net/iavf: fix overflow in maximum packet length config
[dpdk.git] / drivers / net / ice / ice_rxtx_vec_avx512.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "ice_rxtx_vec_common.h"
6
7 #include <rte_vect.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 #define ICE_DESCS_PER_LOOP_AVX 8
14
15 static __rte_always_inline void
16 ice_rxq_rearm(struct ice_rx_queue *rxq)
17 {
18         int i;
19         uint16_t rx_id;
20         volatile union ice_rx_flex_desc *rxdp;
21         struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
22         struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp,
23                         rte_lcore_id());
24
25         rxdp = rxq->rx_ring + rxq->rxrearm_start;
26
27         if (unlikely(!cache))
28                 return ice_rxq_rearm_common(rxq, true);
29
30         /* We need to pull 'n' more MBUFs into the software ring */
31         if (cache->len < ICE_RXQ_REARM_THRESH) {
32                 uint32_t req = ICE_RXQ_REARM_THRESH + (cache->size -
33                                 cache->len);
34
35                 int ret = rte_mempool_ops_dequeue_bulk(rxq->mp,
36                                 &cache->objs[cache->len], req);
37                 if (ret == 0) {
38                         cache->len += req;
39                 } else {
40                         if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
41                             rxq->nb_rx_desc) {
42                                 __m128i dma_addr0;
43
44                                 dma_addr0 = _mm_setzero_si128();
45                                 for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
46                                         rxep[i].mbuf = &rxq->fake_mbuf;
47                                         _mm_store_si128
48                                                 ((__m128i *)&rxdp[i].read,
49                                                         dma_addr0);
50                                 }
51                         }
52                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
53                                 ICE_RXQ_REARM_THRESH;
54                         return;
55                 }
56         }
57
58         const __m512i iova_offsets =  _mm512_set1_epi64
59                 (offsetof(struct rte_mbuf, buf_iova));
60         const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
61
62 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
63         /* shuffle the iova into correct slots. Values 4-7 will contain
64          * zeros, so use 7 for a zero-value.
65          */
66         const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
67 #else
68         const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
69 #endif
70
71         /* fill up the rxd in vector, process 8 mbufs in one loop */
72         for (i = 0; i < ICE_RXQ_REARM_THRESH / 8; i++) {
73                 const __m512i mbuf_ptrs = _mm512_loadu_si512
74                         (&cache->objs[cache->len - 8]);
75                 _mm512_store_si512(rxep, mbuf_ptrs);
76
77                 /* gather iova of mbuf0-7 into one zmm reg */
78                 const __m512i iova_base_addrs = _mm512_i64gather_epi64
79                         (_mm512_add_epi64(mbuf_ptrs, iova_offsets),
80                                 0, /* base */
81                                 1  /* scale */);
82                 const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
83                                 headroom);
84 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
85                 const __m512i iovas0 = _mm512_castsi256_si512
86                         (_mm512_extracti64x4_epi64(iova_addrs, 0));
87                 const __m512i iovas1 = _mm512_castsi256_si512
88                         (_mm512_extracti64x4_epi64(iova_addrs, 1));
89
90                 /* permute leaves iova 2-3 in hdr_addr of desc 0-1
91                  * but these are ignored by driver since header split not
92                  * enabled. Similarly for desc 4 & 5.
93                  */
94                 const __m512i desc0_1 = _mm512_permutexvar_epi64
95                         (permute_idx, iovas0);
96                 const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
97
98                 const __m512i desc4_5 = _mm512_permutexvar_epi64
99                         (permute_idx, iovas1);
100                 const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
101
102                 _mm512_store_si512((void *)rxdp, desc0_1);
103                 _mm512_store_si512((void *)(rxdp + 2), desc2_3);
104                 _mm512_store_si512((void *)(rxdp + 4), desc4_5);
105                 _mm512_store_si512((void *)(rxdp + 6), desc6_7);
106 #else
107                 /* permute leaves iova 4-7 in hdr_addr of desc 0-3
108                  * but these are ignored by driver since header split not
109                  * enabled.
