net/ice: fix build with 16-byte Rx descriptor
[dpdk.git] / drivers / net / ice / ice_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Intel Corporation
3  */
4
5 #include <ethdev_driver.h>
6 #include <rte_net.h>
7 #include <rte_vect.h>
8
9 #include "rte_pmd_ice.h"
10 #include "ice_rxtx.h"
11 #include "ice_rxtx_vec_common.h"
12
13 #define ICE_TX_CKSUM_OFFLOAD_MASK (RTE_MBUF_F_TX_IP_CKSUM |              \
14                 RTE_MBUF_F_TX_L4_MASK |          \
15                 RTE_MBUF_F_TX_TCP_SEG |          \
16                 RTE_MBUF_F_TX_OUTER_IP_CKSUM)
17
18 /* Offset of mbuf dynamic field for protocol extraction data */
19 int rte_net_ice_dynfield_proto_xtr_metadata_offs = -1;
20
21 /* Mask of mbuf dynamic flags for protocol extraction type */
22 uint64_t rte_net_ice_dynflag_proto_xtr_vlan_mask;
23 uint64_t rte_net_ice_dynflag_proto_xtr_ipv4_mask;
24 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_mask;
25 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
26 uint64_t rte_net_ice_dynflag_proto_xtr_tcp_mask;
27 uint64_t rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
28
29 static int
30 ice_monitor_callback(const uint64_t value,
31                 const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
32 {
33         const uint64_t m = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
34         /*
35          * we expect the DD bit to be set to 1 if this descriptor was already
36          * written to.
37          */
38         return (value & m) == m ? -1 : 0;
39 }
40
41 int
42 ice_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
43 {
44         volatile union ice_rx_flex_desc *rxdp;
45         struct ice_rx_queue *rxq = rx_queue;
46         uint16_t desc;
47
48         desc = rxq->rx_tail;
49         rxdp = &rxq->rx_ring[desc];
50         /* watch for changes in status bit */
51         pmc->addr = &rxdp->wb.status_error0;
52
53         /* comparison callback */
54         pmc->fn = ice_monitor_callback;
55
56         /* register is 16-bit */
57         pmc->size = sizeof(uint16_t);
58
59         return 0;
60 }
61
62
63 static inline uint8_t
64 ice_proto_xtr_type_to_rxdid(uint8_t xtr_type)
65 {
66         static uint8_t rxdid_map[] = {
67                 [PROTO_XTR_NONE]      = ICE_RXDID_COMMS_OVS,
68                 [PROTO_XTR_VLAN]      = ICE_RXDID_COMMS_AUX_VLAN,
69                 [PROTO_XTR_IPV4]      = ICE_RXDID_COMMS_AUX_IPV4,
70                 [PROTO_XTR_IPV6]      = ICE_RXDID_COMMS_AUX_IPV6,
71                 [PROTO_XTR_IPV6_FLOW] = ICE_RXDID_COMMS_AUX_IPV6_FLOW,
72                 [PROTO_XTR_TCP]       = ICE_RXDID_COMMS_AUX_TCP,
73                 [PROTO_XTR_IP_OFFSET] = ICE_RXDID_COMMS_AUX_IP_OFFSET,
74         };
75
76         return xtr_type < RTE_DIM(rxdid_map) ?
77                                 rxdid_map[xtr_type] : ICE_RXDID_COMMS_OVS;
78 }
79
80 static inline void
81 ice_rxd_to_pkt_fields_by_comms_generic(__rte_unused struct ice_rx_queue *rxq,
82                                        struct rte_mbuf *mb,
83                                        volatile union ice_rx_flex_desc *rxdp)
84 {
85         volatile struct ice_32b_rx_flex_desc_comms *desc =
86                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
87         uint16_t stat_err = rte_le_to_cpu_16(desc->status_error0);
88
89         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
90                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
91                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
92         }
93
94 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
95         if (desc->flow_id != 0xFFFFFFFF) {
96                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
97                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
98         }
99 #endif
100 }
101
102 static inline void
103 ice_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct ice_rx_queue *rxq,
104                                    struct rte_mbuf *mb,
105                                    volatile union ice_rx_flex_desc *rxdp)
106 {
107         volatile struct ice_32b_rx_flex_desc_comms_ovs *desc =
108                         (volatile struct ice_32b_rx_flex_desc_comms_ovs *)rxdp;
109 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
110         uint16_t stat_err;
111 #endif
112
113         if (desc->flow_id != 0xFFFFFFFF) {
114                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
115                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
116         }
117
118 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
119         stat_err = rte_le_to_cpu_16(desc->status_error0);
120         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
121                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
122                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
123         }
124 #endif
125 }
126
127 static inline void
128 ice_rxd_to_pkt_fields_by_comms_aux_v1(struct ice_rx_queue *rxq,
129                                       struct rte_mbuf *mb,
130                                       volatile union ice_rx_flex_desc *rxdp)
131 {
132         volatile struct ice_32b_rx_flex_desc_comms *desc =
133                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
134         uint16_t stat_err;
135
136         stat_err = rte_le_to_cpu_16(desc->status_error0);
137         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
138                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
139                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
140         }
141
142 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
143         if (desc->flow_id != 0xFFFFFFFF) {
144                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
145                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
146         }
147
148         if (rxq->xtr_ol_flag) {
149                 uint32_t metadata = 0;
150
151                 stat_err = rte_le_to_cpu_16(desc->status_error1);
152
153                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
154                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
155
156                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
157                         metadata |=
158                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
159
160                 if (metadata) {
161                         mb->ol_flags |= rxq->xtr_ol_flag;
162
163                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
164                 }
165         }
166 #else
167         RTE_SET_USED(rxq);
168 #endif
169 }
170
171 static inline void
172 ice_rxd_to_pkt_fields_by_comms_aux_v2(struct ice_rx_queue *rxq,
173                                       struct rte_mbuf *mb,
174                                       volatile union ice_rx_flex_desc *rxdp)
175 {
176         volatile struct ice_32b_rx_flex_desc_comms *desc =
177                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
178         uint16_t stat_err;
179
180         stat_err = rte_le_to_cpu_16(desc->status_error0);
181         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
182                 mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
183                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
184         }
185
186 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
187         if (desc->flow_id != 0xFFFFFFFF) {
188                 mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
189                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
190         }
191
192         if (rxq->xtr_ol_flag) {
193                 uint32_t metadata = 0;
194
195                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
196                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
197                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
198                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
199
200                 if (metadata) {
201                         mb->ol_flags |= rxq->xtr_ol_flag;
202
203                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
204                 }
205         }
206 #else
207         RTE_SET_USED(rxq);
208 #endif
209 }
210
211 static const ice_rxd_to_pkt_fields_t rxd_to_pkt_fields_ops[] = {
212         [ICE_RXDID_COMMS_AUX_VLAN] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
213         [ICE_RXDID_COMMS_AUX_IPV4] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
214         [ICE_RXDID_COMMS_AUX_IPV6] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
215         [ICE_RXDID_COMMS_AUX_IPV6_FLOW] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
216         [ICE_RXDID_COMMS_AUX_TCP] = ice_rxd_to_pkt_fields_by_comms_aux_v1,
217         [ICE_RXDID_COMMS_AUX_IP_OFFSET] = ice_rxd_to_pkt_fields_by_comms_aux_v2,
218         [ICE_RXDID_COMMS_GENERIC] = ice_rxd_to_pkt_fields_by_comms_generic,
219         [ICE_RXDID_COMMS_OVS] = ice_rxd_to_pkt_fields_by_comms_ovs,
220 };
221
222 void
223 ice_select_rxd_to_pkt_fields_handler(struct ice_rx_queue *rxq, uint32_t rxdid)
224 {
225         rxq->rxdid = rxdid;
226
227         switch (rxdid) {
228         case ICE_RXDID_COMMS_AUX_VLAN:
229                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_vlan_mask;
230                 break;
231
232         case ICE_RXDID_COMMS_AUX_IPV4:
233                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv4_mask;
234                 break;
235
236         case ICE_RXDID_COMMS_AUX_IPV6:
237                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_mask;
238                 break;
239
240         case ICE_RXDID_COMMS_AUX_IPV6_FLOW:
241                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
242                 break;
243
244         case ICE_RXDID_COMMS_AUX_TCP:
245                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_tcp_mask;
246                 break;
247
248         case ICE_RXDID_COMMS_AUX_IP_OFFSET:
249                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
250                 break;
251
252         case ICE_RXDID_COMMS_GENERIC:
253                 /* fallthrough */
254         case ICE_RXDID_COMMS_OVS:
255                 break;
256
257         default:
258                 /* update this according to the RXDID for PROTO_XTR_NONE */
259                 rxq->rxdid = ICE_RXDID_COMMS_OVS;
260                 break;
261         }
262
263         if (!rte_net_ice_dynf_proto_xtr_metadata_avail())
264                 rxq->xtr_ol_flag = 0;
265 }
266
267 static enum ice_status
268 ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
269 {
270         struct ice_vsi *vsi = rxq->vsi;
271         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
272         struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
273         struct rte_eth_dev_data *dev_data = rxq->vsi->adapter->pf.dev_data;
274         struct ice_rlan_ctx rx_ctx;
275         enum ice_status err;
276         uint16_t buf_size;
277         uint32_t rxdid = ICE_RXDID_COMMS_OVS;
278         uint32_t regval;
279         struct ice_adapter *ad = rxq->vsi->adapter;
280         uint32_t frame_size = dev_data->mtu + ICE_ETH_OVERHEAD;
281
282         /* Set buffer size as the head split is disabled. */
283         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
284                               RTE_PKTMBUF_HEADROOM);
285         rxq->rx_hdr_len = 0;
286         rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
287         rxq->max_pkt_len =
288                 RTE_MIN((uint32_t)ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len,
289                         frame_size);
290
291         if (rxq->max_pkt_len <= RTE_ETHER_MIN_LEN ||
292             rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
293                 PMD_DRV_LOG(ERR, "maximum packet length must "
294                             "be larger than %u and smaller than %u",
295                             (uint32_t)RTE_ETHER_MIN_LEN,
296                             (uint32_t)ICE_FRAME_SIZE_MAX);
297                 return -EINVAL;
298         }
299
300         if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
301                 /* Register mbuf field and flag for Rx timestamp */
302                 err = rte_mbuf_dyn_rx_timestamp_register(
303                                 &ice_timestamp_dynfield_offset,
304                                 &ice_timestamp_dynflag);
305                 if (err) {
306                         PMD_DRV_LOG(ERR,
307                                 "Cannot register mbuf field/flag for timestamp");
308                         return -EINVAL;
309                 }
310         }
311
312         memset(&rx_ctx, 0, sizeof(rx_ctx));
313
314         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
315         rx_ctx.qlen = rxq->nb_rx_desc;
316         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
317         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
318         rx_ctx.dtype = 0; /* No Header Split mode */
319 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
320         rx_ctx.dsize = 1; /* 32B descriptors */
321 #endif
322         rx_ctx.rxmax = rxq->max_pkt_len;
323         /* TPH: Transaction Layer Packet (TLP) processing hints */
324         rx_ctx.tphrdesc_ena = 1;
325         rx_ctx.tphwdesc_ena = 1;
326         rx_ctx.tphdata_ena = 1;
327         rx_ctx.tphhead_ena = 1;
328         /* Low Receive Queue Threshold defined in 64 descriptors units.
329          * When the number of free descriptors goes below the lrxqthresh,
330          * an immediate interrupt is triggered.
331          */
332         rx_ctx.lrxqthresh = 2;
333         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
334         rx_ctx.l2tsel = 1;
335         rx_ctx.showiv = 0;
336         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
337
338         rxdid = ice_proto_xtr_type_to_rxdid(rxq->proto_xtr);
339
340         PMD_DRV_LOG(DEBUG, "Port (%u) - Rx queue (%u) is set with RXDID : %u",
341                     rxq->port_id, rxq->queue_id, rxdid);
342
343         if (!(pf->supported_rxdid & BIT(rxdid))) {
344                 PMD_DRV_LOG(ERR, "currently package doesn't support RXDID (%u)",
345                             rxdid);
346                 return -EINVAL;
347         }
348
349         ice_select_rxd_to_pkt_fields_handler(rxq, rxdid);
350
351         /* Enable Flexible Descriptors in the queue context which
352          * allows this driver to select a specific receive descriptor format
353          */
354         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
355                 QRXFLXP_CNTXT_RXDID_IDX_M;
356
357         /* increasing context priority to pick up profile ID;
358          * default is 0x01; setting to 0x03 to ensure profile
359          * is programming if prev context is of same priority
360          */
361         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
362                 QRXFLXP_CNTXT_RXDID_PRIO_M;
363
364         if (ad->ptp_ena || rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
365                 regval |= QRXFLXP_CNTXT_TS_M;
366
367         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
368
369         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
370         if (err) {
371                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
372                             rxq->queue_id);
373                 return -EINVAL;
374         }
375         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
376         if (err) {
377                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
378                             rxq->queue_id);
379                 return -EINVAL;
380         }
381
382         /* Check if scattered RX needs to be used. */
383         if (frame_size > buf_size)
384                 dev_data->scattered_rx = 1;
385
386         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
387
388         /* Init the Rx tail register*/
389         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
390
391         return 0;
392 }
393
394 /* Allocate mbufs for all descriptors in rx queue */
395 static int
396 ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
397 {
398         struct ice_rx_entry *rxe = rxq->sw_ring;
399         uint64_t dma_addr;
400         uint16_t i;
401
402         for (i = 0; i < rxq->nb_rx_desc; i++) {
403                 volatile union ice_rx_flex_desc *rxd;
404                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
405
406                 if (unlikely(!mbuf)) {
407                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
408                         return -ENOMEM;
409                 }
410
411                 rte_mbuf_refcnt_set(mbuf, 1);
412                 mbuf->next = NULL;
413                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
414                 mbuf->nb_segs = 1;
415                 mbuf->port = rxq->port_id;
416
417                 dma_addr =
418                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
419
420                 rxd = &rxq->rx_ring[i];
421                 rxd->read.pkt_addr = dma_addr;
422                 rxd->read.hdr_addr = 0;
423 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
424                 rxd->read.rsvd1 = 0;
425                 rxd->read.rsvd2 = 0;
426 #endif
427                 rxe[i].mbuf = mbuf;
428         }
429
430         return 0;
431 }
432
433 /* Free all mbufs for descriptors in rx queue */
434 static void
435 _ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
436 {
437         uint16_t i;
438
439         if (!rxq || !rxq->sw_ring) {
440                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
441                 return;
442         }
443
444         for (i = 0; i < rxq->nb_rx_desc; i++) {
445                 if (rxq->sw_ring[i].mbuf) {
446                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
447                         rxq->sw_ring[i].mbuf = NULL;
448                 }
449         }
450         if (rxq->rx_nb_avail == 0)
451                 return;
452         for (i = 0; i < rxq->rx_nb_avail; i++)
453                 rte_pktmbuf_free_seg(rxq->rx_stage[rxq->rx_next_avail + i]);
454
455         rxq->rx_nb_avail = 0;
456 }
457
458 /* turn on or off rx queue
459  * @q_idx: queue index in pf scope
460  * @on: turn on or off the queue
461  */
462 static int
463 ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
464 {
465         uint32_t reg;
466         uint16_t j;
467
468         /* QRX_CTRL = QRX_ENA */
469         reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
470
471         if (on) {
472                 if (reg & QRX_CTRL_QENA_STAT_M)
473                         return 0; /* Already on, skip */
474                 reg |= QRX_CTRL_QENA_REQ_M;
475         } else {
476                 if (!(reg & QRX_CTRL_QENA_STAT_M))
477                         return 0; /* Already off, skip */
478                 reg &= ~QRX_CTRL_QENA_REQ_M;
479         }
480
481         /* Write the register */
482         ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
483         /* Check the result. It is said that QENA_STAT
484          * follows the QENA_REQ not more than 10 use.
