1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2019 Intel Corporation
5 #include "ice_rxtx_vec_common.h"
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
14 ice_rxq_rearm(struct ice_rx_queue *rxq)
18 volatile union ice_rx_flex_desc *rxdp;
19 struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
21 rxdp = rxq->rx_ring + rxq->rxrearm_start;
23 /* Pull 'n' more MBUFs into the software ring */
24 if (rte_mempool_get_bulk(rxq->mp,
26 ICE_RXQ_REARM_THRESH) < 0) {
27 if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
31 dma_addr0 = _mm_setzero_si128();
32 for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
33 rxep[i].mbuf = &rxq->fake_mbuf;
34 _mm_store_si128((__m128i *)&rxdp[i].read,
38 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
43 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
44 struct rte_mbuf *mb0, *mb1;
45 __m128i dma_addr0, dma_addr1;
46 __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
47 RTE_PKTMBUF_HEADROOM);
48 /* Initialize the mbufs in vector, process 2 mbufs in one loop */
49 for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
50 __m128i vaddr0, vaddr1;
55 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
56 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
57 offsetof(struct rte_mbuf, buf_addr) + 8);
58 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
59 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
61 /* convert pa to dma_addr hdr/data */
62 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
63 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
65 /* add headroom to pa values */
66 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
67 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
69 /* flush desc with pa dma_addr */
70 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
71 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
74 struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
75 __m256i dma_addr0_1, dma_addr2_3;
76 __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
77 /* Initialize the mbufs in vector, process 4 mbufs in one loop */
78 for (i = 0; i < ICE_RXQ_REARM_THRESH;
79 i += 4, rxep += 4, rxdp += 4) {
80 __m128i vaddr0, vaddr1, vaddr2, vaddr3;
81 __m256i vaddr0_1, vaddr2_3;
88 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
89 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
90 offsetof(struct rte_mbuf, buf_addr) + 8);
91 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
92 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
93 vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
94 vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
97 * merge 0 & 1, by casting 0 to 256-bit and inserting 1
98 * into the high lanes. Similarly for 2 & 3
101 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
104 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
107 /* convert pa to dma_addr hdr/data */
108 dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
109 dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
111 /* add headroom to pa values */
112 dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
113 dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
115 /* flush desc with pa dma_addr */
116 _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
117 _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
122 rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
123 if (rxq->rxrearm_start >= rxq->nb_rx_desc)
124 rxq->rxrearm_start = 0;
126 rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
128 rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
129 (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
131 /* Update the tail pointer on the NIC */
132 ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
135 static inline __m256i
136 ice_flex_rxd_to_fdir_flags_vec_avx2(const __m256i fdir_id0_7)
138 #define FDID_MIS_MAGIC 0xFFFFFFFF
139 RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
140 RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
141 const __m256i pkt_fdir_bit = _mm256_set1_epi32(PKT_RX_FDIR |
143 /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
144 const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
145 __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
147 /* this XOR op results to bit-reverse the fdir_mask */
148 fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
149 const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
154 static inline uint16_t
155 _ice_recv_raw_pkts_vec_avx2(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
156 uint16_t nb_pkts, uint8_t *split_packet)
158 #define ICE_DESCS_PER_LOOP_AVX 8
160 const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
161 const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
162 0, rxq->mbuf_initializer);
163 struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
164 volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
