENOMEM;
897         }
898
899         ice_reset_tx_queue(txq);
900         txq->q_set = TRUE;
901         dev->data->tx_queues[queue_idx] = txq;
902         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
903         ice_set_tx_function_flag(dev, txq);
904
905         return 0;
906 }
907
908 void
909 ice_tx_queue_release(void *txq)
910 {
911         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
912
913         if (!q) {
914                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
915                 return;
916         }
917
918         ice_tx_queue_release_mbufs(q);
919         rte_free(q->sw_ring);
920         rte_free(q);
921 }
922
923 void
924 ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
925                  struct rte_eth_rxq_info *qinfo)
926 {
927         struct ice_rx_queue *rxq;
928
929         rxq = dev->data->rx_queues[queue_id];
930
931         qinfo->mp = rxq->mp;
932         qinfo->scattered_rx = dev->data->scattered_rx;
933         qinfo->nb_desc = rxq->nb_rx_desc;
934
935         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
936         qinfo->conf.rx_drop_en = rxq->drop_en;
937         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
938 }
939
940 void
941 ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
942                  struct rte_eth_txq_info *qinfo)
943 {
944         struct ice_tx_queue *txq;
945
946         txq = dev->data->tx_queues[queue_id];
947
948         qinfo->nb_desc = txq->nb_tx_desc;
949
950         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
951         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
952         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
953
954         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
955         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
956         qinfo->conf.offloads = txq->offloads;
957         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
958 }
959
960 uint32_t
961 ice_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
962 {
963 #define ICE_RXQ_SCAN_INTERVAL 4
964         volatile union ice_rx_desc *rxdp;
965         struct ice_rx_queue *rxq;
966         uint16_t desc = 0;
967
968         rxq = dev->data->rx_queues[rx_queue_id];
969         rxdp = &rxq->rx_ring[rxq->rx_tail];
970         while ((desc < rxq->nb_rx_desc) &&
971                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
972                  ICE_RXD_QW1_STATUS_M) >> ICE_RXD_QW1_STATUS_S) &
973                (1 << ICE_RX_DESC_STATUS_DD_S)) {
974                 /**
975                  * Check the DD bit of a rx descriptor of each 4 in a group,
976                  * to avoid checking too frequently and downgrading performance
977                  * too much.
978                  */
979                 desc += ICE_RXQ_SCAN_INTERVAL;
980                 rxdp += ICE_RXQ_SCAN_INTERVAL;
981                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
982                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
983                                  desc - rxq->nb_rx_desc]);
984         }
985
986         return desc;
987 }
988
989 /* Translate the rx descriptor status to pkt flags */
990 static inline uint64_t
991 ice_rxd_status_to_pkt_flags(uint64_t qword)
992 {
993         uint64_t flags;
994
995         /* Check if RSS_HASH */
996         flags = (((qword >> ICE_RX_DESC_STATUS_FLTSTAT_S) &
997                   ICE_RX_DESC_FLTSTAT_RSS_HASH) ==
998                  ICE_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
999
1000         return flags;
1001 }
1002
1003 /* Rx L3/L4 checksum */
1004 static inline uint64_t
1005 ice_rxd_error_to_pkt_flags(uint64_t qword)
1006 {
1007         uint64_t flags = 0;
1008         uint64_t error_bits = (qword >> ICE_RXD_QW1_ERROR_S);
1009
1010         if (likely((error_bits & ICE_RX_ERR_BITS) == 0)) {
1011                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1012                 return flags;
1013         }
1014
1015         if (unlikely(error_bits & (1 << ICE_RX_DESC_ERROR_IPE_S)))
1016                 flags |= PKT_RX_IP_CKSUM_BAD;
1017         else
1018                 flags |= PKT_RX_IP_CKSUM_GOOD;
1019
1020         if (unlikely(error_bits & (1 << ICE_RX_DESC_ERROR_L4E_S)))
1021                 flags |= PKT_RX_L4_CKSUM_BAD;
1022         else
1023                 flags |= PKT_RX_L4_CKSUM_GOOD;
1024
1025         if (unlikely(error_bits & (1 << ICE_RX_DESC_ERROR_EIPE_S)))
1026                 flags |= PKT_RX_EIP_CKSUM_BAD;
1027
1028         return flags;
1029 }
1030
1031 static inline void
1032 ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_desc *rxdp)
1033 {
1034         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1035             (1 << ICE_RX_DESC_STATUS_L2TAG1P_S)) {
1036                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1037                 mb->vlan_tci =
1038                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
1039                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
1040                            rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
1041         } else {
1042                 mb->vlan_tci = 0;
1043         }
1044
1045 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1046         if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
1047             (1 << ICE_RX_DESC_EXT_STATUS_L2TAG2P_S)) {
1048                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
1049                                 PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
1050                 mb->vlan_tci_outer = mb->vlan_tci;
1051                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
1052                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1053                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
1054                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
1055         } else {
1056                 mb->vlan_tci_outer = 0;
1057         }
1058 #endif
1059         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
1060                    mb->vlan_tci, mb->vlan_tci_outer);
1061 }
1062
1063 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
1064 #define ICE_LOOK_AHEAD 8
1065 #if (ICE_LOOK_AHEAD != 8)
1066 #error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
1067 #endif
1068 static inline int
1069 ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
1070 {
1071         volatile union ice_rx_desc *rxdp;
1072         struct ice_rx_entry *rxep;
1073         struct rte_mbuf *mb;
1074         uint16_t pkt_len;
1075         uint64_t qword1;
1076         uint32_t rx_status;
1077         int32_t s[ICE_LOOK_AHEAD], nb_dd;
1078         int32_t i, j, nb_rx = 0;
1079         uint64_t pkt_flags = 0;
1080         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1081
1082         rxdp = &rxq->rx_ring[rxq->rx_tail];
1083         rxep = &rxq->sw_ring[rxq->rx_tail];
1084
1085         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1086         rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >> ICE_RXD_QW1_STATUS_S;
1087
1088         /* Make sure there is at least 1 packet to receive */
1089         if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
1090                 return 0;
1091
1092         /**
1093          * Scan LOOK_AHEAD descriptors at a time to determine which
1094          * descriptors reference packets that are ready to be received.
1095          */
1096         for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
1097              rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
1098                 /* Read desc statuses backwards to avoid race condition */
1099                 for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--) {
1100                         qword1 = rte_le_to_cpu_64(
1101                                         rxdp[j].wb.qword1.status_error_len);
1102                         s[j] = (qword1 & ICE_RXD_QW1_STATUS_M) >>
1103                                ICE_RXD_QW1_STATUS_S;
1104                 }
1105
1106                 rte_smp_rmb();
1107
1108                 /* Compute how many status bits were set */
1109                 for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
1110                         nb_dd += s[j] & (1 << ICE_RX_DESC_STATUS_DD_S);
1111
1112                 nb_rx += nb_dd;
1113
1114                 /* Translate descriptor info to mbuf parameters */
1115                 for (j = 0; j < nb_dd; j++) {
1116                         mb = rxep[j].mbuf;
1117                         qword1 = rte_le_to_cpu_64(
1118                                         rxdp[j].wb.qword1.status_error_len);
1119                         pkt_len = ((qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
1120                                    ICE_RXD_QW1_LEN_PBUF_S) - rxq->crc_len;
1121                         mb->data_len = pkt_len;
1122                         mb->pkt_len = pkt_len;
1123                         mb->ol_flags = 0;
1124                         pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
1125                         pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
1126                         if (pkt_flags & PKT_RX_RSS_HASH)
1127                                 mb->hash.rss =
1128                                         rte_le_to_cpu_32(
1129                                                 rxdp[j].wb.qword0.hi_dword.rss);
1130                         mb->packet_type = ptype_tbl[(uint8_t)(
1131                                                 (qword1 &
1132                                                  ICE_RXD_QW1_PTYPE_M) >>
1133                                                 ICE_RXD_QW1_PTYPE_S)];
1134                         ice_rxd_to_vlan_tci(mb, &rxdp[j]);
1135
1136                         mb->ol_flags |= pkt_flags;
1137                 }
1138
1139                 for (j = 0; j < ICE_LOOK_AHEAD; j++)
1140                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1141
1142                 if (nb_dd != ICE_LOOK_AHEAD)
1143                         break;
1144         }
1145
1146         /* Clear software ring entries */
1147         for (i = 0; i < nb_rx; i++)
1148                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1149
1150         PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
1151                    "port_id=%u, queue_id=%u, nb_rx=%d",
1152                    rxq->port_id, rxq->queue_id, nb_rx);
1153
1154         return nb_rx;
1155 }
1156
1157 static inline uint16_t
1158 ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
1159                        struct rte_mbuf **rx_pkts,
1160                        uint16_t nb_pkts)
1161 {
1162         uint16_t i;
1163         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1164
1165         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1166
1167         for (i = 0; i < nb_pkts; i++)
1168                 rx_pkts[i] = stage[i];
1169
1170         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1171         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1172
1173         return nb_pkts;
1174 }
1175
1176 static inline int
1177 ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
1178 {
1179         volatile union ice_rx_desc *rxdp;
1180         struct ice_rx_entry *rxep;
1181         struct rte_mbuf *mb;
1182         uint16_t alloc_idx, i;
1183         uint64_t dma_addr;
1184         int diag;
1185
1186         /* Allocate buffers in bulk */
1187         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1188                                (rxq->rx_free_thresh - 1));
1189         rxep = &rxq->sw_ring[alloc_idx];
1190         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1191                                     rxq->rx_free_thresh);
1192         if (unlikely(diag != 0)) {
1193                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1194                 return -ENOMEM;
1195         }
1196
1197         rxdp = &rxq->rx_ring[alloc_idx];
1198         for (i = 0; i < rxq->rx_free_thresh; i++) {
1199                 if (likely(i < (rxq->rx_free_thresh - 1)))
1200                         /* Prefetch next mbuf */