110                  */
111                 const __m512i desc0_3 = _mm512_permutexvar_epi64
112                         (permute_idx, iova_addrs);
113                 const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
114
115                 _mm512_store_si512((void *)rxdp, desc0_3);
116                 _mm512_store_si512((void *)(rxdp + 4), desc4_7);
117 #endif
118                 rxep += 8, rxdp += 8, cache->len -= 8;
119         }
120
121         rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
122         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
123                 rxq->rxrearm_start = 0;
124
125         rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
126
127         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
128                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
129
130         /* Update the tail pointer on the NIC */
131         ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
132 }
133
134 static inline __m256i
135 ice_flex_rxd_to_fdir_flags_vec_avx512(const __m256i fdir_id0_7)
136 {
137 #define FDID_MIS_MAGIC 0xFFFFFFFF
138         RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
139         RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
140         const __m256i pkt_fdir_bit = _mm256_set1_epi32(PKT_RX_FDIR |
141                         PKT_RX_FDIR_ID);
142         /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
143         const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
144         __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
145                         fdir_mis_mask);
146         /* this XOR op results to bit-reverse the fdir_mask */
147         fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
148         const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
149
150         return fdir_flags;
151 }
152
153 static __rte_always_inline uint16_t
154 _ice_recv_raw_pkts_vec_avx512(struct ice_rx_queue *rxq,
155                               struct rte_mbuf **rx_pkts,
156                               uint16_t nb_pkts,
157                               uint8_t *split_packet,
158                               bool do_offload)
159 {
160         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
161         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
162                         0, rxq->mbuf_initializer);
163         struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
164         volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
165
166         rte_prefetch0(rxdp);
167
168         /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
169         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
170
171         /* See if we need to rearm the RX queue - gives the prefetch a bit
172          * of time to act
173          */
174         if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
175                 ice_rxq_rearm(rxq);
176
177         /* Before we start moving massive data around, check to see if
178          * there is actually a packet available
179          */
180         if (!(rxdp->wb.status_error0 &
181                         rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
182                 return 0;
183
184         /* constants used in processing loop */
185         const __m512i crc_adjust =
186                 _mm512_set4_epi32
187                         (0,             /* ignore non-length fields */
188                          -rxq->crc_len, /* sub crc on data_len */
189                          -rxq->crc_len, /* sub crc on pkt_len */
190                          0              /* ignore non-length fields */
191                         );
192
193         /* 8 packets DD mask, LSB in each 32-bit value */
194         const __m256i dd_check = _mm256_set1_epi32(1);
195
196         /* 8 packets EOP mask, second-LSB in each 32-bit value */
197         const __m256i eop_check = _mm256_slli_epi32(dd_check,
198                         ICE_RX_DESC_STATUS_EOF_S);
199
200         /* mask to shuffle from desc. to mbuf (4 descriptors)*/
201         const __m512i shuf_msk =
202                 _mm512_set4_epi32
203                         (/* rss hash parsed separately */
204                          0xFFFFFFFF,
205                          /* octet 10~11, 16 bits vlan_macip */
206                          /* octet 4~5, 16 bits data_len */
207                          11 << 24 | 10 << 16 | 5 << 8 | 4,
208                          /* skip hi 16 bits pkt_len, zero out */
209                          /* octet 4~5, 16 bits pkt_len */
210                          0xFFFF << 16 | 5 << 8 | 4,
211                          /* pkt_type set as unknown */
212                          0xFFFFFFFF
213                         );
214
215         /**
216          * compile-time check the above crc and shuffle layout is correct.
217          * NOTE: the first field (lowest address) is given last in set_epi
218          * calls above.
219          */
220         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
221                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
222         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
223                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
224         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
225                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
226         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
227                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
228
229         /* following code block is for Rx Checksum Offload */
230         /* Status/Error flag masks */
231         /**
232          * mask everything except Checksum Reports, RSS indication
233          * and VLAN indication.
234          * bit6:4 for IP/L4 checksum errors.
235          * bit12 is for RSS indication.
236          * bit13 is for VLAN indication.
237          */
238         const __m256i flags_mask =
239                  _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
240         /**
241          * data to be shuffled by the result of the flags mask shifted by 4
242          * bits.  This gives use the l3_l4 flags.
243          */
244         const __m256i l3_l4_flags_shuf =
245                 _mm256_set_epi8((PKT_RX_OUTER_L4_CKSUM_BAD >> 20 |
246                  PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
247                   PKT_RX_IP_CKSUM_BAD) >> 1,
248                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
249                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
250                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
251                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
252                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
253                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
254                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
255                  PKT_RX_IP_CKSUM_BAD) >> 1,
256                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
257                  PKT_RX_IP_CKSUM_GOOD) >> 1,
258                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
259                  PKT_RX_IP_CKSUM_BAD) >> 1,
260                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
261                  PKT_RX_IP_CKSUM_GOOD) >> 1,
262                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
263                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
264                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
265                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
266                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
267                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
268                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
269                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
270                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
271                  PKT_RX_IP_CKSUM_BAD) >> 1,
272                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
273                  PKT_RX_IP_CKSUM_GOOD) >> 1,
274                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
275                  PKT_RX_IP_CKSUM_BAD) >> 1,
276                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
277                  PKT_RX_IP_CKSUM_GOOD) >> 1,
278                 /**
279                  * second 128-bits
280                  * shift right 20 bits to use the low two bits to indicate
281                  * outer checksum status
282                  * shift right 1 bit to make sure it not exceed 255
283                  */
284                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
285                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
286                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
287                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
288                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
289                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
290                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
291                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
292                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
293                  PKT_RX_IP_CKSUM_BAD) >> 1,
294                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
295                  PKT_RX_IP_CKSUM_GOOD) >> 1,
296                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
297                  PKT_RX_IP_CKSUM_BAD) >> 1,
298                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
299                  PKT_RX_IP_CKSUM_GOOD) >> 1,
300                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
301                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
302                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
303                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
304                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
305                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
306                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
307                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
308                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
309                  PKT_RX_IP_CKSUM_BAD) >> 1,
310                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
311                  PKT_RX_IP_CKSUM_GOOD) >> 1,
312                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
313                  PKT_RX_IP_CKSUM_BAD) >> 1,
314                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
315                  PKT_RX_IP_CKSUM_GOOD) >> 1);
316         const __m256i cksum_mask =
317                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_MASK |
318                                    PKT_RX_L4_CKSUM_MASK |
319                                    PKT_RX_OUTER_IP_CKSUM_BAD |
320                                    PKT_RX_OUTER_L4_CKSUM_MASK);
321         /**
322          * data to be shuffled by result of flag mask, shifted down 12.
323          * If RSS(bit12)/VLAN(bit13) are set,
324          * shuffle moves appropriate flags in place.