165 const int avx_aligned = ((rxq->rx_tail & 1) == 0);
169 /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
170 nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
172 /* See if we need to rearm the RX queue - gives the prefetch a bit
175 if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
178 /* Before we start moving massive data around, check to see if
179 * there is actually a packet available
181 if (!(rxdp->wb.status_error0 &
182 rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
185 /* constants used in processing loop */
186 const __m256i crc_adjust =
188 (/* first descriptor */
189 0, 0, 0, /* ignore non-length fields */
190 -rxq->crc_len, /* sub crc on data_len */
191 0, /* ignore high-16bits of pkt_len */
192 -rxq->crc_len, /* sub crc on pkt_len */
193 0, 0, /* ignore pkt_type field */
194 /* second descriptor */
195 0, 0, 0, /* ignore non-length fields */
196 -rxq->crc_len, /* sub crc on data_len */
197 0, /* ignore high-16bits of pkt_len */
198 -rxq->crc_len, /* sub crc on pkt_len */
199 0, 0 /* ignore pkt_type field */
202 /* 8 packets DD mask, LSB in each 32-bit value */
203 const __m256i dd_check = _mm256_set1_epi32(1);
205 /* 8 packets EOP mask, second-LSB in each 32-bit value */
206 const __m256i eop_check = _mm256_slli_epi32(dd_check,
207 ICE_RX_DESC_STATUS_EOF_S);
209 /* mask to shuffle from desc. to mbuf (2 descriptors)*/
210 const __m256i shuf_msk =
212 (/* first descriptor */
214 0xFF, 0xFF, /* rss hash parsed separately */
215 11, 10, /* octet 10~11, 16 bits vlan_macip */
216 5, 4, /* octet 4~5, 16 bits data_len */
217 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */
218 5, 4, /* octet 4~5, 16 bits pkt_len */
219 0xFF, 0xFF, /* pkt_type set as unknown */
220 0xFF, 0xFF, /*pkt_type set as unknown */
221 /* second descriptor */
223 0xFF, 0xFF, /* rss hash parsed separately */
224 11, 10, /* octet 10~11, 16 bits vlan_macip */
225 5, 4, /* octet 4~5, 16 bits data_len */
226 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */
227 5, 4, /* octet 4~5, 16 bits pkt_len */
228 0xFF, 0xFF, /* pkt_type set as unknown */
229 0xFF, 0xFF /*pkt_type set as unknown */
232 * compile-time check the above crc and shuffle layout is correct.
233 * NOTE: the first field (lowest address) is given last in set_epi
236 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
237 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
238 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
239 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
240 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
241 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
242 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
243 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
245 /* Status/Error flag masks */
247 * mask everything except Checksum Reports, RSS indication
248 * and VLAN indication.
249 * bit6:4 for IP/L4 checksum errors.
250 * bit12 is for RSS indication.
251 * bit13 is for VLAN indication.
253 const __m256i flags_mask =
254 _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
256 * data to be shuffled by the result of the flags mask shifted by 4
257 * bits. This gives use the l3_l4 flags.
259 const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
260 /* shift right 1 bit to make sure it not exceed 255 */
261 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
262 PKT_RX_IP_CKSUM_BAD) >> 1,
263 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
264 PKT_RX_IP_CKSUM_GOOD) >> 1,
265 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
266 PKT_RX_IP_CKSUM_BAD) >> 1,
267 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
268 PKT_RX_IP_CKSUM_GOOD) >> 1,
269 (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
270 (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
271 (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
272 (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
273 /* second 128-bits */
274 0, 0, 0, 0, 0, 0, 0, 0,
275 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
276 PKT_RX_IP_CKSUM_BAD) >> 1,
277 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
278 PKT_RX_IP_CKSUM_GOOD) >> 1,
279 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
280 PKT_RX_IP_CKSUM_BAD) >> 1,
281 (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
282 PKT_RX_IP_CKSUM_GOOD) >> 1,
283 (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
284 (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
285 (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
286 (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
287 const __m256i cksum_mask =
288 _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
289 PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
290 PKT_RX_EIP_CKSUM_BAD);
292 * data to be shuffled by result of flag mask, shifted down 12.
293 * If RSS(bit12)/VLAN(bit13) are set,
294 * shuffle moves appropriate flags in place.