1201                         rte_prefetch0(rxep[i + 1].mbuf);
1202
1203                 mb = rxep[i].mbuf;
1204                 rte_mbuf_refcnt_set(mb, 1);
1205                 mb->next = NULL;
1206                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1207                 mb->nb_segs = 1;
1208                 mb->port = rxq->port_id;
1209                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1210                 rxdp[i].read.hdr_addr = 0;
1211                 rxdp[i].read.pkt_addr = dma_addr;
1212         }
1213
1214         /* Update rx tail regsiter */
1215         rte_wmb();
1216         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1217
1218         rxq->rx_free_trigger =
1219                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1220         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1221                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1222
1223         return 0;
1224 }
1225
1226 static inline uint16_t
1227 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1228 {
1229         struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
1230         uint16_t nb_rx = 0;
1231         struct rte_eth_dev *dev;
1232
1233         if (!nb_pkts)
1234                 return 0;
1235
1236         if (rxq->rx_nb_avail)
1237                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1238
1239         nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
1240         rxq->rx_next_avail = 0;
1241         rxq->rx_nb_avail = nb_rx;
1242         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1243
1244         if (rxq->rx_tail > rxq->rx_free_trigger) {
1245                 if (ice_rx_alloc_bufs(rxq) != 0) {
1246                         uint16_t i, j;
1247
1248                         dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
1249                         dev->data->rx_mbuf_alloc_failed +=
1250                                 rxq->rx_free_thresh;
1251                         PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1252                                    "port_id=%u, queue_id=%u",
1253                                    rxq->port_id, rxq->queue_id);
1254                         rxq->rx_nb_avail = 0;
1255                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1256                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1257                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1258
1259                         return 0;
1260                 }
1261         }
1262
1263         if (rxq->rx_tail >= rxq->nb_rx_desc)
1264                 rxq->rx_tail = 0;
1265
1266         if (rxq->rx_nb_avail)
1267                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1268
1269         return 0;
1270 }
1271
1272 static uint16_t
1273 ice_recv_pkts_bulk_alloc(void *rx_queue,
1274                          struct rte_mbuf **rx_pkts,
1275                          uint16_t nb_pkts)
1276 {
1277         uint16_t nb_rx = 0;
1278         uint16_t n;
1279         uint16_t count;
1280
1281         if (unlikely(nb_pkts == 0))
1282                 return nb_rx;
1283
1284         if (likely(nb_pkts <= ICE_RX_MAX_BURST))
1285                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1286
1287         while (nb_pkts) {
1288                 n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
1289                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1290                 nb_rx = (uint16_t)(nb_rx + count);
1291                 nb_pkts = (uint16_t)(nb_pkts - count);
1292                 if (count < n)
1293                         break;
1294         }
1295
1296         return nb_rx;
1297 }
1298 #else
1299 static uint16_t
1300 ice_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
1301                          struct rte_mbuf __rte_unused **rx_pkts,
1302                          uint16_t __rte_unused nb_pkts)
1303 {
1304         return 0;
1305 }
1306 #endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
1307
1308 static uint16_t
1309 ice_recv_scattered_pkts(void *rx_queue,
1310                         struct rte_mbuf **rx_pkts,
1311                         uint16_t nb_pkts)
1312 {
1313         struct ice_rx_queue *rxq = rx_queue;
1314         volatile union ice_rx_desc *rx_ring = rxq->rx_ring;
1315         volatile union ice_rx_desc *rxdp;
1316         union ice_rx_desc rxd;
1317         struct ice_rx_entry *sw_ring = rxq->sw_ring;
1318         struct ice_rx_entry *rxe;
1319         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1320         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1321         struct rte_mbuf *nmb; /* new allocated mbuf */
1322         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
1323         uint16_t rx_id = rxq->rx_tail;
1324         uint16_t nb_rx = 0;
1325         uint16_t nb_hold = 0;
1326         uint16_t rx_packet_len;
1327         uint32_t rx_status;
1328         uint64_t qword1;
1329         uint64_t dma_addr;
1330         uint64_t pkt_flags = 0;
1331         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1332         struct rte_eth_dev *dev;
1333
1334         while (nb_rx < nb_pkts) {
1335                 rxdp = &rx_ring[rx_id];
1336                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1337                 rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >>
1338                             ICE_RXD_QW1_STATUS_S;
1339
1340                 /* Check the DD bit first */
1341                 if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
1342                         break;
1343
1344                 /* allocate mbuf */
1345                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1346                 if (unlikely(!nmb)) {
1347                         dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
1348                         dev->data->rx_mbuf_alloc_failed++;
1349                         break;
1350                 }
1351                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
1352
1353                 nb_hold++;
1354                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
1355                 rx_id++;
1356                 if (unlikely(rx_id == rxq->nb_rx_desc))
1357                         rx_id = 0;
1358
1359                 /* Prefetch next mbuf */
1360                 rte_prefetch0(sw_ring[rx_id].mbuf);
1361
1362                 /**
1363                  * When next RX descriptor is on a cache line boundary,
1364                  * prefetch the next 4 RX descriptors and next 8 pointers
1365                  * to mbufs.
1366                  */
1367                 if ((rx_id & 0x3) == 0) {
1368                         rte_prefetch0(&rx_ring[rx_id]);
1369                         rte_prefetch0(&sw_ring[rx_id]);
1370                 }
1371
1372                 rxm = rxe->mbuf;
1373                 rxe->mbuf = nmb;
1374                 dma_addr =
1375                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1376
1377                 /* Set data buffer address and data length of the mbuf */
1378                 rxdp->read.hdr_addr = 0;
1379                 rxdp->read.pkt_addr = dma_addr;
1380                 rx_packet_len = (qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
1381                                 ICE_RXD_QW1_LEN_PBUF_S;
1382                 rxm->data_len = rx_packet_len;
1383                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1384                 ice_rxd_to_vlan_tci(rxm, rxdp);
1385                 rxm->packet_type = ptype_tbl[(uint8_t)((qword1 &
1386                                                         ICE_RXD_QW1_PTYPE_M) >>
1387                                                        ICE_RXD_QW1_PTYPE_S)];
1388
1389                 /**
1390                  * If this is the first buffer of the received packet, set the
1391                  * pointer to the first mbuf of the packet and initialize its
1392                  * context. Otherwise, update the total length and the number
1393                  * of segments of the current scattered packet, and update the
1394                  * pointer to the last mbuf of the current packet.
1395                  */
1396                 if (!first_seg) {
1397                         first_seg = rxm;
1398                         first_seg->nb_segs = 1;
1399                         first_seg->pkt_len = rx_packet_len;
1400                 } else {
1401                         first_seg->pkt_len =
1402                                 (uint16_t)(first_seg->pkt_len +
1403                                            rx_packet_len);
1404                         first_seg->nb_segs++;
1405                         last_seg->next = rxm;
1406                 }
1407
1408                 /**
1409                  * If this is not the last buffer of the received packet,
1410                  * update the pointer to the last mbuf of the current scattered
1411                  * packet and continue to parse the RX ring.
1412                  */
1413                 if (!(rx_status & (1 << ICE_RX_DESC_STATUS_EOF_S))) {
1414                         last_seg = rxm;
1415                         continue;
1416                 }
1417
1418                 /**
1419                  * This is the last buffer of the received packet. If the CRC
1420                  * is not stripped by the hardware:
1421                  *  - Subtract the CRC length from the total packet length.
1422                  *  - If the last buffer only contains the whole CRC or a part
1423                  *  of it, free the mbuf associated to the last buffer. If part
1424                  *  of the CRC is also contained in the previous mbuf, subtract
1425                  *  the length of that CRC part from the data length of the
1426                  *  previous mbuf.
1427                  */
1428                 rxm->next = NULL;
1429                 if (unlikely(rxq->crc_len > 0)) {
1430                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1431                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1432                                 rte_pktmbuf_free_seg(rxm);
1433                                 first_seg->nb_segs--;
1434                                 last_seg->data_len =
1435                                         (uint16_t)(last_seg->data_len -
1436                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1437                                 last_seg->next = NULL;
1438                         } else
1439                                 rxm->data_len = (uint16_t)(rx_packet_len -
1440                                                            RTE_ETHER_CRC_LEN);
1441                 }
1442
1443                 first_seg->port = rxq->port_id;
1444                 first_seg->ol_flags = 0;
1445
1446                 pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
1447                 pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
1448                 if (pkt_flags & PKT_RX_RSS_HASH)
1449                         first_seg->hash.rss =
1450                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1451
1452                 first_seg->ol_flags |= pkt_flags;
1453                 /* Prefetch data of first segment, if configured to do so. */
1454                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1455                                           first_seg->data_off));
1456                 rx_pkts[nb_rx++] = first_seg;
1457                 first_seg = NULL;
1458         }
1459
1460         /* Record index of the next RX descriptor to probe. */
1461         rxq->rx_tail = rx_id;
1462         rxq->pkt_first_seg = first_seg;
1463         rxq->pkt_last_seg = last_seg;
1464
1465         /**
1466          * If the number of free RX descriptors is greater than the RX free
1467          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1468          * register. Update the RDT with the value of the last processed RX
1469          * descriptor minus 1, to guarantee that the RDT register is never
1470          * equal to the RDH register, which creates a "full" ring situtation
1471          * from the hardware point of view.