325          */
326         const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
327                         0, 0, 0, 0,
328                         0, 0, 0, 0,
329                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
330                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
331                         PKT_RX_RSS_HASH, 0,
332                         /* 2nd 128-bits */
333                         0, 0, 0, 0,
334                         0, 0, 0, 0,
335                         0, 0, 0, 0,
336                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
337                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
338                         PKT_RX_RSS_HASH, 0);
339
340         uint16_t i, received;
341
342         for (i = 0, received = 0; i < nb_pkts;
343              i += ICE_DESCS_PER_LOOP_AVX,
344              rxdp += ICE_DESCS_PER_LOOP_AVX) {
345                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
346                 _mm256_storeu_si256((void *)&rx_pkts[i],
347                                     _mm256_loadu_si256((void *)&sw_ring[i]));
348 #ifdef RTE_ARCH_X86_64
349                 _mm256_storeu_si256
350                         ((void *)&rx_pkts[i + 4],
351                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
352 #endif
353
354                 __m512i raw_desc0_3, raw_desc4_7;
355                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
356
357                 /* load in descriptors, in reverse order */
358                 const __m128i raw_desc7 =
359                         _mm_load_si128((void *)(rxdp + 7));
360                 rte_compiler_barrier();
361                 const __m128i raw_desc6 =
362                         _mm_load_si128((void *)(rxdp + 6));
363                 rte_compiler_barrier();
364                 const __m128i raw_desc5 =
365                         _mm_load_si128((void *)(rxdp + 5));
366                 rte_compiler_barrier();
367                 const __m128i raw_desc4 =
368                         _mm_load_si128((void *)(rxdp + 4));
369                 rte_compiler_barrier();
370                 const __m128i raw_desc3 =
371                         _mm_load_si128((void *)(rxdp + 3));
372                 rte_compiler_barrier();
373                 const __m128i raw_desc2 =
374                         _mm_load_si128((void *)(rxdp + 2));
375                 rte_compiler_barrier();
376                 const __m128i raw_desc1 =
377                         _mm_load_si128((void *)(rxdp + 1));
378                 rte_compiler_barrier();
379                 const __m128i raw_desc0 =
380                         _mm_load_si128((void *)(rxdp + 0));
381
382                 raw_desc6_7 =
383                         _mm256_inserti128_si256
384                                 (_mm256_castsi128_si256(raw_desc6),
385                                  raw_desc7, 1);
386                 raw_desc4_5 =
387                         _mm256_inserti128_si256
388                                 (_mm256_castsi128_si256(raw_desc4),
389                                  raw_desc5, 1);
390                 raw_desc2_3 =
391                         _mm256_inserti128_si256
392                                 (_mm256_castsi128_si256(raw_desc2),
393                                  raw_desc3, 1);
394                 raw_desc0_1 =
395                         _mm256_inserti128_si256
396                                 (_mm256_castsi128_si256(raw_desc0),
397                                  raw_desc1, 1);
398
399                 raw_desc4_7 =
400                         _mm512_inserti64x4
401                                 (_mm512_castsi256_si512(raw_desc4_5),
402                                  raw_desc6_7, 1);
403                 raw_desc0_3 =
404                         _mm512_inserti64x4
405                                 (_mm512_castsi256_si512(raw_desc0_1),
406                                  raw_desc2_3, 1);
407
408                 if (split_packet) {
409                         int j;
410
411                         for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
412                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
413                 }
414
415                 /**
416                  * convert descriptors 0-7 into mbufs, re-arrange fields.
417                  * Then write into the mbuf.
418                  */
419                 __m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
420                 __m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
421
422                 mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
423                 mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
424
425                 /**
426                  * to get packet types, ptype is located in bit16-25
427                  * of each 128bits
428                  */
429                 const __m512i ptype_mask =
430                         _mm512_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
431
432                 /**
433                  * to get packet types, ptype is located in bit16-25
434                  * of each 128bits
435                  */
436                 const __m512i ptypes4_7 =
437                         _mm512_and_si512(raw_desc4_7, ptype_mask);
438                 const __m512i ptypes0_3 =
439                         _mm512_and_si512(raw_desc0_3, ptype_mask);
440
441                 const __m256i ptypes6_7 =
442                         _mm512_extracti64x4_epi64(ptypes4_7, 1);
443                 const __m256i ptypes4_5 =
444                         _mm512_extracti64x4_epi64(ptypes4_7, 0);
445                 const __m256i ptypes2_3 =
446                         _mm512_extracti64x4_epi64(ptypes0_3, 1);
447                 const __m256i ptypes0_1 =
448                         _mm512_extracti64x4_epi64(ptypes0_3, 0);
449                 const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
450                 const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
451                 const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
452                 const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
453                 const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
454                 const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
455                 const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
456                 const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
457
458                 const __m512i ptype4_7 = _mm512_set_epi32
459                         (0, 0, 0, ptype_tbl[ptype7],
460                          0, 0, 0, ptype_tbl[ptype6],
461                          0, 0, 0, ptype_tbl[ptype5],
462                          0, 0, 0, ptype_tbl[ptype4]);
463                 const __m512i ptype0_3 = _mm512_set_epi32
464                         (0, 0, 0, ptype_tbl[ptype3],
465                          0, 0, 0, ptype_tbl[ptype2],
466                          0, 0, 0, ptype_tbl[ptype1],
467                          0, 0, 0, ptype_tbl[ptype0]);
468
469                 mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
470                 mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
471
472                 __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
473                 __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
474                 __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
475                 __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
476
477                 /**
478                  * use permute/extract to get status content
479                  * After the operations, the packets status flags are in the
480                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
481                  */
482                 /* merge the status bits into one register */
483                 const __m512i status_permute_msk = _mm512_set_epi32
484                         (0, 0, 0, 0,
485                          0, 0, 0, 0,
486                          22, 30, 6, 14,
487                          18, 26, 2, 10);
488                 const __m512i raw_status0_7 = _mm512_permutex2var_epi32
489                         (raw_desc4_7, status_permute_msk, raw_desc0_3);
490                 __m256i status0_7 = _mm512_extracti64x4_epi64
491                         (raw_status0_7, 0);
492
493                 __m256i mbuf_flags = _mm256_set1_epi32(0);
