net/ice/base: use package info from ice segment metadata
[dpdk.git] / drivers / net / ice / ice_rxtx_vec_avx512.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "ice_rxtx_vec_common.h"
6
7 #include <x86intrin.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 #define ICE_DESCS_PER_LOOP_AVX 8
14
15 static inline void
16 ice_rxq_rearm(struct ice_rx_queue *rxq)
17 {
18         int i;
19         uint16_t rx_id;
20         volatile union ice_rx_flex_desc *rxdp;
21         struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
22         struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp,
23                         rte_lcore_id());
24
25         rxdp = rxq->rx_ring + rxq->rxrearm_start;
26
27         /* We need to pull 'n' more MBUFs into the software ring */
28         if (cache->len < ICE_RXQ_REARM_THRESH) {
29                 uint32_t req = ICE_RXQ_REARM_THRESH + (cache->size -
30                                 cache->len);
31
32                 int ret = rte_mempool_ops_dequeue_bulk(rxq->mp,
33                                 &cache->objs[cache->len], req);
34                 if (ret == 0) {
35                         cache->len += req;
36                 } else {
37                         if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
38                             rxq->nb_rx_desc) {
39                                 __m128i dma_addr0;
40
41                                 dma_addr0 = _mm_setzero_si128();
42                                 for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
43                                         rxep[i].mbuf = &rxq->fake_mbuf;
44                                         _mm_store_si128
45                                                 ((__m128i *)&rxdp[i].read,
46                                                         dma_addr0);
47                                 }
48                         }
49                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
50                                 ICE_RXQ_REARM_THRESH;
51                         return;
52                 }
53         }
54
55         const __m512i iova_offsets =  _mm512_set1_epi64
56                 (offsetof(struct rte_mbuf, buf_iova));
57         const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
58
59 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
60         /* shuffle the iova into correct slots. Values 4-7 will contain
61          * zeros, so use 7 for a zero-value.
62          */
63         const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
64 #else
65         const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
66 #endif
67
68         /* fill up the rxd in vector, process 8 mbufs in one loop */
69         for (i = 0; i < ICE_RXQ_REARM_THRESH / 8; i++) {
70                 const __m512i mbuf_ptrs = _mm512_loadu_si512
71                         (&cache->objs[cache->len - 8]);
72                 _mm512_store_si512(rxep, mbuf_ptrs);
73
74                 /* gather iova of mbuf0-7 into one zmm reg */
75                 const __m512i iova_base_addrs = _mm512_i64gather_epi64
76                         (_mm512_add_epi64(mbuf_ptrs, iova_offsets),
77                                 0, /* base */
78                                 1  /* scale */);
79                 const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
80                                 headroom);
81 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
82                 const __m512i iovas0 = _mm512_castsi256_si512
83                         (_mm512_extracti64x4_epi64(iova_addrs, 0));
84                 const __m512i iovas1 = _mm512_castsi256_si512
85                         (_mm512_extracti64x4_epi64(iova_addrs, 1));
86
87                 /* permute leaves iova 2-3 in hdr_addr of desc 0-1
88                  * but these are ignored by driver since header split not
89                  * enabled. Similarly for desc 4 & 5.
90                  */
91                 const __m512i desc0_1 = _mm512_permutexvar_epi64
92                         (permute_idx, iovas0);
93                 const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
94
95                 const __m512i desc4_5 = _mm512_permutexvar_epi64
96                         (permute_idx, iovas1);
97                 const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
98
99                 _mm512_store_si512((void *)rxdp, desc0_1);
100                 _mm512_store_si512((void *)(rxdp + 2), desc2_3);
101                 _mm512_store_si512((void *)(rxdp + 4), desc4_5);
102                 _mm512_store_si512((void *)(rxdp + 6), desc6_7);
103 #else
104                 /* permute leaves iova 4-7 in hdr_addr of desc 0-3
105                  * but these are ignored by driver since header split not
106                  * enabled.