1472          */
1473         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1474         if (nb_hold > rxq->rx_free_thresh) {
1475                 rx_id = (uint16_t)(rx_id == 0 ?
1476                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
1477                 /* write TAIL register */
1478                 ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1479                 nb_hold = 0;
1480         }
1481         rxq->nb_rx_hold = nb_hold;
1482
1483         /* return received packet in the burst */
1484         return nb_rx;
1485 }
1486
1487 const uint32_t *
1488 ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1489 {
1490         static const uint32_t ptypes[] = {
1491                 /* refers to ice_get_default_pkt_type() */
1492                 RTE_PTYPE_L2_ETHER,
1493                 RTE_PTYPE_L2_ETHER_LLDP,
1494                 RTE_PTYPE_L2_ETHER_ARP,
1495                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1496                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1497                 RTE_PTYPE_L4_FRAG,
1498                 RTE_PTYPE_L4_ICMP,
1499                 RTE_PTYPE_L4_NONFRAG,
1500                 RTE_PTYPE_L4_SCTP,
1501                 RTE_PTYPE_L4_TCP,
1502                 RTE_PTYPE_L4_UDP,
1503                 RTE_PTYPE_TUNNEL_GRENAT,
1504                 RTE_PTYPE_TUNNEL_IP,
1505                 RTE_PTYPE_INNER_L2_ETHER,
1506                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1507                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1508                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1509                 RTE_PTYPE_INNER_L4_FRAG,
1510                 RTE_PTYPE_INNER_L4_ICMP,
1511                 RTE_PTYPE_INNER_L4_NONFRAG,
1512                 RTE_PTYPE_INNER_L4_SCTP,
1513                 RTE_PTYPE_INNER_L4_TCP,
1514                 RTE_PTYPE_INNER_L4_UDP,
1515                 RTE_PTYPE_TUNNEL_GTPC,
1516                 RTE_PTYPE_TUNNEL_GTPU,
1517                 RTE_PTYPE_UNKNOWN
1518         };
1519
1520         if (dev->rx_pkt_burst == ice_recv_pkts ||
1521 #ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
1522             dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
1523 #endif
1524             dev->rx_pkt_burst == ice_recv_scattered_pkts)
1525                 return ptypes;
1526
1527 #ifdef RTE_ARCH_X86
1528         if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
1529             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
1530             dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
1531             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2)
1532                 return ptypes;
1533 #endif
1534
1535         return NULL;
1536 }
1537
1538 int
1539 ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
1540 {
1541         struct ice_rx_queue *rxq = rx_queue;
1542         volatile uint64_t *status;
1543         uint64_t mask;
1544         uint32_t desc;
1545
1546         if (unlikely(offset >= rxq->nb_rx_desc))
1547                 return -EINVAL;
1548
1549         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1550                 return RTE_ETH_RX_DESC_UNAVAIL;
1551
1552         desc = rxq->rx_tail + offset;
1553         if (desc >= rxq->nb_rx_desc)
1554                 desc -= rxq->nb_rx_desc;
1555
1556         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
1557         mask = rte_cpu_to_le_64((1ULL << ICE_RX_DESC_STATUS_DD_S) <<
1558                                 ICE_RXD_QW1_STATUS_S);
1559         if (*status & mask)
1560                 return RTE_ETH_RX_DESC_DONE;
1561
1562         return RTE_ETH_RX_DESC_AVAIL;
1563 }
1564
1565 int
1566 ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
1567 {
1568         struct ice_tx_queue *txq = tx_queue;
1569         volatile uint64_t *status;
1570         uint64_t mask, expect;
1571         uint32_t desc;
1572
1573         if (unlikely(offset >= txq->nb_tx_desc))
1574                 return -EINVAL;
1575
1576         desc = txq->tx_tail + offset;
1577         /* go to next desc that has the RS bit */
1578         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
1579                 txq->tx_rs_thresh;
1580         if (desc >= txq->nb_tx_desc) {
1581                 desc -= txq->nb_tx_desc;
1582                 if (desc >= txq->nb_tx_desc)
1583                         desc -= txq->nb_tx_desc;
1584         }
1585
1586         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
1587         mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
1588         expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
1589                                   ICE_TXD_QW1_DTYPE_S);
1590         if ((*status & mask) == expect)
1591                 return RTE_ETH_TX_DESC_DONE;
1592
1593         return RTE_ETH_TX_DESC_FULL;
1594 }
1595
1596 void
1597 ice_clear_queues(struct rte_eth_dev *dev)
1598 {
1599         uint16_t i;
1600
1601         PMD_INIT_FUNC_TRACE();
1602
1603         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1604                 ice_tx_queue_release_mbufs(dev->data->tx_queues[i]);
1605                 ice_reset_tx_queue(dev->data->tx_queues[i]);
1606         }
1607
1608         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1609                 ice_rx_queue_release_mbufs(dev->data->rx_queues[i]);
1610                 ice_reset_rx_queue(dev->data->rx_queues[i]);
1611         }
1612 }
1613
1614 void
1615 ice_free_queues(struct rte_eth_dev *dev)
1616 {
1617         uint16_t i;
1618
1619         PMD_INIT_FUNC_TRACE();
1620
1621         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1622                 if (!dev->data->rx_queues[i])
1623                         continue;
1624                 ice_rx_queue_release(dev->data->rx_queues[i]);
1625                 dev->data->rx_queues[i] = NULL;
1626         }
1627         dev->data->nb_rx_queues = 0;
1628
1629         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1630                 if (!dev->data->tx_queues[i])
1631                         continue;
1632                 ice_tx_queue_release(dev->data->tx_queues[i]);
1633                 dev->data->tx_queues[i] = NULL;
1634         }
1635         dev->data->nb_tx_queues = 0;
1636 }
1637
1638 uint16_t
1639 ice_recv_pkts(void *rx_queue,
1640               struct rte_mbuf **rx_pkts,
1641               uint16_t nb_pkts)
1642 {
1643         struct ice_rx_queue *rxq = rx_queue;
1644         volatile union ice_rx_desc *rx_ring = rxq->rx_ring;
1645         volatile union ice_rx_desc *rxdp;
1646         union ice_rx_desc rxd;
1647         struct ice_rx_entry *sw_ring = rxq->sw_ring;
1648         struct ice_rx_entry *rxe;
1649         struct rte_mbuf *nmb; /* new allocated mbuf */
1650         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
1651         uint16_t rx_id = rxq->rx_tail;
1652         uint16_t nb_rx = 0;
1653         uint16_t nb_hold = 0;
1654         uint16_t rx_packet_len;
1655         uint32_t rx_status;
1656         uint64_t qword1;
1657         uint64_t dma_addr;
1658         uint64_t pkt_flags = 0;
1659         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1660         struct rte_eth_dev *dev;
1661
1662         while (nb_rx < nb_pkts) {
1663                 rxdp = &rx_ring[rx_id];
1664                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1665                 rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >>
1666                             ICE_RXD_QW1_STATUS_S;
1667
1668                 /* Check the DD bit first */
1669                 if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
1670                         break;
1671
1672                 /* allocate mbuf */
1673                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1674                 if (unlikely(!nmb)) {
1675                         dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
1676                         dev->data->rx_mbuf_alloc_failed++;
1677                         break;
1678                 }
1679                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
1680
1681                 nb_hold++;
1682                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
1683                 rx_id++;
1684                 if (unlikely(rx_id == rxq->nb_rx_desc))
1685                         rx_id = 0;
1686                 rxm = rxe->mbuf;
1687                 rxe->mbuf = nmb;
1688                 dma_addr =
1689                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1690
1691                 /**
1692                  * fill the read format of descriptor with physic address in
1693                  * new allocated mbuf: nmb
1694                  */
1695                 rxdp->read.hdr_addr = 0;
1696                 rxdp->read.pkt_addr = dma_addr;
1697
1698                 /* calculate rx_packet_len of the received pkt */
1699                 rx_packet_len = ((qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
1700                                 ICE_RXD_QW1_LEN_PBUF_S) - rxq->crc_len;
1701
1702                 /* fill old mbuf with received descriptor: rxd */
1703                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1704                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1705                 rxm->nb_segs = 1;
1706                 rxm->next = NULL;
1707                 rxm->pkt_len = rx_packet_len;
1708                 rxm->data_len = rx_packet_len;
1709                 rxm->port = rxq->port_id;
1710                 ice_rxd_to_vlan_tci(rxm, rxdp);
1711                 rxm->packet_type = ptype_tbl[(uint8_t)((qword1 &
1712                                                         ICE_RXD_QW1_PTYPE_M) >>
1713                                                        ICE_RXD_QW1_PTYPE_S)];
1714                 pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
1715                 pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
1716                 if (pkt_flags & PKT_RX_RSS_HASH)
1717                         rxm->hash.rss =
1718                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1719                 rxm->ol_flags |= pkt_flags;
1720                 /* copy old mbuf to rx_pkts */
1721                 rx_pkts[nb_rx++] = rxm;
1722         }
1723         rxq->rx_tail = rx_id;
1724         /**
1725          * If the number of free RX descriptors is greater than the RX free
1726          * threshold of the queue, advance the receive tail register of queue.