494
495                 if (do_offload) {
496                         /* now do flag manipulation */
497
498                         /* get only flag/error bits we want */
499                         const __m256i flag_bits =
500                                 _mm256_and_si256(status0_7, flags_mask);
501                         /**
502                          * l3_l4_error flags, shuffle, then shift to correct adjustment
503                          * of flags in flags_shuf, and finally mask out extra bits
504                          */
505                         __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
506                                         _mm256_srli_epi32(flag_bits, 4));
507                         l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
508                         __m256i l4_outer_mask = _mm256_set1_epi32(0x6);
509                         __m256i l4_outer_flags =
510                                         _mm256_and_si256(l3_l4_flags, l4_outer_mask);
511                         l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
512
513                         __m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
514
515                         l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
516                         l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
517                         l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
518                         /* set rss and vlan flags */
519                         const __m256i rss_vlan_flag_bits =
520                                 _mm256_srli_epi32(flag_bits, 12);
521                         const __m256i rss_vlan_flags =
522                                 _mm256_shuffle_epi8(rss_vlan_flags_shuf,
523                                                     rss_vlan_flag_bits);
524
525                         /* merge flags */
526                         mbuf_flags = _mm256_or_si256(l3_l4_flags,
527                                                      rss_vlan_flags);
528                 }
529
530                 if (rxq->fdir_enabled) {
531                         const __m256i fdir_id4_7 =
532                                 _mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
533
534                         const __m256i fdir_id0_3 =
535                                 _mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
536
537                         const __m256i fdir_id0_7 =
538                                 _mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
539
540                         if (do_offload) {
541                                 const __m256i fdir_flags =
542                                         ice_flex_rxd_to_fdir_flags_vec_avx512
543                                                 (fdir_id0_7);
544
545                                 /* merge with fdir_flags */
546                                 mbuf_flags = _mm256_or_si256
547                                                 (mbuf_flags, fdir_flags);
548                         } else {
549                                 mbuf_flags =
550                                         ice_flex_rxd_to_fdir_flags_vec_avx512
551                                                 (fdir_id0_7);
552                         }
553
554                         /* write to mbuf: have to use scalar store here */
555                         rx_pkts[i + 0]->hash.fdir.hi =
556                                 _mm256_extract_epi32(fdir_id0_7, 3);
557
558                         rx_pkts[i + 1]->hash.fdir.hi =
559                                 _mm256_extract_epi32(fdir_id0_7, 7);
560
561                         rx_pkts[i + 2]->hash.fdir.hi =
562                                 _mm256_extract_epi32(fdir_id0_7, 2);
563
564                         rx_pkts[i + 3]->hash.fdir.hi =
565                                 _mm256_extract_epi32(fdir_id0_7, 6);
566
567                         rx_pkts[i + 4]->hash.fdir.hi =
568                                 _mm256_extract_epi32(fdir_id0_7, 1);
569
570                         rx_pkts[i + 5]->hash.fdir.hi =
571                                 _mm256_extract_epi32(fdir_id0_7, 5);
572
573                         rx_pkts[i + 6]->hash.fdir.hi =
574                                 _mm256_extract_epi32(fdir_id0_7, 0);
575
576                         rx_pkts[i + 7]->hash.fdir.hi =
577                                 _mm256_extract_epi32(fdir_id0_7, 4);
578                 } /* if() on fdir_enabled */
579
580                 if (do_offload) {
581 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
582                         /**
583                          * needs to load 2nd 16B of each desc for RSS hash parsing,
584                          * will cause performance drop to get into this context.
585                          */
586                         if (rxq->vsi->adapter->pf.dev_data->dev_conf.rxmode.offloads &
587                                         DEV_RX_OFFLOAD_RSS_HASH) {
588                                 /* load bottom half of every 32B desc */
589                                 const __m128i raw_desc_bh7 =
590                                         _mm_load_si128
591                                                 ((void *)(&rxdp[7].wb.status_error1));
592                                 rte_compiler_barrier();
593                                 const __m128i raw_desc_bh6 =
594                                         _mm_load_si128
595                                                 ((void *)(&rxdp[6].wb.status_error1));
596                                 rte_compiler_barrier();
597                                 const __m128i raw_desc_bh5 =
598                                         _mm_load_si128
599                                                 ((void *)(&rxdp[5].wb.status_error1));
600                                 rte_compiler_barrier();
601                                 const __m128i raw_desc_bh4 =
602                                         _mm_load_si128
603                                                 ((void *)(&rxdp[4].wb.status_error1));
604                                 rte_compiler_barrier();
605                                 const __m128i raw_desc_bh3 =
606                                         _mm_load_si128
607                                                 ((void *)(&rxdp[3].wb.status_error1));
608                                 rte_compiler_barrier();
609                                 const __m128i raw_desc_bh2 =
610                                         _mm_load_si128
611                                                 ((void *)(&rxdp[2].wb.status_error1));
612                                 rte_compiler_barrier();
613                                 const __m128i raw_desc_bh1 =
614                                         _mm_load_si128
615                                                 ((void *)(&rxdp[1].wb.status_error1));
616                                 rte_compiler_barrier();
617                                 const __m128i raw_desc_bh0 =
618                                         _mm_load_si128
619                                                 ((void *)(&rxdp[0].wb.status_error1));
620
621                                 __m256i raw_desc_bh6_7 =
622                                         _mm256_inserti128_si256
623                                                 (_mm256_castsi128_si256(raw_desc_bh6),
624                                                 raw_desc_bh7, 1);
625                                 __m256i raw_desc_bh4_5 =
626                                         _mm256_inserti128_si256
627                                                 (_mm256_castsi128_si256(raw_desc_bh4),
628                                                 raw_desc_bh5, 1);
629                                 __m256i raw_desc_bh2_3 =
630                                         _mm256_inserti128_si256
631                                                 (_mm256_castsi128_si256(raw_desc_bh2),
632                                                 raw_desc_bh3, 1);
633                                 __m256i raw_desc_bh0_1 =
634                                         _mm256_inserti128_si256
635                                                 (_mm256_castsi128_si256(raw_desc_bh0),
636                                                 raw_desc_bh1, 1);
637
638                                 /**
639                                  * to shift the 32b RSS hash value to the
