net/mlx5: support yellow meter action in hierarchy
[dpdk.git] / drivers / net / ice / ice_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Intel Corporation
3  */
4
5 #include <ethdev_driver.h>
6 #include <rte_net.h>
7 #include <rte_vect.h>
8
9 #include "rte_pmd_ice.h"
10 #include "ice_rxtx.h"
11 #include "ice_rxtx_vec_common.h"
12
13 #define ICE_TX_CKSUM_OFFLOAD_MASK (RTE_MBUF_F_TX_IP_CKSUM |              \
14                 RTE_MBUF_F_TX_L4_MASK |          \
15                 RTE_MBUF_F_TX_TCP_SEG |          \
16                 RTE_MBUF_F_TX_OUTER_IP_CKSUM)
17
18 /* Offset of mbuf dynamic field for protocol extraction data */
19 int rte_net_ice_dynfield_proto_xtr_metadata_offs = -1;
20
21 /* Mask of mbuf dynamic flags for protocol extraction type */
22 uint64_t rte_net_ice_dynflag_proto_xtr_vlan_mask;
23 uint64_t rte_net_ice_dynflag_proto_xtr_ipv4_mask;
24 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_mask;
25 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
26 uint64_t rte_net_ice_dynflag_proto_xtr_tcp_mask;
27 uint64_t rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
28
29 static int
30 ice_monitor_callback(const uint64_t value,
31                 const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
32 {
33         const uint64_t m = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
34         /*
35          * we expect the DD bit to be set to 1 if this descriptor was already
36          * written to.
37          */
38         return (value & m) == m ? -1 : 0;
39 }
40
41 int
42 ice_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
43 {
44         volatile union ice_rx_flex_desc *rxdp;
45         struct ice_rx_queue *rxq = rx_queue;
46         uint16_t desc;
47
48         desc = rxq->rx_tail;
49         rxdp = &rxq->rx_ring[desc];
50         /* watch for changes in status bit */
51         pmc->addr = &rxdp->wb.status_error0;
52
53         /* comparison callback */
54         pmc->fn = ice_monitor_callback;
55
56         /* register is 16-bit */
57         pmc->size = sizeof(uint16_t);
58
59         return 0;
60 }
61
62
63 static inline uint8_t
64 ice_proto_xtr_type_to_rxdid(uint8_t xtr_type)
65 {
66         static uint8_t rxdid_map[] = {
67                 [PROTO_XTR_NONE]      = ICE_RXDID_COMMS_OVS,
68                 [PROTO_XTR_VLAN]      = ICE_RXDID_COMMS_AUX_VLAN,
69                 [PROTO_XTR_IPV4]      = ICE_RXDID_COMMS_AUX_IPV4,
70                 [PROTO_XTR_IPV6]      = ICE_RXDID_COMMS_AUX_IPV6,
71                 [PROTO_XTR_IPV6_FLOW] = ICE_RXDID_COMMS_AUX_IPV6_FLOW,
72                 [PROTO_XTR_TCP]       = ICE_RXDID_COMMS_AUX_TCP,
73                 [PROTO_XTR_IP_OFFSET] = ICE_RXDID_COMMS_AUX_IP_OFFSET,
74         };
75
76         return xtr_type < RTE_DIM(rxdid_map) ?
77                                 rxdid_map[xtr_type] : ICE_RXDID_COMMS_OVS;
78 }
79
80 static inline void
81 ice_rxd_to_pkt_fields_by_comms_generic(__rte_unused struct ice_rx_queue *rxq,
82                                        struct rte_mbuf *mb,
83                                        volatile union ice_rx_flex_desc *rxdp)
84 {
85         volatile struct ice_32b_rx_flex_desc_comms *desc =
86                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
87         uint16_t stat_err = rte_le_to_cpu_16(desc->status_error0);
88
89         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
90                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
91                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
92         }
93
94 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
95         if (desc->flow_id != 0xFFFFFFFF) {
96                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
97                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
98         }
99 #endif
100 }
101
102 static inline void
103 ice_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct ice_rx_queue *rxq,
104                                    struct rte_mbuf *mb,
105                                    volatile union ice_rx_flex_desc *rxdp)
106 {
107         volatile struct ice_32b_rx_flex_desc_comms_ovs *desc =
108                         (volatile struct ice_32b_rx_flex_desc_comms_ovs *)rxdp;
109 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
110         uint16_t stat_err;
111 #endif
112
113         if (desc->flow_id != 0xFFFFFFFF) {
114                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
115                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
116         }
117
118 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
119         stat_err = rte_le_to_cpu_16(desc->status_error0);
120         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
121                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
122                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
123         }
124 #endif
125 }
126
127 static inline void
128 ice_rxd_to_pkt_fields_by_comms_aux_v1(struct ice_rx_queue *rxq,
129                                       struct rte_mbuf *mb,
130                                       volatile union ice_rx_flex_desc *rxdp)
131 {
132         volatile struct ice_32b_rx_flex_desc_comms *desc =
133                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
134         uint16_t stat_err;
135
136         stat_err = rte_le_to_cpu_16(desc->status_error0);
137         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
138                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
139                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
140         }
141
142 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
143         if (desc->flow_id != 0xFFFFFFFF) {
144                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
145                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
146         }
147
148         if (rxq->xtr_ol_flag) {
149                 uint32_t metadata = 0;
150
151                 stat_err = rte_le_to_cpu_16(desc->status_error1);
152
153                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
154                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
155
156                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
157                         metadata |=
158                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
159
160                 if (metadata) {
161                         mb->ol_flags |= rxq->xtr_ol_flag;
162
163                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
164                 }
165         }
166 #else
167         RTE_SET_USED(rxq);
168 #endif
169 }
170
171 static inline void
172 ice_rxd_to_pkt_fields_by_comms_aux_v2(struct ice_rx_queue *rxq,
173                                       struct rte_mbuf *mb,
174                                       volatile union ice_rx_flex_desc *rxdp)
175 {
176         volatile struct ice_32b_rx_flex_desc_comms *desc =
177                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
178         uint16_t stat_err;
179
180         stat_err = rte_le_to_cpu_16(desc->status_error0);
181         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
182                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
183                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
184         }
185
186 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
187         if (desc->flow_id != 0xFFFFFFFF) {
188                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
189                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
190         }
191
192         if (rxq->xtr_ol_flag) {
193                 uint32_t metadata = 0;
194
195                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
196                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
197                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
198                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
199
200                 if (metadata) {
201                         mb->ol_flags |= rxq->xtr_ol_flag;
202
203                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
204                 }
205         }
206 #else
207         RTE_SET_USED(rxq);
208 #endif
209 }
210
211 static const ice_rxd_to_pkt_fields_t rxd_to_pkt_fields_ops[] = {
212         [ICE_RXDID_COMMS_AUX_VLAN] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
213         [ICE_RXDID_COMMS_AUX_IPV4] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
214         [ICE_RXDID_COMMS_AUX_IPV6] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
215         [ICE_RXDID_COMMS_AUX_IPV6_FLOW] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
216         [ICE_RXDID_COMMS_AUX_TCP] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
217         [ICE_RXDID_COMMS_AUX_IP_OFFSET] = ice_rxd_to_pkt_fields_by_comms_aux_v2,
218         [ICE_RXDID_COMMS_GENERIC] = ice_rxd_to_pkt_fields_by_comms_generic,
219         [ICE_RXDID_COMMS_OVS] = ice_rxd_to_pkt_fields_by_comms_ovs,
220 };
221
222 void
223 ice_select_rxd_to_pkt_fields_handler(struct ice_rx_queue *rxq, uint32_t rxdid)
224 {
225         rxq->rxdid = rxdid;
226
227         switch (rxdid) {
228         case ICE_RXDID_COMMS_AUX_VLAN:
229                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_vlan_mask;
230                 break;
231
232         case ICE_RXDID_COMMS_AUX_IPV4:
233                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv4_mask;
234                 break;
235
236         case ICE_RXDID_COMMS_AUX_IPV6:
237                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_mask;
238                 break;
239
240         case ICE_RXDID_COMMS_AUX_IPV6_FLOW:
241                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
242                 break;
243
244         case ICE_RXDID_COMMS_AUX_TCP:
245                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_tcp_mask;
246                 break;
247
248         case ICE_RXDID_COMMS_AUX_IP_OFFSET:
249                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
250                 break;
251
252         case ICE_RXDID_COMMS_GENERIC:
253                 /* fallthrough */
254         case ICE_RXDID_COMMS_OVS:
255                 break;
256
257         default:
258                 /* update this according to the RXDID for PROTO_XTR_NONE */
259                 rxq->rxdid = ICE_RXDID_COMMS_OVS;
260                 break;
261         }
262
263         if (!rte_net_ice_dynf_proto_xtr_metadata_avail())
264                 rxq->xtr_ol_flag = 0;
265 }
266
267 static enum ice_status
268 ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
269 {
270         struct ice_vsi *vsi = rxq->vsi;
271         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
272         struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
273         struct rte_eth_dev_data *dev_data = rxq->vsi->adapter->pf.dev_data;
274         struct ice_rlan_ctx rx_ctx;
275         enum ice_status err;
276         uint16_t buf_size;
277         uint32_t rxdid = ICE_RXDID_COMMS_OVS;
278         uint32_t regval;
279         struct ice_adapter *ad = rxq->vsi->adapter;
280         uint32_t frame_size = dev_data->mtu + ICE_ETH_OVERHEAD;
281
282         /* Set buffer size as the head split is disabled. */
283         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
284                               RTE_PKTMBUF_HEADROOM);
285         rxq->rx_hdr_len = 0;
286         rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
287         rxq->max_pkt_len =
288                 RTE_MIN((uint32_t)ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len,
289                         frame_size);
290
291         if (rxq->max_pkt_len <= RTE_ETHER_MIN_LEN ||
292             rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
293                 PMD_DRV_LOG(ERR, "maximum packet length must "
294                             "be larger than %u and smaller than %u",
295                             (uint32_t)RTE_ETHER_MIN_LEN,
296                             (uint32_t)ICE_FRAME_SIZE_MAX);
297                 return -EINVAL;
298         }
299
300         if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
301                 /* Register mbuf field and flag for Rx timestamp */
302                 err = rte_mbuf_dyn_rx_timestamp_register(
303                                 &ice_timestamp_dynfield_offset,
304                                 &ice_timestamp_dynflag);
305                 if (err) {
306                         PMD_DRV_LOG(ERR,
307                                 "Cannot register mbuf field/flag for timestamp");
308                         return -EINVAL;
309                 }
310         }
311
312         memset(&rx_ctx, 0, sizeof(rx_ctx));
313
314         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
315         rx_ctx.qlen = rxq->nb_rx_desc;
316         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
317         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
318         rx_ctx.dtype = 0; /* No Header Split mode */
319 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
320         rx_ctx.dsize = 1; /* 32B descriptors */
321 #endif
322         rx_ctx.rxmax = rxq->max_pkt_len;
323         /* TPH: Transaction Layer Packet (TLP) processing hints */
324         rx_ctx.tphrdesc_ena = 1;
325         rx_ctx.tphwdesc_ena = 1;
326         rx_ctx.tphdata_ena = 1;
327         rx_ctx.tphhead_ena = 1;
328         /* Low Receive Queue Threshold defined in 64 descriptors units.
329          * When the number of free descriptors goes below the lrxqthresh,
330          * an immediate interrupt is triggered.
331          */
332         rx_ctx.lrxqthresh = 2;
333         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
334         rx_ctx.l2tsel = 1;
335         rx_ctx.showiv = 0;
336         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
337
338         rxdid = ice_proto_xtr_type_to_rxdid(rxq->proto_xtr);
339
340         PMD_DRV_LOG(DEBUG, "Port (%u) - Rx queue (%u) is set with RXDID : %u",
341                     rxq->port_id, rxq->queue_id, rxdid);
342
343         if (!(pf->supported_rxdid & BIT(rxdid))) {
344                 PMD_DRV_LOG(ERR, "currently package doesn't support RXDID (%u)",
345                             rxdid);
346                 return -EINVAL;
347         }
348
349         ice_select_rxd_to_pkt_fields_handler(rxq, rxdid);
350
351         /* Enable Flexible Descriptors in the queue context which
352          * allows this driver to select a specific receive descriptor format
353          */
354         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
355                 QRXFLXP_CNTXT_RXDID_IDX_M;
356
357         /* increasing context priority to pick up profile ID;
358          * default is 0x01; setting to 0x03 to ensure profile
359          * is programming if prev context is of same priority
360          */
361         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
362                 QRXFLXP_CNTXT_RXDID_PRIO_M;
363
364         if (ad->ptp_ena || rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
365                 regval |= QRXFLXP_CNTXT_TS_M;
366
367         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
368
369         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
370         if (err) {
371                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
372                             rxq->queue_id);
373                 return -EINVAL;
374         }
375         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
376         if (err) {
377                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
378                             rxq->queue_id);
379                 return -EINVAL;
380         }
381
382         /* Check if scattered RX needs to be used. */
383         if (frame_size > buf_size)
384                 dev_data->scattered_rx = 1;
385
386         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
387
388         /* Init the Rx tail register*/
389         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
390
391         return 0;
392 }
393
394 /* Allocate mbufs for all descriptors in rx queue */
395 static int
396 ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
397 {
398         struct ice_rx_entry *rxe = rxq->sw_ring;
399         uint64_t dma_addr;
400         uint16_t i;
401
402         for (i = 0; i < rxq->nb_rx_desc; i++) {
403                 volatile union ice_rx_flex_desc *rxd;
404                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
405
406                 if (unlikely(!mbuf)) {
407                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
408                         return -ENOMEM;
409                 }
410
411                 rte_mbuf_refcnt_set(mbuf, 1);
412                 mbuf->next = NULL;
413                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
414                 mbuf->nb_segs = 1;
415                 mbuf->port = rxq->port_id;
416
417                 dma_addr =
418                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
419
420                 rxd = &rxq->rx_ring[i];
421                 rxd->read.pkt_addr = dma_addr;
422                 rxd->read.hdr_addr = 0;
423 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
424                 rxd->read.rsvd1 = 0;
425                 rxd->read.rsvd2 = 0;
426 #endif
427                 rxe[i].mbuf = mbuf;
428         }
429
430         return 0;
431 }
432
433 /* Free all mbufs for descriptors in rx queue */
434 static void
435 _ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
436 {
437         uint16_t i;
438
439         if (!rxq || !rxq->sw_ring) {
440                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
441                 return;
442         }
443
444         for (i = 0; i < rxq->nb_rx_desc; i++) {
445                 if (rxq->sw_ring[i].mbuf) {
446                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
447                         rxq->sw_ring[i].mbuf = NULL;
448                 }
449         }
450         if (rxq->rx_nb_avail == 0)
451                 return;
452         for (i = 0; i < rxq->rx_nb_avail; i++)
453                 rte_pktmbuf_free_seg(rxq->rx_stage[rxq->rx_next_avail + i]);
454
455         rxq->rx_nb_avail = 0;
456 }
457
458 /* turn on or off rx queue
459  * @q_idx: queue index in pf scope
460  * @on: turn on or off the queue
461  */
462 static int
463 ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
464 {
465         uint32_t reg;
466         uint16_t j;
467
468         /* QRX_CTRL = QRX_ENA */
469         reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
470
471         if (on) {
472                 if (reg & QRX_CTRL_QENA_STAT_M)
473                         return 0; /* Already on, skip */
474                 reg |= QRX_CTRL_QENA_REQ_M;
475         } else {
476                 if (!(reg & QRX_CTRL_QENA_STAT_M))
477                         return 0; /* Already off, skip */
478                 reg &= ~QRX_CTRL_QENA_REQ_M;
479         }
480
481         /* Write the register */
482         ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
483         /* Check the result. It is said that QENA_STAT
484          * follows the QENA_REQ not more than 10 use.