1727          * Update that register with the value of the last processed RX
1728          * descriptor minus 1.
1729          */
1730         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1731         if (nb_hold > rxq->rx_free_thresh) {
1732                 rx_id = (uint16_t)(rx_id == 0 ?
1733                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
1734                 /* write TAIL register */
1735                 ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1736                 nb_hold = 0;
1737         }
1738         rxq->nb_rx_hold = nb_hold;
1739
1740         /* return received packet in the burst */
1741         return nb_rx;
1742 }
1743
1744 static inline void
1745 ice_parse_tunneling_params(uint64_t ol_flags,
1746                             union ice_tx_offload tx_offload,
1747                             uint32_t *cd_tunneling)
1748 {
1749         /* EIPT: External (outer) IP header type */
1750         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
1751                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4;
1752         else if (ol_flags & PKT_TX_OUTER_IPV4)
1753                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1754         else if (ol_flags & PKT_TX_OUTER_IPV6)
1755                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV6;
1756
1757         /* EIPLEN: External (outer) IP header length, in DWords */
1758         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
1759                 ICE_TXD_CTX_QW0_EIPLEN_S;
1760
1761         /* L4TUNT: L4 Tunneling Type */
1762         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
1763         case PKT_TX_TUNNEL_IPIP:
1764                 /* for non UDP / GRE tunneling, set to 00b */
1765                 break;
1766         case PKT_TX_TUNNEL_VXLAN:
1767         case PKT_TX_TUNNEL_GENEVE:
1768                 *cd_tunneling |= ICE_TXD_CTX_UDP_TUNNELING;
1769                 break;
1770         case PKT_TX_TUNNEL_GRE:
1771                 *cd_tunneling |= ICE_TXD_CTX_GRE_TUNNELING;
1772                 break;
1773         default:
1774                 PMD_TX_LOG(ERR, "Tunnel type not supported");
1775                 return;
1776         }
1777
1778         /* L4TUNLEN: L4 Tunneling Length, in Words
1779          *
1780          * We depend on app to set rte_mbuf.l2_len correctly.
1781          * For IP in GRE it should be set to the length of the GRE
1782          * header;
1783          * For MAC in GRE or MAC in UDP it should be set to the length
1784          * of the GRE or UDP headers plus the inner MAC up to including
1785          * its last Ethertype.
1786          * If MPLS labels exists, it should include them as well.
1787          */
1788         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
1789                 ICE_TXD_CTX_QW0_NATLEN_S;
1790
1791         if ((ol_flags & PKT_TX_OUTER_UDP_CKSUM) &&
1792             (ol_flags & PKT_TX_OUTER_IP_CKSUM) &&
1793             (*cd_tunneling & ICE_TXD_CTX_UDP_TUNNELING))
1794                 *cd_tunneling |= ICE_TXD_CTX_QW0_L4T_CS_M;
1795 }
1796
1797 static inline void
1798 ice_txd_enable_checksum(uint64_t ol_flags,
1799                         uint32_t *td_cmd,
1800                         uint32_t *td_offset,
1801                         union ice_tx_offload tx_offload)
1802 {
1803         /* Set MACLEN */
1804         if (ol_flags & PKT_TX_TUNNEL_MASK)
1805                 *td_offset |= (tx_offload.outer_l2_len >> 1)
1806                         << ICE_TX_DESC_LEN_MACLEN_S;
1807         else
1808                 *td_offset |= (tx_offload.l2_len >> 1)
1809                         << ICE_TX_DESC_LEN_MACLEN_S;
1810
1811         /* Enable L3 checksum offloads */
1812         if (ol_flags & PKT_TX_IP_CKSUM) {
1813                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1814                 *td_offset |= (tx_offload.l3_len >> 2) <<
1815                               ICE_TX_DESC_LEN_IPLEN_S;
1816         } else if (ol_flags & PKT_TX_IPV4) {
1817                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1818                 *td_offset |= (tx_offload.l3_len >> 2) <<
1819                               ICE_TX_DESC_LEN_IPLEN_S;
1820         } else if (ol_flags & PKT_TX_IPV6) {
1821                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1822                 *td_offset |= (tx_offload.l3_len >> 2) <<
1823                               ICE_TX_DESC_LEN_IPLEN_S;
1824         }
1825
1826         if (ol_flags & PKT_TX_TCP_SEG) {
1827                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1828                 *td_offset |= (tx_offload.l4_len >> 2) <<
1829                               ICE_TX_DESC_LEN_L4_LEN_S;
1830                 return;
1831         }
1832
1833         /* Enable L4 checksum offloads */
1834         switch (ol_flags & PKT_TX_L4_MASK) {
1835         case PKT_TX_TCP_CKSUM:
1836                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1837                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
1838                               ICE_TX_DESC_LEN_L4_LEN_S;
1839                 break;
1840         case PKT_TX_SCTP_CKSUM:
1841                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1842                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
1843                               ICE_TX_DESC_LEN_L4_LEN_S;
1844                 break;
1845         case PKT_TX_UDP_CKSUM:
1846                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1847                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
1848                               ICE_TX_DESC_LEN_L4_LEN_S;
1849                 break;
1850         default:
1851                 break;
1852         }
1853 }
1854
1855 static inline int
1856 ice_xmit_cleanup(struct ice_tx_queue *txq)
1857 {
1858         struct ice_tx_entry *sw_ring = txq->sw_ring;
1859         volatile struct ice_tx_desc *txd = txq->tx_ring;
1860         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
1861         uint16_t nb_tx_desc = txq->nb_tx_desc;
1862         uint16_t desc_to_clean_to;
1863         uint16_t nb_tx_to_clean;
1864
1865         /* Determine the last descriptor needing to be cleaned */
1866         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
1867         if (desc_to_clean_to >= nb_tx_desc)
1868                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
1869
1870         /* Check to make sure the last descriptor to clean is done */
1871         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
1872         if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
1873             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
1874                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
1875                                 "(port=%d queue=%d) value=0x%"PRIx64"\n",
1876                                 desc_to_clean_to,
1877                                 txq->port_id, txq->queue_id,
1878                                 txd[desc_to_clean_to].cmd_type_offset_bsz);
1879                 /* Failed to clean any descriptors */
1880                 return -1;
1881         }
1882
1883         /* Figure out how many descriptors will be cleaned */
1884         if (last_desc_cleaned > desc_to_clean_to)
1885                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
1886                                             desc_to_clean_to);
1887         else
1888                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
1889                                             last_desc_cleaned);
1890
1891         /* The last descriptor to clean is done, so that means all the
1892          * descriptors from the last descriptor that was cleaned
1893          * up to the last descriptor with the RS bit set
1894          * are done. Only reset the threshold descriptor.
1895          */
1896         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
1897
1898         /* Update the txq to reflect the last descriptor that was cleaned */
1899         txq->last_desc_cleaned = desc_to_clean_to;
1900         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
1901
1902         return 0;
1903 }
1904
1905 /* Construct the tx flags */
1906 static inline uint64_t
1907 ice_build_ctob(uint32_t td_cmd,
1908                uint32_t td_offset,
1909                uint16_t size,
1910                uint32_t td_tag)
1911 {
1912         return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
1913                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
1914                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
1915                                 ((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1916                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
1917 }
1918
1919 /* Check if the context descriptor is needed for TX offloading */
1920 static inline uint16_t
1921 ice_calc_context_desc(uint64_t flags)
1922 {
1923         static uint64_t mask = PKT_TX_TCP_SEG |
1924                 PKT_TX_QINQ |
1925                 PKT_TX_OUTER_IP_CKSUM |
1926                 PKT_TX_TUNNEL_MASK;
1927
1928         return (flags & mask) ? 1 : 0;
1929 }
1930
1931 /* set ice TSO context descriptor */
1932 static inline uint64_t
1933 ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
1934 {
1935         uint64_t ctx_desc = 0;
1936         uint32_t cd_cmd, hdr_len, cd_tso_len;
1937
1938         if (!tx_offload.l4_len) {
1939                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
1940                 return ctx_desc;
1941         }
1942
1943         hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
1944         hdr_len += (mbuf->ol_flags & PKT_TX_TUNNEL_MASK) ?
1945                    tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
1946
1947         cd_cmd = ICE_TX_CTX_DESC_TSO;
1948         cd_tso_len = mbuf->pkt_len - hdr_len;
1949         ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
1950                     ((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1951                     ((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
1952
1953         return ctx_desc;
1954 }
1955
1956 uint16_t
1957 ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1958 {
1959         struct ice_tx_queue *txq;
1960         volatile struct ice_tx_desc *tx_ring;
1961         volatile struct ice_tx_desc *txd;
1962         struct ice_tx_entry *sw_ring;
1963         struct ice_tx_entry *txe, *txn;
1964         struct rte_mbuf *tx_pkt;
1965         struct rte_mbuf *m_seg;
1966         uint32_t cd_tunneling_params;
1967         uint16_t tx_id;
1968         uint16_t nb_tx;
1969         uint16_t nb_used;
1970         uint16_t nb_ctx;
1971         uint32_t td_cmd = 0;
1972         uint32_t td_offset = 0;
1973         uint32_t td_tag = 0;
1974         uint16_t tx_last;
1975         uint64_t buf_dma_addr;
1976         uint64_t ol_flags;
1977         union ice_tx_offload tx_offload = {0};
1978
1979         txq = tx_queue;
1980         sw_ring = txq->sw_ring;
1981         tx_ring = txq->tx_ring;
1982         tx_id = txq->tx_tail;
1983         txe = &sw_ring[tx_id];
1984
1985         /* Check if the descriptor ring needs to be cleaned. */
1986         if (txq->nb_tx_free < txq->tx_free_thresh)
1987                 ice_xmit_cleanup(txq);
1988
1989         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1990                 tx_pkt = *tx_pkts++;
1991
1992                 td_cmd = 0;
1993                 ol_flags = tx_pkt->ol_flags;
1994                 tx_offload.l2_len = tx_pkt->l2_len;
1995                 tx_offload.l3_len = tx_pkt->l3_len;
1996                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1997                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1998                 tx_offload.l4_len = tx_pkt->l4_len;
1999                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
2000                 /* Calculate the number of context descriptors needed. */
2001                 nb_ctx = ice_calc_context_desc(ol_flags);
2002
2003                 /* The number of descriptors that must be allocated for
2004                  * a packet equals to the number of the segments of that
2005                  * packet plus the number of context descriptor if needed.