640                                  * highest 32b of each 128b before mask
641                                  */
642                                 __m256i rss_hash6_7 =
643                                         _mm256_slli_epi64(raw_desc_bh6_7, 32);
644                                 __m256i rss_hash4_5 =
645                                         _mm256_slli_epi64(raw_desc_bh4_5, 32);
646                                 __m256i rss_hash2_3 =
647                                         _mm256_slli_epi64(raw_desc_bh2_3, 32);
648                                 __m256i rss_hash0_1 =
649                                         _mm256_slli_epi64(raw_desc_bh0_1, 32);
650
651                                 __m256i rss_hash_msk =
652                                         _mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
653                                                          0xFFFFFFFF, 0, 0, 0);
654
655                                 rss_hash6_7 = _mm256_and_si256
656                                                 (rss_hash6_7, rss_hash_msk);
657                                 rss_hash4_5 = _mm256_and_si256
658                                                 (rss_hash4_5, rss_hash_msk);
659                                 rss_hash2_3 = _mm256_and_si256
660                                                 (rss_hash2_3, rss_hash_msk);
661                                 rss_hash0_1 = _mm256_and_si256
662                                                 (rss_hash0_1, rss_hash_msk);
663
664                                 mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
665                                 mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
666                                 mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
667                                 mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
668                         } /* if() on RSS hash parsing */
669 #endif
670                 }
671
672                 /**
673                  * At this point, we have the 8 sets of flags in the low 16-bits
674                  * of each 32-bit value in vlan0.
675                  * We want to extract these, and merge them with the mbuf init
676                  * data so we can do a single write to the mbuf to set the flags
677                  * and all the other initialization fields. Extracting the
678                  * appropriate flags means that we have to do a shift and blend
679                  * for each mbuf before we do the write. However, we can also
680                  * add in the previously computed rx_descriptor fields to
681                  * make a single 256-bit write per mbuf
682                  */
683                 /* check the structure matches expectations */
684                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
685                                  offsetof(struct rte_mbuf, rearm_data) + 8);
686                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
687                                  RTE_ALIGN(offsetof(struct rte_mbuf,
688                                                     rearm_data),
689                                            16));
690                 /* build up data and do writes */
691                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
692                         rearm6, rearm7;
693
694                 rearm6 = _mm256_blend_epi32(mbuf_init,
695                                             _mm256_slli_si256(mbuf_flags, 8),
696                                             0x04);
697                 rearm4 = _mm256_blend_epi32(mbuf_init,
698                                             _mm256_slli_si256(mbuf_flags, 4),
699                                             0x04);
700                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
701                 rearm0 = _mm256_blend_epi32(mbuf_init,
702                                             _mm256_srli_si256(mbuf_flags, 4),
703                                             0x04);
704
705                 /* permute to add in the rx_descriptor e.g. rss fields */
706                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
707                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
708                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
709                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
710
711                 /* write to mbuf */
712                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
713                                     rearm6);
714                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
715                                     rearm4);
716                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
717                                     rearm2);
718                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
719                                     rearm0);
720
721                 /* repeat for the odd mbufs */
722                 const __m256i odd_flags =
723                         _mm256_castsi128_si256
724                                 (_mm256_extracti128_si256(mbuf_flags, 1));
725                 rearm7 = _mm256_blend_epi32(mbuf_init,
726                                             _mm256_slli_si256(odd_flags, 8),
727                                             0x04);
728                 rearm5 = _mm256_blend_epi32(mbuf_init,
729                                             _mm256_slli_si256(odd_flags, 4),
730                                             0x04);
731                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
732                 rearm1 = _mm256_blend_epi32(mbuf_init,
733                                             _mm256_srli_si256(odd_flags, 4),
734                                             0x04);
735
736                 /* since odd mbufs are already in hi 128-bits use blend */
737                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
738                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
739                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
740                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
741                 /* again write to mbufs */
742                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
743                                     rearm7);
744                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
745                                     rearm5);
746                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
747                                     rearm3);
748                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
749                                     rearm1);
750
751                 /* extract and record EOP bit */
752                 if (split_packet) {
753                         const __m128i eop_mask =
754                                 _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
755                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
756                                                                      eop_check);
757                         /* pack status bits into a single 128-bit register */
758                         const __m128i eop_bits =
759                                 _mm_packus_epi32
760                                         (_mm256_castsi256_si128(eop_bits256),
761                                          _mm256_extractf128_si256(eop_bits256,
762                                                                   1));
763                         /**
764                          * flip bits, and mask out the EOP bit, which is now
765                          * a split-packet bit i.e. !EOP, rather than EOP one.
766                          */
767                         __m128i split_bits = _mm_andnot_si128(eop_bits,
768                                         eop_mask);
769                         /**
770                          * eop bits are out of order, so we need to shuffle them
771                          * back into order again. In doing so, only use low 8
772                          * bits, which acts like another pack instruction
773                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
774                          * [Since we use epi8, the 16-bit positions are
775                          * multiplied by 2 in the eop_shuffle value.]