107                  */
108                 const __m512i desc0_3 = _mm512_permutexvar_epi64
109                         (permute_idx, iova_addrs);
110                 const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
111
112                 _mm512_store_si512((void *)rxdp, desc0_3);
113                 _mm512_store_si512((void *)(rxdp + 4), desc4_7);
114 #endif
115                 rxep += 8, rxdp += 8, cache->len -= 8;
116         }
117
118         rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
119         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
120                 rxq->rxrearm_start = 0;
121
122         rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
123
124         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
125                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
126
127         /* Update the tail pointer on the NIC */
128         ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
129 }
130
131 static inline uint16_t
132 _ice_recv_raw_pkts_vec_avx512(struct ice_rx_queue *rxq,
133                               struct rte_mbuf **rx_pkts,
134                               uint16_t nb_pkts, uint8_t *split_packet)
135 {
136         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
137         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
138                         0, rxq->mbuf_initializer);
139         struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
140         volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
141
142         rte_prefetch0(rxdp);
143
144         /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
145         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
146
147         /* See if we need to rearm the RX queue - gives the prefetch a bit
148          * of time to act
149          */
150         if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
151                 ice_rxq_rearm(rxq);
152
153         /* Before we start moving massive data around, check to see if
154          * there is actually a packet available
155          */
156         if (!(rxdp->wb.status_error0 &
157                         rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
158                 return 0;
159
160         /* constants used in processing loop */
161         const __m512i crc_adjust =
162                 _mm512_set4_epi32
163                         (0,             /* ignore non-length fields */
164                          -rxq->crc_len, /* sub crc on data_len */
165                          -rxq->crc_len, /* sub crc on pkt_len */
166                          0              /* ignore non-length fields */
167                         );
168
169         /* 8 packets DD mask, LSB in each 32-bit value */
170         const __m256i dd_check = _mm256_set1_epi32(1);
171
172         /* 8 packets EOP mask, second-LSB in each 32-bit value */
173         const __m256i eop_check = _mm256_slli_epi32(dd_check,
174                         ICE_RX_DESC_STATUS_EOF_S);
175
176         /* mask to shuffle from desc. to mbuf (4 descriptors)*/
177         const __m512i shuf_msk =
178                 _mm512_set4_epi32
179                         (/* rss hash parsed separately */
180                          0xFFFFFFFF,
181                          /* octet 10~11, 16 bits vlan_macip */
182                          /* octet 4~5, 16 bits data_len */
183                          11 << 24 | 10 << 16 | 5 << 8 | 4,
184                          /* skip hi 16 bits pkt_len, zero out */
185                          /* octet 4~5, 16 bits pkt_len */
186                          0xFFFF << 16 | 5 << 8 | 4,
187                          /* pkt_type set as unknown */
188                          0xFFFFFFFF
189                         );
190
191         /**
192          * compile-time check the above crc and shuffle layout is correct.
193          * NOTE: the first field (lowest address) is given last in set_epi
194          * calls above.
195          */
196         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
197                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
198         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
199                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
200         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
201                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
202         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
203                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
204
205         /* Status/Error flag masks */
206         /**
207          * mask everything except Checksum Reports, RSS indication
208          * and VLAN indication.
209          * bit6:4 for IP/L4 checksum errors.
210          * bit12 is for RSS indication.
211          * bit13 is for VLAN indication.
212          */
213         const __m256i flags_mask =
214                  _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
215         /**
216          * data to be shuffled by the result of the flags mask shifted by 4
217          * bits.  This gives use the l3_l4 flags.
218          */
219         const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
220                         /* shift right 1 bit to make sure it not exceed 255 */
221                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
222                          PKT_RX_IP_CKSUM_BAD) >> 1,
223                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
224                          PKT_RX_IP_CKSUM_GOOD) >> 1,
225                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
226                          PKT_RX_IP_CKSUM_BAD) >> 1,
227                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
228                          PKT_RX_IP_CKSUM_GOOD) >> 1,
229                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
230                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
231                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
232                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
233                         /* 2nd 128-bits */
234                         0, 0, 0, 0, 0, 0, 0, 0,
235                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
236                          PKT_RX_IP_CKSUM_BAD) >> 1,
237                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
238                          PKT_RX_IP_CKSUM_GOOD) >> 1,
239                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
240                          PKT_RX_IP_CKSUM_BAD) >> 1,
241                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
242                          PKT_RX_IP_CKSUM_GOOD) >> 1,
243                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
244                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
245                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
246                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
247         const __m256i cksum_mask =
248                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
249                                    PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
250                                    PKT_RX_EIP_CKSUM_BAD);
251         /**
252          * data to be shuffled by result of flag mask, shifted down 12.
253          * If RSS(bit12)/VLAN(bit13) are set,
254          * shuffle moves appropriate flags in place.