2006                  */
2007                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
2008                 tx_last = (uint16_t)(tx_id + nb_used - 1);
2009
2010                 /* Circular ring */
2011                 if (tx_last >= txq->nb_tx_desc)
2012                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
2013
2014                 if (nb_used > txq->nb_tx_free) {
2015                         if (ice_xmit_cleanup(txq) != 0) {
2016                                 if (nb_tx == 0)
2017                                         return 0;
2018                                 goto end_of_tx;
2019                         }
2020                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
2021                                 while (nb_used > txq->nb_tx_free) {
2022                                         if (ice_xmit_cleanup(txq) != 0) {
2023                                                 if (nb_tx == 0)
2024                                                         return 0;
2025                                                 goto end_of_tx;
2026                                         }
2027                                 }
2028                         }
2029                 }
2030
2031                 /* Descriptor based VLAN insertion */
2032                 if (ol_flags & (PKT_TX_VLAN | PKT_TX_QINQ)) {
2033                         td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
2034                         td_tag = tx_pkt->vlan_tci;
2035                 }
2036
2037                 /* Fill in tunneling parameters if necessary */
2038                 cd_tunneling_params = 0;
2039                 if (ol_flags & PKT_TX_TUNNEL_MASK)
2040                         ice_parse_tunneling_params(ol_flags, tx_offload,
2041                                                    &cd_tunneling_params);
2042
2043                 /* Enable checksum offloading */
2044                 if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK) {
2045                         ice_txd_enable_checksum(ol_flags, &td_cmd,
2046                                                 &td_offset, tx_offload);
2047                 }
2048
2049                 if (nb_ctx) {
2050                         /* Setup TX context descriptor if required */
2051                         volatile struct ice_tx_ctx_desc *ctx_txd =
2052                                 (volatile struct ice_tx_ctx_desc *)
2053                                         &tx_ring[tx_id];
2054                         uint16_t cd_l2tag2 = 0;
2055                         uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
2056
2057                         txn = &sw_ring[txe->next_id];
2058                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2059                         if (txe->mbuf) {
2060                                 rte_pktmbuf_free_seg(txe->mbuf);
2061                                 txe->mbuf = NULL;
2062                         }
2063
2064                         if (ol_flags & PKT_TX_TCP_SEG)
2065                                 cd_type_cmd_tso_mss |=
2066                                         ice_set_tso_ctx(tx_pkt, tx_offload);
2067
2068                         ctx_txd->tunneling_params =
2069                                 rte_cpu_to_le_32(cd_tunneling_params);
2070
2071                         /* TX context descriptor based double VLAN insert */
2072                         if (ol_flags & PKT_TX_QINQ) {
2073                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
2074                                 cd_type_cmd_tso_mss |=
2075                                         ((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
2076                                          ICE_TXD_CTX_QW1_CMD_S);
2077                         }
2078                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
2079                         ctx_txd->qw1 =
2080                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2081
2082                         txe->last_id = tx_last;
2083                         tx_id = txe->next_id;
2084                         txe = txn;
2085                 }
2086                 m_seg = tx_pkt;
2087
2088                 do {
2089                         txd = &tx_ring[tx_id];
2090                         txn = &sw_ring[txe->next_id];
2091
2092                         if (txe->mbuf)
2093                                 rte_pktmbuf_free_seg(txe->mbuf);
2094                         txe->mbuf = m_seg;
2095
2096                         /* Setup TX Descriptor */
2097                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2098                         txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2099                         txd->cmd_type_offset_bsz =
2100                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2101                                 ((uint64_t)td_cmd  << ICE_TXD_QW1_CMD_S) |
2102                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2103                                 ((uint64_t)m_seg->data_len  <<
2104                                  ICE_TXD_QW1_TX_BUF_SZ_S) |
2105                                 ((uint64_t)td_tag  << ICE_TXD_QW1_L2TAG1_S));
2106
2107                         txe->last_id = tx_last;
2108                         tx_id = txe->next_id;
2109                         txe = txn;
2110                         m_seg = m_seg->next;
2111                 } while (m_seg);
2112
2113                 /* fill the last descriptor with End of Packet (EOP) bit */
2114                 td_cmd |= ICE_TX_DESC_CMD_EOP;
2115                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
2116                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
2117
2118                 /* set RS bit on the last descriptor of one packet */
2119                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
2120                         PMD_TX_FREE_LOG(DEBUG,
2121                                         "Setting RS bit on TXD id="
2122                                         "%4u (port=%d queue=%d)",
2123                                         tx_last, txq->port_id, txq->queue_id);
2124
2125                         td_cmd |= ICE_TX_DESC_CMD_RS;
2126
2127                         /* Update txq RS bit counters */
2128                         txq->nb_tx_used = 0;
2129                 }
2130                 txd->cmd_type_offset_bsz |=
2131                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2132                                          ICE_TXD_QW1_CMD_S);
2133         }
2134 end_of_tx:
2135         rte_wmb();
2136
2137         /* update Tail register */
2138         ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
2139         txq->tx_tail = tx_id;
2140
2141         return nb_tx;
2142 }
2143
2144 static inline int __attribute__((always_inline))
2145 ice_tx_free_bufs(struct ice_tx_queue *txq)
2146 {
2147         struct ice_tx_entry *txep;
2148         uint16_t i;
2149
2150         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
2151              rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
2152             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
2153                 return 0;
2154
2155         txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
2156
2157         for (i = 0; i < txq->tx_rs_thresh; i++)
2158                 rte_prefetch0((txep + i)->mbuf);
2159
2160         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
2161                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2162                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
2163                         txep->mbuf = NULL;
2164                 }
2165         } else {
2166                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2167                         rte_pktmbuf_free_seg(txep->mbuf);
2168                         txep->mbuf = NULL;
2169                 }
2170         }
2171
2172         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
2173         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
2174         if (txq->tx_next_dd >= txq->nb_tx_desc)
2175                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2176
2177         return txq->tx_rs_thresh;
2178 }
2179
2180 /* Populate 4 descriptors with data from 4 mbufs */
2181 static inline void
2182 tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
2183 {
2184         uint64_t dma_addr;
2185         uint32_t i;
2186
2187         for (i = 0; i < 4; i++, txdp++, pkts++) {
2188                 dma_addr = rte_mbuf_data_iova(*pkts);
2189                 txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
2190                 txdp->cmd_type_offset_bsz =
2191                         ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
2192                                        (*pkts)->data_len, 0);
2193         }
2194 }
2195
2196 /* Populate 1 descriptor with data from 1 mbuf */
2197 static inline void
2198 tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
2199 {
2200         uint64_t dma_addr;
2201
2202         dma_addr = rte_mbuf_data_iova(*pkts);
2203         txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
2204         txdp->cmd_type_offset_bsz =
2205                 ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
2206                                (*pkts)->data_len, 0);
2207 }
2208
2209 static inline void
2210 ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
2211                     uint16_t nb_pkts)
2212 {
2213         volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
2214         struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
2215         const int N_PER_LOOP = 4;
2216         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
2217         int mainpart, leftover;
2218         int i, j;
2219
2220         /**
2221          * Process most of the packets in chunks of N pkts.  Any
2222          * leftover packets will get processed one at a time.
2223          */
2224         mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
2225         leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
2226         for (i = 0; i < mainpart; i += N_PER_LOOP) {
2227                 /* Copy N mbuf pointers to the S/W ring */
2228                 for (j = 0; j < N_PER_LOOP; ++j)
2229                         (txep + i + j)->mbuf = *(pkts + i + j);
2230                 tx4(txdp + i, pkts + i);
2231         }
2232
2233         if (unlikely(leftover > 0)) {
2234                 for (i = 0; i < leftover; ++i) {
2235                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
2236                         tx1(txdp + mainpart + i, pkts + mainpart + i);
2237                 }
2238         }
2239 }
2240
2241 static inline uint16_t
2242 tx_xmit_pkts(struct ice_tx_queue *txq,
2243              struct rte_mbuf **tx_pkts,
2244              uint16_t nb_pkts)
2245 {
2246         volatile struct ice_tx_desc *txr = txq->tx_ring;
2247         uint16_t n = 0;
2248
2249         /**
2250          * Begin scanning the H/W ring for done descriptors when the number
2251          * of available descriptors drops below tx_free_thresh. For each done
2252          * descriptor, free the associated buffer.
