net/ngbe: support Rx/Tx burst mode info
[dpdk.git] / drivers / net / ice / ice_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Intel Corporation
3  */
4
5 #include <ethdev_driver.h>
6 #include <rte_net.h>
7 #include <rte_vect.h>
8
9 #include "rte_pmd_ice.h"
10 #include "ice_rxtx.h"
11 #include "ice_rxtx_vec_common.h"
12
13 #define ICE_TX_CKSUM_OFFLOAD_MASK (RTE_MBUF_F_TX_IP_CKSUM |              \
14                 RTE_MBUF_F_TX_L4_MASK |          \
15                 RTE_MBUF_F_TX_TCP_SEG |          \
16                 RTE_MBUF_F_TX_OUTER_IP_CKSUM)
17
18 /* Offset of mbuf dynamic field for protocol extraction data */
19 int rte_net_ice_dynfield_proto_xtr_metadata_offs = -1;
20
21 /* Mask of mbuf dynamic flags for protocol extraction type */
22 uint64_t rte_net_ice_dynflag_proto_xtr_vlan_mask;
23 uint64_t rte_net_ice_dynflag_proto_xtr_ipv4_mask;
24 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_mask;
25 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
26 uint64_t rte_net_ice_dynflag_proto_xtr_tcp_mask;
27 uint64_t rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
28
29 static int
30 ice_monitor_callback(const uint64_t value,
31                 const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
32 {
33         const uint64_t m = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
34         /*
35          * we expect the DD bit to be set to 1 if this descriptor was already
36          * written to.
37          */
38         return (value & m) == m ? -1 : 0;
39 }
40
41 int
42 ice_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
43 {
44         volatile union ice_rx_flex_desc *rxdp;
45         struct ice_rx_queue *rxq = rx_queue;
46         uint16_t desc;
47
48         desc = rxq->rx_tail;
49         rxdp = &rxq->rx_ring[desc];
50         /* watch for changes in status bit */
51         pmc->addr = &rxdp->wb.status_error0;
52
53         /* comparison callback */
54         pmc->fn = ice_monitor_callback;
55
56         /* register is 16-bit */
57         pmc->size = sizeof(uint16_t);
58
59         return 0;
60 }
61
62
63 static inline uint8_t
64 ice_proto_xtr_type_to_rxdid(uint8_t xtr_type)
65 {
66         static uint8_t rxdid_map[] = {
67                 [PROTO_XTR_NONE]      = ICE_RXDID_COMMS_OVS,
68                 [PROTO_XTR_VLAN]      = ICE_RXDID_COMMS_AUX_VLAN,
69                 [PROTO_XTR_IPV4]      = ICE_RXDID_COMMS_AUX_IPV4,
70                 [PROTO_XTR_IPV6]      = ICE_RXDID_COMMS_AUX_IPV6,
71                 [PROTO_XTR_IPV6_FLOW] = ICE_RXDID_COMMS_AUX_IPV6_FLOW,
72                 [PROTO_XTR_TCP]       = ICE_RXDID_COMMS_AUX_TCP,
73                 [PROTO_XTR_IP_OFFSET] = ICE_RXDID_COMMS_AUX_IP_OFFSET,
74         };
75
76         return xtr_type < RTE_DIM(rxdid_map) ?
77                                 rxdid_map[xtr_type] : ICE_RXDID_COMMS_OVS;
78 }
79
80 static inline void
81 ice_rxd_to_pkt_fields_by_comms_generic(__rte_unused struct ice_rx_queue *rxq,
82                                        struct rte_mbuf *mb,
83                                        volatile union ice_rx_flex_desc *rxdp)
84 {
85         volatile struct ice_32b_rx_flex_desc_comms *desc =
86                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
87         uint16_t stat_err = rte_le_to_cpu_16(desc->status_error0);
88
89         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
90                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
91                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
92         }
93
94 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
95         if (desc->flow_id != 0xFFFFFFFF) {
96                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
97                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
98         }
99 #endif
100 }
101
102 static inline void
103 ice_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct ice_rx_queue *rxq,
104                                    struct rte_mbuf *mb,
105                                    volatile union ice_rx_flex_desc *rxdp)
106 {
107         volatile struct ice_32b_rx_flex_desc_comms_ovs *desc =
108                         (volatile struct ice_32b_rx_flex_desc_comms_ovs *)rxdp;
109 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
110         uint16_t stat_err;
111 #endif
112
113         if (desc->flow_id != 0xFFFFFFFF) {
114                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
115                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
116         }
117
118 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
119         stat_err = rte_le_to_cpu_16(desc->status_error0);
120         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
121                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
122                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
123         }
124 #endif
125 }
126
127 static inline void
128 ice_rxd_to_pkt_fields_by_comms_aux_v1(struct ice_rx_queue *rxq,
129                                       struct rte_mbuf *mb,
130                                       volatile union ice_rx_flex_desc *rxdp)
131 {
132         volatile struct ice_32b_rx_flex_desc_comms *desc =
133                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
134         uint16_t stat_err;
135
136         stat_err = rte_le_to_cpu_16(desc->status_error0);
137         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
138                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
139                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
140         }
141
142 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
143         if (desc->flow_id != 0xFFFFFFFF) {
144                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
145                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
146         }
147
148         if (rxq->xtr_ol_flag) {
149                 uint32_t metadata = 0;
150
151                 stat_err = rte_le_to_cpu_16(desc->status_error1);
152
153                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
154                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
155
156                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
157                         metadata |=
158                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
159
160                 if (metadata) {
161                         mb->ol_flags |= rxq->xtr_ol_flag;
162
163                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
164                 }
165         }
166 #endif
167 }
168
169 static inline void
170 ice_rxd_to_pkt_fields_by_comms_aux_v2(struct ice_rx_queue *rxq,
171                                       struct rte_mbuf *mb,
172                                       volatile union ice_rx_flex_desc *rxdp)
173 {
174         volatile struct ice_32b_rx_flex_desc_comms *desc =
175                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
176         uint16_t stat_err;
177
178         stat_err = rte_le_to_cpu_16(desc->status_error0);
179         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
180                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
181                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
182         }
183
184 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
185         if (desc->flow_id != 0xFFFFFFFF) {
186                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
187                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
188         }
189
190         if (rxq->xtr_ol_flag) {
191                 uint32_t metadata = 0;
192
193                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
194                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
195                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
196                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
197
198                 if (metadata) {
199                         mb->ol_flags |= rxq->xtr_ol_flag;
200
201                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
202                 }
203         }
204 #endif
205 }
206
207 static const ice_rxd_to_pkt_fields_t rxd_to_pkt_fields_ops[] = {
208         [ICE_RXDID_COMMS_AUX_VLAN] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
209         [ICE_RXDID_COMMS_AUX_IPV4] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
210         [ICE_RXDID_COMMS_AUX_IPV6] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
211         [ICE_RXDID_COMMS_AUX_IPV6_FLOW] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
212         [ICE_RXDID_COMMS_AUX_TCP] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
213         [ICE_RXDID_COMMS_AUX_IP_OFFSET] = ice_rxd_to_pkt_fields_by_comms_aux_v2,
214         [ICE_RXDID_COMMS_GENERIC] = ice_rxd_to_pkt_fields_by_comms_generic,
215         [ICE_RXDID_COMMS_OVS] = ice_rxd_to_pkt_fields_by_comms_ovs,
216 };
217
218 void
219 ice_select_rxd_to_pkt_fields_handler(struct ice_rx_queue *rxq, uint32_t rxdid)
220 {
221         rxq->rxdid = rxdid;
222
223         switch (rxdid) {
224         case ICE_RXDID_COMMS_AUX_VLAN:
225                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_vlan_mask;
226                 break;
227
228         case ICE_RXDID_COMMS_AUX_IPV4:
229                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv4_mask;
230                 break;
231
232         case ICE_RXDID_COMMS_AUX_IPV6:
233                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_mask;
234                 break;
235
236         case ICE_RXDID_COMMS_AUX_IPV6_FLOW:
237                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
238                 break;
239
240         case ICE_RXDID_COMMS_AUX_TCP:
241                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_tcp_mask;
242                 break;
243
244         case ICE_RXDID_COMMS_AUX_IP_OFFSET:
245                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
246                 break;
247
248         case ICE_RXDID_COMMS_GENERIC:
249                 /* fallthrough */
250         case ICE_RXDID_COMMS_OVS:
251                 break;
252
253         default:
254                 /* update this according to the RXDID for PROTO_XTR_NONE */
255                 rxq->rxdid = ICE_RXDID_COMMS_OVS;
256                 break;
257         }
258
259         if (!rte_net_ice_dynf_proto_xtr_metadata_avail())
260                 rxq->xtr_ol_flag = 0;
261 }
262
263 static enum ice_status
264 ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
265 {
266         struct ice_vsi *vsi = rxq->vsi;
267         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
268         struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
269         struct rte_eth_dev_data *dev_data = rxq->vsi->adapter->pf.dev_data;
270         struct ice_rlan_ctx rx_ctx;
271         enum ice_status err;
272         uint16_t buf_size;
273         uint32_t rxdid = ICE_RXDID_COMMS_OVS;
274         uint32_t regval;
275         struct ice_adapter *ad = rxq->vsi->adapter;
276         uint32_t frame_size = dev_data->mtu + ICE_ETH_OVERHEAD;
277
278         /* Set buffer size as the head split is disabled. */
279         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
280                               RTE_PKTMBUF_HEADROOM);
281         rxq->rx_hdr_len = 0;
282         rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
283         rxq->max_pkt_len =
284                 RTE_MIN((uint32_t)ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len,
285                         frame_size);
286
287         if (rxq->max_pkt_len <= RTE_ETHER_MIN_LEN ||
288             rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
289                 PMD_DRV_LOG(ERR, "maximum packet length must "
290                             "be larger than %u and smaller than %u",
291                             (uint32_t)RTE_ETHER_MIN_LEN,
292                             (uint32_t)ICE_FRAME_SIZE_MAX);
293                 return -EINVAL;
294         }
295
296         if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
297                 /* Register mbuf field and flag for Rx timestamp */
298                 err = rte_mbuf_dyn_rx_timestamp_register(
299                                 &ice_timestamp_dynfield_offset,
300                                 &ice_timestamp_dynflag);
301                 if (err) {
302                         PMD_DRV_LOG(ERR,
303                                 "Cannot register mbuf field/flag for timestamp");
304                         return -EINVAL;
305                 }
306         }
307
308         memset(&rx_ctx, 0, sizeof(rx_ctx));
309
310         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
311         rx_ctx.qlen = rxq->nb_rx_desc;
312         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
313         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
314         rx_ctx.dtype = 0; /* No Header Split mode */
315 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
316         rx_ctx.dsize = 1; /* 32B descriptors */
317 #endif
318         rx_ctx.rxmax = rxq->max_pkt_len;
319         /* TPH: Transaction Layer Packet (TLP) processing hints */
320         rx_ctx.tphrdesc_ena = 1;
321         rx_ctx.tphwdesc_ena = 1;
322         rx_ctx.tphdata_ena = 1;
323         rx_ctx.tphhead_ena = 1;
324         /* Low Receive Queue Threshold defined in 64 descriptors units.
325          * When the number of free descriptors goes below the lrxqthresh,
326          * an immediate interrupt is triggered.
327          */
328         rx_ctx.lrxqthresh = 2;
329         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
330         rx_ctx.l2tsel = 1;
331         rx_ctx.showiv = 0;
332         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
333
334         rxdid = ice_proto_xtr_type_to_rxdid(rxq->proto_xtr);
335
336         PMD_DRV_LOG(DEBUG, "Port (%u) - Rx queue (%u) is set with RXDID : %u",
337                     rxq->port_id, rxq->queue_id, rxdid);
338
339         if (!(pf->supported_rxdid & BIT(rxdid))) {
340                 PMD_DRV_LOG(ERR, "currently package doesn't support RXDID (%u)",
341                             rxdid);
342                 return -EINVAL;
343         }
344
345         ice_select_rxd_to_pkt_fields_handler(rxq, rxdid);
346
347         /* Enable Flexible Descriptors in the queue context which
348          * allows this driver to select a specific receive descriptor format
349          */
350         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
351                 QRXFLXP_CNTXT_RXDID_IDX_M;
352
353         /* increasing context priority to pick up profile ID;
354          * default is 0x01; setting to 0x03 to ensure profile
355          * is programming if prev context is of same priority
356          */
357         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
358                 QRXFLXP_CNTXT_RXDID_PRIO_M;
359
360         if (ad->ptp_ena || rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
361                 regval |= QRXFLXP_CNTXT_TS_M;
362
363         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
364
365         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
366         if (err) {
367                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
368                             rxq->queue_id);
369                 return -EINVAL;
370         }
371         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
372         if (err) {
373                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
374                             rxq->queue_id);
375                 return -EINVAL;
376         }
377
378         /* Check if scattered RX needs to be used. */
379         if (frame_size > buf_size)
380                 dev_data->scattered_rx = 1;
381
382         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
383
384         /* Init the Rx tail register*/
385         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
386
387         return 0;
388 }
389
390 /* Allocate mbufs for all descriptors in rx queue */
391 static int
392 ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
393 {
394         struct ice_rx_entry *rxe = rxq->sw_ring;
395         uint64_t dma_addr;
396         uint16_t i;
397
398         for (i = 0; i < rxq->nb_rx_desc; i++) {
399                 volatile union ice_rx_flex_desc *rxd;
400                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
401
402                 if (unlikely(!mbuf)) {
403                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
404                         return -ENOMEM;
405                 }
406
407                 rte_mbuf_refcnt_set(mbuf, 1);
408                 mbuf->next = NULL;
409                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
410                 mbuf->nb_segs = 1;
411                 mbuf->port = rxq->port_id;
412
413                 dma_addr =
414                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
415
416                 rxd = &rxq->rx_ring[i];
417                 rxd->read.pkt_addr = dma_addr;
418                 rxd->read.hdr_addr = 0;
419 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
420                 rxd->read.rsvd1 = 0;
421                 rxd->read.rsvd2 = 0;
422 #endif
423                 rxe[i].mbuf = mbuf;
424         }
425
426         return 0;
427 }
428
429 /* Free all mbufs for descriptors in rx queue */
430 static void
431 _ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
432 {
433         uint16_t i;
434
435         if (!rxq || !rxq->sw_ring) {
436                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
437                 return;
438         }
439
440         for (i = 0; i < rxq->nb_rx_desc; i++) {
441                 if (rxq->sw_ring[i].mbuf) {
442                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
443                         rxq->sw_ring[i].mbuf = NULL;
444                 }
445         }
446         if (rxq->rx_nb_avail == 0)
447                 return;
448         for (i = 0; i < rxq->rx_nb_avail; i++)
449                 rte_pktmbuf_free_seg(rxq->rx_stage[rxq->rx_next_avail + i]);
450
451         rxq->rx_nb_avail = 0;
452 }
453
454 /* turn on or off rx queue
455  * @q_idx: queue index in pf scope
456  * @on: turn on or off the queue
457  */
458 static int
459 ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
460 {
461         uint32_t reg;
462         uint16_t j;
463
464         /* QRX_CTRL = QRX_ENA */
465         reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
466
467         if (on) {
468                 if (reg & QRX_CTRL_QENA_STAT_M)
469                         return 0; /* Already on, skip */
470                 reg |= QRX_CTRL_QENA_REQ_M;
471         } else {
472                 if (!(reg & QRX_CTRL_QENA_STAT_M))
473                         return 0; /* Already off, skip */
474                 reg &= ~QRX_CTRL_QENA_REQ_M;
475         }
476
477         /* Write the register */
478         ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
479         /* Check the result. It is said that QENA_STAT
480          * follows the QENA_REQ not more than 10 use.