296 const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
299 PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
300 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
302 /* end up 128-bits */
306 PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
307 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
310 RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
312 uint16_t i, received;
314 for (i = 0, received = 0; i < nb_pkts;
315 i += ICE_DESCS_PER_LOOP_AVX,
316 rxdp += ICE_DESCS_PER_LOOP_AVX) {
317 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
318 _mm256_storeu_si256((void *)&rx_pkts[i],
319 _mm256_loadu_si256((void *)&sw_ring[i]));
320 #ifdef RTE_ARCH_X86_64
322 ((void *)&rx_pkts[i + 4],
323 _mm256_loadu_si256((void *)&sw_ring[i + 4]));
326 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
327 #ifdef RTE_LIBRTE_ICE_16BYTE_RX_DESC
328 /* for AVX we need alignment otherwise loads are not atomic */
330 /* load in descriptors, 2 at a time, in reverse order */
331 raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
332 rte_compiler_barrier();
333 raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
334 rte_compiler_barrier();
335 raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
336 rte_compiler_barrier();
337 raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
341 const __m128i raw_desc7 =
342 _mm_load_si128((void *)(rxdp + 7));
343 rte_compiler_barrier();
344 const __m128i raw_desc6 =
345 _mm_load_si128((void *)(rxdp + 6));
346 rte_compiler_barrier();
347 const __m128i raw_desc5 =
348 _mm_load_si128((void *)(rxdp + 5));
349 rte_compiler_barrier();
350 const __m128i raw_desc4 =
351 _mm_load_si128((void *)(rxdp + 4));
352 rte_compiler_barrier();
353 const __m128i raw_desc3 =
354 _mm_load_si128((void *)(rxdp + 3));
355 rte_compiler_barrier();
356 const __m128i raw_desc2 =
357 _mm_load_si128((void *)(rxdp + 2));
358 rte_compiler_barrier();
359 const __m128i raw_desc1 =
360 _mm_load_si128((void *)(rxdp + 1));
361 rte_compiler_barrier();
362 const __m128i raw_desc0 =
363 _mm_load_si128((void *)(rxdp + 0));
366 _mm256_inserti128_si256
367 (_mm256_castsi128_si256(raw_desc6),
370 _mm256_inserti128_si256
371 (_mm256_castsi128_si256(raw_desc4),
374 _mm256_inserti128_si256
375 (_mm256_castsi128_si256(raw_desc2),
378 _mm256_inserti128_si256
379 (_mm256_castsi128_si256(raw_desc0),
386 for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
387 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
391 * convert descriptors 4-7 into mbufs, re-arrange fields.
392 * Then write into the mbuf.
394 __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
395 __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
397 mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
398 mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
400 * to get packet types, ptype is located in bit16-25
403 const __m256i ptype_mask =
404 _mm256_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
405 const __m256i ptypes6_7 =
406 _mm256_and_si256(raw_desc6_7, ptype_mask);
407 const __m256i ptypes4_5 =
408 _mm256_and_si256(raw_desc4_5, ptype_mask);
409 const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
410 const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
411 const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
412 const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
414 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
415 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
416 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
417 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
418 /* merge the status bits into one register */
419 const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
423 * convert descriptors 0-3 into mbufs, re-arrange fields.
424 * Then write into the mbuf.
426 __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
427 __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
429 mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
430 mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
432 * to get packet types, ptype is located in bit16-25
435 const __m256i ptypes2_3 =
436 _mm256_and_si256(raw_desc2_3, ptype_mask);
437 const __m256i ptypes0_1 =
438 _mm256_and_si256(raw_desc0_1, ptype_mask);
439 const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
440 const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
441 const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
442 const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
444 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
445 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
446 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
447 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
448 /* merge the status bits into one register */
449 const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
453 * take the two sets of status bits and merge to one
454 * After merge, the packets status flags are in the
455 * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
457 __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
460 /* now do flag manipulation */
462 /* get only flag/error bits we want */
463 const __m256i flag_bits =
464 _mm256_and_si256(status0_7, flags_mask);
466 * l3_l4_error flags, shuffle, then shift to correct adjustment
467 * of flags in flags_shuf, and finally mask out extra bits
469 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
470 _mm256_srli_epi32(flag_bits, 4));
471 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
472 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
473 /* set rss and vlan flags */
474 const __m256i rss_vlan_flag_bits =
475 _mm256_srli_epi32(flag_bits, 12);
476 const __m256i rss_vlan_flags =
477 _mm256_shuffle_epi8(rss_vlan_flags_shuf,
481 __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
484 if (rxq->fdir_enabled) {
485 const __m256i fdir_id4_7 =
486 _mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
488 const __m256i fdir_id0_3 =
489 _mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
491 const __m256i fdir_id0_7 =
492 _mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
494 const __m256i fdir_flags =
495 ice_flex_rxd_to_fdir_flags_vec_avx2(fdir_id0_7);
497 /* merge with fdir_flags */
498 mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags);
500 /* write to mbuf: have to use scalar store here */
501 rx_pkts[i + 0]->hash.fdir.hi =
502 _mm256_extract_epi32(fdir_id0_7, 3);
504 rx_pkts[i + 1]->hash.fdir.hi =
505 _mm256_extract_epi32(fdir_id0_7, 7);
507 rx_pkts[i + 2]->hash.fdir.hi =
508 _mm256_extract_epi32(fdir_id0_7, 2);
510 rx_pkts[i + 3]->hash.fdir.hi =
511 _mm256_extract_epi32(fdir_id0_7, 6);
513 rx_pkts[i + 4]->hash.fdir.hi =
514 _mm256_extract_epi32(fdir_id0_7, 1);
516 rx_pkts[i + 5]->hash.fdir.hi =
517 _mm256_extract_epi32(fdir_id0_7, 5);
519 rx_pkts[i + 6]->hash.fdir.hi =
520 _mm256_extract_epi32(fdir_id0_7, 0);
522 rx_pkts[i + 7]->hash.fdir.hi =
523 _mm256_extract_epi32(fdir_id0_7, 4);
524 } /* if() on fdir_enabled */
526 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
528 * needs to load 2nd 16B of each desc for RSS hash parsing,
529 * will cause performance drop to get into this context.