776                          */
777                         __m128i eop_shuffle =
778                                 _mm_set_epi8(/* zero hi 64b */
779                                              0xFF, 0xFF, 0xFF, 0xFF,
780                                              0xFF, 0xFF, 0xFF, 0xFF,
781                                              /* move values to lo 64b */
782                                              8, 0, 10, 2,
783                                              12, 4, 14, 6);
784                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
785                         *(uint64_t *)split_packet =
786                                 _mm_cvtsi128_si64(split_bits);
787                         split_packet += ICE_DESCS_PER_LOOP_AVX;
788                 }
789
790                 /* perform dd_check */
791                 status0_7 = _mm256_and_si256(status0_7, dd_check);
792                 status0_7 = _mm256_packs_epi32(status0_7,
793                                                _mm256_setzero_si256());
794
795                 uint64_t burst = __builtin_popcountll
796                                         (_mm_cvtsi128_si64
797                                                 (_mm256_extracti128_si256
798                                                         (status0_7, 1)));
799                 burst += __builtin_popcountll
800                                 (_mm_cvtsi128_si64
801                                         (_mm256_castsi256_si128(status0_7)));
802                 received += burst;
803                 if (burst != ICE_DESCS_PER_LOOP_AVX)
804                         break;
805         }
806
807         /* update tail pointers */
808         rxq->rx_tail += received;
809         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
810         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
811                 rxq->rx_tail--;
812                 received--;
813         }
814         rxq->rxrearm_nb += received;
815         return received;
816 }
817
818 /**
819  * Notice:
820  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
821  */
822 uint16_t
823 ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
824                          uint16_t nb_pkts)
825 {
826         return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL, false);
827 }
828
829 /**
830  * Notice:
831  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
832  */
833 uint16_t
834 ice_recv_pkts_vec_avx512_offload(void *rx_queue, struct rte_mbuf **rx_pkts,
835                                  uint16_t nb_pkts)
836 {
837         return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts,
838                                              nb_pkts, NULL, true);
839 }
840
841 /**
842  * vPMD receive routine that reassembles single burst of 32 scattered packets
843  * Notice:
844  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
845  */
846 static uint16_t
847 ice_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
848                                     uint16_t nb_pkts)
849 {
850         struct ice_rx_queue *rxq = rx_queue;
851         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
852
853         /* get some new buffers */
854         uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
855                                                        split_flags, false);
856         if (nb_bufs == 0)
857                 return 0;
858
859         /* happy day case, full burst + no packets to be joined */
860         const uint64_t *split_fl64 = (uint64_t *)split_flags;
861
862         if (!rxq->pkt_first_seg &&
863             split_fl64[0] == 0 && split_fl64[1] == 0 &&
864             split_fl64[2] == 0 && split_fl64[3] == 0)
865                 return nb_bufs;
866
867         /* reassemble any packets that need reassembly */
868         unsigned int i = 0;
869
870         if (!rxq->pkt_first_seg) {
871                 /* find the first split flag, and only reassemble then */
872                 while (i < nb_bufs && !split_flags[i])
873                         i++;
874                 if (i == nb_bufs)
875                         return nb_bufs;
876                 rxq->pkt_first_seg = rx_pkts[i];
877         }
878         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
879                                              &split_flags[i]);
880 }
881
882 /**
883  * vPMD receive routine that reassembles single burst of 32 scattered packets
884  * Notice:
885  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
886  */
887 static uint16_t
888 ice_recv_scattered_burst_vec_avx512_offload(void *rx_queue,
889                                             struct rte_mbuf **rx_pkts,
890                                             uint16_t nb_pkts)
891 {
892         struct ice_rx_queue *rxq = rx_queue;
893         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
894
895         /* get some new buffers */
896         uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq,
897                                 rx_pkts, nb_pkts, split_flags, true);
898         if (nb_bufs == 0)
899                 return 0;
900
901         /* happy day case, full burst + no packets to be joined */
902         const uint64_t *split_fl64 = (uint64_t *)split_flags;
903
904         if (!rxq->pkt_first_seg &&
905             split_fl64[0] == 0 && split_fl64[1] == 0 &&
906             split_fl64[2] == 0 && split_fl64[3] == 0)
907                 return nb_bufs;
908
909         /* reassemble any packets that need reassembly */
910         unsigned int i = 0;
911
912         if (!rxq->pkt_first_seg) {
913                 /* find the first split flag, and only reassemble then */
914                 while (i < nb_bufs && !split_flags[i])
915                         i++;
916                 if (i == nb_bufs)
917                         return nb_bufs;
918                 rxq->pkt_first_seg = rx_pkts[i];
919         }
920         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
921                                              &split_flags[i]);
922 }
923
924 /**
925  * vPMD receive routine that reassembles scattered packets.
926  * Main receive routine that can handle arbitrary burst sizes
927  * Notice:
928  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
929  */
930 uint16_t
931 ice_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
932                                    uint16_t nb_pkts)
933 {
934         uint16_t retval = 0;
935
936         while (nb_pkts > ICE_VPMD_RX_BURST) {
937                 uint16_t burst = ice_recv_scattered_burst_vec_avx512(rx_queue,
938                                 rx_pkts + retval, ICE_VPMD_RX_BURST);
939                 retval += burst;
940                 nb_pkts -= burst;
941                 if (burst < ICE_VPMD_RX_BURST)
942                         return retval;
943         }
944         return retval + ice_recv_scattered_burst_vec_avx512(rx_queue,
945                                 rx_pkts + retval, nb_pkts);
946 }
947
948 /**
949  * vPMD receive routine that reassembles scattered packets.