255          */
256         const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
257                         0, 0, 0, 0,
258                         0, 0, 0, 0,
259                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
260                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
261                         PKT_RX_RSS_HASH, 0,
262                         /* 2nd 128-bits */
263                         0, 0, 0, 0,
264                         0, 0, 0, 0,
265                         0, 0, 0, 0,
266                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
267                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
268                         PKT_RX_RSS_HASH, 0);
269
270         uint16_t i, received;
271
272         for (i = 0, received = 0; i < nb_pkts;
273              i += ICE_DESCS_PER_LOOP_AVX,
274              rxdp += ICE_DESCS_PER_LOOP_AVX) {
275                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
276                 _mm256_storeu_si256((void *)&rx_pkts[i],
277                                     _mm256_loadu_si256((void *)&sw_ring[i]));
278 #ifdef RTE_ARCH_X86_64
279                 _mm256_storeu_si256
280                         ((void *)&rx_pkts[i + 4],
281                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
282 #endif
283
284                 __m512i raw_desc0_3, raw_desc4_7;
285                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
286
287                 /* load in descriptors, in reverse order */
288                 const __m128i raw_desc7 =
289                         _mm_load_si128((void *)(rxdp + 7));
290                 rte_compiler_barrier();
291                 const __m128i raw_desc6 =
292                         _mm_load_si128((void *)(rxdp + 6));
293                 rte_compiler_barrier();
294                 const __m128i raw_desc5 =
295                         _mm_load_si128((void *)(rxdp + 5));
296                 rte_compiler_barrier();
297                 const __m128i raw_desc4 =
298                         _mm_load_si128((void *)(rxdp + 4));
299                 rte_compiler_barrier();
300                 const __m128i raw_desc3 =
301                         _mm_load_si128((void *)(rxdp + 3));
302                 rte_compiler_barrier();
303                 const __m128i raw_desc2 =
304                         _mm_load_si128((void *)(rxdp + 2));
305                 rte_compiler_barrier();
306                 const __m128i raw_desc1 =
307                         _mm_load_si128((void *)(rxdp + 1));
308                 rte_compiler_barrier();
309                 const __m128i raw_desc0 =
310                         _mm_load_si128((void *)(rxdp + 0));
311
312                 raw_desc6_7 =
313                         _mm256_inserti128_si256
314                                 (_mm256_castsi128_si256(raw_desc6),
315                                  raw_desc7, 1);
316                 raw_desc4_5 =
317                         _mm256_inserti128_si256
318                                 (_mm256_castsi128_si256(raw_desc4),
319                                  raw_desc5, 1);
320                 raw_desc2_3 =
321                         _mm256_inserti128_si256
322                                 (_mm256_castsi128_si256(raw_desc2),
323                                  raw_desc3, 1);
324                 raw_desc0_1 =
325                         _mm256_inserti128_si256
326                                 (_mm256_castsi128_si256(raw_desc0),
327                                  raw_desc1, 1);
328
329                 raw_desc4_7 =
330                         _mm512_inserti64x4
331                                 (_mm512_castsi256_si512(raw_desc4_5),
332                                  raw_desc6_7, 1);
333                 raw_desc0_3 =
334                         _mm512_inserti64x4
335                                 (_mm512_castsi256_si512(raw_desc0_1),
336                                  raw_desc2_3, 1);
337
338                 if (split_packet) {
339                         int j;
340
341                         for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
342                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
343                 }
344
345                 /**
346                  * convert descriptors 0-7 into mbufs, re-arrange fields.
347                  * Then write into the mbuf.