531 if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads &
532 DEV_RX_OFFLOAD_RSS_HASH) {
533 /* load bottom half of every 32B desc */
534 const __m128i raw_desc_bh7 =
536 ((void *)(&rxdp[7].wb.status_error1));
537 rte_compiler_barrier();
538 const __m128i raw_desc_bh6 =
540 ((void *)(&rxdp[6].wb.status_error1));
541 rte_compiler_barrier();
542 const __m128i raw_desc_bh5 =
544 ((void *)(&rxdp[5].wb.status_error1));
545 rte_compiler_barrier();
546 const __m128i raw_desc_bh4 =
548 ((void *)(&rxdp[4].wb.status_error1));
549 rte_compiler_barrier();
550 const __m128i raw_desc_bh3 =
552 ((void *)(&rxdp[3].wb.status_error1));
553 rte_compiler_barrier();
554 const __m128i raw_desc_bh2 =
556 ((void *)(&rxdp[2].wb.status_error1));
557 rte_compiler_barrier();
558 const __m128i raw_desc_bh1 =
560 ((void *)(&rxdp[1].wb.status_error1));
561 rte_compiler_barrier();
562 const __m128i raw_desc_bh0 =
564 ((void *)(&rxdp[0].wb.status_error1));
566 __m256i raw_desc_bh6_7 =
567 _mm256_inserti128_si256
568 (_mm256_castsi128_si256(raw_desc_bh6),
570 __m256i raw_desc_bh4_5 =
571 _mm256_inserti128_si256
572 (_mm256_castsi128_si256(raw_desc_bh4),
574 __m256i raw_desc_bh2_3 =
575 _mm256_inserti128_si256
576 (_mm256_castsi128_si256(raw_desc_bh2),
578 __m256i raw_desc_bh0_1 =
579 _mm256_inserti128_si256
580 (_mm256_castsi128_si256(raw_desc_bh0),
584 * to shift the 32b RSS hash value to the
585 * highest 32b of each 128b before mask
587 __m256i rss_hash6_7 =
588 _mm256_slli_epi64(raw_desc_bh6_7, 32);
589 __m256i rss_hash4_5 =
590 _mm256_slli_epi64(raw_desc_bh4_5, 32);
591 __m256i rss_hash2_3 =
592 _mm256_slli_epi64(raw_desc_bh2_3, 32);
593 __m256i rss_hash0_1 =
594 _mm256_slli_epi64(raw_desc_bh0_1, 32);
596 __m256i rss_hash_msk =
597 _mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
598 0xFFFFFFFF, 0, 0, 0);
600 rss_hash6_7 = _mm256_and_si256
601 (rss_hash6_7, rss_hash_msk);
602 rss_hash4_5 = _mm256_and_si256
603 (rss_hash4_5, rss_hash_msk);
604 rss_hash2_3 = _mm256_and_si256
605 (rss_hash2_3, rss_hash_msk);
606 rss_hash0_1 = _mm256_and_si256
607 (rss_hash0_1, rss_hash_msk);
609 mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
610 mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
611 mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
612 mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
613 } /* if() on RSS hash parsing */
617 * At this point, we have the 8 sets of flags in the low 16-bits
618 * of each 32-bit value in vlan0.