485          * TODO: need to change the wait counter later
486          */
487         for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
488                 rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
489                 reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
490                 if (on) {
491                         if ((reg & QRX_CTRL_QENA_REQ_M) &&
492                             (reg & QRX_CTRL_QENA_STAT_M))
493                                 break;
494                 } else {
495                         if (!(reg & QRX_CTRL_QENA_REQ_M) &&
496                             !(reg & QRX_CTRL_QENA_STAT_M))
497                                 break;
498                 }
499         }
500
501         /* Check if it is timeout */
502         if (j >= ICE_CHK_Q_ENA_COUNT) {
503                 PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
504                             (on ? "enable" : "disable"), q_idx);
505                 return -ETIMEDOUT;
506         }
507
508         return 0;
509 }
510
511 static inline int
512 ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
513 {
514         int ret = 0;
515
516         if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
517                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
518                              "rxq->rx_free_thresh=%d, "
519                              "ICE_RX_MAX_BURST=%d",
520                              rxq->rx_free_thresh, ICE_RX_MAX_BURST);
521                 ret = -EINVAL;
522         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
523                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
524                              "rxq->rx_free_thresh=%d, "
525                              "rxq->nb_rx_desc=%d",
526                              rxq->rx_free_thresh, rxq->nb_rx_desc);
527                 ret = -EINVAL;
528         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
529                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
530                              "rxq->nb_rx_desc=%d, "
531                              "rxq->rx_free_thresh=%d",
532                              rxq->nb_rx_desc, rxq->rx_free_thresh);
533                 ret = -EINVAL;
534         }
535
536         return ret;
537 }
538
539 /* reset fields in ice_rx_queue back to default */
540 static void
541 ice_reset_rx_queue(struct ice_rx_queue *rxq)
542 {
543         unsigned int i;
544         uint16_t len;
545
546         if (!rxq) {
547                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
548                 return;
549         }
550
551         len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
552
553         for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
554                 ((volatile char *)rxq->rx_ring)[i] = 0;
555
556         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
557         for (i = 0; i < ICE_RX_MAX_BURST; ++i)
558                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
559
560         rxq->rx_nb_avail = 0;
561         rxq->rx_next_avail = 0;
562         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
563
564         rxq->rx_tail = 0;
565         rxq->nb_rx_hold = 0;
566         rxq->pkt_first_seg = NULL;
567         rxq->pkt_last_seg = NULL;
568
569         rxq->rxrearm_start = 0;
570         rxq->rxrearm_nb = 0;
571 }
572
573 int
574 ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
575 {
576         struct ice_rx_queue *rxq;
577         int err;
578         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
579
580         PMD_INIT_FUNC_TRACE();
581
582         if (rx_queue_id >= dev->data->nb_rx_queues) {
583                 PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
584                             rx_queue_id, dev->data->nb_rx_queues);
585                 return -EINVAL;
586         }
587
588         rxq = dev->data->rx_queues[rx_queue_id];
589         if (!rxq || !rxq->q_set) {
590                 PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
591                             rx_queue_id);
592                 return -EINVAL;
593         }
594
595         err = ice_program_hw_rx_queue(rxq);
596         if (err) {
597                 PMD_DRV_LOG(ERR, "fail to program RX queue %u",
598                             rx_queue_id);
599                 return -EIO;
600         }
601
602         err = ice_alloc_rx_queue_mbufs(rxq);
603         if (err) {
604                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
605                 return -ENOMEM;
606         }
607
608         /* Init the RX tail register. */
609         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
610
611         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
612         if (err) {
613                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
614                             rx_queue_id);
615
616                 rxq->rx_rel_mbufs(rxq);
617                 ice_reset_rx_queue(rxq);
618                 return -EINVAL;
619         }
620
621         dev->data->rx_queue_state[rx_queue_id] =
622                 RTE_ETH_QUEUE_STATE_STARTED;
623
624         return 0;
625 }
626
627 int
628 ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
629 {
630         struct ice_rx_queue *rxq;
631         int err;
632         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
633
634         if (rx_queue_id < dev->data->nb_rx_queues) {
635                 rxq = dev->data->rx_queues[rx_queue_id];
636
637                 err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
638                 if (err) {
639                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
640                                     rx_queue_id);
641                         return -EINVAL;
642                 }
643                 rxq->rx_rel_mbufs(rxq);
644                 ice_reset_rx_queue(rxq);
645                 dev->data->rx_queue_state[rx_queue_id] =
646                         RTE_ETH_QUEUE_STATE_STOPPED;
647         }
648
649         return 0;
650 }
651
652 int
653 ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
654 {
655         struct ice_tx_queue *txq;
656         int err;
657         struct ice_vsi *vsi;
658         struct ice_hw *hw;
659         struct ice_aqc_add_tx_qgrp *txq_elem;
660         struct ice_tlan_ctx tx_ctx;
661         int buf_len;
662
663         PMD_INIT_FUNC_TRACE();
664
665         if (tx_queue_id >= dev->data->nb_tx_queues) {
666                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
667                             tx_queue_id, dev->data->nb_tx_queues);
668                 return -EINVAL;
669         }
670
671         txq = dev->data->tx_queues[tx_queue_id];
672         if (!txq || !txq->q_set) {
673                 PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
674                             tx_queue_id);
675                 return -EINVAL;
676         }
677
678         buf_len = ice_struct_size(txq_elem, txqs, 1);
679         txq_elem = ice_malloc(hw, buf_len);
680         if (!txq_elem)
681                 return -ENOMEM;
682
683         vsi = txq->vsi;
684         hw = ICE_VSI_TO_HW(vsi);
685
686         memset(&tx_ctx, 0, sizeof(tx_ctx));
687         txq_elem->num_txqs = 1;
688         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
689
690         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
691         tx_ctx.qlen = txq->nb_tx_desc;
692         tx_ctx.pf_num = hw->pf_id;
693         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
694         tx_ctx.src_vsi = vsi->vsi_id;
695         tx_ctx.port_num = hw->port_info->lport;
696         tx_ctx.tso_ena = 1; /* tso enable */
697         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
698         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
699         tx_ctx.tsyn_ena = 1;
700
701         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
702                     ice_tlan_ctx_info);
703
704         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
705
706         /* Init the Tx tail register*/
707         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
708
709         /* Fix me, we assume TC always 0 here */
710         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
711                         txq_elem, buf_len, NULL);
712         if (err) {
713                 PMD_DRV_LOG(ERR, "Failed to add lan txq");
714                 rte_free(txq_elem);
715                 return -EIO;
716         }
717         /* store the schedule node id */
718         txq->q_teid = txq_elem->txqs[0].q_teid;
719
720         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
721
722         rte_free(txq_elem);
723         return 0;
724 }
725
726 static enum ice_status
727 ice_fdir_program_hw_rx_queue(struct ice_rx_queue *rxq)
728 {
729         struct ice_vsi *vsi = rxq->vsi;
730         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
731         uint32_t rxdid = ICE_RXDID_LEGACY_1;
732         struct ice_rlan_ctx rx_ctx;
733         enum ice_status err;
734         uint32_t regval;
735
736         rxq->rx_hdr_len = 0;
737         rxq->rx_buf_len = 1024;
738
739         memset(&rx_ctx, 0, sizeof(rx_ctx));
740
741         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
742         rx_ctx.qlen = rxq->nb_rx_desc;
743         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
744         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
745         rx_ctx.dtype = 0; /* No Header Split mode */
746         rx_ctx.dsize = 1; /* 32B descriptors */
747         rx_ctx.rxmax = ICE_ETH_MAX_LEN;
748         /* TPH: Transaction Layer Packet (TLP) processing hints */
749         rx_ctx.tphrdesc_ena = 1;
750         rx_ctx.tphwdesc_ena = 1;
751         rx_ctx.tphdata_ena = 1;
752         rx_ctx.tphhead_ena = 1;
753         /* Low Receive Queue Threshold defined in 64 descriptors units.
754          * When the number of free descriptors goes below the lrxqthresh,
755          * an immediate interrupt is triggered.
756          */
757         rx_ctx.lrxqthresh = 2;
758         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
759         rx_ctx.l2tsel = 1;
760         rx_ctx.showiv = 0;
761         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
762
763         /* Enable Flexible Descriptors in the queue context which
764          * allows this driver to select a specific receive descriptor format
765          */
766         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
767                 QRXFLXP_CNTXT_RXDID_IDX_M;
768
769         /* increasing context priority to pick up profile ID;
770          * default is 0x01; setting to 0x03 to ensure profile
771          * is programming if prev context is of same priority
772          */
773         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
774                 QRXFLXP_CNTXT_RXDID_PRIO_M;
775
776         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
777
778         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
779         if (err) {
780                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
781                             rxq->queue_id);
782                 return -EINVAL;
783         }
784         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
785         if (err) {
786                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
787                             rxq->queue_id);
788                 return -EINVAL;
789         }
790
791         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
792
793         /* Init the Rx tail register*/
794         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
795
796         return 0;
797 }
798
799 int
800 ice_fdir_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
801 {
802         struct ice_rx_queue *rxq;
803         int err;
804         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
805         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
806
807         PMD_INIT_FUNC_TRACE();
808
809         rxq = pf->fdir.rxq;
810         if (!rxq || !rxq->q_set) {
811                 PMD_DRV_LOG(ERR, "FDIR RX queue %u not available or setup",
812                             rx_queue_id);
813                 return -EINVAL;
814         }
815
816         err = ice_fdir_program_hw_rx_queue(rxq);
817         if (err) {
818                 PMD_DRV_LOG(ERR, "fail to program FDIR RX queue %u",
819                             rx_queue_id);
820                 return -EIO;
821         }
822
823         /* Init the RX tail register. */
824         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
825
826         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
827         if (err) {
828                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u on",
829                             rx_queue_id);
830
831                 ice_reset_rx_queue(rxq);
832                 return -EINVAL;
833         }
834
835         return 0;
836 }
837
838 int
839 ice_fdir_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
840 {
841         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
842         struct ice_tx_queue *txq;
843         int err;
844         struct ice_vsi *vsi;
845         struct ice_hw *hw;
846         struct ice_aqc_add_tx_qgrp *txq_elem;
847         struct ice_tlan_ctx tx_ctx;
848         int buf_len;
849
850         PMD_INIT_FUNC_TRACE();
851
852         txq = pf->fdir.txq;
853         if (!txq || !txq->q_set) {
854                 PMD_DRV_LOG(ERR, "FDIR TX queue %u is not available or setup",
855                             tx_queue_id);
856                 return -EINVAL;
857         }
858
859         buf_len = ice_struct_size(txq_elem, txqs, 1);
860         txq_elem = ice_malloc(hw, buf_len);
861         if (!txq_elem)
862                 return -ENOMEM;
863
864         vsi = txq->vsi;
865         hw = ICE_VSI_TO_HW(vsi);
866
867         memset(&tx_ctx, 0, sizeof(tx_ctx));
868         txq_elem->num_txqs = 1;
869         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
870
871         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
872         tx_ctx.qlen = txq->nb_tx_desc;
873         tx_ctx.pf_num = hw->pf_id;
874         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
875         tx_ctx.src_vsi = vsi->vsi_id;
876         tx_ctx.port_num = hw->port_info->lport;
877         tx_ctx.tso_ena = 1; /* tso enable */
878         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
879         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
880
881         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
882                     ice_tlan_ctx_info);
883
884         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
885
886         /* Init the Tx tail register*/
887         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
888
889         /* Fix me, we assume TC always 0 here */
890         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
891                               txq_elem, buf_len, NULL);
892         if (err) {
893                 PMD_DRV_LOG(ERR, "Failed to add FDIR txq");
894                 rte_free(txq_elem);
895                 return -EIO;
896         }
897         /* store the schedule node id */
898         txq->q_teid = txq_elem->txqs[0].q_teid;
899
900         rte_free(txq_elem);
901         return 0;
902 }
903
904 /* Free all mbufs for descriptors in tx queue */
905 static void
906 _ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
907 {
908         uint16_t i;
909
910         if (!txq || !txq->sw_ring) {
911                 PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
912                 return;
913         }
914
915         for (i = 0; i < txq->nb_tx_desc; i++) {
916                 if (txq->sw_ring[i].mbuf) {
917                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
918                         txq->sw_ring[i].mbuf = NULL;
919                 }
920         }
921 }
922
923 static void
924 ice_reset_tx_queue(struct ice_tx_queue *txq)
925 {
926         struct ice_tx_entry *txe;
927         uint16_t i, prev, size;
928
929         if (!txq) {
930                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
931                 return;
932         }
933
934         txe = txq->sw_ring;
935         size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
936         for (i = 0; i < size; i++)
937                 ((volatile char *)txq->tx_ring)[i] = 0;
938
939         prev = (uint16_t)(txq->nb_tx_desc - 1);
940         for (i = 0; i < txq->nb_tx_desc; i++) {
941                 volatile struct ice_tx_desc *txd = &txq->tx_ring[i];
942
943                 txd->cmd_type_offset_bsz =
944                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
945                 txe[i].mbuf =  NULL;
946                 txe[i].last_id = i;
947                 txe[prev].next_id = i;
948                 prev = i;
949         }
950
951         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
952         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
953
954         txq->tx_tail = 0;
955         txq->nb_tx_used = 0;
956
957         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
958         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
959 }
960
961 int
962 ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
963 {
964         struct ice_tx_queue *txq;
965         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
966         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
967         struct ice_vsi *vsi = pf->main_vsi;
968         enum ice_status status;
969         uint16_t q_ids[1];
970         uint32_t q_teids[1];
971         uint16_t q_handle = tx_queue_id;
972
973         if (tx_queue_id >= dev->data->nb_tx_queues) {
974                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
975                             tx_queue_id, dev->data->nb_tx_queues);
976                 return -EINVAL;
977         }
978
979         txq = dev->data->tx_queues[tx_queue_id];
980         if (!txq) {
981                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
982                             tx_queue_id);
983                 return -EINVAL;
984         }
985
986         q_ids[0] = txq->reg_idx;
987         q_teids[0] = txq->q_teid;
988
989         /* Fix me, we assume TC always 0 here */
990         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
991                                 q_ids, q_teids, ICE_NO_RESET, 0, NULL);
992         if (status != ICE_SUCCESS) {
993                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
994                 return -EINVAL;
995         }
996
997         txq->tx_rel_mbufs(txq);
998         ice_reset_tx_queue(txq);
999         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1000
1001         return 0;
1002 }
1003
1004 int
1005 ice_fdir_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1006 {
1007         struct ice_rx_queue *rxq;
1008         int err;
1009         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1010         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1011
1012         rxq = pf->fdir.rxq;
1013
1014         err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
1015         if (err) {
1016                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u off",
1017                             rx_queue_id);
1018                 return -EINVAL;
1019         }
1020         rxq->rx_rel_mbufs(rxq);
1021
1022         return 0;
1023 }
1024
1025 int
1026 ice_fdir_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1027 {
1028         struct ice_tx_queue *txq;
1029         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1030         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1031         struct ice_vsi *vsi = pf->main_vsi;
1032         enum ice_status status;
1033         uint16_t q_ids[1];
1034         uint32_t q_teids[1];
1035         uint16_t q_handle = tx_queue_id;
1036
1037         txq = pf->fdir.txq;
1038         if (!txq) {
1039                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
1040                             tx_queue_id);
1041                 return -EINVAL;
1042         }
1043         vsi = txq->vsi;
1044
1045         q_ids[0] = txq->reg_idx;
1046         q_teids[0] = txq->q_teid;
1047
1048         /* Fix me, we assume TC always 0 here */
1049         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1050                                  q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1051         if (status != ICE_SUCCESS) {
1052                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1053                 return -EINVAL;
1054         }
1055
1056         txq->tx_rel_mbufs(txq);
1057
1058         return 0;
1059 }
1060
1061 int
1062 ice_rx_queue_setup(struct rte_eth_dev *dev,
1063                    uint16_t queue_idx,
1064                    uint16_t nb_desc,
1065                    unsigned int socket_id,
1066                    const struct rte_eth_rxconf *rx_conf,
1067                    struct rte_mempool *mp)
1068 {
1069         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1070         struct ice_adapter *ad =
1071                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1072         struct ice_vsi *vsi = pf->main_vsi;
1073         struct ice_rx_queue *rxq;
1074         const struct rte_memzone *rz;
1075         uint32_t ring_size;
1076         uint16_t len;
1077         int use_def_burst_func = 1;
1078         uint64_t offloads;
1079
1080         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1081             nb_desc > ICE_MAX_RING_DESC ||
1082             nb_desc < ICE_MIN_RING_DESC) {
1083                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
1084                              "invalid", nb_desc);
1085                 return -EINVAL;
1086         }
1087
1088         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1089
1090         /* Free memory if needed */
1091         if (dev->data->rx_queues[queue_idx]) {
1092                 ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
1093                 dev->data->rx_queues[queue_idx] = NULL;
1094         }
1095
1096         /* Allocate the rx queue data structure */
1097         rxq = rte_zmalloc_socket(NULL,
1098                                  sizeof(struct ice_rx_queue),
1099                                  RTE_CACHE_LINE_SIZE,
1100                                  socket_id);
1101         if (!rxq) {
1102                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1103                              "rx queue data structure");
1104                 return -ENOMEM;
1105         }
1106         rxq->mp = mp;
1107         rxq->nb_rx_desc = nb_desc;
1108         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1109         rxq->queue_id = queue_idx;
1110         rxq->offloads = offloads;
1111
1112         rxq->reg_idx = vsi->base_queue + queue_idx;
1113         rxq->port_id = dev->data->port_id;
1114         if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
1115                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1116         else
1117                 rxq->crc_len = 0;
1118
1119         rxq->drop_en = rx_conf->rx_drop_en;
1120         rxq->vsi = vsi;
1121         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1122         rxq->proto_xtr = pf->proto_xtr != NULL ?
1123                          pf->proto_xtr[queue_idx] : PROTO_XTR_NONE;
1124
1125         /* Allocate the maximum number of RX ring hardware descriptor. */
1126         len = ICE_MAX_RING_DESC;
1127
1128         /**
1129          * Allocating a little more memory because vectorized/bulk_alloc Rx
1130          * functions doesn't check boundaries each time.
1131          */
1132         len += ICE_RX_MAX_BURST;
1133
1134         /* Allocate the maximum number of RX ring hardware descriptor. */
1135         ring_size = sizeof(union ice_rx_flex_desc) * len;
1136         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1137         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1138                                       ring_size, ICE_RING_BASE_ALIGN,
1139                                       socket_id);
1140         if (!rz) {
1141                 ice_rx_queue_release(rxq);
1142                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
1143                 return -ENOMEM;
1144         }
1145
1146         rxq->mz = rz;
1147         /* Zero all the descriptors in the ring. */
1148         memset(rz->addr, 0, ring_size);
1149
1150         rxq->rx_ring_dma = rz->iova;
1151         rxq->rx_ring = rz->addr;
1152
1153         /* always reserve more for bulk alloc */
1154         len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
1155
1156         /* Allocate the software ring. */
1157         rxq->sw_ring = rte_zmalloc_socket(NULL,
1158                                           sizeof(struct ice_rx_entry) * len,
1159                                           RTE_CACHE_LINE_SIZE,
1160                                           socket_id);
1161         if (!rxq->sw_ring) {
1162                 ice_rx_queue_release(rxq);
1163                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
1164                 return -ENOMEM;
1165         }
1166
1167         ice_reset_rx_queue(rxq);
1168         rxq->q_set = true;
1169         dev->data->rx_queues[queue_idx] = rxq;
1170         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
1171
1172         use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
1173
1174         if (!use_def_burst_func) {
1175                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1176                              "satisfied. Rx Burst Bulk Alloc function will be "
1177                              "used on port=%d, queue=%d.",
1178                              rxq->port_id, rxq->queue_id);
1179         } else {
1180                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1181                              "not satisfied, Scattered Rx is requested. "
1182                              "on port=%d, queue=%d.",
1183                              rxq->port_id, rxq->queue_id);
1184                 ad->rx_bulk_alloc_allowed = false;
1185         }
1186
1187         return 0;
1188 }
1189
1190 void
1191 ice_rx_queue_release(void *rxq)
1192 {
1193         struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
1194
1195         if (!q) {
1196                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1197                 return;
1198         }
1199
1200         q->rx_rel_mbufs(q);
1201         rte_free(q->sw_ring);
1202         rte_memzone_free(q->mz);
1203         rte_free(q);
1204 }
1205
1206 int
1207 ice_tx_queue_setup(struct rte_eth_dev *dev,
1208                    uint16_t queue_idx,
1209                    uint16_t nb_desc,
1210                    unsigned int socket_id,
1211                    const struct rte_eth_txconf *tx_conf)
1212 {
1213         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1214         struct ice_vsi *vsi = pf->main_vsi;
1215         struct ice_tx_queue *txq;
1216         const struct rte_memzone *tz;
1217         uint32_t ring_size;
1218         uint16_t tx_rs_thresh, tx_free_thresh;
1219         uint64_t offloads;
1220
1221         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1222
1223         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1224             nb_desc > ICE_MAX_RING_DESC ||
1225             nb_desc < ICE_MIN_RING_DESC) {
1226                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
1227                              "invalid", nb_desc);
1228                 return -EINVAL;
1229         }
1230
1231         /**
1232          * The following two parameters control the setting of the RS bit on
1233          * transmit descriptors. TX descriptors will have their RS bit set
1234          * after txq->tx_rs_thresh descriptors have been used. The TX
1235          * descriptor ring will be cleaned after txq->tx_free_thresh
1236          * descriptors are used or if the number of descriptors required to
1237          * transmit a packet is greater than the number of free TX descriptors.