950  * Main receive routine that can handle arbitrary burst sizes
951  * Notice:
952  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
953  */
954 uint16_t
955 ice_recv_scattered_pkts_vec_avx512_offload(void *rx_queue,
956                                            struct rte_mbuf **rx_pkts,
957                                            uint16_t nb_pkts)
958 {
959         uint16_t retval = 0;
960
961         while (nb_pkts > ICE_VPMD_RX_BURST) {
962                 uint16_t burst =
963                         ice_recv_scattered_burst_vec_avx512_offload(rx_queue,
964                                 rx_pkts + retval, ICE_VPMD_RX_BURST);
965                 retval += burst;
966                 nb_pkts -= burst;
967                 if (burst < ICE_VPMD_RX_BURST)
968                         return retval;
969         }
970         return retval + ice_recv_scattered_burst_vec_avx512_offload(rx_queue,
971                                 rx_pkts + retval, nb_pkts);
972 }
973
974 static __rte_always_inline int
975 ice_tx_free_bufs_avx512(struct ice_tx_queue *txq)
976 {
977         struct ice_vec_tx_entry *txep;
978         uint32_t n;
979         uint32_t i;
980         int nb_free = 0;
981         struct rte_mbuf *m, *free[ICE_TX_MAX_FREE_BUF_SZ];
982
983         /* check DD bits on threshold descriptor */
984         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
985                         rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
986                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
987                 return 0;
988
989         n = txq->tx_rs_thresh;
990
991         /* first buffer to free from S/W ring is at index
992          * tx_next_dd - (tx_rs_thresh - 1)
993          */
994         txep = (void *)txq->sw_ring;
995         txep += txq->tx_next_dd - (n - 1);
996
997         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
998                 struct rte_mempool *mp = txep[0].mbuf->pool;
999                 void **cache_objs;
1000                 struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
1001                                 rte_lcore_id());
1002
1003                 if (!cache || cache->len == 0)
1004                         goto normal;
1005
1006                 cache_objs = &cache->objs[cache->len];
1007
1008                 if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
1009                         rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
1010                         goto done;
1011                 }
1012
1013                 /* The cache follows the following algorithm
1014                  *   1. Add the objects to the cache
1015                  *   2. Anything greater than the cache min value (if it
1016                  *   crosses the cache flush threshold) is flushed to the ring.
1017                  */
1018                 /* Add elements back into the cache */
1019                 uint32_t copied = 0;
1020                 /* n is multiple of 32 */
1021                 while (copied < n) {
1022                         const __m512i a = _mm512_loadu_si512(&txep[copied]);
1023                         const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
1024                         const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
1025                         const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
1026
1027                         _mm512_storeu_si512(&cache_objs[copied], a);
1028                         _mm512_storeu_si512(&cache_objs[copied + 8], b);
1029                         _mm512_storeu_si512(&cache_objs[copied + 16], c);
1030                         _mm512_storeu_si512(&cache_objs[copied + 24], d);
1031                         copied += 32;
1032                 }
1033                 cache->len += n;
1034
1035                 if (cache->len >= cache->flushthresh) {
1036                         rte_mempool_ops_enqueue_bulk
1037                                 (mp, &cache->objs[cache->size],
1038                                  cache->len - cache->size);
1039                         cache->len = cache->size;
1040                 }
1041                 goto done;
1042         }
1043
1044 normal:
1045         m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
1046         if (likely(m)) {
1047                 free[0] = m;
1048                 nb_free = 1;
1049                 for (i = 1; i < n; i++) {
1050                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
1051                         if (likely(m)) {
1052                                 if (likely(m->pool == free[0]->pool)) {
1053                                         free[nb_free++] = m;
1054                                 } else {
1055                                         rte_mempool_put_bulk(free[0]->pool,
1056                                                              (void *)free,
1057                                                              nb_free);
1058                                         free[0] = m;
1059                                         nb_free = 1;
1060                                 }
1061                         }
1062                 }
1063                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
1064         } else {
1065                 for (i = 1; i < n; i++) {
1066                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
1067                         if (m)
1068                                 rte_mempool_put(m->pool, m);
1069                 }
1070         }
1071
1072 done:
1073         /* buffers were freed, update counters */
1074         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1075         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1076         if (txq->tx_next_dd >= txq->nb_tx_desc)
1077                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1078
1079         return txq->tx_rs_thresh;
1080 }
1081
1082 static __rte_always_inline void
1083 ice_vtx1(volatile struct ice_tx_desc *txdp,
1084          struct rte_mbuf *pkt, uint64_t flags, bool do_offload)
1085 {
1086         uint64_t high_qw =
1087                 (ICE_TX_DESC_DTYPE_DATA |
1088                  ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
1089                  ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
1090
1091         if (do_offload)
1092                 ice_txd_enable_offload(pkt, &high_qw);
1093
1094         __m128i descriptor = _mm_set_epi64x(high_qw,
1095                                 pkt->buf_iova + pkt->data_off);
1096         _mm_store_si128((__m128i *)txdp, descriptor);
1097 }
1098
1099 static __rte_always_inline void
1100 ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt,