619 * We want to extract these, and merge them with the mbuf init
620 * data so we can do a single write to the mbuf to set the flags
621 * and all the other initialization fields. Extracting the
622 * appropriate flags means that we have to do a shift and blend
623 * for each mbuf before we do the write. However, we can also
624 * add in the previously computed rx_descriptor fields to
625 * make a single 256-bit write per mbuf
627 /* check the structure matches expectations */
628 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
629 offsetof(struct rte_mbuf, rearm_data) + 8);
630 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
631 RTE_ALIGN(offsetof(struct rte_mbuf,
634 /* build up data and do writes */
635 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
637 rearm6 = _mm256_blend_epi32(mbuf_init,
638 _mm256_slli_si256(mbuf_flags, 8),
640 rearm4 = _mm256_blend_epi32(mbuf_init,
641 _mm256_slli_si256(mbuf_flags, 4),
643 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
644 rearm0 = _mm256_blend_epi32(mbuf_init,
645 _mm256_srli_si256(mbuf_flags, 4),
647 /* permute to add in the rx_descriptor e.g. rss fields */
648 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
649 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
650 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
651 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
653 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
655 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
657 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
659 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
662 /* repeat for the odd mbufs */
663 const __m256i odd_flags =
664 _mm256_castsi128_si256
665 (_mm256_extracti128_si256(mbuf_flags, 1));
666 rearm7 = _mm256_blend_epi32(mbuf_init,
667 _mm256_slli_si256(odd_flags, 8),
669 rearm5 = _mm256_blend_epi32(mbuf_init,
670 _mm256_slli_si256(odd_flags, 4),
672 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
673 rearm1 = _mm256_blend_epi32(mbuf_init,
674 _mm256_srli_si256(odd_flags, 4),
676 /* since odd mbufs are already in hi 128-bits use blend */
677 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
678 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
679 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
680 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
681 /* again write to mbufs */
682 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
684 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
686 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
688 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
691 /* extract and record EOP bit */
693 const __m128i eop_mask =
694 _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
695 const __m256i eop_bits256 = _mm256_and_si256(status0_7,
697 /* pack status bits into a single 128-bit register */
698 const __m128i eop_bits =
700 (_mm256_castsi256_si128(eop_bits256),
701 _mm256_extractf128_si256(eop_bits256,
704 * flip bits, and mask out the EOP bit, which is now
705 * a split-packet bit i.e. !EOP, rather than EOP one.
707 __m128i split_bits = _mm_andnot_si128(eop_bits,
710 * eop bits are out of order, so we need to shuffle them
711 * back into order again. In doing so, only use low 8
712 * bits, which acts like another pack instruction
713 * The original order is (hi->lo): 1,3,5,7,0,2,4,6
714 * [Since we use epi8, the 16-bit positions are
715 * multiplied by 2 in the eop_shuffle value.]
717 __m128i eop_shuffle =
718 _mm_set_epi8(/* zero hi 64b */
719 0xFF, 0xFF, 0xFF, 0xFF,
720 0xFF, 0xFF, 0xFF, 0xFF,
721 /* move values to lo 64b */
724 split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
725 *(uint64_t *)split_packet =
726 _mm_cvtsi128_si64(split_bits);
727 split_packet += ICE_DESCS_PER_LOOP_AVX;
730 /* perform dd_check */
731 status0_7 = _mm256_and_si256(status0_7, dd_check);
732 status0_7 = _mm256_packs_epi32(status0_7,
733 _mm256_setzero_si256());
735 uint64_t burst = __builtin_popcountll
737 (_mm256_extracti128_si256
739 burst += __builtin_popcountll
741 (_mm256_castsi256_si128(status0_7)));
743 if (burst != ICE_DESCS_PER_LOOP_AVX)
747 /* update tail pointers */
748 rxq->rx_tail += received;
749 rxq->rx_tail &= (rxq->nb_rx_desc - 1);
750 if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
754 rxq->rxrearm_nb += received;
760 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
763 ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
766 return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
770 * vPMD receive routine that reassembles single burst of 32 scattered packets
772 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
775 ice_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
778 struct ice_rx_queue *rxq = rx_queue;
779 uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
781 /* get some new buffers */
782 uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
787 /* happy day case, full burst + no packets to be joined */
788 const uint64_t *split_fl64 = (uint64_t *)split_flags;
790 if (!rxq->pkt_first_seg &&
791 split_fl64[0] == 0 && split_fl64[1] == 0 &&
792 split_fl64[2] == 0 && split_fl64[3] == 0)
795 /* reassemble any packets that need reassembly*/
798 if (!rxq->pkt_first_seg) {
799 /* find the first split flag, and only reassemble then*/
800 while (i < nb_bufs && !split_flags[i])
804 rxq->pkt_first_seg = rx_pkts[i];
806 return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
811 * vPMD receive routine that reassembles scattered packets.