485          * TODO: need to change the wait counter later
486          */
487         for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
488                 rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
489                 reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
490                 if (on) {
491                         if ((reg & QRX_CTRL_QENA_REQ_M) &&
492                             (reg & QRX_CTRL_QENA_STAT_M))
493                                 break;
494                 } else {
495                         if (!(reg & QRX_CTRL_QENA_REQ_M) &&
496                             !(reg & QRX_CTRL_QENA_STAT_M))
497                                 break;
498                 }
499         }
500
501         /* Check if it is timeout */
502         if (j >= ICE_CHK_Q_ENA_COUNT) {
503                 PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
504                             (on ? "enable" : "disable"), q_idx);
505                 return -ETIMEDOUT;
506         }
507
508         return 0;
509 }
510
511 static inline int
512 ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
513 {
514         int ret = 0;
515
516         if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
517                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
518                              "rxq->rx_free_thresh=%d, "
519                              "ICE_RX_MAX_BURST=%d",
520                              rxq->rx_free_thresh, ICE_RX_MAX_BURST);
521                 ret = -EINVAL;
522         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
523                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
524                              "rxq->rx_free_thresh=%d, "
525                              "rxq->nb_rx_desc=%d",
526                              rxq->rx_free_thresh, rxq->nb_rx_desc);
527                 ret = -EINVAL;
528         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
529                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
530                              "rxq->nb_rx_desc=%d, "
531                              "rxq->rx_free_thresh=%d",
532                              rxq->nb_rx_desc, rxq->rx_free_thresh);
533                 ret = -EINVAL;
534         }
535
536         return ret;
537 }
538
539 /* reset fields in ice_rx_queue back to default */
540 static void
541 ice_reset_rx_queue(struct ice_rx_queue *rxq)
542 {
543         unsigned int i;
544         uint16_t len;
545
546         if (!rxq) {
547                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
548                 return;
549         }
550
551         len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
552
553         for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
554                 ((volatile char *)rxq->rx_ring)[i] = 0;
555
556         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
557         for (i = 0; i < ICE_RX_MAX_BURST; ++i)
558                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
559
560         rxq->rx_nb_avail = 0;
561         rxq->rx_next_avail = 0;
562         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
563
564         rxq->rx_tail = 0;
565         rxq->nb_rx_hold = 0;
566         rxq->pkt_first_seg = NULL;
567         rxq->pkt_last_seg = NULL;
568
569         rxq->rxrearm_start = 0;
570         rxq->rxrearm_nb = 0;
571 }
572
573 int
574 ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
575 {
576         struct ice_rx_queue *rxq;
577         int err;
578         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
579
580         PMD_INIT_FUNC_TRACE();
581
582         if (rx_queue_id >= dev->data->nb_rx_queues) {
583                 PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
584                             rx_queue_id, dev->data->nb_rx_queues);
585                 return -EINVAL;
586         }
587
588         rxq = dev->data->rx_queues[rx_queue_id];
589         if (!rxq || !rxq->q_set) {
590                 PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
591                             rx_queue_id);
592                 return -EINVAL;
593         }
594
595         err = ice_program_hw_rx_queue(rxq);
596         if (err) {
597                 PMD_DRV_LOG(ERR, "fail to program RX queue %u",
598                             rx_queue_id);
599                 return -EIO;
600         }
601
602         err = ice_alloc_rx_queue_mbufs(rxq);
603         if (err) {
604                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
605                 return -ENOMEM;
606         }
607
608         /* Init the RX tail register. */
609         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
610
611         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
612         if (err) {
613                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
614                             rx_queue_id);
615
616                 rxq->rx_rel_mbufs(rxq);
617                 ice_reset_rx_queue(rxq);
618                 return -EINVAL;
619         }
620
621         dev->data->rx_queue_state[rx_queue_id] =
622                 RTE_ETH_QUEUE_STATE_STARTED;
623
624         return 0;
625 }
626
627 int
628 ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
629 {
630         struct ice_rx_queue *rxq;
631         int err;
632         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
633
634         if (rx_queue_id < dev->data->nb_rx_queues) {
635                 rxq = dev->data->rx_queues[rx_queue_id];
636
637                 err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
638                 if (err) {
639                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
640                                     rx_queue_id);
641                         return -EINVAL;
642                 }
643                 rxq->rx_rel_mbufs(rxq);
644                 ice_reset_rx_queue(rxq);
645                 dev->data->rx_queue_state[rx_queue_id] =
646                         RTE_ETH_QUEUE_STATE_STOPPED;
647         }
648
649         return 0;
650 }
651
652 int
653 ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
654 {
655         struct ice_tx_queue *txq;
656         int err;
657         struct ice_vsi *vsi;
658         struct ice_hw *hw;
659         struct ice_aqc_add_tx_qgrp *txq_elem;
660         struct ice_tlan_ctx tx_ctx;
661         int buf_len;
662
663         PMD_INIT_FUNC_TRACE();
664
665         if (tx_queue_id >= dev->data->nb_tx_queues) {
666                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
667                             tx_queue_id, dev->data->nb_tx_queues);
668                 return -EINVAL;
669         }
670
671         txq = dev->data->tx_queues[tx_queue_id];
672         if (!txq || !txq->q_set) {
673                 PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
674                             tx_queue_id);
675                 return -EINVAL;
676         }
677
678         buf_len = ice_struct_size(txq_elem, txqs, 1);
679         txq_elem = ice_malloc(hw, buf_len);
680         if (!txq_elem)
681                 return -ENOMEM;
682
683         vsi = txq->vsi;
684         hw = ICE_VSI_TO_HW(vsi);
685
686         memset(&tx_ctx, 0, sizeof(tx_ctx));
687         txq_elem->num_txqs = 1;
688         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
689
690         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
691         tx_ctx.qlen = txq->nb_tx_desc;
692         tx_ctx.pf_num = hw->pf_id;
693         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
694         tx_ctx.src_vsi = vsi->vsi_id;
695         tx_ctx.port_num = hw->port_info->lport;
696         tx_ctx.tso_ena = 1; /* tso enable */
697         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
698         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
699         tx_ctx.tsyn_ena = 1;
700
701         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
702                     ice_tlan_ctx_info);
703
704         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
705
706         /* Init the Tx tail register*/
707         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
708
709         /* Fix me, we assume TC always 0 here */
710         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
711                         txq_elem, buf_len, NULL);
712         if (err) {
713                 PMD_DRV_LOG(ERR, "Failed to add lan txq");
714                 rte_free(txq_elem);
715                 return -EIO;
716         }
717         /* store the schedule node id */
718         txq->q_teid = txq_elem->txqs[0].q_teid;
719
720         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
721
722         rte_free(txq_elem);
723         return 0;
724 }
725
726 static enum ice_status
727 ice_fdir_program_hw_rx_queue(struct ice_rx_queue *rxq)
728 {
729         struct ice_vsi *vsi = rxq->vsi;
730         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
731         uint32_t rxdid = ICE_RXDID_LEGACY_1;
732         struct ice_rlan_ctx rx_ctx;
733         enum ice_status err;
734         uint32_t regval;
735
736         rxq->rx_hdr_len = 0;
737         rxq->rx_buf_len = 1024;
738
739         memset(&rx_ctx, 0, sizeof(rx_ctx));
740
741         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
742         rx_ctx.qlen = rxq->nb_rx_desc;
743         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
744         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
745         rx_ctx.dtype = 0; /* No Header Split mode */
746         rx_ctx.dsize = 1; /* 32B descriptors */
747         rx_ctx.rxmax = ICE_ETH_MAX_LEN;
748         /* TPH: Transaction Layer Packet (TLP) processing hints */
749         rx_ctx.tphrdesc_ena = 1;
750         rx_ctx.tphwdesc_ena = 1;
751         rx_ctx.tphdata_ena = 1;
752         rx_ctx.tphhead_ena = 1;
753         /* Low Receive Queue Threshold defined in 64 descriptors units.
754          * When the number of free descriptors goes below the lrxqthresh,
755          * an immediate interrupt is triggered.
756          */
757         rx_ctx.lrxqthresh = 2;
758         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
759         rx_ctx.l2tsel = 1;
760         rx_ctx.showiv = 0;
761         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
762
763         /* Enable Flexible Descriptors in the queue context which
764          * allows this driver to select a specific receive descriptor format
765          */
766         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
767                 QRXFLXP_CNTXT_RXDID_IDX_M;
768
769         /* increasing context priority to pick up profile ID;
770          * default is 0x01; setting to 0x03 to ensure profile
771          * is programming if prev context is of same priority
772          */
773         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
774                 QRXFLXP_CNTXT_RXDID_PRIO_M;
775
776         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
777
778         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
779         if (err) {
780                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
781                             rxq->queue_id);
782                 return -EINVAL;
783         }
784         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
785         if (err) {
786                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
787                             rxq->queue_id);
788                 return -EINVAL;
789         }
790
791         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
792
793         /* Init the Rx tail register*/
794         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
795
796         return 0;
797 }
798
799 int
800 ice_fdir_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
801 {
802         struct ice_rx_queue *rxq;
803         int err;
804         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
805         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
806
807         PMD_INIT_FUNC_TRACE();
808
809         rxq = pf->fdir.rxq;
810         if (!rxq || !rxq->q_set) {
811                 PMD_DRV_LOG(ERR, "FDIR RX queue %u not available or setup",
812                             rx_queue_id);
813                 return -EINVAL;
814         }
815
816         err = ice_fdir_program_hw_rx_queue(rxq);
817         if (err) {
818                 PMD_DRV_LOG(ERR, "fail to program FDIR RX queue %u",
819                             rx_queue_id);
820                 return -EIO;
821         }
822
823         /* Init the RX tail register. */
824         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
825
826         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
827         if (err) {
828                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u on",
829                             rx_queue_id);
830
831                 ice_reset_rx_queue(rxq);
832                 return -EINVAL;
833         }
834
835         return 0;
836 }
837
838 int
839 ice_fdir_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
840 {
841         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
842         struct ice_tx_queue *txq;
843         int err;
844         struct ice_vsi *vsi;
845         struct ice_hw *hw;
846         struct ice_aqc_add_tx_qgrp *txq_elem;
847         struct ice_tlan_ctx tx_ctx;
848         int buf_len;
849
850         PMD_INIT_FUNC_TRACE();
851
852         txq = pf->fdir.txq;
853         if (!txq || !txq->q_set) {
854                 PMD_DRV_LOG(ERR, "FDIR TX queue %u is not available or setup",
855                             tx_queue_id);
856                 return -EINVAL;
857         }
858
859         buf_len = ice_struct_size(txq_elem, txqs, 1);
860         txq_elem = ice_malloc(hw, buf_len);
861         if (!txq_elem)
862                 return -ENOMEM;
863
864         vsi = txq->vsi;
865         hw = ICE_VSI_TO_HW(vsi);
866
867         memset(&tx_ctx, 0, sizeof(tx_ctx));
868         txq_elem->num_txqs = 1;
869         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
870
871         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
872         tx_ctx.qlen = txq->nb_tx_desc;
873         tx_ctx.pf_num = hw->pf_id;
874         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
875         tx_ctx.src_vsi = vsi->vsi_id;
876         tx_ctx.port_num = hw->port_info->lport;
877         tx_ctx.tso_ena = 1; /* tso enable */
878         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
879         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
880
881         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
882                     ice_tlan_ctx_info);
883
884         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
885
886         /* Init the Tx tail register*/
887         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
888
889         /* Fix me, we assume TC always 0 here */
890         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
891                               txq_elem, buf_len, NULL);
892         if (err) {
893                 PMD_DRV_LOG(ERR, "Failed to add FDIR txq");
894                 rte_free(txq_elem);
895                 return -EIO;
896         }
897         /* store the schedule node id */
898         txq->q_teid = txq_elem->txqs[0].q_teid;
899
900         rte_free(txq_elem);
901         return 0;
902 }
903
904 /* Free all mbufs for descriptors in tx queue */
905 static void
906 _ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
907 {
908         uint16_t i;
909
910         if (!txq || !txq->sw_ring) {
911                 PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
912                 return;
913         }
914
915         for (i = 0; i < txq->nb_tx_desc; i++) {
916                 if (txq->sw_ring[i].mbuf) {
917                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
918                         txq->sw_ring[i].mbuf = NULL;
919                 }
920         }
921 }
922
923 static void
924 ice_reset_tx_queue(struct ice_tx_queue *txq)
925 {
926         struct ice_tx_entry *txe;
927         uint16_t i, prev, size;
928
929         if (!txq) {
930                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
931                 return;
932         }
933
934         txe = txq->sw_ring;
935         size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
936         for (i = 0; i < size; i++)
937                 ((volatile char *)txq->tx_ring)[i] = 0;
938
939         prev = (uint16_t)(txq->nb_tx_desc - 1);
940         for (i = 0; i < txq->nb_tx_desc; i++) {
941                 volatile struct ice_tx_desc *txd = &txq->tx_ring[i];
942
943                 txd->cmd_type_offset_bsz =
944                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
945                 txe[i].mbuf =  NULL;
946                 txe[i].last_id = i;
947                 txe[prev].next_id = i;
948                 prev = i;
949         }
950
951         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
952         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
953
954         txq->tx_tail = 0;
955         txq->nb_tx_used = 0;
956
957         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
958         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
959 }
960
961 int
962 ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
963 {
964         struct ice_tx_queue *txq;
965         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
966         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
967         struct ice_vsi *vsi = pf->main_vsi;
968         enum ice_status status;
969         uint16_t q_ids[1];
970         uint32_t q_teids[1];
971         uint16_t q_handle = tx_queue_id;
972
973         if (tx_queue_id >= dev->data->nb_tx_queues) {
974                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
975                             tx_queue_id, dev->data->nb_tx_queues);
976                 return -EINVAL;
977         }
978
979         txq = dev->data->tx_queues[tx_queue_id];
980         if (!txq) {
981                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
982                             tx_queue_id);
983                 return -EINVAL;
984         }
985
986         q_ids[0] = txq->reg_idx;
987         q_teids[0] = txq->q_teid;
988
989         /* Fix me, we assume TC always 0 here */
990         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
991                                 q_ids, q_teids, ICE_NO_RESET, 0, NULL);
992         if (status != ICE_SUCCESS) {
993                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
994                 return -EINVAL;
995         }
996
997         txq->tx_rel_mbufs(txq);
998         ice_reset_tx_queue(txq);
999         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1000
1001         return 0;
1002 }
1003
1004 int
1005 ice_fdir_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1006 {
1007         struct ice_rx_queue *rxq;
1008         int err;
1009         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1010         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1011
1012         rxq = pf->fdir.rxq;
1013
1014         err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
1015         if (err) {
1016                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u off",
1017                             rx_queue_id);
1018                 return -EINVAL;
1019         }
1020         rxq->rx_rel_mbufs(rxq);
1021
1022         return 0;
1023 }
1024
1025 int
1026 ice_fdir_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1027 {
1028         struct ice_tx_queue *txq;
1029         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1030         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1031         struct ice_vsi *vsi = pf->main_vsi;
1032         enum ice_status status;
1033         uint16_t q_ids[1];
1034         uint32_t q_teids[1];
1035         uint16_t q_handle = tx_queue_id;
1036
1037         txq = pf->fdir.txq;
1038         if (!txq) {
1039                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
1040                             tx_queue_id);
1041                 return -EINVAL;
1042         }
1043         vsi = txq->vsi;
1044
1045         q_ids[0] = txq->reg_idx;
1046         q_teids[0] = txq->q_teid;
1047
1048         /* Fix me, we assume TC always 0 here */
1049         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1050                                  q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1051         if (status != ICE_SUCCESS) {
1052                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1053                 return -EINVAL;
1054         }
1055
1056         txq->tx_rel_mbufs(txq);
1057
1058         return 0;
1059 }
1060
1061 int
1062 ice_rx_queue_setup(struct rte_eth_dev *dev,
1063                    uint16_t queue_idx,
1064                    uint16_t nb_desc,
1065                    unsigned int socket_id,
1066                    const struct rte_eth_rxconf *rx_conf,
1067                    struct rte_mempool *mp)
1068 {
1069         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1070         struct ice_adapter *ad =
1071                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1072         struct ice_vsi *vsi = pf->main_vsi;
1073         struct ice_rx_queue *rxq;
1074         const struct rte_memzone *rz;
1075         uint32_t ring_size;
1076         uint16_t len;
1077         int use_def_burst_func = 1;
1078         uint64_t offloads;
1079
1080         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1081             nb_desc > ICE_MAX_RING_DESC ||
1082             nb_desc < ICE_MIN_RING_DESC) {
1083                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
1084                              "invalid", nb_desc);
1085                 return -EINVAL;
1086         }
1087
1088         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1089
1090         /* Free memory if needed */
1091         if (dev->data->rx_queues[queue_idx]) {
1092                 ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
1093                 dev->data->rx_queues[queue_idx] = NULL;
1094         }
1095
1096         /* Allocate the rx queue data structure */
1097         rxq = rte_zmalloc_socket(NULL,
1098                                  sizeof(struct ice_rx_queue),
1099                                  RTE_CACHE_LINE_SIZE,
1100                                  socket_id);
1101         if (!rxq) {
1102                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1103                              "rx queue data structure");
1104                 return -ENOMEM;
1105         }
1106         rxq->mp = mp;
1107         rxq->nb_rx_desc = nb_desc;
1108         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1109         rxq->queue_id = queue_idx;
1110         rxq->offloads = offloads;
1111
1112         rxq->reg_idx = vsi->base_queue + queue_idx;
1113         rxq->port_id = dev->data->port_id;
1114         if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
1115                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1116         else
1117                 rxq->crc_len = 0;
1118
1119         rxq->drop_en = rx_conf->rx_drop_en;
1120         rxq->vsi = vsi;
1121         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1122         rxq->proto_xtr = pf->proto_xtr != NULL ?
1123                          pf->proto_xtr[queue_idx] : PROTO_XTR_NONE;
1124
1125         /* Allocate the maximum number of RX ring hardware descriptor. */
1126         len = ICE_MAX_RING_DESC;
1127
1128         /**
1129          * Allocating a little more memory because vectorized/bulk_alloc Rx
1130          * functions doesn't check boundaries each time.
1131          */
1132         len += ICE_RX_MAX_BURST;
1133
1134         /* Allocate the maximum number of RX ring hardware descriptor. */
1135         ring_size = sizeof(union ice_rx_flex_desc) * len;
1136         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1137         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1138                                       ring_size, ICE_RING_BASE_ALIGN,
1139                                       socket_id);
1140         if (!rz) {
1141                 ice_rx_queue_release(rxq);
1142                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
1143                 return -ENOMEM;
1144         }
1145
1146         rxq->mz = rz;
1147         /* Zero all the descriptors in the ring. */
1148         memset(rz->addr, 0, ring_size);
1149
1150         rxq->rx_ring_dma = rz->iova;
1151         rxq->rx_ring = rz->addr;
1152
1153         /* always reserve more for bulk alloc */
1154         len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
1155
1156         /* Allocate the software ring. */
1157         rxq->sw_ring = rte_zmalloc_socket(NULL,
1158                                           sizeof(struct ice_rx_entry) * len,
1159                                           RTE_CACHE_LINE_SIZE,
1160                                           socket_id);
1161         if (!rxq->sw_ring) {
1162                 ice_rx_queue_release(rxq);
1163                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
1164                 return -ENOMEM;
1165         }
1166
1167         ice_reset_rx_queue(rxq);
1168         rxq->q_set = true;
1169         dev->data->rx_queues[queue_idx] = rxq;
1170         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
1171
1172         use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
1173
1174         if (!use_def_burst_func) {
1175                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1176                              "satisfied. Rx Burst Bulk Alloc function will be "
1177                              "used on port=%d, queue=%d.",
1178                              rxq->port_id, rxq->queue_id);
1179         } else {
1180                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1181                              "not satisfied, Scattered Rx is requested. "
1182                              "on port=%d, queue=%d.",
1183                              rxq->port_id, rxq->queue_id);
1184                 ad->rx_bulk_alloc_allowed = false;
1185         }
1186
1187         return 0;
1188 }
1189
1190 void
1191 ice_rx_queue_release(void *rxq)
1192 {
1193         struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
1194
1195         if (!q) {
1196                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1197                 return;
1198         }
1199
1200         q->rx_rel_mbufs(q);
1201         rte_free(q->sw_ring);
1202         rte_memzone_free(q->mz);
1203         rte_free(q);
1204 }
1205
1206 int
1207 ice_tx_queue_setup(struct rte_eth_dev *dev,
1208                    uint16_t queue_idx,
1209                    uint16_t nb_desc,
1210                    unsigned int socket_id,
1211                    const struct rte_eth_txconf *tx_conf)
1212 {
1213         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1214         struct ice_vsi *vsi = pf->main_vsi;
1215         struct ice_tx_queue *txq;
1216         const struct rte_memzone *tz;
1217         uint32_t ring_size;
1218         uint16_t tx_rs_thresh, tx_free_thresh;
1219         uint64_t offloads;
1220
1221         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1222
1223         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1224             nb_desc > ICE_MAX_RING_DESC ||
1225             nb_desc < ICE_MIN_RING_DESC) {
1226                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
1227                              "invalid", nb_desc);
1228                 return -EINVAL;
1229         }
1230
1231         /**
1232          * The following two parameters control the setting of the RS bit on
1233          * transmit descriptors. TX descriptors will have their RS bit set
1234          * after txq->tx_rs_thresh descriptors have been used. The TX
1235          * descriptor ring will be cleaned after txq->tx_free_thresh
1236          * descriptors are used or if the number of descriptors required to
1237          * transmit a packet is greater than the number of free TX descriptors.