1101         uint16_t nb_pkts,  uint64_t flags, bool do_offload)
1102 {
1103         const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
1104                         ((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
1105
1106         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
1107                 uint64_t hi_qw3 =
1108                         hi_qw_tmpl |
1109                         ((uint64_t)pkt[3]->data_len <<
1110                          ICE_TXD_QW1_TX_BUF_SZ_S);
1111                 if (do_offload)
1112                         ice_txd_enable_offload(pkt[3], &hi_qw3);
1113                 uint64_t hi_qw2 =
1114                         hi_qw_tmpl |
1115                         ((uint64_t)pkt[2]->data_len <<
1116                          ICE_TXD_QW1_TX_BUF_SZ_S);
1117                 if (do_offload)
1118                         ice_txd_enable_offload(pkt[2], &hi_qw2);
1119                 uint64_t hi_qw1 =
1120                         hi_qw_tmpl |
1121                         ((uint64_t)pkt[1]->data_len <<
1122                          ICE_TXD_QW1_TX_BUF_SZ_S);
1123                 if (do_offload)
1124                         ice_txd_enable_offload(pkt[1], &hi_qw1);
1125                 uint64_t hi_qw0 =
1126                         hi_qw_tmpl |
1127                         ((uint64_t)pkt[0]->data_len <<
1128                          ICE_TXD_QW1_TX_BUF_SZ_S);
1129                 if (do_offload)
1130                         ice_txd_enable_offload(pkt[0], &hi_qw0);
1131
1132                 __m512i desc0_3 =
1133                         _mm512_set_epi64
1134                                 (hi_qw3,
1135                                  pkt[3]->buf_iova + pkt[3]->data_off,
1136                                  hi_qw2,
1137                                  pkt[2]->buf_iova + pkt[2]->data_off,
1138                                  hi_qw1,
1139                                  pkt[1]->buf_iova + pkt[1]->data_off,
1140                                  hi_qw0,
1141                                  pkt[0]->buf_iova + pkt[0]->data_off);
1142                 _mm512_storeu_si512((void *)txdp, desc0_3);
1143         }
1144
1145         /* do any last ones */
1146         while (nb_pkts) {
1147                 ice_vtx1(txdp, *pkt, flags, do_offload);
1148                 txdp++, pkt++, nb_pkts--;
1149         }
1150 }
1151
1152 static __rte_always_inline void
1153 ice_tx_backlog_entry_avx512(struct ice_vec_tx_entry *txep,
1154                             struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1155 {
1156         int i;
1157
1158         for (i = 0; i < (int)nb_pkts; ++i)
1159                 txep[i].mbuf = tx_pkts[i];
1160 }
1161
1162 static __rte_always_inline uint16_t
1163 ice_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1164                                 uint16_t nb_pkts, bool do_offload)
1165 {
1166         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1167         volatile struct ice_tx_desc *txdp;
1168         struct ice_vec_tx_entry *txep;
1169         uint16_t n, nb_commit, tx_id;
1170         uint64_t flags = ICE_TD_CMD;
1171         uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
1172
1173         /* cross rx_thresh boundary is not allowed */
1174         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1175
1176         if (txq->nb_tx_free < txq->tx_free_thresh)
1177                 ice_tx_free_bufs_avx512(txq);
1178
1179         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1180         if (unlikely(nb_pkts == 0))
1181                 return 0;
1182
1183         tx_id = txq->tx_tail;
1184         txdp = &txq->tx_ring[tx_id];
1185         txep = (void *)txq->sw_ring;
1186         txep += tx_id;
1187
1188         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1189
1190         n = (uint16_t)(txq->nb_tx_desc - tx_id);
1191         if (nb_commit >= n) {
1192                 ice_tx_backlog_entry_avx512(txep, tx_pkts, n);
1193
1194                 ice_vtx(txdp, tx_pkts, n - 1, flags, do_offload);
1195                 tx_pkts += (n - 1);
1196                 txdp += (n - 1);
1197
1198                 ice_vtx1(txdp, *tx_pkts++, rs, do_offload);
1199
1200                 nb_commit = (uint16_t)(nb_commit - n);
1201
1202                 tx_id = 0;
1203                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1204
1205                 /* avoid reach the end of ring */
1206                 txdp = txq->tx_ring;
1207                 txep = (void *)txq->sw_ring;
1208         }
1209
1210         ice_tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
1211
1212         ice_vtx(txdp, tx_pkts, nb_commit, flags, do_offload);
1213
1214         tx_id = (uint16_t)(tx_id + nb_commit);
1215         if (tx_id > txq->tx_next_rs) {
1216                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
1217                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
1218                                          ICE_TXD_QW1_CMD_S);
1219                 txq->tx_next_rs =
1220                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1221         }
1222
1223         txq->tx_tail = tx_id;
1224
1225         ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1226
1227         return nb_pkts;
1228 }
1229
1230 uint16_t
1231 ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1232                          uint16_t nb_pkts)
1233 {
1234         uint16_t nb_tx = 0;
1235         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1236
1237         while (nb_pkts) {
1238                 uint16_t ret, num;
1239
1240                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1241                 ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
1242                                 &tx_pkts[nb_tx], num, false);
1243                 nb_tx += ret;
1244                 nb_pkts -= ret;
1245                 if (ret < num)
1246                         break;
1247         }
1248
1249         return nb_tx;
1250 }
1251
1252 uint16_t
1253 ice_xmit_pkts_vec_avx512_offload(void *tx_queue, struct rte_mbuf **tx_pkts,
1254                                  uint16_t nb_pkts)
1255 {
1256         uint16_t nb_tx = 0;
1257         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1258
1259         while (nb_pkts) {
1260                 uint16_t ret, num;
1261
1262                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1263                 ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
1264                                 &tx_pkts[nb_tx], num, true);
1265
1266                 nb_tx += ret;
1267                 nb_pkts -= ret;
1268                 if (ret < num)
1269                         break;
1270         }
1271
1272         return nb_tx;
1273 }