812 * Main receive routine that can handle arbitrary burst sizes
814 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
817 ice_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
822 while (nb_pkts > ICE_VPMD_RX_BURST) {
823 uint16_t burst = ice_recv_scattered_burst_vec_avx2(rx_queue,
824 rx_pkts + retval, ICE_VPMD_RX_BURST);
827 if (burst < ICE_VPMD_RX_BURST)
830 return retval + ice_recv_scattered_burst_vec_avx2(rx_queue,
831 rx_pkts + retval, nb_pkts);
835 ice_vtx1(volatile struct ice_tx_desc *txdp,
836 struct rte_mbuf *pkt, uint64_t flags)
839 (ICE_TX_DESC_DTYPE_DATA |
840 ((uint64_t)flags << ICE_TXD_QW1_CMD_S) |
841 ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
843 __m128i descriptor = _mm_set_epi64x(high_qw,
844 pkt->buf_iova + pkt->data_off);
845 _mm_store_si128((__m128i *)txdp, descriptor);
849 ice_vtx(volatile struct ice_tx_desc *txdp,
850 struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
852 const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
853 ((uint64_t)flags << ICE_TXD_QW1_CMD_S));
855 /* if unaligned on 32-bit boundary, do one to align */
856 if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
857 ice_vtx1(txdp, *pkt, flags);
858 nb_pkts--, txdp++, pkt++;
861 /* do two at a time while possible, in bursts */
862 for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
865 ((uint64_t)pkt[3]->data_len <<
866 ICE_TXD_QW1_TX_BUF_SZ_S);
869 ((uint64_t)pkt[2]->data_len <<
870 ICE_TXD_QW1_TX_BUF_SZ_S);
873 ((uint64_t)pkt[1]->data_len <<
874 ICE_TXD_QW1_TX_BUF_SZ_S);
877 ((uint64_t)pkt[0]->data_len <<
878 ICE_TXD_QW1_TX_BUF_SZ_S);
883 pkt[3]->buf_iova + pkt[3]->data_off,
885 pkt[2]->buf_iova + pkt[2]->data_off);
889 pkt[1]->buf_iova + pkt[1]->data_off,
891 pkt[0]->buf_iova + pkt[0]->data_off);
892 _mm256_store_si256((void *)(txdp + 2), desc2_3);
893 _mm256_store_si256((void *)txdp, desc0_1);
896 /* do any last ones */
898 ice_vtx1(txdp, *pkt, flags);
899 txdp++, pkt++, nb_pkts--;
903 static inline uint16_t
904 ice_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
907 struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
908 volatile struct ice_tx_desc *txdp;
909 struct ice_tx_entry *txep;
910 uint16_t n, nb_commit, tx_id;
911 uint64_t flags = ICE_TD_CMD;
912 uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
914 /* cross rx_thresh boundary is not allowed */
915 nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
917 if (txq->nb_tx_free < txq->tx_free_thresh)
918 ice_tx_free_bufs(txq);
920 nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
921 if (unlikely(nb_pkts == 0))
924 tx_id = txq->tx_tail;
925 txdp = &txq->tx_ring[tx_id];
926 txep = &txq->sw_ring[tx_id];
928 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
930 n = (uint16_t)(txq->nb_tx_desc - tx_id);
931 if (nb_commit >= n) {
932 ice_tx_backlog_entry(txep, tx_pkts, n);
934 ice_vtx(txdp, tx_pkts, n - 1, flags);
938 ice_vtx1(txdp, *tx_pkts++, rs);
940 nb_commit = (uint16_t)(nb_commit - n);
943 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
945 /* avoid reach the end of ring */
946 txdp = &txq->tx_ring[tx_id];
947 txep = &txq->sw_ring[tx_id];
950 ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
952 ice_vtx(txdp, tx_pkts, nb_commit, flags);
954 tx_id = (uint16_t)(tx_id + nb_commit);
955 if (tx_id > txq->tx_next_rs) {
956 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
957 rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
960 (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
963 txq->tx_tail = tx_id;
965 ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
971 ice_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
975 struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
980 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
981 ret = ice_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],