481          * TODO: need to change the wait counter later
482          */
483         for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
484                 rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
485                 reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
486                 if (on) {
487                         if ((reg & QRX_CTRL_QENA_REQ_M) &&
488                             (reg & QRX_CTRL_QENA_STAT_M))
489                                 break;
490                 } else {
491                         if (!(reg & QRX_CTRL_QENA_REQ_M) &&
492                             !(reg & QRX_CTRL_QENA_STAT_M))
493                                 break;
494                 }
495         }
496
497         /* Check if it is timeout */
498         if (j >= ICE_CHK_Q_ENA_COUNT) {
499                 PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
500                             (on ? "enable" : "disable"), q_idx);
501                 return -ETIMEDOUT;
502         }
503
504         return 0;
505 }
506
507 static inline int
508 ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
509 {
510         int ret = 0;
511
512         if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
513                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
514                              "rxq->rx_free_thresh=%d, "
515                              "ICE_RX_MAX_BURST=%d",
516                              rxq->rx_free_thresh, ICE_RX_MAX_BURST);
517                 ret = -EINVAL;
518         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
519                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
520                              "rxq->rx_free_thresh=%d, "
521                              "rxq->nb_rx_desc=%d",
522                              rxq->rx_free_thresh, rxq->nb_rx_desc);
523                 ret = -EINVAL;
524         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
525                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
526                              "rxq->nb_rx_desc=%d, "
527                              "rxq->rx_free_thresh=%d",
528                              rxq->nb_rx_desc, rxq->rx_free_thresh);
529                 ret = -EINVAL;
530         }
531
532         return ret;
533 }
534
535 /* reset fields in ice_rx_queue back to default */
536 static void
537 ice_reset_rx_queue(struct ice_rx_queue *rxq)
538 {
539         unsigned int i;
540         uint16_t len;
541
542         if (!rxq) {
543                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
544                 return;
545         }
546
547         len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
548
549         for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
550                 ((volatile char *)rxq->rx_ring)[i] = 0;
551
552         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
553         for (i = 0; i < ICE_RX_MAX_BURST; ++i)
554                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
555
556         rxq->rx_nb_avail = 0;
557         rxq->rx_next_avail = 0;
558         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
559
560         rxq->rx_tail = 0;
561         rxq->nb_rx_hold = 0;
562         rxq->pkt_first_seg = NULL;
563         rxq->pkt_last_seg = NULL;
564
565         rxq->rxrearm_start = 0;
566         rxq->rxrearm_nb = 0;
567 }
568
569 int
570 ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
571 {
572         struct ice_rx_queue *rxq;
573         int err;
574         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
575
576         PMD_INIT_FUNC_TRACE();
577
578         if (rx_queue_id >= dev->data->nb_rx_queues) {
579                 PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
580                             rx_queue_id, dev->data->nb_rx_queues);
581                 return -EINVAL;
582         }
583
584         rxq = dev->data->rx_queues[rx_queue_id];
585         if (!rxq || !rxq->q_set) {
586                 PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
587                             rx_queue_id);
588                 return -EINVAL;
589         }
590
591         err = ice_program_hw_rx_queue(rxq);
592         if (err) {
593                 PMD_DRV_LOG(ERR, "fail to program RX queue %u",
594                             rx_queue_id);
595                 return -EIO;
596         }
597
598         err = ice_alloc_rx_queue_mbufs(rxq);
599         if (err) {
600                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
601                 return -ENOMEM;
602         }
603
604         /* Init the RX tail register. */
605         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
606
607         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
608         if (err) {
609                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
610                             rx_queue_id);
611
612                 rxq->rx_rel_mbufs(rxq);
613                 ice_reset_rx_queue(rxq);
614                 return -EINVAL;
615         }
616
617         dev->data->rx_queue_state[rx_queue_id] =
618                 RTE_ETH_QUEUE_STATE_STARTED;
619
620         return 0;
621 }
622
623 int
624 ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
625 {
626         struct ice_rx_queue *rxq;
627         int err;
628         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
629
630         if (rx_queue_id < dev->data->nb_rx_queues) {
631                 rxq = dev->data->rx_queues[rx_queue_id];
632
633                 err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
634                 if (err) {
635                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
636                                     rx_queue_id);
637                         return -EINVAL;
638                 }
639                 rxq->rx_rel_mbufs(rxq);
640                 ice_reset_rx_queue(rxq);
641                 dev->data->rx_queue_state[rx_queue_id] =
642                         RTE_ETH_QUEUE_STATE_STOPPED;
643         }
644
645         return 0;
646 }
647
648 int
649 ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
650 {
651         struct ice_tx_queue *txq;
652         int err;
653         struct ice_vsi *vsi;
654         struct ice_hw *hw;
655         struct ice_aqc_add_tx_qgrp *txq_elem;
656         struct ice_tlan_ctx tx_ctx;
657         int buf_len;
658
659         PMD_INIT_FUNC_TRACE();
660
661         if (tx_queue_id >= dev->data->nb_tx_queues) {
662                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
663                             tx_queue_id, dev->data->nb_tx_queues);
664                 return -EINVAL;
665         }
666
667         txq = dev->data->tx_queues[tx_queue_id];
668         if (!txq || !txq->q_set) {
669                 PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
670                             tx_queue_id);
671                 return -EINVAL;
672         }
673
674         buf_len = ice_struct_size(txq_elem, txqs, 1);
675         txq_elem = ice_malloc(hw, buf_len);
676         if (!txq_elem)
677                 return -ENOMEM;
678
679         vsi = txq->vsi;
680         hw = ICE_VSI_TO_HW(vsi);
681
682         memset(&tx_ctx, 0, sizeof(tx_ctx));
683         txq_elem->num_txqs = 1;
684         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
685
686         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
687         tx_ctx.qlen = txq->nb_tx_desc;
688         tx_ctx.pf_num = hw->pf_id;
689         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
690         tx_ctx.src_vsi = vsi->vsi_id;
691         tx_ctx.port_num = hw->port_info->lport;
692         tx_ctx.tso_ena = 1; /* tso enable */
693         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
694         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
695         tx_ctx.tsyn_ena = 1;
696
697         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
698                     ice_tlan_ctx_info);
699
700         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
701
702         /* Init the Tx tail register*/
703         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
704
705         /* Fix me, we assume TC always 0 here */
706         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
707                         txq_elem, buf_len, NULL);
708         if (err) {
709                 PMD_DRV_LOG(ERR, "Failed to add lan txq");
710                 rte_free(txq_elem);
711                 return -EIO;
712         }
713         /* store the schedule node id */
714         txq->q_teid = txq_elem->txqs[0].q_teid;
715
716         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
717
718         rte_free(txq_elem);
719         return 0;
720 }
721
722 static enum ice_status
723 ice_fdir_program_hw_rx_queue(struct ice_rx_queue *rxq)
724 {
725         struct ice_vsi *vsi = rxq->vsi;
726         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
727         uint32_t rxdid = ICE_RXDID_LEGACY_1;
728         struct ice_rlan_ctx rx_ctx;
729         enum ice_status err;
730         uint32_t regval;
731
732         rxq->rx_hdr_len = 0;
733         rxq->rx_buf_len = 1024;
734
735         memset(&rx_ctx, 0, sizeof(rx_ctx));
736
737         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
738         rx_ctx.qlen = rxq->nb_rx_desc;
739         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
740         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
741         rx_ctx.dtype = 0; /* No Header Split mode */
742         rx_ctx.dsize = 1; /* 32B descriptors */
743         rx_ctx.rxmax = ICE_ETH_MAX_LEN;
744         /* TPH: Transaction Layer Packet (TLP) processing hints */
745         rx_ctx.tphrdesc_ena = 1;
746         rx_ctx.tphwdesc_ena = 1;
747         rx_ctx.tphdata_ena = 1;
748         rx_ctx.tphhead_ena = 1;
749         /* Low Receive Queue Threshold defined in 64 descriptors units.
750          * When the number of free descriptors goes below the lrxqthresh,
751          * an immediate interrupt is triggered.
752          */
753         rx_ctx.lrxqthresh = 2;
754         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
755         rx_ctx.l2tsel = 1;
756         rx_ctx.showiv = 0;
757         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
758
759         /* Enable Flexible Descriptors in the queue context which
760          * allows this driver to select a specific receive descriptor format
761          */
762         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
763                 QRXFLXP_CNTXT_RXDID_IDX_M;
764
765         /* increasing context priority to pick up profile ID;
766          * default is 0x01; setting to 0x03 to ensure profile
767          * is programming if prev context is of same priority
768          */
769         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
770                 QRXFLXP_CNTXT_RXDID_PRIO_M;
771
772         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
773
774         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
775         if (err) {
776                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
777                             rxq->queue_id);
778                 return -EINVAL;
779         }
780         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
781         if (err) {
782                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
783                             rxq->queue_id);
784                 return -EINVAL;
785         }
786
787         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
788
789         /* Init the Rx tail register*/
790         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
791
792         return 0;
793 }
794
795 int
796 ice_fdir_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
797 {
798         struct ice_rx_queue *rxq;
799         int err;
800         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
801         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
802
803         PMD_INIT_FUNC_TRACE();
804
805         rxq = pf->fdir.rxq;
806         if (!rxq || !rxq->q_set) {
807                 PMD_DRV_LOG(ERR, "FDIR RX queue %u not available or setup",
808                             rx_queue_id);
809                 return -EINVAL;
810         }
811
812         err = ice_fdir_program_hw_rx_queue(rxq);
813         if (err) {
814                 PMD_DRV_LOG(ERR, "fail to program FDIR RX queue %u",
815                             rx_queue_id);
816                 return -EIO;
817         }
818
819         /* Init the RX tail register. */
820         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
821
822         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
823         if (err) {
824                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u on",
825                             rx_queue_id);
826
827                 ice_reset_rx_queue(rxq);
828                 return -EINVAL;
829         }
830
831         return 0;
832 }
833
834 int
835 ice_fdir_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
836 {
837         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
838         struct ice_tx_queue *txq;
839         int err;
840         struct ice_vsi *vsi;
841         struct ice_hw *hw;
842         struct ice_aqc_add_tx_qgrp *txq_elem;
843         struct ice_tlan_ctx tx_ctx;
844         int buf_len;
845
846         PMD_INIT_FUNC_TRACE();
847
848         txq = pf->fdir.txq;
849         if (!txq || !txq->q_set) {
850                 PMD_DRV_LOG(ERR, "FDIR TX queue %u is not available or setup",
851                             tx_queue_id);
852                 return -EINVAL;
853         }
854
855         buf_len = ice_struct_size(txq_elem, txqs, 1);
856         txq_elem = ice_malloc(hw, buf_len);
857         if (!txq_elem)
858                 return -ENOMEM;
859
860         vsi = txq->vsi;
861         hw = ICE_VSI_TO_HW(vsi);
862
863         memset(&tx_ctx, 0, sizeof(tx_ctx));
864         txq_elem->num_txqs = 1;
865         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
866
867         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
868         tx_ctx.qlen = txq->nb_tx_desc;
869         tx_ctx.pf_num = hw->pf_id;
870         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
871         tx_ctx.src_vsi = vsi->vsi_id;
872         tx_ctx.port_num = hw->port_info->lport;
873         tx_ctx.tso_ena = 1; /* tso enable */
874         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
875         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
876
877         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
878                     ice_tlan_ctx_info);
879
880         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
881
882         /* Init the Tx tail register*/
883         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
884
885         /* Fix me, we assume TC always 0 here */
886         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
887                               txq_elem, buf_len, NULL);
888         if (err) {
889                 PMD_DRV_LOG(ERR, "Failed to add FDIR txq");
890                 rte_free(txq_elem);
891                 return -EIO;
892         }
893         /* store the schedule node id */
894         txq->q_teid = txq_elem->txqs[0].q_teid;
895
896         rte_free(txq_elem);
897         return 0;
898 }
899
900 /* Free all mbufs for descriptors in tx queue */
901 static void
902 _ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
903 {
904         uint16_t i;
905
906         if (!txq || !txq->sw_ring) {
907                 PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
908                 return;
909         }
910
911         for (i = 0; i < txq->nb_tx_desc; i++) {
912                 if (txq->sw_ring[i].mbuf) {
913                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
914                         txq->sw_ring[i].mbuf = NULL;
915                 }
916         }
917 }
918
919 static void
920 ice_reset_tx_queue(struct ice_tx_queue *txq)
921 {
922         struct ice_tx_entry *txe;
923         uint16_t i, prev, size;
924
925         if (!txq) {
926                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
927                 return;
928         }
929
930         txe = txq->sw_ring;
931         size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
932         for (i = 0; i < size; i++)
933                 ((volatile char *)txq->tx_ring)[i] = 0;
934
935         prev = (uint16_t)(txq->nb_tx_desc - 1);
936         for (i = 0; i < txq->nb_tx_desc; i++) {
937                 volatile struct ice_tx_desc *txd = &txq->tx_ring[i];
938
939                 txd->cmd_type_offset_bsz =
940                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
941                 txe[i].mbuf =  NULL;
942                 txe[i].last_id = i;
943                 txe[prev].next_id = i;
944                 prev = i;
945         }
946
947         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
948         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
949
950         txq->tx_tail = 0;
951         txq->nb_tx_used = 0;
952
953         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
954         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
955 }
956
957 int
958 ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
959 {
960         struct ice_tx_queue *txq;
961         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
962         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
963         struct ice_vsi *vsi = pf->main_vsi;
964         enum ice_status status;
965         uint16_t q_ids[1];
966         uint32_t q_teids[1];
967         uint16_t q_handle = tx_queue_id;
968
969         if (tx_queue_id >= dev->data->nb_tx_queues) {
970                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
971                             tx_queue_id, dev->data->nb_tx_queues);
972                 return -EINVAL;
973         }
974
975         txq = dev->data->tx_queues[tx_queue_id];
976         if (!txq) {
977                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
978                             tx_queue_id);
979                 return -EINVAL;
980         }
981
982         q_ids[0] = txq->reg_idx;
983         q_teids[0] = txq->q_teid;
984
985         /* Fix me, we assume TC always 0 here */
986         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
987                                 q_ids, q_teids, ICE_NO_RESET, 0, NULL);
988         if (status != ICE_SUCCESS) {
989                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
990                 return -EINVAL;
991         }
992
993         txq->tx_rel_mbufs(txq);
994         ice_reset_tx_queue(txq);
995         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
996
997         return 0;
998 }
999
1000 int
1001 ice_fdir_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1002 {
1003         struct ice_rx_queue *rxq;
1004         int err;
1005         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1006         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1007
1008         rxq = pf->fdir.rxq;
1009
1010         err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
1011         if (err) {
1012                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u off",
1013                             rx_queue_id);
1014                 return -EINVAL;
1015         }
1016         rxq->rx_rel_mbufs(rxq);
1017
1018         return 0;
1019 }
1020
1021 int
1022 ice_fdir_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1023 {
1024         struct ice_tx_queue *txq;
1025         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1026         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1027         struct ice_vsi *vsi = pf->main_vsi;
1028         enum ice_status status;
1029         uint16_t q_ids[1];
1030         uint32_t q_teids[1];
1031         uint16_t q_handle = tx_queue_id;
1032
1033         txq = pf->fdir.txq;
1034         if (!txq) {
1035                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
1036                             tx_queue_id);
1037                 return -EINVAL;
1038         }
1039         vsi = txq->vsi;
1040
1041         q_ids[0] = txq->reg_idx;
1042         q_teids[0] = txq->q_teid;
1043
1044         /* Fix me, we assume TC always 0 here */
1045         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1046                                  q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1047         if (status != ICE_SUCCESS) {
1048                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1049                 return -EINVAL;
1050         }
1051
1052         txq->tx_rel_mbufs(txq);
1053
1054         return 0;
1055 }
1056
1057 int
1058 ice_rx_queue_setup(struct rte_eth_dev *dev,
1059                    uint16_t queue_idx,
1060                    uint16_t nb_desc,
1061                    unsigned int socket_id,
1062                    const struct rte_eth_rxconf *rx_conf,
1063                    struct rte_mempool *mp)
1064 {
1065         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1066         struct ice_adapter *ad =
1067                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1068         struct ice_vsi *vsi = pf->main_vsi;
1069         struct ice_rx_queue *rxq;
1070         const struct rte_memzone *rz;
1071         uint32_t ring_size;
1072         uint16_t len;
1073         int use_def_burst_func = 1;
1074         uint64_t offloads;
1075
1076         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1077             nb_desc > ICE_MAX_RING_DESC ||
1078             nb_desc < ICE_MIN_RING_DESC) {
1079                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
1080                              "invalid", nb_desc);
1081                 return -EINVAL;
1082         }
1083
1084         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1085
1086         /* Free memory if needed */
1087         if (dev->data->rx_queues[queue_idx]) {
1088                 ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
1089                 dev->data->rx_queues[queue_idx] = NULL;
1090         }
1091
1092         /* Allocate the rx queue data structure */
1093         rxq = rte_zmalloc_socket(NULL,
1094                                  sizeof(struct ice_rx_queue),
1095                                  RTE_CACHE_LINE_SIZE,
1096                                  socket_id);
1097         if (!rxq) {
1098                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1099                              "rx queue data structure");
1100                 return -ENOMEM;
1101         }
1102         rxq->mp = mp;
1103         rxq->nb_rx_desc = nb_desc;
1104         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1105         rxq->queue_id = queue_idx;
1106         rxq->offloads = offloads;
1107
1108         rxq->reg_idx = vsi->base_queue + queue_idx;
1109         rxq->port_id = dev->data->port_id;
1110         if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
1111                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1112         else
1113                 rxq->crc_len = 0;
1114
1115         rxq->drop_en = rx_conf->rx_drop_en;
1116         rxq->vsi = vsi;
1117         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1118         rxq->proto_xtr = pf->proto_xtr != NULL ?
1119                          pf->proto_xtr[queue_idx] : PROTO_XTR_NONE;
1120
1121         /* Allocate the maximun number of RX ring hardware descriptor. */
1122         len = ICE_MAX_RING_DESC;
1123
1124         /**
1125          * Allocating a little more memory because vectorized/bulk_alloc Rx
1126          * functions doesn't check boundaries each time.