1238          *
1239          * The following constraints must be satisfied:
1240          *  - tx_rs_thresh must be greater than 0.
1241          *  - tx_rs_thresh must be less than the size of the ring minus 2.
1242          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
1243          *  - tx_rs_thresh must be a divisor of the ring size.
1244          *  - tx_free_thresh must be greater than 0.
1245          *  - tx_free_thresh must be less than the size of the ring minus 3.
1246          *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
1247          *
1248          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
1249          * race condition, hence the maximum threshold constraints. When set
1250          * to zero use default values.
1251          */
1252         tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
1253                                     tx_conf->tx_free_thresh :
1254                                     ICE_DEFAULT_TX_FREE_THRESH);
1255         /* force tx_rs_thresh to adapt an aggressive tx_free_thresh */
1256         tx_rs_thresh =
1257                 (ICE_DEFAULT_TX_RSBIT_THRESH + tx_free_thresh > nb_desc) ?
1258                         nb_desc - tx_free_thresh : ICE_DEFAULT_TX_RSBIT_THRESH;
1259         if (tx_conf->tx_rs_thresh)
1260                 tx_rs_thresh = tx_conf->tx_rs_thresh;
1261         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
1262                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
1263                                 "exceed nb_desc. (tx_rs_thresh=%u "
1264                                 "tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
1265                                 (unsigned int)tx_rs_thresh,
1266                                 (unsigned int)tx_free_thresh,
1267                                 (unsigned int)nb_desc,
1268                                 (int)dev->data->port_id,
1269                                 (int)queue_idx);
1270                 return -EINVAL;
1271         }
1272         if (tx_rs_thresh >= (nb_desc - 2)) {
1273                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1274                              "number of TX descriptors minus 2. "
1275                              "(tx_rs_thresh=%u port=%d queue=%d)",
1276                              (unsigned int)tx_rs_thresh,
1277                              (int)dev->data->port_id,
1278                              (int)queue_idx);
1279                 return -EINVAL;
1280         }
1281         if (tx_free_thresh >= (nb_desc - 3)) {
1282                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1283                              "tx_free_thresh must be less than the "
1284                              "number of TX descriptors minus 3. "
1285                              "(tx_free_thresh=%u port=%d queue=%d)",
1286                              (unsigned int)tx_free_thresh,
1287                              (int)dev->data->port_id,
1288                              (int)queue_idx);
1289                 return -EINVAL;
1290         }
1291         if (tx_rs_thresh > tx_free_thresh) {
1292                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
1293                              "equal to tx_free_thresh. (tx_free_thresh=%u"
1294                              " tx_rs_thresh=%u port=%d queue=%d)",
1295                              (unsigned int)tx_free_thresh,
1296                              (unsigned int)tx_rs_thresh,
1297                              (int)dev->data->port_id,
1298                              (int)queue_idx);
1299                 return -EINVAL;
1300         }
1301         if ((nb_desc % tx_rs_thresh) != 0) {
1302                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
1303                              "number of TX descriptors. (tx_rs_thresh=%u"
1304                              " port=%d queue=%d)",
1305                              (unsigned int)tx_rs_thresh,
1306                              (int)dev->data->port_id,
1307                              (int)queue_idx);
1308                 return -EINVAL;
1309         }
1310         if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
1311                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1312                              "tx_rs_thresh is greater than 1. "
1313                              "(tx_rs_thresh=%u port=%d queue=%d)",
1314                              (unsigned int)tx_rs_thresh,
1315                              (int)dev->data->port_id,
1316                              (int)queue_idx);
1317                 return -EINVAL;
1318         }
1319
1320         /* Free memory if needed. */
1321         if (dev->data->tx_queues[queue_idx]) {
1322                 ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
1323                 dev->data->tx_queues[queue_idx] = NULL;
1324         }
1325
1326         /* Allocate the TX queue data structure. */
1327         txq = rte_zmalloc_socket(NULL,
1328                                  sizeof(struct ice_tx_queue),
1329                                  RTE_CACHE_LINE_SIZE,
1330                                  socket_id);
1331         if (!txq) {
1332                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1333                              "tx queue structure");
1334                 return -ENOMEM;
1335         }
1336
1337         /* Allocate TX hardware ring descriptors. */
1338         ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
1339         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1340         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
1341                                       ring_size, ICE_RING_BASE_ALIGN,
1342                                       socket_id);
1343         if (!tz) {
1344                 ice_tx_queue_release(txq);
1345                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
1346                 return -ENOMEM;
1347         }
1348
1349         txq->mz = tz;
1350         txq->nb_tx_desc = nb_desc;
1351         txq->tx_rs_thresh = tx_rs_thresh;
1352         txq->tx_free_thresh = tx_free_thresh;
1353         txq->pthresh = tx_conf->tx_thresh.pthresh;
1354         txq->hthresh = tx_conf->tx_thresh.hthresh;
1355         txq->wthresh = tx_conf->tx_thresh.wthresh;
1356         txq->queue_id = queue_idx;
1357
1358         txq->reg_idx = vsi->base_queue + queue_idx;
1359         txq->port_id = dev->data->port_id;
1360         txq->offloads = offloads;
1361         txq->vsi = vsi;
1362         txq->tx_deferred_start = tx_conf->tx_deferred_start;
1363
1364         txq->tx_ring_dma = tz->iova;
1365         txq->tx_ring = tz->addr;
1366
1367         /* Allocate software ring */
1368         txq->sw_ring =
1369                 rte_zmalloc_socket(NULL,
1370                                    sizeof(struct ice_tx_entry) * nb_desc,
1371                                    RTE_CACHE_LINE_SIZE,
1372                                    socket_id);
1373         if (!txq->sw_ring) {
1374                 ice_tx_queue_release(txq);
1375                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
1376                 return -ENOMEM;
1377         }
1378
1379         ice_reset_tx_queue(txq);
1380         txq->q_set = true;
1381         dev->data->tx_queues[queue_idx] = txq;
1382         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
1383         ice_set_tx_function_flag(dev, txq);
1384
1385         return 0;
1386 }
1387
1388 void
1389 ice_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1390 {
1391         ice_rx_queue_release(dev->data->rx_queues[qid]);
1392 }
1393
1394 void
1395 ice_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1396 {
1397         ice_tx_queue_release(dev->data->tx_queues[qid]);
1398 }
1399
1400 void
1401 ice_tx_queue_release(void *txq)
1402 {
1403         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
1404
1405         if (!q) {
1406                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
1407                 return;
1408         }
1409
1410         q->tx_rel_mbufs(q);
1411         rte_free(q->sw_ring);
1412         rte_memzone_free(q->mz);
1413         rte_free(q);
1414 }
1415
1416 void
1417 ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1418                  struct rte_eth_rxq_info *qinfo)
1419 {
1420         struct ice_rx_queue *rxq;
1421
1422         rxq = dev->data->rx_queues[queue_id];
1423
1424         qinfo->mp = rxq->mp;
1425         qinfo->scattered_rx = dev->data->scattered_rx;
1426         qinfo->nb_desc = rxq->nb_rx_desc;
1427
1428         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1429         qinfo->conf.rx_drop_en = rxq->drop_en;
1430         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1431 }
1432
1433 void
1434 ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1435                  struct rte_eth_txq_info *qinfo)
1436 {
1437         struct ice_tx_queue *txq;
1438
1439         txq = dev->data->tx_queues[queue_id];
1440
1441         qinfo->nb_desc = txq->nb_tx_desc;
1442
1443         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1444         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1445         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1446
1447         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1448         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
1449         qinfo->conf.offloads = txq->offloads;
1450         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1451 }
1452
1453 uint32_t
1454 ice_rx_queue_count(void *rx_queue)
1455 {
1456 #define ICE_RXQ_SCAN_INTERVAL 4
1457         volatile union ice_rx_flex_desc *rxdp;
1458         struct ice_rx_queue *rxq;
1459         uint16_t desc = 0;
1460
1461         rxq = rx_queue;
1462         rxdp = &rxq->rx_ring[rxq->rx_tail];
1463         while ((desc < rxq->nb_rx_desc) &&
1464                rte_le_to_cpu_16(rxdp->wb.status_error0) &
1465                (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)) {
1466                 /**
1467                  * Check the DD bit of a rx descriptor of each 4 in a group,
1468                  * to avoid checking too frequently and downgrading performance
1469                  * too much.
1470                  */
1471                 desc += ICE_RXQ_SCAN_INTERVAL;
1472                 rxdp += ICE_RXQ_SCAN_INTERVAL;
1473                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1474                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1475                                  desc - rxq->nb_rx_desc]);
1476         }
1477
1478         return desc;
1479 }
1480
1481 #define ICE_RX_FLEX_ERR0_BITS   \
1482         ((1 << ICE_RX_FLEX_DESC_STATUS0_HBO_S) |        \
1483          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |   \
1484          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |   \
1485          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) |  \
1486          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
1487          (1 << ICE_RX_FLEX_DESC_STATUS0_RXE_S))
1488
1489 /* Rx L3/L4 checksum */
1490 static inline uint64_t
1491 ice_rxd_error_to_pkt_flags(uint16_t stat_err0)
1492 {
1493         uint64_t flags = 0;
1494
1495         /* check if HW has decoded the packet and checksum */
1496         if (unlikely(!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1497                 return 0;
1498
1499         if (likely(!(stat_err0 & ICE_RX_FLEX_ERR0_BITS))) {
1500                 flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
1501                 return flags;
1502         }
1503
1504         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1505                 flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
1506         else
1507                 flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
1508
1509         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1510                 flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
1511         else
1512                 flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
1513
1514         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1515                 flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
1516
1517         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
1518                 flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
1519         else
1520                 flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD;
1521
1522         return flags;
1523 }
1524
1525 static inline void
1526 ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_flex_desc *rxdp)
1527 {
1528         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
1529             (1 << ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1530                 mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
1531                 mb->vlan_tci =
1532                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
1533                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
1534                            rte_le_to_cpu_16(rxdp->wb.l2tag1));
1535         } else {
1536                 mb->vlan_tci = 0;
1537         }
1538
1539 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1540         if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1541             (1 << ICE_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1542                 mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED | RTE_MBUF_F_RX_QINQ |
1543                                 RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN;
1544                 mb->vlan_tci_outer = mb->vlan_tci;
1545                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1546                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1547                            rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1548                            rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1549         } else {
1550                 mb->vlan_tci_outer = 0;
1551         }
1552 #endif
1553         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
1554                    mb->vlan_tci, mb->vlan_tci_outer);
1555 }
1556
1557 #define ICE_LOOK_AHEAD 8
1558 #if (ICE_LOOK_AHEAD != 8)
1559 #error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
1560 #endif
1561
1562 #define ICE_PTP_TS_VALID 0x1
1563
1564 static inline int
1565 ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
1566 {
1567         volatile union ice_rx_flex_desc *rxdp;
1568         struct ice_rx_entry *rxep;
1569         struct rte_mbuf *mb;
1570         uint16_t stat_err0;
1571         uint16_t pkt_len;
1572         int32_t s[ICE_LOOK_AHEAD], nb_dd;
1573         int32_t i, j, nb_rx = 0;
1574         uint64_t pkt_flags = 0;
1575         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1576 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1577         struct ice_vsi *vsi = rxq->vsi;
1578         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
1579         uint64_t ts_ns;
1580         struct ice_adapter *ad = rxq->vsi->adapter;
1581 #endif
1582         rxdp = &rxq->rx_ring[rxq->rx_tail];
1583         rxep = &rxq->sw_ring[rxq->rx_tail];
1584
1585         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1586
1587         /* Make sure there is at least 1 packet to receive */
1588         if (!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1589                 return 0;
1590
1591         if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
1592                 rxq->hw_register_set = 1;
1593
1594         /**
1595          * Scan LOOK_AHEAD descriptors at a time to determine which
1596          * descriptors reference packets that are ready to be received.
1597          */
1598         for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
1599              rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
1600                 /* Read desc statuses backwards to avoid race condition */
1601                 for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--)
1602                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1603
1604                 rte_smp_rmb();
1605
1606                 /* Compute how many status bits were set */
1607                 for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
1608                         nb_dd += s[j] & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
1609
1610                 nb_rx += nb_dd;
1611
1612                 /* Translate descriptor info to mbuf parameters */
1613                 for (j = 0; j < nb_dd; j++) {
1614                         mb = rxep[j].mbuf;
1615                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1616                                    ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1617                         mb->data_len = pkt_len;
1618                         mb->pkt_len = pkt_len;
1619                         mb->ol_flags = 0;
1620                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1621                         pkt_flags = ice_rxd_error_to_pkt_flags(stat_err0);
1622                         mb->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1623                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1624                         ice_rxd_to_vlan_tci(mb, &rxdp[j]);
1625                         rxd_to_pkt_fields_ops[rxq->rxdid](rxq, mb, &rxdp[j]);
1626 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1627                         if (ice_timestamp_dynflag > 0) {
1628                                 ts_ns = ice_tstamp_convert_32b_64b(hw, ad,
1629                                         rxq->hw_register_set,
1630                                         rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high));
1631                                 rxq->hw_register_set = 0;
1632                                 *RTE_MBUF_DYNFIELD(mb,
1633                                         ice_timestamp_dynfield_offset,
1634                                         rte_mbuf_timestamp_t *) = ts_ns;
1635                                 mb->ol_flags |= ice_timestamp_dynflag;
1636                         }
1637
1638                         if (ad->ptp_ena && ((mb->packet_type &
1639                             RTE_PTYPE_L2_MASK) == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
1640                                 rxq->time_high =
1641                                    rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high);
1642                                 mb->timesync = rxq->queue_id;
1643                                 pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
1644                                 if (rxdp[j].wb.time_stamp_low &
1645                                     ICE_PTP_TS_VALID)
1646                                         pkt_flags |=
1647                                                 RTE_MBUF_F_RX_IEEE1588_TMST;
1648                         }
1649 #endif
1650                         mb->ol_flags |= pkt_flags;
1651                 }
1652
1653                 for (j = 0; j < ICE_LOOK_AHEAD; j++)
1654                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1655
1656                 if (nb_dd != ICE_LOOK_AHEAD)
1657                         break;
1658         }
1659
1660         /* Clear software ring entries */
1661         for (i = 0; i < nb_rx; i++)
1662                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1663
1664         PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
1665                    "port_id=%u, queue_id=%u, nb_rx=%d",
1666                    rxq->port_id, rxq->queue_id, nb_rx);
1667
1668         return nb_rx;
1669 }
1670
1671 static inline uint16_t
1672 ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
1673                        struct rte_mbuf **rx_pkts,
1674                        uint16_t nb_pkts)
1675 {
1676         uint16_t i;
1677         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1678
1679         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1680
1681         for (i = 0; i < nb_pkts; i++)
1682                 rx_pkts[i] = stage[i];
1683
1684         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1685         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1686
1687         return nb_pkts;
1688 }
1689
1690 static inline int
1691 ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
1692 {
1693         volatile union ice_rx_flex_desc *rxdp;
1694         struct ice_rx_entry *rxep;
1695         struct rte_mbuf *mb;
1696         uint16_t alloc_idx, i;
1697         uint64_t dma_addr;
1698         int diag;
1699
1700         /* Allocate buffers in bulk */
1701         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1702                                (rxq->rx_free_thresh - 1));
1703         rxep = &rxq->sw_ring[alloc_idx];
1704         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1705                                     rxq->rx_free_thresh);
1706         if (unlikely(diag != 0)) {
1707                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1708                 return -ENOMEM;
1709         }
1710
1711         rxdp = &rxq->rx_ring[alloc_idx];
1712         for (i = 0; i < rxq->rx_free_thresh; i++) {
1713                 if (likely(i < (rxq->rx_free_thresh - 1)))
1714                         /* Prefetch next mbuf */
1715                         rte_prefetch0(rxep[i + 1].mbuf);
1716
1717                 mb = rxep[i].mbuf;
1718                 rte_mbuf_refcnt_set(mb, 1);
1719                 mb->next = NULL;
1720                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1721                 mb->nb_segs = 1;
1722                 mb->port = rxq->port_id;
1723                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1724                 rxdp[i].read.hdr_addr = 0;
1725                 rxdp[i].read.pkt_addr = dma_addr;
1726         }
1727
1728         /* Update Rx tail register */
1729         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1730
1731         rxq->rx_free_trigger =
1732                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1733         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1734                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1735
1736         return 0;
1737 }
1738
1739 static inline uint16_t
1740 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1741 {
1742         struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
1743         uint16_t nb_rx = 0;
1744
1745         if (!nb_pkts)
1746                 return 0;
1747
1748         if (rxq->rx_nb_avail)
1749                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1750
1751         nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
1752         rxq->rx_next_avail = 0;
1753         rxq->rx_nb_avail = nb_rx;
1754         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1755
1756         if (rxq->rx_tail > rxq->rx_free_trigger) {
1757                 if (ice_rx_alloc_bufs(rxq) != 0) {
1758                         uint16_t i, j;
1759
1760                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed +=
1761                                 rxq->rx_free_thresh;
1762                         PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1763                                    "port_id=%u, queue_id=%u",
1764                                    rxq->port_id, rxq->queue_id);
1765                         rxq->rx_nb_avail = 0;
1766                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1767                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1768                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1769
1770                         return 0;
1771                 }
1772         }
1773
1774         if (rxq->rx_tail >= rxq->nb_rx_desc)
1775                 rxq->rx_tail = 0;
1776
1777         if (rxq->rx_nb_avail)
1778                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1779
1780         return 0;
1781 }
1782
1783 static uint16_t
1784 ice_recv_pkts_bulk_alloc(void *rx_queue,
1785                          struct rte_mbuf **rx_pkts,
1786                          uint16_t nb_pkts)
1787 {
1788         uint16_t nb_rx = 0;
1789         uint16_t n;
1790         uint16_t count;
1791
1792         if (unlikely(nb_pkts == 0))
1793                 return nb_rx;
1794
1795         if (likely(nb_pkts <= ICE_RX_MAX_BURST))
1796                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1797
1798         while (nb_pkts) {
1799                 n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
1800                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1801                 nb_rx = (uint16_t)(nb_rx + count);
1802                 nb_pkts = (uint16_t)(nb_pkts - count);
1803                 if (count < n)
1804                         break;
1805         }
1806
1807         return nb_rx;
1808 }
1809
1810 static uint16_t
1811 ice_recv_scattered_pkts(void *rx_queue,
1812                         struct rte_mbuf **rx_pkts,
1813                         uint16_t nb_pkts)
1814 {
1815         struct ice_rx_queue *rxq = rx_queue;
1816         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
1817         volatile union ice_rx_flex_desc *rxdp;
1818         union ice_rx_flex_desc rxd;
1819         struct ice_rx_entry *sw_ring = rxq->sw_ring;
1820         struct ice_rx_entry *rxe;
1821         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1822         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1823         struct rte_mbuf *nmb; /* new allocated mbuf */
1824         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
1825         uint16_t rx_id = rxq->rx_tail;
1826         uint16_t nb_rx = 0;
1827         uint16_t nb_hold = 0;
1828         uint16_t rx_packet_len;
1829         uint16_t rx_stat_err0;
1830         uint64_t dma_addr;
1831         uint64_t pkt_flags;
1832         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1833 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1834         struct ice_vsi *vsi = rxq->vsi;
1835         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
1836         uint64_t ts_ns;
1837         struct ice_adapter *ad = rxq->vsi->adapter;
1838 #endif
1839
1840         if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
1841                 rxq->hw_register_set = 1;
1842
1843         while (nb_rx < nb_pkts) {
1844                 rxdp = &rx_ring[rx_id];
1845                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1846
1847                 /* Check the DD bit first */
1848                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1849                         break;
1850
1851                 /* allocate mbuf */
1852                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1853                 if (unlikely(!nmb)) {
1854                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
1855                         break;
1856                 }
1857                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
1858
1859                 nb_hold++;
1860                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
1861                 rx_id++;
1862                 if (unlikely(rx_id == rxq->nb_rx_desc))
1863                         rx_id = 0;
1864
1865                 /* Prefetch next mbuf */
1866                 rte_prefetch0(sw_ring[rx_id].mbuf);
1867
1868                 /**
1869                  * When next RX descriptor is on a cache line boundary,
1870                  * prefetch the next 4 RX descriptors and next 8 pointers
1871                  * to mbufs.