1238          *
1239          * The following constraints must be satisfied:
1240          *  - tx_rs_thresh must be greater than 0.
1241          *  - tx_rs_thresh must be less than the size of the ring minus 2.
1242          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
1243          *  - tx_rs_thresh must be a divisor of the ring size.
1244          *  - tx_free_thresh must be greater than 0.
1245          *  - tx_free_thresh must be less than the size of the ring minus 3.
1246          *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
1247          *
1248          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
1249          * race condition, hence the maximum threshold constraints. When set
1250          * to zero use default values.
1251          */
1252         tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
1253                                     tx_conf->tx_free_thresh :
1254                                     ICE_DEFAULT_TX_FREE_THRESH);
1255         /* force tx_rs_thresh to adapt an aggressive tx_free_thresh */
1256         tx_rs_thresh =
1257                 (ICE_DEFAULT_TX_RSBIT_THRESH + tx_free_thresh > nb_desc) ?
1258                         nb_desc - tx_free_thresh : ICE_DEFAULT_TX_RSBIT_THRESH;
1259         if (tx_conf->tx_rs_thresh)
1260                 tx_rs_thresh = tx_conf->tx_rs_thresh;
1261         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
1262                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
1263                                 "exceed nb_desc. (tx_rs_thresh=%u "
1264                                 "tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
1265                                 (unsigned int)tx_rs_thresh,
1266                                 (unsigned int)tx_free_thresh,
1267                                 (unsigned int)nb_desc,
1268                                 (int)dev->data->port_id,
1269                                 (int)queue_idx);
1270                 return -EINVAL;
1271         }
1272         if (tx_rs_thresh >= (nb_desc - 2)) {
1273                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1274                              "number of TX descriptors minus 2. "
1275                              "(tx_rs_thresh=%u port=%d queue=%d)",
1276                              (unsigned int)tx_rs_thresh,
1277                              (int)dev->data->port_id,
1278                              (int)queue_idx);
1279                 return -EINVAL;
1280         }
1281         if (tx_free_thresh >= (nb_desc - 3)) {
1282                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1283                              "tx_free_thresh must be less than the "
1284                              "number of TX descriptors minus 3. "
1285                              "(tx_free_thresh=%u port=%d queue=%d)",
1286                              (unsigned int)tx_free_thresh,
1287                              (int)dev->data->port_id,
1288                              (int)queue_idx);
1289                 return -EINVAL;
1290         }
1291         if (tx_rs_thresh > tx_free_thresh) {
1292                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
1293                              "equal to tx_free_thresh. (tx_free_thresh=%u"
1294                              " tx_rs_thresh=%u port=%d queue=%d)",
1295                              (unsigned int)tx_free_thresh,
1296                              (unsigned int)tx_rs_thresh,
1297                              (int)dev->data->port_id,
1298                              (int)queue_idx);
1299                 return -EINVAL;
1300         }
1301         if ((nb_desc % tx_rs_thresh) != 0) {
1302                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
1303                              "number of TX descriptors. (tx_rs_thresh=%u"
1304                              " port=%d queue=%d)",
1305                              (unsigned int)tx_rs_thresh,
1306                              (int)dev->data->port_id,
1307                              (int)queue_idx);
1308                 return -EINVAL;
1309         }
1310         if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
1311                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1312                              "tx_rs_thresh is greater than 1. "
1313                              "(tx_rs_thresh=%u port=%d queue=%d)",
1314                              (unsigned int)tx_rs_thresh,
1315                              (int)dev->data->port_id,
1316                              (int)queue_idx);
1317                 return -EINVAL;
1318         }
1319
1320         /* Free memory if needed. */
1321         if (dev->data->tx_queues[queue_idx]) {
1322                 ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
1323                 dev->data->tx_queues[queue_idx] = NULL;
1324         }
1325
1326         /* Allocate the TX queue data structure. */
1327         txq = rte_zmalloc_socket(NULL,
1328                                  sizeof(struct ice_tx_queue),
1329                                  RTE_CACHE_LINE_SIZE,
1330                                  socket_id);
1331         if (!txq) {
1332                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1333                              "tx queue structure");
1334                 return -ENOMEM;
1335         }
1336
1337         /* Allocate TX hardware ring descriptors. */
1338         ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
1339         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1340         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
1341                                       ring_size, ICE_RING_BASE_ALIGN,
1342                                       socket_id);
1343         if (!tz) {
1344                 ice_tx_queue_release(txq);
1345                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
1346                 return -ENOMEM;
1347         }
1348
1349         txq->mz = tz;
1350         txq->nb_tx_desc = nb_desc;
1351         txq->tx_rs_thresh = tx_rs_thresh;
1352         txq->tx_free_thresh = tx_free_thresh;
1353         txq->pthresh = tx_conf->tx_thresh.pthresh;
1354         txq->hthresh = tx_conf->tx_thresh.hthresh;
1355         txq->wthresh = tx_conf->tx_thresh.wthresh;
1356         txq->queue_id = queue_idx;
1357
1358         txq->reg_idx = vsi->base_queue + queue_idx;
1359         txq->port_id = dev->data->port_id;
1360         txq->offloads = offloads;
1361         txq->vsi = vsi;
1362         txq->tx_deferred_start = tx_conf->tx_deferred_start;
1363
1364         txq->tx_ring_dma = tz->iova;
1365         txq->tx_ring = tz->addr;
1366
1367         /* Allocate software ring */
1368         txq->sw_ring =
1369                 rte_zmalloc_socket(NULL,
1370                                    sizeof(struct ice_tx_entry) * nb_desc,
1371                                    RTE_CACHE_LINE_SIZE,
1372                                    socket_id);
1373         if (!txq->sw_ring) {
1374                 ice_tx_queue_release(txq);
1375                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
1376                 return -ENOMEM;
1377         }
1378
1379         ice_reset_tx_queue(txq);
1380         txq->q_set = true;
1381         dev->data->tx_queues[queue_idx] = txq;
1382         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
1383         ice_set_tx_function_flag(dev, txq);
1384
1385         return 0;
1386 }
1387
1388 void
1389 ice_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1390 {
1391         ice_rx_queue_release(dev->data->rx_queues[qid]);
1392 }
1393
1394 void
1395 ice_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1396 {
1397         ice_tx_queue_release(dev->data->tx_queues[qid]);
1398 }
1399
1400 void
1401 ice_tx_queue_release(void *txq)
1402 {
1403         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
1404
1405         if (!q) {
1406                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
1407                 return;
1408         }
1409
1410         q->tx_rel_mbufs(q);
1411         rte_free(q->sw_ring);
1412         rte_memzone_free(q->mz);
1413         rte_free(q);
1414 }
1415
1416 void
1417 ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1418                  struct rte_eth_rxq_info *qinfo)
1419 {
1420         struct ice_rx_queue *rxq;
1421
1422         rxq = dev->data->rx_queues[queue_id];
1423
1424         qinfo->mp = rxq->mp;
1425         qinfo->scattered_rx = dev->data->scattered_rx;
1426         qinfo->nb_desc = rxq->nb_rx_desc;
1427
1428         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1429         qinfo->conf.rx_drop_en = rxq->drop_en;
1430         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1431 }
1432
1433 void
1434 ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1435                  struct rte_eth_txq_info *qinfo)
1436 {
1437         struct ice_tx_queue *txq;
1438
1439         txq = dev->data->tx_queues[queue_id];
1440
1441         qinfo->nb_desc = txq->nb_tx_desc;
1442
1443         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1444         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1445         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1446
1447         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1448         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
1449         qinfo->conf.offloads = txq->offloads;
1450         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1451 }
1452
1453 uint32_t
1454 ice_rx_queue_count(void *rx_queue)
1455 {
1456 #define ICE_RXQ_SCAN_INTERVAL 4
1457         volatile union ice_rx_flex_desc *rxdp;
1458         struct ice_rx_queue *rxq;
1459         uint16_t desc = 0;
1460
1461         rxq = rx_queue;
1462         rxdp = &rxq->rx_ring[rxq->rx_tail];
1463         while ((desc < rxq->nb_rx_desc) &&
1464                rte_le_to_cpu_16(rxdp->wb.status_error0) &
1465                (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)) {
1466                 /**
1467                  * Check the DD bit of a rx descriptor of each 4 in a group,
1468                  * to avoid checking too frequently and downgrading performance
1469                  * too much.
1470                  */
1471                 desc += ICE_RXQ_SCAN_INTERVAL;
1472                 rxdp += ICE_RXQ_SCAN_INTERVAL;
1473                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1474                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1475                                  desc - rxq->nb_rx_desc]);
1476         }
1477
1478         return desc;
1479 }
1480
1481 #define ICE_RX_FLEX_ERR0_BITS   \
1482         ((1 << ICE_RX_FLEX_DESC_STATUS0_HBO_S) |        \
1483          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |   \
1484          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |   \
1485          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) |  \
1486          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
1487          (1 << ICE_RX_FLEX_DESC_STATUS0_RXE_S))
1488
1489 /* Rx L3/L4 checksum */
1490 static inline uint64_t
1491 ice_rxd_error_to_pkt_flags(uint16_t stat_err0)
1492 {
1493         uint64_t flags = 0;
1494
1495         /* check if HW has decoded the packet and checksum */
1496         if (unlikely(!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1497                 return 0;
1498
1499         if (likely(!(stat_err0 & ICE_RX_FLEX_ERR0_BITS))) {
1500                 flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
1501                 return flags;
1502         }
1503
1504         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1505                 flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1506         else
1507                 flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1508
1509         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1510                 flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1511         else
1512                 flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1513
1514         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1515                 flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
1516
1517         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
1518                 flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
1519         else
1520                 flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD;
1521
1522         return flags;
1523 }
1524
1525 static inline void
1526 ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_flex_desc *rxdp)
1527 {
1528         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
1529             (1 << ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1530                 mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
1531                 mb->vlan_tci =
1532                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
1533                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
1534                            rte_le_to_cpu_16(rxdp->wb.l2tag1));
1535         } else {
1536                 mb->vlan_tci = 0;
1537         }
1538
1539 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1540         if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1541             (1 << ICE_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1542                 mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED | RTE_MBUF_F_RX_QINQ |
1543                                 RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN;
1544                 mb->vlan_tci_outer = mb->vlan_tci;
1545                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1546                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1547                            rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1548                            rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1549         } else {
1550                 mb->vlan_tci_outer = 0;
1551         }
1552 #endif
1553         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
1554                    mb->vlan_tci, mb->vlan_tci_outer);
1555 }
1556
1557 #define ICE_LOOK_AHEAD 8
1558 #if (ICE_LOOK_AHEAD != 8)
1559 #error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
1560 #endif
1561
1562 #define ICE_PTP_TS_VALID 0x1
1563
1564 static inline int
1565 ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
1566 {
1567         volatile union ice_rx_flex_desc *rxdp;
1568         struct ice_rx_entry *rxep;
1569         struct rte_mbuf *mb;
1570         uint16_t stat_err0;
1571         uint16_t pkt_len;
1572         int32_t s[ICE_LOOK_AHEAD], nb_dd;
1573         int32_t i, j, nb_rx = 0;
1574         uint64_t pkt_flags = 0;
1575         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1576 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1577         bool is_tsinit = false;
1578         uint64_t ts_ns;
1579         struct ice_vsi *vsi = rxq->vsi;
1580         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
1581         struct ice_adapter *ad = rxq->vsi->adapter;
1582 #endif
1583         rxdp = &rxq->rx_ring[rxq->rx_tail];
1584         rxep = &rxq->sw_ring[rxq->rx_tail];
1585
1586         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1587
1588         /* Make sure there is at least 1 packet to receive */
1589         if (!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1590                 return 0;
1591
1592 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1593         if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
1594                 uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
1595
1596                 if (unlikely(sw_cur_time - ad->hw_time_update > 4))
1597                         is_tsinit = 1;
1598         }
1599 #endif
1600
1601         /**
1602          * Scan LOOK_AHEAD descriptors at a time to determine which
1603          * descriptors reference packets that are ready to be received.
1604          */
1605         for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
1606              rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
1607                 /* Read desc statuses backwards to avoid race condition */
1608                 for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--)
1609                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1610
1611                 rte_smp_rmb();
1612
1613                 /* Compute how many status bits were set */
1614                 for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
1615                         nb_dd += s[j] & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
1616
1617                 nb_rx += nb_dd;
1618
1619                 /* Translate descriptor info to mbuf parameters */
1620                 for (j = 0; j < nb_dd; j++) {
1621                         mb = rxep[j].mbuf;
1622                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1623                                    ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1624                         mb->data_len = pkt_len;
1625                         mb->pkt_len = pkt_len;
1626                         mb->ol_flags = 0;
1627                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1628                         pkt_flags = ice_rxd_error_to_pkt_flags(stat_err0);
1629                         mb->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1630                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1631                         ice_rxd_to_vlan_tci(mb, &rxdp[j]);
1632                         rxd_to_pkt_fields_ops[rxq->rxdid](rxq, mb, &rxdp[j]);
1633 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1634                         if (ice_timestamp_dynflag > 0) {
1635                                 rxq->time_high =
1636                                 rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high);
1637                                 if (unlikely(is_tsinit)) {
1638                                         ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1,
1639                                                                            rxq->time_high);
1640                                         ad->hw_time_low = (uint32_t)ts_ns;
1641                                         ad->hw_time_high = (uint32_t)(ts_ns >> 32);
1642                                         is_tsinit = false;
1643                                 } else {
1644                                         if (rxq->time_high < ad->hw_time_low)
1645                                                 ad->hw_time_high += 1;
1646                                         ts_ns = (uint64_t)ad->hw_time_high << 32 | rxq->time_high;
1647                                         ad->hw_time_low = rxq->time_high;
1648                                 }
1649                                 ad->hw_time_update = rte_get_timer_cycles() /
1650                                                      (rte_get_timer_hz() / 1000);
1651                                 *RTE_MBUF_DYNFIELD(mb,
1652                                                    ice_timestamp_dynfield_offset,
1653                                                    rte_mbuf_timestamp_t *) = ts_ns;
1654                                 pkt_flags |= ice_timestamp_dynflag;
1655                         }
1656
1657                         if (ad->ptp_ena && ((mb->packet_type &
1658                             RTE_PTYPE_L2_MASK) == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
1659                                 rxq->time_high =
1660                                    rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high);
1661                                 mb->timesync = rxq->queue_id;
1662                                 pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
1663                                 if (rxdp[j].wb.time_stamp_low &
1664                                     ICE_PTP_TS_VALID)
1665                                         pkt_flags |=
1666                                                 RTE_MBUF_F_RX_IEEE1588_TMST;
1667                         }
1668 #endif
1669                         mb->ol_flags |= pkt_flags;
1670                 }
1671
1672                 for (j = 0; j < ICE_LOOK_AHEAD; j++)
1673                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1674
1675                 if (nb_dd != ICE_LOOK_AHEAD)
1676                         break;
1677         }
1678
1679         /* Clear software ring entries */
1680         for (i = 0; i < nb_rx; i++)
1681                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1682
1683         PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
1684                    "port_id=%u, queue_id=%u, nb_rx=%d",
1685                    rxq->port_id, rxq->queue_id, nb_rx);
1686
1687         return nb_rx;
1688 }
1689
1690 static inline uint16_t
1691 ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
1692                        struct rte_mbuf **rx_pkts,
1693                        uint16_t nb_pkts)
1694 {
1695         uint16_t i;
1696         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1697
1698         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1699
1700         for (i = 0; i < nb_pkts; i++)
1701                 rx_pkts[i] = stage[i];
1702
1703         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1704         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1705
1706         return nb_pkts;
1707 }
1708
1709 static inline int
1710 ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
1711 {
1712         volatile union ice_rx_flex_desc *rxdp;
1713         struct ice_rx_entry *rxep;
1714         struct rte_mbuf *mb;
1715         uint16_t alloc_idx, i;
1716         uint64_t dma_addr;
1717         int diag;
1718
1719         /* Allocate buffers in bulk */
1720         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1721                                (rxq->rx_free_thresh - 1));
1722         rxep = &rxq->sw_ring[alloc_idx];
1723         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1724                                     rxq->rx_free_thresh);
1725         if (unlikely(diag != 0)) {
1726                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1727                 return -ENOMEM;
1728         }
1729
1730         rxdp = &rxq->rx_ring[alloc_idx];
1731         for (i = 0; i < rxq->rx_free_thresh; i++) {
1732                 if (likely(i < (rxq->rx_free_thresh - 1)))
1733                         /* Prefetch next mbuf */
1734                         rte_prefetch0(rxep[i + 1].mbuf);
1735
1736                 mb = rxep[i].mbuf;
1737                 rte_mbuf_refcnt_set(mb, 1);
1738                 mb->next = NULL;
1739                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1740                 mb->nb_segs = 1;
1741                 mb->port = rxq->port_id;
1742                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1743                 rxdp[i].read.hdr_addr = 0;
1744                 rxdp[i].read.pkt_addr = dma_addr;
1745         }
1746
1747         /* Update Rx tail register */
1748         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1749
1750         rxq->rx_free_trigger =
1751                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1752         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1753                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1754
1755         return 0;
1756 }
1757
1758 static inline uint16_t
1759 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1760 {
1761         struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
1762         uint16_t nb_rx = 0;
1763
1764         if (!nb_pkts)
1765                 return 0;
1766
1767         if (rxq->rx_nb_avail)
1768                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1769
1770         nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
1771         rxq->rx_next_avail = 0;
1772         rxq->rx_nb_avail = nb_rx;
1773         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1774
1775         if (rxq->rx_tail > rxq->rx_free_trigger) {
1776                 if (ice_rx_alloc_bufs(rxq) != 0) {
1777                         uint16_t i, j;
1778
1779                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed +=
1780                                 rxq->rx_free_thresh;
1781                         PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1782                                    "port_id=%u, queue_id=%u",
1783                                    rxq->port_id, rxq->queue_id);
1784                         rxq->rx_nb_avail = 0;
1785                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1786                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1787                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1788
1789                         return 0;
1790                 }
1791         }
1792
1793         if (rxq->rx_tail >= rxq->nb_rx_desc)
1794                 rxq->rx_tail = 0;
1795
1796         if (rxq->rx_nb_avail)
1797                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1798
1799         return 0;
1800 }
1801
1802 static uint16_t
1803 ice_recv_pkts_bulk_alloc(void *rx_queue,
1804                          struct rte_mbuf **rx_pkts,
1805                          uint16_t nb_pkts)
1806 {
1807         uint16_t nb_rx = 0;
1808         uint16_t n;
1809         uint16_t count;
1810
1811         if (unlikely(nb_pkts == 0))
1812                 return nb_rx;
1813
1814         if (likely(nb_pkts <= ICE_RX_MAX_BURST))
1815                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1816
1817         while (nb_pkts) {
1818                 n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
1819                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1820                 nb_rx = (uint16_t)(nb_rx + count);
1821                 nb_pkts = (uint16_t)(nb_pkts - count);
1822                 if (count < n)
1823                         break;
1824         }
1825
1826         return nb_rx;
1827 }
1828
1829 static uint16_t
1830 ice_recv_scattered_pkts(void *rx_queue,
1831                         struct rte_mbuf **rx_pkts,
1832                         uint16_t nb_pkts)
1833 {
1834         struct ice_rx_queue *rxq = rx_queue;
1835         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
1836         volatile union ice_rx_flex_desc *rxdp;
1837         union ice_rx_flex_desc rxd;
1838         struct ice_rx_entry *sw_ring = rxq->sw_ring;
1839         struct ice_rx_entry *rxe;
1840         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1841         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1842         struct rte_mbuf *nmb; /* new allocated mbuf */
1843         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
1844         uint16_t rx_id = rxq->rx_tail;
1845         uint16_t nb_rx = 0;
1846         uint16_t nb_hold = 0;
1847         uint16_t rx_packet_len;
1848         uint16_t rx_stat_err0;
1849         uint64_t dma_addr;
1850         uint64_t pkt_flags;
1851         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1852 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1853         bool is_tsinit = false;
1854         uint64_t ts_ns;
1855         struct ice_vsi *vsi = rxq->vsi;
1856         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
1857         struct ice_adapter *ad = rxq->vsi->adapter;
1858
1859         if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
1860                 uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
1861
1862                 if (unlikely(sw_cur_time - ad->hw_time_update > 4))
1863                         is_tsinit = true;
1864         }
1865 #endif
1866
1867         while (nb_rx < nb_pkts) {
1868                 rxdp = &rx_ring[rx_id];
1869                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1870
1871                 /* Check the DD bit first */
1872                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1873                         break;
1874
1875                 /* allocate mbuf */
1876                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1877                 if (unlikely(!nmb)) {
1878                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
1879                         break;
1880                 }
1881                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
1882
1883                 nb_hold++;
1884                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
1885                 rx_id++;
1886                 if (unlikely(rx_id == rxq->nb_rx_desc))
1887                         rx_id = 0;
1888
1889                 /* Prefetch next mbuf */
1890                 rte_prefetch0(sw_ring[rx_id].mbuf);
1891
1892                 /**
1893                  * When next RX descriptor is on a cache line boundary,
1894                  * prefetch the next 4 RX descriptors and next 8 pointers
1895                  * to mbufs.