1127          */
1128         len += ICE_RX_MAX_BURST;
1129
1130         /* Allocate the maximum number of RX ring hardware descriptor. */
1131         ring_size = sizeof(union ice_rx_flex_desc) * len;
1132         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1133         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1134                                       ring_size, ICE_RING_BASE_ALIGN,
1135                                       socket_id);
1136         if (!rz) {
1137                 ice_rx_queue_release(rxq);
1138                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
1139                 return -ENOMEM;
1140         }
1141
1142         rxq->mz = rz;
1143         /* Zero all the descriptors in the ring. */
1144         memset(rz->addr, 0, ring_size);
1145
1146         rxq->rx_ring_dma = rz->iova;
1147         rxq->rx_ring = rz->addr;
1148
1149         /* always reserve more for bulk alloc */
1150         len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
1151
1152         /* Allocate the software ring. */
1153         rxq->sw_ring = rte_zmalloc_socket(NULL,
1154                                           sizeof(struct ice_rx_entry) * len,
1155                                           RTE_CACHE_LINE_SIZE,
1156                                           socket_id);
1157         if (!rxq->sw_ring) {
1158                 ice_rx_queue_release(rxq);
1159                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
1160                 return -ENOMEM;
1161         }
1162
1163         ice_reset_rx_queue(rxq);
1164         rxq->q_set = true;
1165         dev->data->rx_queues[queue_idx] = rxq;
1166         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
1167
1168         use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
1169
1170         if (!use_def_burst_func) {
1171                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1172                              "satisfied. Rx Burst Bulk Alloc function will be "
1173                              "used on port=%d, queue=%d.",
1174                              rxq->port_id, rxq->queue_id);
1175         } else {
1176                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1177                              "not satisfied, Scattered Rx is requested. "
1178                              "on port=%d, queue=%d.",
1179                              rxq->port_id, rxq->queue_id);
1180                 ad->rx_bulk_alloc_allowed = false;
1181         }
1182
1183         return 0;
1184 }
1185
1186 void
1187 ice_rx_queue_release(void *rxq)
1188 {
1189         struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
1190
1191         if (!q) {
1192                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1193                 return;
1194         }
1195
1196         q->rx_rel_mbufs(q);
1197         rte_free(q->sw_ring);
1198         rte_memzone_free(q->mz);
1199         rte_free(q);
1200 }
1201
1202 int
1203 ice_tx_queue_setup(struct rte_eth_dev *dev,
1204                    uint16_t queue_idx,
1205                    uint16_t nb_desc,
1206                    unsigned int socket_id,
1207                    const struct rte_eth_txconf *tx_conf)
1208 {
1209         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1210         struct ice_vsi *vsi = pf->main_vsi;
1211         struct ice_tx_queue *txq;
1212         const struct rte_memzone *tz;
1213         uint32_t ring_size;
1214         uint16_t tx_rs_thresh, tx_free_thresh;
1215         uint64_t offloads;
1216
1217         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1218
1219         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1220             nb_desc > ICE_MAX_RING_DESC ||
1221             nb_desc < ICE_MIN_RING_DESC) {
1222                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
1223                              "invalid", nb_desc);
1224                 return -EINVAL;
1225         }
1226
1227         /**
1228          * The following two parameters control the setting of the RS bit on
1229          * transmit descriptors. TX descriptors will have their RS bit set
1230          * after txq->tx_rs_thresh descriptors have been used. The TX
1231          * descriptor ring will be cleaned after txq->tx_free_thresh
1232          * descriptors are used or if the number of descriptors required to
1233          * transmit a packet is greater than the number of free TX descriptors.
1234          *
1235          * The following constraints must be satisfied:
1236          *  - tx_rs_thresh must be greater than 0.
1237          *  - tx_rs_thresh must be less than the size of the ring minus 2.
1238          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
1239          *  - tx_rs_thresh must be a divisor of the ring size.
1240          *  - tx_free_thresh must be greater than 0.
1241          *  - tx_free_thresh must be less than the size of the ring minus 3.
1242          *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
1243          *
1244          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
1245          * race condition, hence the maximum threshold constraints. When set
1246          * to zero use default values.
1247          */
1248         tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
1249                                     tx_conf->tx_free_thresh :
1250                                     ICE_DEFAULT_TX_FREE_THRESH);
1251         /* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
1252         tx_rs_thresh =
1253                 (ICE_DEFAULT_TX_RSBIT_THRESH + tx_free_thresh > nb_desc) ?
1254                         nb_desc - tx_free_thresh : ICE_DEFAULT_TX_RSBIT_THRESH;
1255         if (tx_conf->tx_rs_thresh)
1256                 tx_rs_thresh = tx_conf->tx_rs_thresh;
1257         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
1258                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
1259                                 "exceed nb_desc. (tx_rs_thresh=%u "
1260                                 "tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
1261                                 (unsigned int)tx_rs_thresh,
1262                                 (unsigned int)tx_free_thresh,
1263                                 (unsigned int)nb_desc,
1264                                 (int)dev->data->port_id,
1265                                 (int)queue_idx);
1266                 return -EINVAL;
1267         }
1268         if (tx_rs_thresh >= (nb_desc - 2)) {
1269                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1270                              "number of TX descriptors minus 2. "
1271                              "(tx_rs_thresh=%u port=%d queue=%d)",
1272                              (unsigned int)tx_rs_thresh,
1273                              (int)dev->data->port_id,
1274                              (int)queue_idx);
1275                 return -EINVAL;
1276         }
1277         if (tx_free_thresh >= (nb_desc - 3)) {
1278                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1279                              "tx_free_thresh must be less than the "
1280                              "number of TX descriptors minus 3. "
1281                              "(tx_free_thresh=%u port=%d queue=%d)",
1282                              (unsigned int)tx_free_thresh,
1283                              (int)dev->data->port_id,
1284                              (int)queue_idx);
1285                 return -EINVAL;
1286         }
1287         if (tx_rs_thresh > tx_free_thresh) {
1288                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
1289                              "equal to tx_free_thresh. (tx_free_thresh=%u"
1290                              " tx_rs_thresh=%u port=%d queue=%d)",
1291                              (unsigned int)tx_free_thresh,
1292                              (unsigned int)tx_rs_thresh,
1293                              (int)dev->data->port_id,
1294                              (int)queue_idx);
1295                 return -EINVAL;
1296         }
1297         if ((nb_desc % tx_rs_thresh) != 0) {
1298                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
1299                              "number of TX descriptors. (tx_rs_thresh=%u"
1300                              " port=%d queue=%d)",
1301                              (unsigned int)tx_rs_thresh,
1302                              (int)dev->data->port_id,
1303                              (int)queue_idx);
1304                 return -EINVAL;
1305         }
1306         if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
1307                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1308                              "tx_rs_thresh is greater than 1. "
1309                              "(tx_rs_thresh=%u port=%d queue=%d)",
1310                              (unsigned int)tx_rs_thresh,
1311                              (int)dev->data->port_id,
1312                              (int)queue_idx);
1313                 return -EINVAL;
1314         }
1315
1316         /* Free memory if needed. */
1317         if (dev->data->tx_queues[queue_idx]) {
1318                 ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
1319                 dev->data->tx_queues[queue_idx] = NULL;
1320         }
1321
1322         /* Allocate the TX queue data structure. */
1323         txq = rte_zmalloc_socket(NULL,
1324                                  sizeof(struct ice_tx_queue),
1325                                  RTE_CACHE_LINE_SIZE,
1326                                  socket_id);
1327         if (!txq) {
1328                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1329                              "tx queue structure");
1330                 return -ENOMEM;
1331         }
1332
1333         /* Allocate TX hardware ring descriptors. */
1334         ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
1335         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1336         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
1337                                       ring_size, ICE_RING_BASE_ALIGN,
1338                                       socket_id);
1339         if (!tz) {
1340                 ice_tx_queue_release(txq);
1341                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
1342                 return -ENOMEM;
1343         }
1344
1345         txq->mz = tz;
1346         txq->nb_tx_desc = nb_desc;
1347         txq->tx_rs_thresh = tx_rs_thresh;
1348         txq->tx_free_thresh = tx_free_thresh;
1349         txq->pthresh = tx_conf->tx_thresh.pthresh;
1350         txq->hthresh = tx_conf->tx_thresh.hthresh;
1351         txq->wthresh = tx_conf->tx_thresh.wthresh;
1352         txq->queue_id = queue_idx;
1353
1354         txq->reg_idx = vsi->base_queue + queue_idx;
1355         txq->port_id = dev->data->port_id;
1356         txq->offloads = offloads;
1357         txq->vsi = vsi;
1358         txq->tx_deferred_start = tx_conf->tx_deferred_start;
1359
1360         txq->tx_ring_dma = tz->iova;
1361         txq->tx_ring = tz->addr;
1362
1363         /* Allocate software ring */
1364         txq->sw_ring =
1365                 rte_zmalloc_socket(NULL,
1366                                    sizeof(struct ice_tx_entry) * nb_desc,
1367                                    RTE_CACHE_LINE_SIZE,
1368                                    socket_id);
1369         if (!txq->sw_ring) {
1370                 ice_tx_queue_release(txq);
1371                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
1372                 return -ENOMEM;
1373         }
1374
1375         ice_reset_tx_queue(txq);
1376         txq->q_set = true;
1377         dev->data->tx_queues[queue_idx] = txq;
1378         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
1379         ice_set_tx_function_flag(dev, txq);
1380
1381         return 0;
1382 }
1383
1384 void
1385 ice_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1386 {
1387         ice_rx_queue_release(dev->data->rx_queues[qid]);
1388 }
1389
1390 void
1391 ice_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1392 {
1393         ice_tx_queue_release(dev->data->tx_queues[qid]);
1394 }
1395
1396 void
1397 ice_tx_queue_release(void *txq)
1398 {
1399         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
1400
1401         if (!q) {
1402                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
1403                 return;
1404         }
1405
1406         q->tx_rel_mbufs(q);
1407         rte_free(q->sw_ring);
1408         rte_memzone_free(q->mz);
1409         rte_free(q);
1410 }
1411
1412 void
1413 ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1414                  struct rte_eth_rxq_info *qinfo)
1415 {
1416         struct ice_rx_queue *rxq;
1417
1418         rxq = dev->data->rx_queues[queue_id];
1419
1420         qinfo->mp = rxq->mp;
1421         qinfo->scattered_rx = dev->data->scattered_rx;
1422         qinfo->nb_desc = rxq->nb_rx_desc;
1423
1424         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1425         qinfo->conf.rx_drop_en = rxq->drop_en;
1426         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1427 }
1428
1429 void
1430 ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1431                  struct rte_eth_txq_info *qinfo)
1432 {
1433         struct ice_tx_queue *txq;
1434
1435         txq = dev->data->tx_queues[queue_id];
1436
1437         qinfo->nb_desc = txq->nb_tx_desc;
1438
1439         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1440         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1441         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1442
1443         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1444         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
1445         qinfo->conf.offloads = txq->offloads;
1446         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1447 }
1448
1449 uint32_t
1450 ice_rx_queue_count(void *rx_queue)
1451 {
1452 #define ICE_RXQ_SCAN_INTERVAL 4
1453         volatile union ice_rx_flex_desc *rxdp;
1454         struct ice_rx_queue *rxq;
1455         uint16_t desc = 0;
1456
1457         rxq = rx_queue;
1458         rxdp = &rxq->rx_ring[rxq->rx_tail];
1459         while ((desc < rxq->nb_rx_desc) &&
1460                rte_le_to_cpu_16(rxdp->wb.status_error0) &
1461                (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)) {
1462                 /**
1463                  * Check the DD bit of a rx descriptor of each 4 in a group,
1464                  * to avoid checking too frequently and downgrading performance
1465                  * too much.
1466                  */
1467                 desc += ICE_RXQ_SCAN_INTERVAL;
1468                 rxdp += ICE_RXQ_SCAN_INTERVAL;
1469                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1470                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1471                                  desc - rxq->nb_rx_desc]);
1472         }
1473
1474         return desc;
1475 }
1476
1477 #define ICE_RX_FLEX_ERR0_BITS   \
1478         ((1 << ICE_RX_FLEX_DESC_STATUS0_HBO_S) |        \
1479          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |   \
1480          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |   \
1481          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) |  \
1482          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
1483          (1 << ICE_RX_FLEX_DESC_STATUS0_RXE_S))
1484
1485 /* Rx L3/L4 checksum */
1486 static inline uint64_t
1487 ice_rxd_error_to_pkt_flags(uint16_t stat_err0)
1488 {
1489         uint64_t flags = 0;
1490
1491         /* check if HW has decoded the packet and checksum */
1492         if (unlikely(!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1493                 return 0;
1494
1495         if (likely(!(stat_err0 & ICE_RX_FLEX_ERR0_BITS))) {
1496                 flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
1497                 return flags;
1498         }
1499
1500         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1501                 flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1502         else
1503                 flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1504
1505         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1506                 flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1507         else
1508                 flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1509
1510         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1511                 flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
1512
1513         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
1514                 flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
1515         else
1516                 flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD;
1517
1518         return flags;
1519 }
1520
1521 static inline void
1522 ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_flex_desc *rxdp)
1523 {
1524         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
1525             (1 << ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1526                 mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
1527                 mb->vlan_tci =
1528                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
1529                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
1530                            rte_le_to_cpu_16(rxdp->wb.l2tag1));
1531         } else {
1532                 mb->vlan_tci = 0;
1533         }
1534
1535 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1536         if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1537             (1 << ICE_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1538                 mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED | RTE_MBUF_F_RX_QINQ |
1539                                 RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN;
1540                 mb->vlan_tci_outer = mb->vlan_tci;
1541                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1542                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1543                            rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1544                            rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1545         } else {
1546                 mb->vlan_tci_outer = 0;
1547         }
1548 #endif
1549         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
1550                    mb->vlan_tci, mb->vlan_tci_outer);
1551 }
1552
1553 #define ICE_LOOK_AHEAD 8
1554 #if (ICE_LOOK_AHEAD != 8)
1555 #error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
1556 #endif
1557 static inline int
1558 ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
1559 {
1560         volatile union ice_rx_flex_desc *rxdp;
1561         struct ice_rx_entry *rxep;
1562         struct rte_mbuf *mb;
1563         uint16_t stat_err0;
1564         uint16_t pkt_len;
1565         int32_t s[ICE_LOOK_AHEAD], nb_dd;
1566         int32_t i, j, nb_rx = 0;
1567         uint64_t pkt_flags = 0;
1568         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1569 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1570         struct ice_vsi *vsi = rxq->vsi;
1571         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
1572         uint64_t ts_ns;
1573         struct ice_adapter *ad = rxq->vsi->adapter;
1574 #endif
1575         rxdp = &rxq->rx_ring[rxq->rx_tail];
1576         rxep = &rxq->sw_ring[rxq->rx_tail];
1577
1578         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1579
1580         /* Make sure there is at least 1 packet to receive */
1581         if (!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1582                 return 0;
1583
1584         /**
1585          * Scan LOOK_AHEAD descriptors at a time to determine which
1586          * descriptors reference packets that are ready to be received.
1587          */
1588         for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
1589              rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
1590                 /* Read desc statuses backwards to avoid race condition */
1591                 for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--)
1592                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1593
1594                 rte_smp_rmb();
1595
1596                 /* Compute how many status bits were set */
1597                 for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
1598                         nb_dd += s[j] & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
1599
1600                 nb_rx += nb_dd;
1601
1602                 /* Translate descriptor info to mbuf parameters */
1603                 for (j = 0; j < nb_dd; j++) {
1604                         mb = rxep[j].mbuf;
1605                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1606                                    ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1607                         mb->data_len = pkt_len;
1608                         mb->pkt_len = pkt_len;
1609                         mb->ol_flags = 0;
1610                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1611                         pkt_flags = ice_rxd_error_to_pkt_flags(stat_err0);
1612                         mb->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1613                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1614                         ice_rxd_to_vlan_tci(mb, &rxdp[j]);
1615                         rxd_to_pkt_fields_ops[rxq->rxdid](rxq, mb, &rxdp[j]);
1616 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1617                         if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
1618                                 ts_ns = ice_tstamp_convert_32b_64b(hw,
1619                                         rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high));
1620                                 if (ice_timestamp_dynflag > 0) {
1621                                         *RTE_MBUF_DYNFIELD(mb,
1622                                                 ice_timestamp_dynfield_offset,
1623                                                 rte_mbuf_timestamp_t *) = ts_ns;
1624                                         mb->ol_flags |= ice_timestamp_dynflag;
1625                                 }
1626                         }
1627
1628                         if (ad->ptp_ena && ((mb->packet_type &
1629                             RTE_PTYPE_L2_MASK) == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
1630                                 rxq->time_high =
1631                                    rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high);
1632                                 mb->timesync = rxq->queue_id;
1633                                 pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
1634                         }
1635 #endif
1636                         mb->ol_flags |= pkt_flags;
1637                 }
1638
1639                 for (j = 0; j < ICE_LOOK_AHEAD; j++)
1640                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1641
1642                 if (nb_dd != ICE_LOOK_AHEAD)
1643                         break;
1644         }
1645
1646         /* Clear software ring entries */
1647         for (i = 0; i < nb_rx; i++)
1648                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1649
1650         PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
1651                    "port_id=%u, queue_id=%u, nb_rx=%d",
1652                    rxq->port_id, rxq->queue_id, nb_rx);
1653
1654         return nb_rx;
1655 }
1656
1657 static inline uint16_t
1658 ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
1659                        struct rte_mbuf **rx_pkts,
1660                        uint16_t nb_pkts)
1661 {
1662         uint16_t i;
1663         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1664
1665         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1666
1667         for (i = 0; i < nb_pkts; i++)
1668                 rx_pkts[i] = stage[i];
1669
1670         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1671         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1672
1673         return nb_pkts;
1674 }
1675
1676 static inline int
1677 ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
1678 {
1679         volatile union ice_rx_flex_desc *rxdp;
1680         struct ice_rx_entry *rxep;
1681         struct rte_mbuf *mb;
1682         uint16_t alloc_idx, i;
1683         uint64_t dma_addr;
1684         int diag;
1685
1686         /* Allocate buffers in bulk */
1687         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1688                                (rxq->rx_free_thresh - 1));
1689         rxep = &rxq->sw_ring[alloc_idx];
1690         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1691                                     rxq->rx_free_thresh);
1692         if (unlikely(diag != 0)) {
1693                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1694                 return -ENOMEM;
1695         }
1696
1697         rxdp = &rxq->rx_ring[alloc_idx];
1698         for (i = 0; i < rxq->rx_free_thresh; i++) {
1699                 if (likely(i < (rxq->rx_free_thresh - 1)))
1700                         /* Prefetch next mbuf */
1701                         rte_prefetch0(rxep[i + 1].mbuf);
1702
1703                 mb = rxep[i].mbuf;
1704                 rte_mbuf_refcnt_set(mb, 1);
1705                 mb->next = NULL;
1706                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1707                 mb->nb_segs = 1;
1708                 mb->port = rxq->port_id;
1709                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1710                 rxdp[i].read.hdr_addr = 0;
1711                 rxdp[i].read.pkt_addr = dma_addr;
1712         }
1713
1714         /* Update rx tail regsiter */
1715         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1716
1717         rxq->rx_free_trigger =
1718                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1719         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1720                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1721
1722         return 0;
1723 }
1724
1725 static inline uint16_t
1726 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1727 {
1728         struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
1729         uint16_t nb_rx = 0;
1730
1731         if (!nb_pkts)
1732                 return 0;
1733
1734         if (rxq->rx_nb_avail)
1735                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1736
1737         nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
1738         rxq->rx_next_avail = 0;
1739         rxq->rx_nb_avail = nb_rx;
1740         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1741
1742         if (rxq->rx_tail > rxq->rx_free_trigger) {
1743                 if (ice_rx_alloc_bufs(rxq) != 0) {
1744                         uint16_t i, j;
1745
1746                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed +=
1747                                 rxq->rx_free_thresh;
1748                         PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1749                                    "port_id=%u, queue_id=%u",
1750                                    rxq->port_id, rxq->queue_id);
1751                         rxq->rx_nb_avail = 0;
1752                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1753                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1754                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1755
1756                         return 0;
1757                 }
1758         }
1759
1760         if (rxq->rx_tail >= rxq->nb_rx_desc)
1761                 rxq->rx_tail = 0;
1762
1763         if (rxq->rx_nb_avail)
1764                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1765
1766         return 0;
1767 }
1768
1769 static uint16_t
1770 ice_recv_pkts_bulk_alloc(void *rx_queue,
1771                          struct rte_mbuf **rx_pkts,
1772                          uint16_t nb_pkts)
1773 {
1774         uint16_t nb_rx = 0;
1775         uint16_t n;
1776         uint16_t count;
1777
1778         if (unlikely(nb_pkts == 0))
1779                 return nb_rx;
1780
1781         if (likely(nb_pkts <= ICE_RX_MAX_BURST))
1782                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1783
1784         while (nb_pkts) {
1785                 n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
1786                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1787                 nb_rx = (uint16_t)(nb_rx + count);
1788                 nb_pkts = (uint16_t)(nb_pkts - count);
1789                 if (count < n)
1790                         break;
1791         }
1792
1793         return nb_rx;
1794 }
1795
1796 static uint16_t
1797 ice_recv_scattered_pkts(void *rx_queue,
1798                         struct rte_mbuf **rx_pkts,
1799                         uint16_t nb_pkts)
1800 {
1801         struct ice_rx_queue *rxq = rx_queue;
1802         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
1803         volatile union ice_rx_flex_desc *rxdp;
1804         union ice_rx_flex_desc rxd;
1805         struct ice_rx_entry *sw_ring = rxq->sw_ring;
1806         struct ice_rx_entry *rxe;
1807         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1808         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1809         struct rte_mbuf *nmb; /* new allocated mbuf */
1810         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
1811         uint16_t rx_id = rxq->rx_tail;
1812         uint16_t nb_rx = 0;
1813         uint16_t nb_hold = 0;
1814         uint16_t rx_packet_len;
1815         uint16_t rx_stat_err0;
1816         uint64_t dma_addr;
1817         uint64_t pkt_flags;
1818         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1819 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1820         struct ice_vsi *vsi = rxq->vsi;
1821         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
1822         uint64_t ts_ns;
1823         struct ice_adapter *ad = rxq->vsi->adapter;
1824 #endif
1825         while (nb_rx < nb_pkts) {
1826                 rxdp = &rx_ring[rx_id];
1827                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1828
1829                 /* Check the DD bit first */
1830                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1831                         break;
1832
1833                 /* allocate mbuf */
1834                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1835                 if (unlikely(!nmb)) {
1836                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
1837                         break;
1838                 }
1839                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
1840
1841                 nb_hold++;
1842                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
1843                 rx_id++;
1844                 if (unlikely(rx_id == rxq->nb_rx_desc))
1845                         rx_id = 0;
1846
1847                 /* Prefetch next mbuf */
1848                 rte_prefetch0(sw_ring[rx_id].mbuf);
1849
1850                 /**
1851                  * When next RX descriptor is on a cache line boundary,
1852                  * prefetch the next 4 RX descriptors and next 8 pointers
1853                  * to mbufs.