2253          */
2254         if (txq->nb_tx_free < txq->tx_free_thresh)
2255                 ice_tx_free_bufs(txq);
2256
2257         /* Use available descriptor only */
2258         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
2259         if (unlikely(!nb_pkts))
2260                 return 0;
2261
2262         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
2263         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
2264                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
2265                 ice_tx_fill_hw_ring(txq, tx_pkts, n);
2266                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
2267                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
2268                                          ICE_TXD_QW1_CMD_S);
2269                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2270                 txq->tx_tail = 0;
2271         }
2272
2273         /* Fill hardware descriptor ring with mbuf data */
2274         ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
2275         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
2276
2277         /* Determin if RS bit needs to be set */
2278         if (txq->tx_tail > txq->tx_next_rs) {
2279                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
2280                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
2281                                          ICE_TXD_QW1_CMD_S);
2282                 txq->tx_next_rs =
2283                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
2284                 if (txq->tx_next_rs >= txq->nb_tx_desc)
2285                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2286         }
2287
2288         if (txq->tx_tail >= txq->nb_tx_desc)
2289                 txq->tx_tail = 0;
2290
2291         /* Update the tx tail register */
2292         rte_wmb();
2293         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
2294
2295         return nb_pkts;
2296 }
2297
2298 static uint16_t
2299 ice_xmit_pkts_simple(void *tx_queue,
2300                      struct rte_mbuf **tx_pkts,
2301                      uint16_t nb_pkts)
2302 {
2303         uint16_t nb_tx = 0;
2304
2305         if (likely(nb_pkts <= ICE_TX_MAX_BURST))
2306                 return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
2307                                     tx_pkts, nb_pkts);
2308
2309         while (nb_pkts) {
2310                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
2311                                                       ICE_TX_MAX_BURST);
2312
2313                 ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
2314                                    &tx_pkts[nb_tx], num);
2315                 nb_tx = (uint16_t)(nb_tx + ret);
2316                 nb_pkts = (uint16_t)(nb_pkts - ret);
2317                 if (ret < num)
2318                         break;
2319         }
2320
2321         return nb_tx;
2322 }
2323
2324 void __attribute__((cold))
2325 ice_set_rx_function(struct rte_eth_dev *dev)
2326 {
2327         PMD_INIT_FUNC_TRACE();
2328         struct ice_adapter *ad =
2329                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2330 #ifdef RTE_ARCH_X86
2331         struct ice_rx_queue *rxq;
2332         int i;
2333         bool use_avx2 = false;
2334
2335         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2336                 if (!ice_rx_vec_dev_check(dev) && ad->rx_bulk_alloc_allowed) {
2337                         ad->rx_vec_allowed = true;
2338                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2339                                 rxq = dev->data->rx_queues[i];
2340                                 if (rxq && ice_rxq_vec_setup(rxq)) {
2341                                         ad->rx_vec_allowed = false;
2342                                         break;
2343                                 }
2344                         }
2345
2346                         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2347                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
2348                                 use_avx2 = true;
2349
2350                 } else {
2351                         ad->rx_vec_allowed = false;
2352                 }
2353         }
2354
2355         if (ad->rx_vec_allowed) {
2356                 if (dev->data->scattered_rx) {
2357                         PMD_DRV_LOG(DEBUG,
2358                                         "Using %sVector Scattered Rx (port %d).",
2359                                         use_avx2 ? "avx2 " : "",
2360                                         dev->data->port_id);
2361                         dev->rx_pkt_burst = use_avx2 ?
2362                                         ice_recv_scattered_pkts_vec_avx2 :
2363                                         ice_recv_scattered_pkts_vec;
2364                 } else {
2365                         PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2366                                         use_avx2 ? "avx2 " : "",
2367                                         dev->data->port_id);
2368                         dev->rx_pkt_burst = use_avx2 ?
2369                                                 ice_recv_pkts_vec_avx2 :
2370                                                 ice_recv_pkts_vec;
2371                 }
2372                 return;
2373         }
2374
2375 #endif
2376
2377         if (dev->data->scattered_rx) {
2378                 /* Set the non-LRO scattered function */
2379                 PMD_INIT_LOG(DEBUG,
2380                              "Using a Scattered function on port %d.",
2381                              dev->data->port_id);
2382                 dev->rx_pkt_burst = ice_recv_scattered_pkts;
2383         } else if (ad->rx_bulk_alloc_allowed) {
2384                 PMD_INIT_LOG(DEBUG,
2385                              "Rx Burst Bulk Alloc Preconditions are "
2386                              "satisfied. Rx Burst Bulk Alloc function "
2387                              "will be used on port %d.",
2388                              dev->data->port_id);
2389                 dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
2390         } else {
2391                 PMD_INIT_LOG(DEBUG,
2392                              "Rx Burst Bulk Alloc Preconditions are not "
2393                              "satisfied, Normal Rx will be used on port %d.",
2394                              dev->data->port_id);
2395                 dev->rx_pkt_burst = ice_recv_pkts;
2396         }
2397 }
2398
2399 void __attribute__((cold))
2400 ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ice_tx_queue *txq)
2401 {
2402         struct ice_adapter *ad =
2403                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2404
2405         /* Use a simple Tx queue if possible (only fast free is allowed) */
2406         ad->tx_simple_allowed =
2407                 (txq->offloads ==
2408                 (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
2409                 txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
2410
2411         if (ad->tx_simple_allowed)
2412                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
2413                              txq->queue_id);
2414         else
2415                 PMD_INIT_LOG(DEBUG,
2416                              "Simple Tx can NOT be enabled on Tx queue %u.",
2417                              txq->queue_id);
2418 }
2419
2420 /*********************************************************************
2421  *
2422  *  TX prep functions
2423  *
2424  **********************************************************************/
2425 /* The default values of TSO MSS */
2426 #define ICE_MIN_TSO_MSS            64
2427 #define ICE_MAX_TSO_MSS            9728
2428 #define ICE_MAX_TSO_FRAME_SIZE     262144
2429 uint16_t
2430 ice_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2431               uint16_t nb_pkts)
2432 {
2433         int i, ret;
2434         uint64_t ol_flags;
2435         struct rte_mbuf *m;
2436
2437         for (i = 0; i < nb_pkts; i++) {
2438                 m = tx_pkts[i];
2439                 ol_flags = m->ol_flags;
2440
2441                 if (ol_flags & PKT_TX_TCP_SEG &&
2442                     (m->tso_segsz < ICE_MIN_TSO_MSS ||
2443                      m->tso_segsz > ICE_MAX_TSO_MSS ||
2444                      m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
2445                         /**
2446                          * MSS outside the range are considered malicious
2447                          */
2448                         rte_errno = EINVAL;
2449                         return i;
2450                 }
2451
2452 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2453                 ret = rte_validate_tx_offload(m);
2454                 if (ret != 0) {
2455                         rte_errno = -ret;
2456                         return i;
2457                 }
2458 #endif
2459                 ret = rte_net_intel_cksum_prepare(m);
2460                 if (ret != 0) {
2461                         rte_errno = -ret;
2462                         return i;
2463                 }
2464         }
2465         return i;
2466 }
2467
2468 void __attribute__((cold))
2469 ice_set_tx_function(struct rte_eth_dev *dev)
2470 {
2471         struct ice_adapter *ad =
2472                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2473 #ifdef RTE_ARCH_X86
2474         struct ice_tx_queue *txq;
2475         int i;
2476         bool use_avx2 = false;
2477
2478         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
2479                 if (!ice_tx_vec_dev_check(dev)) {
2480                         ad->tx_vec_allowed = true;
2481                         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2482                                 txq = dev->data->tx_queues[i];
2483                                 if (txq && ice_txq_vec_setup(txq)) {
2484                                         ad->tx_vec_allowed = false;
2485                                         break;
2486                                 }
2487                         }
2488
2489                         if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2490                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
2491                                 use_avx2 = true;
2492
2493                 } else {
2494                         ad->tx_vec_allowed = false;
2495                 }
2496         }
2497
2498         if (ad->tx_vec_allowed) {
2499                 PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2500                             use_avx2 ? "avx2 " : "",
2501                             dev->data->port_id);
2502                 dev->tx_pkt_burst = use_avx2 ?
2503                                     ice_xmit_pkts_vec_avx2 :
2504                                     ice_xmit_pkts_vec;
2505                 dev->tx_pkt_prepare = NULL;
2506
2507                 return;
2508         }
2509 #endif
2510
2511         if (ad->tx_simple_allowed) {
2512                 PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
2513                 dev->tx_pkt_burst = ice_xmit_pkts_simple;
2514                 dev->tx_pkt_prepare = NULL;
2515         } else {
2516                 PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
2517                 dev->tx_pkt_burst = ice_xmit_pkts;
2518                 dev->tx_pkt_prepare = ice_prep_pkts;
2519         }
2520 }
2521
2522 /* For each value it means, datasheet of hardware can tell more details
2523  *
2524  * @note: fix ice_dev_supported_ptypes_get() if any change here.