1872                  */
1873                 if ((rx_id & 0x3) == 0) {
1874                         rte_prefetch0(&rx_ring[rx_id]);
1875                         rte_prefetch0(&sw_ring[rx_id]);
1876                 }
1877
1878                 rxm = rxe->mbuf;
1879                 rxe->mbuf = nmb;
1880                 dma_addr =
1881                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1882
1883                 /* Set data buffer address and data length of the mbuf */
1884                 rxdp->read.hdr_addr = 0;
1885                 rxdp->read.pkt_addr = dma_addr;
1886                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1887                                 ICE_RX_FLX_DESC_PKT_LEN_M;
1888                 rxm->data_len = rx_packet_len;
1889                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1890
1891                 /**
1892                  * If this is the first buffer of the received packet, set the
1893                  * pointer to the first mbuf of the packet and initialize its
1894                  * context. Otherwise, update the total length and the number
1895                  * of segments of the current scattered packet, and update the
1896                  * pointer to the last mbuf of the current packet.
1897                  */
1898                 if (!first_seg) {
1899                         first_seg = rxm;
1900                         first_seg->nb_segs = 1;
1901                         first_seg->pkt_len = rx_packet_len;
1902                 } else {
1903                         first_seg->pkt_len =
1904                                 (uint16_t)(first_seg->pkt_len +
1905                                            rx_packet_len);
1906                         first_seg->nb_segs++;
1907                         last_seg->next = rxm;
1908                 }
1909
1910                 /**
1911                  * If this is not the last buffer of the received packet,
1912                  * update the pointer to the last mbuf of the current scattered
1913                  * packet and continue to parse the RX ring.
1914                  */
1915                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_EOF_S))) {
1916                         last_seg = rxm;
1917                         continue;
1918                 }
1919
1920                 /**
1921                  * This is the last buffer of the received packet. If the CRC
1922                  * is not stripped by the hardware:
1923                  *  - Subtract the CRC length from the total packet length.
1924                  *  - If the last buffer only contains the whole CRC or a part
1925                  *  of it, free the mbuf associated to the last buffer. If part
1926                  *  of the CRC is also contained in the previous mbuf, subtract
1927                  *  the length of that CRC part from the data length of the
1928                  *  previous mbuf.
1929                  */
1930                 rxm->next = NULL;
1931                 if (unlikely(rxq->crc_len > 0)) {
1932                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1933                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1934                                 rte_pktmbuf_free_seg(rxm);
1935                                 first_seg->nb_segs--;
1936                                 last_seg->data_len =
1937                                         (uint16_t)(last_seg->data_len -
1938                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1939                                 last_seg->next = NULL;
1940                         } else
1941                                 rxm->data_len = (uint16_t)(rx_packet_len -
1942                                                            RTE_ETHER_CRC_LEN);
1943                 }
1944
1945                 first_seg->port = rxq->port_id;
1946                 first_seg->ol_flags = 0;
1947                 first_seg->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1948                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1949                 ice_rxd_to_vlan_tci(first_seg, &rxd);
1950                 rxd_to_pkt_fields_ops[rxq->rxdid](rxq, first_seg, &rxd);
1951                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
1952 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1953                 if (ice_timestamp_dynflag > 0) {
1954                         ts_ns = ice_tstamp_convert_32b_64b(hw, ad,
1955                                 rxq->hw_register_set,
1956                                 rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
1957                         rxq->hw_register_set = 0;
1958                         *RTE_MBUF_DYNFIELD(first_seg,
1959                                 ice_timestamp_dynfield_offset,
1960                                 rte_mbuf_timestamp_t *) = ts_ns;
1961                         first_seg->ol_flags |= ice_timestamp_dynflag;
1962                 }
1963
1964                 if (ad->ptp_ena && ((first_seg->packet_type & RTE_PTYPE_L2_MASK)
1965                     == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
1966                         rxq->time_high =
1967                            rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
1968                         first_seg->timesync = rxq->queue_id;
1969                         pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
1970                 }
1971 #endif
1972                 first_seg->ol_flags |= pkt_flags;
1973                 /* Prefetch data of first segment, if configured to do so. */
1974                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1975                                           first_seg->data_off));
1976                 rx_pkts[nb_rx++] = first_seg;
1977                 first_seg = NULL;
1978         }
1979
1980         /* Record index of the next RX descriptor to probe. */
1981         rxq->rx_tail = rx_id;
1982         rxq->pkt_first_seg = first_seg;
1983         rxq->pkt_last_seg = last_seg;
1984
1985         /**
1986          * If the number of free RX descriptors is greater than the RX free
1987          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1988          * register. Update the RDT with the value of the last processed RX
1989          * descriptor minus 1, to guarantee that the RDT register is never
1990          * equal to the RDH register, which creates a "full" ring situation
1991          * from the hardware point of view.
1992          */
1993         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1994         if (nb_hold > rxq->rx_free_thresh) {
1995                 rx_id = (uint16_t)(rx_id == 0 ?
1996                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
1997                 /* write TAIL register */
1998                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1999                 nb_hold = 0;
2000         }
2001         rxq->nb_rx_hold = nb_hold;
2002
2003         /* return received packet in the burst */
2004         return nb_rx;
2005 }
2006
2007 const uint32_t *
2008 ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
2009 {
2010         struct ice_adapter *ad =
2011                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2012         const uint32_t *ptypes;
2013
2014         static const uint32_t ptypes_os[] = {
2015                 /* refers to ice_get_default_pkt_type() */
2016                 RTE_PTYPE_L2_ETHER,
2017                 RTE_PTYPE_L2_ETHER_TIMESYNC,
2018                 RTE_PTYPE_L2_ETHER_LLDP,
2019                 RTE_PTYPE_L2_ETHER_ARP,
2020                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2021                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2022                 RTE_PTYPE_L4_FRAG,
2023                 RTE_PTYPE_L4_ICMP,
2024                 RTE_PTYPE_L4_NONFRAG,
2025                 RTE_PTYPE_L4_SCTP,
2026                 RTE_PTYPE_L4_TCP,
2027                 RTE_PTYPE_L4_UDP,
2028                 RTE_PTYPE_TUNNEL_GRENAT,
2029                 RTE_PTYPE_TUNNEL_IP,
2030                 RTE_PTYPE_INNER_L2_ETHER,
2031                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2032                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2033                 RTE_PTYPE_INNER_L4_FRAG,
2034                 RTE_PTYPE_INNER_L4_ICMP,
2035                 RTE_PTYPE_INNER_L4_NONFRAG,
2036                 RTE_PTYPE_INNER_L4_SCTP,
2037                 RTE_PTYPE_INNER_L4_TCP,
2038                 RTE_PTYPE_INNER_L4_UDP,
2039                 RTE_PTYPE_UNKNOWN
2040         };
2041
2042         static const uint32_t ptypes_comms[] = {
2043                 /* refers to ice_get_default_pkt_type() */
2044                 RTE_PTYPE_L2_ETHER,
2045                 RTE_PTYPE_L2_ETHER_TIMESYNC,
2046                 RTE_PTYPE_L2_ETHER_LLDP,
2047                 RTE_PTYPE_L2_ETHER_ARP,
2048                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2049                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2050                 RTE_PTYPE_L4_FRAG,
2051                 RTE_PTYPE_L4_ICMP,
2052                 RTE_PTYPE_L4_NONFRAG,
2053                 RTE_PTYPE_L4_SCTP,
2054                 RTE_PTYPE_L4_TCP,
2055                 RTE_PTYPE_L4_UDP,
2056                 RTE_PTYPE_TUNNEL_GRENAT,
2057                 RTE_PTYPE_TUNNEL_IP,
2058                 RTE_PTYPE_INNER_L2_ETHER,
2059                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2060                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2061                 RTE_PTYPE_INNER_L4_FRAG,
2062                 RTE_PTYPE_INNER_L4_ICMP,
2063                 RTE_PTYPE_INNER_L4_NONFRAG,
2064                 RTE_PTYPE_INNER_L4_SCTP,
2065                 RTE_PTYPE_INNER_L4_TCP,
2066                 RTE_PTYPE_INNER_L4_UDP,
2067                 RTE_PTYPE_TUNNEL_GTPC,
2068                 RTE_PTYPE_TUNNEL_GTPU,
2069                 RTE_PTYPE_L2_ETHER_PPPOE,
2070                 RTE_PTYPE_UNKNOWN
2071         };
2072
2073         if (ad->active_pkg_type == ICE_PKG_TYPE_COMMS)
2074                 ptypes = ptypes_comms;
2075         else
2076                 ptypes = ptypes_os;
2077
2078         if (dev->rx_pkt_burst == ice_recv_pkts ||
2079             dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
2080             dev->rx_pkt_burst == ice_recv_scattered_pkts)
2081                 return ptypes;
2082
2083 #ifdef RTE_ARCH_X86
2084         if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
2085             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
2086 #ifdef CC_AVX512_SUPPORT
2087             dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
2088             dev->rx_pkt_burst == ice_recv_pkts_vec_avx512_offload ||
2089             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
2090             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512_offload ||
2091 #endif
2092             dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
2093             dev->rx_pkt_burst == ice_recv_pkts_vec_avx2_offload ||
2094             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2 ||
2095             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2_offload)
2096                 return ptypes;
2097 #endif
2098
2099         return NULL;
2100 }
2101
2102 int
2103 ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
2104 {
2105         volatile union ice_rx_flex_desc *rxdp;
2106         struct ice_rx_queue *rxq = rx_queue;
2107         uint32_t desc;
2108
2109         if (unlikely(offset >= rxq->nb_rx_desc))
2110                 return -EINVAL;
2111
2112         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2113                 return RTE_ETH_RX_DESC_UNAVAIL;
2114
2115         desc = rxq->rx_tail + offset;
2116         if (desc >= rxq->nb_rx_desc)
2117                 desc -= rxq->nb_rx_desc;
2118
2119         rxdp = &rxq->rx_ring[desc];
2120         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
2121             (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))
2122                 return RTE_ETH_RX_DESC_DONE;
2123
2124         return RTE_ETH_RX_DESC_AVAIL;
2125 }
2126
2127 int
2128 ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
2129 {
2130         struct ice_tx_queue *txq = tx_queue;
2131         volatile uint64_t *status;
2132         uint64_t mask, expect;
2133         uint32_t desc;
2134
2135         if (unlikely(offset >= txq->nb_tx_desc))
2136                 return -EINVAL;
2137
2138         desc = txq->tx_tail + offset;
2139         /* go to next desc that has the RS bit */
2140         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2141                 txq->tx_rs_thresh;
2142         if (desc >= txq->nb_tx_desc) {
2143                 desc -= txq->nb_tx_desc;
2144                 if (desc >= txq->nb_tx_desc)
2145                         desc -= txq->nb_tx_desc;
2146         }
2147
2148         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2149         mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
2150         expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
2151                                   ICE_TXD_QW1_DTYPE_S);
2152         if ((*status & mask) == expect)
2153                 return RTE_ETH_TX_DESC_DONE;
2154
2155         return RTE_ETH_TX_DESC_FULL;
2156 }
2157
2158 void
2159 ice_free_queues(struct rte_eth_dev *dev)
2160 {
2161         uint16_t i;
2162
2163         PMD_INIT_FUNC_TRACE();
2164
2165         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2166                 if (!dev->data->rx_queues[i])
2167                         continue;
2168                 ice_rx_queue_release(dev->data->rx_queues[i]);
2169                 dev->data->rx_queues[i] = NULL;
2170         }
2171         dev->data->nb_rx_queues = 0;
2172
2173         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2174                 if (!dev->data->tx_queues[i])
2175                         continue;
2176                 ice_tx_queue_release(dev->data->tx_queues[i]);
2177                 dev->data->tx_queues[i] = NULL;
2178         }
2179         dev->data->nb_tx_queues = 0;
2180 }
2181
2182 #define ICE_FDIR_NUM_TX_DESC  ICE_MIN_RING_DESC
2183 #define ICE_FDIR_NUM_RX_DESC  ICE_MIN_RING_DESC
2184
2185 int
2186 ice_fdir_setup_tx_resources(struct ice_pf *pf)
2187 {
2188         struct ice_tx_queue *txq;
2189         const struct rte_memzone *tz = NULL;
2190         uint32_t ring_size;
2191         struct rte_eth_dev *dev;
2192
2193         if (!pf) {
2194                 PMD_DRV_LOG(ERR, "PF is not available");
2195                 return -EINVAL;
2196         }
2197
2198         dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2199
2200         /* Allocate the TX queue data structure. */
2201         txq = rte_zmalloc_socket("ice fdir tx queue",
2202                                  sizeof(struct ice_tx_queue),
2203                                  RTE_CACHE_LINE_SIZE,
2204                                  SOCKET_ID_ANY);
2205         if (!txq) {
2206                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2207                             "tx queue structure.");
2208                 return -ENOMEM;
2209         }
2210
2211         /* Allocate TX hardware ring descriptors. */
2212         ring_size = sizeof(struct ice_tx_desc) * ICE_FDIR_NUM_TX_DESC;
2213         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2214
2215         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2216                                       ICE_FDIR_QUEUE_ID, ring_size,
2217                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2218         if (!tz) {
2219                 ice_tx_queue_release(txq);
2220                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2221                 return -ENOMEM;
2222         }
2223
2224         txq->mz = tz;
2225         txq->nb_tx_desc = ICE_FDIR_NUM_TX_DESC;
2226         txq->queue_id = ICE_FDIR_QUEUE_ID;
2227         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2228         txq->vsi = pf->fdir.fdir_vsi;
2229
2230         txq->tx_ring_dma = tz->iova;
2231         txq->tx_ring = (struct ice_tx_desc *)tz->addr;
2232         /*
2233          * don't need to allocate software ring and reset for the fdir
2234          * program queue just set the queue has been configured.