1896                  */
1897                 if ((rx_id & 0x3) == 0) {
1898                         rte_prefetch0(&rx_ring[rx_id]);
1899                         rte_prefetch0(&sw_ring[rx_id]);
1900                 }
1901
1902                 rxm = rxe->mbuf;
1903                 rxe->mbuf = nmb;
1904                 dma_addr =
1905                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1906
1907                 /* Set data buffer address and data length of the mbuf */
1908                 rxdp->read.hdr_addr = 0;
1909                 rxdp->read.pkt_addr = dma_addr;
1910                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1911                                 ICE_RX_FLX_DESC_PKT_LEN_M;
1912                 rxm->data_len = rx_packet_len;
1913                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1914
1915                 /**
1916                  * If this is the first buffer of the received packet, set the
1917                  * pointer to the first mbuf of the packet and initialize its
1918                  * context. Otherwise, update the total length and the number
1919                  * of segments of the current scattered packet, and update the
1920                  * pointer to the last mbuf of the current packet.
1921                  */
1922                 if (!first_seg) {
1923                         first_seg = rxm;
1924                         first_seg->nb_segs = 1;
1925                         first_seg->pkt_len = rx_packet_len;
1926                 } else {
1927                         first_seg->pkt_len =
1928                                 (uint16_t)(first_seg->pkt_len +
1929                                            rx_packet_len);
1930                         first_seg->nb_segs++;
1931                         last_seg->next = rxm;
1932                 }
1933
1934                 /**
1935                  * If this is not the last buffer of the received packet,
1936                  * update the pointer to the last mbuf of the current scattered
1937                  * packet and continue to parse the RX ring.
1938                  */
1939                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_EOF_S))) {
1940                         last_seg = rxm;
1941                         continue;
1942                 }
1943
1944                 /**
1945                  * This is the last buffer of the received packet. If the CRC
1946                  * is not stripped by the hardware:
1947                  *  - Subtract the CRC length from the total packet length.
1948                  *  - If the last buffer only contains the whole CRC or a part
1949                  *  of it, free the mbuf associated to the last buffer. If part
1950                  *  of the CRC is also contained in the previous mbuf, subtract
1951                  *  the length of that CRC part from the data length of the
1952                  *  previous mbuf.
1953                  */
1954                 rxm->next = NULL;
1955                 if (unlikely(rxq->crc_len > 0)) {
1956                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1957                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1958                                 rte_pktmbuf_free_seg(rxm);
1959                                 first_seg->nb_segs--;
1960                                 last_seg->data_len =
1961                                         (uint16_t)(last_seg->data_len -
1962                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1963                                 last_seg->next = NULL;
1964                         } else
1965                                 rxm->data_len = (uint16_t)(rx_packet_len -
1966                                                            RTE_ETHER_CRC_LEN);
1967                 }
1968
1969                 first_seg->port = rxq->port_id;
1970                 first_seg->ol_flags = 0;
1971                 first_seg->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1972                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1973                 ice_rxd_to_vlan_tci(first_seg, &rxd);
1974                 rxd_to_pkt_fields_ops[rxq->rxdid](rxq, first_seg, &rxd);
1975                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
1976 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1977                 if (ice_timestamp_dynflag > 0) {
1978                         rxq->time_high =
1979                            rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
1980                         if (unlikely(is_tsinit)) {
1981                                 ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1, rxq->time_high);
1982                                 ad->hw_time_low = (uint32_t)ts_ns;
1983                                 ad->hw_time_high = (uint32_t)(ts_ns >> 32);
1984                                 is_tsinit = false;
1985                         } else {
1986                                 if (rxq->time_high < ad->hw_time_low)
1987                                         ad->hw_time_high += 1;
1988                                 ts_ns = (uint64_t)ad->hw_time_high << 32 | rxq->time_high;
1989                                 ad->hw_time_low = rxq->time_high;
1990                         }
1991                         ad->hw_time_update = rte_get_timer_cycles() /
1992                                              (rte_get_timer_hz() / 1000);
1993                         *RTE_MBUF_DYNFIELD(rxm,
1994                                            (ice_timestamp_dynfield_offset),
1995                                            rte_mbuf_timestamp_t *) = ts_ns;
1996                         pkt_flags |= ice_timestamp_dynflag;
1997                 }
1998
1999                 if (ad->ptp_ena && ((first_seg->packet_type & RTE_PTYPE_L2_MASK)
2000                     == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
2001                         rxq->time_high =
2002                            rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2003                         first_seg->timesync = rxq->queue_id;
2004                         pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
2005                 }
2006 #endif
2007                 first_seg->ol_flags |= pkt_flags;
2008                 /* Prefetch data of first segment, if configured to do so. */
2009                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
2010                                           first_seg->data_off));
2011                 rx_pkts[nb_rx++] = first_seg;
2012                 first_seg = NULL;
2013         }
2014
2015         /* Record index of the next RX descriptor to probe. */
2016         rxq->rx_tail = rx_id;
2017         rxq->pkt_first_seg = first_seg;
2018         rxq->pkt_last_seg = last_seg;
2019
2020         /**
2021          * If the number of free RX descriptors is greater than the RX free
2022          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2023          * register. Update the RDT with the value of the last processed RX
2024          * descriptor minus 1, to guarantee that the RDT register is never
2025          * equal to the RDH register, which creates a "full" ring situation
2026          * from the hardware point of view.
2027          */
2028         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2029         if (nb_hold > rxq->rx_free_thresh) {
2030                 rx_id = (uint16_t)(rx_id == 0 ?
2031                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
2032                 /* write TAIL register */
2033                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2034                 nb_hold = 0;
2035         }
2036         rxq->nb_rx_hold = nb_hold;
2037
2038         /* return received packet in the burst */
2039         return nb_rx;
2040 }
2041
2042 const uint32_t *
2043 ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
2044 {
2045         struct ice_adapter *ad =
2046                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2047         const uint32_t *ptypes;
2048
2049         static const uint32_t ptypes_os[] = {
2050                 /* refers to ice_get_default_pkt_type() */
2051                 RTE_PTYPE_L2_ETHER,
2052                 RTE_PTYPE_L2_ETHER_TIMESYNC,
2053                 RTE_PTYPE_L2_ETHER_LLDP,
2054                 RTE_PTYPE_L2_ETHER_ARP,
2055                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2056                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2057                 RTE_PTYPE_L4_FRAG,
2058                 RTE_PTYPE_L4_ICMP,
2059                 RTE_PTYPE_L4_NONFRAG,
2060                 RTE_PTYPE_L4_SCTP,
2061                 RTE_PTYPE_L4_TCP,
2062                 RTE_PTYPE_L4_UDP,
2063                 RTE_PTYPE_TUNNEL_GRENAT,
2064                 RTE_PTYPE_TUNNEL_IP,
2065                 RTE_PTYPE_INNER_L2_ETHER,
2066                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2067                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2068                 RTE_PTYPE_INNER_L4_FRAG,
2069                 RTE_PTYPE_INNER_L4_ICMP,
2070                 RTE_PTYPE_INNER_L4_NONFRAG,
2071                 RTE_PTYPE_INNER_L4_SCTP,
2072                 RTE_PTYPE_INNER_L4_TCP,
2073                 RTE_PTYPE_INNER_L4_UDP,
2074                 RTE_PTYPE_UNKNOWN
2075         };
2076
2077         static const uint32_t ptypes_comms[] = {
2078                 /* refers to ice_get_default_pkt_type() */
2079                 RTE_PTYPE_L2_ETHER,
2080                 RTE_PTYPE_L2_ETHER_TIMESYNC,
2081                 RTE_PTYPE_L2_ETHER_LLDP,
2082                 RTE_PTYPE_L2_ETHER_ARP,
2083                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2084                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2085                 RTE_PTYPE_L4_FRAG,
2086                 RTE_PTYPE_L4_ICMP,
2087                 RTE_PTYPE_L4_NONFRAG,
2088                 RTE_PTYPE_L4_SCTP,
2089                 RTE_PTYPE_L4_TCP,
2090                 RTE_PTYPE_L4_UDP,
2091                 RTE_PTYPE_TUNNEL_GRENAT,
2092                 RTE_PTYPE_TUNNEL_IP,
2093                 RTE_PTYPE_INNER_L2_ETHER,
2094                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2095                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2096                 RTE_PTYPE_INNER_L4_FRAG,
2097                 RTE_PTYPE_INNER_L4_ICMP,
2098                 RTE_PTYPE_INNER_L4_NONFRAG,
2099                 RTE_PTYPE_INNER_L4_SCTP,
2100                 RTE_PTYPE_INNER_L4_TCP,
2101                 RTE_PTYPE_INNER_L4_UDP,
2102                 RTE_PTYPE_TUNNEL_GTPC,
2103                 RTE_PTYPE_TUNNEL_GTPU,
2104                 RTE_PTYPE_L2_ETHER_PPPOE,
2105                 RTE_PTYPE_UNKNOWN
2106         };
2107
2108         if (ad->active_pkg_type == ICE_PKG_TYPE_COMMS)
2109                 ptypes = ptypes_comms;
2110         else
2111                 ptypes = ptypes_os;
2112
2113         if (dev->rx_pkt_burst == ice_recv_pkts ||
2114             dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
2115             dev->rx_pkt_burst == ice_recv_scattered_pkts)
2116                 return ptypes;
2117
2118 #ifdef RTE_ARCH_X86
2119         if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
2120             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
2121 #ifdef CC_AVX512_SUPPORT
2122             dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
2123             dev->rx_pkt_burst == ice_recv_pkts_vec_avx512_offload ||
2124             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
2125             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512_offload ||
2126 #endif
2127             dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
2128             dev->rx_pkt_burst == ice_recv_pkts_vec_avx2_offload ||
2129             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2 ||
2130             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2_offload)
2131                 return ptypes;
2132 #endif
2133
2134         return NULL;
2135 }
2136
2137 int
2138 ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
2139 {
2140         volatile union ice_rx_flex_desc *rxdp;
2141         struct ice_rx_queue *rxq = rx_queue;
2142         uint32_t desc;
2143
2144         if (unlikely(offset >= rxq->nb_rx_desc))
2145                 return -EINVAL;
2146
2147         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2148                 return RTE_ETH_RX_DESC_UNAVAIL;
2149
2150         desc = rxq->rx_tail + offset;
2151         if (desc >= rxq->nb_rx_desc)
2152                 desc -= rxq->nb_rx_desc;
2153
2154         rxdp = &rxq->rx_ring[desc];
2155         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
2156             (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))
2157                 return RTE_ETH_RX_DESC_DONE;
2158
2159         return RTE_ETH_RX_DESC_AVAIL;
2160 }
2161
2162 int
2163 ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
2164 {
2165         struct ice_tx_queue *txq = tx_queue;
2166         volatile uint64_t *status;
2167         uint64_t mask, expect;
2168         uint32_t desc;
2169
2170         if (unlikely(offset >= txq->nb_tx_desc))
2171                 return -EINVAL;
2172
2173         desc = txq->tx_tail + offset;
2174         /* go to next desc that has the RS bit */
2175         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2176                 txq->tx_rs_thresh;
2177         if (desc >= txq->nb_tx_desc) {
2178                 desc -= txq->nb_tx_desc;
2179                 if (desc >= txq->nb_tx_desc)
2180                         desc -= txq->nb_tx_desc;
2181         }
2182
2183         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2184         mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
2185         expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
2186                                   ICE_TXD_QW1_DTYPE_S);
2187         if ((*status & mask) == expect)
2188                 return RTE_ETH_TX_DESC_DONE;
2189
2190         return RTE_ETH_TX_DESC_FULL;
2191 }
2192
2193 void
2194 ice_free_queues(struct rte_eth_dev *dev)
2195 {
2196         uint16_t i;
2197
2198         PMD_INIT_FUNC_TRACE();
2199
2200         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2201                 if (!dev->data->rx_queues[i])
2202                         continue;
2203                 ice_rx_queue_release(dev->data->rx_queues[i]);
2204                 dev->data->rx_queues[i] = NULL;
2205         }
2206         dev->data->nb_rx_queues = 0;
2207
2208         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2209                 if (!dev->data->tx_queues[i])
2210                         continue;
2211                 ice_tx_queue_release(dev->data->tx_queues[i]);
2212                 dev->data->tx_queues[i] = NULL;
2213         }
2214         dev->data->nb_tx_queues = 0;
2215 }
2216
2217 #define ICE_FDIR_NUM_TX_DESC  ICE_MIN_RING_DESC
2218 #define ICE_FDIR_NUM_RX_DESC  ICE_MIN_RING_DESC
2219
2220 int
2221 ice_fdir_setup_tx_resources(struct ice_pf *pf)
2222 {
2223         struct ice_tx_queue *txq;
2224         const struct rte_memzone *tz = NULL;
2225         uint32_t ring_size;
2226         struct rte_eth_dev *dev;
2227
2228         if (!pf) {
2229                 PMD_DRV_LOG(ERR, "PF is not available");
2230                 return -EINVAL;
2231         }
2232
2233         dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2234
2235         /* Allocate the TX queue data structure. */
2236         txq = rte_zmalloc_socket("ice fdir tx queue",
2237                                  sizeof(struct ice_tx_queue),
2238                                  RTE_CACHE_LINE_SIZE,
2239                                  SOCKET_ID_ANY);
2240         if (!txq) {
2241                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2242                             "tx queue structure.");
2243                 return -ENOMEM;
2244         }
2245
2246         /* Allocate TX hardware ring descriptors. */
2247         ring_size = sizeof(struct ice_tx_desc) * ICE_FDIR_NUM_TX_DESC;
2248         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2249
2250         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2251                                       ICE_FDIR_QUEUE_ID, ring_size,
2252                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2253         if (!tz) {
2254                 ice_tx_queue_release(txq);
2255                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2256                 return -ENOMEM;
2257         }
2258
2259         txq->mz = tz;
2260         txq->nb_tx_desc = ICE_FDIR_NUM_TX_DESC;
2261         txq->queue_id = ICE_FDIR_QUEUE_ID;
2262         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2263         txq->vsi = pf->fdir.fdir_vsi;
2264
2265         txq->tx_ring_dma = tz->iova;
2266         txq->tx_ring = (struct ice_tx_desc *)tz->addr;
2267         /*
2268          * don't need to allocate software ring and reset for the fdir
2269          * program queue just set the queue has been configured.