1854                  */
1855                 if ((rx_id & 0x3) == 0) {
1856                         rte_prefetch0(&rx_ring[rx_id]);
1857                         rte_prefetch0(&sw_ring[rx_id]);
1858                 }
1859
1860                 rxm = rxe->mbuf;
1861                 rxe->mbuf = nmb;
1862                 dma_addr =
1863                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1864
1865                 /* Set data buffer address and data length of the mbuf */
1866                 rxdp->read.hdr_addr = 0;
1867                 rxdp->read.pkt_addr = dma_addr;
1868                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1869                                 ICE_RX_FLX_DESC_PKT_LEN_M;
1870                 rxm->data_len = rx_packet_len;
1871                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1872
1873                 /**
1874                  * If this is the first buffer of the received packet, set the
1875                  * pointer to the first mbuf of the packet and initialize its
1876                  * context. Otherwise, update the total length and the number
1877                  * of segments of the current scattered packet, and update the
1878                  * pointer to the last mbuf of the current packet.
1879                  */
1880                 if (!first_seg) {
1881                         first_seg = rxm;
1882                         first_seg->nb_segs = 1;
1883                         first_seg->pkt_len = rx_packet_len;
1884                 } else {
1885                         first_seg->pkt_len =
1886                                 (uint16_t)(first_seg->pkt_len +
1887                                            rx_packet_len);
1888                         first_seg->nb_segs++;
1889                         last_seg->next = rxm;
1890                 }
1891
1892                 /**
1893                  * If this is not the last buffer of the received packet,
1894                  * update the pointer to the last mbuf of the current scattered
1895                  * packet and continue to parse the RX ring.
1896                  */
1897                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_EOF_S))) {
1898                         last_seg = rxm;
1899                         continue;
1900                 }
1901
1902                 /**
1903                  * This is the last buffer of the received packet. If the CRC
1904                  * is not stripped by the hardware:
1905                  *  - Subtract the CRC length from the total packet length.
1906                  *  - If the last buffer only contains the whole CRC or a part
1907                  *  of it, free the mbuf associated to the last buffer. If part
1908                  *  of the CRC is also contained in the previous mbuf, subtract
1909                  *  the length of that CRC part from the data length of the
1910                  *  previous mbuf.
1911                  */
1912                 rxm->next = NULL;
1913                 if (unlikely(rxq->crc_len > 0)) {
1914                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1915                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1916                                 rte_pktmbuf_free_seg(rxm);
1917                                 first_seg->nb_segs--;
1918                                 last_seg->data_len =
1919                                         (uint16_t)(last_seg->data_len -
1920                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1921                                 last_seg->next = NULL;
1922                         } else
1923                                 rxm->data_len = (uint16_t)(rx_packet_len -
1924                                                            RTE_ETHER_CRC_LEN);
1925                 }
1926
1927                 first_seg->port = rxq->port_id;
1928                 first_seg->ol_flags = 0;
1929                 first_seg->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1930                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1931                 ice_rxd_to_vlan_tci(first_seg, &rxd);
1932                 rxd_to_pkt_fields_ops[rxq->rxdid](rxq, first_seg, &rxd);
1933                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
1934 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1935                 if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
1936                         ts_ns = ice_tstamp_convert_32b_64b(hw,
1937                                 rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
1938                         if (ice_timestamp_dynflag > 0) {
1939                                 *RTE_MBUF_DYNFIELD(first_seg,
1940                                         ice_timestamp_dynfield_offset,
1941                                         rte_mbuf_timestamp_t *) = ts_ns;
1942                                 first_seg->ol_flags |= ice_timestamp_dynflag;
1943                         }
1944                 }
1945
1946                 if (ad->ptp_ena && ((first_seg->packet_type & RTE_PTYPE_L2_MASK)
1947                     == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
1948                         rxq->time_high =
1949                            rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
1950                         first_seg->timesync = rxq->queue_id;
1951                         pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
1952                 }
1953 #endif
1954                 first_seg->ol_flags |= pkt_flags;
1955                 /* Prefetch data of first segment, if configured to do so. */
1956                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1957                                           first_seg->data_off));
1958                 rx_pkts[nb_rx++] = first_seg;
1959                 first_seg = NULL;
1960         }
1961
1962         /* Record index of the next RX descriptor to probe. */
1963         rxq->rx_tail = rx_id;
1964         rxq->pkt_first_seg = first_seg;
1965         rxq->pkt_last_seg = last_seg;
1966
1967         /**
1968          * If the number of free RX descriptors is greater than the RX free
1969          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1970          * register. Update the RDT with the value of the last processed RX
1971          * descriptor minus 1, to guarantee that the RDT register is never
1972          * equal to the RDH register, which creates a "full" ring situtation
1973          * from the hardware point of view.
1974          */
1975         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1976         if (nb_hold > rxq->rx_free_thresh) {
1977                 rx_id = (uint16_t)(rx_id == 0 ?
1978                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
1979                 /* write TAIL register */
1980                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1981                 nb_hold = 0;
1982         }
1983         rxq->nb_rx_hold = nb_hold;
1984
1985         /* return received packet in the burst */
1986         return nb_rx;
1987 }
1988
1989 const uint32_t *
1990 ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1991 {
1992         struct ice_adapter *ad =
1993                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1994         const uint32_t *ptypes;
1995
1996         static const uint32_t ptypes_os[] = {
1997                 /* refers to ice_get_default_pkt_type() */
1998                 RTE_PTYPE_L2_ETHER,
1999                 RTE_PTYPE_L2_ETHER_TIMESYNC,
2000                 RTE_PTYPE_L2_ETHER_LLDP,
2001                 RTE_PTYPE_L2_ETHER_ARP,
2002                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2003                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2004                 RTE_PTYPE_L4_FRAG,
2005                 RTE_PTYPE_L4_ICMP,
2006                 RTE_PTYPE_L4_NONFRAG,
2007                 RTE_PTYPE_L4_SCTP,
2008                 RTE_PTYPE_L4_TCP,
2009                 RTE_PTYPE_L4_UDP,
2010                 RTE_PTYPE_TUNNEL_GRENAT,
2011                 RTE_PTYPE_TUNNEL_IP,
2012                 RTE_PTYPE_INNER_L2_ETHER,
2013                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2014                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2015                 RTE_PTYPE_INNER_L4_FRAG,
2016                 RTE_PTYPE_INNER_L4_ICMP,
2017                 RTE_PTYPE_INNER_L4_NONFRAG,
2018                 RTE_PTYPE_INNER_L4_SCTP,
2019                 RTE_PTYPE_INNER_L4_TCP,
2020                 RTE_PTYPE_INNER_L4_UDP,
2021                 RTE_PTYPE_UNKNOWN
2022         };
2023
2024         static const uint32_t ptypes_comms[] = {
2025                 /* refers to ice_get_default_pkt_type() */
2026                 RTE_PTYPE_L2_ETHER,
2027                 RTE_PTYPE_L2_ETHER_TIMESYNC,
2028                 RTE_PTYPE_L2_ETHER_LLDP,
2029                 RTE_PTYPE_L2_ETHER_ARP,
2030                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2031                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2032                 RTE_PTYPE_L4_FRAG,
2033                 RTE_PTYPE_L4_ICMP,
2034                 RTE_PTYPE_L4_NONFRAG,
2035                 RTE_PTYPE_L4_SCTP,
2036                 RTE_PTYPE_L4_TCP,
2037                 RTE_PTYPE_L4_UDP,
2038                 RTE_PTYPE_TUNNEL_GRENAT,
2039                 RTE_PTYPE_TUNNEL_IP,
2040                 RTE_PTYPE_INNER_L2_ETHER,
2041                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2042                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2043                 RTE_PTYPE_INNER_L4_FRAG,
2044                 RTE_PTYPE_INNER_L4_ICMP,
2045                 RTE_PTYPE_INNER_L4_NONFRAG,
2046                 RTE_PTYPE_INNER_L4_SCTP,
2047                 RTE_PTYPE_INNER_L4_TCP,
2048                 RTE_PTYPE_INNER_L4_UDP,
2049                 RTE_PTYPE_TUNNEL_GTPC,
2050                 RTE_PTYPE_TUNNEL_GTPU,
2051                 RTE_PTYPE_L2_ETHER_PPPOE,
2052                 RTE_PTYPE_UNKNOWN
2053         };
2054
2055         if (ad->active_pkg_type == ICE_PKG_TYPE_COMMS)
2056                 ptypes = ptypes_comms;
2057         else
2058                 ptypes = ptypes_os;
2059
2060         if (dev->rx_pkt_burst == ice_recv_pkts ||
2061             dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
2062             dev->rx_pkt_burst == ice_recv_scattered_pkts)
2063                 return ptypes;
2064
2065 #ifdef RTE_ARCH_X86
2066         if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
2067             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
2068 #ifdef CC_AVX512_SUPPORT
2069             dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
2070             dev->rx_pkt_burst == ice_recv_pkts_vec_avx512_offload ||
2071             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
2072             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512_offload ||
2073 #endif
2074             dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
2075             dev->rx_pkt_burst == ice_recv_pkts_vec_avx2_offload ||
2076             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2 ||
2077             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2_offload)
2078                 return ptypes;
2079 #endif
2080
2081         return NULL;
2082 }
2083
2084 int
2085 ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
2086 {
2087         volatile union ice_rx_flex_desc *rxdp;
2088         struct ice_rx_queue *rxq = rx_queue;
2089         uint32_t desc;
2090
2091         if (unlikely(offset >= rxq->nb_rx_desc))
2092                 return -EINVAL;
2093
2094         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2095                 return RTE_ETH_RX_DESC_UNAVAIL;
2096
2097         desc = rxq->rx_tail + offset;
2098         if (desc >= rxq->nb_rx_desc)
2099                 desc -= rxq->nb_rx_desc;
2100
2101         rxdp = &rxq->rx_ring[desc];
2102         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
2103             (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))
2104                 return RTE_ETH_RX_DESC_DONE;
2105
2106         return RTE_ETH_RX_DESC_AVAIL;
2107 }
2108
2109 int
2110 ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
2111 {
2112         struct ice_tx_queue *txq = tx_queue;
2113         volatile uint64_t *status;
2114         uint64_t mask, expect;
2115         uint32_t desc;
2116
2117         if (unlikely(offset >= txq->nb_tx_desc))
2118                 return -EINVAL;
2119
2120         desc = txq->tx_tail + offset;
2121         /* go to next desc that has the RS bit */
2122         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2123                 txq->tx_rs_thresh;
2124         if (desc >= txq->nb_tx_desc) {
2125                 desc -= txq->nb_tx_desc;
2126                 if (desc >= txq->nb_tx_desc)
2127                         desc -= txq->nb_tx_desc;
2128         }
2129
2130         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2131         mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
2132         expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
2133                                   ICE_TXD_QW1_DTYPE_S);
2134         if ((*status & mask) == expect)
2135                 return RTE_ETH_TX_DESC_DONE;
2136
2137         return RTE_ETH_TX_DESC_FULL;
2138 }
2139
2140 void
2141 ice_free_queues(struct rte_eth_dev *dev)
2142 {
2143         uint16_t i;
2144
2145         PMD_INIT_FUNC_TRACE();
2146
2147         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2148                 if (!dev->data->rx_queues[i])
2149                         continue;
2150                 ice_rx_queue_release(dev->data->rx_queues[i]);
2151                 dev->data->rx_queues[i] = NULL;
2152         }
2153         dev->data->nb_rx_queues = 0;
2154
2155         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2156                 if (!dev->data->tx_queues[i])
2157                         continue;
2158                 ice_tx_queue_release(dev->data->tx_queues[i]);
2159                 dev->data->tx_queues[i] = NULL;
2160         }
2161         dev->data->nb_tx_queues = 0;
2162 }
2163
2164 #define ICE_FDIR_NUM_TX_DESC  ICE_MIN_RING_DESC
2165 #define ICE_FDIR_NUM_RX_DESC  ICE_MIN_RING_DESC
2166
2167 int
2168 ice_fdir_setup_tx_resources(struct ice_pf *pf)
2169 {
2170         struct ice_tx_queue *txq;
2171         const struct rte_memzone *tz = NULL;
2172         uint32_t ring_size;
2173         struct rte_eth_dev *dev;
2174
2175         if (!pf) {
2176                 PMD_DRV_LOG(ERR, "PF is not available");
2177                 return -EINVAL;
2178         }
2179
2180         dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2181
2182         /* Allocate the TX queue data structure. */
2183         txq = rte_zmalloc_socket("ice fdir tx queue",
2184                                  sizeof(struct ice_tx_queue),
2185                                  RTE_CACHE_LINE_SIZE,
2186                                  SOCKET_ID_ANY);
2187         if (!txq) {
2188                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2189                             "tx queue structure.");
2190                 return -ENOMEM;
2191         }
2192
2193         /* Allocate TX hardware ring descriptors. */
2194         ring_size = sizeof(struct ice_tx_desc) * ICE_FDIR_NUM_TX_DESC;
2195         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2196
2197         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2198                                       ICE_FDIR_QUEUE_ID, ring_size,
2199                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2200         if (!tz) {
2201                 ice_tx_queue_release(txq);
2202                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2203                 return -ENOMEM;
2204         }
2205
2206         txq->mz = tz;
2207         txq->nb_tx_desc = ICE_FDIR_NUM_TX_DESC;
2208         txq->queue_id = ICE_FDIR_QUEUE_ID;
2209         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2210         txq->vsi = pf->fdir.fdir_vsi;
2211
2212         txq->tx_ring_dma = tz->iova;
2213         txq->tx_ring = (struct ice_tx_desc *)tz->addr;
2214         /*
2215          * don't need to allocate software ring and reset for the fdir
2216          * program queue just set the queue has been configured.