2235          */
2236         txq->q_set = true;
2237         pf->fdir.txq = txq;
2238
2239         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
2240
2241         return ICE_SUCCESS;
2242 }
2243
2244 int
2245 ice_fdir_setup_rx_resources(struct ice_pf *pf)
2246 {
2247         struct ice_rx_queue *rxq;
2248         const struct rte_memzone *rz = NULL;
2249         uint32_t ring_size;
2250         struct rte_eth_dev *dev;
2251
2252         if (!pf) {
2253                 PMD_DRV_LOG(ERR, "PF is not available");
2254                 return -EINVAL;
2255         }
2256
2257         dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2258
2259         /* Allocate the RX queue data structure. */
2260         rxq = rte_zmalloc_socket("ice fdir rx queue",
2261                                  sizeof(struct ice_rx_queue),
2262                                  RTE_CACHE_LINE_SIZE,
2263                                  SOCKET_ID_ANY);
2264         if (!rxq) {
2265                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2266                             "rx queue structure.");
2267                 return -ENOMEM;
2268         }
2269
2270         /* Allocate RX hardware ring descriptors. */
2271         ring_size = sizeof(union ice_32byte_rx_desc) * ICE_FDIR_NUM_RX_DESC;
2272         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2273
2274         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2275                                       ICE_FDIR_QUEUE_ID, ring_size,
2276                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2277         if (!rz) {
2278                 ice_rx_queue_release(rxq);
2279                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2280                 return -ENOMEM;
2281         }
2282
2283         rxq->mz = rz;
2284         rxq->nb_rx_desc = ICE_FDIR_NUM_RX_DESC;
2285         rxq->queue_id = ICE_FDIR_QUEUE_ID;
2286         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2287         rxq->vsi = pf->fdir.fdir_vsi;
2288
2289         rxq->rx_ring_dma = rz->iova;
2290         memset(rz->addr, 0, ICE_FDIR_NUM_RX_DESC *
2291                sizeof(union ice_32byte_rx_desc));
2292         rxq->rx_ring = (union ice_rx_flex_desc *)rz->addr;
2293
2294         /*
2295          * Don't need to allocate software ring and reset for the fdir
2296          * rx queue, just set the queue has been configured.
2297          */
2298         rxq->q_set = true;
2299         pf->fdir.rxq = rxq;
2300
2301         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
2302
2303         return ICE_SUCCESS;
2304 }
2305
2306 uint16_t
2307 ice_recv_pkts(void *rx_queue,
2308               struct rte_mbuf **rx_pkts,
2309               uint16_t nb_pkts)
2310 {
2311         struct ice_rx_queue *rxq = rx_queue;
2312         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
2313         volatile union ice_rx_flex_desc *rxdp;
2314         union ice_rx_flex_desc rxd;
2315         struct ice_rx_entry *sw_ring = rxq->sw_ring;
2316         struct ice_rx_entry *rxe;
2317         struct rte_mbuf *nmb; /* new allocated mbuf */
2318         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
2319         uint16_t rx_id = rxq->rx_tail;
2320         uint16_t nb_rx = 0;
2321         uint16_t nb_hold = 0;
2322         uint16_t rx_packet_len;
2323         uint16_t rx_stat_err0;
2324         uint64_t dma_addr;
2325         uint64_t pkt_flags;
2326         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2327 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2328         struct ice_vsi *vsi = rxq->vsi;
2329         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
2330         uint64_t ts_ns;
2331         struct ice_adapter *ad = rxq->vsi->adapter;
2332 #endif
2333
2334         if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
2335                 rxq->hw_register_set = 1;
2336
2337         while (nb_rx < nb_pkts) {
2338                 rxdp = &rx_ring[rx_id];
2339                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
2340
2341                 /* Check the DD bit first */
2342                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
2343                         break;
2344
2345                 /* allocate mbuf */
2346                 nmb = rte_mbuf_raw_alloc(rxq->mp);
2347                 if (unlikely(!nmb)) {
2348                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2349                         break;
2350                 }
2351                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
2352
2353                 nb_hold++;
2354                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
2355                 rx_id++;
2356                 if (unlikely(rx_id == rxq->nb_rx_desc))
2357                         rx_id = 0;
2358                 rxm = rxe->mbuf;
2359                 rxe->mbuf = nmb;
2360                 dma_addr =
2361                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2362
2363                 /**
2364                  * fill the read format of descriptor with physic address in
2365                  * new allocated mbuf: nmb
2366                  */
2367                 rxdp->read.hdr_addr = 0;
2368                 rxdp->read.pkt_addr = dma_addr;
2369
2370                 /* calculate rx_packet_len of the received pkt */
2371                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
2372                                  ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
2373
2374                 /* fill old mbuf with received descriptor: rxd */
2375                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
2376                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
2377                 rxm->nb_segs = 1;
2378                 rxm->next = NULL;
2379                 rxm->pkt_len = rx_packet_len;
2380                 rxm->data_len = rx_packet_len;
2381                 rxm->port = rxq->port_id;
2382                 rxm->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
2383                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
2384                 ice_rxd_to_vlan_tci(rxm, &rxd);
2385                 rxd_to_pkt_fields_ops[rxq->rxdid](rxq, rxm, &rxd);
2386                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
2387 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
2388                 if (ice_timestamp_dynflag > 0) {
2389                         ts_ns = ice_tstamp_convert_32b_64b(hw, ad,
2390                                 rxq->hw_register_set,
2391                                 rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
2392                         rxq->hw_register_set = 0;
2393                         *RTE_MBUF_DYNFIELD(rxm,
2394                                 ice_timestamp_dynfield_offset,
2395                                 rte_mbuf_timestamp_t *) = ts_ns;
2396                         rxm->ol_flags |= ice_timestamp_dynflag;
2397                 }
2398
2399                 if (ad->ptp_ena && ((rxm->packet_type & RTE_PTYPE_L2_MASK) ==
2400                     RTE_PTYPE_L2_ETHER_TIMESYNC)) {
2401                         rxq->time_high =
2402                            rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2403                         rxm->timesync = rxq->queue_id;
2404                         pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
2405                 }
2406 #endif
2407                 rxm->ol_flags |= pkt_flags;
2408                 /* copy old mbuf to rx_pkts */
2409                 rx_pkts[nb_rx++] = rxm;
2410         }
2411         rxq->rx_tail = rx_id;
2412         /**
2413          * If the number of free RX descriptors is greater than the RX free
2414          * threshold of the queue, advance the receive tail register of queue.
2415          * Update that register with the value of the last processed RX
2416          * descriptor minus 1.
2417          */
2418         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2419         if (nb_hold > rxq->rx_free_thresh) {
2420                 rx_id = (uint16_t)(rx_id == 0 ?
2421                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
2422                 /* write TAIL register */
2423                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2424                 nb_hold = 0;
2425         }
2426         rxq->nb_rx_hold = nb_hold;
2427
2428         /* return received packet in the burst */
2429         return nb_rx;
2430 }
2431
2432 static inline void
2433 ice_parse_tunneling_params(uint64_t ol_flags,
2434                             union ice_tx_offload tx_offload,
2435                             uint32_t *cd_tunneling)
2436 {
2437         /* EIPT: External (outer) IP header type */
2438         if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM)
2439                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4;
2440         else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV4)
2441                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
2442         else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)
2443                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV6;
2444
2445         /* EIPLEN: External (outer) IP header length, in DWords */
2446         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
2447                 ICE_TXD_CTX_QW0_EIPLEN_S;
2448
2449         /* L4TUNT: L4 Tunneling Type */
2450         switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
2451         case RTE_MBUF_F_TX_TUNNEL_IPIP:
2452                 /* for non UDP / GRE tunneling, set to 00b */
2453                 break;
2454         case RTE_MBUF_F_TX_TUNNEL_VXLAN:
2455         case RTE_MBUF_F_TX_TUNNEL_GTP:
2456         case RTE_MBUF_F_TX_TUNNEL_GENEVE:
2457                 *cd_tunneling |= ICE_TXD_CTX_UDP_TUNNELING;
2458                 break;
2459         case RTE_MBUF_F_TX_TUNNEL_GRE:
2460                 *cd_tunneling |= ICE_TXD_CTX_GRE_TUNNELING;
2461                 break;
2462         default:
2463                 PMD_TX_LOG(ERR, "Tunnel type not supported");
2464                 return;
2465         }
2466
2467         /* L4TUNLEN: L4 Tunneling Length, in Words
2468          *
2469          * We depend on app to set rte_mbuf.l2_len correctly.
2470          * For IP in GRE it should be set to the length of the GRE
2471          * header;
2472          * For MAC in GRE or MAC in UDP it should be set to the length
2473          * of the GRE or UDP headers plus the inner MAC up to including
2474          * its last Ethertype.
2475          * If MPLS labels exists, it should include them as well.
2476          */
2477         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
2478                 ICE_TXD_CTX_QW0_NATLEN_S;
2479
2480         /**
2481          * Calculate the tunneling UDP checksum.
2482          * Shall be set only if L4TUNT = 01b and EIPT is not zero
2483          */
2484         if (!(*cd_tunneling & ICE_TX_CTX_EIPT_NONE) &&
2485             (*cd_tunneling & ICE_TXD_CTX_UDP_TUNNELING))
2486                 *cd_tunneling |= ICE_TXD_CTX_QW0_L4T_CS_M;
2487 }
2488
2489 static inline void
2490 ice_txd_enable_checksum(uint64_t ol_flags,
2491                         uint32_t *td_cmd,
2492                         uint32_t *td_offset,
2493                         union ice_tx_offload tx_offload)
2494 {
2495         /* Set MACLEN */
2496         if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2497                 *td_offset |= (tx_offload.outer_l2_len >> 1)
2498                         << ICE_TX_DESC_LEN_MACLEN_S;
2499         else
2500                 *td_offset |= (tx_offload.l2_len >> 1)
2501                         << ICE_TX_DESC_LEN_MACLEN_S;
2502
2503         /* Enable L3 checksum offloads */
2504         /*Tunnel package usage outer len enable L3 checksum offload*/
2505         if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
2506                 if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
2507                         *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
2508                         *td_offset |= (tx_offload.outer_l3_len >> 2) <<
2509                                 ICE_TX_DESC_LEN_IPLEN_S;
2510                 } else if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2511                         *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
2512                         *td_offset |= (tx_offload.outer_l3_len >> 2) <<
2513                                 ICE_TX_DESC_LEN_IPLEN_S;
2514                 } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2515                         *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2516                         *td_offset |= (tx_offload.outer_l3_len >> 2) <<
2517                                 ICE_TX_DESC_LEN_IPLEN_S;
2518                 }
2519         } else {
2520                 if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
2521                         *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
2522                         *td_offset |= (tx_offload.l3_len >> 2) <<
2523                                 ICE_TX_DESC_LEN_IPLEN_S;
2524                 } else if (ol_flags & RTE_MBUF_F_TX_IPV4) {
2525                         *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
2526                         *td_offset |= (tx_offload.l3_len >> 2) <<
2527                                 ICE_TX_DESC_LEN_IPLEN_S;
2528                 } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
2529                         *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2530                         *td_offset |= (tx_offload.l3_len >> 2) <<
2531                                 ICE_TX_DESC_LEN_IPLEN_S;
2532                 }
2533         }
2534
2535         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
2536                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2537                 *td_offset |= (tx_offload.l4_len >> 2) <<
2538                               ICE_TX_DESC_LEN_L4_LEN_S;
2539                 return;
2540         }
2541
2542         /* Enable L4 checksum offloads */
2543         switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
2544         case RTE_MBUF_F_TX_TCP_CKSUM:
2545                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2546                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2547                               ICE_TX_DESC_LEN_L4_LEN_S;
2548                 break;
2549         case RTE_MBUF_F_TX_SCTP_CKSUM:
2550                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2551                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2552                               ICE_TX_DESC_LEN_L4_LEN_S;
2553                 break;
2554         case RTE_MBUF_F_TX_UDP_CKSUM:
2555                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2556                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2557                               ICE_TX_DESC_LEN_L4_LEN_S;
2558                 break;
2559         default:
2560                 break;
2561         }
2562 }
2563
2564 static inline int
2565 ice_xmit_cleanup(struct ice_tx_queue *txq)
2566 {
2567         struct ice_tx_entry *sw_ring = txq->sw_ring;
2568         volatile struct ice_tx_desc *txd = txq->tx_ring;
2569         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2570         uint16_t nb_tx_desc = txq->nb_tx_desc;
2571         uint16_t desc_to_clean_to;
2572         uint16_t nb_tx_to_clean;
2573
2574         /* Determine the last descriptor needing to be cleaned */
2575         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
2576         if (desc_to_clean_to >= nb_tx_desc)
2577                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2578
2579         /* Check to make sure the last descriptor to clean is done */
2580         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2581         if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
2582             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
2583                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2584                            "(port=%d queue=%d) value=0x%"PRIx64"\n",
2585                            desc_to_clean_to,
2586                            txq->port_id, txq->queue_id,
2587                            txd[desc_to_clean_to].cmd_type_offset_bsz);
2588                 /* Failed to clean any descriptors */
2589                 return -1;
2590         }
2591
2592         /* Figure out how many descriptors will be cleaned */
2593         if (last_desc_cleaned > desc_to_clean_to)
2594                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2595                                             desc_to_clean_to);
2596         else
2597                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2598                                             last_desc_cleaned);
2599
2600         /* The last descriptor to clean is done, so that means all the
2601          * descriptors from the last descriptor that was cleaned
2602          * up to the last descriptor with the RS bit set
2603          * are done. Only reset the threshold descriptor.
2604          */
2605         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2606
2607         /* Update the txq to reflect the last descriptor that was cleaned */
2608         txq->last_desc_cleaned = desc_to_clean_to;
2609         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
2610
2611         return 0;
2612 }
2613
2614 /* Construct the tx flags */
2615 static inline uint64_t
2616 ice_build_ctob(uint32_t td_cmd,
2617                uint32_t td_offset,
2618                uint16_t size,
2619                uint32_t td_tag)
2620 {
2621         return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2622                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2623                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2624                                 ((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
2625                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2626 }
2627
2628 /* Check if the context descriptor is needed for TX offloading */
2629 static inline uint16_t
2630 ice_calc_context_desc(uint64_t flags)
2631 {
2632         static uint64_t mask = RTE_MBUF_F_TX_TCP_SEG |
2633                 RTE_MBUF_F_TX_QINQ |
2634                 RTE_MBUF_F_TX_OUTER_IP_CKSUM |
2635                 RTE_MBUF_F_TX_TUNNEL_MASK |
2636                 RTE_MBUF_F_TX_IEEE1588_TMST;
2637
2638         return (flags & mask) ? 1 : 0;
2639 }
2640
2641 /* set ice TSO context descriptor */
2642 static inline uint64_t
2643 ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
2644 {
2645         uint64_t ctx_desc = 0;
2646         uint32_t cd_cmd, hdr_len, cd_tso_len;
2647
2648         if (!tx_offload.l4_len) {
2649                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
2650                 return ctx_desc;
2651         }
2652
2653         hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
2654         hdr_len += (mbuf->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
2655                    tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
2656
2657         cd_cmd = ICE_TX_CTX_DESC_TSO;
2658         cd_tso_len = mbuf->pkt_len - hdr_len;
2659         ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
2660                     ((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2661                     ((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
2662
2663         return ctx_desc;
2664 }
2665
2666 /* HW requires that TX buffer size ranges from 1B up to (16K-1)B. */
2667 #define ICE_MAX_DATA_PER_TXD \
2668         (ICE_TXD_QW1_TX_BUF_SZ_M >> ICE_TXD_QW1_TX_BUF_SZ_S)
2669 /* Calculate the number of TX descriptors needed for each pkt */
2670 static inline uint16_t
2671 ice_calc_pkt_desc(struct rte_mbuf *tx_pkt)
2672 {
2673         struct rte_mbuf *txd = tx_pkt;
2674         uint16_t count = 0;
2675
2676         while (txd != NULL) {
2677                 count += DIV_ROUND_UP(txd->data_len, ICE_MAX_DATA_PER_TXD);
2678                 txd = txd->next;
2679         }
2680
2681         return count;
2682 }
2683
2684 uint16_t
2685 ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2686 {
2687         struct ice_tx_queue *txq;
2688         volatile struct ice_tx_desc *tx_ring;
2689         volatile struct ice_tx_desc *txd;
2690         struct ice_tx_entry *sw_ring;
2691         struct ice_tx_entry *txe, *txn;
2692         struct rte_mbuf *tx_pkt;
2693         struct rte_mbuf *m_seg;
2694         uint32_t cd_tunneling_params;
2695         uint16_t tx_id;
2696         uint16_t nb_tx;
2697         uint16_t nb_used;
2698         uint16_t nb_ctx;
2699         uint32_t td_cmd = 0;
2700         uint32_t td_offset = 0;
2701         uint32_t td_tag = 0;
2702         uint16_t tx_last;
2703         uint16_t slen;
2704         uint64_t buf_dma_addr;
2705         uint64_t ol_flags;
2706         union ice_tx_offload tx_offload = {0};
2707
2708         txq = tx_queue;
2709         sw_ring = txq->sw_ring;
2710         tx_ring = txq->tx_ring;
2711         tx_id = txq->tx_tail;
2712         txe = &sw_ring[tx_id];
2713
2714         /* Check if the descriptor ring needs to be cleaned. */
2715         if (txq->nb_tx_free < txq->tx_free_thresh)
2716                 (void)ice_xmit_cleanup(txq);
2717
2718         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2719                 tx_pkt = *tx_pkts++;
2720
2721                 td_cmd = 0;
2722                 td_tag = 0;
2723                 td_offset = 0;
2724                 ol_flags = tx_pkt->ol_flags;
2725                 tx_offload.l2_len = tx_pkt->l2_len;
2726                 tx_offload.l3_len = tx_pkt->l3_len;
2727                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
2728                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
2729                 tx_offload.l4_len = tx_pkt->l4_len;
2730                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
2731                 /* Calculate the number of context descriptors needed. */
2732                 nb_ctx = ice_calc_context_desc(ol_flags);
2733
2734                 /* The number of descriptors that must be allocated for
2735                  * a packet equals to the number of the segments of that
2736                  * packet plus the number of context descriptor if needed.
2737                  * Recalculate the needed tx descs when TSO enabled in case
2738                  * the mbuf data size exceeds max data size that hw allows
2739                  * per tx desc.