2525  */
2526 static inline uint32_t
2527 ice_get_default_pkt_type(uint16_t ptype)
2528 {
2529         static const uint32_t type_table[ICE_MAX_PKT_TYPE]
2530                 __rte_cache_aligned = {
2531                 /* L2 types */
2532                 /* [0] reserved */
2533                 [1] = RTE_PTYPE_L2_ETHER,
2534                 /* [2] - [5] reserved */
2535                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
2536                 /* [7] - [10] reserved */
2537                 [11] = RTE_PTYPE_L2_ETHER_ARP,
2538                 /* [12] - [21] reserved */
2539
2540                 /* Non tunneled IPv4 */
2541                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2542                        RTE_PTYPE_L4_FRAG,
2543                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2544                        RTE_PTYPE_L4_NONFRAG,
2545                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2546                        RTE_PTYPE_L4_UDP,
2547                 /* [25] reserved */
2548                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2549                        RTE_PTYPE_L4_TCP,
2550                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2551                        RTE_PTYPE_L4_SCTP,
2552                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2553                        RTE_PTYPE_L4_ICMP,
2554
2555                 /* IPv4 --> IPv4 */
2556                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2557                        RTE_PTYPE_TUNNEL_IP |
2558                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2559                        RTE_PTYPE_INNER_L4_FRAG,
2560                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2561                        RTE_PTYPE_TUNNEL_IP |
2562                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2563                        RTE_PTYPE_INNER_L4_NONFRAG,
2564                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2565                        RTE_PTYPE_TUNNEL_IP |
2566                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2567                        RTE_PTYPE_INNER_L4_UDP,
2568                 /* [32] reserved */
2569                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2570                        RTE_PTYPE_TUNNEL_IP |
2571                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2572                        RTE_PTYPE_INNER_L4_TCP,
2573                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2574                        RTE_PTYPE_TUNNEL_IP |
2575                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2576                        RTE_PTYPE_INNER_L4_SCTP,
2577                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2578                        RTE_PTYPE_TUNNEL_IP |
2579                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2580                        RTE_PTYPE_INNER_L4_ICMP,
2581
2582                 /* IPv4 --> IPv6 */
2583                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2584                        RTE_PTYPE_TUNNEL_IP |
2585                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2586                        RTE_PTYPE_INNER_L4_FRAG,
2587                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2588                        RTE_PTYPE_TUNNEL_IP |
2589                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2590                        RTE_PTYPE_INNER_L4_NONFRAG,
2591                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2592                        RTE_PTYPE_TUNNEL_IP |
2593                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2594                        RTE_PTYPE_INNER_L4_UDP,
2595                 /* [39] reserved */
2596                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2597                        RTE_PTYPE_TUNNEL_IP |
2598                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2599                        RTE_PTYPE_INNER_L4_TCP,
2600                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2601                        RTE_PTYPE_TUNNEL_IP |
2602                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2603                        RTE_PTYPE_INNER_L4_SCTP,
2604                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2605                        RTE_PTYPE_TUNNEL_IP |
2606                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2607                        RTE_PTYPE_INNER_L4_ICMP,
2608
2609                 /* IPv4 --> GRE/Teredo/VXLAN */
2610                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2611                        RTE_PTYPE_TUNNEL_GRENAT,
2612
2613                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
2614                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2615                        RTE_PTYPE_TUNNEL_GRENAT |
2616                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2617                        RTE_PTYPE_INNER_L4_FRAG,
2618                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2619                        RTE_PTYPE_TUNNEL_GRENAT |
2620                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2621                        RTE_PTYPE_INNER_L4_NONFRAG,
2622                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2623                        RTE_PTYPE_TUNNEL_GRENAT |
2624                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2625                        RTE_PTYPE_INNER_L4_UDP,
2626                 /* [47] reserved */
2627                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2628                        RTE_PTYPE_TUNNEL_GRENAT |
2629                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2630                        RTE_PTYPE_INNER_L4_TCP,
2631                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2632                        RTE_PTYPE_TUNNEL_GRENAT |
2633                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2634                        RTE_PTYPE_INNER_L4_SCTP,
2635                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2636                        RTE_PTYPE_TUNNEL_GRENAT |
2637                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2638                        RTE_PTYPE_INNER_L4_ICMP,
2639
2640                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
2641                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2642                        RTE_PTYPE_TUNNEL_GRENAT |
2643                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2644                        RTE_PTYPE_INNER_L4_FRAG,
2645                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2646                        RTE_PTYPE_TUNNEL_GRENAT |
2647                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2648                        RTE_PTYPE_INNER_L4_NONFRAG,
2649                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2650                        RTE_PTYPE_TUNNEL_GRENAT |
2651                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2652                        RTE_PTYPE_INNER_L4_UDP,
2653                 /* [54] reserved */
2654                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2655                        RTE_PTYPE_TUNNEL_GRENAT |
2656                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2657                        RTE_PTYPE_INNER_L4_TCP,
2658                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2659                        RTE_PTYPE_TUNNEL_GRENAT |
2660                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2661                        RTE_PTYPE_INNER_L4_SCTP,
2662                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2663                        RTE_PTYPE_TUNNEL_GRENAT |
2664                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2665                        RTE_PTYPE_INNER_L4_ICMP,
2666
2667                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2668                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2669                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2670
2671                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2672                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2673                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2674                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2675                        RTE_PTYPE_INNER_L4_FRAG,
2676                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2677                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2678                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2679                        RTE_PTYPE_INNER_L4_NONFRAG,
2680                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2681                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2682                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2683                        RTE_PTYPE_INNER_L4_UDP,
2684                 /* [62] reserved */
2685                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2686                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2687                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2688                        RTE_PTYPE_INNER_L4_TCP,
2689                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2690                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2691                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2692                        RTE_PTYPE_INNER_L4_SCTP,
2693                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2694                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2695                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2696                        RTE_PTYPE_INNER_L4_ICMP,
2697
2698                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2699                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2700                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2701                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2702                        RTE_PTYPE_INNER_L4_FRAG,
2703                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2704                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2705                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2706                        RTE_PTYPE_INNER_L4_NONFRAG,
2707                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2708                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2709                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2710                        RTE_PTYPE_INNER_L4_UDP,
2711                 /* [69] reserved */
2712                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2713                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2714                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2715                        RTE_PTYPE_INNER_L4_TCP,
2716                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2717                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2718                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2719                        RTE_PTYPE_INNER_L4_SCTP,
2720                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2721                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2722                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2723                        RTE_PTYPE_INNER_L4_ICMP,
2724
2725                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN */
2726                 [73] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2727                        RTE_PTYPE_TUNNEL_GRENAT |
2728                        RTE_PTYPE_INNER_L2_ETHER_VLAN,
2729
2730                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
2731                 [74] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2732                        RTE_PTYPE_TUNNEL_GRENAT |
2733                        RTE_PTYPE_INNER_L2_ETHER_VLAN |
2734                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2735                        RTE_PTYPE_INNER_L4_FRAG,
2736                 [75] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2737                        RTE_PTYPE_TUNNEL_GRENAT |
2738                        RTE_PTYPE_INNER_L2_ETHER_VLAN |
2739                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2740                        RTE_PTYPE_INNER_L4_NONFRAG,
2741                 [76] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2742                        RTE_PTYPE_TUNNEL_GRENAT |
2743                        RTE_PTYPE_INNER_L2_ETHER_VLAN |
2744                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2745                        RTE_PTYPE_INNER_L4_UDP,
2746                 /* [77] reserved */
2747                 [78] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2748                        RTE_PTYPE_TUNNEL_GRENAT |
2749                        RTE_PTYPE_INNER_L2_ETHER_VLAN |
2750                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2751                        RTE_PTYPE_INNER_L4_TCP,
2752                 [79] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2753                        RTE_PTYPE_TUNNEL_GRENAT |
2754                        RTE_PTYPE_INNER_L2_ETHER_VLAN |
2755                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2756                        RTE_PTYPE_INNER_L4_SCTP,
2757                 [80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2758                        RTE_PTYPE_TUNNEL_GRENAT |
2759                        RTE_PTYPE_INNER_L2_ETHER_VLAN |
2760                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2761                        RTE_PTYPE_INNER_L4_ICMP,
2762
2763                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
2764                 [81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2765                        RTE_PTYPE_TUNNEL_GRENAT |
2766                        RTE_PTYPE_INNER_L2_ETHER_VLAN |
2767                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2768                        RTE_PTYPE_INNER_L4_FRAG,
2769                 [82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2770                        RTE_PTYPE_TUNNEL_GRENAT |
2771                        RTE_PTYPE_INNER_L2_ETHER_VLAN |
2772                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2773                        RTE_PTYPE_INNER_L4_NONFRAG,
2774                 [83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2775                        RTE_PTYPE_TUNNEL_GRENAT |
2776                        RTE_PTYPE_INNER_L2_ETHER_VLAN |
2777                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2778                        RTE_PTYPE_INNER_L4_UDP,
2779                 /* [84] reserved */
2780                 [85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2781                        RTE_PTYPE_TUNNEL_GRENAT |
2782                        RTE_PTYPE_INNER_L2_ETHER_VLAN |
2783                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2784                        RTE_PTYPE_INNER_L4_TCP,
2785                 [86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2786                        RTE_PTYPE_TUNNEL_GRENAT |
2787                        RTE_PTYPE_INNER_L2_ETHER_VLAN |
2788                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2789                        RTE_PTYPE_INNER_L4_SCTP,
2790                 [87] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2791                        RTE_PTYPE_TUNNEL_GRENAT |
2792                        RTE_PTYPE_INNER_L2_ETHER_VLAN |
2793                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2794                        RTE_PTYPE_INNER_L4_ICMP,
2795
2796                 /* Non tunneled IPv6 */
2797                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2798                        RTE_PTYPE_L4_FRAG,
2799                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2800                        RTE_PTYPE_L4_NONFRAG,
2801                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2802                        RTE_PTYPE_L4_UDP,
2803                 /* [91] reserved */
2804                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2805                        RTE_PTYPE_L4_TCP,
2806                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2807                        RTE_PTYPE_L4_SCTP,