2217          */
2218         txq->q_set = true;
2219         pf->fdir.txq = txq;
2220
2221         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
2222
2223         return ICE_SUCCESS;
2224 }
2225
2226 int
2227 ice_fdir_setup_rx_resources(struct ice_pf *pf)
2228 {
2229         struct ice_rx_queue *rxq;
2230         const struct rte_memzone *rz = NULL;
2231         uint32_t ring_size;
2232         struct rte_eth_dev *dev;
2233
2234         if (!pf) {
2235                 PMD_DRV_LOG(ERR, "PF is not available");
2236                 return -EINVAL;
2237         }
2238
2239         dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2240
2241         /* Allocate the RX queue data structure. */
2242         rxq = rte_zmalloc_socket("ice fdir rx queue",
2243                                  sizeof(struct ice_rx_queue),
2244                                  RTE_CACHE_LINE_SIZE,
2245                                  SOCKET_ID_ANY);
2246         if (!rxq) {
2247                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2248                             "rx queue structure.");
2249                 return -ENOMEM;
2250         }
2251
2252         /* Allocate RX hardware ring descriptors. */
2253         ring_size = sizeof(union ice_32byte_rx_desc) * ICE_FDIR_NUM_RX_DESC;
2254         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2255
2256         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2257                                       ICE_FDIR_QUEUE_ID, ring_size,
2258                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2259         if (!rz) {
2260                 ice_rx_queue_release(rxq);
2261                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2262                 return -ENOMEM;
2263         }
2264
2265         rxq->mz = rz;
2266         rxq->nb_rx_desc = ICE_FDIR_NUM_RX_DESC;
2267         rxq->queue_id = ICE_FDIR_QUEUE_ID;
2268         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2269         rxq->vsi = pf->fdir.fdir_vsi;
2270
2271         rxq->rx_ring_dma = rz->iova;
2272         memset(rz->addr, 0, ICE_FDIR_NUM_RX_DESC *
2273                sizeof(union ice_32byte_rx_desc));
2274         rxq->rx_ring = (union ice_rx_flex_desc *)rz->addr;
2275
2276         /*
2277          * Don't need to allocate software ring and reset for the fdir
2278          * rx queue, just set the queue has been configured.
2279          */
2280         rxq->q_set = true;
2281         pf->fdir.rxq = rxq;
2282
2283         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
2284
2285         return ICE_SUCCESS;
2286 }
2287
2288 uint16_t
2289 ice_recv_pkts(void *rx_queue,
2290               struct rte_mbuf **rx_pkts,
2291               uint16_t nb_pkts)
2292 {
2293         struct ice_rx_queue *rxq = rx_queue;
2294         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
2295         volatile union ice_rx_flex_desc *rxdp;
2296         union ice_rx_flex_desc rxd;
2297         struct ice_rx_entry *sw_ring = rxq->sw_ring;
2298         struct ice_rx_entry *rxe;
2299         struct rte_mbuf *nmb; /* new allocated mbuf */
2300         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
2301         uint16_t rx_id = rxq->rx_tail;
2302         uint16_t nb_rx = 0;
2303         uint16_t nb_hold = 0;
2304         uint16_t rx_packet_len;
2305         uint16_t rx_stat_err0;
2306         uint64_t dma_addr;
2307         uint64_t pkt_flags;
2308         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2309 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2310         struct ice_vsi *vsi = rxq->vsi;
2311         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
2312         uint64_t ts_ns;
2313         struct ice_adapter *ad = rxq->vsi->adapter;
2314 #endif
2315         while (nb_rx < nb_pkts) {
2316                 rxdp = &rx_ring[rx_id];
2317                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
2318
2319                 /* Check the DD bit first */
2320                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
2321                         break;
2322
2323                 /* allocate mbuf */
2324                 nmb = rte_mbuf_raw_alloc(rxq->mp);
2325                 if (unlikely(!nmb)) {
2326                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2327                         break;
2328                 }
2329                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
2330
2331                 nb_hold++;
2332                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
2333                 rx_id++;
2334                 if (unlikely(rx_id == rxq->nb_rx_desc))
2335                         rx_id = 0;
2336                 rxm = rxe->mbuf;
2337                 rxe->mbuf = nmb;
2338                 dma_addr =
2339                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2340
2341                 /**
2342                  * fill the read format of descriptor with physic address in
2343                  * new allocated mbuf: nmb
2344                  */
2345                 rxdp->read.hdr_addr = 0;
2346                 rxdp->read.pkt_addr = dma_addr;
2347
2348                 /* calculate rx_packet_len of the received pkt */
2349                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
2350                                  ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
2351
2352                 /* fill old mbuf with received descriptor: rxd */
2353                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
2354                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
2355                 rxm->nb_segs = 1;
2356                 rxm->next = NULL;
2357                 rxm->pkt_len = rx_packet_len;
2358                 rxm->data_len = rx_packet_len;
2359                 rxm->port = rxq->port_id;
2360                 rxm->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
2361                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
2362                 ice_rxd_to_vlan_tci(rxm, &rxd);
2363                 rxd_to_pkt_fields_ops[rxq->rxdid](rxq, rxm, &rxd);
2364                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
2365 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2366                 if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
2367                         ts_ns = ice_tstamp_convert_32b_64b(hw,
2368                                 rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
2369                         if (ice_timestamp_dynflag > 0) {
2370                                 *RTE_MBUF_DYNFIELD(rxm,
2371                                         ice_timestamp_dynfield_offset,
2372                                         rte_mbuf_timestamp_t *) = ts_ns;
2373                                 rxm->ol_flags |= ice_timestamp_dynflag;
2374                         }
2375                 }
2376
2377                 if (ad->ptp_ena && ((rxm->packet_type & RTE_PTYPE_L2_MASK) ==
2378                     RTE_PTYPE_L2_ETHER_TIMESYNC)) {
2379                         rxq->time_high =
2380                            rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2381                         rxm->timesync = rxq->queue_id;
2382                         pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
2383                 }
2384 #endif
2385                 rxm->ol_flags |= pkt_flags;
2386                 /* copy old mbuf to rx_pkts */
2387                 rx_pkts[nb_rx++] = rxm;
2388         }
2389         rxq->rx_tail = rx_id;
2390         /**
2391          * If the number of free RX descriptors is greater than the RX free
2392          * threshold of the queue, advance the receive tail register of queue.
2393          * Update that register with the value of the last processed RX
2394          * descriptor minus 1.
2395          */
2396         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2397         if (nb_hold > rxq->rx_free_thresh) {
2398                 rx_id = (uint16_t)(rx_id == 0 ?
2399                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
2400                 /* write TAIL register */
2401                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2402                 nb_hold = 0;
2403         }
2404         rxq->nb_rx_hold = nb_hold;
2405
2406         /* return received packet in the burst */
2407         return nb_rx;
2408 }
2409
2410 static inline void
2411 ice_parse_tunneling_params(uint64_t ol_flags,
2412                             union ice_tx_offload tx_offload,
2413                             uint32_t *cd_tunneling)
2414 {
2415         /* EIPT: External (outer) IP header type */
2416         if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM)
2417                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4;
2418         else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV4)
2419                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
2420         else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)
2421                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV6;
2422
2423         /* EIPLEN: External (outer) IP header length, in DWords */
2424         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
2425                 ICE_TXD_CTX_QW0_EIPLEN_S;
2426
2427         /* L4TUNT: L4 Tunneling Type */
2428         switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
2429         case RTE_MBUF_F_TX_TUNNEL_IPIP:
2430                 /* for non UDP / GRE tunneling, set to 00b */
2431                 break;
2432         case RTE_MBUF_F_TX_TUNNEL_VXLAN:
2433         case RTE_MBUF_F_TX_TUNNEL_GTP:
2434         case RTE_MBUF_F_TX_TUNNEL_GENEVE:
2435                 *cd_tunneling |= ICE_TXD_CTX_UDP_TUNNELING;
2436                 break;
2437         case RTE_MBUF_F_TX_TUNNEL_GRE:
2438                 *cd_tunneling |= ICE_TXD_CTX_GRE_TUNNELING;
2439                 break;
2440         default:
2441                 PMD_TX_LOG(ERR, "Tunnel type not supported");
2442                 return;
2443         }
2444
2445         /* L4TUNLEN: L4 Tunneling Length, in Words
2446          *
2447          * We depend on app to set rte_mbuf.l2_len correctly.
2448          * For IP in GRE it should be set to the length of the GRE
2449          * header;
2450          * For MAC in GRE or MAC in UDP it should be set to the length
2451          * of the GRE or UDP headers plus the inner MAC up to including
2452          * its last Ethertype.
2453          * If MPLS labels exists, it should include them as well.
2454          */
2455         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
2456                 ICE_TXD_CTX_QW0_NATLEN_S;
2457
2458         /**
2459          * Calculate the tunneling UDP checksum.
2460          * Shall be set only if L4TUNT = 01b and EIPT is not zero
2461          */
2462         if (!(*cd_tunneling & ICE_TX_CTX_EIPT_NONE) &&
2463             (*cd_tunneling & ICE_TXD_CTX_UDP_TUNNELING))
2464                 *cd_tunneling |= ICE_TXD_CTX_QW0_L4T_CS_M;
2465 }
2466
2467 static inline void
2468 ice_txd_enable_checksum(uint64_t ol_flags,
2469                         uint32_t *td_cmd,
2470                         uint32_t *td_offset,
2471                         union ice_tx_offload tx_offload)
2472 {
2473         /* Set MACLEN */
2474         if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2475                 *td_offset |= (tx_offload.outer_l2_len >> 1)
2476                         << ICE_TX_DESC_LEN_MACLEN_S;
2477         else
2478                 *td_offset |= (tx_offload.l2_len >> 1)
2479                         << ICE_TX_DESC_LEN_MACLEN_S;
2480
2481         /* Enable L3 checksum offloads */
2482         if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
2483                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
2484                 *td_offset |= (tx_offload.l3_len >> 2) <<
2485                               ICE_TX_DESC_LEN_IPLEN_S;
2486         } else if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2487                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
2488                 *td_offset |= (tx_offload.l3_len >> 2) <<
2489                               ICE_TX_DESC_LEN_IPLEN_S;
2490         } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2491                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2492                 *td_offset |= (tx_offload.l3_len >> 2) <<
2493                               ICE_TX_DESC_LEN_IPLEN_S;
2494         }
2495
2496         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2497                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2498                 *td_offset |= (tx_offload.l4_len >> 2) <<
2499                               ICE_TX_DESC_LEN_L4_LEN_S;
2500                 return;
2501         }
2502
2503         /* Enable L4 checksum offloads */
2504         switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
2505         case RTE_MBUF_F_TX_TCP_CKSUM:
2506                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2507                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2508                               ICE_TX_DESC_LEN_L4_LEN_S;
2509                 break;
2510         case RTE_MBUF_F_TX_SCTP_CKSUM:
2511                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2512                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2513                               ICE_TX_DESC_LEN_L4_LEN_S;
2514                 break;
2515         case RTE_MBUF_F_TX_UDP_CKSUM:
2516                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2517                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2518                               ICE_TX_DESC_LEN_L4_LEN_S;
2519                 break;
2520         default:
2521                 break;
2522         }
2523 }
2524
2525 static inline int
2526 ice_xmit_cleanup(struct ice_tx_queue *txq)
2527 {
2528         struct ice_tx_entry *sw_ring = txq->sw_ring;
2529         volatile struct ice_tx_desc *txd = txq->tx_ring;
2530         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2531         uint16_t nb_tx_desc = txq->nb_tx_desc;
2532         uint16_t desc_to_clean_to;
2533         uint16_t nb_tx_to_clean;
2534
2535         /* Determine the last descriptor needing to be cleaned */
2536         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
2537         if (desc_to_clean_to >= nb_tx_desc)
2538                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2539
2540         /* Check to make sure the last descriptor to clean is done */
2541         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2542         if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
2543             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
2544                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2545                            "(port=%d queue=%d) value=0x%"PRIx64"\n",
2546                            desc_to_clean_to,
2547                            txq->port_id, txq->queue_id,
2548                            txd[desc_to_clean_to].cmd_type_offset_bsz);
2549                 /* Failed to clean any descriptors */
2550                 return -1;
2551         }
2552
2553         /* Figure out how many descriptors will be cleaned */
2554         if (last_desc_cleaned > desc_to_clean_to)
2555                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2556                                             desc_to_clean_to);
2557         else
2558                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2559                                             last_desc_cleaned);
2560
2561         /* The last descriptor to clean is done, so that means all the
2562          * descriptors from the last descriptor that was cleaned
2563          * up to the last descriptor with the RS bit set
2564          * are done. Only reset the threshold descriptor.
2565          */
2566         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2567
2568         /* Update the txq to reflect the last descriptor that was cleaned */
2569         txq->last_desc_cleaned = desc_to_clean_to;
2570         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
2571
2572         return 0;
2573 }
2574
2575 /* Construct the tx flags */
2576 static inline uint64_t
2577 ice_build_ctob(uint32_t td_cmd,
2578                uint32_t td_offset,
2579                uint16_t size,
2580                uint32_t td_tag)
2581 {
2582         return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2583                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2584                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2585                                 ((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
2586                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2587 }
2588
2589 /* Check if the context descriptor is needed for TX offloading */
2590 static inline uint16_t
2591 ice_calc_context_desc(uint64_t flags)
2592 {
2593         static uint64_t mask = RTE_MBUF_F_TX_TCP_SEG |
2594                 RTE_MBUF_F_TX_QINQ |
2595                 RTE_MBUF_F_TX_OUTER_IP_CKSUM |
2596                 RTE_MBUF_F_TX_TUNNEL_MASK |
2597                 RTE_MBUF_F_TX_IEEE1588_TMST;
2598
2599         return (flags & mask) ? 1 : 0;
2600 }
2601
2602 /* set ice TSO context descriptor */
2603 static inline uint64_t
2604 ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
2605 {
2606         uint64_t ctx_desc = 0;
2607         uint32_t cd_cmd, hdr_len, cd_tso_len;
2608
2609         if (!tx_offload.l4_len) {
2610                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
2611                 return ctx_desc;
2612         }
2613
2614         hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
2615         hdr_len += (mbuf->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
2616                    tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
2617
2618         cd_cmd = ICE_TX_CTX_DESC_TSO;
2619         cd_tso_len = mbuf->pkt_len - hdr_len;
2620         ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
2621                     ((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2622                     ((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
2623
2624         return ctx_desc;
2625 }
2626
2627 /* HW requires that TX buffer size ranges from 1B up to (16K-1)B. */
2628 #define ICE_MAX_DATA_PER_TXD \
2629         (ICE_TXD_QW1_TX_BUF_SZ_M >> ICE_TXD_QW1_TX_BUF_SZ_S)
2630 /* Calculate the number of TX descriptors needed for each pkt */
2631 static inline uint16_t
2632 ice_calc_pkt_desc(struct rte_mbuf *tx_pkt)
2633 {
2634         struct rte_mbuf *txd = tx_pkt;
2635         uint16_t count = 0;
2636
2637         while (txd != NULL) {
2638                 count += DIV_ROUND_UP(txd->data_len, ICE_MAX_DATA_PER_TXD);
2639                 txd = txd->next;
2640         }
2641
2642         return count;
2643 }
2644
2645 uint16_t
2646 ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2647 {
2648         struct ice_tx_queue *txq;
2649         volatile struct ice_tx_desc *tx_ring;
2650         volatile struct ice_tx_desc *txd;
2651         struct ice_tx_entry *sw_ring;
2652         struct ice_tx_entry *txe, *txn;
2653         struct rte_mbuf *tx_pkt;
2654         struct rte_mbuf *m_seg;
2655         uint32_t cd_tunneling_params;
2656         uint16_t tx_id;
2657         uint16_t nb_tx;
2658         uint16_t nb_used;
2659         uint16_t nb_ctx;
2660         uint32_t td_cmd = 0;
2661         uint32_t td_offset = 0;
2662         uint32_t td_tag = 0;
2663         uint16_t tx_last;
2664         uint16_t slen;
2665         uint64_t buf_dma_addr;
2666         uint64_t ol_flags;
2667         union ice_tx_offload tx_offload = {0};
2668
2669         txq = tx_queue;
2670         sw_ring = txq->sw_ring;
2671         tx_ring = txq->tx_ring;
2672         tx_id = txq->tx_tail;
2673         txe = &sw_ring[tx_id];
2674
2675         /* Check if the descriptor ring needs to be cleaned. */
2676         if (txq->nb_tx_free < txq->tx_free_thresh)
2677                 (void)ice_xmit_cleanup(txq);
2678
2679         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2680                 tx_pkt = *tx_pkts++;
2681
2682                 td_cmd = 0;
2683                 td_tag = 0;
2684                 td_offset = 0;
2685                 ol_flags = tx_pkt->ol_flags;
2686                 tx_offload.l2_len = tx_pkt->l2_len;
2687                 tx_offload.l3_len = tx_pkt->l3_len;
2688                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
2689                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
2690                 tx_offload.l4_len = tx_pkt->l4_len;
2691                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
2692                 /* Calculate the number of context descriptors needed. */
2693                 nb_ctx = ice_calc_context_desc(ol_flags);
2694
2695                 /* The number of descriptors that must be allocated for
2696                  * a packet equals to the number of the segments of that
2697                  * packet plus the number of context descriptor if needed.
2698                  * Recalculate the needed tx descs when TSO enabled in case
2699                  * the mbuf data size exceeds max data size that hw allows
2700                  * per tx desc.