2740                  */
2741                 if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
2742                         nb_used = (uint16_t)(ice_calc_pkt_desc(tx_pkt) +
2743                                              nb_ctx);
2744                 else
2745                         nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
2746                 tx_last = (uint16_t)(tx_id + nb_used - 1);
2747
2748                 /* Circular ring */
2749                 if (tx_last >= txq->nb_tx_desc)
2750                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
2751
2752                 if (nb_used > txq->nb_tx_free) {
2753                         if (ice_xmit_cleanup(txq) != 0) {
2754                                 if (nb_tx == 0)
2755                                         return 0;
2756                                 goto end_of_tx;
2757                         }
2758                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
2759                                 while (nb_used > txq->nb_tx_free) {
2760                                         if (ice_xmit_cleanup(txq) != 0) {
2761                                                 if (nb_tx == 0)
2762                                                         return 0;
2763                                                 goto end_of_tx;
2764                                         }
2765                                 }
2766                         }
2767                 }
2768
2769                 /* Descriptor based VLAN insertion */
2770                 if (ol_flags & (RTE_MBUF_F_TX_VLAN | RTE_MBUF_F_TX_QINQ)) {
2771                         td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
2772                         td_tag = tx_pkt->vlan_tci;
2773                 }
2774
2775                 /* Fill in tunneling parameters if necessary */
2776                 cd_tunneling_params = 0;
2777                 if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
2778                         ice_parse_tunneling_params(ol_flags, tx_offload,
2779                                                    &cd_tunneling_params);
2780
2781                 /* Enable checksum offloading */
2782                 if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK)
2783                         ice_txd_enable_checksum(ol_flags, &td_cmd,
2784                                                 &td_offset, tx_offload);
2785
2786                 if (nb_ctx) {
2787                         /* Setup TX context descriptor if required */
2788                         volatile struct ice_tx_ctx_desc *ctx_txd =
2789                                 (volatile struct ice_tx_ctx_desc *)
2790                                         &tx_ring[tx_id];
2791                         uint16_t cd_l2tag2 = 0;
2792                         uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
2793
2794                         txn = &sw_ring[txe->next_id];
2795                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2796                         if (txe->mbuf) {
2797                                 rte_pktmbuf_free_seg(txe->mbuf);
2798                                 txe->mbuf = NULL;
2799                         }
2800
2801                         if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
2802                                 cd_type_cmd_tso_mss |=
2803                                         ice_set_tso_ctx(tx_pkt, tx_offload);
2804                         else if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
2805                                 cd_type_cmd_tso_mss |=
2806                                         ((uint64_t)ICE_TX_CTX_DESC_TSYN <<
2807                                         ICE_TXD_CTX_QW1_CMD_S);
2808
2809                         ctx_txd->tunneling_params =
2810                                 rte_cpu_to_le_32(cd_tunneling_params);
2811
2812                         /* TX context descriptor based double VLAN insert */
2813                         if (ol_flags & RTE_MBUF_F_TX_QINQ) {
2814                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
2815                                 cd_type_cmd_tso_mss |=
2816                                         ((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
2817                                          ICE_TXD_CTX_QW1_CMD_S);
2818                         }
2819                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
2820                         ctx_txd->qw1 =
2821                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2822
2823                         txe->last_id = tx_last;
2824                         tx_id = txe->next_id;
2825                         txe = txn;
2826                 }
2827                 m_seg = tx_pkt;
2828
2829                 do {
2830                         txd = &tx_ring[tx_id];
2831                         txn = &sw_ring[txe->next_id];
2832
2833                         if (txe->mbuf)
2834                                 rte_pktmbuf_free_seg(txe->mbuf);
2835                         txe->mbuf = m_seg;
2836
2837                         /* Setup TX Descriptor */
2838                         slen = m_seg->data_len;
2839                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2840
2841                         while ((ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
2842                                 unlikely(slen > ICE_MAX_DATA_PER_TXD)) {
2843                                 txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2844                                 txd->cmd_type_offset_bsz =
2845                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2846                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2847                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2848                                 ((uint64_t)ICE_MAX_DATA_PER_TXD <<
2849                                  ICE_TXD_QW1_TX_BUF_SZ_S) |
2850                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2851
2852                                 buf_dma_addr += ICE_MAX_DATA_PER_TXD;
2853                                 slen -= ICE_MAX_DATA_PER_TXD;
2854
2855                                 txe->last_id = tx_last;
2856                                 tx_id = txe->next_id;
2857                                 txe = txn;
2858                                 txd = &tx_ring[tx_id];
2859                                 txn = &sw_ring[txe->next_id];
2860                         }
2861
2862                         txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2863                         txd->cmd_type_offset_bsz =
2864                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2865                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2866                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2867                                 ((uint64_t)slen << ICE_TXD_QW1_TX_BUF_SZ_S) |
2868                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2869
2870                         txe->last_id = tx_last;
2871                         tx_id = txe->next_id;
2872                         txe = txn;
2873                         m_seg = m_seg->next;
2874                 } while (m_seg);
2875
2876                 /* fill the last descriptor with End of Packet (EOP) bit */
2877                 td_cmd |= ICE_TX_DESC_CMD_EOP;
2878                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
2879                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
2880
2881                 /* set RS bit on the last descriptor of one packet */
2882                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
2883                         PMD_TX_LOG(DEBUG,
2884                                    "Setting RS bit on TXD id="
2885                                    "%4u (port=%d queue=%d)",
2886                                    tx_last, txq->port_id, txq->queue_id);
2887
2888                         td_cmd |= ICE_TX_DESC_CMD_RS;
2889
2890                         /* Update txq RS bit counters */
2891                         txq->nb_tx_used = 0;
2892                 }
2893                 txd->cmd_type_offset_bsz |=
2894                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2895                                          ICE_TXD_QW1_CMD_S);
2896         }
2897 end_of_tx:
2898         /* update Tail register */
2899         ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
2900         txq->tx_tail = tx_id;
2901
2902         return nb_tx;
2903 }
2904
2905 static __rte_always_inline int
2906 ice_tx_free_bufs(struct ice_tx_queue *txq)
2907 {
2908         struct ice_tx_entry *txep;
2909         uint16_t i;
2910
2911         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
2912              rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
2913             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
2914                 return 0;
2915
2916         txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
2917
2918         for (i = 0; i < txq->tx_rs_thresh; i++)
2919                 rte_prefetch0((txep + i)->mbuf);
2920
2921         if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) {
2922                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2923                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
2924                         txep->mbuf = NULL;
2925                 }
2926         } else {
2927                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2928                         rte_pktmbuf_free_seg(txep->mbuf);
2929                         txep->mbuf = NULL;
2930                 }
2931         }
2932
2933         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
2934         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
2935         if (txq->tx_next_dd >= txq->nb_tx_desc)
2936                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2937
2938         return txq->tx_rs_thresh;
2939 }
2940
2941 static int
2942 ice_tx_done_cleanup_full(struct ice_tx_queue *txq,
2943                         uint32_t free_cnt)
2944 {
2945         struct ice_tx_entry *swr_ring = txq->sw_ring;
2946         uint16_t i, tx_last, tx_id;
2947         uint16_t nb_tx_free_last;
2948         uint16_t nb_tx_to_clean;
2949         uint32_t pkt_cnt;
2950
2951         /* Start free mbuf from the next of tx_tail */
2952         tx_last = txq->tx_tail;
2953         tx_id  = swr_ring[tx_last].next_id;
2954
2955         if (txq->nb_tx_free == 0 && ice_xmit_cleanup(txq))
2956                 return 0;
2957
2958         nb_tx_to_clean = txq->nb_tx_free;
2959         nb_tx_free_last = txq->nb_tx_free;
2960         if (!free_cnt)
2961                 free_cnt = txq->nb_tx_desc;
2962
2963         /* Loop through swr_ring to count the amount of
2964          * freeable mubfs and packets.
2965          */
2966         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2967                 for (i = 0; i < nb_tx_to_clean &&
2968                         pkt_cnt < free_cnt &&
2969                         tx_id != tx_last; i++) {
2970                         if (swr_ring[tx_id].mbuf != NULL) {
2971                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2972                                 swr_ring[tx_id].mbuf = NULL;
2973
2974                                 /*
2975                                  * last segment in the packet,
2976                                  * increment packet count
2977                                  */
2978                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2979                         }
2980
2981                         tx_id = swr_ring[tx_id].next_id;
2982                 }
2983
2984                 if (txq->tx_rs_thresh > txq->nb_tx_desc -
2985                         txq->nb_tx_free || tx_id == tx_last)
2986                         break;
2987
2988                 if (pkt_cnt < free_cnt) {
2989                         if (ice_xmit_cleanup(txq))
2990                                 break;
2991
2992                         nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
2993                         nb_tx_free_last = txq->nb_tx_free;
2994                 }
2995         }
2996
2997         return (int)pkt_cnt;
2998 }
2999
3000 #ifdef RTE_ARCH_X86
3001 static int
3002 ice_tx_done_cleanup_vec(struct ice_tx_queue *txq __rte_unused,
3003                         uint32_t free_cnt __rte_unused)
3004 {
3005         return -ENOTSUP;
3006 }
3007 #endif
3008
3009 static int
3010 ice_tx_done_cleanup_simple(struct ice_tx_queue *txq,
3011                         uint32_t free_cnt)
3012 {
3013         int i, n, cnt;
3014
3015         if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
3016                 free_cnt = txq->nb_tx_desc;
3017
3018         cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
3019
3020         for (i = 0; i < cnt; i += n) {
3021                 if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
3022                         break;
3023
3024                 n = ice_tx_free_bufs(txq);
3025
3026                 if (n == 0)
3027                         break;
3028         }
3029
3030         return i;
3031 }
3032
3033 int
3034 ice_tx_done_cleanup(void *txq, uint32_t free_cnt)
3035 {
3036         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
3037         struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
3038         struct ice_adapter *ad =
3039                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3040
3041 #ifdef RTE_ARCH_X86
3042         if (ad->tx_vec_allowed)
3043                 return ice_tx_done_cleanup_vec(q, free_cnt);
3044 #endif
3045         if (ad->tx_simple_allowed)
3046                 return ice_tx_done_cleanup_simple(q, free_cnt);
3047         else
3048                 return ice_tx_done_cleanup_full(q, free_cnt);
3049 }
3050
3051 /* Populate 4 descriptors with data from 4 mbufs */
3052 static inline void
3053 tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3054 {
3055         uint64_t dma_addr;
3056         uint32_t i;
3057
3058         for (i = 0; i < 4; i++, txdp++, pkts++) {
3059                 dma_addr = rte_mbuf_data_iova(*pkts);
3060                 txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3061                 txdp->cmd_type_offset_bsz =
3062                         ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3063                                        (*pkts)->data_len, 0);
3064         }
3065 }
3066
3067 /* Populate 1 descriptor with data from 1 mbuf */
3068 static inline void
3069 tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3070 {
3071         uint64_t dma_addr;
3072
3073         dma_addr = rte_mbuf_data_iova(*pkts);
3074         txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3075         txdp->cmd_type_offset_bsz =
3076                 ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3077                                (*pkts)->data_len, 0);
3078 }
3079
3080 static inline void
3081 ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
3082                     uint16_t nb_pkts)
3083 {
3084         volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
3085         struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
3086         const int N_PER_LOOP = 4;
3087         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
3088         int mainpart, leftover;
3089         int i, j;
3090
3091         /**
3092          * Process most of the packets in chunks of N pkts.  Any
3093          * leftover packets will get processed one at a time.
3094          */
3095         mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
3096         leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
3097         for (i = 0; i < mainpart; i += N_PER_LOOP) {
3098                 /* Copy N mbuf pointers to the S/W ring */
3099                 for (j = 0; j < N_PER_LOOP; ++j)
3100                         (txep + i + j)->mbuf = *(pkts + i + j);
3101                 tx4(txdp + i, pkts + i);
3102         }
3103
3104         if (unlikely(leftover > 0)) {
3105                 for (i = 0; i < leftover; ++i) {
3106                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
3107                         tx1(txdp + mainpart + i, pkts + mainpart + i);
3108                 }
3109         }
3110 }
3111
3112 static inline uint16_t
3113 tx_xmit_pkts(struct ice_tx_queue *txq,
3114              struct rte_mbuf **tx_pkts,
3115              uint16_t nb_pkts)
3116 {
3117         volatile struct ice_tx_desc *txr = txq->tx_ring;
3118         uint16_t n = 0;
3119
3120         /**
3121          * Begin scanning the H/W ring for done descriptors when the number
3122          * of available descriptors drops below tx_free_thresh. For each done
3123          * descriptor, free the associated buffer.