348                  */
349                 __m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
350                 __m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
351
352                 mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
353                 mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
354
355                 /**
356                  * to get packet types, ptype is located in bit16-25
357                  * of each 128bits
358                  */
359                 const __m512i ptype_mask =
360                         _mm512_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
361
362                 /**
363                  * to get packet types, ptype is located in bit16-25
364                  * of each 128bits
365                  */
366                 const __m512i ptypes4_7 =
367                         _mm512_and_si512(raw_desc4_7, ptype_mask);
368                 const __m512i ptypes0_3 =
369                         _mm512_and_si512(raw_desc0_3, ptype_mask);
370
371                 const __m256i ptypes6_7 =
372                         _mm512_extracti64x4_epi64(ptypes4_7, 1);
373                 const __m256i ptypes4_5 =
374                         _mm512_extracti64x4_epi64(ptypes4_7, 0);
375                 const __m256i ptypes2_3 =
376                         _mm512_extracti64x4_epi64(ptypes0_3, 1);
377                 const __m256i ptypes0_1 =
378                         _mm512_extracti64x4_epi64(ptypes0_3, 0);
379                 const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
380                 const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
381                 const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
382                 const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
383                 const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
384                 const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
385                 const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
386                 const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
387
388                 const __m512i ptype4_7 = _mm512_set_epi32
389                         (0, 0, 0, ptype_tbl[ptype7],
390                          0, 0, 0, ptype_tbl[ptype6],
391                          0, 0, 0, ptype_tbl[ptype5],
392                          0, 0, 0, ptype_tbl[ptype4]);
393                 const __m512i ptype0_3 = _mm512_set_epi32
394                         (0, 0, 0, ptype_tbl[ptype3],
395                          0, 0, 0, ptype_tbl[ptype2],
396                          0, 0, 0, ptype_tbl[ptype1],
397                          0, 0, 0, ptype_tbl[ptype0]);
398
399                 mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
400                 mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
401
402                 __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
403                 __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
404                 __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
405                 __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
406
407                 /**
408                  * use permute/extract to get status content
409                  * After the operations, the packets status flags are in the
410                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
411                  */
412                 /* merge the status bits into one register */
413                 const __m512i status_permute_msk = _mm512_set_epi32
414                         (0, 0, 0, 0,
415                          0, 0, 0, 0,
416                          22, 30, 6, 14,
417                          18, 26, 2, 10);
418                 const __m512i raw_status0_7 = _mm512_permutex2var_epi32
419                         (raw_desc4_7, status_permute_msk, raw_desc0_3);
420                 __m256i status0_7 = _mm512_extracti64x4_epi64
421                         (raw_status0_7, 0);
422
423                 /* now do flag manipulation */
424
425                 /* get only flag/error bits we want */
426                 const __m256i flag_bits =
427                         _mm256_and_si256(status0_7, flags_mask);
428                 /**
429                  * l3_l4_error flags, shuffle, then shift to correct adjustment
430                  * of flags in flags_shuf, and finally mask out extra bits
431                  */
432                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
433                                 _mm256_srli_epi32(flag_bits, 4));
434                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
435                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
436                 /* set rss and vlan flags */
437                 const __m256i rss_vlan_flag_bits =
438                         _mm256_srli_epi32(flag_bits, 12);
439                 const __m256i rss_vlan_flags =
440                         _mm256_shuffle_epi8(rss_vlan_flags_shuf,
441                                             rss_vlan_flag_bits);
442
443                 /* merge flags */
444                 const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
445                                 rss_vlan_flags);
446
447 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
448                 /**
449                  * needs to load 2nd 16B of each desc for RSS hash parsing,
450                  * will cause performance drop to get into this context.
451                  */
452                 if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads &
453                                 DEV_RX_OFFLOAD_RSS_HASH) {
454                         /* load bottom half of every 32B desc */
455                         const __m128i raw_desc_bh7 =
456                                 _mm_load_si128
457                                         ((void *)(&rxdp[7].wb.status_error1));
458                         rte_compiler_barrier();
459                         const __m128i raw_desc_bh6 =
460                                 _mm_load_si128
461                                         ((void *)(&rxdp[6].wb.status_error1));
462                         rte_compiler_barrier();
463                         const __m128i raw_desc_bh5 =
464                                 _mm_load_si128
465                                         ((void *)(&rxdp[5].wb.status_error1));
466                         rte_compiler_barrier();
467                         const __m128i raw_desc_bh4 =
468                                 _mm_load_si128
469                                         ((void *)(&rxdp[4].wb.status_error1));
470                         rte_compiler_barrier();
471                         const __m128i raw_desc_bh3 =
472                                 _mm_load_si128
473                                         ((void *)(&rxdp[3].wb.status_error1));
474                         rte_compiler_barrier();
475                         const __m128i raw_desc_bh2 =
476                                 _mm_load_si128
477                                         ((void *)(&rxdp[2].wb.status_error1));
478                         rte_compiler_barrier();
479                         const __m128i raw_desc_bh1 =
480                                 _mm_load_si128
481                                         ((void *)(&rxdp[1].wb.status_error1));
482                         rte_compiler_barrier();
483                         const __m128i raw_desc_bh0 =
484                                 _mm_load_si128
485                                         ((void *)(&rxdp[0].wb.status_error1));
486
487                         __m256i raw_desc_bh6_7 =
488                                 _mm256_inserti128_si256
489                                         (_mm256_castsi128_si256(raw_desc_bh6),
490                                         raw_desc_bh7, 1);
491                         __m256i raw_desc_bh4_5 =
492                                 _mm256_inserti128_si256
493                                         (_mm256_castsi128_si256(raw_desc_bh4),
494                                         raw_desc_bh5, 1);