2808                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2809                        RTE_PTYPE_L4_ICMP,
2810
2811                 /* IPv6 --> IPv4 */
2812                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2813                        RTE_PTYPE_TUNNEL_IP |
2814                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2815                        RTE_PTYPE_INNER_L4_FRAG,
2816                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2817                        RTE_PTYPE_TUNNEL_IP |
2818                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2819                        RTE_PTYPE_INNER_L4_NONFRAG,
2820                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2821                        RTE_PTYPE_TUNNEL_IP |
2822                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2823                        RTE_PTYPE_INNER_L4_UDP,
2824                 /* [98] reserved */
2825                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2826                        RTE_PTYPE_TUNNEL_IP |
2827                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2828                        RTE_PTYPE_INNER_L4_TCP,
2829                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2830                         RTE_PTYPE_TUNNEL_IP |
2831                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2832                         RTE_PTYPE_INNER_L4_SCTP,
2833                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2834                         RTE_PTYPE_TUNNEL_IP |
2835                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2836                         RTE_PTYPE_INNER_L4_ICMP,
2837
2838                 /* IPv6 --> IPv6 */
2839                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2840                         RTE_PTYPE_TUNNEL_IP |
2841                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2842                         RTE_PTYPE_INNER_L4_FRAG,
2843                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2844                         RTE_PTYPE_TUNNEL_IP |
2845                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2846                         RTE_PTYPE_INNER_L4_NONFRAG,
2847                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2848                         RTE_PTYPE_TUNNEL_IP |
2849                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2850                         RTE_PTYPE_INNER_L4_UDP,
2851                 /* [105] reserved */
2852                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2853                         RTE_PTYPE_TUNNEL_IP |
2854                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2855                         RTE_PTYPE_INNER_L4_TCP,
2856                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2857                         RTE_PTYPE_TUNNEL_IP |
2858                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2859                         RTE_PTYPE_INNER_L4_SCTP,
2860                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2861                         RTE_PTYPE_TUNNEL_IP |
2862                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2863                         RTE_PTYPE_INNER_L4_ICMP,
2864
2865                 /* IPv6 --> GRE/Teredo/VXLAN */
2866                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2867                         RTE_PTYPE_TUNNEL_GRENAT,
2868
2869                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
2870                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2871                         RTE_PTYPE_TUNNEL_GRENAT |
2872                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2873                         RTE_PTYPE_INNER_L4_FRAG,
2874                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2875                         RTE_PTYPE_TUNNEL_GRENAT |
2876                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2877                         RTE_PTYPE_INNER_L4_NONFRAG,
2878                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2879                         RTE_PTYPE_TUNNEL_GRENAT |
2880                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2881                         RTE_PTYPE_INNER_L4_UDP,
2882                 /* [113] reserved */
2883                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2884                         RTE_PTYPE_TUNNEL_GRENAT |
2885                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2886                         RTE_PTYPE_INNER_L4_TCP,
2887                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2888                         RTE_PTYPE_TUNNEL_GRENAT |
2889                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2890                         RTE_PTYPE_INNER_L4_SCTP,
2891                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2892                         RTE_PTYPE_TUNNEL_GRENAT |
2893                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2894                         RTE_PTYPE_INNER_L4_ICMP,
2895
2896                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
2897                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2898                         RTE_PTYPE_TUNNEL_GRENAT |
2899                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2900                         RTE_PTYPE_INNER_L4_FRAG,
2901                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2902                         RTE_PTYPE_TUNNEL_GRENAT |
2903                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2904                         RTE_PTYPE_INNER_L4_NONFRAG,
2905                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2906                         RTE_PTYPE_TUNNEL_GRENAT |
2907                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2908                         RTE_PTYPE_INNER_L4_UDP,
2909                 /* [120] reserved */
2910                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2911                         RTE_PTYPE_TUNNEL_GRENAT |
2912                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2913                         RTE_PTYPE_INNER_L4_TCP,
2914                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2915                         RTE_PTYPE_TUNNEL_GRENAT |
2916                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2917                         RTE_PTYPE_INNER_L4_SCTP,
2918                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2919                         RTE_PTYPE_TUNNEL_GRENAT |
2920                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2921                         RTE_PTYPE_INNER_L4_ICMP,
2922
2923                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
2924                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2925                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2926
2927                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2928                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2929                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2930                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2931                         RTE_PTYPE_INNER_L4_FRAG,
2932                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2933                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2934                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2935                         RTE_PTYPE_INNER_L4_NONFRAG,
2936                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2937                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2938                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2939                         RTE_PTYPE_INNER_L4_UDP,
2940                 /* [128] reserved */
2941                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2942                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2943                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2944                         RTE_PTYPE_INNER_L4_TCP,
2945                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2946                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2947                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2948                         RTE_PTYPE_INNER_L4_SCTP,
2949                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2950                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2951                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2952                         RTE_PTYPE_INNER_L4_ICMP,
2953
2954                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2955                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2956                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2957                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2958                         RTE_PTYPE_INNER_L4_FRAG,
2959                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2960                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2961                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2962                         RTE_PTYPE_INNER_L4_NONFRAG,
2963                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2964                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2965                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2966                         RTE_PTYPE_INNER_L4_UDP,
2967                 /* [135] reserved */
2968                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2969                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2970                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2971                         RTE_PTYPE_INNER_L4_TCP,
2972                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2973                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2974                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2975                         RTE_PTYPE_INNER_L4_SCTP,
2976                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2977                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2978                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2979                         RTE_PTYPE_INNER_L4_ICMP,
2980
2981                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN */
2982                 [139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2983                         RTE_PTYPE_TUNNEL_GRENAT |
2984                         RTE_PTYPE_INNER_L2_ETHER_VLAN,
2985
2986                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
2987                 [140] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2988                         RTE_PTYPE_TUNNEL_GRENAT |
2989                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
2990                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2991                         RTE_PTYPE_INNER_L4_FRAG,
2992                 [141] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2993                         RTE_PTYPE_TUNNEL_GRENAT |
2994                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
2995                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2996                         RTE_PTYPE_INNER_L4_NONFRAG,
2997                 [142] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2998                         RTE_PTYPE_TUNNEL_GRENAT |
2999                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
3000                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3001                         RTE_PTYPE_INNER_L4_UDP,
3002                 /* [143] reserved */
3003                 [144] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3004                         RTE_PTYPE_TUNNEL_GRENAT |
3005                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
3006                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3007                         RTE_PTYPE_INNER_L4_TCP,
3008                 [145] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3009                         RTE_PTYPE_TUNNEL_GRENAT |
3010                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
3011                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3012                         RTE_PTYPE_INNER_L4_SCTP,
3013                 [146] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3014                         RTE_PTYPE_TUNNEL_GRENAT |
3015                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
3016                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3017                         RTE_PTYPE_INNER_L4_ICMP,
3018
3019                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
3020                 [147] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3021                         RTE_PTYPE_TUNNEL_GRENAT |
3022                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
3023                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3024                         RTE_PTYPE_INNER_L4_FRAG,
3025                 [148] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3026                         RTE_PTYPE_TUNNEL_GRENAT |
3027                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
3028                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3029                         RTE_PTYPE_INNER_L4_NONFRAG,
3030                 [149] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3031                         RTE_PTYPE_TUNNEL_GRENAT |
3032                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
3033                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3034                         RTE_PTYPE_INNER_L4_UDP,
3035                 /* [150] reserved */
3036                 [151] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3037                         RTE_PTYPE_TUNNEL_GRENAT |
3038                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
3039                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3040                         RTE_PTYPE_INNER_L4_TCP,
3041                 [152] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3042                         RTE_PTYPE_TUNNEL_GRENAT |
3043                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
3044                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3045                         RTE_PTYPE_INNER_L4_SCTP,
3046                 [153] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3047                         RTE_PTYPE_TUNNEL_GRENAT |
3048                         RTE_PTYPE_INNER_L2_ETHER_VLAN |
3049                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3050                         RTE_PTYPE_INNER_L4_ICMP,
3051                 /* [154] - [255] reserved */
3052                 [256] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3053                         RTE_PTYPE_TUNNEL_GTPC,
3054                 [257] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3055                         RTE_PTYPE_TUNNEL_GTPC,
3056                 [258] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3057                                 RTE_PTYPE_TUNNEL_GTPU,
3058                 [259] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3059                                 RTE_PTYPE_TUNNEL_GTPU,
3060                 /* [260] - [263] reserved */
3061                 [264] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3062                         RTE_PTYPE_TUNNEL_GTPC,
3063                 [265] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3064                         RTE_PTYPE_TUNNEL_GTPC,
3065                 [266] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3066                                 RTE_PTYPE_TUNNEL_GTPU,
3067                 [267] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3068                                 RTE_PTYPE_TUNNEL_GTPU,
3069
3070                 /* All others reserved */
3071         };
3072
3073         return type_table[ptype];
3074 }
3075
3076 void __attribute__((cold))
3077 ice_set_default_ptype_table(struct rte_eth_dev *dev)
3078 {
3079         struct ice_adapter *ad =
3080                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3081         int i;
3082
3083         for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
3084                 ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
3085 }