2270          */
2271         txq->q_set = true;
2272         pf->fdir.txq = txq;
2273
2274         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
2275
2276         return ICE_SUCCESS;
2277 }
2278
2279 int
2280 ice_fdir_setup_rx_resources(struct ice_pf *pf)
2281 {
2282         struct ice_rx_queue *rxq;
2283         const struct rte_memzone *rz = NULL;
2284         uint32_t ring_size;
2285         struct rte_eth_dev *dev;
2286
2287         if (!pf) {
2288                 PMD_DRV_LOG(ERR, "PF is not available");
2289                 return -EINVAL;
2290         }
2291
2292         dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2293
2294         /* Allocate the RX queue data structure. */
2295         rxq = rte_zmalloc_socket("ice fdir rx queue",
2296                                  sizeof(struct ice_rx_queue),
2297                                  RTE_CACHE_LINE_SIZE,
2298                                  SOCKET_ID_ANY);
2299         if (!rxq) {
2300                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2301                             "rx queue structure.");
2302                 return -ENOMEM;
2303         }
2304
2305         /* Allocate RX hardware ring descriptors. */
2306         ring_size = sizeof(union ice_32byte_rx_desc) * ICE_FDIR_NUM_RX_DESC;
2307         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2308
2309         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2310                                       ICE_FDIR_QUEUE_ID, ring_size,
2311                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2312         if (!rz) {
2313                 ice_rx_queue_release(rxq);
2314                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2315                 return -ENOMEM;
2316         }
2317
2318         rxq->mz = rz;
2319         rxq->nb_rx_desc = ICE_FDIR_NUM_RX_DESC;
2320         rxq->queue_id = ICE_FDIR_QUEUE_ID;
2321         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2322         rxq->vsi = pf->fdir.fdir_vsi;
2323
2324         rxq->rx_ring_dma = rz->iova;
2325         memset(rz->addr, 0, ICE_FDIR_NUM_RX_DESC *
2326                sizeof(union ice_32byte_rx_desc));
2327         rxq->rx_ring = (union ice_rx_flex_desc *)rz->addr;
2328
2329         /*
2330          * Don't need to allocate software ring and reset for the fdir
2331          * rx queue, just set the queue has been configured.
2332          */
2333         rxq->q_set = true;
2334         pf->fdir.rxq = rxq;
2335
2336         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
2337
2338         return ICE_SUCCESS;
2339 }
2340
2341 uint16_t
2342 ice_recv_pkts(void *rx_queue,
2343               struct rte_mbuf **rx_pkts,
2344               uint16_t nb_pkts)
2345 {
2346         struct ice_rx_queue *rxq = rx_queue;
2347         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
2348         volatile union ice_rx_flex_desc *rxdp;
2349         union ice_rx_flex_desc rxd;
2350         struct ice_rx_entry *sw_ring = rxq->sw_ring;
2351         struct ice_rx_entry *rxe;
2352         struct rte_mbuf *nmb; /* new allocated mbuf */
2353         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
2354         uint16_t rx_id = rxq->rx_tail;
2355         uint16_t nb_rx = 0;
2356         uint16_t nb_hold = 0;
2357         uint16_t rx_packet_len;
2358         uint16_t rx_stat_err0;
2359         uint64_t dma_addr;
2360         uint64_t pkt_flags;
2361         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2362 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2363         bool is_tsinit = false;
2364         uint64_t ts_ns;
2365         struct ice_vsi *vsi = rxq->vsi;
2366         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
2367         struct ice_adapter *ad = rxq->vsi->adapter;
2368
2369         if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
2370                 uint64_t sw_cur_time = rte_get_timer_cycles() / (rte_get_timer_hz() / 1000);
2371
2372                 if (unlikely(sw_cur_time - ad->hw_time_update > 4))
2373                         is_tsinit = 1;
2374         }
2375 #endif
2376
2377         while (nb_rx < nb_pkts) {
2378                 rxdp = &rx_ring[rx_id];
2379                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
2380
2381                 /* Check the DD bit first */
2382                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
2383                         break;
2384
2385                 /* allocate mbuf */
2386                 nmb = rte_mbuf_raw_alloc(rxq->mp);
2387                 if (unlikely(!nmb)) {
2388                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2389                         break;
2390                 }
2391                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
2392
2393                 nb_hold++;
2394                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
2395                 rx_id++;
2396                 if (unlikely(rx_id == rxq->nb_rx_desc))
2397                         rx_id = 0;
2398                 rxm = rxe->mbuf;
2399                 rxe->mbuf = nmb;
2400                 dma_addr =
2401                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2402
2403                 /**
2404                  * fill the read format of descriptor with physic address in
2405                  * new allocated mbuf: nmb
2406                  */
2407                 rxdp->read.hdr_addr = 0;
2408                 rxdp->read.pkt_addr = dma_addr;
2409
2410                 /* calculate rx_packet_len of the received pkt */
2411                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
2412                                  ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
2413
2414                 /* fill old mbuf with received descriptor: rxd */
2415                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
2416                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
2417                 rxm->nb_segs = 1;
2418                 rxm->next = NULL;
2419                 rxm->pkt_len = rx_packet_len;
2420                 rxm->data_len = rx_packet_len;
2421                 rxm->port = rxq->port_id;
2422                 rxm->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
2423                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
2424                 ice_rxd_to_vlan_tci(rxm, &rxd);
2425                 rxd_to_pkt_fields_ops[rxq->rxdid](rxq, rxm, &rxd);
2426                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
2427 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2428                 if (ice_timestamp_dynflag > 0) {
2429                         rxq->time_high =
2430                            rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2431                         if (unlikely(is_tsinit)) {
2432                                 ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1, rxq->time_high);
2433                                 ad->hw_time_low = (uint32_t)ts_ns;
2434                                 ad->hw_time_high = (uint32_t)(ts_ns >> 32);
2435                                 is_tsinit = false;
2436                         } else {
2437                                 if (rxq->time_high < ad->hw_time_low)
2438                                         ad->hw_time_high += 1;
2439                                 ts_ns = (uint64_t)ad->hw_time_high << 32 | rxq->time_high;
2440                                 ad->hw_time_low = rxq->time_high;
2441                         }
2442                         ad->hw_time_update = rte_get_timer_cycles() /
2443                                              (rte_get_timer_hz() / 1000);
2444                         *RTE_MBUF_DYNFIELD(rxm,
2445                                            (ice_timestamp_dynfield_offset),
2446                                            rte_mbuf_timestamp_t *) = ts_ns;
2447                         pkt_flags |= ice_timestamp_dynflag;
2448                 }
2449
2450                 if (ad->ptp_ena && ((rxm->packet_type & RTE_PTYPE_L2_MASK) ==
2451                     RTE_PTYPE_L2_ETHER_TIMESYNC)) {
2452                         rxq->time_high =
2453                            rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2454                         rxm->timesync = rxq->queue_id;
2455                         pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
2456                 }
2457 #endif
2458                 rxm->ol_flags |= pkt_flags;
2459                 /* copy old mbuf to rx_pkts */
2460                 rx_pkts[nb_rx++] = rxm;
2461         }
2462
2463         rxq->rx_tail = rx_id;
2464         /**
2465          * If the number of free RX descriptors is greater than the RX free
2466          * threshold of the queue, advance the receive tail register of queue.
2467          * Update that register with the value of the last processed RX
2468          * descriptor minus 1.
2469          */
2470         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2471         if (nb_hold > rxq->rx_free_thresh) {
2472                 rx_id = (uint16_t)(rx_id == 0 ?
2473                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
2474                 /* write TAIL register */
2475                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2476                 nb_hold = 0;
2477         }
2478         rxq->nb_rx_hold = nb_hold;
2479
2480         /* return received packet in the burst */
2481         return nb_rx;
2482 }
2483
2484 static inline void
2485 ice_parse_tunneling_params(uint64_t ol_flags,
2486                             union ice_tx_offload tx_offload,
2487                             uint32_t *cd_tunneling)
2488 {
2489         /* EIPT: External (outer) IP header type */
2490         if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM)
2491                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4;
2492         else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV4)
2493                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
2494         else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)
2495                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV6;
2496
2497         /* EIPLEN: External (outer) IP header length, in DWords */
2498         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
2499                 ICE_TXD_CTX_QW0_EIPLEN_S;
2500
2501         /* L4TUNT: L4 Tunneling Type */
2502         switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
2503         case RTE_MBUF_F_TX_TUNNEL_IPIP:
2504                 /* for non UDP / GRE tunneling, set to 00b */
2505                 break;
2506         case RTE_MBUF_F_TX_TUNNEL_VXLAN:
2507         case RTE_MBUF_F_TX_TUNNEL_GTP:
2508         case RTE_MBUF_F_TX_TUNNEL_GENEVE:
2509                 *cd_tunneling |= ICE_TXD_CTX_UDP_TUNNELING;
2510                 break;
2511         case RTE_MBUF_F_TX_TUNNEL_GRE:
2512                 *cd_tunneling |= ICE_TXD_CTX_GRE_TUNNELING;
2513                 break;
2514         default:
2515                 PMD_TX_LOG(ERR, "Tunnel type not supported");
2516                 return;
2517         }
2518
2519         /* L4TUNLEN: L4 Tunneling Length, in Words
2520          *
2521          * We depend on app to set rte_mbuf.l2_len correctly.
2522          * For IP in GRE it should be set to the length of the GRE
2523          * header;
2524          * For MAC in GRE or MAC in UDP it should be set to the length
2525          * of the GRE or UDP headers plus the inner MAC up to including
2526          * its last Ethertype.
2527          * If MPLS labels exists, it should include them as well.
2528          */
2529         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
2530                 ICE_TXD_CTX_QW0_NATLEN_S;
2531
2532         /**
2533          * Calculate the tunneling UDP checksum.
2534          * Shall be set only if L4TUNT = 01b and EIPT is not zero
2535          */
2536         if (!(*cd_tunneling & ICE_TX_CTX_EIPT_NONE) &&
2537             (*cd_tunneling & ICE_TXD_CTX_UDP_TUNNELING))
2538                 *cd_tunneling |= ICE_TXD_CTX_QW0_L4T_CS_M;
2539 }
2540
2541 static inline void
2542 ice_txd_enable_checksum(uint64_t ol_flags,
2543                         uint32_t *td_cmd,
2544                         uint32_t *td_offset,
2545                         union ice_tx_offload tx_offload)
2546 {
2547         /* Set MACLEN */
2548         if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2549                 *td_offset |= (tx_offload.outer_l2_len >> 1)
2550                         << ICE_TX_DESC_LEN_MACLEN_S;
2551         else
2552                 *td_offset |= (tx_offload.l2_len >> 1)
2553                         << ICE_TX_DESC_LEN_MACLEN_S;
2554
2555         /* Enable L3 checksum offloads */
2556         if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
2557                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
2558                 *td_offset |= (tx_offload.l3_len >> 2) <<
2559                         ICE_TX_DESC_LEN_IPLEN_S;
2560         } else if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2561                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
2562                 *td_offset |= (tx_offload.l3_len >> 2) <<
2563                         ICE_TX_DESC_LEN_IPLEN_S;
2564         } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2565                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2566                 *td_offset |= (tx_offload.l3_len >> 2) <<
2567                         ICE_TX_DESC_LEN_IPLEN_S;
2568         }
2569
2570         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2571                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2572                 *td_offset |= (tx_offload.l4_len >> 2) <<
2573                               ICE_TX_DESC_LEN_L4_LEN_S;
2574                 return;
2575         }
2576
2577         /* Enable L4 checksum offloads */
2578         switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
2579         case RTE_MBUF_F_TX_TCP_CKSUM:
2580                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2581                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2582                               ICE_TX_DESC_LEN_L4_LEN_S;
2583                 break;
2584         case RTE_MBUF_F_TX_SCTP_CKSUM:
2585                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2586                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2587                               ICE_TX_DESC_LEN_L4_LEN_S;
2588                 break;
2589         case RTE_MBUF_F_TX_UDP_CKSUM:
2590                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2591                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2592                               ICE_TX_DESC_LEN_L4_LEN_S;
2593                 break;
2594         default:
2595                 break;
2596         }
2597 }
2598
2599 static inline int
2600 ice_xmit_cleanup(struct ice_tx_queue *txq)
2601 {
2602         struct ice_tx_entry *sw_ring = txq->sw_ring;
2603         volatile struct ice_tx_desc *txd = txq->tx_ring;
2604         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2605         uint16_t nb_tx_desc = txq->nb_tx_desc;
2606         uint16_t desc_to_clean_to;
2607         uint16_t nb_tx_to_clean;
2608
2609         /* Determine the last descriptor needing to be cleaned */
2610         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
2611         if (desc_to_clean_to >= nb_tx_desc)
2612                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2613
2614         /* Check to make sure the last descriptor to clean is done */
2615         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2616         if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
2617             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
2618                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2619                            "(port=%d queue=%d) value=0x%"PRIx64"\n",
2620                            desc_to_clean_to,
2621                            txq->port_id, txq->queue_id,
2622                            txd[desc_to_clean_to].cmd_type_offset_bsz);
2623                 /* Failed to clean any descriptors */
2624                 return -1;
2625         }
2626
2627         /* Figure out how many descriptors will be cleaned */
2628         if (last_desc_cleaned > desc_to_clean_to)
2629                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2630                                             desc_to_clean_to);
2631         else
2632                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2633                                             last_desc_cleaned);
2634
2635         /* The last descriptor to clean is done, so that means all the
2636          * descriptors from the last descriptor that was cleaned
2637          * up to the last descriptor with the RS bit set
2638          * are done. Only reset the threshold descriptor.
2639          */
2640         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2641
2642         /* Update the txq to reflect the last descriptor that was cleaned */
2643         txq->last_desc_cleaned = desc_to_clean_to;
2644         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
2645
2646         return 0;
2647 }
2648
2649 /* Construct the tx flags */
2650 static inline uint64_t
2651 ice_build_ctob(uint32_t td_cmd,
2652                uint32_t td_offset,
2653                uint16_t size,
2654                uint32_t td_tag)
2655 {
2656         return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2657                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2658                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2659                                 ((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
2660                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2661 }
2662
2663 /* Check if the context descriptor is needed for TX offloading */
2664 static inline uint16_t
2665 ice_calc_context_desc(uint64_t flags)
2666 {
2667         static uint64_t mask = RTE_MBUF_F_TX_TCP_SEG |
2668                 RTE_MBUF_F_TX_QINQ |
2669                 RTE_MBUF_F_TX_OUTER_IP_CKSUM |
2670                 RTE_MBUF_F_TX_TUNNEL_MASK |
2671                 RTE_MBUF_F_TX_IEEE1588_TMST;
2672
2673         return (flags & mask) ? 1 : 0;
2674 }
2675
2676 /* set ice TSO context descriptor */
2677 static inline uint64_t
2678 ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
2679 {
2680         uint64_t ctx_desc = 0;
2681         uint32_t cd_cmd, hdr_len, cd_tso_len;
2682
2683         if (!tx_offload.l4_len) {
2684                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
2685                 return ctx_desc;
2686         }
2687
2688         hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
2689         hdr_len += (mbuf->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
2690                    tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
2691
2692         cd_cmd = ICE_TX_CTX_DESC_TSO;
2693         cd_tso_len = mbuf->pkt_len - hdr_len;
2694         ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
2695                     ((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2696                     ((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
2697
2698         return ctx_desc;
2699 }
2700
2701 /* HW requires that TX buffer size ranges from 1B up to (16K-1)B. */
2702 #define ICE_MAX_DATA_PER_TXD \
2703         (ICE_TXD_QW1_TX_BUF_SZ_M >> ICE_TXD_QW1_TX_BUF_SZ_S)
2704 /* Calculate the number of TX descriptors needed for each pkt */
2705 static inline uint16_t
2706 ice_calc_pkt_desc(struct rte_mbuf *tx_pkt)
2707 {
2708         struct rte_mbuf *txd = tx_pkt;
2709         uint16_t count = 0;
2710
2711         while (txd != NULL) {
2712                 count += DIV_ROUND_UP(txd->data_len, ICE_MAX_DATA_PER_TXD);
2713                 txd = txd->next;
2714         }
2715
2716         return count;
2717 }
2718
2719 uint16_t
2720 ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2721 {
2722         struct ice_tx_queue *txq;
2723         volatile struct ice_tx_desc *tx_ring;
2724         volatile struct ice_tx_desc *txd;
2725         struct ice_tx_entry *sw_ring;
2726         struct ice_tx_entry *txe, *txn;
2727         struct rte_mbuf *tx_pkt;
2728         struct rte_mbuf *m_seg;
2729         uint32_t cd_tunneling_params;
2730         uint16_t tx_id;
2731         uint16_t nb_tx;
2732         uint16_t nb_used;
2733         uint16_t nb_ctx;
2734         uint32_t td_cmd = 0;
2735         uint32_t td_offset = 0;
2736         uint32_t td_tag = 0;
2737         uint16_t tx_last;
2738         uint16_t slen;
2739         uint64_t buf_dma_addr;
2740         uint64_t ol_flags;
2741         union ice_tx_offload tx_offload = {0};
2742
2743         txq = tx_queue;
2744         sw_ring = txq->sw_ring;
2745         tx_ring = txq->tx_ring;
2746         tx_id = txq->tx_tail;
2747         txe = &sw_ring[tx_id];
2748
2749         /* Check if the descriptor ring needs to be cleaned. */
2750         if (txq->nb_tx_free < txq->tx_free_thresh)
2751                 (void)ice_xmit_cleanup(txq);
2752
2753         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2754                 tx_pkt = *tx_pkts++;
2755
2756                 td_cmd = 0;
2757                 td_tag = 0;
2758                 td_offset = 0;
2759                 ol_flags = tx_pkt->ol_flags;
2760                 tx_offload.l2_len = tx_pkt->l2_len;
2761                 tx_offload.l3_len = tx_pkt->l3_len;
2762                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
2763                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
2764                 tx_offload.l4_len = tx_pkt->l4_len;
2765                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
2766                 /* Calculate the number of context descriptors needed. */
2767                 nb_ctx = ice_calc_context_desc(ol_flags);
2768
2769                 /* The number of descriptors that must be allocated for
2770                  * a packet equals to the number of the segments of that
2771                  * packet plus the number of context descriptor if needed.