495                         __m256i raw_desc_bh2_3 =
496                                 _mm256_inserti128_si256
497                                         (_mm256_castsi128_si256(raw_desc_bh2),
498                                         raw_desc_bh3, 1);
499                         __m256i raw_desc_bh0_1 =
500                                 _mm256_inserti128_si256
501                                         (_mm256_castsi128_si256(raw_desc_bh0),
502                                         raw_desc_bh1, 1);
503
504                         /**
505                          * to shift the 32b RSS hash value to the
506                          * highest 32b of each 128b before mask
507                          */
508                         __m256i rss_hash6_7 =
509                                 _mm256_slli_epi64(raw_desc_bh6_7, 32);
510                         __m256i rss_hash4_5 =
511                                 _mm256_slli_epi64(raw_desc_bh4_5, 32);
512                         __m256i rss_hash2_3 =
513                                 _mm256_slli_epi64(raw_desc_bh2_3, 32);
514                         __m256i rss_hash0_1 =
515                                 _mm256_slli_epi64(raw_desc_bh0_1, 32);
516
517                         __m256i rss_hash_msk =
518                                 _mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
519                                                  0xFFFFFFFF, 0, 0, 0);
520
521                         rss_hash6_7 = _mm256_and_si256
522                                         (rss_hash6_7, rss_hash_msk);
523                         rss_hash4_5 = _mm256_and_si256
524                                         (rss_hash4_5, rss_hash_msk);
525                         rss_hash2_3 = _mm256_and_si256
526                                         (rss_hash2_3, rss_hash_msk);
527                         rss_hash0_1 = _mm256_and_si256
528                                         (rss_hash0_1, rss_hash_msk);
529
530                         mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
531                         mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
532                         mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
533                         mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
534                 } /* if() on RSS hash parsing */
535 #endif
536
537                 /**
538                  * At this point, we have the 8 sets of flags in the low 16-bits
539                  * of each 32-bit value in vlan0.
540                  * We want to extract these, and merge them with the mbuf init
541                  * data so we can do a single write to the mbuf to set the flags
542                  * and all the other initialization fields. Extracting the
543                  * appropriate flags means that we have to do a shift and blend
544                  * for each mbuf before we do the write. However, we can also
545                  * add in the previously computed rx_descriptor fields to
546                  * make a single 256-bit write per mbuf
547                  */
548                 /* check the structure matches expectations */
549                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
550                                  offsetof(struct rte_mbuf, rearm_data) + 8);
551                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
552                                  RTE_ALIGN(offsetof(struct rte_mbuf,
553                                                     rearm_data),
554                                            16));
555                 /* build up data and do writes */
556                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
557                         rearm6, rearm7;
558
559                 rearm6 = _mm256_blend_epi32(mbuf_init,
560                                             _mm256_slli_si256(mbuf_flags, 8),
561                                             0x04);
562                 rearm4 = _mm256_blend_epi32(mbuf_init,
563                                             _mm256_slli_si256(mbuf_flags, 4),
564                                             0x04);
565                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
566                 rearm0 = _mm256_blend_epi32(mbuf_init,
567                                             _mm256_srli_si256(mbuf_flags, 4),
568                                             0x04);
569
570                 /* permute to add in the rx_descriptor e.g. rss fields */
571                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
572                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
573                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
574                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
575
576                 /* write to mbuf */
577                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
578                                     rearm6);
579                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
580                                     rearm4);
581                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
582                                     rearm2);
583                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
584                                     rearm0);
585
586                 /* repeat for the odd mbufs */
587                 const __m256i odd_flags =
588                         _mm256_castsi128_si256
589                                 (_mm256_extracti128_si256(mbuf_flags, 1));
590                 rearm7 = _mm256_blend_epi32(mbuf_init,
591                                             _mm256_slli_si256(odd_flags, 8),
592                                             0x04);
593                 rearm5 = _mm256_blend_epi32(mbuf_init,
594                                             _mm256_slli_si256(odd_flags, 4),
595                                             0x04);
596                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
597                 rearm1 = _mm256_blend_epi32(mbuf_init,
598                                             _mm256_srli_si256(odd_flags, 4),
599                                             0x04);
600
601                 /* since odd mbufs are already in hi 128-bits use blend */
602                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
603                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
604                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
605                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
606                 /* again write to mbufs */
607                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
608                                     rearm7);
609                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
610                                     rearm5);
611                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
612                                     rearm3);
613                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
614                                     rearm1);
615
616                 /* extract and record EOP bit */
617                 if (split_packet) {
618                         const __m128i eop_mask =
619                                 _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
620                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
621                                                                      eop_check);
622                         /* pack status bits into a single 128-bit register */
623                         const __m128i eop_bits =
624                                 _mm_packus_epi32
625                                         (_mm256_castsi256_si128(eop_bits256),
626                                          _mm256_extractf128_si256(eop_bits256,
627                                                                   1));
628                         /**
629                          * flip bits, and mask out the EOP bit, which is now
630                          * a split-packet bit i.e. !EOP, rather than EOP one.