3124          */
3125         if (txq->nb_tx_free < txq->tx_free_thresh)
3126                 ice_tx_free_bufs(txq);
3127
3128         /* Use available descriptor only */
3129         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
3130         if (unlikely(!nb_pkts))
3131                 return 0;
3132
3133         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
3134         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
3135                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
3136                 ice_tx_fill_hw_ring(txq, tx_pkts, n);
3137                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3138                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3139                                          ICE_TXD_QW1_CMD_S);
3140                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3141                 txq->tx_tail = 0;
3142         }
3143
3144         /* Fill hardware descriptor ring with mbuf data */
3145         ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
3146         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
3147
3148         /* Determine if RS bit needs to be set */
3149         if (txq->tx_tail > txq->tx_next_rs) {
3150                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3151                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3152                                          ICE_TXD_QW1_CMD_S);
3153                 txq->tx_next_rs =
3154                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
3155                 if (txq->tx_next_rs >= txq->nb_tx_desc)
3156                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3157         }
3158
3159         if (txq->tx_tail >= txq->nb_tx_desc)
3160                 txq->tx_tail = 0;
3161
3162         /* Update the tx tail register */
3163         ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
3164
3165         return nb_pkts;
3166 }
3167
3168 static uint16_t
3169 ice_xmit_pkts_simple(void *tx_queue,
3170                      struct rte_mbuf **tx_pkts,
3171                      uint16_t nb_pkts)
3172 {
3173         uint16_t nb_tx = 0;
3174
3175         if (likely(nb_pkts <= ICE_TX_MAX_BURST))
3176                 return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3177                                     tx_pkts, nb_pkts);
3178
3179         while (nb_pkts) {
3180                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
3181                                                       ICE_TX_MAX_BURST);
3182
3183                 ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3184                                    &tx_pkts[nb_tx], num);
3185                 nb_tx = (uint16_t)(nb_tx + ret);
3186                 nb_pkts = (uint16_t)(nb_pkts - ret);
3187                 if (ret < num)
3188                         break;
3189         }
3190
3191         return nb_tx;
3192 }
3193
3194 void __rte_cold
3195 ice_set_rx_function(struct rte_eth_dev *dev)
3196 {
3197         PMD_INIT_FUNC_TRACE();
3198         struct ice_adapter *ad =
3199                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3200 #ifdef RTE_ARCH_X86
3201         struct ice_rx_queue *rxq;
3202         int i;
3203         int rx_check_ret = -1;
3204
3205         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3206                 ad->rx_use_avx512 = false;
3207                 ad->rx_use_avx2 = false;
3208                 rx_check_ret = ice_rx_vec_dev_check(dev);
3209                 if (ad->ptp_ena)
3210                         rx_check_ret = -1;
3211                 ad->rx_vec_offload_support =
3212                                 (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH);
3213                 if (rx_check_ret >= 0 && ad->rx_bulk_alloc_allowed &&
3214                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3215                         ad->rx_vec_allowed = true;
3216                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3217                                 rxq = dev->data->rx_queues[i];
3218                                 if (rxq && ice_rxq_vec_setup(rxq)) {
3219                                         ad->rx_vec_allowed = false;
3220                                         break;
3221                                 }
3222                         }
3223
3224                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3225                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3226                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3227 #ifdef CC_AVX512_SUPPORT
3228                                 ad->rx_use_avx512 = true;
3229 #else
3230                         PMD_DRV_LOG(NOTICE,
3231                                 "AVX512 is not supported in build env");
3232 #endif
3233                         if (!ad->rx_use_avx512 &&
3234                         (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3235                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3236                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3237                                 ad->rx_use_avx2 = true;
3238
3239                 } else {
3240                         ad->rx_vec_allowed = false;
3241                 }
3242         }
3243
3244         if (ad->rx_vec_allowed) {
3245                 if (dev->data->scattered_rx) {
3246                         if (ad->rx_use_avx512) {
3247 #ifdef CC_AVX512_SUPPORT
3248                                 if (ad->rx_vec_offload_support) {
3249                                         PMD_DRV_LOG(NOTICE,
3250                                                 "Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
3251                                                 dev->data->port_id);
3252                                         dev->rx_pkt_burst =
3253                                                 ice_recv_scattered_pkts_vec_avx512_offload;
3254                                 } else {
3255                                         PMD_DRV_LOG(NOTICE,
3256                                                 "Using AVX512 Vector Scattered Rx (port %d).",
3257                                                 dev->data->port_id);
3258                                         dev->rx_pkt_burst =
3259                                                 ice_recv_scattered_pkts_vec_avx512;
3260                                 }
3261 #endif
3262                         } else if (ad->rx_use_avx2) {
3263                                 if (ad->rx_vec_offload_support) {
3264                                         PMD_DRV_LOG(NOTICE,
3265                                                     "Using AVX2 OFFLOAD Vector Scattered Rx (port %d).",
3266                                                     dev->data->port_id);
3267                                         dev->rx_pkt_burst =
3268                                                 ice_recv_scattered_pkts_vec_avx2_offload;
3269                                 } else {
3270                                         PMD_DRV_LOG(NOTICE,
3271                                                     "Using AVX2 Vector Scattered Rx (port %d).",
3272                                                     dev->data->port_id);
3273                                         dev->rx_pkt_burst =
3274                                                 ice_recv_scattered_pkts_vec_avx2;
3275                                 }
3276                         } else {
3277                                 PMD_DRV_LOG(DEBUG,
3278                                         "Using Vector Scattered Rx (port %d).",
3279                                         dev->data->port_id);
3280                                 dev->rx_pkt_burst = ice_recv_scattered_pkts_vec;
3281                         }
3282                 } else {
3283                         if (ad->rx_use_avx512) {
3284 #ifdef CC_AVX512_SUPPORT
3285                                 if (ad->rx_vec_offload_support) {
3286                                         PMD_DRV_LOG(NOTICE,
3287                                                 "Using AVX512 OFFLOAD Vector Rx (port %d).",
3288                                                 dev->data->port_id);
3289                                         dev->rx_pkt_burst =
3290                                                 ice_recv_pkts_vec_avx512_offload;
3291                                 } else {
3292                                         PMD_DRV_LOG(NOTICE,
3293                                                 "Using AVX512 Vector Rx (port %d).",
3294                                                 dev->data->port_id);
3295                                         dev->rx_pkt_burst =
3296                                                 ice_recv_pkts_vec_avx512;
3297                                 }
3298 #endif
3299                         } else if (ad->rx_use_avx2) {
3300                                 if (ad->rx_vec_offload_support) {
3301                                         PMD_DRV_LOG(NOTICE,
3302                                                     "Using AVX2 OFFLOAD Vector Rx (port %d).",
3303                                                     dev->data->port_id);
3304                                         dev->rx_pkt_burst =
3305                                                 ice_recv_pkts_vec_avx2_offload;
3306                                 } else {
3307                                         PMD_DRV_LOG(NOTICE,
3308                                                     "Using AVX2 Vector Rx (port %d).",
3309                                                     dev->data->port_id);
3310                                         dev->rx_pkt_burst =
3311                                                 ice_recv_pkts_vec_avx2;
3312                                 }
3313                         } else {
3314                                 PMD_DRV_LOG(DEBUG,
3315                                         "Using Vector Rx (port %d).",
3316                                         dev->data->port_id);
3317                                 dev->rx_pkt_burst = ice_recv_pkts_vec;
3318                         }
3319                 }
3320                 return;
3321         }
3322
3323 #endif
3324
3325         if (dev->data->scattered_rx) {
3326                 /* Set the non-LRO scattered function */
3327                 PMD_INIT_LOG(DEBUG,
3328                              "Using a Scattered function on port %d.",
3329                              dev->data->port_id);
3330                 dev->rx_pkt_burst = ice_recv_scattered_pkts;
3331         } else if (ad->rx_bulk_alloc_allowed) {
3332                 PMD_INIT_LOG(DEBUG,
3333                              "Rx Burst Bulk Alloc Preconditions are "
3334                              "satisfied. Rx Burst Bulk Alloc function "
3335                              "will be used on port %d.",
3336                              dev->data->port_id);
3337                 dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
3338         } else {
3339                 PMD_INIT_LOG(DEBUG,
3340                              "Rx Burst Bulk Alloc Preconditions are not "
3341                              "satisfied, Normal Rx will be used on port %d.",
3342                              dev->data->port_id);
3343                 dev->rx_pkt_burst = ice_recv_pkts;
3344         }
3345 }
3346
3347 static const struct {
3348         eth_rx_burst_t pkt_burst;
3349         const char *info;
3350 } ice_rx_burst_infos[] = {
3351         { ice_recv_scattered_pkts,          "Scalar Scattered" },
3352         { ice_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3353         { ice_recv_pkts,                    "Scalar" },
3354 #ifdef RTE_ARCH_X86
3355 #ifdef CC_AVX512_SUPPORT
3356         { ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
3357         { ice_recv_scattered_pkts_vec_avx512_offload, "Offload Vector AVX512 Scattered" },
3358         { ice_recv_pkts_vec_avx512,           "Vector AVX512" },
3359         { ice_recv_pkts_vec_avx512_offload,   "Offload Vector AVX512" },
3360 #endif
3361         { ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3362         { ice_recv_scattered_pkts_vec_avx2_offload, "Offload Vector AVX2 Scattered" },
3363         { ice_recv_pkts_vec_avx2,           "Vector AVX2" },
3364         { ice_recv_pkts_vec_avx2_offload,   "Offload Vector AVX2" },
3365         { ice_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3366         { ice_recv_pkts_vec,                "Vector SSE" },
3367 #endif
3368 };
3369
3370 int
3371 ice_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3372                       struct rte_eth_burst_mode *mode)
3373 {
3374         eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3375         int ret = -EINVAL;
3376         unsigned int i;
3377
3378         for (i = 0; i < RTE_DIM(ice_rx_burst_infos); ++i) {
3379                 if (pkt_burst == ice_rx_burst_infos[i].pkt_burst) {
3380                         snprintf(mode->info, sizeof(mode->info), "%s",
3381                                  ice_rx_burst_infos[i].info);
3382                         ret = 0;
3383                         break;
3384                 }
3385         }
3386
3387         return ret;
3388 }
3389
3390 void __rte_cold
3391 ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ice_tx_queue *txq)
3392 {
3393         struct ice_adapter *ad =
3394                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3395
3396         /* Use a simple Tx queue if possible (only fast free is allowed) */
3397         ad->tx_simple_allowed =
3398                 (txq->offloads ==
3399                 (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) &&
3400                 txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
3401
3402         if (ad->tx_simple_allowed)
3403                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3404                              txq->queue_id);
3405         else
3406                 PMD_INIT_LOG(DEBUG,
3407                              "Simple Tx can NOT be enabled on Tx queue %u.",
3408                              txq->queue_id);
3409 }
3410
3411 /*********************************************************************
3412  *
3413  *  TX prep functions
3414  *
3415  **********************************************************************/
3416 /* The default values of TSO MSS */
3417 #define ICE_MIN_TSO_MSS            64
3418 #define ICE_MAX_TSO_MSS            9728
3419 #define ICE_MAX_TSO_FRAME_SIZE     262144
3420 uint16_t
3421 ice_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
3422               uint16_t nb_pkts)
3423 {
3424         int i, ret;
3425         uint64_t ol_flags;
3426         struct rte_mbuf *m;
3427
3428         for (i = 0; i < nb_pkts; i++) {
3429                 m = tx_pkts[i];
3430                 ol_flags = m->ol_flags;
3431
3432                 if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
3433                     (m->tso_segsz < ICE_MIN_TSO_MSS ||
3434                      m->tso_segsz > ICE_MAX_TSO_MSS ||
3435                      m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
3436                         /**
3437                          * MSS outside the range are considered malicious
3438                          */
3439                         rte_errno = EINVAL;
3440                         return i;
3441                 }
3442
3443 #ifdef RTE_ETHDEV_DEBUG_TX
3444                 ret = rte_validate_tx_offload(m);
3445                 if (ret != 0) {
3446                         rte_errno = -ret;
3447                         return i;
3448                 }
3449 #endif
3450                 ret = rte_net_intel_cksum_prepare(m);
3451                 if (ret != 0) {
3452                         rte_errno = -ret;
3453                         return i;
3454                 }
3455         }
3456         return i;
3457 }
3458
3459 void __rte_cold
3460 ice_set_tx_function(struct rte_eth_dev *dev)
3461 {
3462         struct ice_adapter *ad =
3463                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3464 #ifdef RTE_ARCH_X86
3465         struct ice_tx_queue *txq;
3466         int i;
3467         int tx_check_ret = -1;
3468
3469         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3470                 ad->tx_use_avx2 = false;
3471                 ad->tx_use_avx512 = false;
3472                 tx_check_ret = ice_tx_vec_dev_check(dev);
3473                 if (tx_check_ret >= 0 &&
3474                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3475                         ad->tx_vec_allowed = true;
3476
3477                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3478                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3479                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3480 #ifdef CC_AVX512_SUPPORT
3481                                 ad->tx_use_avx512 = true;
3482 #else
3483                         PMD_DRV_LOG(NOTICE,
3484                                 "AVX512 is not supported in build env");
3485 #endif
3486                         if (!ad->tx_use_avx512 &&
3487                                 (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3488                                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3489                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3490                                 ad->tx_use_avx2 = true;
3491
3492                         if (!ad->tx_use_avx2 && !ad->tx_use_avx512 &&
3493                                 tx_check_ret == ICE_VECTOR_OFFLOAD_PATH)
3494                                 ad->tx_vec_allowed = false;
3495
3496                         if (ad->tx_vec_allowed) {
3497                                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
3498                                         txq = dev->data->tx_queues[i];
3499                                         if (txq && ice_txq_vec_setup(txq)) {
3500                                                 ad->tx_vec_allowed = false;
3501                                                 break;
3502                                         }
3503                                 }
3504                         }
3505                 } else {
3506                         ad->tx_vec_allowed = false;
3507                 }
3508         }
3509
3510         if (ad->tx_vec_allowed) {
3511                 dev->tx_pkt_prepare = NULL;
3512                 if (ad->tx_use_avx512) {
3513 #ifdef CC_AVX512_SUPPORT
3514                         if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3515                                 PMD_DRV_LOG(NOTICE,
3516                                             "Using AVX512 OFFLOAD Vector Tx (port %d).",
3517                                             dev->data->port_id);
3518                                 dev->tx_pkt_burst =
3519                                         ice_xmit_pkts_vec_avx512_offload;
3520                                 dev->tx_pkt_prepare = ice_prep_pkts;
3521                         } else {
3522                                 PMD_DRV_LOG(NOTICE,
3523                                             "Using AVX512 Vector Tx (port %d).",
3524                                             dev->data->port_id);
3525                                 dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
3526                         }
3527 #endif
3528                 } else {
3529                         if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3530                                 PMD_DRV_LOG(NOTICE,
3531                                             "Using AVX2 OFFLOAD Vector Tx (port %d).",
3532                                             dev->data->port_id);
3533                                 dev->tx_pkt_burst =
3534                                         ice_xmit_pkts_vec_avx2_offload;
3535                                 dev->tx_pkt_prepare = ice_prep_pkts;
3536                         } else {
3537                                 PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
3538                                             ad->tx_use_avx2 ? "avx2 " : "",
3539                                             dev->data->port_id);
3540                                 dev->tx_pkt_burst = ad->tx_use_avx2 ?
3541                                                     ice_xmit_pkts_vec_avx2 :
3542                                                     ice_xmit_pkts_vec;
3543                         }
3544                 }
3545
3546                 return;
3547         }
3548 #endif
3549
3550         if (ad->tx_simple_allowed) {
3551                 PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3552                 dev->tx_pkt_burst = ice_xmit_pkts_simple;
3553                 dev->tx_pkt_prepare = NULL;
3554         } else {
3555                 PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
3556                 dev->tx_pkt_burst = ice_xmit_pkts;
3557                 dev->tx_pkt_prepare = ice_prep_pkts;
3558         }
3559 }
3560
3561 static const struct {
3562         eth_tx_burst_t pkt_burst;
3563         const char *info;
3564 } ice_tx_burst_infos[] = {
3565         { ice_xmit_pkts_simple,   "Scalar Simple" },
3566         { ice_xmit_pkts,          "Scalar" },
3567 #ifdef RTE_ARCH_X86
3568 #ifdef CC_AVX512_SUPPORT
3569         { ice_xmit_pkts_vec_avx512, "Vector AVX512" },
3570         { ice_xmit_pkts_vec_avx512_offload, "Offload Vector AVX512" },
3571 #endif
3572         { ice_xmit_pkts_vec_avx2, "Vector AVX2" },
3573         { ice_xmit_pkts_vec,      "Vector SSE" },
3574 #endif
3575 };
3576
3577 int
3578 ice_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3579                       struct rte_eth_burst_mode *mode)
3580 {
3581         eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
3582         int ret = -EINVAL;
3583         unsigned int i;
3584
3585         for (i = 0; i < RTE_DIM(ice_tx_burst_infos); ++i) {
3586                 if (pkt_burst == ice_tx_burst_infos[i].pkt_burst) {
3587                         snprintf(mode->info, sizeof(mode->info), "%s",
3588                                  ice_tx_burst_infos[i].info);
3589                         ret = 0;
3590                         break;
3591                 }
3592         }
3593
3594         return ret;
3595 }
3596
3597 /* For each value it means, datasheet of hardware can tell more details
3598  *
3599  * @note: fix ice_dev_supported_ptypes_get() if any change here.
3600  */
3601 static inline uint32_t
3602 ice_get_default_pkt_type(uint16_t ptype)
3603 {
3604         static const uint32_t type_table[ICE_MAX_PKT_TYPE]
3605                 __rte_cache_aligned = {
3606                 /* L2 types */
3607                 /* [0] reserved */
3608                 [1] = RTE_PTYPE_L2_ETHER,
3609                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
3610                 /* [3] - [5] reserved */
3611                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
3612                 /* [7] - [10] reserved */
3613                 [11] = RTE_PTYPE_L2_ETHER_ARP,
3614                 /* [12] - [21] reserved */
3615
3616                 /* Non tunneled IPv4 */
3617                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3618                        RTE_PTYPE_L4_FRAG,
3619                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3620                        RTE_PTYPE_L4_NONFRAG,
3621                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3622                        RTE_PTYPE_L4_UDP,
3623                 /* [25] reserved */
3624                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3625                        RTE_PTYPE_L4_TCP,
3626                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3627                        RTE_PTYPE_L4_SCTP,
3628                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3629                        RTE_PTYPE_L4_ICMP,
3630
3631                 /* IPv4 --> IPv4 */
3632                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3633                        RTE_PTYPE_TUNNEL_IP |
3634                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3635                        RTE_PTYPE_INNER_L4_FRAG,
3636                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3637                        RTE_PTYPE_TUNNEL_IP |
3638                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3639                        RTE_PTYPE_INNER_L4_NONFRAG,
3640                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3641                        RTE_PTYPE_TUNNEL_IP |
3642                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3643                        RTE_PTYPE_INNER_L4_UDP,
3644                 /* [32] reserved */
3645                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3646                        RTE_PTYPE_TUNNEL_IP |
3647                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3648                        RTE_PTYPE_INNER_L4_TCP,
3649                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3650                        RTE_PTYPE_TUNNEL_IP |
3651                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3652                        RTE_PTYPE_INNER_L4_SCTP,
3653                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3654                        RTE_PTYPE_TUNNEL_IP |
3655                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3656                        RTE_PTYPE_INNER_L4_ICMP,
3657
3658                 /* IPv4 --> IPv6 */
3659                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3660                        RTE_PTYPE_TUNNEL_IP |
3661                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3662                        RTE_PTYPE_INNER_L4_FRAG,
3663                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3664                        RTE_PTYPE_TUNNEL_IP |
3665                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3666                        RTE_PTYPE_INNER_L4_NONFRAG,
3667                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3668                        RTE_PTYPE_TUNNEL_IP |
3669                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3670                        RTE_PTYPE_INNER_L4_UDP,
3671                 /* [39] reserved */
3672                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3673                        RTE_PTYPE_TUNNEL_IP |
3674                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3675                        RTE_PTYPE_INNER_L4_TCP,
3676                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3677                        RTE_PTYPE_TUNNEL_IP |
3678                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3679                        RTE_PTYPE_INNER_L4_SCTP,
3680                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3681                        RTE_PTYPE_TUNNEL_IP |
3682                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3683                        RTE_PTYPE_INNER_L4_ICMP,
3684
3685                 /* IPv4 --> GRE/Teredo/VXLAN */
3686                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3687                        RTE_PTYPE_TUNNEL_GRENAT,
3688
3689                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
3690                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3691                        RTE_PTYPE_TUNNEL_GRENAT |
3692                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3693                        RTE_PTYPE_INNER_L4_FRAG,
3694                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3695                        RTE_PTYPE_TUNNEL_GRENAT |
3696                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3697                        RTE_PTYPE_INNER_L4_NONFRAG,
3698                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3699                        RTE_PTYPE_TUNNEL_GRENAT |
3700                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3701                        RTE_PTYPE_INNER_L4_UDP,
3702                 /* [47] reserved */
3703                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3704                        RTE_PTYPE_TUNNEL_GRENAT |
3705                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3706                        RTE_PTYPE_INNER_L4_TCP,
3707                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3708                        RTE_PTYPE_TUNNEL_GRENAT |
3709                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3710                        RTE_PTYPE_INNER_L4_SCTP,
3711                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3712                        RTE_PTYPE_TUNNEL_GRENAT |
3713                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3714                        RTE_PTYPE_INNER_L4_ICMP,
3715
3716                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
3717                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3718                        RTE_PTYPE_TUNNEL_GRENAT |
3719                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3720                        RTE_PTYPE_INNER_L4_FRAG,
3721                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3722                        RTE_PTYPE_TUNNEL_GRENAT |
3723                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3724                        RTE_PTYPE_INNER_L4_NONFRAG,
3725                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3726                        RTE_PTYPE_TUNNEL_GRENAT |
3727                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3728                        RTE_PTYPE_INNER_L4_UDP,
3729                 /* [54] reserved */
3730                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3731                        RTE_PTYPE_TUNNEL_GRENAT |
3732                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3733                        RTE_PTYPE_INNER_L4_TCP,
3734                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3735                        RTE_PTYPE_TUNNEL_GRENAT |
3736                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3737                        RTE_PTYPE_INNER_L4_SCTP,
3738                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3739                        RTE_PTYPE_TUNNEL_GRENAT |
3740                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3741                        RTE_PTYPE_INNER_L4_ICMP,
3742
3743                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
3744                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3745                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3746
3747                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3748                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3749                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3750                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3751                        RTE_PTYPE_INNER_L4_FRAG,
3752                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3753                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3754                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3755                        RTE_PTYPE_INNER_L4_NONFRAG,