2772                  * Recalculate the needed tx descs when TSO enabled in case
2773                  * the mbuf data size exceeds max data size that hw allows
2774                  * per tx desc.
2775                  */
2776                 if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
2777                         nb_used = (uint16_t)(ice_calc_pkt_desc(tx_pkt) +
2778                                              nb_ctx);
2779                 else
2780                         nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
2781                 tx_last = (uint16_t)(tx_id + nb_used - 1);
2782
2783                 /* Circular ring */
2784                 if (tx_last >= txq->nb_tx_desc)
2785                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
2786
2787                 if (nb_used > txq->nb_tx_free) {
2788                         if (ice_xmit_cleanup(txq) != 0) {
2789                                 if (nb_tx == 0)
2790                                         return 0;
2791                                 goto end_of_tx;
2792                         }
2793                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
2794                                 while (nb_used > txq->nb_tx_free) {
2795                                         if (ice_xmit_cleanup(txq) != 0) {
2796                                                 if (nb_tx == 0)
2797                                                         return 0;
2798                                                 goto end_of_tx;
2799                                         }
2800                                 }
2801                         }
2802                 }
2803
2804                 /* Descriptor based VLAN insertion */
2805                 if (ol_flags & (RTE_MBUF_F_TX_VLAN | RTE_MBUF_F_TX_QINQ)) {
2806                         td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
2807                         td_tag = tx_pkt->vlan_tci;
2808                 }
2809
2810                 /* Fill in tunneling parameters if necessary */
2811                 cd_tunneling_params = 0;
2812                 if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2813                         ice_parse_tunneling_params(ol_flags, tx_offload,
2814                                                    &cd_tunneling_params);
2815
2816                 /* Enable checksum offloading */
2817                 if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK)
2818                         ice_txd_enable_checksum(ol_flags, &td_cmd,
2819                                                 &td_offset, tx_offload);
2820
2821                 if (nb_ctx) {
2822                         /* Setup TX context descriptor if required */
2823                         volatile struct ice_tx_ctx_desc *ctx_txd =
2824                                 (volatile struct ice_tx_ctx_desc *)
2825                                         &tx_ring[tx_id];
2826                         uint16_t cd_l2tag2 = 0;
2827                         uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
2828
2829                         txn = &sw_ring[txe->next_id];
2830                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2831                         if (txe->mbuf) {
2832                                 rte_pktmbuf_free_seg(txe->mbuf);
2833                                 txe->mbuf = NULL;
2834                         }
2835
2836                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
2837                                 cd_type_cmd_tso_mss |=
2838                                         ice_set_tso_ctx(tx_pkt, tx_offload);
2839                         else if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
2840                                 cd_type_cmd_tso_mss |=
2841                                         ((uint64_t)ICE_TX_CTX_DESC_TSYN <<
2842                                         ICE_TXD_CTX_QW1_CMD_S);
2843
2844                         ctx_txd->tunneling_params =
2845                                 rte_cpu_to_le_32(cd_tunneling_params);
2846
2847                         /* TX context descriptor based double VLAN insert */
2848                         if (ol_flags & RTE_MBUF_F_TX_QINQ) {
2849                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
2850                                 cd_type_cmd_tso_mss |=
2851                                         ((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
2852                                          ICE_TXD_CTX_QW1_CMD_S);
2853                         }
2854                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
2855                         ctx_txd->qw1 =
2856                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2857
2858                         txe->last_id = tx_last;
2859                         tx_id = txe->next_id;
2860                         txe = txn;
2861                 }
2862                 m_seg = tx_pkt;
2863
2864                 do {
2865                         txd = &tx_ring[tx_id];
2866                         txn = &sw_ring[txe->next_id];
2867
2868                         if (txe->mbuf)
2869                                 rte_pktmbuf_free_seg(txe->mbuf);
2870                         txe->mbuf = m_seg;
2871
2872                         /* Setup TX Descriptor */
2873                         slen = m_seg->data_len;
2874                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2875
2876                         while ((ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
2877                                 unlikely(slen > ICE_MAX_DATA_PER_TXD)) {
2878                                 txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2879                                 txd->cmd_type_offset_bsz =
2880                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2881                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2882                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2883                                 ((uint64_t)ICE_MAX_DATA_PER_TXD <<
2884                                  ICE_TXD_QW1_TX_BUF_SZ_S) |
2885                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2886
2887                                 buf_dma_addr += ICE_MAX_DATA_PER_TXD;
2888                                 slen -= ICE_MAX_DATA_PER_TXD;
2889
2890                                 txe->last_id = tx_last;
2891                                 tx_id = txe->next_id;
2892                                 txe = txn;
2893                                 txd = &tx_ring[tx_id];
2894                                 txn = &sw_ring[txe->next_id];
2895                         }
2896
2897                         txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2898                         txd->cmd_type_offset_bsz =
2899                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2900                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2901                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2902                                 ((uint64_t)slen << ICE_TXD_QW1_TX_BUF_SZ_S) |
2903                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2904
2905                         txe->last_id = tx_last;
2906                         tx_id = txe->next_id;
2907                         txe = txn;
2908                         m_seg = m_seg->next;
2909                 } while (m_seg);
2910
2911                 /* fill the last descriptor with End of Packet (EOP) bit */
2912                 td_cmd |= ICE_TX_DESC_CMD_EOP;
2913                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
2914                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
2915
2916                 /* set RS bit on the last descriptor of one packet */
2917                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
2918                         PMD_TX_LOG(DEBUG,
2919                                    "Setting RS bit on TXD id="
2920                                    "%4u (port=%d queue=%d)",
2921                                    tx_last, txq->port_id, txq->queue_id);
2922
2923                         td_cmd |= ICE_TX_DESC_CMD_RS;
2924
2925                         /* Update txq RS bit counters */
2926                         txq->nb_tx_used = 0;
2927                 }
2928                 txd->cmd_type_offset_bsz |=
2929                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2930                                          ICE_TXD_QW1_CMD_S);
2931         }
2932 end_of_tx:
2933         /* update Tail register */
2934         ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
2935         txq->tx_tail = tx_id;
2936
2937         return nb_tx;
2938 }
2939
2940 static __rte_always_inline int
2941 ice_tx_free_bufs(struct ice_tx_queue *txq)
2942 {
2943         struct ice_tx_entry *txep;
2944         uint16_t i;
2945
2946         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
2947              rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
2948             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
2949                 return 0;
2950
2951         txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
2952
2953         for (i = 0; i < txq->tx_rs_thresh; i++)
2954                 rte_prefetch0((txep + i)->mbuf);
2955
2956         if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) {
2957                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2958                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
2959                         txep->mbuf = NULL;
2960                 }
2961         } else {
2962                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2963                         rte_pktmbuf_free_seg(txep->mbuf);
2964                         txep->mbuf = NULL;
2965                 }
2966         }
2967
2968         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
2969         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
2970         if (txq->tx_next_dd >= txq->nb_tx_desc)
2971                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2972
2973         return txq->tx_rs_thresh;
2974 }
2975
2976 static int
2977 ice_tx_done_cleanup_full(struct ice_tx_queue *txq,
2978                         uint32_t free_cnt)
2979 {
2980         struct ice_tx_entry *swr_ring = txq->sw_ring;
2981         uint16_t i, tx_last, tx_id;
2982         uint16_t nb_tx_free_last;
2983         uint16_t nb_tx_to_clean;
2984         uint32_t pkt_cnt;
2985
2986         /* Start free mbuf from the next of tx_tail */
2987         tx_last = txq->tx_tail;
2988         tx_id  = swr_ring[tx_last].next_id;
2989
2990         if (txq->nb_tx_free == 0 && ice_xmit_cleanup(txq))
2991                 return 0;
2992
2993         nb_tx_to_clean = txq->nb_tx_free;
2994         nb_tx_free_last = txq->nb_tx_free;
2995         if (!free_cnt)
2996                 free_cnt = txq->nb_tx_desc;
2997
2998         /* Loop through swr_ring to count the amount of
2999          * freeable mubfs and packets.
3000          */
3001         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
3002                 for (i = 0; i < nb_tx_to_clean &&
3003                         pkt_cnt < free_cnt &&
3004                         tx_id != tx_last; i++) {
3005                         if (swr_ring[tx_id].mbuf != NULL) {
3006                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
3007                                 swr_ring[tx_id].mbuf = NULL;
3008
3009                                 /*
3010                                  * last segment in the packet,
3011                                  * increment packet count
3012                                  */
3013                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
3014                         }
3015
3016                         tx_id = swr_ring[tx_id].next_id;
3017                 }
3018
3019                 if (txq->tx_rs_thresh > txq->nb_tx_desc -
3020                         txq->nb_tx_free || tx_id == tx_last)
3021                         break;
3022
3023                 if (pkt_cnt < free_cnt) {
3024                         if (ice_xmit_cleanup(txq))
3025                                 break;
3026
3027                         nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
3028                         nb_tx_free_last = txq->nb_tx_free;
3029                 }
3030         }
3031
3032         return (int)pkt_cnt;
3033 }
3034
3035 #ifdef RTE_ARCH_X86
3036 static int
3037 ice_tx_done_cleanup_vec(struct ice_tx_queue *txq __rte_unused,
3038                         uint32_t free_cnt __rte_unused)
3039 {
3040         return -ENOTSUP;
3041 }
3042 #endif
3043
3044 static int
3045 ice_tx_done_cleanup_simple(struct ice_tx_queue *txq,
3046                         uint32_t free_cnt)
3047 {
3048         int i, n, cnt;
3049
3050         if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
3051                 free_cnt = txq->nb_tx_desc;
3052
3053         cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
3054
3055         for (i = 0; i < cnt; i += n) {
3056                 if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
3057                         break;
3058
3059                 n = ice_tx_free_bufs(txq);
3060
3061                 if (n == 0)
3062                         break;
3063         }
3064
3065         return i;
3066 }
3067
3068 int
3069 ice_tx_done_cleanup(void *txq, uint32_t free_cnt)
3070 {
3071         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
3072         struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
3073         struct ice_adapter *ad =
3074                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3075
3076 #ifdef RTE_ARCH_X86
3077         if (ad->tx_vec_allowed)
3078                 return ice_tx_done_cleanup_vec(q, free_cnt);
3079 #endif
3080         if (ad->tx_simple_allowed)
3081                 return ice_tx_done_cleanup_simple(q, free_cnt);
3082         else
3083                 return ice_tx_done_cleanup_full(q, free_cnt);
3084 }
3085
3086 /* Populate 4 descriptors with data from 4 mbufs */
3087 static inline void
3088 tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3089 {
3090         uint64_t dma_addr;
3091         uint32_t i;
3092
3093         for (i = 0; i < 4; i++, txdp++, pkts++) {
3094                 dma_addr = rte_mbuf_data_iova(*pkts);
3095                 txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3096                 txdp->cmd_type_offset_bsz =
3097                         ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3098                                        (*pkts)->data_len, 0);
3099         }
3100 }
3101
3102 /* Populate 1 descriptor with data from 1 mbuf */
3103 static inline void
3104 tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3105 {
3106         uint64_t dma_addr;
3107
3108         dma_addr = rte_mbuf_data_iova(*pkts);
3109         txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3110         txdp->cmd_type_offset_bsz =
3111                 ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3112                                (*pkts)->data_len, 0);
3113 }
3114
3115 static inline void
3116 ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
3117                     uint16_t nb_pkts)
3118 {
3119         volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
3120         struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
3121         const int N_PER_LOOP = 4;
3122         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
3123         int mainpart, leftover;
3124         int i, j;
3125
3126         /**
3127          * Process most of the packets in chunks of N pkts.  Any
3128          * leftover packets will get processed one at a time.
3129          */
3130         mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
3131         leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
3132         for (i = 0; i < mainpart; i += N_PER_LOOP) {
3133                 /* Copy N mbuf pointers to the S/W ring */
3134                 for (j = 0; j < N_PER_LOOP; ++j)
3135                         (txep + i + j)->mbuf = *(pkts + i + j);
3136                 tx4(txdp + i, pkts + i);
3137         }
3138
3139         if (unlikely(leftover > 0)) {
3140                 for (i = 0; i < leftover; ++i) {
3141                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
3142                         tx1(txdp + mainpart + i, pkts + mainpart + i);
3143                 }
3144         }
3145 }
3146
3147 static inline uint16_t
3148 tx_xmit_pkts(struct ice_tx_queue *txq,
3149              struct rte_mbuf **tx_pkts,
3150              uint16_t nb_pkts)
3151 {
3152         volatile struct ice_tx_desc *txr = txq->tx_ring;
3153         uint16_t n = 0;
3154
3155         /**
3156          * Begin scanning the H/W ring for done descriptors when the number
3157          * of available descriptors drops below tx_free_thresh. For each done
3158          * descriptor, free the associated buffer.