631                          */
632                         __m128i split_bits = _mm_andnot_si128(eop_bits,
633                                         eop_mask);
634                         /**
635                          * eop bits are out of order, so we need to shuffle them
636                          * back into order again. In doing so, only use low 8
637                          * bits, which acts like another pack instruction
638                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
639                          * [Since we use epi8, the 16-bit positions are
640                          * multiplied by 2 in the eop_shuffle value.]
641                          */
642                         __m128i eop_shuffle =
643                                 _mm_set_epi8(/* zero hi 64b */
644                                              0xFF, 0xFF, 0xFF, 0xFF,
645                                              0xFF, 0xFF, 0xFF, 0xFF,
646                                              /* move values to lo 64b */
647                                              8, 0, 10, 2,
648                                              12, 4, 14, 6);
649                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
650                         *(uint64_t *)split_packet =
651                                 _mm_cvtsi128_si64(split_bits);
652                         split_packet += ICE_DESCS_PER_LOOP_AVX;
653                 }
654
655                 /* perform dd_check */
656                 status0_7 = _mm256_and_si256(status0_7, dd_check);
657                 status0_7 = _mm256_packs_epi32(status0_7,
658                                                _mm256_setzero_si256());
659
660                 uint64_t burst = __builtin_popcountll
661                                         (_mm_cvtsi128_si64
662                                                 (_mm256_extracti128_si256
663                                                         (status0_7, 1)));
664                 burst += __builtin_popcountll
665                                 (_mm_cvtsi128_si64
666                                         (_mm256_castsi256_si128(status0_7)));
667                 received += burst;
668                 if (burst != ICE_DESCS_PER_LOOP_AVX)
669                         break;
670         }
671
672         /* update tail pointers */
673         rxq->rx_tail += received;
674         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
675         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
676                 rxq->rx_tail--;
677                 received--;
678         }
679         rxq->rxrearm_nb += received;
680         return received;
681 }
682
683 /**
684  * Notice:
685  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
686  */
687 uint16_t
688 ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
689                          uint16_t nb_pkts)
690 {
691         return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
692 }
693
694 /**
695  * vPMD receive routine that reassembles single burst of 32 scattered packets
696  * Notice:
697  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
698  */
699 static uint16_t
700 ice_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
701                                     uint16_t nb_pkts)
702 {
703         struct ice_rx_queue *rxq = rx_queue;
704         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
705
706         /* get some new buffers */
707         uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
708                                                        split_flags);
709         if (nb_bufs == 0)
710                 return 0;
711
712         /* happy day case, full burst + no packets to be joined */
713         const uint64_t *split_fl64 = (uint64_t *)split_flags;
714
715         if (!rxq->pkt_first_seg &&
716             split_fl64[0] == 0 && split_fl64[1] == 0 &&
717             split_fl64[2] == 0 && split_fl64[3] == 0)
718                 return nb_bufs;
719
720         /* reassemble any packets that need reassembly */
721         unsigned int i = 0;
722
723         if (!rxq->pkt_first_seg) {
724                 /* find the first split flag, and only reassemble then */
725                 while (i < nb_bufs && !split_flags[i])
726                         i++;
727                 if (i == nb_bufs)
728                         return nb_bufs;
729                 rxq->pkt_first_seg = rx_pkts[i];
730         }
731         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
732                                              &split_flags[i]);
733 }
734
735 /**
736  * vPMD receive routine that reassembles scattered packets.