2701                  */
2702                 if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
2703                         nb_used = (uint16_t)(ice_calc_pkt_desc(tx_pkt) +
2704                                              nb_ctx);
2705                 else
2706                         nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
2707                 tx_last = (uint16_t)(tx_id + nb_used - 1);
2708
2709                 /* Circular ring */
2710                 if (tx_last >= txq->nb_tx_desc)
2711                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
2712
2713                 if (nb_used > txq->nb_tx_free) {
2714                         if (ice_xmit_cleanup(txq) != 0) {
2715                                 if (nb_tx == 0)
2716                                         return 0;
2717                                 goto end_of_tx;
2718                         }
2719                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
2720                                 while (nb_used > txq->nb_tx_free) {
2721                                         if (ice_xmit_cleanup(txq) != 0) {
2722                                                 if (nb_tx == 0)
2723                                                         return 0;
2724                                                 goto end_of_tx;
2725                                         }
2726                                 }
2727                         }
2728                 }
2729
2730                 /* Descriptor based VLAN insertion */
2731                 if (ol_flags & (RTE_MBUF_F_TX_VLAN | RTE_MBUF_F_TX_QINQ)) {
2732                         td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
2733                         td_tag = tx_pkt->vlan_tci;
2734                 }
2735
2736                 /* Fill in tunneling parameters if necessary */
2737                 cd_tunneling_params = 0;
2738                 if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2739                         ice_parse_tunneling_params(ol_flags, tx_offload,
2740                                                    &cd_tunneling_params);
2741
2742                 /* Enable checksum offloading */
2743                 if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK)
2744                         ice_txd_enable_checksum(ol_flags, &td_cmd,
2745                                                 &td_offset, tx_offload);
2746
2747                 if (nb_ctx) {
2748                         /* Setup TX context descriptor if required */
2749                         volatile struct ice_tx_ctx_desc *ctx_txd =
2750                                 (volatile struct ice_tx_ctx_desc *)
2751                                         &tx_ring[tx_id];
2752                         uint16_t cd_l2tag2 = 0;
2753                         uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
2754
2755                         txn = &sw_ring[txe->next_id];
2756                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2757                         if (txe->mbuf) {
2758                                 rte_pktmbuf_free_seg(txe->mbuf);
2759                                 txe->mbuf = NULL;
2760                         }
2761
2762                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
2763                                 cd_type_cmd_tso_mss |=
2764                                         ice_set_tso_ctx(tx_pkt, tx_offload);
2765                         else if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
2766                                 cd_type_cmd_tso_mss |=
2767                                         ((uint64_t)ICE_TX_CTX_DESC_TSYN <<
2768                                         ICE_TXD_CTX_QW1_CMD_S);
2769
2770                         ctx_txd->tunneling_params =
2771                                 rte_cpu_to_le_32(cd_tunneling_params);
2772
2773                         /* TX context descriptor based double VLAN insert */
2774                         if (ol_flags & RTE_MBUF_F_TX_QINQ) {
2775                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
2776                                 cd_type_cmd_tso_mss |=
2777                                         ((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
2778                                          ICE_TXD_CTX_QW1_CMD_S);
2779                         }
2780                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
2781                         ctx_txd->qw1 =
2782                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2783
2784                         txe->last_id = tx_last;
2785                         tx_id = txe->next_id;
2786                         txe = txn;
2787                 }
2788                 m_seg = tx_pkt;
2789
2790                 do {
2791                         txd = &tx_ring[tx_id];
2792                         txn = &sw_ring[txe->next_id];
2793
2794                         if (txe->mbuf)
2795                                 rte_pktmbuf_free_seg(txe->mbuf);
2796                         txe->mbuf = m_seg;
2797
2798                         /* Setup TX Descriptor */
2799                         slen = m_seg->data_len;
2800                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2801
2802                         while ((ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
2803                                 unlikely(slen > ICE_MAX_DATA_PER_TXD)) {
2804                                 txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2805                                 txd->cmd_type_offset_bsz =
2806                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2807                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2808                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2809                                 ((uint64_t)ICE_MAX_DATA_PER_TXD <<
2810                                  ICE_TXD_QW1_TX_BUF_SZ_S) |
2811                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2812
2813                                 buf_dma_addr += ICE_MAX_DATA_PER_TXD;
2814                                 slen -= ICE_MAX_DATA_PER_TXD;
2815
2816                                 txe->last_id = tx_last;
2817                                 tx_id = txe->next_id;
2818                                 txe = txn;
2819                                 txd = &tx_ring[tx_id];
2820                                 txn = &sw_ring[txe->next_id];
2821                         }
2822
2823                         txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2824                         txd->cmd_type_offset_bsz =
2825                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2826                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2827                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2828                                 ((uint64_t)slen << ICE_TXD_QW1_TX_BUF_SZ_S) |
2829                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2830
2831                         txe->last_id = tx_last;
2832                         tx_id = txe->next_id;
2833                         txe = txn;
2834                         m_seg = m_seg->next;
2835                 } while (m_seg);
2836
2837                 /* fill the last descriptor with End of Packet (EOP) bit */
2838                 td_cmd |= ICE_TX_DESC_CMD_EOP;
2839                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
2840                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
2841
2842                 /* set RS bit on the last descriptor of one packet */
2843                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
2844                         PMD_TX_LOG(DEBUG,
2845                                    "Setting RS bit on TXD id="
2846                                    "%4u (port=%d queue=%d)",
2847                                    tx_last, txq->port_id, txq->queue_id);
2848
2849                         td_cmd |= ICE_TX_DESC_CMD_RS;
2850
2851                         /* Update txq RS bit counters */
2852                         txq->nb_tx_used = 0;
2853                 }
2854                 txd->cmd_type_offset_bsz |=
2855                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2856                                          ICE_TXD_QW1_CMD_S);
2857         }
2858 end_of_tx:
2859         /* update Tail register */
2860         ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
2861         txq->tx_tail = tx_id;
2862
2863         return nb_tx;
2864 }
2865
2866 static __rte_always_inline int
2867 ice_tx_free_bufs(struct ice_tx_queue *txq)
2868 {
2869         struct ice_tx_entry *txep;
2870         uint16_t i;
2871
2872         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
2873              rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
2874             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
2875                 return 0;
2876
2877         txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
2878
2879         for (i = 0; i < txq->tx_rs_thresh; i++)
2880                 rte_prefetch0((txep + i)->mbuf);
2881
2882         if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) {
2883                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2884                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
2885                         txep->mbuf = NULL;
2886                 }
2887         } else {
2888                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2889                         rte_pktmbuf_free_seg(txep->mbuf);
2890                         txep->mbuf = NULL;
2891                 }
2892         }
2893
2894         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
2895         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
2896         if (txq->tx_next_dd >= txq->nb_tx_desc)
2897                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2898
2899         return txq->tx_rs_thresh;
2900 }
2901
2902 static int
2903 ice_tx_done_cleanup_full(struct ice_tx_queue *txq,
2904                         uint32_t free_cnt)
2905 {
2906         struct ice_tx_entry *swr_ring = txq->sw_ring;
2907         uint16_t i, tx_last, tx_id;
2908         uint16_t nb_tx_free_last;
2909         uint16_t nb_tx_to_clean;
2910         uint32_t pkt_cnt;
2911
2912         /* Start free mbuf from the next of tx_tail */
2913         tx_last = txq->tx_tail;
2914         tx_id  = swr_ring[tx_last].next_id;
2915
2916         if (txq->nb_tx_free == 0 && ice_xmit_cleanup(txq))
2917                 return 0;
2918
2919         nb_tx_to_clean = txq->nb_tx_free;
2920         nb_tx_free_last = txq->nb_tx_free;
2921         if (!free_cnt)
2922                 free_cnt = txq->nb_tx_desc;
2923
2924         /* Loop through swr_ring to count the amount of
2925          * freeable mubfs and packets.
2926          */
2927         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2928                 for (i = 0; i < nb_tx_to_clean &&
2929                         pkt_cnt < free_cnt &&
2930                         tx_id != tx_last; i++) {
2931                         if (swr_ring[tx_id].mbuf != NULL) {
2932                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2933                                 swr_ring[tx_id].mbuf = NULL;
2934
2935                                 /*
2936                                  * last segment in the packet,
2937                                  * increment packet count
2938                                  */
2939                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2940                         }
2941
2942                         tx_id = swr_ring[tx_id].next_id;
2943                 }
2944
2945                 if (txq->tx_rs_thresh > txq->nb_tx_desc -
2946                         txq->nb_tx_free || tx_id == tx_last)
2947                         break;
2948
2949                 if (pkt_cnt < free_cnt) {
2950                         if (ice_xmit_cleanup(txq))
2951                                 break;
2952
2953                         nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
2954                         nb_tx_free_last = txq->nb_tx_free;
2955                 }
2956         }
2957
2958         return (int)pkt_cnt;
2959 }
2960
2961 #ifdef RTE_ARCH_X86
2962 static int
2963 ice_tx_done_cleanup_vec(struct ice_tx_queue *txq __rte_unused,
2964                         uint32_t free_cnt __rte_unused)
2965 {
2966         return -ENOTSUP;
2967 }
2968 #endif
2969
2970 static int
2971 ice_tx_done_cleanup_simple(struct ice_tx_queue *txq,
2972                         uint32_t free_cnt)
2973 {
2974         int i, n, cnt;
2975
2976         if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
2977                 free_cnt = txq->nb_tx_desc;
2978
2979         cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
2980
2981         for (i = 0; i < cnt; i += n) {
2982                 if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
2983                         break;
2984
2985                 n = ice_tx_free_bufs(txq);
2986
2987                 if (n == 0)
2988                         break;
2989         }
2990
2991         return i;
2992 }
2993
2994 int
2995 ice_tx_done_cleanup(void *txq, uint32_t free_cnt)
2996 {
2997         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
2998         struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
2999         struct ice_adapter *ad =
3000                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3001
3002 #ifdef RTE_ARCH_X86
3003         if (ad->tx_vec_allowed)
3004                 return ice_tx_done_cleanup_vec(q, free_cnt);
3005 #endif
3006         if (ad->tx_simple_allowed)
3007                 return ice_tx_done_cleanup_simple(q, free_cnt);
3008         else
3009                 return ice_tx_done_cleanup_full(q, free_cnt);
3010 }
3011
3012 /* Populate 4 descriptors with data from 4 mbufs */
3013 static inline void
3014 tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3015 {
3016         uint64_t dma_addr;
3017         uint32_t i;
3018
3019         for (i = 0; i < 4; i++, txdp++, pkts++) {
3020                 dma_addr = rte_mbuf_data_iova(*pkts);
3021                 txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3022                 txdp->cmd_type_offset_bsz =
3023                         ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3024                                        (*pkts)->data_len, 0);
3025         }
3026 }
3027
3028 /* Populate 1 descriptor with data from 1 mbuf */
3029 static inline void
3030 tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3031 {
3032         uint64_t dma_addr;
3033
3034         dma_addr = rte_mbuf_data_iova(*pkts);
3035         txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3036         txdp->cmd_type_offset_bsz =
3037                 ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3038                                (*pkts)->data_len, 0);
3039 }
3040
3041 static inline void
3042 ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
3043                     uint16_t nb_pkts)
3044 {
3045         volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
3046         struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
3047         const int N_PER_LOOP = 4;
3048         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
3049         int mainpart, leftover;
3050         int i, j;
3051
3052         /**
3053          * Process most of the packets in chunks of N pkts.  Any
3054          * leftover packets will get processed one at a time.
3055          */
3056         mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
3057         leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
3058         for (i = 0; i < mainpart; i += N_PER_LOOP) {
3059                 /* Copy N mbuf pointers to the S/W ring */
3060                 for (j = 0; j < N_PER_LOOP; ++j)
3061                         (txep + i + j)->mbuf = *(pkts + i + j);
3062                 tx4(txdp + i, pkts + i);
3063         }
3064
3065         if (unlikely(leftover > 0)) {
3066                 for (i = 0; i < leftover; ++i) {
3067                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
3068                         tx1(txdp + mainpart + i, pkts + mainpart + i);
3069                 }
3070         }
3071 }
3072
3073 static inline uint16_t
3074 tx_xmit_pkts(struct ice_tx_queue *txq,
3075              struct rte_mbuf **tx_pkts,
3076              uint16_t nb_pkts)
3077 {
3078         volatile struct ice_tx_desc *txr = txq->tx_ring;
3079         uint16_t n = 0;
3080
3081         /**
3082          * Begin scanning the H/W ring for done descriptors when the number
3083          * of available descriptors drops below tx_free_thresh. For each done
3084          * descriptor, free the associated buffer.
3085          */
3086         if (txq->nb_tx_free < txq->tx_free_thresh)
3087                 ice_tx_free_bufs(txq);
3088
3089         /* Use available descriptor only */
3090         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
3091         if (unlikely(!nb_pkts))
3092                 return 0;
3093
3094         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
3095         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
3096                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
3097                 ice_tx_fill_hw_ring(txq, tx_pkts, n);
3098                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3099                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3100                                          ICE_TXD_QW1_CMD_S);
3101                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3102                 txq->tx_tail = 0;
3103         }
3104
3105         /* Fill hardware descriptor ring with mbuf data */
3106         ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
3107         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
3108
3109         /* Determin if RS bit needs to be set */
3110         if (txq->tx_tail > txq->tx_next_rs) {
3111                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3112                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3113                                          ICE_TXD_QW1_CMD_S);
3114                 txq->tx_next_rs =
3115                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
3116                 if (txq->tx_next_rs >= txq->nb_tx_desc)
3117                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3118         }
3119
3120         if (txq->tx_tail >= txq->nb_tx_desc)
3121                 txq->tx_tail = 0;
3122
3123         /* Update the tx tail register */
3124         ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
3125
3126         return nb_pkts;
3127 }
3128
3129 static uint16_t
3130 ice_xmit_pkts_simple(void *tx_queue,
3131                      struct rte_mbuf **tx_pkts,
3132                      uint16_t nb_pkts)
3133 {
3134         uint16_t nb_tx = 0;
3135
3136         if (likely(nb_pkts <= ICE_TX_MAX_BURST))
3137                 return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3138                                     tx_pkts, nb_pkts);
3139
3140         while (nb_pkts) {
3141                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
3142                                                       ICE_TX_MAX_BURST);
3143
3144                 ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3145                                    &tx_pkts[nb_tx], num);
3146                 nb_tx = (uint16_t)(nb_tx + ret);
3147                 nb_pkts = (uint16_t)(nb_pkts - ret);
3148                 if (ret < num)
3149                         break;
3150         }
3151
3152         return nb_tx;
3153 }
3154
3155 void __rte_cold
3156 ice_set_rx_function(struct rte_eth_dev *dev)
3157 {
3158         PMD_INIT_FUNC_TRACE();
3159         struct ice_adapter *ad =
3160                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3161 #ifdef RTE_ARCH_X86
3162         struct ice_rx_queue *rxq;
3163         int i;
3164         int rx_check_ret = -1;
3165
3166         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3167                 ad->rx_use_avx512 = false;
3168                 ad->rx_use_avx2 = false;
3169                 rx_check_ret = ice_rx_vec_dev_check(dev);
3170                 if (ad->ptp_ena)
3171                         rx_check_ret = -1;
3172                 if (rx_check_ret >= 0 && ad->rx_bulk_alloc_allowed &&
3173                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3174                         ad->rx_vec_allowed = true;
3175                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3176                                 rxq = dev->data->rx_queues[i];
3177                                 if (rxq && ice_rxq_vec_setup(rxq)) {
3178                                         ad->rx_vec_allowed = false;
3179                                         break;
3180                                 }
3181                         }
3182
3183                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3184                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3185                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3186 #ifdef CC_AVX512_SUPPORT
3187                                 ad->rx_use_avx512 = true;
3188 #else
3189                         PMD_DRV_LOG(NOTICE,
3190                                 "AVX512 is not supported in build env");
3191 #endif
3192                         if (!ad->rx_use_avx512 &&
3193                         (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3194                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3195                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3196                                 ad->rx_use_avx2 = true;
3197
3198                 } else {
3199                         ad->rx_vec_allowed = false;
3200                 }
3201         }
3202
3203         if (ad->rx_vec_allowed) {
3204                 if (dev->data->scattered_rx) {
3205                         if (ad->rx_use_avx512) {
3206 #ifdef CC_AVX512_SUPPORT
3207                                 if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3208                                         PMD_DRV_LOG(NOTICE,
3209                                                 "Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
3210                                                 dev->data->port_id);
3211                                         dev->rx_pkt_burst =
3212                                                 ice_recv_scattered_pkts_vec_avx512_offload;
3213                                 } else {
3214                                         PMD_DRV_LOG(NOTICE,
3215                                                 "Using AVX512 Vector Scattered Rx (port %d).",
3216                                                 dev->data->port_id);
3217                                         dev->rx_pkt_burst =
3218                                                 ice_recv_scattered_pkts_vec_avx512;
3219                                 }
3220 #endif
3221                         } else if (ad->rx_use_avx2) {
3222                                 if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3223                                         PMD_DRV_LOG(NOTICE,
3224                                                     "Using AVX2 OFFLOAD Vector Scattered Rx (port %d).",
3225                                                     dev->data->port_id);
3226                                         dev->rx_pkt_burst =
3227                                                 ice_recv_scattered_pkts_vec_avx2_offload;
3228                                 } else {
3229                                         PMD_DRV_LOG(NOTICE,
3230                                                     "Using AVX2 Vector Scattered Rx (port %d).",
3231                                                     dev->data->port_id);
3232                                         dev->rx_pkt_burst =
3233                                                 ice_recv_scattered_pkts_vec_avx2;
3234                                 }
3235                         } else {
3236                                 PMD_DRV_LOG(DEBUG,
3237                                         "Using Vector Scattered Rx (port %d).",
3238                                         dev->data->port_id);
3239                                 dev->rx_pkt_burst = ice_recv_scattered_pkts_vec;
3240                         }
3241                 } else {
3242                         if (ad->rx_use_avx512) {
3243 #ifdef CC_AVX512_SUPPORT
3244                                 if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3245                                         PMD_DRV_LOG(NOTICE,
3246                                                 "Using AVX512 OFFLOAD Vector Rx (port %d).",
3247                                                 dev->data->port_id);
3248                                         dev->rx_pkt_burst =
3249                                                 ice_recv_pkts_vec_avx512_offload;
3250                                 } else {
3251                                         PMD_DRV_LOG(NOTICE,
3252                                                 "Using AVX512 Vector Rx (port %d).",
3253                                                 dev->data->port_id);
3254                                         dev->rx_pkt_burst =
3255                                                 ice_recv_pkts_vec_avx512;
3256                                 }
3257 #endif
3258                         } else if (ad->rx_use_avx2) {
3259                                 if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3260                                         PMD_DRV_LOG(NOTICE,
3261                                                     "Using AVX2 OFFLOAD Vector Rx (port %d).",
3262                                                     dev->data->port_id);
3263                                         dev->rx_pkt_burst =
3264                                                 ice_recv_pkts_vec_avx2_offload;
3265                                 } else {
3266                                         PMD_DRV_LOG(NOTICE,
3267                                                     "Using AVX2 Vector Rx (port %d).",
3268                                                     dev->data->port_id);
3269                                         dev->rx_pkt_burst =
3270                                                 ice_recv_pkts_vec_avx2;
3271                                 }