3159          */
3160         if (txq->nb_tx_free < txq->tx_free_thresh)
3161                 ice_tx_free_bufs(txq);
3162
3163         /* Use available descriptor only */
3164         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
3165         if (unlikely(!nb_pkts))
3166                 return 0;
3167
3168         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
3169         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
3170                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
3171                 ice_tx_fill_hw_ring(txq, tx_pkts, n);
3172                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3173                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3174                                          ICE_TXD_QW1_CMD_S);
3175                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3176                 txq->tx_tail = 0;
3177         }
3178
3179         /* Fill hardware descriptor ring with mbuf data */
3180         ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
3181         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
3182
3183         /* Determine if RS bit needs to be set */
3184         if (txq->tx_tail > txq->tx_next_rs) {
3185                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3186                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3187                                          ICE_TXD_QW1_CMD_S);
3188                 txq->tx_next_rs =
3189                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
3190                 if (txq->tx_next_rs >= txq->nb_tx_desc)
3191                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3192         }
3193
3194         if (txq->tx_tail >= txq->nb_tx_desc)
3195                 txq->tx_tail = 0;
3196
3197         /* Update the tx tail register */
3198         ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
3199
3200         return nb_pkts;
3201 }
3202
3203 static uint16_t
3204 ice_xmit_pkts_simple(void *tx_queue,
3205                      struct rte_mbuf **tx_pkts,
3206                      uint16_t nb_pkts)
3207 {
3208         uint16_t nb_tx = 0;
3209
3210         if (likely(nb_pkts <= ICE_TX_MAX_BURST))
3211                 return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3212                                     tx_pkts, nb_pkts);
3213
3214         while (nb_pkts) {
3215                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
3216                                                       ICE_TX_MAX_BURST);
3217
3218                 ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3219                                    &tx_pkts[nb_tx], num);
3220                 nb_tx = (uint16_t)(nb_tx + ret);
3221                 nb_pkts = (uint16_t)(nb_pkts - ret);
3222                 if (ret < num)
3223                         break;
3224         }
3225
3226         return nb_tx;
3227 }
3228
3229 void __rte_cold
3230 ice_set_rx_function(struct rte_eth_dev *dev)
3231 {
3232         PMD_INIT_FUNC_TRACE();
3233         struct ice_adapter *ad =
3234                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3235 #ifdef RTE_ARCH_X86
3236         struct ice_rx_queue *rxq;
3237         int i;
3238         int rx_check_ret = -1;
3239
3240         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3241                 ad->rx_use_avx512 = false;
3242                 ad->rx_use_avx2 = false;
3243                 rx_check_ret = ice_rx_vec_dev_check(dev);
3244                 if (ad->ptp_ena)
3245                         rx_check_ret = -1;
3246                 ad->rx_vec_offload_support =
3247                                 (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH);
3248                 if (rx_check_ret >= 0 && ad->rx_bulk_alloc_allowed &&
3249                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3250                         ad->rx_vec_allowed = true;
3251                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3252                                 rxq = dev->data->rx_queues[i];
3253                                 if (rxq && ice_rxq_vec_setup(rxq)) {
3254                                         ad->rx_vec_allowed = false;
3255                                         break;
3256                                 }
3257                         }
3258
3259                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3260                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3261                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3262 #ifdef CC_AVX512_SUPPORT
3263                                 ad->rx_use_avx512 = true;
3264 #else
3265                         PMD_DRV_LOG(NOTICE,
3266                                 "AVX512 is not supported in build env");
3267 #endif
3268                         if (!ad->rx_use_avx512 &&
3269                         (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3270                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3271                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3272                                 ad->rx_use_avx2 = true;
3273
3274                 } else {
3275                         ad->rx_vec_allowed = false;
3276                 }
3277         }
3278
3279         if (ad->rx_vec_allowed) {
3280                 if (dev->data->scattered_rx) {
3281                         if (ad->rx_use_avx512) {
3282 #ifdef CC_AVX512_SUPPORT
3283                                 if (ad->rx_vec_offload_support) {
3284                                         PMD_DRV_LOG(NOTICE,
3285                                                 "Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
3286                                                 dev->data->port_id);
3287                                         dev->rx_pkt_burst =
3288                                                 ice_recv_scattered_pkts_vec_avx512_offload;
3289                                 } else {
3290                                         PMD_DRV_LOG(NOTICE,
3291                                                 "Using AVX512 Vector Scattered Rx (port %d).",
3292                                                 dev->data->port_id);
3293                                         dev->rx_pkt_burst =
3294                                                 ice_recv_scattered_pkts_vec_avx512;
3295                                 }
3296 #endif
3297                         } else if (ad->rx_use_avx2) {
3298                                 if (ad->rx_vec_offload_support) {
3299                                         PMD_DRV_LOG(NOTICE,
3300                                                     "Using AVX2 OFFLOAD Vector Scattered Rx (port %d).",
3301                                                     dev->data->port_id);
3302                                         dev->rx_pkt_burst =
3303                                                 ice_recv_scattered_pkts_vec_avx2_offload;
3304                                 } else {
3305                                         PMD_DRV_LOG(NOTICE,
3306                                                     "Using AVX2 Vector Scattered Rx (port %d).",
3307                                                     dev->data->port_id);
3308                                         dev->rx_pkt_burst =
3309                                                 ice_recv_scattered_pkts_vec_avx2;
3310                                 }
3311                         } else {
3312                                 PMD_DRV_LOG(DEBUG,
3313                                         "Using Vector Scattered Rx (port %d).",
3314                                         dev->data->port_id);
3315                                 dev->rx_pkt_burst = ice_recv_scattered_pkts_vec;
3316                         }
3317                 } else {
3318                         if (ad->rx_use_avx512) {
3319 #ifdef CC_AVX512_SUPPORT
3320                                 if (ad->rx_vec_offload_support) {
3321                                         PMD_DRV_LOG(NOTICE,
3322                                                 "Using AVX512 OFFLOAD Vector Rx (port %d).",
3323                                                 dev->data->port_id);
3324                                         dev->rx_pkt_burst =
3325                                                 ice_recv_pkts_vec_avx512_offload;
3326                                 } else {
3327                                         PMD_DRV_LOG(NOTICE,
3328                                                 "Using AVX512 Vector Rx (port %d).",
3329                                                 dev->data->port_id);
3330                                         dev->rx_pkt_burst =
3331                                                 ice_recv_pkts_vec_avx512;
3332                                 }
3333 #endif
3334                         } else if (ad->rx_use_avx2) {
3335                                 if (ad->rx_vec_offload_support) {
3336                                         PMD_DRV_LOG(NOTICE,
3337                                                     "Using AVX2 OFFLOAD Vector Rx (port %d).",
3338                                                     dev->data->port_id);
3339                                         dev->rx_pkt_burst =
3340                                                 ice_recv_pkts_vec_avx2_offload;
3341                                 } else {
3342                                         PMD_DRV_LOG(NOTICE,
3343                                                     "Using AVX2 Vector Rx (port %d).",
3344                                                     dev->data->port_id);
3345                                         dev->rx_pkt_burst =
3346                                                 ice_recv_pkts_vec_avx2;
3347                                 }
3348                         } else {
3349                                 PMD_DRV_LOG(DEBUG,
3350                                         "Using Vector Rx (port %d).",
3351                                         dev->data->port_id);
3352                                 dev->rx_pkt_burst = ice_recv_pkts_vec;
3353                         }
3354                 }
3355                 return;
3356         }
3357
3358 #endif
3359
3360         if (dev->data->scattered_rx) {
3361                 /* Set the non-LRO scattered function */
3362                 PMD_INIT_LOG(DEBUG,
3363                              "Using a Scattered function on port %d.",
3364                              dev->data->port_id);
3365                 dev->rx_pkt_burst = ice_recv_scattered_pkts;
3366         } else if (ad->rx_bulk_alloc_allowed) {
3367                 PMD_INIT_LOG(DEBUG,
3368                              "Rx Burst Bulk Alloc Preconditions are "
3369                              "satisfied. Rx Burst Bulk Alloc function "
3370                              "will be used on port %d.",
3371                              dev->data->port_id);
3372                 dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
3373         } else {
3374                 PMD_INIT_LOG(DEBUG,
3375                              "Rx Burst Bulk Alloc Preconditions are not "
3376                              "satisfied, Normal Rx will be used on port %d.",
3377                              dev->data->port_id);
3378                 dev->rx_pkt_burst = ice_recv_pkts;
3379         }
3380 }
3381
3382 static const struct {
3383         eth_rx_burst_t pkt_burst;
3384         const char *info;
3385 } ice_rx_burst_infos[] = {
3386         { ice_recv_scattered_pkts,          "Scalar Scattered" },
3387         { ice_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3388         { ice_recv_pkts,                    "Scalar" },
3389 #ifdef RTE_ARCH_X86
3390 #ifdef CC_AVX512_SUPPORT
3391         { ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
3392         { ice_recv_scattered_pkts_vec_avx512_offload, "Offload Vector AVX512 Scattered" },
3393         { ice_recv_pkts_vec_avx512,           "Vector AVX512" },
3394         { ice_recv_pkts_vec_avx512_offload,   "Offload Vector AVX512" },
3395 #endif
3396         { ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3397         { ice_recv_scattered_pkts_vec_avx2_offload, "Offload Vector AVX2 Scattered" },
3398         { ice_recv_pkts_vec_avx2,           "Vector AVX2" },
3399         { ice_recv_pkts_vec_avx2_offload,   "Offload Vector AVX2" },
3400         { ice_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3401         { ice_recv_pkts_vec,                "Vector SSE" },
3402 #endif
3403 };
3404
3405 int
3406 ice_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3407                       struct rte_eth_burst_mode *mode)
3408 {
3409         eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3410         int ret = -EINVAL;
3411         unsigned int i;
3412
3413         for (i = 0; i < RTE_DIM(ice_rx_burst_infos); ++i) {
3414                 if (pkt_burst == ice_rx_burst_infos[i].pkt_burst) {
3415                         snprintf(mode->info, sizeof(mode->info), "%s",
3416                                  ice_rx_burst_infos[i].info);
3417                         ret = 0;
3418                         break;
3419                 }
3420         }
3421
3422         return ret;
3423 }
3424
3425 void __rte_cold
3426 ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ice_tx_queue *txq)
3427 {
3428         struct ice_adapter *ad =
3429                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3430
3431         /* Use a simple Tx queue if possible (only fast free is allowed) */
3432         ad->tx_simple_allowed =
3433                 (txq->offloads ==
3434                 (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) &&
3435                 txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
3436
3437         if (ad->tx_simple_allowed)
3438                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3439                              txq->queue_id);
3440         else
3441                 PMD_INIT_LOG(DEBUG,
3442                              "Simple Tx can NOT be enabled on Tx queue %u.",
3443                              txq->queue_id);
3444 }
3445
3446 /*********************************************************************
3447  *
3448  *  TX prep functions
3449  *
3450  **********************************************************************/
3451 /* The default values of TSO MSS */
3452 #define ICE_MIN_TSO_MSS            64
3453 #define ICE_MAX_TSO_MSS            9728
3454 #define ICE_MAX_TSO_FRAME_SIZE     262144
3455 uint16_t
3456 ice_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
3457               uint16_t nb_pkts)
3458 {
3459         int i, ret;
3460         uint64_t ol_flags;
3461         struct rte_mbuf *m;
3462
3463         for (i = 0; i < nb_pkts; i++) {
3464                 m = tx_pkts[i];
3465                 ol_flags = m->ol_flags;
3466
3467                 if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
3468                     (m->tso_segsz < ICE_MIN_TSO_MSS ||
3469                      m->tso_segsz > ICE_MAX_TSO_MSS ||
3470                      m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
3471                         /**
3472                          * MSS outside the range are considered malicious
3473                          */
3474                         rte_errno = EINVAL;
3475                         return i;
3476                 }
3477
3478 #ifdef RTE_ETHDEV_DEBUG_TX
3479                 ret = rte_validate_tx_offload(m);
3480                 if (ret != 0) {
3481                         rte_errno = -ret;
3482                         return i;
3483                 }
3484 #endif
3485                 ret = rte_net_intel_cksum_prepare(m);
3486                 if (ret != 0) {
3487                         rte_errno = -ret;
3488                         return i;
3489                 }
3490         }
3491         return i;
3492 }
3493
3494 void __rte_cold
3495 ice_set_tx_function(struct rte_eth_dev *dev)
3496 {
3497         struct ice_adapter *ad =
3498                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3499 #ifdef RTE_ARCH_X86
3500         struct ice_tx_queue *txq;
3501         int i;
3502         int tx_check_ret = -1;
3503
3504         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3505                 ad->tx_use_avx2 = false;
3506                 ad->tx_use_avx512 = false;
3507                 tx_check_ret = ice_tx_vec_dev_check(dev);
3508                 if (tx_check_ret >= 0 &&
3509                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3510                         ad->tx_vec_allowed = true;
3511
3512                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3513                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3514                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3515 #ifdef CC_AVX512_SUPPORT
3516                                 ad->tx_use_avx512 = true;
3517 #else
3518                         PMD_DRV_LOG(NOTICE,
3519                                 "AVX512 is not supported in build env");
3520 #endif
3521                         if (!ad->tx_use_avx512 &&
3522                                 (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3523                                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3524                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3525                                 ad->tx_use_avx2 = true;
3526
3527                         if (!ad->tx_use_avx2 && !ad->tx_use_avx512 &&
3528                                 tx_check_ret == ICE_VECTOR_OFFLOAD_PATH)
3529                                 ad->tx_vec_allowed = false;
3530
3531                         if (ad->tx_vec_allowed) {
3532                                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
3533                                         txq = dev->data->tx_queues[i];
3534                                         if (txq && ice_txq_vec_setup(txq)) {
3535                                                 ad->tx_vec_allowed = false;
3536                                                 break;
3537                                         }
3538                                 }
3539                         }
3540                 } else {
3541                         ad->tx_vec_allowed = false;
3542                 }
3543         }
3544
3545         if (ad->tx_vec_allowed) {
3546                 dev->tx_pkt_prepare = NULL;
3547                 if (ad->tx_use_avx512) {
3548 #ifdef CC_AVX512_SUPPORT
3549                         if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3550                                 PMD_DRV_LOG(NOTICE,
3551                                             "Using AVX512 OFFLOAD Vector Tx (port %d).",
3552                                             dev->data->port_id);
3553                                 dev->tx_pkt_burst =
3554                                         ice_xmit_pkts_vec_avx512_offload;
3555                                 dev->tx_pkt_prepare = ice_prep_pkts;
3556                         } else {
3557                                 PMD_DRV_LOG(NOTICE,
3558                                             "Using AVX512 Vector Tx (port %d).",
3559                                             dev->data->port_id);
3560                                 dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
3561                         }
3562 #endif
3563                 } else {
3564                         if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3565                                 PMD_DRV_LOG(NOTICE,
3566                                             "Using AVX2 OFFLOAD Vector Tx (port %d).",
3567                                             dev->data->port_id);
3568                                 dev->tx_pkt_burst =
3569                                         ice_xmit_pkts_vec_avx2_offload;
3570                                 dev->tx_pkt_prepare = ice_prep_pkts;
3571                         } else {
3572                                 PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
3573                                             ad->tx_use_avx2 ? "avx2 " : "",
3574                                             dev->data->port_id);
3575                                 dev->tx_pkt_burst = ad->tx_use_avx2 ?
3576                                                     ice_xmit_pkts_vec_avx2 :
3577                                                     ice_xmit_pkts_vec;
3578                         }
3579                 }
3580
3581                 return;
3582         }
3583 #endif
3584
3585         if (ad->tx_simple_allowed) {
3586                 PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3587                 dev->tx_pkt_burst = ice_xmit_pkts_simple;
3588                 dev->tx_pkt_prepare = NULL;
3589         } else {
3590                 PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
3591                 dev->tx_pkt_burst = ice_xmit_pkts;
3592                 dev->tx_pkt_prepare = ice_prep_pkts;
3593         }
3594 }
3595
3596 static const struct {
3597         eth_tx_burst_t pkt_burst;
3598         const char *info;
3599 } ice_tx_burst_infos[] = {
3600         { ice_xmit_pkts_simple,   "Scalar Simple" },
3601         { ice_xmit_pkts,          "Scalar" },
3602 #ifdef RTE_ARCH_X86
3603 #ifdef CC_AVX512_SUPPORT
3604         { ice_xmit_pkts_vec_avx512, "Vector AVX512" },
3605         { ice_xmit_pkts_vec_avx512_offload, "Offload Vector AVX512" },
3606 #endif
3607         { ice_xmit_pkts_vec_avx2,         "Vector AVX2" },
3608         { ice_xmit_pkts_vec_avx2_offload, "Offload Vector AVX2" },
3609         { ice_xmit_pkts_vec,              "Vector SSE" },
3610 #endif
3611 };
3612
3613 int
3614 ice_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3615                       struct rte_eth_burst_mode *mode)
3616 {
3617         eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
3618         int ret = -EINVAL;
3619         unsigned int i;
3620
3621         for (i = 0; i < RTE_DIM(ice_tx_burst_infos); ++i) {
3622                 if (pkt_burst == ice_tx_burst_infos[i].pkt_burst) {
3623                         snprintf(mode->info, sizeof(mode->info), "%s",
3624                                  ice_tx_burst_infos[i].info);
3625                         ret = 0;
3626                         break;
3627                 }
3628         }
3629
3630         return ret;
3631 }
3632
3633 /* For each value it means, datasheet of hardware can tell more details
3634  *
3635  * @note: fix ice_dev_supported_ptypes_get() if any change here.
3636  */
3637 static inline uint32_t
3638 ice_get_default_pkt_type(uint16_t ptype)
3639 {
3640         static const uint32_t type_table[ICE_MAX_PKT_TYPE]
3641                 __rte_cache_aligned = {
3642                 /* L2 types */
3643                 /* [0] reserved */
3644                 [1] = RTE_PTYPE_L2_ETHER,
3645                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
3646                 /* [3] - [5] reserved */
3647                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
3648                 /* [7] - [10] reserved */
3649                 [11] = RTE_PTYPE_L2_ETHER_ARP,
3650                 /* [12] - [21] reserved */
3651
3652                 /* Non tunneled IPv4 */
3653                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3654                        RTE_PTYPE_L4_FRAG,
3655                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3656                        RTE_PTYPE_L4_NONFRAG,
3657                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3658                        RTE_PTYPE_L4_UDP,
3659                 /* [25] reserved */
3660                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3661                        RTE_PTYPE_L4_TCP,
3662                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3663                        RTE_PTYPE_L4_SCTP,
3664                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3665                        RTE_PTYPE_L4_ICMP,
3666
3667                 /* IPv4 --> IPv4 */
3668                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3669                        RTE_PTYPE_TUNNEL_IP |
3670                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3671                        RTE_PTYPE_INNER_L4_FRAG,
3672                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3673                        RTE_PTYPE_TUNNEL_IP |
3674                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3675                        RTE_PTYPE_INNER_L4_NONFRAG,
3676                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3677                        RTE_PTYPE_TUNNEL_IP |
3678                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3679                        RTE_PTYPE_INNER_L4_UDP,
3680                 /* [32] reserved */
3681                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3682                        RTE_PTYPE_TUNNEL_IP |
3683                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3684                        RTE_PTYPE_INNER_L4_TCP,
3685                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3686                        RTE_PTYPE_TUNNEL_IP |
3687                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3688                        RTE_PTYPE_INNER_L4_SCTP,
3689                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3690                        RTE_PTYPE_TUNNEL_IP |
3691                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3692                        RTE_PTYPE_INNER_L4_ICMP,
3693
3694                 /* IPv4 --> IPv6 */
3695                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3696                        RTE_PTYPE_TUNNEL_IP |
3697                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3698                        RTE_PTYPE_INNER_L4_FRAG,
3699                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3700                        RTE_PTYPE_TUNNEL_IP |
3701                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3702                        RTE_PTYPE_INNER_L4_NONFRAG,
3703                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3704                        RTE_PTYPE_TUNNEL_IP |
3705                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3706                        RTE_PTYPE_INNER_L4_UDP,
3707                 /* [39] reserved */
3708                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3709                        RTE_PTYPE_TUNNEL_IP |
3710                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3711                        RTE_PTYPE_INNER_L4_TCP,
3712                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3713                        RTE_PTYPE_TUNNEL_IP |
3714                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3715                        RTE_PTYPE_INNER_L4_SCTP,
3716                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3717                        RTE_PTYPE_TUNNEL_IP |
3718                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3719                        RTE_PTYPE_INNER_L4_ICMP,
3720
3721                 /* IPv4 --> GRE/Teredo/VXLAN */
3722                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3723                        RTE_PTYPE_TUNNEL_GRENAT,
3724
3725                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
3726                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3727                        RTE_PTYPE_TUNNEL_GRENAT |
3728                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3729                        RTE_PTYPE_INNER_L4_FRAG,
3730                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3731                        RTE_PTYPE_TUNNEL_GRENAT |
3732                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3733                        RTE_PTYPE_INNER_L4_NONFRAG,
3734                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3735                        RTE_PTYPE_TUNNEL_GRENAT |
3736                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3737                        RTE_PTYPE_INNER_L4_UDP,
3738                 /* [47] reserved */
3739                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3740                        RTE_PTYPE_TUNNEL_GRENAT |
3741                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3742                        RTE_PTYPE_INNER_L4_TCP,
3743                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3744                        RTE_PTYPE_TUNNEL_GRENAT |
3745                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3746                        RTE_PTYPE_INNER_L4_SCTP,
3747                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3748                        RTE_PTYPE_TUNNEL_GRENAT |
3749                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3750                        RTE_PTYPE_INNER_L4_ICMP,
3751
3752                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
3753                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3754                        RTE_PTYPE_TUNNEL_GRENAT |
3755                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3756                        RTE_PTYPE_INNER_L4_FRAG,
3757                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3758                        RTE_PTYPE_TUNNEL_GRENAT |
3759                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3760                        RTE_PTYPE_INNER_L4_NONFRAG,
3761                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3762                        RTE_PTYPE_TUNNEL_GRENAT |
3763                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3764                        RTE_PTYPE_INNER_L4_UDP,
3765                 /* [54] reserved */
3766                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3767                        RTE_PTYPE_TUNNEL_GRENAT |
3768                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3769                        RTE_PTYPE_INNER_L4_TCP,
3770                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3771                        RTE_PTYPE_TUNNEL_GRENAT |
3772                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3773                        RTE_PTYPE_INNER_L4_SCTP,
3774                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3775                        RTE_PTYPE_TUNNEL_GRENAT |
3776                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3777                        RTE_PTYPE_INNER_L4_ICMP,
3778
3779                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
3780                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3781                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3782
3783                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3784                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3785                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3786                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3787                        RTE_PTYPE_INNER_L4_FRAG,
3788                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3789                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3790                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3791                        RTE_PTYPE_INNER_L4_NONFRAG,