737  * Main receive routine that can handle arbitrary burst sizes
738  * Notice:
739  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
740  */
741 uint16_t
742 ice_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
743                                    uint16_t nb_pkts)
744 {
745         uint16_t retval = 0;
746
747         while (nb_pkts > ICE_VPMD_RX_BURST) {
748                 uint16_t burst = ice_recv_scattered_burst_vec_avx512(rx_queue,
749                                 rx_pkts + retval, ICE_VPMD_RX_BURST);
750                 retval += burst;
751                 nb_pkts -= burst;
752                 if (burst < ICE_VPMD_RX_BURST)
753                         return retval;
754         }
755         return retval + ice_recv_scattered_burst_vec_avx512(rx_queue,
756                                 rx_pkts + retval, nb_pkts);
757 }
758
759 static __rte_always_inline int
760 ice_tx_free_bufs_avx512(struct ice_tx_queue *txq)
761 {
762         struct ice_vec_tx_entry *txep;
763         uint32_t n;
764         uint32_t i;
765         int nb_free = 0;
766         struct rte_mbuf *m, *free[ICE_TX_MAX_FREE_BUF_SZ];
767
768         /* check DD bits on threshold descriptor */
769         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
770                         rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
771                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
772                 return 0;
773
774         n = txq->tx_rs_thresh;
775
776         /* first buffer to free from S/W ring is at index
777          * tx_next_dd - (tx_rs_thresh - 1)
778          */
779         txep = (void *)txq->sw_ring;
780         txep += txq->tx_next_dd - (n - 1);
781
782         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
783                 struct rte_mempool *mp = txep[0].mbuf->pool;
784                 struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
785                                 rte_lcore_id());
786                 void **cache_objs = &cache->objs[cache->len];
787
788                 if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
789                         rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
790                         goto done;
791                 }
792
793                 /* The cache follows the following algorithm
794                  *   1. Add the objects to the cache
795                  *   2. Anything greater than the cache min value (if it
796                  *   crosses the cache flush threshold) is flushed to the ring.
797                  */
798                 /* Add elements back into the cache */
799                 uint32_t copied = 0;
800                 /* n is multiple of 32 */
801                 while (copied < n) {
802                         const __m512i a = _mm512_loadu_si512(&txep[copied]);
803                         const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
804                         const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
805                         const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
806
807                         _mm512_storeu_si512(&cache_objs[copied], a);
808                         _mm512_storeu_si512(&cache_objs[copied + 8], b);
809                         _mm512_storeu_si512(&cache_objs[copied + 16], c);
810                         _mm512_storeu_si512(&cache_objs[copied + 24], d);
811                         copied += 32;
812                 }
813                 cache->len += n;
814
815                 if (cache->len >= cache->flushthresh) {
816                         rte_mempool_ops_enqueue_bulk
817                                 (mp, &cache->objs[cache->size],
818                                  cache->len - cache->size);
819                         cache->len = cache->size;
820                 }
821                 goto done;
822         }
823
824         m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
825         if (likely(m)) {
826                 free[0] = m;
827                 nb_free = 1;
828                 for (i = 1; i < n; i++) {
829                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
830                         if (likely(m)) {
831                                 if (likely(m->pool == free[0]->pool)) {
832                                         free[nb_free++] = m;
833                                 } else {
834                                         rte_mempool_put_bulk(free[0]->pool,
835                                                              (void *)free,
836                                                              nb_free);
837                                         free[0] = m;
838                                         nb_free = 1;
839                                 }
840                         }
841                 }
842                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
843         } else {
844                 for (i = 1; i < n; i++) {
845                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
846                         if (m)
847                                 rte_mempool_put(m->pool, m);
848                 }
849         }
850
851 done:
852         /* buffers were freed, update counters */
853         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
854         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
855         if (txq->tx_next_dd >= txq->nb_tx_desc)
856                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
857
858         return txq->tx_rs_thresh;
859 }
860
861 static inline void
862 ice_vtx1(volatile struct ice_tx_desc *txdp,
863          struct rte_mbuf *pkt, uint64_t flags)
864 {
865         uint64_t high_qw =
866                 (ICE_TX_DESC_DTYPE_DATA |