3756                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3757                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3758                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3759                        RTE_PTYPE_INNER_L4_UDP,
3760                 /* [62] reserved */
3761                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3762                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3763                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3764                        RTE_PTYPE_INNER_L4_TCP,
3765                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3766                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3767                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3768                        RTE_PTYPE_INNER_L4_SCTP,
3769                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3770                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3771                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3772                        RTE_PTYPE_INNER_L4_ICMP,
3773
3774                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3775                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3776                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3777                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3778                        RTE_PTYPE_INNER_L4_FRAG,
3779                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3780                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3781                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3782                        RTE_PTYPE_INNER_L4_NONFRAG,
3783                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3784                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3785                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3786                        RTE_PTYPE_INNER_L4_UDP,
3787                 /* [69] reserved */
3788                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3789                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3790                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3791                        RTE_PTYPE_INNER_L4_TCP,
3792                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3793                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3794                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3795                        RTE_PTYPE_INNER_L4_SCTP,
3796                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3797                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3798                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3799                        RTE_PTYPE_INNER_L4_ICMP,
3800                 /* [73] - [87] reserved */
3801
3802                 /* Non tunneled IPv6 */
3803                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3804                        RTE_PTYPE_L4_FRAG,
3805                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3806                        RTE_PTYPE_L4_NONFRAG,
3807                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3808                        RTE_PTYPE_L4_UDP,
3809                 /* [91] reserved */
3810                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3811                        RTE_PTYPE_L4_TCP,
3812                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3813                        RTE_PTYPE_L4_SCTP,
3814                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3815                        RTE_PTYPE_L4_ICMP,
3816
3817                 /* IPv6 --> IPv4 */
3818                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3819                        RTE_PTYPE_TUNNEL_IP |
3820                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3821                        RTE_PTYPE_INNER_L4_FRAG,
3822                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3823                        RTE_PTYPE_TUNNEL_IP |
3824                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3825                        RTE_PTYPE_INNER_L4_NONFRAG,
3826                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3827                        RTE_PTYPE_TUNNEL_IP |
3828                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3829                        RTE_PTYPE_INNER_L4_UDP,
3830                 /* [98] reserved */
3831                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3832                        RTE_PTYPE_TUNNEL_IP |
3833                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3834                        RTE_PTYPE_INNER_L4_TCP,
3835                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3836                         RTE_PTYPE_TUNNEL_IP |
3837                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3838                         RTE_PTYPE_INNER_L4_SCTP,
3839                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3840                         RTE_PTYPE_TUNNEL_IP |
3841                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3842                         RTE_PTYPE_INNER_L4_ICMP,
3843
3844                 /* IPv6 --> IPv6 */
3845                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3846                         RTE_PTYPE_TUNNEL_IP |
3847                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3848                         RTE_PTYPE_INNER_L4_FRAG,
3849                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3850                         RTE_PTYPE_TUNNEL_IP |
3851                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3852                         RTE_PTYPE_INNER_L4_NONFRAG,
3853                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3854                         RTE_PTYPE_TUNNEL_IP |
3855                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3856                         RTE_PTYPE_INNER_L4_UDP,
3857                 /* [105] reserved */
3858                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3859                         RTE_PTYPE_TUNNEL_IP |
3860                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3861                         RTE_PTYPE_INNER_L4_TCP,
3862                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3863                         RTE_PTYPE_TUNNEL_IP |
3864                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3865                         RTE_PTYPE_INNER_L4_SCTP,
3866                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3867                         RTE_PTYPE_TUNNEL_IP |
3868                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3869                         RTE_PTYPE_INNER_L4_ICMP,
3870
3871                 /* IPv6 --> GRE/Teredo/VXLAN */
3872                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3873                         RTE_PTYPE_TUNNEL_GRENAT,
3874
3875                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3876                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3877                         RTE_PTYPE_TUNNEL_GRENAT |
3878                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3879                         RTE_PTYPE_INNER_L4_FRAG,
3880                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3881                         RTE_PTYPE_TUNNEL_GRENAT |
3882                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3883                         RTE_PTYPE_INNER_L4_NONFRAG,
3884                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3885                         RTE_PTYPE_TUNNEL_GRENAT |
3886                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3887                         RTE_PTYPE_INNER_L4_UDP,
3888                 /* [113] reserved */
3889                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3890                         RTE_PTYPE_TUNNEL_GRENAT |
3891                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3892                         RTE_PTYPE_INNER_L4_TCP,
3893                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3894                         RTE_PTYPE_TUNNEL_GRENAT |
3895                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3896                         RTE_PTYPE_INNER_L4_SCTP,
3897                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3898                         RTE_PTYPE_TUNNEL_GRENAT |
3899                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3900                         RTE_PTYPE_INNER_L4_ICMP,
3901
3902                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3903                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3904                         RTE_PTYPE_TUNNEL_GRENAT |
3905                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3906                         RTE_PTYPE_INNER_L4_FRAG,
3907                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3908                         RTE_PTYPE_TUNNEL_GRENAT |
3909                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3910                         RTE_PTYPE_INNER_L4_NONFRAG,
3911                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3912                         RTE_PTYPE_TUNNEL_GRENAT |
3913                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3914                         RTE_PTYPE_INNER_L4_UDP,
3915                 /* [120] reserved */
3916                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3917                         RTE_PTYPE_TUNNEL_GRENAT |
3918                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3919                         RTE_PTYPE_INNER_L4_TCP,
3920                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3921                         RTE_PTYPE_TUNNEL_GRENAT |
3922                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3923                         RTE_PTYPE_INNER_L4_SCTP,
3924                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3925                         RTE_PTYPE_TUNNEL_GRENAT |
3926                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3927                         RTE_PTYPE_INNER_L4_ICMP,
3928
3929                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3930                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3931                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3932
3933                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3934                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3935                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3936                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3937                         RTE_PTYPE_INNER_L4_FRAG,
3938                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3939                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3940                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3941                         RTE_PTYPE_INNER_L4_NONFRAG,
3942                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3943                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3944                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3945                         RTE_PTYPE_INNER_L4_UDP,
3946                 /* [128] reserved */
3947                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3948                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3949                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3950                         RTE_PTYPE_INNER_L4_TCP,
3951                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3952                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3953                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3954                         RTE_PTYPE_INNER_L4_SCTP,
3955                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3956                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3957                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3958                         RTE_PTYPE_INNER_L4_ICMP,
3959
3960                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3961                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3962                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3963                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3964                         RTE_PTYPE_INNER_L4_FRAG,
3965                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3966                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3967                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3968                         RTE_PTYPE_INNER_L4_NONFRAG,
3969                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3970                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3971                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3972                         RTE_PTYPE_INNER_L4_UDP,
3973                 /* [135] reserved */
3974                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3975                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3976                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3977                         RTE_PTYPE_INNER_L4_TCP,
3978                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3979                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3980                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3981                         RTE_PTYPE_INNER_L4_SCTP,
3982                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3983                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3984                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3985                         RTE_PTYPE_INNER_L4_ICMP,
3986                 /* [139] - [299] reserved */
3987
3988                 /* PPPoE */
3989                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3990                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3991
3992                 /* PPPoE --> IPv4 */
3993                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3994                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3995                         RTE_PTYPE_L4_FRAG,
3996                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3997                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3998                         RTE_PTYPE_L4_NONFRAG,
3999                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
4000                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4001                         RTE_PTYPE_L4_UDP,
4002                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
4003                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4004                         RTE_PTYPE_L4_TCP,
4005                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
4006                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4007                         RTE_PTYPE_L4_SCTP,
4008                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
4009                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4010                         RTE_PTYPE_L4_ICMP,
4011
4012                 /* PPPoE --> IPv6 */
4013                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
4014                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4015                         RTE_PTYPE_L4_FRAG,
4016                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
4017                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4018                         RTE_PTYPE_L4_NONFRAG,
4019                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
4020                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4021                         RTE_PTYPE_L4_UDP,
4022                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
4023                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4024                         RTE_PTYPE_L4_TCP,
4025                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
4026                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4027                         RTE_PTYPE_L4_SCTP,
4028                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
4029                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4030                         RTE_PTYPE_L4_ICMP,
4031                 /* [314] - [324] reserved */
4032
4033                 /* IPv4/IPv6 --> GTPC/GTPU */
4034                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4035                         RTE_PTYPE_TUNNEL_GTPC,
4036                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4037                         RTE_PTYPE_TUNNEL_GTPC,
4038                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4039                         RTE_PTYPE_TUNNEL_GTPC,
4040                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4041                         RTE_PTYPE_TUNNEL_GTPC,
4042                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4043                         RTE_PTYPE_TUNNEL_GTPU,
4044                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4045                         RTE_PTYPE_TUNNEL_GTPU,
4046
4047                 /* IPv4 --> GTPU --> IPv4 */
4048                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4049                         RTE_PTYPE_TUNNEL_GTPU |
4050                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4051                         RTE_PTYPE_INNER_L4_FRAG,
4052                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4053                         RTE_PTYPE_TUNNEL_GTPU |
4054                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4055                         RTE_PTYPE_INNER_L4_NONFRAG,
4056                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4057                         RTE_PTYPE_TUNNEL_GTPU |
4058                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4059                         RTE_PTYPE_INNER_L4_UDP,
4060                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4061                         RTE_PTYPE_TUNNEL_GTPU |
4062                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4063                         RTE_PTYPE_INNER_L4_TCP,
4064                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4065                         RTE_PTYPE_TUNNEL_GTPU |
4066                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4067                         RTE_PTYPE_INNER_L4_ICMP,
4068
4069                 /* IPv6 --> GTPU --> IPv4 */
4070                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4071                         RTE_PTYPE_TUNNEL_GTPU |
4072                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4073                         RTE_PTYPE_INNER_L4_FRAG,
4074                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4075                         RTE_PTYPE_TUNNEL_GTPU |
4076                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4077                         RTE_PTYPE_INNER_L4_NONFRAG,
4078                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4079                         RTE_PTYPE_TUNNEL_GTPU |
4080                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4081                         RTE_PTYPE_INNER_L4_UDP,
4082                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4083                         RTE_PTYPE_TUNNEL_GTPU |
4084                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4085                         RTE_PTYPE_INNER_L4_TCP,
4086                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4087                         RTE_PTYPE_TUNNEL_GTPU |
4088                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4089                         RTE_PTYPE_INNER_L4_ICMP,
4090
4091                 /* IPv4 --> GTPU --> IPv6 */
4092                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4093                         RTE_PTYPE_TUNNEL_GTPU |
4094                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4095                         RTE_PTYPE_INNER_L4_FRAG,
4096                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4097                         RTE_PTYPE_TUNNEL_GTPU |
4098                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4099                         RTE_PTYPE_INNER_L4_NONFRAG,
4100                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4101                         RTE_PTYPE_TUNNEL_GTPU |
4102                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4103                         RTE_PTYPE_INNER_L4_UDP,
4104                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4105                         RTE_PTYPE_TUNNEL_GTPU |
4106                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4107                         RTE_PTYPE_INNER_L4_TCP,
4108                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4109                         RTE_PTYPE_TUNNEL_GTPU |
4110                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4111                         RTE_PTYPE_INNER_L4_ICMP,
4112
4113                 /* IPv6 --> GTPU --> IPv6 */
4114                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4115                         RTE_PTYPE_TUNNEL_GTPU |
4116                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4117                         RTE_PTYPE_INNER_L4_FRAG,
4118                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4119                         RTE_PTYPE_TUNNEL_GTPU |
4120                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4121                         RTE_PTYPE_INNER_L4_NONFRAG,
4122                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4123                         RTE_PTYPE_TUNNEL_GTPU |
4124                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4125                         RTE_PTYPE_INNER_L4_UDP,
4126                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4127                         RTE_PTYPE_TUNNEL_GTPU |
4128                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4129                         RTE_PTYPE_INNER_L4_TCP,
4130                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4131                         RTE_PTYPE_TUNNEL_GTPU |
4132                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4133                         RTE_PTYPE_INNER_L4_ICMP,
4134
4135                 /* IPv4 --> UDP ECPRI */
4136                 [372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4137                         RTE_PTYPE_L4_UDP,
4138                 [373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4139                         RTE_PTYPE_L4_UDP,
4140                 [374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4141                         RTE_PTYPE_L4_UDP,
4142                 [375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4143                         RTE_PTYPE_L4_UDP,
4144                 [376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4145                         RTE_PTYPE_L4_UDP,
4146                 [377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4147                         RTE_PTYPE_L4_UDP,
4148                 [378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4149                         RTE_PTYPE_L4_UDP,
4150                 [379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4151                         RTE_PTYPE_L4_UDP,
4152                 [380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4153                         RTE_PTYPE_L4_UDP,
4154                 [381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4155                         RTE_PTYPE_L4_UDP,
4156
4157                 /* IPV6 --> UDP ECPRI */
4158                 [382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4159                         RTE_PTYPE_L4_UDP,
4160                 [383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4161                         RTE_PTYPE_L4_UDP,
4162                 [384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4163                         RTE_PTYPE_L4_UDP,
4164                 [385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4165                         RTE_PTYPE_L4_UDP,
4166                 [386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4167                         RTE_PTYPE_L4_UDP,
4168                 [387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4169                         RTE_PTYPE_L4_UDP,
4170                 [388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4171                         RTE_PTYPE_L4_UDP,
4172                 [389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4173                         RTE_PTYPE_L4_UDP,
4174                 [390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4175                         RTE_PTYPE_L4_UDP,
4176                 [391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4177                         RTE_PTYPE_L4_UDP,
4178                 /* All others reserved */
4179         };
4180
4181         return type_table[ptype];
4182 }
4183
4184 void __rte_cold
4185 ice_set_default_ptype_table(struct rte_eth_dev *dev)
4186 {
4187         struct ice_adapter *ad =
4188                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
4189         int i;
4190
4191         for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
4192                 ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
4193 }
4194
4195 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S 1
4196 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M \
4197                         (0x3UL << ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S)
4198 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD 0
4199 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL 0x1
4200
4201 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S   4
4202 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M   \
4203         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S)
4204 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S      5
4205 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M      \
4206         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S)
4207
4208 /*
4209  * check the programming status descriptor in rx queue.
4210  * done after Programming Flow Director is programmed on
4211  * tx queue
4212  */
4213 static inline int
4214 ice_check_fdir_programming_status(struct ice_rx_queue *rxq)
4215 {
4216         volatile union ice_32byte_rx_desc *rxdp;
4217         uint64_t qword1;
4218         uint32_t rx_status;
4219         uint32_t error;
4220         uint32_t id;
4221         int ret = -EAGAIN;
4222
4223         rxdp = (volatile union ice_32byte_rx_desc *)
4224                 (&rxq->rx_ring[rxq->rx_tail]);
4225         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
4226         rx_status = (qword1 & ICE_RXD_QW1_STATUS_M)
4227                         >> ICE_RXD_QW1_STATUS_S;
4228
4229         if (rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)) {
4230                 ret = 0;
4231                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M) >>
4232                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S;
4233                 id = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M) >>
4234                         ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S;
4235                 if (error) {
4236                         if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD)
4237                                 PMD_DRV_LOG(ERR, "Failed to add FDIR rule.");
4238                         else if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL)
4239                                 PMD_DRV_LOG(ERR, "Failed to remove FDIR rule.");
4240                         ret = -EINVAL;
4241                         goto err;
4242                 }
4243                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M) >>
4244                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S;
4245                 if (error) {
4246                         PMD_DRV_LOG(ERR, "Failed to create FDIR profile.");
4247                         ret = -EINVAL;
4248                 }
4249 err:
4250                 rxdp->wb.qword1.status_error_len = 0;
4251                 rxq->rx_tail++;
4252                 if (unlikely(rxq->rx_tail == rxq->nb_rx_desc))
4253                         rxq->rx_tail = 0;
4254                 if (rxq->rx_tail == 0)
4255                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
4256                 else
4257                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_tail - 1);
4258         }
4259
4260         return ret;
4261 }
4262
4263 #define ICE_FDIR_MAX_WAIT_US 10000
4264
4265 int
4266 ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc)
4267 {
4268         struct ice_tx_queue *txq = pf->fdir.txq;
4269         struct ice_rx_queue *rxq = pf->fdir.rxq;
4270         volatile struct ice_fltr_desc *fdirdp;
4271         volatile struct ice_tx_desc *txdp;
4272         uint32_t td_cmd;
4273         uint16_t i;
4274
4275         fdirdp = (volatile struct ice_fltr_desc *)
4276                 (&txq->tx_ring[txq->tx_tail]);
4277         fdirdp->qidx_compq_space_stat = fdir_desc->qidx_compq_space_stat;
4278         fdirdp->dtype_cmd_vsi_fdid = fdir_desc->dtype_cmd_vsi_fdid;
4279
4280         txdp = &txq->tx_ring[txq->tx_tail + 1];
4281         txdp->buf_addr = rte_cpu_to_le_64(pf->fdir.dma_addr);
4282         td_cmd = ICE_TX_DESC_CMD_EOP |
4283                 ICE_TX_DESC_CMD_RS  |
4284                 ICE_TX_DESC_CMD_DUMMY;
4285
4286         txdp->cmd_type_offset_bsz =
4287                 ice_build_ctob(td_cmd, 0, ICE_FDIR_PKT_LEN, 0);
4288
4289         txq->tx_tail += 2;
4290         if (txq->tx_tail >= txq->nb_tx_desc)
4291                 txq->tx_tail = 0;
4292         /* Update the tx tail register */
4293         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
4294         for (i = 0; i < ICE_FDIR_MAX_WAIT_US; i++) {
4295                 if ((txdp->cmd_type_offset_bsz &
4296                      rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) ==
4297                     rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
4298                         break;
4299                 rte_delay_us(1);
4300         }
4301         if (i >= ICE_FDIR_MAX_WAIT_US) {
4302                 PMD_DRV_LOG(ERR,
4303                             "Failed to program FDIR filter: time out to get DD on tx queue.");
4304                 return -ETIMEDOUT;
4305         }
4306
4307         for (; i < ICE_FDIR_MAX_WAIT_US; i++) {
4308                 int ret;
4309
4310                 ret = ice_check_fdir_programming_status(rxq);
4311                 if (ret == -EAGAIN)
4312                         rte_delay_us(1);
4313                 else
4314                         return ret;
4315         }
4316
4317         PMD_DRV_LOG(ERR,
4318                     "Failed to program FDIR filter: programming status reported.");
4319         return -ETIMEDOUT;
4320
4321
4322 }