3272                         } else {
3273                                 PMD_DRV_LOG(DEBUG,
3274                                         "Using Vector Rx (port %d).",
3275                                         dev->data->port_id);
3276                                 dev->rx_pkt_burst = ice_recv_pkts_vec;
3277                         }
3278                 }
3279                 return;
3280         }
3281
3282 #endif
3283
3284         if (dev->data->scattered_rx) {
3285                 /* Set the non-LRO scattered function */
3286                 PMD_INIT_LOG(DEBUG,
3287                              "Using a Scattered function on port %d.",
3288                              dev->data->port_id);
3289                 dev->rx_pkt_burst = ice_recv_scattered_pkts;
3290         } else if (ad->rx_bulk_alloc_allowed) {
3291                 PMD_INIT_LOG(DEBUG,
3292                              "Rx Burst Bulk Alloc Preconditions are "
3293                              "satisfied. Rx Burst Bulk Alloc function "
3294                              "will be used on port %d.",
3295                              dev->data->port_id);
3296                 dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
3297         } else {
3298                 PMD_INIT_LOG(DEBUG,
3299                              "Rx Burst Bulk Alloc Preconditions are not "
3300                              "satisfied, Normal Rx will be used on port %d.",
3301                              dev->data->port_id);
3302                 dev->rx_pkt_burst = ice_recv_pkts;
3303         }
3304 }
3305
3306 static const struct {
3307         eth_rx_burst_t pkt_burst;
3308         const char *info;
3309 } ice_rx_burst_infos[] = {
3310         { ice_recv_scattered_pkts,          "Scalar Scattered" },
3311         { ice_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3312         { ice_recv_pkts,                    "Scalar" },
3313 #ifdef RTE_ARCH_X86
3314 #ifdef CC_AVX512_SUPPORT
3315         { ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
3316         { ice_recv_scattered_pkts_vec_avx512_offload, "Offload Vector AVX512 Scattered" },
3317         { ice_recv_pkts_vec_avx512,           "Vector AVX512" },
3318         { ice_recv_pkts_vec_avx512_offload,   "Offload Vector AVX512" },
3319 #endif
3320         { ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3321         { ice_recv_scattered_pkts_vec_avx2_offload, "Offload Vector AVX2 Scattered" },
3322         { ice_recv_pkts_vec_avx2,           "Vector AVX2" },
3323         { ice_recv_pkts_vec_avx2_offload,   "Offload Vector AVX2" },
3324         { ice_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3325         { ice_recv_pkts_vec,                "Vector SSE" },
3326 #endif
3327 };
3328
3329 int
3330 ice_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3331                       struct rte_eth_burst_mode *mode)
3332 {
3333         eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3334         int ret = -EINVAL;
3335         unsigned int i;
3336
3337         for (i = 0; i < RTE_DIM(ice_rx_burst_infos); ++i) {
3338                 if (pkt_burst == ice_rx_burst_infos[i].pkt_burst) {
3339                         snprintf(mode->info, sizeof(mode->info), "%s",
3340                                  ice_rx_burst_infos[i].info);
3341                         ret = 0;
3342                         break;
3343                 }
3344         }
3345
3346         return ret;
3347 }
3348
3349 void __rte_cold
3350 ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ice_tx_queue *txq)
3351 {
3352         struct ice_adapter *ad =
3353                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3354
3355         /* Use a simple Tx queue if possible (only fast free is allowed) */
3356         ad->tx_simple_allowed =
3357                 (txq->offloads ==
3358                 (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) &&
3359                 txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
3360
3361         if (ad->tx_simple_allowed)
3362                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3363                              txq->queue_id);
3364         else
3365                 PMD_INIT_LOG(DEBUG,
3366                              "Simple Tx can NOT be enabled on Tx queue %u.",
3367                              txq->queue_id);
3368 }
3369
3370 /*********************************************************************
3371  *
3372  *  TX prep functions
3373  *
3374  **********************************************************************/
3375 /* The default values of TSO MSS */
3376 #define ICE_MIN_TSO_MSS            64
3377 #define ICE_MAX_TSO_MSS            9728
3378 #define ICE_MAX_TSO_FRAME_SIZE     262144
3379 uint16_t
3380 ice_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
3381               uint16_t nb_pkts)
3382 {
3383         int i, ret;
3384         uint64_t ol_flags;
3385         struct rte_mbuf *m;
3386
3387         for (i = 0; i < nb_pkts; i++) {
3388                 m = tx_pkts[i];
3389                 ol_flags = m->ol_flags;
3390
3391                 if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
3392                     (m->tso_segsz < ICE_MIN_TSO_MSS ||
3393                      m->tso_segsz > ICE_MAX_TSO_MSS ||
3394                      m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
3395                         /**
3396                          * MSS outside the range are considered malicious
3397                          */
3398                         rte_errno = EINVAL;
3399                         return i;
3400                 }
3401
3402 #ifdef RTE_ETHDEV_DEBUG_TX
3403                 ret = rte_validate_tx_offload(m);
3404                 if (ret != 0) {
3405                         rte_errno = -ret;
3406                         return i;
3407                 }
3408 #endif
3409                 ret = rte_net_intel_cksum_prepare(m);
3410                 if (ret != 0) {
3411                         rte_errno = -ret;
3412                         return i;
3413                 }
3414         }
3415         return i;
3416 }
3417
3418 void __rte_cold
3419 ice_set_tx_function(struct rte_eth_dev *dev)
3420 {
3421         struct ice_adapter *ad =
3422                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3423 #ifdef RTE_ARCH_X86
3424         struct ice_tx_queue *txq;
3425         int i;
3426         int tx_check_ret = -1;
3427
3428         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3429                 ad->tx_use_avx2 = false;
3430                 ad->tx_use_avx512 = false;
3431                 tx_check_ret = ice_tx_vec_dev_check(dev);
3432                 if (tx_check_ret >= 0 &&
3433                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3434                         ad->tx_vec_allowed = true;
3435
3436                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3437                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3438                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3439 #ifdef CC_AVX512_SUPPORT
3440                                 ad->tx_use_avx512 = true;
3441 #else
3442                         PMD_DRV_LOG(NOTICE,
3443                                 "AVX512 is not supported in build env");
3444 #endif
3445                         if (!ad->tx_use_avx512 &&
3446                                 (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3447                                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3448                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3449                                 ad->tx_use_avx2 = true;
3450
3451                         if (!ad->tx_use_avx2 && !ad->tx_use_avx512 &&
3452                                 tx_check_ret == ICE_VECTOR_OFFLOAD_PATH)
3453                                 ad->tx_vec_allowed = false;
3454
3455                         if (ad->tx_vec_allowed) {
3456                                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
3457                                         txq = dev->data->tx_queues[i];
3458                                         if (txq && ice_txq_vec_setup(txq)) {
3459                                                 ad->tx_vec_allowed = false;
3460                                                 break;
3461                                         }
3462                                 }
3463                         }
3464                 } else {
3465                         ad->tx_vec_allowed = false;
3466                 }
3467         }
3468
3469         if (ad->tx_vec_allowed) {
3470                 dev->tx_pkt_prepare = NULL;
3471                 if (ad->tx_use_avx512) {
3472 #ifdef CC_AVX512_SUPPORT
3473                         if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3474                                 PMD_DRV_LOG(NOTICE,
3475                                             "Using AVX512 OFFLOAD Vector Tx (port %d).",
3476                                             dev->data->port_id);
3477                                 dev->tx_pkt_burst =
3478                                         ice_xmit_pkts_vec_avx512_offload;
3479                                 dev->tx_pkt_prepare = ice_prep_pkts;
3480                         } else {
3481                                 PMD_DRV_LOG(NOTICE,
3482                                             "Using AVX512 Vector Tx (port %d).",
3483                                             dev->data->port_id);
3484                                 dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
3485                         }
3486 #endif
3487                 } else {
3488                         if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3489                                 PMD_DRV_LOG(NOTICE,
3490                                             "Using AVX2 OFFLOAD Vector Tx (port %d).",
3491                                             dev->data->port_id);
3492                                 dev->tx_pkt_burst =
3493                                         ice_xmit_pkts_vec_avx2_offload;
3494                                 dev->tx_pkt_prepare = ice_prep_pkts;
3495                         } else {
3496                                 PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
3497                                             ad->tx_use_avx2 ? "avx2 " : "",
3498                                             dev->data->port_id);
3499                                 dev->tx_pkt_burst = ad->tx_use_avx2 ?
3500                                                     ice_xmit_pkts_vec_avx2 :
3501                                                     ice_xmit_pkts_vec;
3502                         }
3503                 }
3504
3505                 return;
3506         }
3507 #endif
3508
3509         if (ad->tx_simple_allowed) {
3510                 PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3511                 dev->tx_pkt_burst = ice_xmit_pkts_simple;
3512                 dev->tx_pkt_prepare = NULL;
3513         } else {
3514                 PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
3515                 dev->tx_pkt_burst = ice_xmit_pkts;
3516                 dev->tx_pkt_prepare = ice_prep_pkts;
3517         }
3518 }
3519
3520 static const struct {
3521         eth_tx_burst_t pkt_burst;
3522         const char *info;
3523 } ice_tx_burst_infos[] = {
3524         { ice_xmit_pkts_simple,   "Scalar Simple" },
3525         { ice_xmit_pkts,          "Scalar" },
3526 #ifdef RTE_ARCH_X86
3527 #ifdef CC_AVX512_SUPPORT
3528         { ice_xmit_pkts_vec_avx512, "Vector AVX512" },
3529         { ice_xmit_pkts_vec_avx512_offload, "Offload Vector AVX512" },
3530 #endif
3531         { ice_xmit_pkts_vec_avx2, "Vector AVX2" },
3532         { ice_xmit_pkts_vec,      "Vector SSE" },
3533 #endif
3534 };
3535
3536 int
3537 ice_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3538                       struct rte_eth_burst_mode *mode)
3539 {
3540         eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
3541         int ret = -EINVAL;
3542         unsigned int i;
3543
3544         for (i = 0; i < RTE_DIM(ice_tx_burst_infos); ++i) {
3545                 if (pkt_burst == ice_tx_burst_infos[i].pkt_burst) {
3546                         snprintf(mode->info, sizeof(mode->info), "%s",
3547                                  ice_tx_burst_infos[i].info);
3548                         ret = 0;
3549                         break;
3550                 }
3551         }
3552
3553         return ret;
3554 }
3555
3556 /* For each value it means, datasheet of hardware can tell more details
3557  *
3558  * @note: fix ice_dev_supported_ptypes_get() if any change here.
3559  */
3560 static inline uint32_t
3561 ice_get_default_pkt_type(uint16_t ptype)
3562 {
3563         static const uint32_t type_table[ICE_MAX_PKT_TYPE]
3564                 __rte_cache_aligned = {
3565                 /* L2 types */
3566                 /* [0] reserved */
3567                 [1] = RTE_PTYPE_L2_ETHER,
3568                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
3569                 /* [3] - [5] reserved */
3570                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
3571                 /* [7] - [10] reserved */
3572                 [11] = RTE_PTYPE_L2_ETHER_ARP,
3573                 /* [12] - [21] reserved */
3574
3575                 /* Non tunneled IPv4 */
3576                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3577                        RTE_PTYPE_L4_FRAG,
3578                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3579                        RTE_PTYPE_L4_NONFRAG,
3580                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3581                        RTE_PTYPE_L4_UDP,
3582                 /* [25] reserved */
3583                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3584                        RTE_PTYPE_L4_TCP,
3585                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3586                        RTE_PTYPE_L4_SCTP,
3587                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3588                        RTE_PTYPE_L4_ICMP,
3589
3590                 /* IPv4 --> IPv4 */
3591                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3592                        RTE_PTYPE_TUNNEL_IP |
3593                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3594                        RTE_PTYPE_INNER_L4_FRAG,
3595                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3596                        RTE_PTYPE_TUNNEL_IP |
3597                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3598                        RTE_PTYPE_INNER_L4_NONFRAG,
3599                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3600                        RTE_PTYPE_TUNNEL_IP |
3601                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3602                        RTE_PTYPE_INNER_L4_UDP,
3603                 /* [32] reserved */
3604                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3605                        RTE_PTYPE_TUNNEL_IP |
3606                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3607                        RTE_PTYPE_INNER_L4_TCP,
3608                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3609                        RTE_PTYPE_TUNNEL_IP |
3610                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3611                        RTE_PTYPE_INNER_L4_SCTP,
3612                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3613                        RTE_PTYPE_TUNNEL_IP |
3614                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3615                        RTE_PTYPE_INNER_L4_ICMP,
3616
3617                 /* IPv4 --> IPv6 */
3618                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3619                        RTE_PTYPE_TUNNEL_IP |
3620                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3621                        RTE_PTYPE_INNER_L4_FRAG,
3622                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3623                        RTE_PTYPE_TUNNEL_IP |
3624                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3625                        RTE_PTYPE_INNER_L4_NONFRAG,
3626                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3627                        RTE_PTYPE_TUNNEL_IP |
3628                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3629                        RTE_PTYPE_INNER_L4_UDP,
3630                 /* [39] reserved */
3631                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3632                        RTE_PTYPE_TUNNEL_IP |
3633                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3634                        RTE_PTYPE_INNER_L4_TCP,
3635                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3636                        RTE_PTYPE_TUNNEL_IP |
3637                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3638                        RTE_PTYPE_INNER_L4_SCTP,
3639                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3640                        RTE_PTYPE_TUNNEL_IP |
3641                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3642                        RTE_PTYPE_INNER_L4_ICMP,
3643
3644                 /* IPv4 --> GRE/Teredo/VXLAN */
3645                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3646                        RTE_PTYPE_TUNNEL_GRENAT,
3647
3648                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
3649                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3650                        RTE_PTYPE_TUNNEL_GRENAT |
3651                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3652                        RTE_PTYPE_INNER_L4_FRAG,
3653                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3654                        RTE_PTYPE_TUNNEL_GRENAT |
3655                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3656                        RTE_PTYPE_INNER_L4_NONFRAG,
3657                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3658                        RTE_PTYPE_TUNNEL_GRENAT |
3659                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3660                        RTE_PTYPE_INNER_L4_UDP,
3661                 /* [47] reserved */
3662                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3663                        RTE_PTYPE_TUNNEL_GRENAT |
3664                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3665                        RTE_PTYPE_INNER_L4_TCP,
3666                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3667                        RTE_PTYPE_TUNNEL_GRENAT |
3668                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3669                        RTE_PTYPE_INNER_L4_SCTP,
3670                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3671                        RTE_PTYPE_TUNNEL_GRENAT |
3672                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3673                        RTE_PTYPE_INNER_L4_ICMP,
3674
3675                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
3676                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3677                        RTE_PTYPE_TUNNEL_GRENAT |
3678                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3679                        RTE_PTYPE_INNER_L4_FRAG,
3680                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3681                        RTE_PTYPE_TUNNEL_GRENAT |
3682                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3683                        RTE_PTYPE_INNER_L4_NONFRAG,
3684                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3685                        RTE_PTYPE_TUNNEL_GRENAT |
3686                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3687                        RTE_PTYPE_INNER_L4_UDP,
3688                 /* [54] reserved */
3689                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3690                        RTE_PTYPE_TUNNEL_GRENAT |
3691                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3692                        RTE_PTYPE_INNER_L4_TCP,
3693                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3694                        RTE_PTYPE_TUNNEL_GRENAT |
3695                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3696                        RTE_PTYPE_INNER_L4_SCTP,
3697                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3698                        RTE_PTYPE_TUNNEL_GRENAT |
3699                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3700                        RTE_PTYPE_INNER_L4_ICMP,
3701
3702                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
3703                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3704                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3705
3706                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3707                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3708                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3709                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3710                        RTE_PTYPE_INNER_L4_FRAG,
3711                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3712                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3713                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3714                        RTE_PTYPE_INNER_L4_NONFRAG,
3715                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3716                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3717                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3718                        RTE_PTYPE_INNER_L4_UDP,
3719                 /* [62] reserved */
3720                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3721                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3722                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3723                        RTE_PTYPE_INNER_L4_TCP,
3724                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3725                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3726                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3727                        RTE_PTYPE_INNER_L4_SCTP,
3728                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3729                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3730                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3731                        RTE_PTYPE_INNER_L4_ICMP,
3732
3733                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3734                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3735                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3736                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3737                        RTE_PTYPE_INNER_L4_FRAG,
3738                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3739                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3740                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3741                        RTE_PTYPE_INNER_L4_NONFRAG,
3742                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3743                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3744                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3745                        RTE_PTYPE_INNER_L4_UDP,
3746                 /* [69] reserved */
3747                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3748                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3749                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3750                        RTE_PTYPE_INNER_L4_TCP,
3751                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3752                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3753                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3754                        RTE_PTYPE_INNER_L4_SCTP,
3755                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3756                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3757                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3758                        RTE_PTYPE_INNER_L4_ICMP,
3759                 /* [73] - [87] reserved */
3760
3761                 /* Non tunneled IPv6 */
3762                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3763                        RTE_PTYPE_L4_FRAG,
3764                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3765                        RTE_PTYPE_L4_NONFRAG,
3766                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3767                        RTE_PTYPE_L4_UDP,
3768                 /* [91] reserved */
3769                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3770                        RTE_PTYPE_L4_TCP,
3771                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3772                        RTE_PTYPE_L4_SCTP,
3773                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3774                        RTE_PTYPE_L4_ICMP,
3775
3776                 /* IPv6 --> IPv4 */
3777                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3778                        RTE_PTYPE_TUNNEL_IP |
3779                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3780                        RTE_PTYPE_INNER_L4_FRAG,
3781                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3782                        RTE_PTYPE_TUNNEL_IP |
3783                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3784                        RTE_PTYPE_INNER_L4_NONFRAG,
3785                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3786                        RTE_PTYPE_TUNNEL_IP |
3787                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3788                        RTE_PTYPE_INNER_L4_UDP,
3789                 /* [98] reserved */
3790                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3791                        RTE_PTYPE_TUNNEL_IP |
3792                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3793                        RTE_PTYPE_INNER_L4_TCP,
3794                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3795                         RTE_PTYPE_TUNNEL_IP |