867                  ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
868                  ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
869
870         __m128i descriptor = _mm_set_epi64x(high_qw,
871                                 pkt->buf_iova + pkt->data_off);
872         _mm_store_si128((__m128i *)txdp, descriptor);
873 }
874
875 static inline void
876 ice_vtx(volatile struct ice_tx_desc *txdp,
877         struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
878 {
879         const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
880                         ((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
881
882         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
883                 uint64_t hi_qw3 =
884                         hi_qw_tmpl |
885                         ((uint64_t)pkt[3]->data_len <<
886                          ICE_TXD_QW1_TX_BUF_SZ_S);
887                 uint64_t hi_qw2 =
888                         hi_qw_tmpl |
889                         ((uint64_t)pkt[2]->data_len <<
890                          ICE_TXD_QW1_TX_BUF_SZ_S);
891                 uint64_t hi_qw1 =
892                         hi_qw_tmpl |
893                         ((uint64_t)pkt[1]->data_len <<
894                          ICE_TXD_QW1_TX_BUF_SZ_S);
895                 uint64_t hi_qw0 =
896                         hi_qw_tmpl |
897                         ((uint64_t)pkt[0]->data_len <<
898                          ICE_TXD_QW1_TX_BUF_SZ_S);
899
900                 __m512i desc0_3 =
901                         _mm512_set_epi64
902                                 (hi_qw3,
903                                  pkt[3]->buf_iova + pkt[3]->data_off,
904                                  hi_qw2,
905                                  pkt[2]->buf_iova + pkt[2]->data_off,
906                                  hi_qw1,
907                                  pkt[1]->buf_iova + pkt[1]->data_off,
908                                  hi_qw0,
909                                  pkt[0]->buf_iova + pkt[0]->data_off);
910                 _mm512_storeu_si512((void *)txdp, desc0_3);
911         }
912
913         /* do any last ones */
914         while (nb_pkts) {
915                 ice_vtx1(txdp, *pkt, flags);
916                 txdp++, pkt++, nb_pkts--;
917         }
918 }
919
920 static __rte_always_inline void
921 ice_tx_backlog_entry_avx512(struct ice_vec_tx_entry *txep,
922                             struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
923 {
924         int i;
925
926         for (i = 0; i < (int)nb_pkts; ++i)
927                 txep[i].mbuf = tx_pkts[i];
928 }
929
930 static inline uint16_t
931 ice_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
932                                 uint16_t nb_pkts)
933 {
934         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
935         volatile struct ice_tx_desc *txdp;
936         struct ice_vec_tx_entry *txep;
937         uint16_t n, nb_commit, tx_id;
938         uint64_t flags = ICE_TD_CMD;
939         uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
940
941         /* cross rx_thresh boundary is not allowed */
942         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
943
944         if (txq->nb_tx_free < txq->tx_free_thresh)
945                 ice_tx_free_bufs_avx512(txq);
946
947         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
948         if (unlikely(nb_pkts == 0))
949                 return 0;
950
951         tx_id = txq->tx_tail;
952         txdp = &txq->tx_ring[tx_id];
953         txep = (void *)txq->sw_ring;
954         txep += tx_id;
955
956         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
957
958         n = (uint16_t)(txq->nb_tx_desc - tx_id);
959         if (nb_commit >= n) {
960                 ice_tx_backlog_entry_avx512(txep, tx_pkts, n);
961
962                 ice_vtx(txdp, tx_pkts, n - 1, flags);
963                 tx_pkts += (n - 1);
964                 txdp += (n - 1);
965
966                 ice_vtx1(txdp, *tx_pkts++, rs);
967
968                 nb_commit = (uint16_t)(nb_commit - n);
969
970                 tx_id = 0;
971                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
972
973                 /* avoid reach the end of ring */
974                 txdp = txq->tx_ring;
975                 txep = (void *)txq->sw_ring;
976         }
977
978         ice_tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
979
980         ice_vtx(txdp, tx_pkts, nb_commit, flags);
981
982         tx_id = (uint16_t)(tx_id + nb_commit);
983         if (tx_id > txq->tx_next_rs) {
984                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
985                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
986                                          ICE_TXD_QW1_CMD_S);
987                 txq->tx_next_rs =
988                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
989         }
990
991         txq->tx_tail = tx_id;
992
993         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
994
995         return nb_pkts;
996 }
997
998 uint16_t
999 ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1000                          uint16_t nb_pkts)
1001 {
1002         uint16_t nb_tx = 0;
1003         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1004
1005         while (nb_pkts) {
1006                 uint16_t ret, num;
1007
1008                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1009                 ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
1010                                                       &tx_pkts[nb_tx], num);
1011                 nb_tx += ret;
1012                 nb_pkts -= ret;
1013                 if (ret < num)
1014                         break;
1015         }
1016
1017         return nb_tx;
1018 }