3792                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3793                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3794                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3795                        RTE_PTYPE_INNER_L4_UDP,
3796                 /* [62] reserved */
3797                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3798                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3799                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3800                        RTE_PTYPE_INNER_L4_TCP,
3801                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3802                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3803                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3804                        RTE_PTYPE_INNER_L4_SCTP,
3805                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3806                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3807                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3808                        RTE_PTYPE_INNER_L4_ICMP,
3809
3810                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3811                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3812                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3813                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3814                        RTE_PTYPE_INNER_L4_FRAG,
3815                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3816                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3817                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3818                        RTE_PTYPE_INNER_L4_NONFRAG,
3819                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3820                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3821                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3822                        RTE_PTYPE_INNER_L4_UDP,
3823                 /* [69] reserved */
3824                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3825                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3826                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3827                        RTE_PTYPE_INNER_L4_TCP,
3828                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3829                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3830                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3831                        RTE_PTYPE_INNER_L4_SCTP,
3832                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3833                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3834                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3835                        RTE_PTYPE_INNER_L4_ICMP,
3836                 /* [73] - [87] reserved */
3837
3838                 /* Non tunneled IPv6 */
3839                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3840                        RTE_PTYPE_L4_FRAG,
3841                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3842                        RTE_PTYPE_L4_NONFRAG,
3843                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3844                        RTE_PTYPE_L4_UDP,
3845                 /* [91] reserved */
3846                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3847                        RTE_PTYPE_L4_TCP,
3848                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3849                        RTE_PTYPE_L4_SCTP,
3850                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3851                        RTE_PTYPE_L4_ICMP,
3852
3853                 /* IPv6 --> IPv4 */
3854                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3855                        RTE_PTYPE_TUNNEL_IP |
3856                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3857                        RTE_PTYPE_INNER_L4_FRAG,
3858                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3859                        RTE_PTYPE_TUNNEL_IP |
3860                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3861                        RTE_PTYPE_INNER_L4_NONFRAG,
3862                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3863                        RTE_PTYPE_TUNNEL_IP |
3864                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3865                        RTE_PTYPE_INNER_L4_UDP,
3866                 /* [98] reserved */
3867                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3868                        RTE_PTYPE_TUNNEL_IP |
3869                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3870                        RTE_PTYPE_INNER_L4_TCP,
3871                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3872                         RTE_PTYPE_TUNNEL_IP |
3873                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3874                         RTE_PTYPE_INNER_L4_SCTP,
3875                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3876                         RTE_PTYPE_TUNNEL_IP |
3877                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3878                         RTE_PTYPE_INNER_L4_ICMP,
3879
3880                 /* IPv6 --> IPv6 */
3881                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3882                         RTE_PTYPE_TUNNEL_IP |
3883                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3884                         RTE_PTYPE_INNER_L4_FRAG,
3885                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3886                         RTE_PTYPE_TUNNEL_IP |
3887                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3888                         RTE_PTYPE_INNER_L4_NONFRAG,
3889                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3890                         RTE_PTYPE_TUNNEL_IP |
3891                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3892                         RTE_PTYPE_INNER_L4_UDP,
3893                 /* [105] reserved */
3894                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3895                         RTE_PTYPE_TUNNEL_IP |
3896                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3897                         RTE_PTYPE_INNER_L4_TCP,
3898                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3899                         RTE_PTYPE_TUNNEL_IP |
3900                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3901                         RTE_PTYPE_INNER_L4_SCTP,
3902                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3903                         RTE_PTYPE_TUNNEL_IP |
3904                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3905                         RTE_PTYPE_INNER_L4_ICMP,
3906
3907                 /* IPv6 --> GRE/Teredo/VXLAN */
3908                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3909                         RTE_PTYPE_TUNNEL_GRENAT,
3910
3911                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3912                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3913                         RTE_PTYPE_TUNNEL_GRENAT |
3914                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3915                         RTE_PTYPE_INNER_L4_FRAG,
3916                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3917                         RTE_PTYPE_TUNNEL_GRENAT |
3918                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3919                         RTE_PTYPE_INNER_L4_NONFRAG,
3920                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3921                         RTE_PTYPE_TUNNEL_GRENAT |
3922                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3923                         RTE_PTYPE_INNER_L4_UDP,
3924                 /* [113] reserved */
3925                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3926                         RTE_PTYPE_TUNNEL_GRENAT |
3927                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3928                         RTE_PTYPE_INNER_L4_TCP,
3929                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3930                         RTE_PTYPE_TUNNEL_GRENAT |
3931                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3932                         RTE_PTYPE_INNER_L4_SCTP,
3933                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3934                         RTE_PTYPE_TUNNEL_GRENAT |
3935                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3936                         RTE_PTYPE_INNER_L4_ICMP,
3937
3938                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3939                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3940                         RTE_PTYPE_TUNNEL_GRENAT |
3941                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3942                         RTE_PTYPE_INNER_L4_FRAG,
3943                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3944                         RTE_PTYPE_TUNNEL_GRENAT |
3945                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3946                         RTE_PTYPE_INNER_L4_NONFRAG,
3947                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3948                         RTE_PTYPE_TUNNEL_GRENAT |
3949                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3950                         RTE_PTYPE_INNER_L4_UDP,
3951                 /* [120] reserved */
3952                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3953                         RTE_PTYPE_TUNNEL_GRENAT |
3954                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3955                         RTE_PTYPE_INNER_L4_TCP,
3956                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3957                         RTE_PTYPE_TUNNEL_GRENAT |
3958                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3959                         RTE_PTYPE_INNER_L4_SCTP,
3960                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3961                         RTE_PTYPE_TUNNEL_GRENAT |
3962                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3963                         RTE_PTYPE_INNER_L4_ICMP,
3964
3965                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3966                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3967                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3968
3969                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3970                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3971                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3972                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3973                         RTE_PTYPE_INNER_L4_FRAG,
3974                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3975                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3976                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3977                         RTE_PTYPE_INNER_L4_NONFRAG,
3978                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3979                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3980                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3981                         RTE_PTYPE_INNER_L4_UDP,
3982                 /* [128] reserved */
3983                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3984                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3985                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3986                         RTE_PTYPE_INNER_L4_TCP,
3987                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3988                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3989                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3990                         RTE_PTYPE_INNER_L4_SCTP,
3991                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3992                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3993                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3994                         RTE_PTYPE_INNER_L4_ICMP,
3995
3996                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3997                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3998                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3999                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4000                         RTE_PTYPE_INNER_L4_FRAG,
4001                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4002                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4003                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4004                         RTE_PTYPE_INNER_L4_NONFRAG,
4005                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4006                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4007                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4008                         RTE_PTYPE_INNER_L4_UDP,
4009                 /* [135] reserved */
4010                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4011                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4012                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4013                         RTE_PTYPE_INNER_L4_TCP,
4014                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4015                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4016                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4017                         RTE_PTYPE_INNER_L4_SCTP,
4018                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4019                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
4020                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4021                         RTE_PTYPE_INNER_L4_ICMP,
4022                 /* [139] - [299] reserved */
4023
4024                 /* PPPoE */
4025                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
4026                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
4027
4028                 /* PPPoE --> IPv4 */
4029                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
4030                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4031                         RTE_PTYPE_L4_FRAG,
4032                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
4033                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4034                         RTE_PTYPE_L4_NONFRAG,
4035                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
4036                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4037                         RTE_PTYPE_L4_UDP,
4038                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
4039                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4040                         RTE_PTYPE_L4_TCP,
4041                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
4042                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4043                         RTE_PTYPE_L4_SCTP,
4044                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
4045                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4046                         RTE_PTYPE_L4_ICMP,
4047
4048                 /* PPPoE --> IPv6 */
4049                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
4050                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4051                         RTE_PTYPE_L4_FRAG,
4052                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
4053                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4054                         RTE_PTYPE_L4_NONFRAG,
4055                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
4056                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4057                         RTE_PTYPE_L4_UDP,
4058                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
4059                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4060                         RTE_PTYPE_L4_TCP,
4061                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
4062                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4063                         RTE_PTYPE_L4_SCTP,
4064                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
4065                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4066                         RTE_PTYPE_L4_ICMP,
4067                 /* [314] - [324] reserved */
4068
4069                 /* IPv4/IPv6 --> GTPC/GTPU */
4070                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4071                         RTE_PTYPE_TUNNEL_GTPC,
4072                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4073                         RTE_PTYPE_TUNNEL_GTPC,
4074                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4075                         RTE_PTYPE_TUNNEL_GTPC,
4076                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4077                         RTE_PTYPE_TUNNEL_GTPC,
4078                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4079                         RTE_PTYPE_TUNNEL_GTPU,
4080                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4081                         RTE_PTYPE_TUNNEL_GTPU,
4082
4083                 /* IPv4 --> GTPU --> IPv4 */
4084                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4085                         RTE_PTYPE_TUNNEL_GTPU |
4086                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4087                         RTE_PTYPE_INNER_L4_FRAG,
4088                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4089                         RTE_PTYPE_TUNNEL_GTPU |
4090                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4091                         RTE_PTYPE_INNER_L4_NONFRAG,
4092                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4093                         RTE_PTYPE_TUNNEL_GTPU |
4094                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4095                         RTE_PTYPE_INNER_L4_UDP,
4096                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4097                         RTE_PTYPE_TUNNEL_GTPU |
4098                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4099                         RTE_PTYPE_INNER_L4_TCP,
4100                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4101                         RTE_PTYPE_TUNNEL_GTPU |
4102                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4103                         RTE_PTYPE_INNER_L4_ICMP,
4104
4105                 /* IPv6 --> GTPU --> IPv4 */
4106                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4107                         RTE_PTYPE_TUNNEL_GTPU |
4108                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4109                         RTE_PTYPE_INNER_L4_FRAG,
4110                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4111                         RTE_PTYPE_TUNNEL_GTPU |
4112                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4113                         RTE_PTYPE_INNER_L4_NONFRAG,
4114                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4115                         RTE_PTYPE_TUNNEL_GTPU |
4116                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4117                         RTE_PTYPE_INNER_L4_UDP,
4118                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4119                         RTE_PTYPE_TUNNEL_GTPU |
4120                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4121                         RTE_PTYPE_INNER_L4_TCP,
4122                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4123                         RTE_PTYPE_TUNNEL_GTPU |
4124                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4125                         RTE_PTYPE_INNER_L4_ICMP,
4126
4127                 /* IPv4 --> GTPU --> IPv6 */
4128                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4129                         RTE_PTYPE_TUNNEL_GTPU |
4130                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4131                         RTE_PTYPE_INNER_L4_FRAG,
4132                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4133                         RTE_PTYPE_TUNNEL_GTPU |
4134                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4135                         RTE_PTYPE_INNER_L4_NONFRAG,
4136                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4137                         RTE_PTYPE_TUNNEL_GTPU |
4138                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4139                         RTE_PTYPE_INNER_L4_UDP,
4140                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4141                         RTE_PTYPE_TUNNEL_GTPU |
4142                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4143                         RTE_PTYPE_INNER_L4_TCP,
4144                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4145                         RTE_PTYPE_TUNNEL_GTPU |
4146                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4147                         RTE_PTYPE_INNER_L4_ICMP,
4148
4149                 /* IPv6 --> GTPU --> IPv6 */
4150                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4151                         RTE_PTYPE_TUNNEL_GTPU |
4152                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4153                         RTE_PTYPE_INNER_L4_FRAG,
4154                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4155                         RTE_PTYPE_TUNNEL_GTPU |
4156                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4157                         RTE_PTYPE_INNER_L4_NONFRAG,
4158                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4159                         RTE_PTYPE_TUNNEL_GTPU |
4160                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4161                         RTE_PTYPE_INNER_L4_UDP,
4162                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4163                         RTE_PTYPE_TUNNEL_GTPU |
4164                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4165                         RTE_PTYPE_INNER_L4_TCP,
4166                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4167                         RTE_PTYPE_TUNNEL_GTPU |
4168                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4169                         RTE_PTYPE_INNER_L4_ICMP,
4170
4171                 /* IPv4 --> UDP ECPRI */
4172                 [372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4173                         RTE_PTYPE_L4_UDP,
4174                 [373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4175                         RTE_PTYPE_L4_UDP,
4176                 [374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4177                         RTE_PTYPE_L4_UDP,
4178                 [375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4179                         RTE_PTYPE_L4_UDP,
4180                 [376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4181                         RTE_PTYPE_L4_UDP,
4182                 [377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4183                         RTE_PTYPE_L4_UDP,
4184                 [378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4185                         RTE_PTYPE_L4_UDP,
4186                 [379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4187                         RTE_PTYPE_L4_UDP,
4188                 [380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4189                         RTE_PTYPE_L4_UDP,
4190                 [381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4191                         RTE_PTYPE_L4_UDP,
4192
4193                 /* IPV6 --> UDP ECPRI */
4194                 [382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4195                         RTE_PTYPE_L4_UDP,
4196                 [383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4197                         RTE_PTYPE_L4_UDP,
4198                 [384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4199                         RTE_PTYPE_L4_UDP,
4200                 [385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4201                         RTE_PTYPE_L4_UDP,
4202                 [386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4203                         RTE_PTYPE_L4_UDP,
4204                 [387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4205                         RTE_PTYPE_L4_UDP,
4206                 [388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4207                         RTE_PTYPE_L4_UDP,
4208                 [389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4209                         RTE_PTYPE_L4_UDP,
4210                 [390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4211                         RTE_PTYPE_L4_UDP,
4212                 [391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4213                         RTE_PTYPE_L4_UDP,
4214                 /* All others reserved */
4215         };
4216
4217         return type_table[ptype];
4218 }
4219
4220 void __rte_cold
4221 ice_set_default_ptype_table(struct rte_eth_dev *dev)
4222 {
4223         struct ice_adapter *ad =
4224                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
4225         int i;
4226
4227         for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
4228                 ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
4229 }
4230
4231 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S 1
4232 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M \
4233                         (0x3UL << ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S)
4234 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD 0
4235 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL 0x1
4236
4237 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S   4
4238 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M   \
4239         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S)
4240 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S      5
4241 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M      \
4242         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S)
4243
4244 /*
4245  * check the programming status descriptor in rx queue.
4246  * done after Programming Flow Director is programmed on
4247  * tx queue
4248  */
4249 static inline int
4250 ice_check_fdir_programming_status(struct ice_rx_queue *rxq)
4251 {
4252         volatile union ice_32byte_rx_desc *rxdp;
4253         uint64_t qword1;
4254         uint32_t rx_status;
4255         uint32_t error;
4256         uint32_t id;
4257         int ret = -EAGAIN;
4258
4259         rxdp = (volatile union ice_32byte_rx_desc *)
4260                 (&rxq->rx_ring[rxq->rx_tail]);
4261         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
4262         rx_status = (qword1 & ICE_RXD_QW1_STATUS_M)
4263                         >> ICE_RXD_QW1_STATUS_S;
4264
4265         if (rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)) {
4266                 ret = 0;
4267                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M) >>
4268                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S;
4269                 id = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M) >>
4270                         ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S;
4271                 if (error) {
4272                         if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD)
4273                                 PMD_DRV_LOG(ERR, "Failed to add FDIR rule.");
4274                         else if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL)
4275                                 PMD_DRV_LOG(ERR, "Failed to remove FDIR rule.");
4276                         ret = -EINVAL;
4277                         goto err;
4278                 }
4279                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M) >>
4280                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S;
4281                 if (error) {
4282                         PMD_DRV_LOG(ERR, "Failed to create FDIR profile.");
4283                         ret = -EINVAL;
4284                 }
4285 err:
4286                 rxdp->wb.qword1.status_error_len = 0;
4287                 rxq->rx_tail++;
4288                 if (unlikely(rxq->rx_tail == rxq->nb_rx_desc))
4289                         rxq->rx_tail = 0;
4290                 if (rxq->rx_tail == 0)
4291                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
4292                 else
4293                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_tail - 1);
4294         }
4295
4296         return ret;
4297 }
4298
4299 #define ICE_FDIR_MAX_WAIT_US 10000
4300
4301 int
4302 ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc)
4303 {
4304         struct ice_tx_queue *txq = pf->fdir.txq;
4305         struct ice_rx_queue *rxq = pf->fdir.rxq;
4306         volatile struct ice_fltr_desc *fdirdp;
4307         volatile struct ice_tx_desc *txdp;
4308         uint32_t td_cmd;
4309         uint16_t i;
4310
4311         fdirdp = (volatile struct ice_fltr_desc *)
4312                 (&txq->tx_ring[txq->tx_tail]);
4313         fdirdp->qidx_compq_space_stat = fdir_desc->qidx_compq_space_stat;
4314         fdirdp->dtype_cmd_vsi_fdid = fdir_desc->dtype_cmd_vsi_fdid;
4315
4316         txdp = &txq->tx_ring[txq->tx_tail + 1];
4317         txdp->buf_addr = rte_cpu_to_le_64(pf->fdir.dma_addr);
4318         td_cmd = ICE_TX_DESC_CMD_EOP |
4319                 ICE_TX_DESC_CMD_RS  |
4320                 ICE_TX_DESC_CMD_DUMMY;
4321
4322         txdp->cmd_type_offset_bsz =
4323                 ice_build_ctob(td_cmd, 0, ICE_FDIR_PKT_LEN, 0);
4324
4325         txq->tx_tail += 2;
4326         if (txq->tx_tail >= txq->nb_tx_desc)
4327                 txq->tx_tail = 0;
4328         /* Update the tx tail register */
4329         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
4330         for (i = 0; i < ICE_FDIR_MAX_WAIT_US; i++) {
4331                 if ((txdp->cmd_type_offset_bsz &
4332                      rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) ==
4333                     rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
4334                         break;
4335                 rte_delay_us(1);
4336         }
4337         if (i >= ICE_FDIR_MAX_WAIT_US) {
4338                 PMD_DRV_LOG(ERR,
4339                             "Failed to program FDIR filter: time out to get DD on tx queue.");
4340                 return -ETIMEDOUT;
4341         }
4342
4343         for (; i < ICE_FDIR_MAX_WAIT_US; i++) {
4344                 int ret;
4345
4346                 ret = ice_check_fdir_programming_status(rxq);
4347                 if (ret == -EAGAIN)
4348                         rte_delay_us(1);
4349                 else
4350                         return ret;
4351         }
4352
4353         PMD_DRV_LOG(ERR,
4354                     "Failed to program FDIR filter: programming status reported.");
4355         return -ETIMEDOUT;
4356
4357
4358 }