3796                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3797                         RTE_PTYPE_INNER_L4_SCTP,
3798                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3799                         RTE_PTYPE_TUNNEL_IP |
3800                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3801                         RTE_PTYPE_INNER_L4_ICMP,
3802
3803                 /* IPv6 --> IPv6 */
3804                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3805                         RTE_PTYPE_TUNNEL_IP |
3806                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3807                         RTE_PTYPE_INNER_L4_FRAG,
3808                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3809                         RTE_PTYPE_TUNNEL_IP |
3810                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3811                         RTE_PTYPE_INNER_L4_NONFRAG,
3812                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3813                         RTE_PTYPE_TUNNEL_IP |
3814                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3815                         RTE_PTYPE_INNER_L4_UDP,
3816                 /* [105] reserved */
3817                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3818                         RTE_PTYPE_TUNNEL_IP |
3819                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3820                         RTE_PTYPE_INNER_L4_TCP,
3821                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3822                         RTE_PTYPE_TUNNEL_IP |
3823                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3824                         RTE_PTYPE_INNER_L4_SCTP,
3825                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3826                         RTE_PTYPE_TUNNEL_IP |
3827                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3828                         RTE_PTYPE_INNER_L4_ICMP,
3829
3830                 /* IPv6 --> GRE/Teredo/VXLAN */
3831                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3832                         RTE_PTYPE_TUNNEL_GRENAT,
3833
3834                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3835                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3836                         RTE_PTYPE_TUNNEL_GRENAT |
3837                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3838                         RTE_PTYPE_INNER_L4_FRAG,
3839                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3840                         RTE_PTYPE_TUNNEL_GRENAT |
3841                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3842                         RTE_PTYPE_INNER_L4_NONFRAG,
3843                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3844                         RTE_PTYPE_TUNNEL_GRENAT |
3845                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3846                         RTE_PTYPE_INNER_L4_UDP,
3847                 /* [113] reserved */
3848                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3849                         RTE_PTYPE_TUNNEL_GRENAT |
3850                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3851                         RTE_PTYPE_INNER_L4_TCP,
3852                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3853                         RTE_PTYPE_TUNNEL_GRENAT |
3854                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3855                         RTE_PTYPE_INNER_L4_SCTP,
3856                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3857                         RTE_PTYPE_TUNNEL_GRENAT |
3858                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3859                         RTE_PTYPE_INNER_L4_ICMP,
3860
3861                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3862                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3863                         RTE_PTYPE_TUNNEL_GRENAT |
3864                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3865                         RTE_PTYPE_INNER_L4_FRAG,
3866                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3867                         RTE_PTYPE_TUNNEL_GRENAT |
3868                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3869                         RTE_PTYPE_INNER_L4_NONFRAG,
3870                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3871                         RTE_PTYPE_TUNNEL_GRENAT |
3872                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3873                         RTE_PTYPE_INNER_L4_UDP,
3874                 /* [120] reserved */
3875                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3876                         RTE_PTYPE_TUNNEL_GRENAT |
3877                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3878                         RTE_PTYPE_INNER_L4_TCP,
3879                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3880                         RTE_PTYPE_TUNNEL_GRENAT |
3881                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3882                         RTE_PTYPE_INNER_L4_SCTP,
3883                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3884                         RTE_PTYPE_TUNNEL_GRENAT |
3885                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3886                         RTE_PTYPE_INNER_L4_ICMP,
3887
3888                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3889                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3890                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3891
3892                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3893                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3894                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3895                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3896                         RTE_PTYPE_INNER_L4_FRAG,
3897                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3898                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3899                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3900                         RTE_PTYPE_INNER_L4_NONFRAG,
3901                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3902                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3903                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3904                         RTE_PTYPE_INNER_L4_UDP,
3905                 /* [128] reserved */
3906                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3907                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3908                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3909                         RTE_PTYPE_INNER_L4_TCP,
3910                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3911                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3912                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3913                         RTE_PTYPE_INNER_L4_SCTP,
3914                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3915                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3916                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3917                         RTE_PTYPE_INNER_L4_ICMP,
3918
3919                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3920                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3921                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3922                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3923                         RTE_PTYPE_INNER_L4_FRAG,
3924                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3925                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3926                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3927                         RTE_PTYPE_INNER_L4_NONFRAG,
3928                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3929                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3930                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3931                         RTE_PTYPE_INNER_L4_UDP,
3932                 /* [135] reserved */
3933                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3934                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3935                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3936                         RTE_PTYPE_INNER_L4_TCP,
3937                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3938                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3939                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3940                         RTE_PTYPE_INNER_L4_SCTP,
3941                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3942                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3943                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3944                         RTE_PTYPE_INNER_L4_ICMP,
3945                 /* [139] - [299] reserved */
3946
3947                 /* PPPoE */
3948                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3949                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3950
3951                 /* PPPoE --> IPv4 */
3952                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3953                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3954                         RTE_PTYPE_L4_FRAG,
3955                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3956                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3957                         RTE_PTYPE_L4_NONFRAG,
3958                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
3959                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3960                         RTE_PTYPE_L4_UDP,
3961                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
3962                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3963                         RTE_PTYPE_L4_TCP,
3964                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
3965                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3966                         RTE_PTYPE_L4_SCTP,
3967                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
3968                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3969                         RTE_PTYPE_L4_ICMP,
3970
3971                 /* PPPoE --> IPv6 */
3972                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
3973                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3974                         RTE_PTYPE_L4_FRAG,
3975                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
3976                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3977                         RTE_PTYPE_L4_NONFRAG,
3978                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
3979                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3980                         RTE_PTYPE_L4_UDP,
3981                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
3982                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3983                         RTE_PTYPE_L4_TCP,
3984                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
3985                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3986                         RTE_PTYPE_L4_SCTP,
3987                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
3988                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3989                         RTE_PTYPE_L4_ICMP,
3990                 /* [314] - [324] reserved */
3991
3992                 /* IPv4/IPv6 --> GTPC/GTPU */
3993                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3994                         RTE_PTYPE_TUNNEL_GTPC,
3995                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3996                         RTE_PTYPE_TUNNEL_GTPC,
3997                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3998                         RTE_PTYPE_TUNNEL_GTPC,
3999                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4000                         RTE_PTYPE_TUNNEL_GTPC,
4001                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4002                         RTE_PTYPE_TUNNEL_GTPU,
4003                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4004                         RTE_PTYPE_TUNNEL_GTPU,
4005
4006                 /* IPv4 --> GTPU --> IPv4 */
4007                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4008                         RTE_PTYPE_TUNNEL_GTPU |
4009                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4010                         RTE_PTYPE_INNER_L4_FRAG,
4011                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4012                         RTE_PTYPE_TUNNEL_GTPU |
4013                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4014                         RTE_PTYPE_INNER_L4_NONFRAG,
4015                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4016                         RTE_PTYPE_TUNNEL_GTPU |
4017                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4018                         RTE_PTYPE_INNER_L4_UDP,
4019                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4020                         RTE_PTYPE_TUNNEL_GTPU |
4021                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4022                         RTE_PTYPE_INNER_L4_TCP,
4023                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4024                         RTE_PTYPE_TUNNEL_GTPU |
4025                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4026                         RTE_PTYPE_INNER_L4_ICMP,
4027
4028                 /* IPv6 --> GTPU --> IPv4 */
4029                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4030                         RTE_PTYPE_TUNNEL_GTPU |
4031                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4032                         RTE_PTYPE_INNER_L4_FRAG,
4033                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4034                         RTE_PTYPE_TUNNEL_GTPU |
4035                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4036                         RTE_PTYPE_INNER_L4_NONFRAG,
4037                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4038                         RTE_PTYPE_TUNNEL_GTPU |
4039                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4040                         RTE_PTYPE_INNER_L4_UDP,
4041                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4042                         RTE_PTYPE_TUNNEL_GTPU |
4043                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4044                         RTE_PTYPE_INNER_L4_TCP,
4045                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4046                         RTE_PTYPE_TUNNEL_GTPU |
4047                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4048                         RTE_PTYPE_INNER_L4_ICMP,
4049
4050                 /* IPv4 --> GTPU --> IPv6 */
4051                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4052                         RTE_PTYPE_TUNNEL_GTPU |
4053                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4054                         RTE_PTYPE_INNER_L4_FRAG,
4055                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4056                         RTE_PTYPE_TUNNEL_GTPU |
4057                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4058                         RTE_PTYPE_INNER_L4_NONFRAG,
4059                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4060                         RTE_PTYPE_TUNNEL_GTPU |
4061                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4062                         RTE_PTYPE_INNER_L4_UDP,
4063                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4064                         RTE_PTYPE_TUNNEL_GTPU |
4065                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4066                         RTE_PTYPE_INNER_L4_TCP,
4067                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4068                         RTE_PTYPE_TUNNEL_GTPU |
4069                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4070                         RTE_PTYPE_INNER_L4_ICMP,
4071
4072                 /* IPv6 --> GTPU --> IPv6 */
4073                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4074                         RTE_PTYPE_TUNNEL_GTPU |
4075                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4076                         RTE_PTYPE_INNER_L4_FRAG,
4077                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4078                         RTE_PTYPE_TUNNEL_GTPU |
4079                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4080                         RTE_PTYPE_INNER_L4_NONFRAG,
4081                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4082                         RTE_PTYPE_TUNNEL_GTPU |
4083                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4084                         RTE_PTYPE_INNER_L4_UDP,
4085                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4086                         RTE_PTYPE_TUNNEL_GTPU |
4087                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4088                         RTE_PTYPE_INNER_L4_TCP,
4089                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4090                         RTE_PTYPE_TUNNEL_GTPU |
4091                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4092                         RTE_PTYPE_INNER_L4_ICMP,
4093
4094                 /* IPv4 --> UDP ECPRI */
4095                 [372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4096                         RTE_PTYPE_L4_UDP,
4097                 [373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4098                         RTE_PTYPE_L4_UDP,
4099                 [374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4100                         RTE_PTYPE_L4_UDP,
4101                 [375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4102                         RTE_PTYPE_L4_UDP,
4103                 [376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4104                         RTE_PTYPE_L4_UDP,
4105                 [377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4106                         RTE_PTYPE_L4_UDP,
4107                 [378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4108                         RTE_PTYPE_L4_UDP,
4109                 [379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4110                         RTE_PTYPE_L4_UDP,
4111                 [380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4112                         RTE_PTYPE_L4_UDP,
4113                 [381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4114                         RTE_PTYPE_L4_UDP,
4115
4116                 /* IPV6 --> UDP ECPRI */
4117                 [382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4118                         RTE_PTYPE_L4_UDP,
4119                 [383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4120                         RTE_PTYPE_L4_UDP,
4121                 [384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4122                         RTE_PTYPE_L4_UDP,
4123                 [385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4124                         RTE_PTYPE_L4_UDP,
4125                 [386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4126                         RTE_PTYPE_L4_UDP,
4127                 [387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4128                         RTE_PTYPE_L4_UDP,
4129                 [388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4130                         RTE_PTYPE_L4_UDP,
4131                 [389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4132                         RTE_PTYPE_L4_UDP,
4133                 [390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4134                         RTE_PTYPE_L4_UDP,
4135                 [391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4136                         RTE_PTYPE_L4_UDP,
4137                 /* All others reserved */
4138         };
4139
4140         return type_table[ptype];
4141 }
4142
4143 void __rte_cold
4144 ice_set_default_ptype_table(struct rte_eth_dev *dev)
4145 {
4146         struct ice_adapter *ad =
4147                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
4148         int i;
4149
4150         for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
4151                 ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
4152 }
4153
4154 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S 1
4155 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M \
4156                         (0x3UL << ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S)
4157 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD 0
4158 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL 0x1
4159
4160 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S   4
4161 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M   \
4162         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S)
4163 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S      5
4164 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M      \
4165         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S)
4166
4167 /*
4168  * check the programming status descriptor in rx queue.
4169  * done after Programming Flow Director is programmed on
4170  * tx queue
4171  */
4172 static inline int
4173 ice_check_fdir_programming_status(struct ice_rx_queue *rxq)
4174 {
4175         volatile union ice_32byte_rx_desc *rxdp;
4176         uint64_t qword1;
4177         uint32_t rx_status;
4178         uint32_t error;
4179         uint32_t id;
4180         int ret = -EAGAIN;
4181
4182         rxdp = (volatile union ice_32byte_rx_desc *)
4183                 (&rxq->rx_ring[rxq->rx_tail]);
4184         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
4185         rx_status = (qword1 & ICE_RXD_QW1_STATUS_M)
4186                         >> ICE_RXD_QW1_STATUS_S;
4187
4188         if (rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)) {
4189                 ret = 0;
4190                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M) >>
4191                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S;
4192                 id = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M) >>
4193                         ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S;
4194                 if (error) {
4195                         if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD)
4196                                 PMD_DRV_LOG(ERR, "Failed to add FDIR rule.");
4197                         else if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL)
4198                                 PMD_DRV_LOG(ERR, "Failed to remove FDIR rule.");
4199                         ret = -EINVAL;
4200                         goto err;
4201                 }
4202                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M) >>
4203                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S;
4204                 if (error) {
4205                         PMD_DRV_LOG(ERR, "Failed to create FDIR profile.");
4206                         ret = -EINVAL;
4207                 }
4208 err:
4209                 rxdp->wb.qword1.status_error_len = 0;
4210                 rxq->rx_tail++;
4211                 if (unlikely(rxq->rx_tail == rxq->nb_rx_desc))
4212                         rxq->rx_tail = 0;
4213                 if (rxq->rx_tail == 0)
4214                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
4215                 else
4216                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_tail - 1);
4217         }
4218
4219         return ret;
4220 }
4221
4222 #define ICE_FDIR_MAX_WAIT_US 10000
4223
4224 int
4225 ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc)
4226 {
4227         struct ice_tx_queue *txq = pf->fdir.txq;
4228         struct ice_rx_queue *rxq = pf->fdir.rxq;
4229         volatile struct ice_fltr_desc *fdirdp;
4230         volatile struct ice_tx_desc *txdp;
4231         uint32_t td_cmd;
4232         uint16_t i;
4233
4234         fdirdp = (volatile struct ice_fltr_desc *)
4235                 (&txq->tx_ring[txq->tx_tail]);
4236         fdirdp->qidx_compq_space_stat = fdir_desc->qidx_compq_space_stat;
4237         fdirdp->dtype_cmd_vsi_fdid = fdir_desc->dtype_cmd_vsi_fdid;
4238
4239         txdp = &txq->tx_ring[txq->tx_tail + 1];
4240         txdp->buf_addr = rte_cpu_to_le_64(pf->fdir.dma_addr);
4241         td_cmd = ICE_TX_DESC_CMD_EOP |
4242                 ICE_TX_DESC_CMD_RS  |
4243                 ICE_TX_DESC_CMD_DUMMY;
4244
4245         txdp->cmd_type_offset_bsz =
4246                 ice_build_ctob(td_cmd, 0, ICE_FDIR_PKT_LEN, 0);
4247
4248         txq->tx_tail += 2;
4249         if (txq->tx_tail >= txq->nb_tx_desc)
4250                 txq->tx_tail = 0;
4251         /* Update the tx tail register */
4252         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
4253         for (i = 0; i < ICE_FDIR_MAX_WAIT_US; i++) {
4254                 if ((txdp->cmd_type_offset_bsz &
4255                      rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) ==
4256                     rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
4257                         break;
4258                 rte_delay_us(1);
4259         }
4260         if (i >= ICE_FDIR_MAX_WAIT_US) {
4261                 PMD_DRV_LOG(ERR,
4262                             "Failed to program FDIR filter: time out to get DD on tx queue.");
4263                 return -ETIMEDOUT;
4264         }
4265
4266         for (; i < ICE_FDIR_MAX_WAIT_US; i++) {
4267                 int ret;
4268
4269                 ret = ice_check_fdir_programming_status(rxq);
4270                 if (ret == -EAGAIN)
4271                         rte_delay_us(1);
4272                 else
4273                         return ret;
4274         }
4275
4276         PMD_DRV_LOG(ERR,
4277                     "Failed to program FDIR filter: programming status reported.");
4278         return -ETIMEDOUT;
4279
4280
4281 }